My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Ви не можете вибрати більше 25 тем Теми мають розпочинатися з літери або цифри, можуть містити дефіси (-) і не повинні перевищувати 35 символів.

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #if Z_MIN_PIN == -1
  26. #error "You must have a Z_MIN endstop to enable Auto Bed Leveling feature. Z_MIN_PIN must point to a valid hardware pin."
  27. #endif
  28. #include "vector_3.h"
  29. #ifdef AUTO_BED_LEVELING_GRID
  30. #include "qr_solve.h"
  31. #endif
  32. #endif // ENABLE_AUTO_BED_LEVELING
  33. #define SERVO_LEVELING defined(ENABLE_AUTO_BED_LEVELING) && PROBE_SERVO_DEACTIVATION_DELAY > 0
  34. #include "ultralcd.h"
  35. #include "planner.h"
  36. #include "stepper.h"
  37. #include "temperature.h"
  38. #include "motion_control.h"
  39. #include "cardreader.h"
  40. #include "watchdog.h"
  41. #include "ConfigurationStore.h"
  42. #include "language.h"
  43. #include "pins_arduino.h"
  44. #include "math.h"
  45. #ifdef BLINKM
  46. #include "BlinkM.h"
  47. #include "Wire.h"
  48. #endif
  49. #if NUM_SERVOS > 0
  50. #include "Servo.h"
  51. #endif
  52. #if HAS_DIGIPOTSS
  53. #include <SPI.h>
  54. #endif
  55. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  56. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  57. //Implemented Codes
  58. //-------------------
  59. // G0 -> G1
  60. // G1 - Coordinated Movement X Y Z E
  61. // G2 - CW ARC
  62. // G3 - CCW ARC
  63. // G4 - Dwell S<seconds> or P<milliseconds>
  64. // G10 - retract filament according to settings of M207
  65. // G11 - retract recover filament according to settings of M208
  66. // G28 - Home all Axis
  67. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  68. // G30 - Single Z Probe, probes bed at current XY location.
  69. // G31 - Dock sled (Z_PROBE_SLED only)
  70. // G32 - Undock sled (Z_PROBE_SLED only)
  71. // G90 - Use Absolute Coordinates
  72. // G91 - Use Relative Coordinates
  73. // G92 - Set current position to coordinates given
  74. // M Codes
  75. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  76. // M1 - Same as M0
  77. // M17 - Enable/Power all stepper motors
  78. // M18 - Disable all stepper motors; same as M84
  79. // M20 - List SD card
  80. // M21 - Init SD card
  81. // M22 - Release SD card
  82. // M23 - Select SD file (M23 filename.g)
  83. // M24 - Start/resume SD print
  84. // M25 - Pause SD print
  85. // M26 - Set SD position in bytes (M26 S12345)
  86. // M27 - Report SD print status
  87. // M28 - Start SD write (M28 filename.g)
  88. // M29 - Stop SD write
  89. // M30 - Delete file from SD (M30 filename.g)
  90. // M31 - Output time since last M109 or SD card start to serial
  91. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  92. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  93. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  94. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  95. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  96. // M80 - Turn on Power Supply
  97. // M81 - Turn off Power Supply
  98. // M82 - Set E codes absolute (default)
  99. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  100. // M84 - Disable steppers until next move,
  101. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  102. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  103. // M92 - Set axis_steps_per_unit - same syntax as G92
  104. // M104 - Set extruder target temp
  105. // M105 - Read current temp
  106. // M106 - Fan on
  107. // M107 - Fan off
  108. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  109. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  110. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  111. // M112 - Emergency stop
  112. // M114 - Output current position to serial port
  113. // M115 - Capabilities string
  114. // M117 - display message
  115. // M119 - Output Endstop status to serial port
  116. // M120 - Enable endstop detection
  117. // M121 - Disable endstop detection
  118. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  119. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  120. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  121. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  122. // M140 - Set bed target temp
  123. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  124. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  125. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  126. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  127. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  128. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  129. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  130. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  131. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  132. // M206 - Set additional homing offset
  133. // M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  134. // M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  135. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  136. // M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  137. // M220 S<factor in percent>- set speed factor override percentage
  138. // M221 S<factor in percent>- set extrude factor override percentage
  139. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  140. // M240 - Trigger a camera to take a photograph
  141. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  142. // M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  143. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  144. // M301 - Set PID parameters P I and D
  145. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  146. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  147. // M304 - Set bed PID parameters P I and D
  148. // M380 - Activate solenoid on active extruder
  149. // M381 - Disable all solenoids
  150. // M400 - Finish all moves
  151. // M401 - Lower z-probe if present
  152. // M402 - Raise z-probe if present
  153. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  154. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  155. // M406 - Turn off Filament Sensor extrusion control
  156. // M407 - Displays measured filament diameter
  157. // M500 - Store parameters in EEPROM
  158. // M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  159. // M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  160. // M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  161. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  162. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  163. // M665 - Set delta configurations
  164. // M666 - Set delta endstop adjustment
  165. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  166. // M907 - Set digital trimpot motor current using axis codes.
  167. // M908 - Control digital trimpot directly.
  168. // M350 - Set microstepping mode.
  169. // M351 - Toggle MS1 MS2 pins directly.
  170. // ************ SCARA Specific - This can change to suit future G-code regulations
  171. // M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  172. // M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  173. // M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  174. // M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  175. // M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  176. // M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  177. //************* SCARA End ***************
  178. // M928 - Start SD logging (M928 filename.g) - ended by M29
  179. // M999 - Restart after being stopped by error
  180. #ifdef SDSUPPORT
  181. CardReader card;
  182. #endif
  183. float homing_feedrate[] = HOMING_FEEDRATE;
  184. #ifdef ENABLE_AUTO_BED_LEVELING
  185. int xy_travel_speed = XY_TRAVEL_SPEED;
  186. #endif
  187. int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  188. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  189. int feedmultiply = 100; //100->1 200->2
  190. int saved_feedmultiply;
  191. int extrudemultiply = 100; //100->1 200->2
  192. int extruder_multiply[EXTRUDERS] = { 100
  193. #if EXTRUDERS > 1
  194. , 100
  195. #if EXTRUDERS > 2
  196. , 100
  197. #if EXTRUDERS > 3
  198. , 100
  199. #endif
  200. #endif
  201. #endif
  202. };
  203. bool volumetric_enabled = false;
  204. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  205. #if EXTRUDERS > 1
  206. , DEFAULT_NOMINAL_FILAMENT_DIA
  207. #if EXTRUDERS > 2
  208. , DEFAULT_NOMINAL_FILAMENT_DIA
  209. #if EXTRUDERS > 3
  210. , DEFAULT_NOMINAL_FILAMENT_DIA
  211. #endif
  212. #endif
  213. #endif
  214. };
  215. float volumetric_multiplier[EXTRUDERS] = {1.0
  216. #if EXTRUDERS > 1
  217. , 1.0
  218. #if EXTRUDERS > 2
  219. , 1.0
  220. #if EXTRUDERS > 3
  221. , 1.0
  222. #endif
  223. #endif
  224. #endif
  225. };
  226. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  227. float add_homing[3] = { 0, 0, 0 };
  228. #ifdef DELTA
  229. float endstop_adj[3] = { 0, 0, 0 };
  230. #endif
  231. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  232. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  233. bool axis_known_position[3] = { false, false, false };
  234. float zprobe_zoffset;
  235. // Extruder offset
  236. #if EXTRUDERS > 1
  237. #ifndef DUAL_X_CARRIAGE
  238. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  239. #else
  240. #define NUM_EXTRUDER_OFFSETS 3 // supports offsets in XYZ plane
  241. #endif
  242. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  243. #if defined(EXTRUDER_OFFSET_X)
  244. EXTRUDER_OFFSET_X
  245. #else
  246. 0
  247. #endif
  248. ,
  249. #if defined(EXTRUDER_OFFSET_Y)
  250. EXTRUDER_OFFSET_Y
  251. #else
  252. 0
  253. #endif
  254. };
  255. #endif
  256. uint8_t active_extruder = 0;
  257. int fanSpeed = 0;
  258. #ifdef SERVO_ENDSTOPS
  259. int servo_endstops[] = SERVO_ENDSTOPS;
  260. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  261. #endif
  262. #ifdef BARICUDA
  263. int ValvePressure = 0;
  264. int EtoPPressure = 0;
  265. #endif
  266. #ifdef FWRETRACT
  267. bool autoretract_enabled = false;
  268. bool retracted[EXTRUDERS] = { false
  269. #if EXTRUDERS > 1
  270. , false
  271. #if EXTRUDERS > 2
  272. , false
  273. #if EXTRUDERS > 3
  274. , false
  275. #endif
  276. #endif
  277. #endif
  278. };
  279. bool retracted_swap[EXTRUDERS] = { false
  280. #if EXTRUDERS > 1
  281. , false
  282. #if EXTRUDERS > 2
  283. , false
  284. #if EXTRUDERS > 3
  285. , false
  286. #endif
  287. #endif
  288. #endif
  289. };
  290. float retract_length = RETRACT_LENGTH;
  291. float retract_length_swap = RETRACT_LENGTH_SWAP;
  292. float retract_feedrate = RETRACT_FEEDRATE;
  293. float retract_zlift = RETRACT_ZLIFT;
  294. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  295. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  296. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  297. #endif // FWRETRACT
  298. #ifdef ULTIPANEL
  299. bool powersupply =
  300. #ifdef PS_DEFAULT_OFF
  301. false
  302. #else
  303. true
  304. #endif
  305. ;
  306. #endif
  307. #ifdef DELTA
  308. float delta[3] = { 0, 0, 0 };
  309. #define SIN_60 0.8660254037844386
  310. #define COS_60 0.5
  311. // these are the default values, can be overriden with M665
  312. float delta_radius = DELTA_RADIUS;
  313. float delta_tower1_x = -SIN_60 * delta_radius; // front left tower
  314. float delta_tower1_y = -COS_60 * delta_radius;
  315. float delta_tower2_x = SIN_60 * delta_radius; // front right tower
  316. float delta_tower2_y = -COS_60 * delta_radius;
  317. float delta_tower3_x = 0; // back middle tower
  318. float delta_tower3_y = delta_radius;
  319. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  320. float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  321. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  322. #endif
  323. #ifdef SCARA
  324. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  325. #endif
  326. bool cancel_heatup = false;
  327. #ifdef FILAMENT_SENSOR
  328. //Variables for Filament Sensor input
  329. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  330. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  331. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  332. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  333. int delay_index1=0; //index into ring buffer
  334. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  335. float delay_dist=0; //delay distance counter
  336. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  337. #endif
  338. const char errormagic[] PROGMEM = "Error:";
  339. const char echomagic[] PROGMEM = "echo:";
  340. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  341. static float destination[NUM_AXIS] = { 0, 0, 0, 0 };
  342. #ifndef DELTA
  343. static float delta[3] = { 0, 0, 0 };
  344. #endif
  345. static float offset[3] = { 0, 0, 0 };
  346. static bool home_all_axis = true;
  347. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  348. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  349. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  350. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  351. static bool fromsd[BUFSIZE];
  352. static int bufindr = 0;
  353. static int bufindw = 0;
  354. static int buflen = 0;
  355. static char serial_char;
  356. static int serial_count = 0;
  357. static boolean comment_mode = false;
  358. static char *strchr_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.)
  359. const char* queued_commands_P= NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */
  360. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  361. // Inactivity shutdown
  362. static unsigned long previous_millis_cmd = 0;
  363. static unsigned long max_inactive_time = 0;
  364. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  365. unsigned long starttime = 0; ///< Print job start time
  366. unsigned long stoptime = 0; ///< Print job stop time
  367. static uint8_t tmp_extruder;
  368. bool Stopped = false;
  369. #if NUM_SERVOS > 0
  370. Servo servos[NUM_SERVOS];
  371. #endif
  372. bool CooldownNoWait = true;
  373. bool target_direction;
  374. #ifdef CHDK
  375. unsigned long chdkHigh = 0;
  376. boolean chdkActive = false;
  377. #endif
  378. //===========================================================================
  379. //=============================Routines======================================
  380. //===========================================================================
  381. void get_arc_coordinates();
  382. bool setTargetedHotend(int code);
  383. void serial_echopair_P(const char *s_P, float v)
  384. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  385. void serial_echopair_P(const char *s_P, double v)
  386. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  387. void serial_echopair_P(const char *s_P, unsigned long v)
  388. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  389. #ifdef SDSUPPORT
  390. #include "SdFatUtil.h"
  391. int freeMemory() { return SdFatUtil::FreeRam(); }
  392. #else
  393. extern "C" {
  394. extern unsigned int __bss_end;
  395. extern unsigned int __heap_start;
  396. extern void *__brkval;
  397. int freeMemory() {
  398. int free_memory;
  399. if ((int)__brkval == 0)
  400. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  401. else
  402. free_memory = ((int)&free_memory) - ((int)__brkval);
  403. return free_memory;
  404. }
  405. }
  406. #endif //!SDSUPPORT
  407. //Injects the next command from the pending sequence of commands, when possible
  408. //Return false if and only if no command was pending
  409. static bool drain_queued_commands_P()
  410. {
  411. char cmd[30];
  412. if(!queued_commands_P)
  413. return false;
  414. // Get the next 30 chars from the sequence of gcodes to run
  415. strncpy_P(cmd, queued_commands_P, sizeof(cmd)-1);
  416. cmd[sizeof(cmd)-1]= 0;
  417. // Look for the end of line, or the end of sequence
  418. size_t i= 0;
  419. char c;
  420. while( (c= cmd[i]) && c!='\n' )
  421. ++i; // look for the end of this gcode command
  422. cmd[i]= 0;
  423. if(enquecommand(cmd)) // buffer was not full (else we will retry later)
  424. {
  425. if(c)
  426. queued_commands_P+= i+1; // move to next command
  427. else
  428. queued_commands_P= NULL; // will have no more commands in the sequence
  429. }
  430. return true;
  431. }
  432. //Record one or many commands to run from program memory.
  433. //Aborts the current queue, if any.
  434. //Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  435. void enquecommands_P(const char* pgcode)
  436. {
  437. queued_commands_P= pgcode;
  438. drain_queued_commands_P(); // first command exectuted asap (when possible)
  439. }
  440. //adds a single command to the main command buffer, from RAM
  441. //that is really done in a non-safe way.
  442. //needs overworking someday
  443. //Returns false if it failed to do so
  444. bool enquecommand(const char *cmd)
  445. {
  446. if(*cmd==';')
  447. return false;
  448. if(buflen >= BUFSIZE)
  449. return false;
  450. //this is dangerous if a mixing of serial and this happens
  451. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  452. SERIAL_ECHO_START;
  453. SERIAL_ECHOPGM(MSG_Enqueing);
  454. SERIAL_ECHO(cmdbuffer[bufindw]);
  455. SERIAL_ECHOLNPGM("\"");
  456. bufindw= (bufindw + 1)%BUFSIZE;
  457. buflen += 1;
  458. return true;
  459. }
  460. void setup_killpin()
  461. {
  462. #if defined(KILL_PIN) && KILL_PIN > -1
  463. SET_INPUT(KILL_PIN);
  464. WRITE(KILL_PIN,HIGH);
  465. #endif
  466. }
  467. // Set home pin
  468. void setup_homepin(void)
  469. {
  470. #if defined(HOME_PIN) && HOME_PIN > -1
  471. SET_INPUT(HOME_PIN);
  472. WRITE(HOME_PIN,HIGH);
  473. #endif
  474. }
  475. void setup_photpin()
  476. {
  477. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  478. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  479. #endif
  480. }
  481. void setup_powerhold()
  482. {
  483. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  484. OUT_WRITE(SUICIDE_PIN, HIGH);
  485. #endif
  486. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  487. #if defined(PS_DEFAULT_OFF)
  488. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  489. #else
  490. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  491. #endif
  492. #endif
  493. }
  494. void suicide()
  495. {
  496. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  497. OUT_WRITE(SUICIDE_PIN, LOW);
  498. #endif
  499. }
  500. void servo_init()
  501. {
  502. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  503. servos[0].attach(SERVO0_PIN);
  504. #endif
  505. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  506. servos[1].attach(SERVO1_PIN);
  507. #endif
  508. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  509. servos[2].attach(SERVO2_PIN);
  510. #endif
  511. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  512. servos[3].attach(SERVO3_PIN);
  513. #endif
  514. #if (NUM_SERVOS >= 5)
  515. #error "TODO: enter initalisation code for more servos"
  516. #endif
  517. // Set position of Servo Endstops that are defined
  518. #ifdef SERVO_ENDSTOPS
  519. for(int8_t i = 0; i < 3; i++)
  520. {
  521. if(servo_endstops[i] > -1) {
  522. servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  523. }
  524. }
  525. #endif
  526. #if SERVO_LEVELING
  527. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  528. servos[servo_endstops[Z_AXIS]].detach();
  529. #endif
  530. }
  531. void setup()
  532. {
  533. setup_killpin();
  534. setup_powerhold();
  535. MYSERIAL.begin(BAUDRATE);
  536. SERIAL_PROTOCOLLNPGM("start");
  537. SERIAL_ECHO_START;
  538. // Check startup - does nothing if bootloader sets MCUSR to 0
  539. byte mcu = MCUSR;
  540. if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  541. if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  542. if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  543. if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  544. if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  545. MCUSR=0;
  546. SERIAL_ECHOPGM(MSG_MARLIN);
  547. SERIAL_ECHOLNPGM(STRING_VERSION);
  548. #ifdef STRING_VERSION_CONFIG_H
  549. #ifdef STRING_CONFIG_H_AUTHOR
  550. SERIAL_ECHO_START;
  551. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  552. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  553. SERIAL_ECHOPGM(MSG_AUTHOR);
  554. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  555. SERIAL_ECHOPGM("Compiled: ");
  556. SERIAL_ECHOLNPGM(__DATE__);
  557. #endif // STRING_CONFIG_H_AUTHOR
  558. #endif // STRING_VERSION_CONFIG_H
  559. SERIAL_ECHO_START;
  560. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  561. SERIAL_ECHO(freeMemory());
  562. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  563. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  564. for(int8_t i = 0; i < BUFSIZE; i++)
  565. {
  566. fromsd[i] = false;
  567. }
  568. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  569. Config_RetrieveSettings();
  570. tp_init(); // Initialize temperature loop
  571. plan_init(); // Initialize planner;
  572. watchdog_init();
  573. st_init(); // Initialize stepper, this enables interrupts!
  574. setup_photpin();
  575. servo_init();
  576. lcd_init();
  577. _delay_ms(1000); // wait 1sec to display the splash screen
  578. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  579. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  580. #endif
  581. #ifdef DIGIPOT_I2C
  582. digipot_i2c_init();
  583. #endif
  584. #ifdef Z_PROBE_SLED
  585. pinMode(SERVO0_PIN, OUTPUT);
  586. digitalWrite(SERVO0_PIN, LOW); // turn it off
  587. #endif // Z_PROBE_SLED
  588. setup_homepin();
  589. #ifdef STAT_LED_RED
  590. pinMode(STAT_LED_RED, OUTPUT);
  591. digitalWrite(STAT_LED_RED, LOW); // turn it off
  592. #endif
  593. #ifdef STAT_LED_BLUE
  594. pinMode(STAT_LED_BLUE, OUTPUT);
  595. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  596. #endif
  597. }
  598. void loop()
  599. {
  600. if(buflen < (BUFSIZE-1))
  601. get_command();
  602. #ifdef SDSUPPORT
  603. card.checkautostart(false);
  604. #endif
  605. if(buflen)
  606. {
  607. #ifdef SDSUPPORT
  608. if(card.saving)
  609. {
  610. if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
  611. {
  612. card.write_command(cmdbuffer[bufindr]);
  613. if(card.logging)
  614. {
  615. process_commands();
  616. }
  617. else
  618. {
  619. SERIAL_PROTOCOLLNPGM(MSG_OK);
  620. }
  621. }
  622. else
  623. {
  624. card.closefile();
  625. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  626. }
  627. }
  628. else
  629. {
  630. process_commands();
  631. }
  632. #else
  633. process_commands();
  634. #endif //SDSUPPORT
  635. buflen = (buflen-1);
  636. bufindr = (bufindr + 1)%BUFSIZE;
  637. }
  638. //check heater every n milliseconds
  639. manage_heater();
  640. manage_inactivity();
  641. checkHitEndstops();
  642. lcd_update();
  643. }
  644. void get_command()
  645. {
  646. if(drain_queued_commands_P()) // priority is given to non-serial commands
  647. return;
  648. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  649. serial_char = MYSERIAL.read();
  650. if(serial_char == '\n' ||
  651. serial_char == '\r' ||
  652. serial_count >= (MAX_CMD_SIZE - 1) )
  653. {
  654. // end of line == end of comment
  655. comment_mode = false;
  656. if(!serial_count) {
  657. // short cut for empty lines
  658. return;
  659. }
  660. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  661. fromsd[bufindw] = false;
  662. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  663. {
  664. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  665. gcode_N = (strtol(strchr_pointer + 1, NULL, 10));
  666. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  667. SERIAL_ERROR_START;
  668. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  669. SERIAL_ERRORLN(gcode_LastN);
  670. //Serial.println(gcode_N);
  671. FlushSerialRequestResend();
  672. serial_count = 0;
  673. return;
  674. }
  675. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  676. {
  677. byte checksum = 0;
  678. byte count = 0;
  679. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  680. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  681. if(strtol(strchr_pointer + 1, NULL, 10) != checksum) {
  682. SERIAL_ERROR_START;
  683. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  684. SERIAL_ERRORLN(gcode_LastN);
  685. FlushSerialRequestResend();
  686. serial_count = 0;
  687. return;
  688. }
  689. //if no errors, continue parsing
  690. }
  691. else
  692. {
  693. SERIAL_ERROR_START;
  694. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  695. SERIAL_ERRORLN(gcode_LastN);
  696. FlushSerialRequestResend();
  697. serial_count = 0;
  698. return;
  699. }
  700. gcode_LastN = gcode_N;
  701. //if no errors, continue parsing
  702. }
  703. else // if we don't receive 'N' but still see '*'
  704. {
  705. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  706. {
  707. SERIAL_ERROR_START;
  708. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  709. SERIAL_ERRORLN(gcode_LastN);
  710. serial_count = 0;
  711. return;
  712. }
  713. }
  714. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  715. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  716. switch(strtol(strchr_pointer + 1, NULL, 10)){
  717. case 0:
  718. case 1:
  719. case 2:
  720. case 3:
  721. if (Stopped == true) {
  722. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  723. LCD_MESSAGEPGM(MSG_STOPPED);
  724. }
  725. break;
  726. default:
  727. break;
  728. }
  729. }
  730. //If command was e-stop process now
  731. if(strcmp(cmdbuffer[bufindw], "M112") == 0)
  732. kill();
  733. bufindw = (bufindw + 1)%BUFSIZE;
  734. buflen += 1;
  735. serial_count = 0; //clear buffer
  736. }
  737. else if(serial_char == '\\') { //Handle escapes
  738. if(MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  739. // if we have one more character, copy it over
  740. serial_char = MYSERIAL.read();
  741. cmdbuffer[bufindw][serial_count++] = serial_char;
  742. }
  743. //otherwise do nothing
  744. }
  745. else { // its not a newline, carriage return or escape char
  746. if(serial_char == ';') comment_mode = true;
  747. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  748. }
  749. }
  750. #ifdef SDSUPPORT
  751. if(!card.sdprinting || serial_count!=0){
  752. return;
  753. }
  754. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  755. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  756. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  757. static bool stop_buffering=false;
  758. if(buflen==0) stop_buffering=false;
  759. while( !card.eof() && buflen < BUFSIZE && !stop_buffering) {
  760. int16_t n=card.get();
  761. serial_char = (char)n;
  762. if(serial_char == '\n' ||
  763. serial_char == '\r' ||
  764. (serial_char == '#' && comment_mode == false) ||
  765. (serial_char == ':' && comment_mode == false) ||
  766. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  767. {
  768. if(card.eof()){
  769. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  770. stoptime=millis();
  771. char time[30];
  772. unsigned long t=(stoptime-starttime)/1000;
  773. int hours, minutes;
  774. minutes=(t/60)%60;
  775. hours=t/60/60;
  776. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  777. SERIAL_ECHO_START;
  778. SERIAL_ECHOLN(time);
  779. lcd_setstatus(time);
  780. card.printingHasFinished();
  781. card.checkautostart(true);
  782. }
  783. if(serial_char=='#')
  784. stop_buffering=true;
  785. if(!serial_count)
  786. {
  787. comment_mode = false; //for new command
  788. return; //if empty line
  789. }
  790. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  791. // if(!comment_mode){
  792. fromsd[bufindw] = true;
  793. buflen += 1;
  794. bufindw = (bufindw + 1)%BUFSIZE;
  795. // }
  796. comment_mode = false; //for new command
  797. serial_count = 0; //clear buffer
  798. }
  799. else
  800. {
  801. if(serial_char == ';') comment_mode = true;
  802. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  803. }
  804. }
  805. #endif //SDSUPPORT
  806. }
  807. float code_value()
  808. {
  809. return (strtod(strchr_pointer + 1, NULL));
  810. }
  811. long code_value_long()
  812. {
  813. return (strtol(strchr_pointer + 1, NULL, 10));
  814. }
  815. bool code_seen(char code)
  816. {
  817. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  818. return (strchr_pointer != NULL); //Return True if a character was found
  819. }
  820. #define DEFINE_PGM_READ_ANY(type, reader) \
  821. static inline type pgm_read_any(const type *p) \
  822. { return pgm_read_##reader##_near(p); }
  823. DEFINE_PGM_READ_ANY(float, float);
  824. DEFINE_PGM_READ_ANY(signed char, byte);
  825. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  826. static const PROGMEM type array##_P[3] = \
  827. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  828. static inline type array(int axis) \
  829. { return pgm_read_any(&array##_P[axis]); }
  830. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  831. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  832. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  833. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  834. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  835. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  836. #ifdef DUAL_X_CARRIAGE
  837. #if EXTRUDERS == 1 || defined(COREXY) \
  838. || !defined(X2_ENABLE_PIN) || !defined(X2_STEP_PIN) || !defined(X2_DIR_PIN) \
  839. || !defined(X2_HOME_POS) || !defined(X2_MIN_POS) || !defined(X2_MAX_POS) \
  840. || !defined(X_MAX_PIN) || X_MAX_PIN < 0
  841. #error "Missing or invalid definitions for DUAL_X_CARRIAGE mode."
  842. #endif
  843. #if X_HOME_DIR != -1 || X2_HOME_DIR != 1
  844. #error "Please use canonical x-carriage assignment" // the x-carriages are defined by their homing directions
  845. #endif
  846. #define DXC_FULL_CONTROL_MODE 0
  847. #define DXC_AUTO_PARK_MODE 1
  848. #define DXC_DUPLICATION_MODE 2
  849. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  850. static float x_home_pos(int extruder) {
  851. if (extruder == 0)
  852. return base_home_pos(X_AXIS) + add_homing[X_AXIS];
  853. else
  854. // In dual carriage mode the extruder offset provides an override of the
  855. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  856. // This allow soft recalibration of the second extruder offset position without firmware reflash
  857. // (through the M218 command).
  858. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  859. }
  860. static int x_home_dir(int extruder) {
  861. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  862. }
  863. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  864. static bool active_extruder_parked = false; // used in mode 1 & 2
  865. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  866. static unsigned long delayed_move_time = 0; // used in mode 1
  867. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  868. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  869. bool extruder_duplication_enabled = false; // used in mode 2
  870. #endif //DUAL_X_CARRIAGE
  871. static void axis_is_at_home(int axis) {
  872. #ifdef DUAL_X_CARRIAGE
  873. if (axis == X_AXIS) {
  874. if (active_extruder != 0) {
  875. current_position[X_AXIS] = x_home_pos(active_extruder);
  876. min_pos[X_AXIS] = X2_MIN_POS;
  877. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  878. return;
  879. }
  880. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  881. current_position[X_AXIS] = base_home_pos(X_AXIS) + add_homing[X_AXIS];
  882. min_pos[X_AXIS] = base_min_pos(X_AXIS) + add_homing[X_AXIS];
  883. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + add_homing[X_AXIS],
  884. max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  885. return;
  886. }
  887. }
  888. #endif
  889. #ifdef SCARA
  890. float homeposition[3];
  891. char i;
  892. if (axis < 2)
  893. {
  894. for (i=0; i<3; i++)
  895. {
  896. homeposition[i] = base_home_pos(i);
  897. }
  898. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  899. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  900. // Works out real Homeposition angles using inverse kinematics,
  901. // and calculates homing offset using forward kinematics
  902. calculate_delta(homeposition);
  903. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  904. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  905. for (i=0; i<2; i++)
  906. {
  907. delta[i] -= add_homing[i];
  908. }
  909. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(add_homing[X_AXIS]);
  910. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(add_homing[Y_AXIS]);
  911. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  912. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  913. calculate_SCARA_forward_Transform(delta);
  914. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  915. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  916. current_position[axis] = delta[axis];
  917. // SCARA home positions are based on configuration since the actual limits are determined by the
  918. // inverse kinematic transform.
  919. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  920. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  921. }
  922. else
  923. {
  924. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  925. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  926. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  927. }
  928. #else
  929. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  930. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  931. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  932. #endif
  933. }
  934. #ifdef ENABLE_AUTO_BED_LEVELING
  935. #ifdef AUTO_BED_LEVELING_GRID
  936. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  937. {
  938. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  939. planeNormal.debug("planeNormal");
  940. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  941. //bedLevel.debug("bedLevel");
  942. //plan_bed_level_matrix.debug("bed level before");
  943. //vector_3 uncorrected_position = plan_get_position_mm();
  944. //uncorrected_position.debug("position before");
  945. vector_3 corrected_position = plan_get_position();
  946. // corrected_position.debug("position after");
  947. current_position[X_AXIS] = corrected_position.x;
  948. current_position[Y_AXIS] = corrected_position.y;
  949. current_position[Z_AXIS] = corrected_position.z;
  950. // put the bed at 0 so we don't go below it.
  951. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  952. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  953. }
  954. #else // not AUTO_BED_LEVELING_GRID
  955. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  956. plan_bed_level_matrix.set_to_identity();
  957. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  958. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  959. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  960. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  961. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  962. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  963. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  964. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  965. vector_3 corrected_position = plan_get_position();
  966. current_position[X_AXIS] = corrected_position.x;
  967. current_position[Y_AXIS] = corrected_position.y;
  968. current_position[Z_AXIS] = corrected_position.z;
  969. // put the bed at 0 so we don't go below it.
  970. current_position[Z_AXIS] = zprobe_zoffset;
  971. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  972. }
  973. #endif // AUTO_BED_LEVELING_GRID
  974. static void run_z_probe() {
  975. plan_bed_level_matrix.set_to_identity();
  976. feedrate = homing_feedrate[Z_AXIS];
  977. // move down until you find the bed
  978. float zPosition = -10;
  979. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  980. st_synchronize();
  981. // we have to let the planner know where we are right now as it is not where we said to go.
  982. zPosition = st_get_position_mm(Z_AXIS);
  983. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  984. // move up the retract distance
  985. zPosition += home_retract_mm(Z_AXIS);
  986. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  987. st_synchronize();
  988. // move back down slowly to find bed
  989. if (homing_bump_divisor[Z_AXIS] >= 1)
  990. {
  991. feedrate = homing_feedrate[Z_AXIS]/homing_bump_divisor[Z_AXIS];
  992. }
  993. else
  994. {
  995. feedrate = homing_feedrate[Z_AXIS]/10;
  996. SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less then 1");
  997. }
  998. zPosition -= home_retract_mm(Z_AXIS) * 2;
  999. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1000. st_synchronize();
  1001. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1002. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1003. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1004. }
  1005. static void do_blocking_move_to(float x, float y, float z) {
  1006. float oldFeedRate = feedrate;
  1007. feedrate = homing_feedrate[Z_AXIS];
  1008. current_position[Z_AXIS] = z;
  1009. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1010. st_synchronize();
  1011. feedrate = xy_travel_speed;
  1012. current_position[X_AXIS] = x;
  1013. current_position[Y_AXIS] = y;
  1014. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1015. st_synchronize();
  1016. feedrate = oldFeedRate;
  1017. }
  1018. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1019. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1020. }
  1021. static void setup_for_endstop_move() {
  1022. saved_feedrate = feedrate;
  1023. saved_feedmultiply = feedmultiply;
  1024. feedmultiply = 100;
  1025. previous_millis_cmd = millis();
  1026. enable_endstops(true);
  1027. }
  1028. static void clean_up_after_endstop_move() {
  1029. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1030. enable_endstops(false);
  1031. #endif
  1032. feedrate = saved_feedrate;
  1033. feedmultiply = saved_feedmultiply;
  1034. previous_millis_cmd = millis();
  1035. }
  1036. static void engage_z_probe() {
  1037. // Engage Z Servo endstop if enabled
  1038. #ifdef SERVO_ENDSTOPS
  1039. if (servo_endstops[Z_AXIS] > -1) {
  1040. #if SERVO_LEVELING
  1041. servos[servo_endstops[Z_AXIS]].attach(0);
  1042. #endif
  1043. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  1044. #if SERVO_LEVELING
  1045. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1046. servos[servo_endstops[Z_AXIS]].detach();
  1047. #endif
  1048. }
  1049. #endif
  1050. }
  1051. static void retract_z_probe() {
  1052. // Retract Z Servo endstop if enabled
  1053. #ifdef SERVO_ENDSTOPS
  1054. if (servo_endstops[Z_AXIS] > -1) {
  1055. #if SERVO_LEVELING
  1056. servos[servo_endstops[Z_AXIS]].attach(0);
  1057. #endif
  1058. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  1059. #if SERVO_LEVELING
  1060. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1061. servos[servo_endstops[Z_AXIS]].detach();
  1062. #endif
  1063. }
  1064. #endif
  1065. }
  1066. enum ProbeAction { ProbeStay, ProbeEngage, ProbeRetract, ProbeEngageRetract };
  1067. /// Probe bed height at position (x,y), returns the measured z value
  1068. static float probe_pt(float x, float y, float z_before, ProbeAction retract_action=ProbeEngageRetract, int verbose_level=1) {
  1069. // move to right place
  1070. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1071. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1072. #ifndef Z_PROBE_SLED
  1073. if (retract_action & ProbeEngage) engage_z_probe();
  1074. #endif
  1075. run_z_probe();
  1076. float measured_z = current_position[Z_AXIS];
  1077. #ifndef Z_PROBE_SLED
  1078. if (retract_action & ProbeRetract) retract_z_probe();
  1079. #endif
  1080. if (verbose_level > 2) {
  1081. SERIAL_PROTOCOLPGM(MSG_BED);
  1082. SERIAL_PROTOCOLPGM(" X: ");
  1083. SERIAL_PROTOCOL(x + 0.0001);
  1084. SERIAL_PROTOCOLPGM(" Y: ");
  1085. SERIAL_PROTOCOL(y + 0.0001);
  1086. SERIAL_PROTOCOLPGM(" Z: ");
  1087. SERIAL_PROTOCOL(measured_z + 0.0001);
  1088. SERIAL_EOL;
  1089. }
  1090. return measured_z;
  1091. }
  1092. #endif // ENABLE_AUTO_BED_LEVELING
  1093. static void homeaxis(int axis) {
  1094. #define HOMEAXIS_DO(LETTER) \
  1095. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1096. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  1097. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  1098. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  1099. 0) {
  1100. int axis_home_dir = home_dir(axis);
  1101. #ifdef DUAL_X_CARRIAGE
  1102. if (axis == X_AXIS)
  1103. axis_home_dir = x_home_dir(active_extruder);
  1104. #endif
  1105. current_position[axis] = 0;
  1106. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1107. #ifndef Z_PROBE_SLED
  1108. // Engage Servo endstop if enabled
  1109. #ifdef SERVO_ENDSTOPS
  1110. #if SERVO_LEVELING
  1111. if (axis==Z_AXIS) {
  1112. engage_z_probe();
  1113. }
  1114. else
  1115. #endif
  1116. if (servo_endstops[axis] > -1) {
  1117. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  1118. }
  1119. #endif
  1120. #endif // Z_PROBE_SLED
  1121. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1122. feedrate = homing_feedrate[axis];
  1123. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1124. st_synchronize();
  1125. current_position[axis] = 0;
  1126. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1127. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1128. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1129. st_synchronize();
  1130. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1131. if (homing_bump_divisor[axis] >= 1)
  1132. {
  1133. feedrate = homing_feedrate[axis]/homing_bump_divisor[axis];
  1134. }
  1135. else
  1136. {
  1137. feedrate = homing_feedrate[axis]/10;
  1138. SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less then 1");
  1139. }
  1140. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1141. st_synchronize();
  1142. #ifdef DELTA
  1143. // retrace by the amount specified in endstop_adj
  1144. if (endstop_adj[axis] * axis_home_dir < 0) {
  1145. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1146. destination[axis] = endstop_adj[axis];
  1147. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1148. st_synchronize();
  1149. }
  1150. #endif
  1151. axis_is_at_home(axis);
  1152. destination[axis] = current_position[axis];
  1153. feedrate = 0.0;
  1154. endstops_hit_on_purpose();
  1155. axis_known_position[axis] = true;
  1156. // Retract Servo endstop if enabled
  1157. #ifdef SERVO_ENDSTOPS
  1158. if (servo_endstops[axis] > -1) {
  1159. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  1160. }
  1161. #endif
  1162. #if SERVO_LEVELING
  1163. #ifndef Z_PROBE_SLED
  1164. if (axis==Z_AXIS) retract_z_probe();
  1165. #endif
  1166. #endif
  1167. }
  1168. }
  1169. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1170. void refresh_cmd_timeout(void)
  1171. {
  1172. previous_millis_cmd = millis();
  1173. }
  1174. #ifdef FWRETRACT
  1175. void retract(bool retracting, bool swapretract = false) {
  1176. if(retracting && !retracted[active_extruder]) {
  1177. destination[X_AXIS]=current_position[X_AXIS];
  1178. destination[Y_AXIS]=current_position[Y_AXIS];
  1179. destination[Z_AXIS]=current_position[Z_AXIS];
  1180. destination[E_AXIS]=current_position[E_AXIS];
  1181. if (swapretract) {
  1182. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1183. } else {
  1184. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1185. }
  1186. plan_set_e_position(current_position[E_AXIS]);
  1187. float oldFeedrate = feedrate;
  1188. feedrate=retract_feedrate*60;
  1189. retracted[active_extruder]=true;
  1190. prepare_move();
  1191. if(retract_zlift > 0.01) {
  1192. current_position[Z_AXIS]-=retract_zlift;
  1193. #ifdef DELTA
  1194. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  1195. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1196. #else
  1197. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1198. #endif
  1199. prepare_move();
  1200. }
  1201. feedrate = oldFeedrate;
  1202. } else if(!retracting && retracted[active_extruder]) {
  1203. destination[X_AXIS]=current_position[X_AXIS];
  1204. destination[Y_AXIS]=current_position[Y_AXIS];
  1205. destination[Z_AXIS]=current_position[Z_AXIS];
  1206. destination[E_AXIS]=current_position[E_AXIS];
  1207. if(retract_zlift > 0.01) {
  1208. current_position[Z_AXIS]+=retract_zlift;
  1209. #ifdef DELTA
  1210. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  1211. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1212. #else
  1213. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1214. #endif
  1215. //prepare_move();
  1216. }
  1217. if (swapretract) {
  1218. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1219. } else {
  1220. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1221. }
  1222. plan_set_e_position(current_position[E_AXIS]);
  1223. float oldFeedrate = feedrate;
  1224. feedrate=retract_recover_feedrate*60;
  1225. retracted[active_extruder]=false;
  1226. prepare_move();
  1227. feedrate = oldFeedrate;
  1228. }
  1229. } //retract
  1230. #endif //FWRETRACT
  1231. #ifdef Z_PROBE_SLED
  1232. #ifndef SLED_DOCKING_OFFSET
  1233. #define SLED_DOCKING_OFFSET 0
  1234. #endif
  1235. //
  1236. // Method to dock/undock a sled designed by Charles Bell.
  1237. //
  1238. // dock[in] If true, move to MAX_X and engage the electromagnet
  1239. // offset[in] The additional distance to move to adjust docking location
  1240. //
  1241. static void dock_sled(bool dock, int offset=0) {
  1242. int z_loc;
  1243. if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1244. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1245. SERIAL_ECHO_START;
  1246. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1247. return;
  1248. }
  1249. if (dock) {
  1250. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
  1251. current_position[Y_AXIS],
  1252. current_position[Z_AXIS]);
  1253. // turn off magnet
  1254. digitalWrite(SERVO0_PIN, LOW);
  1255. } else {
  1256. if (current_position[Z_AXIS] < (Z_RAISE_BEFORE_PROBING + 5))
  1257. z_loc = Z_RAISE_BEFORE_PROBING;
  1258. else
  1259. z_loc = current_position[Z_AXIS];
  1260. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
  1261. Y_PROBE_OFFSET_FROM_EXTRUDER, z_loc);
  1262. // turn on magnet
  1263. digitalWrite(SERVO0_PIN, HIGH);
  1264. }
  1265. }
  1266. #endif
  1267. /**
  1268. *
  1269. * G-Code Handler functions
  1270. *
  1271. */
  1272. /**
  1273. * G0, G1: Coordinated movement of X Y Z E axes
  1274. */
  1275. inline void gcode_G0_G1() {
  1276. if (!Stopped) {
  1277. get_coordinates(); // For X Y Z E F
  1278. #ifdef FWRETRACT
  1279. if (autoretract_enabled)
  1280. if (!(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1281. float echange = destination[E_AXIS] - current_position[E_AXIS];
  1282. // Is this move an attempt to retract or recover?
  1283. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  1284. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  1285. plan_set_e_position(current_position[E_AXIS]); // AND from the planner
  1286. retract(!retracted[active_extruder]);
  1287. return;
  1288. }
  1289. }
  1290. #endif //FWRETRACT
  1291. prepare_move();
  1292. //ClearToSend();
  1293. }
  1294. }
  1295. /**
  1296. * G2: Clockwise Arc
  1297. * G3: Counterclockwise Arc
  1298. */
  1299. inline void gcode_G2_G3(bool clockwise) {
  1300. if (!Stopped) {
  1301. get_arc_coordinates();
  1302. prepare_arc_move(clockwise);
  1303. }
  1304. }
  1305. /**
  1306. * G4: Dwell S<seconds> or P<milliseconds>
  1307. */
  1308. inline void gcode_G4() {
  1309. unsigned long codenum;
  1310. LCD_MESSAGEPGM(MSG_DWELL);
  1311. if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
  1312. if (code_seen('S')) codenum = code_value_long() * 1000; // seconds to wait
  1313. st_synchronize();
  1314. previous_millis_cmd = millis();
  1315. codenum += previous_millis_cmd; // keep track of when we started waiting
  1316. while(millis() < codenum) {
  1317. manage_heater();
  1318. manage_inactivity();
  1319. lcd_update();
  1320. }
  1321. }
  1322. #ifdef FWRETRACT
  1323. /**
  1324. * G10 - Retract filament according to settings of M207
  1325. * G11 - Recover filament according to settings of M208
  1326. */
  1327. inline void gcode_G10_G11(bool doRetract=false) {
  1328. #if EXTRUDERS > 1
  1329. if (doRetract) {
  1330. retracted_swap[active_extruder] = (code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  1331. }
  1332. #endif
  1333. retract(doRetract
  1334. #if EXTRUDERS > 1
  1335. , retracted_swap[active_extruder]
  1336. #endif
  1337. );
  1338. }
  1339. #endif //FWRETRACT
  1340. /**
  1341. * G28: Home all axes, one at a time
  1342. */
  1343. inline void gcode_G28() {
  1344. #ifdef ENABLE_AUTO_BED_LEVELING
  1345. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1346. #endif
  1347. saved_feedrate = feedrate;
  1348. saved_feedmultiply = feedmultiply;
  1349. feedmultiply = 100;
  1350. previous_millis_cmd = millis();
  1351. enable_endstops(true);
  1352. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = current_position[i];
  1353. feedrate = 0.0;
  1354. #ifdef DELTA
  1355. // A delta can only safely home all axis at the same time
  1356. // all axis have to home at the same time
  1357. // Move all carriages up together until the first endstop is hit.
  1358. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  1359. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1360. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * Z_MAX_LENGTH;
  1361. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1362. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1363. st_synchronize();
  1364. endstops_hit_on_purpose();
  1365. // Destination reached
  1366. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  1367. // take care of back off and rehome now we are all at the top
  1368. HOMEAXIS(X);
  1369. HOMEAXIS(Y);
  1370. HOMEAXIS(Z);
  1371. calculate_delta(current_position);
  1372. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1373. #else // NOT DELTA
  1374. home_all_axis = !(code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen(axis_codes[Z_AXIS]));
  1375. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1376. if (home_all_axis || code_seen(axis_codes[Z_AXIS])) {
  1377. HOMEAXIS(Z);
  1378. }
  1379. #endif
  1380. #ifdef QUICK_HOME
  1381. if (home_all_axis || code_seen(axis_codes[X_AXIS] && code_seen(axis_codes[Y_AXIS]))) { //first diagonal move
  1382. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  1383. #ifndef DUAL_X_CARRIAGE
  1384. int x_axis_home_dir = home_dir(X_AXIS);
  1385. #else
  1386. int x_axis_home_dir = x_home_dir(active_extruder);
  1387. extruder_duplication_enabled = false;
  1388. #endif
  1389. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1390. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;
  1391. destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1392. feedrate = homing_feedrate[X_AXIS];
  1393. if (homing_feedrate[Y_AXIS] < feedrate) feedrate = homing_feedrate[Y_AXIS];
  1394. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  1395. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  1396. } else {
  1397. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  1398. }
  1399. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1400. st_synchronize();
  1401. axis_is_at_home(X_AXIS);
  1402. axis_is_at_home(Y_AXIS);
  1403. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1404. destination[X_AXIS] = current_position[X_AXIS];
  1405. destination[Y_AXIS] = current_position[Y_AXIS];
  1406. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1407. feedrate = 0.0;
  1408. st_synchronize();
  1409. endstops_hit_on_purpose();
  1410. current_position[X_AXIS] = destination[X_AXIS];
  1411. current_position[Y_AXIS] = destination[Y_AXIS];
  1412. #ifndef SCARA
  1413. current_position[Z_AXIS] = destination[Z_AXIS];
  1414. #endif
  1415. }
  1416. #endif //QUICK_HOME
  1417. if ((home_all_axis) || (code_seen(axis_codes[X_AXIS]))) {
  1418. #ifdef DUAL_X_CARRIAGE
  1419. int tmp_extruder = active_extruder;
  1420. extruder_duplication_enabled = false;
  1421. active_extruder = !active_extruder;
  1422. HOMEAXIS(X);
  1423. inactive_extruder_x_pos = current_position[X_AXIS];
  1424. active_extruder = tmp_extruder;
  1425. HOMEAXIS(X);
  1426. // reset state used by the different modes
  1427. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1428. delayed_move_time = 0;
  1429. active_extruder_parked = true;
  1430. #else
  1431. HOMEAXIS(X);
  1432. #endif
  1433. }
  1434. if (home_all_axis || code_seen(axis_codes[Y_AXIS])) HOMEAXIS(Y);
  1435. if (code_seen(axis_codes[X_AXIS])) {
  1436. if (code_value_long() != 0) {
  1437. current_position[X_AXIS] = code_value()
  1438. #ifndef SCARA
  1439. + add_homing[X_AXIS]
  1440. #endif
  1441. ;
  1442. }
  1443. }
  1444. if (code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0) {
  1445. current_position[Y_AXIS] = code_value()
  1446. #ifndef SCARA
  1447. + add_homing[Y_AXIS]
  1448. #endif
  1449. ;
  1450. }
  1451. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1452. #ifndef Z_SAFE_HOMING
  1453. if (home_all_axis || code_seen(axis_codes[Z_AXIS])) {
  1454. #if defined(Z_RAISE_BEFORE_HOMING) && Z_RAISE_BEFORE_HOMING > 0
  1455. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1456. feedrate = max_feedrate[Z_AXIS];
  1457. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1458. st_synchronize();
  1459. #endif
  1460. HOMEAXIS(Z);
  1461. }
  1462. #else // Z_SAFE_HOMING
  1463. if (home_all_axis) {
  1464. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1465. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1466. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1467. feedrate = XY_TRAVEL_SPEED / 60;
  1468. current_position[Z_AXIS] = 0;
  1469. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1470. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1471. st_synchronize();
  1472. current_position[X_AXIS] = destination[X_AXIS];
  1473. current_position[Y_AXIS] = destination[Y_AXIS];
  1474. HOMEAXIS(Z);
  1475. }
  1476. // Let's see if X and Y are homed and probe is inside bed area.
  1477. if (code_seen(axis_codes[Z_AXIS])) {
  1478. if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) {
  1479. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  1480. if ( cpx >= X_MIN_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1481. && cpx <= X_MAX_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1482. && cpy >= Y_MIN_POS - Y_PROBE_OFFSET_FROM_EXTRUDER
  1483. && cpy <= Y_MAX_POS - Y_PROBE_OFFSET_FROM_EXTRUDER) {
  1484. current_position[Z_AXIS] = 0;
  1485. plan_set_position(cpx, cpy, current_position[Z_AXIS], current_position[E_AXIS]);
  1486. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1487. feedrate = max_feedrate[Z_AXIS];
  1488. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1489. st_synchronize();
  1490. HOMEAXIS(Z);
  1491. }
  1492. else {
  1493. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1494. SERIAL_ECHO_START;
  1495. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1496. }
  1497. }
  1498. else {
  1499. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1500. SERIAL_ECHO_START;
  1501. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1502. }
  1503. }
  1504. #endif // Z_SAFE_HOMING
  1505. #endif // Z_HOME_DIR < 0
  1506. if (code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
  1507. current_position[Z_AXIS] = code_value() + add_homing[Z_AXIS];
  1508. #ifdef ENABLE_AUTO_BED_LEVELING
  1509. if (home_all_axis || code_seen(axis_codes[Z_AXIS]))
  1510. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  1511. #endif
  1512. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1513. #endif // else DELTA
  1514. #ifdef SCARA
  1515. calculate_delta(current_position);
  1516. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1517. #endif
  1518. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1519. enable_endstops(false);
  1520. #endif
  1521. feedrate = saved_feedrate;
  1522. feedmultiply = saved_feedmultiply;
  1523. previous_millis_cmd = millis();
  1524. endstops_hit_on_purpose();
  1525. }
  1526. #ifdef ENABLE_AUTO_BED_LEVELING
  1527. // Define the possible boundaries for probing based on set limits
  1528. #define MIN_PROBE_X (max(X_MIN_POS, X_MIN_POS + X_PROBE_OFFSET_FROM_EXTRUDER))
  1529. #define MAX_PROBE_X (min(X_MAX_POS, X_MAX_POS + X_PROBE_OFFSET_FROM_EXTRUDER))
  1530. #define MIN_PROBE_Y (max(Y_MIN_POS, Y_MIN_POS + Y_PROBE_OFFSET_FROM_EXTRUDER))
  1531. #define MAX_PROBE_Y (min(Y_MAX_POS, Y_MAX_POS + Y_PROBE_OFFSET_FROM_EXTRUDER))
  1532. #ifdef AUTO_BED_LEVELING_GRID
  1533. // Make sure probing points are reachable
  1534. #if LEFT_PROBE_BED_POSITION < MIN_PROBE_X
  1535. #error "The given LEFT_PROBE_BED_POSITION can't be reached by the probe."
  1536. #elif RIGHT_PROBE_BED_POSITION > MAX_PROBE_X
  1537. #error "The given RIGHT_PROBE_BED_POSITION can't be reached by the probe."
  1538. #elif FRONT_PROBE_BED_POSITION < MIN_PROBE_Y
  1539. #error "The given FRONT_PROBE_BED_POSITION can't be reached by the probe."
  1540. #elif BACK_PROBE_BED_POSITION > MAX_PROBE_Y
  1541. #error "The given BACK_PROBE_BED_POSITION can't be reached by the probe."
  1542. #endif
  1543. #else // !AUTO_BED_LEVELING_GRID
  1544. #if ABL_PROBE_PT_1_X < MIN_PROBE_X || ABL_PROBE_PT_1_X > MAX_PROBE_X
  1545. #error "The given ABL_PROBE_PT_1_X can't be reached by the probe."
  1546. #elif ABL_PROBE_PT_2_X < MIN_PROBE_X || ABL_PROBE_PT_2_X > MAX_PROBE_X
  1547. #error "The given ABL_PROBE_PT_2_X can't be reached by the probe."
  1548. #elif ABL_PROBE_PT_3_X < MIN_PROBE_X || ABL_PROBE_PT_3_X > MAX_PROBE_X
  1549. #error "The given ABL_PROBE_PT_3_X can't be reached by the probe."
  1550. #elif ABL_PROBE_PT_1_Y < MIN_PROBE_Y || ABL_PROBE_PT_1_Y > MAX_PROBE_Y
  1551. #error "The given ABL_PROBE_PT_1_Y can't be reached by the probe."
  1552. #elif ABL_PROBE_PT_2_Y < MIN_PROBE_Y || ABL_PROBE_PT_2_Y > MAX_PROBE_Y
  1553. #error "The given ABL_PROBE_PT_2_Y can't be reached by the probe."
  1554. #elif ABL_PROBE_PT_3_Y < MIN_PROBE_Y || ABL_PROBE_PT_3_Y > MAX_PROBE_Y
  1555. #error "The given ABL_PROBE_PT_3_Y can't be reached by the probe."
  1556. #endif
  1557. #endif // !AUTO_BED_LEVELING_GRID
  1558. /**
  1559. * G29: Detailed Z-Probe, probes the bed at 3 or more points.
  1560. * Will fail if the printer has not been homed with G28.
  1561. *
  1562. * Enhanced G29 Auto Bed Leveling Probe Routine
  1563. *
  1564. * Parameters With AUTO_BED_LEVELING_GRID:
  1565. *
  1566. * P Set the size of the grid that will be probed (P x P points).
  1567. * Example: "G29 P4"
  1568. *
  1569. * S Set the XY travel speed between probe points (in mm/min)
  1570. *
  1571. * V Set the verbose level (0-4). Example: "G29 V3"
  1572. *
  1573. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  1574. * This is useful for manual bed leveling and finding flaws in the bed (to
  1575. * assist with part placement).
  1576. *
  1577. * F Set the Front limit of the probing grid
  1578. * B Set the Back limit of the probing grid
  1579. * L Set the Left limit of the probing grid
  1580. * R Set the Right limit of the probing grid
  1581. *
  1582. * Global Parameters:
  1583. *
  1584. * E/e By default G29 engages / disengages the probe for each point.
  1585. * Include "E" to engage and disengage the probe just once.
  1586. * There's no extra effect if you have a fixed probe.
  1587. * Usage: "G29 E" or "G29 e"
  1588. *
  1589. */
  1590. // Use one of these defines to specify the origin
  1591. // for a topographical map to be printed for your bed.
  1592. enum { OriginBackLeft, OriginFrontLeft, OriginBackRight, OriginFrontRight };
  1593. #define TOPO_ORIGIN OriginFrontLeft
  1594. inline void gcode_G29() {
  1595. // Prevent user from running a G29 without first homing in X and Y
  1596. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  1597. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1598. SERIAL_ECHO_START;
  1599. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1600. return;
  1601. }
  1602. int verbose_level = 1;
  1603. float x_tmp, y_tmp, z_tmp, real_z;
  1604. if (code_seen('V') || code_seen('v')) {
  1605. verbose_level = code_value_long();
  1606. if (verbose_level < 0 || verbose_level > 4) {
  1607. SERIAL_PROTOCOLPGM("?(V)erbose Level is implausible (0-4).\n");
  1608. return;
  1609. }
  1610. }
  1611. bool enhanced_g29 = code_seen('E') || code_seen('e');
  1612. #ifdef AUTO_BED_LEVELING_GRID
  1613. bool topo_flag = verbose_level > 2 || code_seen('T') || code_seen('t');
  1614. if (verbose_level > 0)
  1615. SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
  1616. int auto_bed_leveling_grid_points = code_seen('P') ? code_value_long() : AUTO_BED_LEVELING_GRID_POINTS;
  1617. if (auto_bed_leveling_grid_points < 2) {
  1618. SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
  1619. return;
  1620. }
  1621. xy_travel_speed = code_seen('S') ? code_value_long() : XY_TRAVEL_SPEED;
  1622. int left_probe_bed_position = code_seen('L') ? code_value_long() : LEFT_PROBE_BED_POSITION,
  1623. right_probe_bed_position = code_seen('R') ? code_value_long() : RIGHT_PROBE_BED_POSITION,
  1624. front_probe_bed_position = code_seen('F') ? code_value_long() : FRONT_PROBE_BED_POSITION,
  1625. back_probe_bed_position = code_seen('B') ? code_value_long() : BACK_PROBE_BED_POSITION;
  1626. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  1627. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - MIN_PROBE_EDGE,
  1628. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  1629. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  1630. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  1631. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - MIN_PROBE_EDGE,
  1632. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  1633. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  1634. if (left_out || right_out || front_out || back_out) {
  1635. if (left_out) {
  1636. SERIAL_PROTOCOLPGM("?Probe (L)eft position out of range.\n");
  1637. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - MIN_PROBE_EDGE;
  1638. }
  1639. if (right_out) {
  1640. SERIAL_PROTOCOLPGM("?Probe (R)ight position out of range.\n");
  1641. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  1642. }
  1643. if (front_out) {
  1644. SERIAL_PROTOCOLPGM("?Probe (F)ront position out of range.\n");
  1645. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - MIN_PROBE_EDGE;
  1646. }
  1647. if (back_out) {
  1648. SERIAL_PROTOCOLPGM("?Probe (B)ack position out of range.\n");
  1649. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  1650. }
  1651. return;
  1652. }
  1653. #endif // AUTO_BED_LEVELING_GRID
  1654. #ifdef Z_PROBE_SLED
  1655. dock_sled(false); // engage (un-dock) the probe
  1656. #endif
  1657. st_synchronize();
  1658. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  1659. //vector_3 corrected_position = plan_get_position_mm();
  1660. //corrected_position.debug("position before G29");
  1661. plan_bed_level_matrix.set_to_identity();
  1662. vector_3 uncorrected_position = plan_get_position();
  1663. //uncorrected_position.debug("position durring G29");
  1664. current_position[X_AXIS] = uncorrected_position.x;
  1665. current_position[Y_AXIS] = uncorrected_position.y;
  1666. current_position[Z_AXIS] = uncorrected_position.z;
  1667. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1668. setup_for_endstop_move();
  1669. feedrate = homing_feedrate[Z_AXIS];
  1670. #ifdef AUTO_BED_LEVELING_GRID
  1671. // probe at the points of a lattice grid
  1672. int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  1673. int yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  1674. // solve the plane equation ax + by + d = z
  1675. // A is the matrix with rows [x y 1] for all the probed points
  1676. // B is the vector of the Z positions
  1677. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1678. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1679. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  1680. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  1681. eqnBVector[abl2], // "B" vector of Z points
  1682. mean = 0.0;
  1683. int probePointCounter = 0;
  1684. bool zig = true;
  1685. for (int yProbe = front_probe_bed_position; yProbe <= back_probe_bed_position; yProbe += yGridSpacing) {
  1686. int xProbe, xInc;
  1687. if (zig)
  1688. xProbe = left_probe_bed_position, xInc = xGridSpacing;
  1689. else
  1690. xProbe = right_probe_bed_position, xInc = -xGridSpacing;
  1691. // If topo_flag is set then don't zig-zag. Just scan in one direction.
  1692. // This gets the probe points in more readable order.
  1693. if (!topo_flag) zig = !zig;
  1694. for (int xCount = 0; xCount < auto_bed_leveling_grid_points; xCount++) {
  1695. // raise extruder
  1696. float measured_z,
  1697. z_before = probePointCounter == 0 ? Z_RAISE_BEFORE_PROBING : current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  1698. // Enhanced G29 - Do not retract servo between probes
  1699. ProbeAction act;
  1700. if (enhanced_g29) {
  1701. if (yProbe == front_probe_bed_position && xCount == 0)
  1702. act = ProbeEngage;
  1703. else if (yProbe == front_probe_bed_position + (yGridSpacing * (auto_bed_leveling_grid_points - 1)) && xCount == auto_bed_leveling_grid_points - 1)
  1704. act = ProbeRetract;
  1705. else
  1706. act = ProbeStay;
  1707. }
  1708. else
  1709. act = ProbeEngageRetract;
  1710. measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
  1711. mean += measured_z;
  1712. eqnBVector[probePointCounter] = measured_z;
  1713. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  1714. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  1715. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  1716. probePointCounter++;
  1717. xProbe += xInc;
  1718. } //xProbe
  1719. } //yProbe
  1720. clean_up_after_endstop_move();
  1721. // solve lsq problem
  1722. double *plane_equation_coefficients = qr_solve(abl2, 3, eqnAMatrix, eqnBVector);
  1723. mean /= abl2;
  1724. if (verbose_level) {
  1725. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  1726. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  1727. SERIAL_PROTOCOLPGM(" b: ");
  1728. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  1729. SERIAL_PROTOCOLPGM(" d: ");
  1730. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  1731. SERIAL_EOL;
  1732. if (verbose_level > 2) {
  1733. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  1734. SERIAL_PROTOCOL_F(mean, 8);
  1735. SERIAL_EOL;
  1736. }
  1737. }
  1738. if (topo_flag) {
  1739. int xx, yy;
  1740. SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
  1741. #if TOPO_ORIGIN == OriginFrontLeft
  1742. SERIAL_PROTOCOLPGM("+-----------+\n");
  1743. SERIAL_PROTOCOLPGM("|...Back....|\n");
  1744. SERIAL_PROTOCOLPGM("|Left..Right|\n");
  1745. SERIAL_PROTOCOLPGM("|...Front...|\n");
  1746. SERIAL_PROTOCOLPGM("+-----------+\n");
  1747. for (yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--)
  1748. #else
  1749. for (yy = 0; yy < auto_bed_leveling_grid_points; yy++)
  1750. #endif
  1751. {
  1752. #if TOPO_ORIGIN == OriginBackRight
  1753. for (xx = 0; xx < auto_bed_leveling_grid_points; xx++)
  1754. #else
  1755. for (xx = auto_bed_leveling_grid_points - 1; xx >= 0; xx--)
  1756. #endif
  1757. {
  1758. int ind =
  1759. #if TOPO_ORIGIN == OriginBackRight || TOPO_ORIGIN == OriginFrontLeft
  1760. yy * auto_bed_leveling_grid_points + xx
  1761. #elif TOPO_ORIGIN == OriginBackLeft
  1762. xx * auto_bed_leveling_grid_points + yy
  1763. #elif TOPO_ORIGIN == OriginFrontRight
  1764. abl2 - xx * auto_bed_leveling_grid_points - yy - 1
  1765. #endif
  1766. ;
  1767. float diff = eqnBVector[ind] - mean;
  1768. if (diff >= 0.0)
  1769. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  1770. else
  1771. SERIAL_PROTOCOLPGM(" ");
  1772. SERIAL_PROTOCOL_F(diff, 5);
  1773. } // xx
  1774. SERIAL_EOL;
  1775. } // yy
  1776. SERIAL_EOL;
  1777. } //topo_flag
  1778. set_bed_level_equation_lsq(plane_equation_coefficients);
  1779. free(plane_equation_coefficients);
  1780. #else // !AUTO_BED_LEVELING_GRID
  1781. // Probe at 3 arbitrary points
  1782. float z_at_pt_1, z_at_pt_2, z_at_pt_3;
  1783. if (enhanced_g29) {
  1784. // Basic Enhanced G29
  1785. z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, ProbeEngage, verbose_level);
  1786. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, ProbeStay, verbose_level);
  1787. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, ProbeRetract, verbose_level);
  1788. }
  1789. else {
  1790. z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, verbose_level);
  1791. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, verbose_level);
  1792. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, verbose_level);
  1793. }
  1794. clean_up_after_endstop_move();
  1795. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  1796. #endif // !AUTO_BED_LEVELING_GRID
  1797. st_synchronize();
  1798. if (verbose_level > 0)
  1799. plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
  1800. // Correct the Z height difference from z-probe position and hotend tip position.
  1801. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  1802. // When the bed is uneven, this height must be corrected.
  1803. real_z = float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  1804. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  1805. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  1806. z_tmp = current_position[Z_AXIS];
  1807. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  1808. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  1809. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1810. #ifdef Z_PROBE_SLED
  1811. dock_sled(true, -SLED_DOCKING_OFFSET); // dock the probe, correcting for over-travel
  1812. #endif
  1813. #ifdef Z_PROBE_END_SCRIPT
  1814. enquecommands_P(PSTR(Z_PROBE_END_SCRIPT));
  1815. st_synchronize();
  1816. #endif
  1817. }
  1818. #ifndef Z_PROBE_SLED
  1819. inline void gcode_G30() {
  1820. engage_z_probe(); // Engage Z Servo endstop if available
  1821. st_synchronize();
  1822. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  1823. setup_for_endstop_move();
  1824. feedrate = homing_feedrate[Z_AXIS];
  1825. run_z_probe();
  1826. SERIAL_PROTOCOLPGM(MSG_BED);
  1827. SERIAL_PROTOCOLPGM(" X: ");
  1828. SERIAL_PROTOCOL(current_position[X_AXIS] + 0.0001);
  1829. SERIAL_PROTOCOLPGM(" Y: ");
  1830. SERIAL_PROTOCOL(current_position[Y_AXIS] + 0.0001);
  1831. SERIAL_PROTOCOLPGM(" Z: ");
  1832. SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
  1833. SERIAL_EOL;
  1834. clean_up_after_endstop_move();
  1835. retract_z_probe(); // Retract Z Servo endstop if available
  1836. }
  1837. #endif //!Z_PROBE_SLED
  1838. #endif //ENABLE_AUTO_BED_LEVELING
  1839. /**
  1840. * G92: Set current position to given X Y Z E
  1841. */
  1842. inline void gcode_G92() {
  1843. if (!code_seen(axis_codes[E_AXIS]))
  1844. st_synchronize();
  1845. for (int i=0;i<NUM_AXIS;i++) {
  1846. if (code_seen(axis_codes[i])) {
  1847. if (i == E_AXIS) {
  1848. current_position[i] = code_value();
  1849. plan_set_e_position(current_position[E_AXIS]);
  1850. }
  1851. else {
  1852. current_position[i] = code_value() +
  1853. #ifdef SCARA
  1854. ((i != X_AXIS && i != Y_AXIS) ? add_homing[i] : 0)
  1855. #else
  1856. add_homing[i]
  1857. #endif
  1858. ;
  1859. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1860. }
  1861. }
  1862. }
  1863. }
  1864. #ifdef ULTIPANEL
  1865. /**
  1866. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  1867. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  1868. */
  1869. inline void gcode_M0_M1() {
  1870. char *src = strchr_pointer + 2;
  1871. unsigned long codenum = 0;
  1872. bool hasP = false, hasS = false;
  1873. if (code_seen('P')) {
  1874. codenum = code_value(); // milliseconds to wait
  1875. hasP = codenum > 0;
  1876. }
  1877. if (code_seen('S')) {
  1878. codenum = code_value() * 1000; // seconds to wait
  1879. hasS = codenum > 0;
  1880. }
  1881. char* starpos = strchr(src, '*');
  1882. if (starpos != NULL) *(starpos) = '\0';
  1883. while (*src == ' ') ++src;
  1884. if (!hasP && !hasS && *src != '\0')
  1885. lcd_setstatus(src);
  1886. else
  1887. LCD_MESSAGEPGM(MSG_USERWAIT);
  1888. lcd_ignore_click();
  1889. st_synchronize();
  1890. previous_millis_cmd = millis();
  1891. if (codenum > 0) {
  1892. codenum += previous_millis_cmd; // keep track of when we started waiting
  1893. while(millis() < codenum && !lcd_clicked()) {
  1894. manage_heater();
  1895. manage_inactivity();
  1896. lcd_update();
  1897. }
  1898. lcd_ignore_click(false);
  1899. }
  1900. else {
  1901. if (!lcd_detected()) return;
  1902. while (!lcd_clicked()) {
  1903. manage_heater();
  1904. manage_inactivity();
  1905. lcd_update();
  1906. }
  1907. }
  1908. if (IS_SD_PRINTING)
  1909. LCD_MESSAGEPGM(MSG_RESUMING);
  1910. else
  1911. LCD_MESSAGEPGM(WELCOME_MSG);
  1912. }
  1913. #endif // ULTIPANEL
  1914. /**
  1915. * M17: Enable power on all stepper motors
  1916. */
  1917. inline void gcode_M17() {
  1918. LCD_MESSAGEPGM(MSG_NO_MOVE);
  1919. enable_x();
  1920. enable_y();
  1921. enable_z();
  1922. enable_e0();
  1923. enable_e1();
  1924. enable_e2();
  1925. enable_e3();
  1926. }
  1927. #ifdef SDSUPPORT
  1928. /**
  1929. * M20: List SD card to serial output
  1930. */
  1931. inline void gcode_M20() {
  1932. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  1933. card.ls();
  1934. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  1935. }
  1936. /**
  1937. * M21: Init SD Card
  1938. */
  1939. inline void gcode_M21() {
  1940. card.initsd();
  1941. }
  1942. /**
  1943. * M22: Release SD Card
  1944. */
  1945. inline void gcode_M22() {
  1946. card.release();
  1947. }
  1948. /**
  1949. * M23: Select a file
  1950. */
  1951. inline void gcode_M23() {
  1952. char* codepos = strchr_pointer + 4;
  1953. char* starpos = strchr(codepos, '*');
  1954. if (starpos) *starpos = '\0';
  1955. card.openFile(codepos, true);
  1956. }
  1957. /**
  1958. * M24: Start SD Print
  1959. */
  1960. inline void gcode_M24() {
  1961. card.startFileprint();
  1962. starttime = millis();
  1963. }
  1964. /**
  1965. * M25: Pause SD Print
  1966. */
  1967. inline void gcode_M25() {
  1968. card.pauseSDPrint();
  1969. }
  1970. /**
  1971. * M26: Set SD Card file index
  1972. */
  1973. inline void gcode_M26() {
  1974. if (card.cardOK && code_seen('S'))
  1975. card.setIndex(code_value_long());
  1976. }
  1977. /**
  1978. * M27: Get SD Card status
  1979. */
  1980. inline void gcode_M27() {
  1981. card.getStatus();
  1982. }
  1983. /**
  1984. * M28: Start SD Write
  1985. */
  1986. inline void gcode_M28() {
  1987. char* codepos = strchr_pointer + 4;
  1988. char* starpos = strchr(strchr_pointer + 4, '*');
  1989. if (starpos) {
  1990. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1991. strchr_pointer = strchr(npos, ' ') + 1;
  1992. *(starpos) = '\0';
  1993. }
  1994. card.openFile(strchr_pointer + 4, false);
  1995. }
  1996. /**
  1997. * M29: Stop SD Write
  1998. * Processed in write to file routine above
  1999. */
  2000. inline void gcode_M29() {
  2001. // card.saving = false;
  2002. }
  2003. /**
  2004. * M30 <filename>: Delete SD Card file
  2005. */
  2006. inline void gcode_M30() {
  2007. if (card.cardOK) {
  2008. card.closefile();
  2009. char* starpos = strchr(strchr_pointer + 4, '*');
  2010. if (starpos) {
  2011. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2012. strchr_pointer = strchr(npos, ' ') + 1;
  2013. *(starpos) = '\0';
  2014. }
  2015. card.removeFile(strchr_pointer + 4);
  2016. }
  2017. }
  2018. #endif
  2019. /**
  2020. * M31: Get the time since the start of SD Print (or last M109)
  2021. */
  2022. inline void gcode_M31() {
  2023. stoptime = millis();
  2024. unsigned long t = (stoptime - starttime) / 1000;
  2025. int min = t / 60, sec = t % 60;
  2026. char time[30];
  2027. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  2028. SERIAL_ECHO_START;
  2029. SERIAL_ECHOLN(time);
  2030. lcd_setstatus(time);
  2031. autotempShutdown();
  2032. }
  2033. #ifdef SDSUPPORT
  2034. /**
  2035. * M32: Select file and start SD Print
  2036. */
  2037. inline void gcode_M32() {
  2038. if (card.sdprinting)
  2039. st_synchronize();
  2040. char* codepos = strchr_pointer + 4;
  2041. char* namestartpos = strchr(codepos, '!'); //find ! to indicate filename string start.
  2042. if (! namestartpos)
  2043. namestartpos = codepos; //default name position, 4 letters after the M
  2044. else
  2045. namestartpos++; //to skip the '!'
  2046. char* starpos = strchr(codepos, '*');
  2047. if (starpos) *(starpos) = '\0';
  2048. bool call_procedure = code_seen('P') && (strchr_pointer < namestartpos);
  2049. if (card.cardOK) {
  2050. card.openFile(namestartpos, true, !call_procedure);
  2051. if (code_seen('S') && strchr_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  2052. card.setIndex(code_value_long());
  2053. card.startFileprint();
  2054. if (!call_procedure)
  2055. starttime = millis(); //procedure calls count as normal print time.
  2056. }
  2057. }
  2058. /**
  2059. * M928: Start SD Write
  2060. */
  2061. inline void gcode_M928() {
  2062. char* starpos = strchr(strchr_pointer + 5, '*');
  2063. if (starpos) {
  2064. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2065. strchr_pointer = strchr(npos, ' ') + 1;
  2066. *(starpos) = '\0';
  2067. }
  2068. card.openLogFile(strchr_pointer + 5);
  2069. }
  2070. #endif // SDSUPPORT
  2071. /**
  2072. * M42: Change pin status via GCode
  2073. */
  2074. inline void gcode_M42() {
  2075. if (code_seen('S')) {
  2076. int pin_status = code_value(),
  2077. pin_number = LED_PIN;
  2078. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  2079. pin_number = code_value();
  2080. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins) / sizeof(*sensitive_pins)); i++) {
  2081. if (sensitive_pins[i] == pin_number) {
  2082. pin_number = -1;
  2083. break;
  2084. }
  2085. }
  2086. #if defined(FAN_PIN) && FAN_PIN > -1
  2087. if (pin_number == FAN_PIN) fanSpeed = pin_status;
  2088. #endif
  2089. if (pin_number > -1) {
  2090. pinMode(pin_number, OUTPUT);
  2091. digitalWrite(pin_number, pin_status);
  2092. analogWrite(pin_number, pin_status);
  2093. }
  2094. } // code_seen('S')
  2095. }
  2096. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  2097. #if Z_MIN_PIN == -1
  2098. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  2099. #endif
  2100. /**
  2101. * M48: Z-Probe repeatability measurement function.
  2102. *
  2103. * Usage:
  2104. * M48 <n#> <X#> <Y#> <V#> <E> <L#>
  2105. * n = Number of samples (4-50, default 10)
  2106. * X = Sample X position
  2107. * Y = Sample Y position
  2108. * V = Verbose level (0-4, default=1)
  2109. * E = Engage probe for each reading
  2110. * L = Number of legs of movement before probe
  2111. *
  2112. * This function assumes the bed has been homed. Specificaly, that a G28 command
  2113. * as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  2114. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  2115. * regenerated.
  2116. *
  2117. * The number of samples will default to 10 if not specified. You can use upper or lower case
  2118. * letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  2119. * N for its communication protocol and will get horribly confused if you send it a capital N.
  2120. */
  2121. inline void gcode_M48() {
  2122. double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
  2123. int verbose_level = 1, n = 0, j, n_samples = 10, n_legs = 0, engage_probe_for_each_reading = 0;
  2124. double X_current, Y_current, Z_current;
  2125. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  2126. if (code_seen('V') || code_seen('v')) {
  2127. verbose_level = code_value();
  2128. if (verbose_level < 0 || verbose_level > 4 ) {
  2129. SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
  2130. return;
  2131. }
  2132. }
  2133. if (verbose_level > 0)
  2134. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
  2135. if (code_seen('n')) {
  2136. n_samples = code_value();
  2137. if (n_samples < 4 || n_samples > 50) {
  2138. SERIAL_PROTOCOLPGM("?Specified sample size not plausible (4-50).\n");
  2139. return;
  2140. }
  2141. }
  2142. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  2143. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  2144. Z_current = st_get_position_mm(Z_AXIS);
  2145. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2146. ext_position = st_get_position_mm(E_AXIS);
  2147. if (code_seen('E') || code_seen('e'))
  2148. engage_probe_for_each_reading++;
  2149. if (code_seen('X') || code_seen('x')) {
  2150. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  2151. if (X_probe_location < X_MIN_POS || X_probe_location > X_MAX_POS) {
  2152. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  2153. return;
  2154. }
  2155. }
  2156. if (code_seen('Y') || code_seen('y')) {
  2157. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  2158. if (Y_probe_location < Y_MIN_POS || Y_probe_location > Y_MAX_POS) {
  2159. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  2160. return;
  2161. }
  2162. }
  2163. if (code_seen('L') || code_seen('l')) {
  2164. n_legs = code_value();
  2165. if (n_legs == 1) n_legs = 2;
  2166. if (n_legs < 0 || n_legs > 15) {
  2167. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausible (0-15).\n");
  2168. return;
  2169. }
  2170. }
  2171. //
  2172. // Do all the preliminary setup work. First raise the probe.
  2173. //
  2174. st_synchronize();
  2175. plan_bed_level_matrix.set_to_identity();
  2176. plan_buffer_line(X_current, Y_current, Z_start_location,
  2177. ext_position,
  2178. homing_feedrate[Z_AXIS] / 60,
  2179. active_extruder);
  2180. st_synchronize();
  2181. //
  2182. // Now get everything to the specified probe point So we can safely do a probe to
  2183. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  2184. // use that as a starting point for each probe.
  2185. //
  2186. if (verbose_level > 2)
  2187. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  2188. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2189. ext_position,
  2190. homing_feedrate[X_AXIS]/60,
  2191. active_extruder);
  2192. st_synchronize();
  2193. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  2194. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  2195. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2196. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  2197. //
  2198. // OK, do the inital probe to get us close to the bed.
  2199. // Then retrace the right amount and use that in subsequent probes
  2200. //
  2201. engage_z_probe();
  2202. setup_for_endstop_move();
  2203. run_z_probe();
  2204. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2205. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2206. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2207. ext_position,
  2208. homing_feedrate[X_AXIS]/60,
  2209. active_extruder);
  2210. st_synchronize();
  2211. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2212. if (engage_probe_for_each_reading) retract_z_probe();
  2213. for (n=0; n < n_samples; n++) {
  2214. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  2215. if (n_legs) {
  2216. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  2217. int l;
  2218. int rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  2219. radius = (unsigned long)millis() % (long)(X_MAX_LENGTH / 4); // limit how far out to go
  2220. theta = (float)((unsigned long)millis() % 360L) / (360. / (2 * 3.1415926)); // turn into radians
  2221. //SERIAL_ECHOPAIR("starting radius: ",radius);
  2222. //SERIAL_ECHOPAIR(" theta: ",theta);
  2223. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  2224. //SERIAL_PROTOCOLLNPGM("");
  2225. float dir = rotational_direction ? 1 : -1;
  2226. for (l = 0; l < n_legs - 1; l++) {
  2227. theta += dir * (float)((unsigned long)millis() % 20L) / (360.0/(2*3.1415926)); // turn into radians
  2228. radius += (float)(((long)((unsigned long) millis() % 10L)) - 5L);
  2229. if (radius < 0.0) radius = -radius;
  2230. X_current = X_probe_location + cos(theta) * radius;
  2231. Y_current = Y_probe_location + sin(theta) * radius;
  2232. // Make sure our X & Y are sane
  2233. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  2234. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  2235. if (verbose_level > 3) {
  2236. SERIAL_ECHOPAIR("x: ", X_current);
  2237. SERIAL_ECHOPAIR("y: ", Y_current);
  2238. SERIAL_PROTOCOLLNPGM("");
  2239. }
  2240. do_blocking_move_to( X_current, Y_current, Z_current );
  2241. }
  2242. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  2243. }
  2244. if (engage_probe_for_each_reading) {
  2245. engage_z_probe();
  2246. delay(1000);
  2247. }
  2248. setup_for_endstop_move();
  2249. run_z_probe();
  2250. sample_set[n] = current_position[Z_AXIS];
  2251. //
  2252. // Get the current mean for the data points we have so far
  2253. //
  2254. sum = 0.0;
  2255. for (j=0; j<=n; j++) sum += sample_set[j];
  2256. mean = sum / (double (n+1));
  2257. //
  2258. // Now, use that mean to calculate the standard deviation for the
  2259. // data points we have so far
  2260. //
  2261. sum = 0.0;
  2262. for (j=0; j<=n; j++) sum += (sample_set[j]-mean) * (sample_set[j]-mean);
  2263. sigma = sqrt( sum / (double (n+1)) );
  2264. if (verbose_level > 1) {
  2265. SERIAL_PROTOCOL(n+1);
  2266. SERIAL_PROTOCOL(" of ");
  2267. SERIAL_PROTOCOL(n_samples);
  2268. SERIAL_PROTOCOLPGM(" z: ");
  2269. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  2270. }
  2271. if (verbose_level > 2) {
  2272. SERIAL_PROTOCOL(" mean: ");
  2273. SERIAL_PROTOCOL_F(mean,6);
  2274. SERIAL_PROTOCOL(" sigma: ");
  2275. SERIAL_PROTOCOL_F(sigma,6);
  2276. }
  2277. if (verbose_level > 0) SERIAL_EOL;
  2278. plan_buffer_line(X_probe_location, Y_probe_location, Z_start_location,
  2279. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2280. st_synchronize();
  2281. if (engage_probe_for_each_reading) {
  2282. retract_z_probe();
  2283. delay(1000);
  2284. }
  2285. }
  2286. retract_z_probe();
  2287. delay(1000);
  2288. clean_up_after_endstop_move();
  2289. // enable_endstops(true);
  2290. if (verbose_level > 0) {
  2291. SERIAL_PROTOCOLPGM("Mean: ");
  2292. SERIAL_PROTOCOL_F(mean, 6);
  2293. SERIAL_EOL;
  2294. }
  2295. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2296. SERIAL_PROTOCOL_F(sigma, 6);
  2297. SERIAL_EOL; SERIAL_EOL;
  2298. }
  2299. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  2300. /**
  2301. * M104: Set hot end temperature
  2302. */
  2303. inline void gcode_M104() {
  2304. if (setTargetedHotend(104)) return;
  2305. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  2306. #ifdef DUAL_X_CARRIAGE
  2307. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2308. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2309. #endif
  2310. setWatch();
  2311. }
  2312. /**
  2313. * M105: Read hot end and bed temperature
  2314. */
  2315. inline void gcode_M105() {
  2316. if (setTargetedHotend(105)) return;
  2317. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  2318. SERIAL_PROTOCOLPGM("ok T:");
  2319. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2320. SERIAL_PROTOCOLPGM(" /");
  2321. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  2322. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2323. SERIAL_PROTOCOLPGM(" B:");
  2324. SERIAL_PROTOCOL_F(degBed(),1);
  2325. SERIAL_PROTOCOLPGM(" /");
  2326. SERIAL_PROTOCOL_F(degTargetBed(),1);
  2327. #endif //TEMP_BED_PIN
  2328. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2329. SERIAL_PROTOCOLPGM(" T");
  2330. SERIAL_PROTOCOL(cur_extruder);
  2331. SERIAL_PROTOCOLPGM(":");
  2332. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2333. SERIAL_PROTOCOLPGM(" /");
  2334. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  2335. }
  2336. #else
  2337. SERIAL_ERROR_START;
  2338. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  2339. #endif
  2340. SERIAL_PROTOCOLPGM(" @:");
  2341. #ifdef EXTRUDER_WATTS
  2342. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  2343. SERIAL_PROTOCOLPGM("W");
  2344. #else
  2345. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  2346. #endif
  2347. SERIAL_PROTOCOLPGM(" B@:");
  2348. #ifdef BED_WATTS
  2349. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2350. SERIAL_PROTOCOLPGM("W");
  2351. #else
  2352. SERIAL_PROTOCOL(getHeaterPower(-1));
  2353. #endif
  2354. #ifdef SHOW_TEMP_ADC_VALUES
  2355. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2356. SERIAL_PROTOCOLPGM(" ADC B:");
  2357. SERIAL_PROTOCOL_F(degBed(),1);
  2358. SERIAL_PROTOCOLPGM("C->");
  2359. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  2360. #endif
  2361. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2362. SERIAL_PROTOCOLPGM(" T");
  2363. SERIAL_PROTOCOL(cur_extruder);
  2364. SERIAL_PROTOCOLPGM(":");
  2365. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2366. SERIAL_PROTOCOLPGM("C->");
  2367. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  2368. }
  2369. #endif
  2370. SERIAL_PROTOCOLLN("");
  2371. }
  2372. #if defined(FAN_PIN) && FAN_PIN > -1
  2373. /**
  2374. * M106: Set Fan Speed
  2375. */
  2376. inline void gcode_M106() { fanSpeed = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2377. /**
  2378. * M107: Fan Off
  2379. */
  2380. inline void gcode_M107() { fanSpeed = 0; }
  2381. #endif //FAN_PIN
  2382. /**
  2383. * M109: Wait for extruder(s) to reach temperature
  2384. */
  2385. inline void gcode_M109() {
  2386. if (setTargetedHotend(109)) return;
  2387. LCD_MESSAGEPGM(MSG_HEATING);
  2388. CooldownNoWait = code_seen('S');
  2389. if (CooldownNoWait || code_seen('R')) {
  2390. setTargetHotend(code_value(), tmp_extruder);
  2391. #ifdef DUAL_X_CARRIAGE
  2392. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2393. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2394. #endif
  2395. }
  2396. #ifdef AUTOTEMP
  2397. autotemp_enabled = code_seen('F');
  2398. if (autotemp_enabled) autotemp_factor = code_value();
  2399. if (code_seen('S')) autotemp_min = code_value();
  2400. if (code_seen('B')) autotemp_max = code_value();
  2401. #endif
  2402. setWatch();
  2403. unsigned long timetemp = millis();
  2404. /* See if we are heating up or cooling down */
  2405. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  2406. cancel_heatup = false;
  2407. #ifdef TEMP_RESIDENCY_TIME
  2408. long residencyStart = -1;
  2409. /* continue to loop until we have reached the target temp
  2410. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  2411. while((!cancel_heatup)&&((residencyStart == -1) ||
  2412. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) )
  2413. #else
  2414. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) )
  2415. #endif //TEMP_RESIDENCY_TIME
  2416. { // while loop
  2417. if (millis() > timetemp + 1000UL) { //Print temp & remaining time every 1s while waiting
  2418. SERIAL_PROTOCOLPGM("T:");
  2419. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2420. SERIAL_PROTOCOLPGM(" E:");
  2421. SERIAL_PROTOCOL((int)tmp_extruder);
  2422. #ifdef TEMP_RESIDENCY_TIME
  2423. SERIAL_PROTOCOLPGM(" W:");
  2424. if (residencyStart > -1) {
  2425. timetemp = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  2426. SERIAL_PROTOCOLLN( timetemp );
  2427. }
  2428. else {
  2429. SERIAL_PROTOCOLLN( "?" );
  2430. }
  2431. #else
  2432. SERIAL_PROTOCOLLN("");
  2433. #endif
  2434. timetemp = millis();
  2435. }
  2436. manage_heater();
  2437. manage_inactivity();
  2438. lcd_update();
  2439. #ifdef TEMP_RESIDENCY_TIME
  2440. // start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  2441. // or when current temp falls outside the hysteresis after target temp was reached
  2442. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  2443. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  2444. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  2445. {
  2446. residencyStart = millis();
  2447. }
  2448. #endif //TEMP_RESIDENCY_TIME
  2449. }
  2450. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  2451. starttime = previous_millis_cmd = millis();
  2452. }
  2453. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2454. /**
  2455. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  2456. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  2457. */
  2458. inline void gcode_M190() {
  2459. LCD_MESSAGEPGM(MSG_BED_HEATING);
  2460. CooldownNoWait = code_seen('S');
  2461. if (CooldownNoWait || code_seen('R'))
  2462. setTargetBed(code_value());
  2463. unsigned long timetemp = millis();
  2464. cancel_heatup = false;
  2465. target_direction = isHeatingBed(); // true if heating, false if cooling
  2466. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) ) {
  2467. unsigned long ms = millis();
  2468. if (ms > timetemp + 1000UL) { //Print Temp Reading every 1 second while heating up.
  2469. timetemp = ms;
  2470. float tt = degHotend(active_extruder);
  2471. SERIAL_PROTOCOLPGM("T:");
  2472. SERIAL_PROTOCOL(tt);
  2473. SERIAL_PROTOCOLPGM(" E:");
  2474. SERIAL_PROTOCOL((int)active_extruder);
  2475. SERIAL_PROTOCOLPGM(" B:");
  2476. SERIAL_PROTOCOL_F(degBed(), 1);
  2477. SERIAL_PROTOCOLLN("");
  2478. }
  2479. manage_heater();
  2480. manage_inactivity();
  2481. lcd_update();
  2482. }
  2483. LCD_MESSAGEPGM(MSG_BED_DONE);
  2484. previous_millis_cmd = millis();
  2485. }
  2486. #endif // TEMP_BED_PIN > -1
  2487. /**
  2488. * M112: Emergency Stop
  2489. */
  2490. inline void gcode_M112() {
  2491. kill();
  2492. }
  2493. #ifdef BARICUDA
  2494. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  2495. /**
  2496. * M126: Heater 1 valve open
  2497. */
  2498. inline void gcode_M126() { ValvePressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2499. /**
  2500. * M127: Heater 1 valve close
  2501. */
  2502. inline void gcode_M127() { ValvePressure = 0; }
  2503. #endif
  2504. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  2505. /**
  2506. * M128: Heater 2 valve open
  2507. */
  2508. inline void gcode_M128() { EtoPPressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2509. /**
  2510. * M129: Heater 2 valve close
  2511. */
  2512. inline void gcode_M129() { EtoPPressure = 0; }
  2513. #endif
  2514. #endif //BARICUDA
  2515. /**
  2516. * M140: Set bed temperature
  2517. */
  2518. inline void gcode_M140() {
  2519. if (code_seen('S')) setTargetBed(code_value());
  2520. }
  2521. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  2522. /**
  2523. * M80: Turn on Power Supply
  2524. */
  2525. inline void gcode_M80() {
  2526. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  2527. // If you have a switch on suicide pin, this is useful
  2528. // if you want to start another print with suicide feature after
  2529. // a print without suicide...
  2530. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  2531. OUT_WRITE(SUICIDE_PIN, HIGH);
  2532. #endif
  2533. #ifdef ULTIPANEL
  2534. powersupply = true;
  2535. LCD_MESSAGEPGM(WELCOME_MSG);
  2536. lcd_update();
  2537. #endif
  2538. }
  2539. #endif // PS_ON_PIN
  2540. /**
  2541. * M81: Turn off Power Supply
  2542. */
  2543. inline void gcode_M81() {
  2544. disable_heater();
  2545. st_synchronize();
  2546. disable_e0();
  2547. disable_e1();
  2548. disable_e2();
  2549. disable_e3();
  2550. finishAndDisableSteppers();
  2551. fanSpeed = 0;
  2552. delay(1000); // Wait 1 second before switching off
  2553. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  2554. st_synchronize();
  2555. suicide();
  2556. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  2557. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  2558. #endif
  2559. #ifdef ULTIPANEL
  2560. powersupply = false;
  2561. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  2562. lcd_update();
  2563. #endif
  2564. }
  2565. /**
  2566. * M82: Set E codes absolute (default)
  2567. */
  2568. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  2569. /**
  2570. * M82: Set E codes relative while in Absolute Coordinates (G90) mode
  2571. */
  2572. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  2573. /**
  2574. * M18, M84: Disable all stepper motors
  2575. */
  2576. inline void gcode_M18_M84() {
  2577. if (code_seen('S')) {
  2578. stepper_inactive_time = code_value() * 1000;
  2579. }
  2580. else {
  2581. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  2582. if (all_axis) {
  2583. st_synchronize();
  2584. disable_e0();
  2585. disable_e1();
  2586. disable_e2();
  2587. disable_e3();
  2588. finishAndDisableSteppers();
  2589. }
  2590. else {
  2591. st_synchronize();
  2592. if (code_seen('X')) disable_x();
  2593. if (code_seen('Y')) disable_y();
  2594. if (code_seen('Z')) disable_z();
  2595. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  2596. if (code_seen('E')) {
  2597. disable_e0();
  2598. disable_e1();
  2599. disable_e2();
  2600. disable_e3();
  2601. }
  2602. #endif
  2603. }
  2604. }
  2605. }
  2606. /**
  2607. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2608. */
  2609. inline void gcode_M85() {
  2610. if (code_seen('S')) max_inactive_time = code_value() * 1000;
  2611. }
  2612. /**
  2613. * M92: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2614. */
  2615. inline void gcode_M92() {
  2616. for(int8_t i=0; i < NUM_AXIS; i++) {
  2617. if (code_seen(axis_codes[i])) {
  2618. if (i == E_AXIS) {
  2619. float value = code_value();
  2620. if (value < 20.0) {
  2621. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  2622. max_e_jerk *= factor;
  2623. max_feedrate[i] *= factor;
  2624. axis_steps_per_sqr_second[i] *= factor;
  2625. }
  2626. axis_steps_per_unit[i] = value;
  2627. }
  2628. else {
  2629. axis_steps_per_unit[i] = code_value();
  2630. }
  2631. }
  2632. }
  2633. }
  2634. /**
  2635. * M114: Output current position to serial port
  2636. */
  2637. inline void gcode_M114() {
  2638. SERIAL_PROTOCOLPGM("X:");
  2639. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2640. SERIAL_PROTOCOLPGM(" Y:");
  2641. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2642. SERIAL_PROTOCOLPGM(" Z:");
  2643. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2644. SERIAL_PROTOCOLPGM(" E:");
  2645. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2646. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  2647. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  2648. SERIAL_PROTOCOLPGM(" Y:");
  2649. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  2650. SERIAL_PROTOCOLPGM(" Z:");
  2651. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  2652. SERIAL_PROTOCOLLN("");
  2653. #ifdef SCARA
  2654. SERIAL_PROTOCOLPGM("SCARA Theta:");
  2655. SERIAL_PROTOCOL(delta[X_AXIS]);
  2656. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2657. SERIAL_PROTOCOL(delta[Y_AXIS]);
  2658. SERIAL_PROTOCOLLN("");
  2659. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  2660. SERIAL_PROTOCOL(delta[X_AXIS]+add_homing[X_AXIS]);
  2661. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  2662. SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+add_homing[Y_AXIS]);
  2663. SERIAL_PROTOCOLLN("");
  2664. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  2665. SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
  2666. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2667. SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
  2668. SERIAL_PROTOCOLLN("");
  2669. SERIAL_PROTOCOLLN("");
  2670. #endif
  2671. }
  2672. /**
  2673. * M115: Capabilities string
  2674. */
  2675. inline void gcode_M115() {
  2676. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  2677. }
  2678. /**
  2679. * M117: Set LCD Status Message
  2680. */
  2681. inline void gcode_M117() {
  2682. char* codepos = strchr_pointer + 5;
  2683. char* starpos = strchr(codepos, '*');
  2684. if (starpos) *starpos = '\0';
  2685. lcd_setstatus(codepos);
  2686. }
  2687. /**
  2688. * M119: Output endstop states to serial output
  2689. */
  2690. inline void gcode_M119() {
  2691. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  2692. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  2693. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  2694. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2695. #endif
  2696. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  2697. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  2698. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2699. #endif
  2700. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  2701. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  2702. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2703. #endif
  2704. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  2705. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  2706. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2707. #endif
  2708. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  2709. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  2710. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2711. #endif
  2712. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  2713. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  2714. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2715. #endif
  2716. }
  2717. /**
  2718. * M120: Enable endstops
  2719. */
  2720. inline void gcode_M120() { enable_endstops(false); }
  2721. /**
  2722. * M121: Disable endstops
  2723. */
  2724. inline void gcode_M121() { enable_endstops(true); }
  2725. #ifdef BLINKM
  2726. /**
  2727. * M150: Set Status LED Color - Use R-U-B for R-G-B
  2728. */
  2729. inline void gcode_M150() {
  2730. SendColors(
  2731. code_seen('R') ? (byte)code_value() : 0,
  2732. code_seen('U') ? (byte)code_value() : 0,
  2733. code_seen('B') ? (byte)code_value() : 0
  2734. );
  2735. }
  2736. #endif // BLINKM
  2737. /**
  2738. * M200: Set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  2739. * T<extruder>
  2740. * D<millimeters>
  2741. */
  2742. inline void gcode_M200() {
  2743. tmp_extruder = active_extruder;
  2744. if (code_seen('T')) {
  2745. tmp_extruder = code_value();
  2746. if (tmp_extruder >= EXTRUDERS) {
  2747. SERIAL_ECHO_START;
  2748. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  2749. return;
  2750. }
  2751. }
  2752. float area = .0;
  2753. if (code_seen('D')) {
  2754. float diameter = code_value();
  2755. // setting any extruder filament size disables volumetric on the assumption that
  2756. // slicers either generate in extruder values as cubic mm or as as filament feeds
  2757. // for all extruders
  2758. volumetric_enabled = (diameter != 0.0);
  2759. if (volumetric_enabled) {
  2760. filament_size[tmp_extruder] = diameter;
  2761. // make sure all extruders have some sane value for the filament size
  2762. for (int i=0; i<EXTRUDERS; i++)
  2763. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  2764. }
  2765. }
  2766. else {
  2767. //reserved for setting filament diameter via UFID or filament measuring device
  2768. return;
  2769. }
  2770. calculate_volumetric_multipliers();
  2771. }
  2772. /**
  2773. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  2774. */
  2775. inline void gcode_M201() {
  2776. for (int8_t i=0; i < NUM_AXIS; i++) {
  2777. if (code_seen(axis_codes[i])) {
  2778. max_acceleration_units_per_sq_second[i] = code_value();
  2779. }
  2780. }
  2781. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  2782. reset_acceleration_rates();
  2783. }
  2784. #if 0 // Not used for Sprinter/grbl gen6
  2785. inline void gcode_M202() {
  2786. for(int8_t i=0; i < NUM_AXIS; i++) {
  2787. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  2788. }
  2789. }
  2790. #endif
  2791. /**
  2792. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  2793. */
  2794. inline void gcode_M203() {
  2795. for (int8_t i=0; i < NUM_AXIS; i++) {
  2796. if (code_seen(axis_codes[i])) {
  2797. max_feedrate[i] = code_value();
  2798. }
  2799. }
  2800. }
  2801. /**
  2802. * M204: Set Accelerations in mm/sec^2 (M204 P1200 R3000 T3000)
  2803. *
  2804. * P = Printing moves
  2805. * R = Retract only (no X, Y, Z) moves
  2806. * T = Travel (non printing) moves
  2807. *
  2808. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  2809. */
  2810. inline void gcode_M204() {
  2811. if (code_seen('P'))
  2812. {
  2813. acceleration = code_value();
  2814. SERIAL_ECHOPAIR("Setting Printing Acceleration: ", acceleration );
  2815. SERIAL_EOL;
  2816. }
  2817. if (code_seen('R'))
  2818. {
  2819. retract_acceleration = code_value();
  2820. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", retract_acceleration );
  2821. SERIAL_EOL;
  2822. }
  2823. if (code_seen('T'))
  2824. {
  2825. travel_acceleration = code_value();
  2826. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", travel_acceleration );
  2827. SERIAL_EOL;
  2828. }
  2829. }
  2830. /**
  2831. * M205: Set Advanced Settings
  2832. *
  2833. * S = Min Feed Rate (mm/s)
  2834. * T = Min Travel Feed Rate (mm/s)
  2835. * B = Min Segment Time (µs)
  2836. * X = Max XY Jerk (mm/s/s)
  2837. * Z = Max Z Jerk (mm/s/s)
  2838. * E = Max E Jerk (mm/s/s)
  2839. */
  2840. inline void gcode_M205() {
  2841. if (code_seen('S')) minimumfeedrate = code_value();
  2842. if (code_seen('T')) mintravelfeedrate = code_value();
  2843. if (code_seen('B')) minsegmenttime = code_value();
  2844. if (code_seen('X')) max_xy_jerk = code_value();
  2845. if (code_seen('Z')) max_z_jerk = code_value();
  2846. if (code_seen('E')) max_e_jerk = code_value();
  2847. }
  2848. /**
  2849. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  2850. */
  2851. inline void gcode_M206() {
  2852. for (int8_t i=X_AXIS; i <= Z_AXIS; i++) {
  2853. if (code_seen(axis_codes[i])) {
  2854. add_homing[i] = code_value();
  2855. }
  2856. }
  2857. #ifdef SCARA
  2858. if (code_seen('T')) add_homing[X_AXIS] = code_value(); // Theta
  2859. if (code_seen('P')) add_homing[Y_AXIS] = code_value(); // Psi
  2860. #endif
  2861. }
  2862. #ifdef DELTA
  2863. /**
  2864. * M665: Set delta configurations
  2865. *
  2866. * L = diagonal rod
  2867. * R = delta radius
  2868. * S = segments per second
  2869. */
  2870. inline void gcode_M665() {
  2871. if (code_seen('L')) delta_diagonal_rod = code_value();
  2872. if (code_seen('R')) delta_radius = code_value();
  2873. if (code_seen('S')) delta_segments_per_second = code_value();
  2874. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  2875. }
  2876. /**
  2877. * M666: Set delta endstop adjustment
  2878. */
  2879. inline void gcode_M666() {
  2880. for (int8_t i = 0; i < 3; i++) {
  2881. if (code_seen(axis_codes[i])) {
  2882. endstop_adj[i] = code_value();
  2883. }
  2884. }
  2885. }
  2886. #endif // DELTA
  2887. #ifdef FWRETRACT
  2888. /**
  2889. * M207: Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  2890. */
  2891. inline void gcode_M207() {
  2892. if (code_seen('S')) retract_length = code_value();
  2893. if (code_seen('F')) retract_feedrate = code_value() / 60;
  2894. if (code_seen('Z')) retract_zlift = code_value();
  2895. }
  2896. /**
  2897. * M208: Set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  2898. */
  2899. inline void gcode_M208() {
  2900. if (code_seen('S')) retract_recover_length = code_value();
  2901. if (code_seen('F')) retract_recover_feedrate = code_value() / 60;
  2902. }
  2903. /**
  2904. * M209: Enable automatic retract (M209 S1)
  2905. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  2906. */
  2907. inline void gcode_M209() {
  2908. if (code_seen('S')) {
  2909. int t = code_value();
  2910. switch(t) {
  2911. case 0:
  2912. autoretract_enabled = false;
  2913. break;
  2914. case 1:
  2915. autoretract_enabled = true;
  2916. break;
  2917. default:
  2918. SERIAL_ECHO_START;
  2919. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2920. SERIAL_ECHO(cmdbuffer[bufindr]);
  2921. SERIAL_ECHOLNPGM("\"");
  2922. return;
  2923. }
  2924. for (int i=0; i<EXTRUDERS; i++) retracted[i] = false;
  2925. }
  2926. }
  2927. #endif // FWRETRACT
  2928. #if EXTRUDERS > 1
  2929. /**
  2930. * M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  2931. */
  2932. inline void gcode_M218() {
  2933. if (setTargetedHotend(218)) return;
  2934. if (code_seen('X')) extruder_offset[X_AXIS][tmp_extruder] = code_value();
  2935. if (code_seen('Y')) extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  2936. #ifdef DUAL_X_CARRIAGE
  2937. if (code_seen('Z')) extruder_offset[Z_AXIS][tmp_extruder] = code_value();
  2938. #endif
  2939. SERIAL_ECHO_START;
  2940. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  2941. for (tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++) {
  2942. SERIAL_ECHO(" ");
  2943. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  2944. SERIAL_ECHO(",");
  2945. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  2946. #ifdef DUAL_X_CARRIAGE
  2947. SERIAL_ECHO(",");
  2948. SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
  2949. #endif
  2950. }
  2951. SERIAL_EOL;
  2952. }
  2953. #endif // EXTRUDERS > 1
  2954. /**
  2955. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  2956. */
  2957. inline void gcode_M220() {
  2958. if (code_seen('S')) feedmultiply = code_value();
  2959. }
  2960. /**
  2961. * M221: Set extrusion percentage (M221 T0 S95)
  2962. */
  2963. inline void gcode_M221() {
  2964. if (code_seen('S')) {
  2965. int sval = code_value();
  2966. if (code_seen('T')) {
  2967. if (setTargetedHotend(221)) return;
  2968. extruder_multiply[tmp_extruder] = sval;
  2969. }
  2970. else {
  2971. extrudemultiply = sval;
  2972. }
  2973. }
  2974. }
  2975. /**
  2976. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  2977. */
  2978. inline void gcode_M226() {
  2979. if (code_seen('P')) {
  2980. int pin_number = code_value();
  2981. int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted
  2982. if (pin_state >= -1 && pin_state <= 1) {
  2983. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(*sensitive_pins)); i++) {
  2984. if (sensitive_pins[i] == pin_number) {
  2985. pin_number = -1;
  2986. break;
  2987. }
  2988. }
  2989. if (pin_number > -1) {
  2990. int target = LOW;
  2991. st_synchronize();
  2992. pinMode(pin_number, INPUT);
  2993. switch(pin_state){
  2994. case 1:
  2995. target = HIGH;
  2996. break;
  2997. case 0:
  2998. target = LOW;
  2999. break;
  3000. case -1:
  3001. target = !digitalRead(pin_number);
  3002. break;
  3003. }
  3004. while(digitalRead(pin_number) != target) {
  3005. manage_heater();
  3006. manage_inactivity();
  3007. lcd_update();
  3008. }
  3009. } // pin_number > -1
  3010. } // pin_state -1 0 1
  3011. } // code_seen('P')
  3012. }
  3013. #if NUM_SERVOS > 0
  3014. /**
  3015. * M280: Set servo position absolute. P: servo index, S: angle or microseconds
  3016. */
  3017. inline void gcode_M280() {
  3018. int servo_index = code_seen('P') ? code_value() : -1;
  3019. int servo_position = 0;
  3020. if (code_seen('S')) {
  3021. servo_position = code_value();
  3022. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  3023. #if SERVO_LEVELING
  3024. servos[servo_index].attach(0);
  3025. #endif
  3026. servos[servo_index].write(servo_position);
  3027. #if SERVO_LEVELING
  3028. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  3029. servos[servo_index].detach();
  3030. #endif
  3031. }
  3032. else {
  3033. SERIAL_ECHO_START;
  3034. SERIAL_ECHO("Servo ");
  3035. SERIAL_ECHO(servo_index);
  3036. SERIAL_ECHOLN(" out of range");
  3037. }
  3038. }
  3039. else if (servo_index >= 0) {
  3040. SERIAL_PROTOCOL(MSG_OK);
  3041. SERIAL_PROTOCOL(" Servo ");
  3042. SERIAL_PROTOCOL(servo_index);
  3043. SERIAL_PROTOCOL(": ");
  3044. SERIAL_PROTOCOL(servos[servo_index].read());
  3045. SERIAL_PROTOCOLLN("");
  3046. }
  3047. }
  3048. #endif // NUM_SERVOS > 0
  3049. #if defined(LARGE_FLASH) && (BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER))
  3050. /**
  3051. * M300: Play beep sound S<frequency Hz> P<duration ms>
  3052. */
  3053. inline void gcode_M300() {
  3054. int beepS = code_seen('S') ? code_value() : 110;
  3055. int beepP = code_seen('P') ? code_value() : 1000;
  3056. if (beepS > 0) {
  3057. #if BEEPER > 0
  3058. tone(BEEPER, beepS);
  3059. delay(beepP);
  3060. noTone(BEEPER);
  3061. #elif defined(ULTRALCD)
  3062. lcd_buzz(beepS, beepP);
  3063. #elif defined(LCD_USE_I2C_BUZZER)
  3064. lcd_buzz(beepP, beepS);
  3065. #endif
  3066. }
  3067. else {
  3068. delay(beepP);
  3069. }
  3070. }
  3071. #endif // LARGE_FLASH && (BEEPER>0 || ULTRALCD || LCD_USE_I2C_BUZZER)
  3072. #ifdef PIDTEMP
  3073. /**
  3074. * M301: Set PID parameters P I D (and optionally C)
  3075. */
  3076. inline void gcode_M301() {
  3077. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  3078. // default behaviour (omitting E parameter) is to update for extruder 0 only
  3079. int e = code_seen('E') ? code_value() : 0; // extruder being updated
  3080. if (e < EXTRUDERS) { // catch bad input value
  3081. if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
  3082. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
  3083. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
  3084. #ifdef PID_ADD_EXTRUSION_RATE
  3085. if (code_seen('C')) PID_PARAM(Kc, e) = code_value();
  3086. #endif
  3087. updatePID();
  3088. SERIAL_PROTOCOL(MSG_OK);
  3089. #ifdef PID_PARAMS_PER_EXTRUDER
  3090. SERIAL_PROTOCOL(" e:"); // specify extruder in serial output
  3091. SERIAL_PROTOCOL(e);
  3092. #endif // PID_PARAMS_PER_EXTRUDER
  3093. SERIAL_PROTOCOL(" p:");
  3094. SERIAL_PROTOCOL(PID_PARAM(Kp, e));
  3095. SERIAL_PROTOCOL(" i:");
  3096. SERIAL_PROTOCOL(unscalePID_i(PID_PARAM(Ki, e)));
  3097. SERIAL_PROTOCOL(" d:");
  3098. SERIAL_PROTOCOL(unscalePID_d(PID_PARAM(Kd, e)));
  3099. #ifdef PID_ADD_EXTRUSION_RATE
  3100. SERIAL_PROTOCOL(" c:");
  3101. //Kc does not have scaling applied above, or in resetting defaults
  3102. SERIAL_PROTOCOL(PID_PARAM(Kc, e));
  3103. #endif
  3104. SERIAL_PROTOCOLLN("");
  3105. }
  3106. else {
  3107. SERIAL_ECHO_START;
  3108. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3109. }
  3110. }
  3111. #endif // PIDTEMP
  3112. #ifdef PIDTEMPBED
  3113. inline void gcode_M304() {
  3114. if (code_seen('P')) bedKp = code_value();
  3115. if (code_seen('I')) bedKi = scalePID_i(code_value());
  3116. if (code_seen('D')) bedKd = scalePID_d(code_value());
  3117. updatePID();
  3118. SERIAL_PROTOCOL(MSG_OK);
  3119. SERIAL_PROTOCOL(" p:");
  3120. SERIAL_PROTOCOL(bedKp);
  3121. SERIAL_PROTOCOL(" i:");
  3122. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  3123. SERIAL_PROTOCOL(" d:");
  3124. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  3125. SERIAL_PROTOCOLLN("");
  3126. }
  3127. #endif // PIDTEMPBED
  3128. #if defined(CHDK) || (defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1)
  3129. /**
  3130. * M240: Trigger a camera by emulating a Canon RC-1
  3131. * See http://www.doc-diy.net/photo/rc-1_hacked/
  3132. */
  3133. inline void gcode_M240() {
  3134. #ifdef CHDK
  3135. OUT_WRITE(CHDK, HIGH);
  3136. chdkHigh = millis();
  3137. chdkActive = true;
  3138. #elif defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  3139. const uint8_t NUM_PULSES = 16;
  3140. const float PULSE_LENGTH = 0.01524;
  3141. for (int i = 0; i < NUM_PULSES; i++) {
  3142. WRITE(PHOTOGRAPH_PIN, HIGH);
  3143. _delay_ms(PULSE_LENGTH);
  3144. WRITE(PHOTOGRAPH_PIN, LOW);
  3145. _delay_ms(PULSE_LENGTH);
  3146. }
  3147. delay(7.33);
  3148. for (int i = 0; i < NUM_PULSES; i++) {
  3149. WRITE(PHOTOGRAPH_PIN, HIGH);
  3150. _delay_ms(PULSE_LENGTH);
  3151. WRITE(PHOTOGRAPH_PIN, LOW);
  3152. _delay_ms(PULSE_LENGTH);
  3153. }
  3154. #endif // !CHDK && PHOTOGRAPH_PIN > -1
  3155. }
  3156. #endif // CHDK || PHOTOGRAPH_PIN
  3157. #ifdef DOGLCD
  3158. /**
  3159. * M250: Read and optionally set the LCD contrast
  3160. */
  3161. inline void gcode_M250() {
  3162. if (code_seen('C')) lcd_setcontrast(code_value_long() & 0x3F);
  3163. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  3164. SERIAL_PROTOCOL(lcd_contrast);
  3165. SERIAL_PROTOCOLLN("");
  3166. }
  3167. #endif // DOGLCD
  3168. #ifdef PREVENT_DANGEROUS_EXTRUDE
  3169. /**
  3170. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  3171. */
  3172. inline void gcode_M302() {
  3173. set_extrude_min_temp(code_seen('S') ? code_value() : 0);
  3174. }
  3175. #endif // PREVENT_DANGEROUS_EXTRUDE
  3176. /**
  3177. * M303: PID relay autotune
  3178. * S<temperature> sets the target temperature. (default target temperature = 150C)
  3179. * E<extruder> (-1 for the bed)
  3180. * C<cycles>
  3181. */
  3182. inline void gcode_M303() {
  3183. int e = code_seen('E') ? code_value_long() : 0;
  3184. int c = code_seen('C') ? code_value_long() : 5;
  3185. float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
  3186. PID_autotune(temp, e, c);
  3187. }
  3188. #ifdef SCARA
  3189. /**
  3190. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  3191. */
  3192. inline bool gcode_M360() {
  3193. SERIAL_ECHOLN(" Cal: Theta 0 ");
  3194. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3195. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3196. if (! Stopped) {
  3197. //get_coordinates(); // For X Y Z E F
  3198. delta[X_AXIS] = 0;
  3199. delta[Y_AXIS] = 120;
  3200. calculate_SCARA_forward_Transform(delta);
  3201. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3202. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3203. prepare_move();
  3204. //ClearToSend();
  3205. return true;
  3206. }
  3207. return false;
  3208. }
  3209. /**
  3210. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  3211. */
  3212. inline bool gcode_M361() {
  3213. SERIAL_ECHOLN(" Cal: Theta 90 ");
  3214. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3215. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3216. if (! Stopped) {
  3217. //get_coordinates(); // For X Y Z E F
  3218. delta[X_AXIS] = 90;
  3219. delta[Y_AXIS] = 130;
  3220. calculate_SCARA_forward_Transform(delta);
  3221. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3222. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3223. prepare_move();
  3224. //ClearToSend();
  3225. return true;
  3226. }
  3227. return false;
  3228. }
  3229. /**
  3230. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  3231. */
  3232. inline bool gcode_M362() {
  3233. SERIAL_ECHOLN(" Cal: Psi 0 ");
  3234. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3235. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3236. if (! Stopped) {
  3237. //get_coordinates(); // For X Y Z E F
  3238. delta[X_AXIS] = 60;
  3239. delta[Y_AXIS] = 180;
  3240. calculate_SCARA_forward_Transform(delta);
  3241. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3242. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3243. prepare_move();
  3244. //ClearToSend();
  3245. return true;
  3246. }
  3247. return false;
  3248. }
  3249. /**
  3250. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  3251. */
  3252. inline bool gcode_M363() {
  3253. SERIAL_ECHOLN(" Cal: Psi 90 ");
  3254. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3255. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3256. if (! Stopped) {
  3257. //get_coordinates(); // For X Y Z E F
  3258. delta[X_AXIS] = 50;
  3259. delta[Y_AXIS] = 90;
  3260. calculate_SCARA_forward_Transform(delta);
  3261. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3262. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3263. prepare_move();
  3264. //ClearToSend();
  3265. return true;
  3266. }
  3267. return false;
  3268. }
  3269. /**
  3270. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  3271. */
  3272. inline bool gcode_M364() {
  3273. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  3274. // SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3275. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3276. if (! Stopped) {
  3277. //get_coordinates(); // For X Y Z E F
  3278. delta[X_AXIS] = 45;
  3279. delta[Y_AXIS] = 135;
  3280. calculate_SCARA_forward_Transform(delta);
  3281. destination[X_AXIS] = delta[X_AXIS] / axis_scaling[X_AXIS];
  3282. destination[Y_AXIS] = delta[Y_AXIS] / axis_scaling[Y_AXIS];
  3283. prepare_move();
  3284. //ClearToSend();
  3285. return true;
  3286. }
  3287. return false;
  3288. }
  3289. /**
  3290. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  3291. */
  3292. inline void gcode_M365() {
  3293. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3294. if (code_seen(axis_codes[i])) {
  3295. axis_scaling[i] = code_value();
  3296. }
  3297. }
  3298. }
  3299. #endif // SCARA
  3300. #ifdef EXT_SOLENOID
  3301. void enable_solenoid(uint8_t num) {
  3302. switch(num) {
  3303. case 0:
  3304. OUT_WRITE(SOL0_PIN, HIGH);
  3305. break;
  3306. #if defined(SOL1_PIN) && SOL1_PIN > -1
  3307. case 1:
  3308. OUT_WRITE(SOL1_PIN, HIGH);
  3309. break;
  3310. #endif
  3311. #if defined(SOL2_PIN) && SOL2_PIN > -1
  3312. case 2:
  3313. OUT_WRITE(SOL2_PIN, HIGH);
  3314. break;
  3315. #endif
  3316. #if defined(SOL3_PIN) && SOL3_PIN > -1
  3317. case 3:
  3318. OUT_WRITE(SOL3_PIN, HIGH);
  3319. break;
  3320. #endif
  3321. default:
  3322. SERIAL_ECHO_START;
  3323. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  3324. break;
  3325. }
  3326. }
  3327. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  3328. void disable_all_solenoids() {
  3329. OUT_WRITE(SOL0_PIN, LOW);
  3330. OUT_WRITE(SOL1_PIN, LOW);
  3331. OUT_WRITE(SOL2_PIN, LOW);
  3332. OUT_WRITE(SOL3_PIN, LOW);
  3333. }
  3334. /**
  3335. * M380: Enable solenoid on the active extruder
  3336. */
  3337. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  3338. /**
  3339. * M381: Disable all solenoids
  3340. */
  3341. inline void gcode_M381() { disable_all_solenoids(); }
  3342. #endif // EXT_SOLENOID
  3343. /**
  3344. * M400: Finish all moves
  3345. */
  3346. inline void gcode_M400() { st_synchronize(); }
  3347. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(SERVO_ENDSTOPS) && not defined(Z_PROBE_SLED)
  3348. /**
  3349. * M401: Engage Z Servo endstop if available
  3350. */
  3351. inline void gcode_M401() { engage_z_probe(); }
  3352. /**
  3353. * M402: Retract Z Servo endstop if enabled
  3354. */
  3355. inline void gcode_M402() { retract_z_probe(); }
  3356. #endif
  3357. #ifdef FILAMENT_SENSOR
  3358. /**
  3359. * M404: Display or set the nominal filament width (3mm, 1.75mm ) N<3.0>
  3360. */
  3361. inline void gcode_M404() {
  3362. #if FILWIDTH_PIN > -1
  3363. if (code_seen('N')) {
  3364. filament_width_nominal = code_value();
  3365. }
  3366. else {
  3367. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  3368. SERIAL_PROTOCOLLN(filament_width_nominal);
  3369. }
  3370. #endif
  3371. }
  3372. /**
  3373. * M405: Turn on filament sensor for control
  3374. */
  3375. inline void gcode_M405() {
  3376. if (code_seen('D')) meas_delay_cm = code_value();
  3377. if (meas_delay_cm > MAX_MEASUREMENT_DELAY) meas_delay_cm = MAX_MEASUREMENT_DELAY;
  3378. if (delay_index2 == -1) { //initialize the ring buffer if it has not been done since startup
  3379. int temp_ratio = widthFil_to_size_ratio();
  3380. for (delay_index1 = 0; delay_index1 < MAX_MEASUREMENT_DELAY + 1; ++delay_index1)
  3381. measurement_delay[delay_index1] = temp_ratio - 100; //subtract 100 to scale within a signed byte
  3382. delay_index1 = delay_index2 = 0;
  3383. }
  3384. filament_sensor = true;
  3385. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3386. //SERIAL_PROTOCOL(filament_width_meas);
  3387. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  3388. //SERIAL_PROTOCOL(extrudemultiply);
  3389. }
  3390. /**
  3391. * M406: Turn off filament sensor for control
  3392. */
  3393. inline void gcode_M406() { filament_sensor = false; }
  3394. /**
  3395. * M407: Get measured filament diameter on serial output
  3396. */
  3397. inline void gcode_M407() {
  3398. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3399. SERIAL_PROTOCOLLN(filament_width_meas);
  3400. }
  3401. #endif // FILAMENT_SENSOR
  3402. /**
  3403. * M500: Store settings in EEPROM
  3404. */
  3405. inline void gcode_M500() {
  3406. Config_StoreSettings();
  3407. }
  3408. /**
  3409. * M501: Read settings from EEPROM
  3410. */
  3411. inline void gcode_M501() {
  3412. Config_RetrieveSettings();
  3413. }
  3414. /**
  3415. * M502: Revert to default settings
  3416. */
  3417. inline void gcode_M502() {
  3418. Config_ResetDefault();
  3419. }
  3420. /**
  3421. * M503: print settings currently in memory
  3422. */
  3423. inline void gcode_M503() {
  3424. Config_PrintSettings(code_seen('S') && code_value == 0);
  3425. }
  3426. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3427. /**
  3428. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  3429. */
  3430. inline void gcode_M540() {
  3431. if (code_seen('S')) abort_on_endstop_hit = (code_value() > 0);
  3432. }
  3433. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3434. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3435. inline void gcode_SET_Z_PROBE_OFFSET() {
  3436. float value;
  3437. if (code_seen('Z')) {
  3438. value = code_value();
  3439. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  3440. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  3441. SERIAL_ECHO_START;
  3442. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
  3443. SERIAL_PROTOCOLLN("");
  3444. }
  3445. else {
  3446. SERIAL_ECHO_START;
  3447. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  3448. SERIAL_ECHOPGM(MSG_Z_MIN);
  3449. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  3450. SERIAL_ECHOPGM(MSG_Z_MAX);
  3451. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  3452. SERIAL_PROTOCOLLN("");
  3453. }
  3454. }
  3455. else {
  3456. SERIAL_ECHO_START;
  3457. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " : ");
  3458. SERIAL_ECHO(-zprobe_zoffset);
  3459. SERIAL_PROTOCOLLN("");
  3460. }
  3461. }
  3462. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3463. #ifdef FILAMENTCHANGEENABLE
  3464. /**
  3465. * M600: Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3466. */
  3467. inline void gcode_M600() {
  3468. float target[NUM_AXIS], lastpos[NUM_AXIS], fr60 = feedrate / 60;
  3469. for (int i=0; i<NUM_AXIS; i++)
  3470. target[i] = lastpos[i] = current_position[i];
  3471. #define BASICPLAN plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder);
  3472. #ifdef DELTA
  3473. #define RUNPLAN calculate_delta(target); BASICPLAN
  3474. #else
  3475. #define RUNPLAN BASICPLAN
  3476. #endif
  3477. //retract by E
  3478. if (code_seen('E')) target[E_AXIS] += code_value();
  3479. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  3480. else target[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
  3481. #endif
  3482. RUNPLAN;
  3483. //lift Z
  3484. if (code_seen('Z')) target[Z_AXIS] += code_value();
  3485. #ifdef FILAMENTCHANGE_ZADD
  3486. else target[Z_AXIS] += FILAMENTCHANGE_ZADD;
  3487. #endif
  3488. RUNPLAN;
  3489. //move xy
  3490. if (code_seen('X')) target[X_AXIS] = code_value();
  3491. #ifdef FILAMENTCHANGE_XPOS
  3492. else target[X_AXIS] = FILAMENTCHANGE_XPOS;
  3493. #endif
  3494. if (code_seen('Y')) target[Y_AXIS] = code_value();
  3495. #ifdef FILAMENTCHANGE_YPOS
  3496. else target[Y_AXIS] = FILAMENTCHANGE_YPOS;
  3497. #endif
  3498. RUNPLAN;
  3499. if (code_seen('L')) target[E_AXIS] += code_value();
  3500. #ifdef FILAMENTCHANGE_FINALRETRACT
  3501. else target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  3502. #endif
  3503. RUNPLAN;
  3504. //finish moves
  3505. st_synchronize();
  3506. //disable extruder steppers so filament can be removed
  3507. disable_e0();
  3508. disable_e1();
  3509. disable_e2();
  3510. disable_e3();
  3511. delay(100);
  3512. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  3513. uint8_t cnt = 0;
  3514. while (!lcd_clicked()) {
  3515. cnt++;
  3516. manage_heater();
  3517. manage_inactivity(true);
  3518. lcd_update();
  3519. if (cnt == 0) {
  3520. #if BEEPER > 0
  3521. OUT_WRITE(BEEPER,HIGH);
  3522. delay(3);
  3523. WRITE(BEEPER,LOW);
  3524. delay(3);
  3525. #else
  3526. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  3527. lcd_buzz(1000/6, 100);
  3528. #else
  3529. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
  3530. #endif
  3531. #endif
  3532. }
  3533. } // while(!lcd_clicked)
  3534. //return to normal
  3535. if (code_seen('L')) target[E_AXIS] -= code_value();
  3536. #ifdef FILAMENTCHANGE_FINALRETRACT
  3537. else target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  3538. #endif
  3539. current_position[E_AXIS] = target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3540. plan_set_e_position(current_position[E_AXIS]);
  3541. RUNPLAN; //should do nothing
  3542. lcd_reset_alert_level();
  3543. #ifdef DELTA
  3544. calculate_delta(lastpos);
  3545. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xyz back
  3546. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  3547. #else
  3548. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xy back
  3549. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move z back
  3550. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  3551. #endif
  3552. }
  3553. #endif // FILAMENTCHANGEENABLE
  3554. #ifdef DUAL_X_CARRIAGE
  3555. /**
  3556. * M605: Set dual x-carriage movement mode
  3557. *
  3558. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  3559. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  3560. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  3561. * millimeters x-offset and an optional differential hotend temperature of
  3562. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  3563. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  3564. *
  3565. * Note: the X axis should be homed after changing dual x-carriage mode.
  3566. */
  3567. inline void gcode_M605() {
  3568. st_synchronize();
  3569. if (code_seen('S')) dual_x_carriage_mode = code_value();
  3570. switch(dual_x_carriage_mode) {
  3571. case DXC_DUPLICATION_MODE:
  3572. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0));
  3573. if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
  3574. SERIAL_ECHO_START;
  3575. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3576. SERIAL_ECHO(" ");
  3577. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  3578. SERIAL_ECHO(",");
  3579. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  3580. SERIAL_ECHO(" ");
  3581. SERIAL_ECHO(duplicate_extruder_x_offset);
  3582. SERIAL_ECHO(",");
  3583. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  3584. break;
  3585. case DXC_FULL_CONTROL_MODE:
  3586. case DXC_AUTO_PARK_MODE:
  3587. break;
  3588. default:
  3589. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  3590. break;
  3591. }
  3592. active_extruder_parked = false;
  3593. extruder_duplication_enabled = false;
  3594. delayed_move_time = 0;
  3595. }
  3596. #endif // DUAL_X_CARRIAGE
  3597. /**
  3598. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  3599. */
  3600. inline void gcode_M907() {
  3601. #if HAS_DIGIPOTSS
  3602. for (int i=0;i<NUM_AXIS;i++)
  3603. if (code_seen(axis_codes[i])) digipot_current(i, code_value());
  3604. if (code_seen('B')) digipot_current(4, code_value());
  3605. if (code_seen('S')) for (int i=0; i<=4; i++) digipot_current(i, code_value());
  3606. #endif
  3607. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  3608. if (code_seen('X')) digipot_current(0, code_value());
  3609. #endif
  3610. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  3611. if (code_seen('Z')) digipot_current(1, code_value());
  3612. #endif
  3613. #ifdef MOTOR_CURRENT_PWM_E_PIN
  3614. if (code_seen('E')) digipot_current(2, code_value());
  3615. #endif
  3616. #ifdef DIGIPOT_I2C
  3617. // this one uses actual amps in floating point
  3618. for (int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  3619. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  3620. for (int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  3621. #endif
  3622. }
  3623. #if HAS_DIGIPOTSS
  3624. /**
  3625. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  3626. */
  3627. inline void gcode_M908() {
  3628. digitalPotWrite(
  3629. code_seen('P') ? code_value() : 0,
  3630. code_seen('S') ? code_value() : 0
  3631. );
  3632. }
  3633. #endif // HAS_DIGIPOTSS
  3634. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  3635. inline void gcode_M350() {
  3636. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3637. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  3638. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  3639. if(code_seen('B')) microstep_mode(4,code_value());
  3640. microstep_readings();
  3641. #endif
  3642. }
  3643. /**
  3644. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  3645. * S# determines MS1 or MS2, X# sets the pin high/low.
  3646. */
  3647. inline void gcode_M351() {
  3648. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3649. if (code_seen('S')) switch(code_value_long()) {
  3650. case 1:
  3651. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, code_value(), -1);
  3652. if (code_seen('B')) microstep_ms(4, code_value(), -1);
  3653. break;
  3654. case 2:
  3655. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, -1, code_value());
  3656. if (code_seen('B')) microstep_ms(4, -1, code_value());
  3657. break;
  3658. }
  3659. microstep_readings();
  3660. #endif
  3661. }
  3662. /**
  3663. * M999: Restart after being stopped
  3664. */
  3665. inline void gcode_M999() {
  3666. Stopped = false;
  3667. lcd_reset_alert_level();
  3668. gcode_LastN = Stopped_gcode_LastN;
  3669. FlushSerialRequestResend();
  3670. }
  3671. inline void gcode_T() {
  3672. tmp_extruder = code_value();
  3673. if (tmp_extruder >= EXTRUDERS) {
  3674. SERIAL_ECHO_START;
  3675. SERIAL_ECHO("T");
  3676. SERIAL_ECHO(tmp_extruder);
  3677. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3678. }
  3679. else {
  3680. boolean make_move = false;
  3681. if (code_seen('F')) {
  3682. make_move = true;
  3683. next_feedrate = code_value();
  3684. if (next_feedrate > 0.0) feedrate = next_feedrate;
  3685. }
  3686. #if EXTRUDERS > 1
  3687. if (tmp_extruder != active_extruder) {
  3688. // Save current position to return to after applying extruder offset
  3689. memcpy(destination, current_position, sizeof(destination));
  3690. #ifdef DUAL_X_CARRIAGE
  3691. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
  3692. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  3693. // Park old head: 1) raise 2) move to park position 3) lower
  3694. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3695. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3696. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3697. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  3698. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  3699. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3700. st_synchronize();
  3701. }
  3702. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  3703. current_position[Y_AXIS] = current_position[Y_AXIS] -
  3704. extruder_offset[Y_AXIS][active_extruder] +
  3705. extruder_offset[Y_AXIS][tmp_extruder];
  3706. current_position[Z_AXIS] = current_position[Z_AXIS] -
  3707. extruder_offset[Z_AXIS][active_extruder] +
  3708. extruder_offset[Z_AXIS][tmp_extruder];
  3709. active_extruder = tmp_extruder;
  3710. // This function resets the max/min values - the current position may be overwritten below.
  3711. axis_is_at_home(X_AXIS);
  3712. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  3713. current_position[X_AXIS] = inactive_extruder_x_pos;
  3714. inactive_extruder_x_pos = destination[X_AXIS];
  3715. }
  3716. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  3717. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  3718. if (active_extruder == 0 || active_extruder_parked)
  3719. current_position[X_AXIS] = inactive_extruder_x_pos;
  3720. else
  3721. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  3722. inactive_extruder_x_pos = destination[X_AXIS];
  3723. extruder_duplication_enabled = false;
  3724. }
  3725. else {
  3726. // record raised toolhead position for use by unpark
  3727. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  3728. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  3729. active_extruder_parked = true;
  3730. delayed_move_time = 0;
  3731. }
  3732. #else // !DUAL_X_CARRIAGE
  3733. // Offset extruder (only by XY)
  3734. for (int i=X_AXIS; i<=Y_AXIS; i++)
  3735. current_position[i] += extruder_offset[i][tmp_extruder] - extruder_offset[i][active_extruder];
  3736. // Set the new active extruder and position
  3737. active_extruder = tmp_extruder;
  3738. #endif // !DUAL_X_CARRIAGE
  3739. #ifdef DELTA
  3740. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  3741. //sent position to plan_set_position();
  3742. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],current_position[E_AXIS]);
  3743. #else
  3744. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3745. #endif
  3746. // Move to the old position if 'F' was in the parameters
  3747. if (make_move && !Stopped) prepare_move();
  3748. }
  3749. #ifdef EXT_SOLENOID
  3750. st_synchronize();
  3751. disable_all_solenoids();
  3752. enable_solenoid_on_active_extruder();
  3753. #endif // EXT_SOLENOID
  3754. #endif // EXTRUDERS > 1
  3755. SERIAL_ECHO_START;
  3756. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  3757. SERIAL_PROTOCOLLN((int)active_extruder);
  3758. }
  3759. }
  3760. /**
  3761. * Process Commands and dispatch them to handlers
  3762. */
  3763. void process_commands() {
  3764. if (code_seen('G')) {
  3765. int gCode = code_value_long();
  3766. switch(gCode) {
  3767. // G0, G1
  3768. case 0:
  3769. case 1:
  3770. gcode_G0_G1();
  3771. break;
  3772. // G2, G3
  3773. #ifndef SCARA
  3774. case 2: // G2 - CW ARC
  3775. case 3: // G3 - CCW ARC
  3776. gcode_G2_G3(gCode == 2);
  3777. break;
  3778. #endif
  3779. // G4 Dwell
  3780. case 4:
  3781. gcode_G4();
  3782. break;
  3783. #ifdef FWRETRACT
  3784. case 10: // G10: retract
  3785. case 11: // G11: retract_recover
  3786. gcode_G10_G11(gCode == 10);
  3787. break;
  3788. #endif //FWRETRACT
  3789. case 28: // G28: Home all axes, one at a time
  3790. gcode_G28();
  3791. break;
  3792. #ifdef ENABLE_AUTO_BED_LEVELING
  3793. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  3794. gcode_G29();
  3795. break;
  3796. #ifndef Z_PROBE_SLED
  3797. case 30: // G30 Single Z Probe
  3798. gcode_G30();
  3799. break;
  3800. #else // Z_PROBE_SLED
  3801. case 31: // G31: dock the sled
  3802. case 32: // G32: undock the sled
  3803. dock_sled(gCode == 31);
  3804. break;
  3805. #endif // Z_PROBE_SLED
  3806. #endif // ENABLE_AUTO_BED_LEVELING
  3807. case 90: // G90
  3808. relative_mode = false;
  3809. break;
  3810. case 91: // G91
  3811. relative_mode = true;
  3812. break;
  3813. case 92: // G92
  3814. gcode_G92();
  3815. break;
  3816. }
  3817. }
  3818. else if (code_seen('M')) {
  3819. switch( code_value_long() ) {
  3820. #ifdef ULTIPANEL
  3821. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  3822. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  3823. gcode_M0_M1();
  3824. break;
  3825. #endif // ULTIPANEL
  3826. case 17:
  3827. gcode_M17();
  3828. break;
  3829. #ifdef SDSUPPORT
  3830. case 20: // M20 - list SD card
  3831. gcode_M20(); break;
  3832. case 21: // M21 - init SD card
  3833. gcode_M21(); break;
  3834. case 22: //M22 - release SD card
  3835. gcode_M22(); break;
  3836. case 23: //M23 - Select file
  3837. gcode_M23(); break;
  3838. case 24: //M24 - Start SD print
  3839. gcode_M24(); break;
  3840. case 25: //M25 - Pause SD print
  3841. gcode_M25(); break;
  3842. case 26: //M26 - Set SD index
  3843. gcode_M26(); break;
  3844. case 27: //M27 - Get SD status
  3845. gcode_M27(); break;
  3846. case 28: //M28 - Start SD write
  3847. gcode_M28(); break;
  3848. case 29: //M29 - Stop SD write
  3849. gcode_M29(); break;
  3850. case 30: //M30 <filename> Delete File
  3851. gcode_M30(); break;
  3852. case 32: //M32 - Select file and start SD print
  3853. gcode_M32(); break;
  3854. case 928: //M928 - Start SD write
  3855. gcode_M928(); break;
  3856. #endif //SDSUPPORT
  3857. case 31: //M31 take time since the start of the SD print or an M109 command
  3858. gcode_M31();
  3859. break;
  3860. case 42: //M42 -Change pin status via gcode
  3861. gcode_M42();
  3862. break;
  3863. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  3864. case 48: // M48 Z-Probe repeatability
  3865. gcode_M48();
  3866. break;
  3867. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  3868. case 104: // M104
  3869. gcode_M104();
  3870. break;
  3871. case 112: // M112 Emergency Stop
  3872. gcode_M112();
  3873. break;
  3874. case 140: // M140 Set bed temp
  3875. gcode_M140();
  3876. break;
  3877. case 105: // M105 Read current temperature
  3878. gcode_M105();
  3879. return;
  3880. break;
  3881. case 109: // M109 Wait for temperature
  3882. gcode_M109();
  3883. break;
  3884. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3885. case 190: // M190 - Wait for bed heater to reach target.
  3886. gcode_M190();
  3887. break;
  3888. #endif //TEMP_BED_PIN
  3889. #if defined(FAN_PIN) && FAN_PIN > -1
  3890. case 106: //M106 Fan On
  3891. gcode_M106();
  3892. break;
  3893. case 107: //M107 Fan Off
  3894. gcode_M107();
  3895. break;
  3896. #endif //FAN_PIN
  3897. #ifdef BARICUDA
  3898. // PWM for HEATER_1_PIN
  3899. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  3900. case 126: // M126 valve open
  3901. gcode_M126();
  3902. break;
  3903. case 127: // M127 valve closed
  3904. gcode_M127();
  3905. break;
  3906. #endif //HEATER_1_PIN
  3907. // PWM for HEATER_2_PIN
  3908. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  3909. case 128: // M128 valve open
  3910. gcode_M128();
  3911. break;
  3912. case 129: // M129 valve closed
  3913. gcode_M129();
  3914. break;
  3915. #endif //HEATER_2_PIN
  3916. #endif //BARICUDA
  3917. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3918. case 80: // M80 - Turn on Power Supply
  3919. gcode_M80();
  3920. break;
  3921. #endif // PS_ON_PIN
  3922. case 81: // M81 - Turn off Power Supply
  3923. gcode_M81();
  3924. break;
  3925. case 82:
  3926. gcode_M82();
  3927. break;
  3928. case 83:
  3929. gcode_M83();
  3930. break;
  3931. case 18: //compatibility
  3932. case 84: // M84
  3933. gcode_M18_M84();
  3934. break;
  3935. case 85: // M85
  3936. gcode_M85();
  3937. break;
  3938. case 92: // M92
  3939. gcode_M92();
  3940. break;
  3941. case 115: // M115
  3942. gcode_M115();
  3943. break;
  3944. case 117: // M117 display message
  3945. gcode_M117();
  3946. break;
  3947. case 114: // M114
  3948. gcode_M114();
  3949. break;
  3950. case 120: // M120
  3951. gcode_M120();
  3952. break;
  3953. case 121: // M121
  3954. gcode_M121();
  3955. break;
  3956. case 119: // M119
  3957. gcode_M119();
  3958. break;
  3959. //TODO: update for all axis, use for loop
  3960. #ifdef BLINKM
  3961. case 150: // M150
  3962. gcode_M150();
  3963. break;
  3964. #endif //BLINKM
  3965. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3966. gcode_M200();
  3967. break;
  3968. case 201: // M201
  3969. gcode_M201();
  3970. break;
  3971. #if 0 // Not used for Sprinter/grbl gen6
  3972. case 202: // M202
  3973. gcode_M202();
  3974. break;
  3975. #endif
  3976. case 203: // M203 max feedrate mm/sec
  3977. gcode_M203();
  3978. break;
  3979. case 204: // M204 acclereration S normal moves T filmanent only moves
  3980. gcode_M204();
  3981. break;
  3982. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  3983. gcode_M205();
  3984. break;
  3985. case 206: // M206 additional homing offset
  3986. gcode_M206();
  3987. break;
  3988. #ifdef DELTA
  3989. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  3990. gcode_M665();
  3991. break;
  3992. case 666: // M666 set delta endstop adjustment
  3993. gcode_M666();
  3994. break;
  3995. #endif // DELTA
  3996. #ifdef FWRETRACT
  3997. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  3998. gcode_M207();
  3999. break;
  4000. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4001. gcode_M208();
  4002. break;
  4003. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4004. gcode_M209();
  4005. break;
  4006. #endif // FWRETRACT
  4007. #if EXTRUDERS > 1
  4008. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4009. gcode_M218();
  4010. break;
  4011. #endif
  4012. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4013. gcode_M220();
  4014. break;
  4015. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4016. gcode_M221();
  4017. break;
  4018. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4019. gcode_M226();
  4020. break;
  4021. #if NUM_SERVOS > 0
  4022. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4023. gcode_M280();
  4024. break;
  4025. #endif // NUM_SERVOS > 0
  4026. #if defined(LARGE_FLASH) && (BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER))
  4027. case 300: // M300 - Play beep tone
  4028. gcode_M300();
  4029. break;
  4030. #endif // LARGE_FLASH && (BEEPER>0 || ULTRALCD || LCD_USE_I2C_BUZZER)
  4031. #ifdef PIDTEMP
  4032. case 301: // M301
  4033. gcode_M301();
  4034. break;
  4035. #endif // PIDTEMP
  4036. #ifdef PIDTEMPBED
  4037. case 304: // M304
  4038. gcode_M304();
  4039. break;
  4040. #endif // PIDTEMPBED
  4041. #if defined(CHDK) || (defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1)
  4042. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4043. gcode_M240();
  4044. break;
  4045. #endif // CHDK || PHOTOGRAPH_PIN
  4046. #ifdef DOGLCD
  4047. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4048. gcode_M250();
  4049. break;
  4050. #endif // DOGLCD
  4051. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4052. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4053. gcode_M302();
  4054. break;
  4055. #endif // PREVENT_DANGEROUS_EXTRUDE
  4056. case 303: // M303 PID autotune
  4057. gcode_M303();
  4058. break;
  4059. #ifdef SCARA
  4060. case 360: // M360 SCARA Theta pos1
  4061. if (gcode_M360()) return;
  4062. break;
  4063. case 361: // M361 SCARA Theta pos2
  4064. if (gcode_M361()) return;
  4065. break;
  4066. case 362: // M362 SCARA Psi pos1
  4067. if (gcode_M362()) return;
  4068. break;
  4069. case 363: // M363 SCARA Psi pos2
  4070. if (gcode_M363()) return;
  4071. break;
  4072. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  4073. if (gcode_M364()) return;
  4074. break;
  4075. case 365: // M365 Set SCARA scaling for X Y Z
  4076. gcode_M365();
  4077. break;
  4078. #endif // SCARA
  4079. case 400: // M400 finish all moves
  4080. gcode_M400();
  4081. break;
  4082. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(SERVO_ENDSTOPS) && not defined(Z_PROBE_SLED)
  4083. case 401:
  4084. gcode_M401();
  4085. break;
  4086. case 402:
  4087. gcode_M402();
  4088. break;
  4089. #endif
  4090. #ifdef FILAMENT_SENSOR
  4091. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4092. gcode_M404();
  4093. break;
  4094. case 405: //M405 Turn on filament sensor for control
  4095. gcode_M405();
  4096. break;
  4097. case 406: //M406 Turn off filament sensor for control
  4098. gcode_M406();
  4099. break;
  4100. case 407: //M407 Display measured filament diameter
  4101. gcode_M407();
  4102. break;
  4103. #endif // FILAMENT_SENSOR
  4104. case 500: // M500 Store settings in EEPROM
  4105. gcode_M500();
  4106. break;
  4107. case 501: // M501 Read settings from EEPROM
  4108. gcode_M501();
  4109. break;
  4110. case 502: // M502 Revert to default settings
  4111. gcode_M502();
  4112. break;
  4113. case 503: // M503 print settings currently in memory
  4114. gcode_M503();
  4115. break;
  4116. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4117. case 540:
  4118. gcode_M540();
  4119. break;
  4120. #endif
  4121. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4122. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4123. gcode_SET_Z_PROBE_OFFSET();
  4124. break;
  4125. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4126. #ifdef FILAMENTCHANGEENABLE
  4127. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4128. gcode_M600();
  4129. break;
  4130. #endif // FILAMENTCHANGEENABLE
  4131. #ifdef DUAL_X_CARRIAGE
  4132. case 605:
  4133. gcode_M605();
  4134. break;
  4135. #endif // DUAL_X_CARRIAGE
  4136. case 907: // M907 Set digital trimpot motor current using axis codes.
  4137. gcode_M907();
  4138. break;
  4139. #if HAS_DIGIPOTSS
  4140. case 908: // M908 Control digital trimpot directly.
  4141. gcode_M908();
  4142. break;
  4143. #endif // HAS_DIGIPOTSS
  4144. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4145. gcode_M350();
  4146. break;
  4147. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4148. gcode_M351();
  4149. break;
  4150. case 999: // M999: Restart after being Stopped
  4151. gcode_M999();
  4152. break;
  4153. }
  4154. }
  4155. else if (code_seen('T')) {
  4156. gcode_T();
  4157. }
  4158. else {
  4159. SERIAL_ECHO_START;
  4160. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  4161. SERIAL_ECHO(cmdbuffer[bufindr]);
  4162. SERIAL_ECHOLNPGM("\"");
  4163. }
  4164. ClearToSend();
  4165. }
  4166. void FlushSerialRequestResend()
  4167. {
  4168. //char cmdbuffer[bufindr][100]="Resend:";
  4169. MYSERIAL.flush();
  4170. SERIAL_PROTOCOLPGM(MSG_RESEND);
  4171. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  4172. ClearToSend();
  4173. }
  4174. void ClearToSend()
  4175. {
  4176. previous_millis_cmd = millis();
  4177. #ifdef SDSUPPORT
  4178. if(fromsd[bufindr])
  4179. return;
  4180. #endif //SDSUPPORT
  4181. SERIAL_PROTOCOLLNPGM(MSG_OK);
  4182. }
  4183. void get_coordinates()
  4184. {
  4185. bool seen[4]={false,false,false,false};
  4186. for(int8_t i=0; i < NUM_AXIS; i++) {
  4187. if(code_seen(axis_codes[i]))
  4188. {
  4189. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  4190. seen[i]=true;
  4191. }
  4192. else destination[i] = current_position[i]; //Are these else lines really needed?
  4193. }
  4194. if(code_seen('F')) {
  4195. next_feedrate = code_value();
  4196. if(next_feedrate > 0.0) feedrate = next_feedrate;
  4197. }
  4198. }
  4199. void get_arc_coordinates()
  4200. {
  4201. #ifdef SF_ARC_FIX
  4202. bool relative_mode_backup = relative_mode;
  4203. relative_mode = true;
  4204. #endif
  4205. get_coordinates();
  4206. #ifdef SF_ARC_FIX
  4207. relative_mode=relative_mode_backup;
  4208. #endif
  4209. if(code_seen('I')) {
  4210. offset[0] = code_value();
  4211. }
  4212. else {
  4213. offset[0] = 0.0;
  4214. }
  4215. if(code_seen('J')) {
  4216. offset[1] = code_value();
  4217. }
  4218. else {
  4219. offset[1] = 0.0;
  4220. }
  4221. }
  4222. void clamp_to_software_endstops(float target[3])
  4223. {
  4224. if (min_software_endstops) {
  4225. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  4226. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  4227. float negative_z_offset = 0;
  4228. #ifdef ENABLE_AUTO_BED_LEVELING
  4229. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  4230. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  4231. #endif
  4232. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  4233. }
  4234. if (max_software_endstops) {
  4235. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  4236. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  4237. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  4238. }
  4239. }
  4240. #ifdef DELTA
  4241. void recalc_delta_settings(float radius, float diagonal_rod)
  4242. {
  4243. delta_tower1_x= -SIN_60*radius; // front left tower
  4244. delta_tower1_y= -COS_60*radius;
  4245. delta_tower2_x= SIN_60*radius; // front right tower
  4246. delta_tower2_y= -COS_60*radius;
  4247. delta_tower3_x= 0.0; // back middle tower
  4248. delta_tower3_y= radius;
  4249. delta_diagonal_rod_2= sq(diagonal_rod);
  4250. }
  4251. void calculate_delta(float cartesian[3])
  4252. {
  4253. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  4254. - sq(delta_tower1_x-cartesian[X_AXIS])
  4255. - sq(delta_tower1_y-cartesian[Y_AXIS])
  4256. ) + cartesian[Z_AXIS];
  4257. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  4258. - sq(delta_tower2_x-cartesian[X_AXIS])
  4259. - sq(delta_tower2_y-cartesian[Y_AXIS])
  4260. ) + cartesian[Z_AXIS];
  4261. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  4262. - sq(delta_tower3_x-cartesian[X_AXIS])
  4263. - sq(delta_tower3_y-cartesian[Y_AXIS])
  4264. ) + cartesian[Z_AXIS];
  4265. /*
  4266. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4267. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4268. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4269. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4270. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4271. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4272. */
  4273. }
  4274. #endif
  4275. void prepare_move()
  4276. {
  4277. clamp_to_software_endstops(destination);
  4278. previous_millis_cmd = millis();
  4279. #ifdef SCARA //for now same as delta-code
  4280. float difference[NUM_AXIS];
  4281. for (int8_t i=0; i < NUM_AXIS; i++) {
  4282. difference[i] = destination[i] - current_position[i];
  4283. }
  4284. float cartesian_mm = sqrt( sq(difference[X_AXIS]) +
  4285. sq(difference[Y_AXIS]) +
  4286. sq(difference[Z_AXIS]));
  4287. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  4288. if (cartesian_mm < 0.000001) { return; }
  4289. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  4290. int steps = max(1, int(scara_segments_per_second * seconds));
  4291. //SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  4292. //SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  4293. //SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  4294. for (int s = 1; s <= steps; s++) {
  4295. float fraction = float(s) / float(steps);
  4296. for(int8_t i=0; i < NUM_AXIS; i++) {
  4297. destination[i] = current_position[i] + difference[i] * fraction;
  4298. }
  4299. calculate_delta(destination);
  4300. //SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]);
  4301. //SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]);
  4302. //SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]);
  4303. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  4304. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  4305. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4306. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  4307. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  4308. active_extruder);
  4309. }
  4310. #endif // SCARA
  4311. #ifdef DELTA
  4312. float difference[NUM_AXIS];
  4313. for (int8_t i=0; i < NUM_AXIS; i++) {
  4314. difference[i] = destination[i] - current_position[i];
  4315. }
  4316. float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
  4317. sq(difference[Y_AXIS]) +
  4318. sq(difference[Z_AXIS]));
  4319. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  4320. if (cartesian_mm < 0.000001) { return; }
  4321. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  4322. int steps = max(1, int(delta_segments_per_second * seconds));
  4323. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  4324. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  4325. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  4326. for (int s = 1; s <= steps; s++) {
  4327. float fraction = float(s) / float(steps);
  4328. for(int8_t i=0; i < NUM_AXIS; i++) {
  4329. destination[i] = current_position[i] + difference[i] * fraction;
  4330. }
  4331. calculate_delta(destination);
  4332. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  4333. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  4334. active_extruder);
  4335. }
  4336. #endif // DELTA
  4337. #ifdef DUAL_X_CARRIAGE
  4338. if (active_extruder_parked)
  4339. {
  4340. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
  4341. {
  4342. // move duplicate extruder into correct duplication position.
  4343. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4344. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
  4345. current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  4346. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4347. st_synchronize();
  4348. extruder_duplication_enabled = true;
  4349. active_extruder_parked = false;
  4350. }
  4351. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
  4352. {
  4353. if (current_position[E_AXIS] == destination[E_AXIS])
  4354. {
  4355. // this is a travel move - skit it but keep track of current position (so that it can later
  4356. // be used as start of first non-travel move)
  4357. if (delayed_move_time != 0xFFFFFFFFUL)
  4358. {
  4359. memcpy(current_position, destination, sizeof(current_position));
  4360. if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
  4361. raised_parked_position[Z_AXIS] = destination[Z_AXIS];
  4362. delayed_move_time = millis();
  4363. return;
  4364. }
  4365. }
  4366. delayed_move_time = 0;
  4367. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  4368. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4369. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
  4370. current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
  4371. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  4372. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4373. active_extruder_parked = false;
  4374. }
  4375. }
  4376. #endif //DUAL_X_CARRIAGE
  4377. #if ! (defined DELTA || defined SCARA)
  4378. // Do not use feedmultiply for E or Z only moves
  4379. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  4380. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  4381. }
  4382. else {
  4383. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  4384. }
  4385. #endif // !(DELTA || SCARA)
  4386. for(int8_t i=0; i < NUM_AXIS; i++) {
  4387. current_position[i] = destination[i];
  4388. }
  4389. }
  4390. void prepare_arc_move(char isclockwise) {
  4391. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  4392. // Trace the arc
  4393. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  4394. // As far as the parser is concerned, the position is now == target. In reality the
  4395. // motion control system might still be processing the action and the real tool position
  4396. // in any intermediate location.
  4397. for(int8_t i=0; i < NUM_AXIS; i++) {
  4398. current_position[i] = destination[i];
  4399. }
  4400. previous_millis_cmd = millis();
  4401. }
  4402. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4403. #if defined(FAN_PIN)
  4404. #if CONTROLLERFAN_PIN == FAN_PIN
  4405. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  4406. #endif
  4407. #endif
  4408. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  4409. unsigned long lastMotorCheck = 0;
  4410. void controllerFan()
  4411. {
  4412. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  4413. {
  4414. lastMotorCheck = millis();
  4415. if((X_ENABLE_READ) == (X_ENABLE_ON)) || (Y_ENABLE_READ) == (Y_ENABLE_ON)) || (Z_ENABLE_READ) == (Z_ENABLE_ON)) || (soft_pwm_bed > 0)
  4416. #if EXTRUDERS > 2
  4417. || (E2_ENABLE_READ) == (E_ENABLE_ON))
  4418. #endif
  4419. #if EXTRUDER > 1
  4420. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  4421. || (X2_ENABLE_READ) == (X_ENABLE_ON))
  4422. #endif
  4423. || (E1_ENABLE_READ) == (E_ENABLE_ON))
  4424. #endif
  4425. || (E0_ENABLE_READ) == (E_ENABLE_ON))) //If any of the drivers are enabled...
  4426. {
  4427. lastMotor = millis(); //... set time to NOW so the fan will turn on
  4428. }
  4429. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  4430. {
  4431. digitalWrite(CONTROLLERFAN_PIN, 0);
  4432. analogWrite(CONTROLLERFAN_PIN, 0);
  4433. }
  4434. else
  4435. {
  4436. // allows digital or PWM fan output to be used (see M42 handling)
  4437. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  4438. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  4439. }
  4440. }
  4441. }
  4442. #endif
  4443. #ifdef SCARA
  4444. void calculate_SCARA_forward_Transform(float f_scara[3])
  4445. {
  4446. // Perform forward kinematics, and place results in delta[3]
  4447. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  4448. float x_sin, x_cos, y_sin, y_cos;
  4449. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  4450. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  4451. x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  4452. x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  4453. y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  4454. y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  4455. // SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  4456. // SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  4457. // SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  4458. // SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  4459. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  4460. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  4461. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  4462. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  4463. }
  4464. void calculate_delta(float cartesian[3]){
  4465. //reverse kinematics.
  4466. // Perform reversed kinematics, and place results in delta[3]
  4467. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  4468. float SCARA_pos[2];
  4469. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  4470. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  4471. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  4472. #if (Linkage_1 == Linkage_2)
  4473. SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
  4474. #else
  4475. SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000;
  4476. #endif
  4477. SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
  4478. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  4479. SCARA_K2 = Linkage_2 * SCARA_S2;
  4480. SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
  4481. SCARA_psi = atan2(SCARA_S2,SCARA_C2);
  4482. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  4483. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  4484. delta[Z_AXIS] = cartesian[Z_AXIS];
  4485. /*
  4486. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4487. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4488. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4489. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  4490. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  4491. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4492. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4493. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4494. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  4495. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  4496. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  4497. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  4498. SERIAL_ECHOLN(" ");*/
  4499. }
  4500. #endif
  4501. #ifdef TEMP_STAT_LEDS
  4502. static bool blue_led = false;
  4503. static bool red_led = false;
  4504. static uint32_t stat_update = 0;
  4505. void handle_status_leds(void) {
  4506. float max_temp = 0.0;
  4507. if(millis() > stat_update) {
  4508. stat_update += 500; // Update every 0.5s
  4509. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4510. max_temp = max(max_temp, degHotend(cur_extruder));
  4511. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  4512. }
  4513. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4514. max_temp = max(max_temp, degTargetBed());
  4515. max_temp = max(max_temp, degBed());
  4516. #endif
  4517. if((max_temp > 55.0) && (red_led == false)) {
  4518. digitalWrite(STAT_LED_RED, 1);
  4519. digitalWrite(STAT_LED_BLUE, 0);
  4520. red_led = true;
  4521. blue_led = false;
  4522. }
  4523. if((max_temp < 54.0) && (blue_led == false)) {
  4524. digitalWrite(STAT_LED_RED, 0);
  4525. digitalWrite(STAT_LED_BLUE, 1);
  4526. red_led = false;
  4527. blue_led = true;
  4528. }
  4529. }
  4530. }
  4531. #endif
  4532. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  4533. {
  4534. #if defined(KILL_PIN) && KILL_PIN > -1
  4535. static int killCount = 0; // make the inactivity button a bit less responsive
  4536. const int KILL_DELAY = 10000;
  4537. #endif
  4538. #if defined(HOME_PIN) && HOME_PIN > -1
  4539. static int homeDebounceCount = 0; // poor man's debouncing count
  4540. const int HOME_DEBOUNCE_DELAY = 10000;
  4541. #endif
  4542. if(buflen < (BUFSIZE-1))
  4543. get_command();
  4544. if( (millis() - previous_millis_cmd) > max_inactive_time )
  4545. if(max_inactive_time)
  4546. kill();
  4547. if(stepper_inactive_time) {
  4548. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  4549. {
  4550. if(blocks_queued() == false && ignore_stepper_queue == false) {
  4551. disable_x();
  4552. disable_y();
  4553. disable_z();
  4554. disable_e0();
  4555. disable_e1();
  4556. disable_e2();
  4557. disable_e3();
  4558. }
  4559. }
  4560. }
  4561. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  4562. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  4563. {
  4564. chdkActive = false;
  4565. WRITE(CHDK, LOW);
  4566. }
  4567. #endif
  4568. #if defined(KILL_PIN) && KILL_PIN > -1
  4569. // Check if the kill button was pressed and wait just in case it was an accidental
  4570. // key kill key press
  4571. // -------------------------------------------------------------------------------
  4572. if( 0 == READ(KILL_PIN) )
  4573. {
  4574. killCount++;
  4575. }
  4576. else if (killCount > 0)
  4577. {
  4578. killCount--;
  4579. }
  4580. // Exceeded threshold and we can confirm that it was not accidental
  4581. // KILL the machine
  4582. // ----------------------------------------------------------------
  4583. if ( killCount >= KILL_DELAY)
  4584. {
  4585. kill();
  4586. }
  4587. #endif
  4588. #if defined(HOME_PIN) && HOME_PIN > -1
  4589. // Check to see if we have to home, use poor man's debouncer
  4590. // ---------------------------------------------------------
  4591. if ( 0 == READ(HOME_PIN) )
  4592. {
  4593. if (homeDebounceCount == 0)
  4594. {
  4595. enquecommands_P((PSTR("G28")));
  4596. homeDebounceCount++;
  4597. LCD_ALERTMESSAGEPGM(MSG_AUTO_HOME);
  4598. }
  4599. else if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  4600. {
  4601. homeDebounceCount++;
  4602. }
  4603. else
  4604. {
  4605. homeDebounceCount = 0;
  4606. }
  4607. }
  4608. #endif
  4609. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4610. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  4611. #endif
  4612. #ifdef EXTRUDER_RUNOUT_PREVENT
  4613. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  4614. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  4615. {
  4616. bool oldstatus=E0_ENABLE_READ;
  4617. enable_e0();
  4618. float oldepos=current_position[E_AXIS];
  4619. float oldedes=destination[E_AXIS];
  4620. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  4621. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  4622. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  4623. current_position[E_AXIS]=oldepos;
  4624. destination[E_AXIS]=oldedes;
  4625. plan_set_e_position(oldepos);
  4626. previous_millis_cmd=millis();
  4627. st_synchronize();
  4628. E0_ENABLE_WRITE(oldstatus);
  4629. }
  4630. #endif
  4631. #if defined(DUAL_X_CARRIAGE)
  4632. // handle delayed move timeout
  4633. if (delayed_move_time != 0 && (millis() - delayed_move_time) > 1000 && Stopped == false)
  4634. {
  4635. // travel moves have been received so enact them
  4636. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  4637. memcpy(destination,current_position,sizeof(destination));
  4638. prepare_move();
  4639. }
  4640. #endif
  4641. #ifdef TEMP_STAT_LEDS
  4642. handle_status_leds();
  4643. #endif
  4644. check_axes_activity();
  4645. }
  4646. void kill()
  4647. {
  4648. cli(); // Stop interrupts
  4649. disable_heater();
  4650. disable_x();
  4651. disable_y();
  4652. disable_z();
  4653. disable_e0();
  4654. disable_e1();
  4655. disable_e2();
  4656. disable_e3();
  4657. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4658. pinMode(PS_ON_PIN,INPUT);
  4659. #endif
  4660. SERIAL_ERROR_START;
  4661. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  4662. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  4663. // FMC small patch to update the LCD before ending
  4664. sei(); // enable interrupts
  4665. for ( int i=5; i--; lcd_update())
  4666. {
  4667. delay(200);
  4668. }
  4669. cli(); // disable interrupts
  4670. suicide();
  4671. while(1) { /* Intentionally left empty */ } // Wait for reset
  4672. }
  4673. void Stop()
  4674. {
  4675. disable_heater();
  4676. if(Stopped == false) {
  4677. Stopped = true;
  4678. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  4679. SERIAL_ERROR_START;
  4680. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  4681. LCD_MESSAGEPGM(MSG_STOPPED);
  4682. }
  4683. }
  4684. bool IsStopped() { return Stopped; };
  4685. #ifdef FAST_PWM_FAN
  4686. void setPwmFrequency(uint8_t pin, int val)
  4687. {
  4688. val &= 0x07;
  4689. switch(digitalPinToTimer(pin))
  4690. {
  4691. #if defined(TCCR0A)
  4692. case TIMER0A:
  4693. case TIMER0B:
  4694. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  4695. // TCCR0B |= val;
  4696. break;
  4697. #endif
  4698. #if defined(TCCR1A)
  4699. case TIMER1A:
  4700. case TIMER1B:
  4701. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4702. // TCCR1B |= val;
  4703. break;
  4704. #endif
  4705. #if defined(TCCR2)
  4706. case TIMER2:
  4707. case TIMER2:
  4708. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4709. TCCR2 |= val;
  4710. break;
  4711. #endif
  4712. #if defined(TCCR2A)
  4713. case TIMER2A:
  4714. case TIMER2B:
  4715. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  4716. TCCR2B |= val;
  4717. break;
  4718. #endif
  4719. #if defined(TCCR3A)
  4720. case TIMER3A:
  4721. case TIMER3B:
  4722. case TIMER3C:
  4723. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  4724. TCCR3B |= val;
  4725. break;
  4726. #endif
  4727. #if defined(TCCR4A)
  4728. case TIMER4A:
  4729. case TIMER4B:
  4730. case TIMER4C:
  4731. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  4732. TCCR4B |= val;
  4733. break;
  4734. #endif
  4735. #if defined(TCCR5A)
  4736. case TIMER5A:
  4737. case TIMER5B:
  4738. case TIMER5C:
  4739. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  4740. TCCR5B |= val;
  4741. break;
  4742. #endif
  4743. }
  4744. }
  4745. #endif //FAST_PWM_FAN
  4746. bool setTargetedHotend(int code){
  4747. tmp_extruder = active_extruder;
  4748. if(code_seen('T')) {
  4749. tmp_extruder = code_value();
  4750. if(tmp_extruder >= EXTRUDERS) {
  4751. SERIAL_ECHO_START;
  4752. switch(code){
  4753. case 104:
  4754. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  4755. break;
  4756. case 105:
  4757. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  4758. break;
  4759. case 109:
  4760. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  4761. break;
  4762. case 218:
  4763. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  4764. break;
  4765. case 221:
  4766. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  4767. break;
  4768. }
  4769. SERIAL_ECHOLN(tmp_extruder);
  4770. return true;
  4771. }
  4772. }
  4773. return false;
  4774. }
  4775. float calculate_volumetric_multiplier(float diameter) {
  4776. if (!volumetric_enabled || diameter == 0) return 1.0;
  4777. float d2 = diameter * 0.5;
  4778. return 1.0 / (M_PI * d2 * d2);
  4779. }
  4780. void calculate_volumetric_multipliers() {
  4781. for (int i=0; i<EXTRUDERS; i++)
  4782. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  4783. }