123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929 |
- #include "qr_solve.h"
-
- #ifdef AUTO_BED_LEVELING_GRID
-
- #include <stdlib.h>
- #include <math.h>
-
- //# include "r8lib.h"
-
- int i4_min ( int i1, int i2 )
-
- /******************************************************************************/
- /*
- Purpose:
-
- I4_MIN returns the smaller of two I4's.
-
- Licensing:
-
- This code is distributed under the GNU LGPL license.
-
- Modified:
-
- 29 August 2006
-
- Author:
-
- John Burkardt
-
- Parameters:
-
- Input, int I1, I2, two integers to be compared.
-
- Output, int I4_MIN, the smaller of I1 and I2.
- */
- {
- int value;
-
- if ( i1 < i2 )
- {
- value = i1;
- }
- else
- {
- value = i2;
- }
- return value;
- }
-
- double r8_epsilon ( void )
-
- /******************************************************************************/
- /*
- Purpose:
-
- R8_EPSILON returns the R8 round off unit.
-
- Discussion:
-
- R8_EPSILON is a number R which is a power of 2 with the property that,
- to the precision of the computer's arithmetic,
- 1 < 1 + R
- but
- 1 = ( 1 + R / 2 )
-
- Licensing:
-
- This code is distributed under the GNU LGPL license.
-
- Modified:
-
- 01 September 2012
-
- Author:
-
- John Burkardt
-
- Parameters:
-
- Output, double R8_EPSILON, the R8 round-off unit.
- */
- {
- const double value = 2.220446049250313E-016;
-
- return value;
- }
-
- double r8_max ( double x, double y )
-
- /******************************************************************************/
- /*
- Purpose:
-
- R8_MAX returns the maximum of two R8's.
-
- Licensing:
-
- This code is distributed under the GNU LGPL license.
-
- Modified:
-
- 07 May 2006
-
- Author:
-
- John Burkardt
-
- Parameters:
-
- Input, double X, Y, the quantities to compare.
-
- Output, double R8_MAX, the maximum of X and Y.
- */
- {
- double value;
-
- if ( y < x )
- {
- value = x;
- }
- else
- {
- value = y;
- }
- return value;
- }
-
- double r8_abs ( double x )
-
- /******************************************************************************/
- /*
- Purpose:
-
- R8_ABS returns the absolute value of an R8.
-
- Licensing:
-
- This code is distributed under the GNU LGPL license.
-
- Modified:
-
- 07 May 2006
-
- Author:
-
- John Burkardt
-
- Parameters:
-
- Input, double X, the quantity whose absolute value is desired.
-
- Output, double R8_ABS, the absolute value of X.
- */
- {
- double value;
-
- if ( 0.0 <= x )
- {
- value = + x;
- }
- else
- {
- value = - x;
- }
- return value;
- }
-
- double r8_sign ( double x )
-
- /******************************************************************************/
- /*
- Purpose:
-
- R8_SIGN returns the sign of an R8.
-
- Licensing:
-
- This code is distributed under the GNU LGPL license.
-
- Modified:
-
- 08 May 2006
-
- Author:
-
- John Burkardt
-
- Parameters:
-
- Input, double X, the number whose sign is desired.
-
- Output, double R8_SIGN, the sign of X.
- */
- {
- double value;
-
- if ( x < 0.0 )
- {
- value = - 1.0;
- }
- else
- {
- value = + 1.0;
- }
- return value;
- }
-
- double r8mat_amax ( int m, int n, double a[] )
-
- /******************************************************************************/
- /*
- Purpose:
-
- R8MAT_AMAX returns the maximum absolute value entry of an R8MAT.
-
- Discussion:
-
- An R8MAT is a doubly dimensioned array of R8 values, stored as a vector
- in column-major order.
-
- Licensing:
-
- This code is distributed under the GNU LGPL license.
-
- Modified:
-
- 07 September 2012
-
- Author:
-
- John Burkardt
-
- Parameters:
-
- Input, int M, the number of rows in A.
-
- Input, int N, the number of columns in A.
-
- Input, double A[M*N], the M by N matrix.
-
- Output, double R8MAT_AMAX, the maximum absolute value entry of A.
- */
- {
- int i;
- int j;
- double value;
-
- value = r8_abs ( a[0+0*m] );
-
- for ( j = 0; j < n; j++ )
- {
- for ( i = 0; i < m; i++ )
- {
- if ( value < r8_abs ( a[i+j*m] ) )
- {
- value = r8_abs ( a[i+j*m] );
- }
- }
- }
- return value;
- }
-
- double *r8mat_copy_new ( int m, int n, double a1[] )
-
- /******************************************************************************/
- /*
- Purpose:
-
- R8MAT_COPY_NEW copies one R8MAT to a "new" R8MAT.
-
- Discussion:
-
- An R8MAT is a doubly dimensioned array of R8 values, stored as a vector
- in column-major order.
-
- Licensing:
-
- This code is distributed under the GNU LGPL license.
-
- Modified:
-
- 26 July 2008
-
- Author:
-
- John Burkardt
-
- Parameters:
-
- Input, int M, N, the number of rows and columns.
-
- Input, double A1[M*N], the matrix to be copied.
-
- Output, double R8MAT_COPY_NEW[M*N], the copy of A1.
- */
- {
- double *a2;
- int i;
- int j;
-
- a2 = ( double * ) malloc ( m * n * sizeof ( double ) );
-
- for ( j = 0; j < n; j++ )
- {
- for ( i = 0; i < m; i++ )
- {
- a2[i+j*m] = a1[i+j*m];
- }
- }
-
- return a2;
- }
-
- /******************************************************************************/
-
- void daxpy ( int n, double da, double dx[], int incx, double dy[], int incy )
-
- /******************************************************************************/
- /*
- Purpose:
-
- DAXPY computes constant times a vector plus a vector.
-
- Discussion:
-
- This routine uses unrolled loops for increments equal to one.
-
- Licensing:
-
- This code is distributed under the GNU LGPL license.
-
- Modified:
-
- 30 March 2007
-
- Author:
-
- C version by John Burkardt
-
- Reference:
-
- Jack Dongarra, Cleve Moler, Jim Bunch, Pete Stewart,
- LINPACK User's Guide,
- SIAM, 1979.
-
- Charles Lawson, Richard Hanson, David Kincaid, Fred Krogh,
- Basic Linear Algebra Subprograms for Fortran Usage,
- Algorithm 539,
- ACM Transactions on Mathematical Software,
- Volume 5, Number 3, September 1979, pages 308-323.
-
- Parameters:
-
- Input, int N, the number of elements in DX and DY.
-
- Input, double DA, the multiplier of DX.
-
- Input, double DX[*], the first vector.
-
- Input, int INCX, the increment between successive entries of DX.
-
- Input/output, double DY[*], the second vector.
- On output, DY[*] has been replaced by DY[*] + DA * DX[*].
-
- Input, int INCY, the increment between successive entries of DY.
- */
- {
- int i;
- int ix;
- int iy;
- int m;
-
- if ( n <= 0 )
- {
- return;
- }
-
- if ( da == 0.0 )
- {
- return;
- }
- /*
- Code for unequal increments or equal increments
- not equal to 1.
- */
- if ( incx != 1 || incy != 1 )
- {
- if ( 0 <= incx )
- {
- ix = 0;
- }
- else
- {
- ix = ( - n + 1 ) * incx;
- }
-
- if ( 0 <= incy )
- {
- iy = 0;
- }
- else
- {
- iy = ( - n + 1 ) * incy;
- }
-
- for ( i = 0; i < n; i++ )
- {
- dy[iy] = dy[iy] + da * dx[ix];
- ix = ix + incx;
- iy = iy + incy;
- }
- }
- /*
- Code for both increments equal to 1.
- */
- else
- {
- m = n % 4;
-
- for ( i = 0; i < m; i++ )
- {
- dy[i] = dy[i] + da * dx[i];
- }
-
- for ( i = m; i < n; i = i + 4 )
- {
- dy[i ] = dy[i ] + da * dx[i ];
- dy[i+1] = dy[i+1] + da * dx[i+1];
- dy[i+2] = dy[i+2] + da * dx[i+2];
- dy[i+3] = dy[i+3] + da * dx[i+3];
- }
- }
- return;
- }
- /******************************************************************************/
-
- double ddot ( int n, double dx[], int incx, double dy[], int incy )
-
- /******************************************************************************/
- /*
- Purpose:
-
- DDOT forms the dot product of two vectors.
-
- Discussion:
-
- This routine uses unrolled loops for increments equal to one.
-
- Licensing:
-
- This code is distributed under the GNU LGPL license.
-
- Modified:
-
- 30 March 2007
-
- Author:
-
- C version by John Burkardt
-
- Reference:
-
- Jack Dongarra, Cleve Moler, Jim Bunch, Pete Stewart,
- LINPACK User's Guide,
- SIAM, 1979.
-
- Charles Lawson, Richard Hanson, David Kincaid, Fred Krogh,
- Basic Linear Algebra Subprograms for Fortran Usage,
- Algorithm 539,
- ACM Transactions on Mathematical Software,
- Volume 5, Number 3, September 1979, pages 308-323.
-
- Parameters:
-
- Input, int N, the number of entries in the vectors.
-
- Input, double DX[*], the first vector.
-
- Input, int INCX, the increment between successive entries in DX.
-
- Input, double DY[*], the second vector.
-
- Input, int INCY, the increment between successive entries in DY.
-
- Output, double DDOT, the sum of the product of the corresponding
- entries of DX and DY.
- */
- {
- double dtemp;
- int i;
- int ix;
- int iy;
- int m;
-
- dtemp = 0.0;
-
- if ( n <= 0 )
- {
- return dtemp;
- }
- /*
- Code for unequal increments or equal increments
- not equal to 1.
- */
- if ( incx != 1 || incy != 1 )
- {
- if ( 0 <= incx )
- {
- ix = 0;
- }
- else
- {
- ix = ( - n + 1 ) * incx;
- }
-
- if ( 0 <= incy )
- {
- iy = 0;
- }
- else
- {
- iy = ( - n + 1 ) * incy;
- }
-
- for ( i = 0; i < n; i++ )
- {
- dtemp = dtemp + dx[ix] * dy[iy];
- ix = ix + incx;
- iy = iy + incy;
- }
- }
- /*
- Code for both increments equal to 1.
- */
- else
- {
- m = n % 5;
-
- for ( i = 0; i < m; i++ )
- {
- dtemp = dtemp + dx[i] * dy[i];
- }
-
- for ( i = m; i < n; i = i + 5 )
- {
- dtemp = dtemp + dx[i ] * dy[i ]
- + dx[i+1] * dy[i+1]
- + dx[i+2] * dy[i+2]
- + dx[i+3] * dy[i+3]
- + dx[i+4] * dy[i+4];
- }
- }
- return dtemp;
- }
- /******************************************************************************/
-
- double dnrm2 ( int n, double x[], int incx )
-
- /******************************************************************************/
- /*
- Purpose:
-
- DNRM2 returns the euclidean norm of a vector.
-
- Discussion:
-
- DNRM2 ( X ) = sqrt ( X' * X )
-
- Licensing:
-
- This code is distributed under the GNU LGPL license.
-
- Modified:
-
- 30 March 2007
-
- Author:
-
- C version by John Burkardt
-
- Reference:
-
- Jack Dongarra, Cleve Moler, Jim Bunch, Pete Stewart,
- LINPACK User's Guide,
- SIAM, 1979.
-
- Charles Lawson, Richard Hanson, David Kincaid, Fred Krogh,
- Basic Linear Algebra Subprograms for Fortran Usage,
- Algorithm 539,
- ACM Transactions on Mathematical Software,
- Volume 5, Number 3, September 1979, pages 308-323.
-
- Parameters:
-
- Input, int N, the number of entries in the vector.
-
- Input, double X[*], the vector whose norm is to be computed.
-
- Input, int INCX, the increment between successive entries of X.
-
- Output, double DNRM2, the Euclidean norm of X.
- */
- {
- double absxi;
- int i;
- int ix;
- double norm;
- double scale;
- double ssq;
-
- if ( n < 1 || incx < 1 )
- {
- norm = 0.0;
- }
- else if ( n == 1 )
- {
- norm = r8_abs ( x[0] );
- }
- else
- {
- scale = 0.0;
- ssq = 1.0;
- ix = 0;
-
- for ( i = 0; i < n; i++ )
- {
- if ( x[ix] != 0.0 )
- {
- absxi = r8_abs ( x[ix] );
- if ( scale < absxi )
- {
- ssq = 1.0 + ssq * ( scale / absxi ) * ( scale / absxi );
- scale = absxi;
- }
- else
- {
- ssq = ssq + ( absxi / scale ) * ( absxi / scale );
- }
- }
- ix = ix + incx;
- }
-
- norm = scale * sqrt ( ssq );
- }
-
- return norm;
- }
- /******************************************************************************/
-
- void dqrank ( double a[], int lda, int m, int n, double tol, int *kr,
- int jpvt[], double qraux[] )
-
- /******************************************************************************/
- /*
- Purpose:
-
- DQRANK computes the QR factorization of a rectangular matrix.
-
- Discussion:
-
- This routine is used in conjunction with DQRLSS to solve
- overdetermined, underdetermined and singular linear systems
- in a least squares sense.
-
- DQRANK uses the LINPACK subroutine DQRDC to compute the QR
- factorization, with column pivoting, of an M by N matrix A.
- The numerical rank is determined using the tolerance TOL.
-
- Note that on output, ABS ( A(1,1) ) / ABS ( A(KR,KR) ) is an estimate
- of the condition number of the matrix of independent columns,
- and of R. This estimate will be <= 1/TOL.
-
- Licensing:
-
- This code is distributed under the GNU LGPL license.
-
- Modified:
-
- 21 April 2012
-
- Author:
-
- C version by John Burkardt.
-
- Reference:
-
- Jack Dongarra, Cleve Moler, Jim Bunch, Pete Stewart,
- LINPACK User's Guide,
- SIAM, 1979,
- ISBN13: 978-0-898711-72-1,
- LC: QA214.L56.
-
- Parameters:
-
- Input/output, double A[LDA*N]. On input, the matrix whose
- decomposition is to be computed. On output, the information from DQRDC.
- The triangular matrix R of the QR factorization is contained in the
- upper triangle and information needed to recover the orthogonal
- matrix Q is stored below the diagonal in A and in the vector QRAUX.
-
- Input, int LDA, the leading dimension of A, which must
- be at least M.
-
- Input, int M, the number of rows of A.
-
- Input, int N, the number of columns of A.
-
- Input, double TOL, a relative tolerance used to determine the
- numerical rank. The problem should be scaled so that all the elements
- of A have roughly the same absolute accuracy, EPS. Then a reasonable
- value for TOL is roughly EPS divided by the magnitude of the largest
- element.
-
- Output, int *KR, the numerical rank.
-
- Output, int JPVT[N], the pivot information from DQRDC.
- Columns JPVT(1), ..., JPVT(KR) of the original matrix are linearly
- independent to within the tolerance TOL and the remaining columns
- are linearly dependent.
-
- Output, double QRAUX[N], will contain extra information defining
- the QR factorization.
- */
- {
- int i;
- int j;
- int job;
- int k;
- double *work;
-
- for ( i = 0; i < n; i++ )
- {
- jpvt[i] = 0;
- }
-
- work = ( double * ) malloc ( n * sizeof ( double ) );
- job = 1;
-
- dqrdc ( a, lda, m, n, qraux, jpvt, work, job );
-
- *kr = 0;
- k = i4_min ( m, n );
-
- for ( j = 0; j < k; j++ )
- {
- if ( r8_abs ( a[j+j*lda] ) <= tol * r8_abs ( a[0+0*lda] ) )
- {
- return;
- }
- *kr = j + 1;
- }
-
- free ( work );
-
- return;
- }
- /******************************************************************************/
-
- void dqrdc ( double a[], int lda, int n, int p, double qraux[], int jpvt[],
- double work[], int job )
-
- /******************************************************************************/
- /*
- Purpose:
-
- DQRDC computes the QR factorization of a real rectangular matrix.
-
- Discussion:
-
- DQRDC uses Householder transformations.
-
- Column pivoting based on the 2-norms of the reduced columns may be
- performed at the user's option.
-
- Licensing:
-
- This code is distributed under the GNU LGPL license.
-
- Modified:
-
- 07 June 2005
-
- Author:
-
- C version by John Burkardt.
-
- Reference:
-
- Jack Dongarra, Cleve Moler, Jim Bunch and Pete Stewart,
- LINPACK User's Guide,
- SIAM, (Society for Industrial and Applied Mathematics),
- 3600 University City Science Center,
- Philadelphia, PA, 19104-2688.
- ISBN 0-89871-172-X
-
- Parameters:
-
- Input/output, double A(LDA,P). On input, the N by P matrix
- whose decomposition is to be computed. On output, A contains in
- its upper triangle the upper triangular matrix R of the QR
- factorization. Below its diagonal A contains information from
- which the orthogonal part of the decomposition can be recovered.
- Note that if pivoting has been requested, the decomposition is not that
- of the original matrix A but that of A with its columns permuted
- as described by JPVT.
-
- Input, int LDA, the leading dimension of the array A. LDA must
- be at least N.
-
- Input, int N, the number of rows of the matrix A.
-
- Input, int P, the number of columns of the matrix A.
-
- Output, double QRAUX[P], contains further information required
- to recover the orthogonal part of the decomposition.
-
- Input/output, integer JPVT[P]. On input, JPVT contains integers that
- control the selection of the pivot columns. The K-th column A(*,K) of A
- is placed in one of three classes according to the value of JPVT(K).
- > 0, then A(K) is an initial column.
- = 0, then A(K) is a free column.
- < 0, then A(K) is a final column.
- Before the decomposition is computed, initial columns are moved to
- the beginning of the array A and final columns to the end. Both
- initial and final columns are frozen in place during the computation
- and only free columns are moved. At the K-th stage of the
- reduction, if A(*,K) is occupied by a free column it is interchanged
- with the free column of largest reduced norm. JPVT is not referenced
- if JOB == 0. On output, JPVT(K) contains the index of the column of the
- original matrix that has been interchanged into the K-th column, if
- pivoting was requested.
-
- Workspace, double WORK[P]. WORK is not referenced if JOB == 0.
-
- Input, int JOB, initiates column pivoting.
- 0, no pivoting is done.
- nonzero, pivoting is done.
- */
- {
- int j;
- int jp;
- int l;
- int lup;
- int maxj;
- double maxnrm;
- double nrmxl;
- int pl;
- int pu;
- int swapj;
- double t;
- double tt;
-
- pl = 1;
- pu = 0;
- /*
- If pivoting is requested, rearrange the columns.
- */
- if ( job != 0 )
- {
- for ( j = 1; j <= p; j++ )
- {
- swapj = ( 0 < jpvt[j-1] );
-
- if ( jpvt[j-1] < 0 )
- {
- jpvt[j-1] = -j;
- }
- else
- {
- jpvt[j-1] = j;
- }
-
- if ( swapj )
- {
- if ( j != pl )
- {
- dswap ( n, a+0+(pl-1)*lda, 1, a+0+(j-1), 1 );
- }
- jpvt[j-1] = jpvt[pl-1];
- jpvt[pl-1] = j;
- pl = pl + 1;
- }
- }
- pu = p;
-
- for ( j = p; 1 <= j; j-- )
- {
- if ( jpvt[j-1] < 0 )
- {
- jpvt[j-1] = -jpvt[j-1];
-
- if ( j != pu )
- {
- dswap ( n, a+0+(pu-1)*lda, 1, a+0+(j-1)*lda, 1 );
- jp = jpvt[pu-1];
- jpvt[pu-1] = jpvt[j-1];
- jpvt[j-1] = jp;
- }
- pu = pu - 1;
- }
- }
- }
- /*
- Compute the norms of the free columns.
- */
- for ( j = pl; j <= pu; j++ )
- {
- qraux[j-1] = dnrm2 ( n, a+0+(j-1)*lda, 1 );
- }
-
- for ( j = pl; j <= pu; j++ )
- {
- work[j-1] = qraux[j-1];
- }
- /*
- Perform the Householder reduction of A.
- */
- lup = i4_min ( n, p );
-
- for ( l = 1; l <= lup; l++ )
- {
- /*
- Bring the column of largest norm into the pivot position.
- */
- if ( pl <= l && l < pu )
- {
- maxnrm = 0.0;
- maxj = l;
- for ( j = l; j <= pu; j++ )
- {
- if ( maxnrm < qraux[j-1] )
- {
- maxnrm = qraux[j-1];
- maxj = j;
- }
- }
-
- if ( maxj != l )
- {
- dswap ( n, a+0+(l-1)*lda, 1, a+0+(maxj-1)*lda, 1 );
- qraux[maxj-1] = qraux[l-1];
- work[maxj-1] = work[l-1];
- jp = jpvt[maxj-1];
- jpvt[maxj-1] = jpvt[l-1];
- jpvt[l-1] = jp;
- }
- }
- /*
- Compute the Householder transformation for column L.
- */
- qraux[l-1] = 0.0;
-
- if ( l != n )
- {
- nrmxl = dnrm2 ( n-l+1, a+l-1+(l-1)*lda, 1 );
-
- if ( nrmxl != 0.0 )
- {
- if ( a[l-1+(l-1)*lda] != 0.0 )
- {
- nrmxl = nrmxl * r8_sign ( a[l-1+(l-1)*lda] );
- }
-
- dscal ( n-l+1, 1.0 / nrmxl, a+l-1+(l-1)*lda, 1 );
- a[l-1+(l-1)*lda] = 1.0 + a[l-1+(l-1)*lda];
- /*
- Apply the transformation to the remaining columns, updating the norms.
- */
- for ( j = l + 1; j <= p; j++ )
- {
- t = -ddot ( n-l+1, a+l-1+(l-1)*lda, 1, a+l-1+(j-1)*lda, 1 )
- / a[l-1+(l-1)*lda];
- daxpy ( n-l+1, t, a+l-1+(l-1)*lda, 1, a+l-1+(j-1)*lda, 1 );
-
- if ( pl <= j && j <= pu )
- {
- if ( qraux[j-1] != 0.0 )
- {
- tt = 1.0 - pow ( r8_abs ( a[l-1+(j-1)*lda] ) / qraux[j-1], 2 );
- tt = r8_max ( tt, 0.0 );
- t = tt;
- tt = 1.0 + 0.05 * tt * pow ( qraux[j-1] / work[j-1], 2 );
-
- if ( tt != 1.0 )
- {
- qraux[j-1] = qraux[j-1] * sqrt ( t );
- }
- else
- {
- qraux[j-1] = dnrm2 ( n-l, a+l+(j-1)*lda, 1 );
- work[j-1] = qraux[j-1];
- }
- }
- }
- }
- /*
- Save the transformation.
- */
- qraux[l-1] = a[l-1+(l-1)*lda];
- a[l-1+(l-1)*lda] = -nrmxl;
- }
- }
- }
- return;
- }
- /******************************************************************************/
-
- int dqrls ( double a[], int lda, int m, int n, double tol, int *kr, double b[],
- double x[], double rsd[], int jpvt[], double qraux[], int itask )
-
- /******************************************************************************/
- /*
- Purpose:
-
- DQRLS factors and solves a linear system in the least squares sense.
-
- Discussion:
-
- The linear system may be overdetermined, underdetermined or singular.
- The solution is obtained using a QR factorization of the
- coefficient matrix.
-
- DQRLS can be efficiently used to solve several least squares
- problems with the same matrix A. The first system is solved
- with ITASK = 1. The subsequent systems are solved with
- ITASK = 2, to avoid the recomputation of the matrix factors.
- The parameters KR, JPVT, and QRAUX must not be modified
- between calls to DQRLS.
-
- DQRLS is used to solve in a least squares sense
- overdetermined, underdetermined and singular linear systems.
- The system is A*X approximates B where A is M by N.
- B is a given M-vector, and X is the N-vector to be computed.
- A solution X is found which minimimzes the sum of squares (2-norm)
- of the residual, A*X - B.
-
- The numerical rank of A is determined using the tolerance TOL.
-
- DQRLS uses the LINPACK subroutine DQRDC to compute the QR
- factorization, with column pivoting, of an M by N matrix A.
-
- Licensing:
-
- This code is distributed under the GNU LGPL license.
-
- Modified:
-
- 10 September 2012
-
- Author:
-
- C version by John Burkardt.
-
- Reference:
-
- David Kahaner, Cleve Moler, Steven Nash,
- Numerical Methods and Software,
- Prentice Hall, 1989,
- ISBN: 0-13-627258-4,
- LC: TA345.K34.
-
- Parameters:
-
- Input/output, double A[LDA*N], an M by N matrix.
- On input, the matrix whose decomposition is to be computed.
- In a least squares data fitting problem, A(I,J) is the
- value of the J-th basis (model) function at the I-th data point.
- On output, A contains the output from DQRDC. The triangular matrix R
- of the QR factorization is contained in the upper triangle and
- information needed to recover the orthogonal matrix Q is stored
- below the diagonal in A and in the vector QRAUX.
-
- Input, int LDA, the leading dimension of A.
-
- Input, int M, the number of rows of A.
-
- Input, int N, the number of columns of A.
-
- Input, double TOL, a relative tolerance used to determine the
- numerical rank. The problem should be scaled so that all the elements
- of A have roughly the same absolute accuracy EPS. Then a reasonable
- value for TOL is roughly EPS divided by the magnitude of the largest
- element.
-
- Output, int *KR, the numerical rank.
-
- Input, double B[M], the right hand side of the linear system.
-
- Output, double X[N], a least squares solution to the linear
- system.
-
- Output, double RSD[M], the residual, B - A*X. RSD may
- overwrite B.
-
- Workspace, int JPVT[N], required if ITASK = 1.
- Columns JPVT(1), ..., JPVT(KR) of the original matrix are linearly
- independent to within the tolerance TOL and the remaining columns
- are linearly dependent. ABS ( A(1,1) ) / ABS ( A(KR,KR) ) is an estimate
- of the condition number of the matrix of independent columns,
- and of R. This estimate will be <= 1/TOL.
-
- Workspace, double QRAUX[N], required if ITASK = 1.
-
- Input, int ITASK.
- 1, DQRLS factors the matrix A and solves the least squares problem.
- 2, DQRLS assumes that the matrix A was factored with an earlier
- call to DQRLS, and only solves the least squares problem.
-
- Output, int DQRLS, error code.
- 0: no error
- -1: LDA < M (fatal error)
- -2: N < 1 (fatal error)
- -3: ITASK < 1 (fatal error)
- */
- {
- int ind;
-
- if ( lda < m )
- {
- /*fprintf ( stderr, "\n" );
- fprintf ( stderr, "DQRLS - Fatal error!\n" );
- fprintf ( stderr, " LDA < M.\n" );*/
- ind = -1;
- return ind;
- }
-
- if ( n <= 0 )
- {
- /*fprintf ( stderr, "\n" );
- fprintf ( stderr, "DQRLS - Fatal error!\n" );
- fprintf ( stderr, " N <= 0.\n" );*/
- ind = -2;
- return ind;
- }
-
- if ( itask < 1 )
- {
- /*fprintf ( stderr, "\n" );
- fprintf ( stderr, "DQRLS - Fatal error!\n" );
- fprintf ( stderr, " ITASK < 1.\n" );*/
- ind = -3;
- return ind;
- }
-
- ind = 0;
- /*
- Factor the matrix.
- */
- if ( itask == 1 )
- {
- dqrank ( a, lda, m, n, tol, kr, jpvt, qraux );
- }
- /*
- Solve the least-squares problem.
- */
- dqrlss ( a, lda, m, n, *kr, b, x, rsd, jpvt, qraux );
-
- return ind;
- }
- /******************************************************************************/
-
- void dqrlss ( double a[], int lda, int m, int n, int kr, double b[], double x[],
- double rsd[], int jpvt[], double qraux[] )
-
- /******************************************************************************/
- /*
- Purpose:
-
- DQRLSS solves a linear system in a least squares sense.
-
- Discussion:
-
- DQRLSS must be preceded by a call to DQRANK.
-
- The system is to be solved is
- A * X = B
- where
- A is an M by N matrix with rank KR, as determined by DQRANK,
- B is a given M-vector,
- X is the N-vector to be computed.
-
- A solution X, with at most KR nonzero components, is found which
- minimizes the 2-norm of the residual (A*X-B).
-
- Once the matrix A has been formed, DQRANK should be
- called once to decompose it. Then, for each right hand
- side B, DQRLSS should be called once to obtain the
- solution and residual.
-
- Licensing:
-
- This code is distributed under the GNU LGPL license.
-
- Modified:
-
- 10 September 2012
-
- Author:
-
- C version by John Burkardt
-
- Parameters:
-
- Input, double A[LDA*N], the QR factorization information
- from DQRANK. The triangular matrix R of the QR factorization is
- contained in the upper triangle and information needed to recover
- the orthogonal matrix Q is stored below the diagonal in A and in
- the vector QRAUX.
-
- Input, int LDA, the leading dimension of A, which must
- be at least M.
-
- Input, int M, the number of rows of A.
-
- Input, int N, the number of columns of A.
-
- Input, int KR, the rank of the matrix, as estimated by DQRANK.
-
- Input, double B[M], the right hand side of the linear system.
-
- Output, double X[N], a least squares solution to the
- linear system.
-
- Output, double RSD[M], the residual, B - A*X. RSD may
- overwrite B.
-
- Input, int JPVT[N], the pivot information from DQRANK.
- Columns JPVT[0], ..., JPVT[KR-1] of the original matrix are linearly
- independent to within the tolerance TOL and the remaining columns
- are linearly dependent.
-
- Input, double QRAUX[N], auxiliary information from DQRANK
- defining the QR factorization.
- */
- {
- int i;
- int info;
- int j;
- int job;
- int k;
- double t;
-
- if ( kr != 0 )
- {
- job = 110;
- info = dqrsl ( a, lda, m, kr, qraux, b, rsd, rsd, x, rsd, rsd, job );
- }
-
- for ( i = 0; i < n; i++ )
- {
- jpvt[i] = - jpvt[i];
- }
-
- for ( i = kr; i < n; i++ )
- {
- x[i] = 0.0;
- }
-
- for ( j = 1; j <= n; j++ )
- {
- if ( jpvt[j-1] <= 0 )
- {
- k = - jpvt[j-1];
- jpvt[j-1] = k;
-
- while ( k != j )
- {
- t = x[j-1];
- x[j-1] = x[k-1];
- x[k-1] = t;
- jpvt[k-1] = -jpvt[k-1];
- k = jpvt[k-1];
- }
- }
- }
- return;
- }
- /******************************************************************************/
-
- int dqrsl ( double a[], int lda, int n, int k, double qraux[], double y[],
- double qy[], double qty[], double b[], double rsd[], double ab[], int job )
-
- /******************************************************************************/
- /*
- Purpose:
-
- DQRSL computes transformations, projections, and least squares solutions.
-
- Discussion:
-
- DQRSL requires the output of DQRDC.
-
- For K <= min(N,P), let AK be the matrix
-
- AK = ( A(JPVT[0]), A(JPVT(2)), ..., A(JPVT(K)) )
-
- formed from columns JPVT[0], ..., JPVT(K) of the original
- N by P matrix A that was input to DQRDC. If no pivoting was
- done, AK consists of the first K columns of A in their
- original order. DQRDC produces a factored orthogonal matrix Q
- and an upper triangular matrix R such that
-
- AK = Q * (R)
- (0)
-
- This information is contained in coded form in the arrays
- A and QRAUX.
-
- The parameters QY, QTY, B, RSD, and AB are not referenced
- if their computation is not requested and in this case
- can be replaced by dummy variables in the calling program.
- To save storage, the user may in some cases use the same
- array for different parameters in the calling sequence. A
- frequently occurring example is when one wishes to compute
- any of B, RSD, or AB and does not need Y or QTY. In this
- case one may identify Y, QTY, and one of B, RSD, or AB, while
- providing separate arrays for anything else that is to be
- computed.
-
- Thus the calling sequence
-
- dqrsl ( a, lda, n, k, qraux, y, dum, y, b, y, dum, 110, info )
-
- will result in the computation of B and RSD, with RSD
- overwriting Y. More generally, each item in the following
- list contains groups of permissible identifications for
- a single calling sequence.
-
- 1. (Y,QTY,B) (RSD) (AB) (QY)
-
- 2. (Y,QTY,RSD) (B) (AB) (QY)
-
- 3. (Y,QTY,AB) (B) (RSD) (QY)
-
- 4. (Y,QY) (QTY,B) (RSD) (AB)
-
- 5. (Y,QY) (QTY,RSD) (B) (AB)
-
- 6. (Y,QY) (QTY,AB) (B) (RSD)
-
- In any group the value returned in the array allocated to
- the group corresponds to the last member of the group.
-
- Licensing:
-
- This code is distributed under the GNU LGPL license.
-
- Modified:
-
- 07 June 2005
-
- Author:
-
- C version by John Burkardt.
-
- Reference:
-
- Jack Dongarra, Cleve Moler, Jim Bunch and Pete Stewart,
- LINPACK User's Guide,
- SIAM, (Society for Industrial and Applied Mathematics),
- 3600 University City Science Center,
- Philadelphia, PA, 19104-2688.
- ISBN 0-89871-172-X
-
- Parameters:
-
- Input, double A[LDA*P], contains the output of DQRDC.
-
- Input, int LDA, the leading dimension of the array A.
-
- Input, int N, the number of rows of the matrix AK. It must
- have the same value as N in DQRDC.
-
- Input, int K, the number of columns of the matrix AK. K
- must not be greater than min(N,P), where P is the same as in the
- calling sequence to DQRDC.
-
- Input, double QRAUX[P], the auxiliary output from DQRDC.
-
- Input, double Y[N], a vector to be manipulated by DQRSL.
-
- Output, double QY[N], contains Q * Y, if requested.
-
- Output, double QTY[N], contains Q' * Y, if requested.
-
- Output, double B[K], the solution of the least squares problem
- minimize norm2 ( Y - AK * B),
- if its computation has been requested. Note that if pivoting was
- requested in DQRDC, the J-th component of B will be associated with
- column JPVT(J) of the original matrix A that was input into DQRDC.
-
- Output, double RSD[N], the least squares residual Y - AK * B,
- if its computation has been requested. RSD is also the orthogonal
- projection of Y onto the orthogonal complement of the column space
- of AK.
-
- Output, double AB[N], the least squares approximation Ak * B,
- if its computation has been requested. AB is also the orthogonal
- projection of Y onto the column space of A.
-
- Input, integer JOB, specifies what is to be computed. JOB has
- the decimal expansion ABCDE, with the following meaning:
-
- if A != 0, compute QY.
- if B != 0, compute QTY.
- if C != 0, compute QTY and B.
- if D != 0, compute QTY and RSD.
- if E != 0, compute QTY and AB.
-
- Note that a request to compute B, RSD, or AB automatically triggers
- the computation of QTY, for which an array must be provided in the
- calling sequence.
-
- Output, int DQRSL, is zero unless the computation of B has
- been requested and R is exactly singular. In this case, INFO is the
- index of the first zero diagonal element of R, and B is left unaltered.
- */
- {
- int cab;
- int cb;
- int cqty;
- int cqy;
- int cr;
- int i;
- int info;
- int j;
- int jj;
- int ju;
- double t;
- double temp;
- /*
- Set INFO flag.
- */
- info = 0;
- /*
- Determine what is to be computed.
- */
- cqy = ( job / 10000 != 0 );
- cqty = ( ( job % 10000 ) != 0 );
- cb = ( ( job % 1000 ) / 100 != 0 );
- cr = ( ( job % 100 ) / 10 != 0 );
- cab = ( ( job % 10 ) != 0 );
-
- ju = i4_min ( k, n-1 );
- /*
- Special action when N = 1.
- */
- if ( ju == 0 )
- {
- if ( cqy )
- {
- qy[0] = y[0];
- }
-
- if ( cqty )
- {
- qty[0] = y[0];
- }
-
- if ( cab )
- {
- ab[0] = y[0];
- }
-
- if ( cb )
- {
- if ( a[0+0*lda] == 0.0 )
- {
- info = 1;
- }
- else
- {
- b[0] = y[0] / a[0+0*lda];
- }
- }
-
- if ( cr )
- {
- rsd[0] = 0.0;
- }
- return info;
- }
- /*
- Set up to compute QY or QTY.
- */
- if ( cqy )
- {
- for ( i = 1; i <= n; i++ )
- {
- qy[i-1] = y[i-1];
- }
- }
-
- if ( cqty )
- {
- for ( i = 1; i <= n; i++ )
- {
- qty[i-1] = y[i-1];
- }
- }
- /*
- Compute QY.
- */
- if ( cqy )
- {
- for ( jj = 1; jj <= ju; jj++ )
- {
- j = ju - jj + 1;
-
- if ( qraux[j-1] != 0.0 )
- {
- temp = a[j-1+(j-1)*lda];
- a[j-1+(j-1)*lda] = qraux[j-1];
- t = -ddot ( n-j+1, a+j-1+(j-1)*lda, 1, qy+j-1, 1 ) / a[j-1+(j-1)*lda];
- daxpy ( n-j+1, t, a+j-1+(j-1)*lda, 1, qy+j-1, 1 );
- a[j-1+(j-1)*lda] = temp;
- }
- }
- }
- /*
- Compute Q'*Y.
- */
- if ( cqty )
- {
- for ( j = 1; j <= ju; j++ )
- {
- if ( qraux[j-1] != 0.0 )
- {
- temp = a[j-1+(j-1)*lda];
- a[j-1+(j-1)*lda] = qraux[j-1];
- t = -ddot ( n-j+1, a+j-1+(j-1)*lda, 1, qty+j-1, 1 ) / a[j-1+(j-1)*lda];
- daxpy ( n-j+1, t, a+j-1+(j-1)*lda, 1, qty+j-1, 1 );
- a[j-1+(j-1)*lda] = temp;
- }
- }
- }
- /*
- Set up to compute B, RSD, or AB.
- */
- if ( cb )
- {
- for ( i = 1; i <= k; i++ )
- {
- b[i-1] = qty[i-1];
- }
- }
-
- if ( cab )
- {
- for ( i = 1; i <= k; i++ )
- {
- ab[i-1] = qty[i-1];
- }
- }
-
- if ( cr && k < n )
- {
- for ( i = k+1; i <= n; i++ )
- {
- rsd[i-1] = qty[i-1];
- }
- }
-
- if ( cab && k+1 <= n )
- {
- for ( i = k+1; i <= n; i++ )
- {
- ab[i-1] = 0.0;
- }
- }
-
- if ( cr )
- {
- for ( i = 1; i <= k; i++ )
- {
- rsd[i-1] = 0.0;
- }
- }
- /*
- Compute B.
- */
- if ( cb )
- {
- for ( jj = 1; jj <= k; jj++ )
- {
- j = k - jj + 1;
-
- if ( a[j-1+(j-1)*lda] == 0.0 )
- {
- info = j;
- break;
- }
-
- b[j-1] = b[j-1] / a[j-1+(j-1)*lda];
-
- if ( j != 1 )
- {
- t = -b[j-1];
- daxpy ( j-1, t, a+0+(j-1)*lda, 1, b, 1 );
- }
- }
- }
- /*
- Compute RSD or AB as required.
- */
- if ( cr || cab )
- {
- for ( jj = 1; jj <= ju; jj++ )
- {
- j = ju - jj + 1;
-
- if ( qraux[j-1] != 0.0 )
- {
- temp = a[j-1+(j-1)*lda];
- a[j-1+(j-1)*lda] = qraux[j-1];
-
- if ( cr )
- {
- t = -ddot ( n-j+1, a+j-1+(j-1)*lda, 1, rsd+j-1, 1 )
- / a[j-1+(j-1)*lda];
- daxpy ( n-j+1, t, a+j-1+(j-1)*lda, 1, rsd+j-1, 1 );
- }
-
- if ( cab )
- {
- t = -ddot ( n-j+1, a+j-1+(j-1)*lda, 1, ab+j-1, 1 )
- / a[j-1+(j-1)*lda];
- daxpy ( n-j+1, t, a+j-1+(j-1)*lda, 1, ab+j-1, 1 );
- }
- a[j-1+(j-1)*lda] = temp;
- }
- }
- }
-
- return info;
- }
- /******************************************************************************/
-
- /******************************************************************************/
-
- void dscal ( int n, double sa, double x[], int incx )
-
- /******************************************************************************/
- /*
- Purpose:
-
- DSCAL scales a vector by a constant.
-
- Licensing:
-
- This code is distributed under the GNU LGPL license.
-
- Modified:
-
- 30 March 2007
-
- Author:
-
- C version by John Burkardt
-
- Reference:
-
- Jack Dongarra, Cleve Moler, Jim Bunch, Pete Stewart,
- LINPACK User's Guide,
- SIAM, 1979.
-
- Charles Lawson, Richard Hanson, David Kincaid, Fred Krogh,
- Basic Linear Algebra Subprograms for Fortran Usage,
- Algorithm 539,
- ACM Transactions on Mathematical Software,
- Volume 5, Number 3, September 1979, pages 308-323.
-
- Parameters:
-
- Input, int N, the number of entries in the vector.
-
- Input, double SA, the multiplier.
-
- Input/output, double X[*], the vector to be scaled.
-
- Input, int INCX, the increment between successive entries of X.
- */
- {
- int i;
- int ix;
- int m;
-
- if ( n <= 0 )
- {
- }
- else if ( incx == 1 )
- {
- m = n % 5;
-
- for ( i = 0; i < m; i++ )
- {
- x[i] = sa * x[i];
- }
-
- for ( i = m; i < n; i = i + 5 )
- {
- x[i] = sa * x[i];
- x[i+1] = sa * x[i+1];
- x[i+2] = sa * x[i+2];
- x[i+3] = sa * x[i+3];
- x[i+4] = sa * x[i+4];
- }
- }
- else
- {
- if ( 0 <= incx )
- {
- ix = 0;
- }
- else
- {
- ix = ( - n + 1 ) * incx;
- }
-
- for ( i = 0; i < n; i++ )
- {
- x[ix] = sa * x[ix];
- ix = ix + incx;
- }
- }
- return;
- }
- /******************************************************************************/
-
-
- void dswap ( int n, double x[], int incx, double y[], int incy )
-
- /******************************************************************************/
- /*
- Purpose:
-
- DSWAP interchanges two vectors.
-
- Licensing:
-
- This code is distributed under the GNU LGPL license.
-
- Modified:
-
- 30 March 2007
-
- Author:
-
- C version by John Burkardt
-
- Reference:
-
- Jack Dongarra, Cleve Moler, Jim Bunch, Pete Stewart,
- LINPACK User's Guide,
- SIAM, 1979.
-
- Charles Lawson, Richard Hanson, David Kincaid, Fred Krogh,
- Basic Linear Algebra Subprograms for Fortran Usage,
- Algorithm 539,
- ACM Transactions on Mathematical Software,
- Volume 5, Number 3, September 1979, pages 308-323.
-
- Parameters:
-
- Input, int N, the number of entries in the vectors.
-
- Input/output, double X[*], one of the vectors to swap.
-
- Input, int INCX, the increment between successive entries of X.
-
- Input/output, double Y[*], one of the vectors to swap.
-
- Input, int INCY, the increment between successive elements of Y.
- */
- {
- int i;
- int ix;
- int iy;
- int m;
- double temp;
-
- if ( n <= 0 )
- {
- }
- else if ( incx == 1 && incy == 1 )
- {
- m = n % 3;
-
- for ( i = 0; i < m; i++ )
- {
- temp = x[i];
- x[i] = y[i];
- y[i] = temp;
- }
-
- for ( i = m; i < n; i = i + 3 )
- {
- temp = x[i];
- x[i] = y[i];
- y[i] = temp;
-
- temp = x[i+1];
- x[i+1] = y[i+1];
- y[i+1] = temp;
-
- temp = x[i+2];
- x[i+2] = y[i+2];
- y[i+2] = temp;
- }
- }
- else
- {
- if ( 0 <= incx )
- {
- ix = 0;
- }
- else
- {
- ix = ( - n + 1 ) * incx;
- }
-
- if ( 0 <= incy )
- {
- iy = 0;
- }
- else
- {
- iy = ( - n + 1 ) * incy;
- }
-
- for ( i = 0; i < n; i++ )
- {
- temp = x[ix];
- x[ix] = y[iy];
- y[iy] = temp;
- ix = ix + incx;
- iy = iy + incy;
- }
-
- }
-
- return;
- }
- /******************************************************************************/
-
- /******************************************************************************/
-
- double *qr_solve ( int m, int n, double a[], double b[] )
-
- /******************************************************************************/
- /*
- Purpose:
-
- QR_SOLVE solves a linear system in the least squares sense.
-
- Discussion:
-
- If the matrix A has full column rank, then the solution X should be the
- unique vector that minimizes the Euclidean norm of the residual.
-
- If the matrix A does not have full column rank, then the solution is
- not unique; the vector X will minimize the residual norm, but so will
- various other vectors.
-
- Licensing:
-
- This code is distributed under the GNU LGPL license.
-
- Modified:
-
- 11 September 2012
-
- Author:
-
- John Burkardt
-
- Reference:
-
- David Kahaner, Cleve Moler, Steven Nash,
- Numerical Methods and Software,
- Prentice Hall, 1989,
- ISBN: 0-13-627258-4,
- LC: TA345.K34.
-
- Parameters:
-
- Input, int M, the number of rows of A.
-
- Input, int N, the number of columns of A.
-
- Input, double A[M*N], the matrix.
-
- Input, double B[M], the right hand side.
-
- Output, double QR_SOLVE[N], the least squares solution.
- */
- {
- double *a_qr;
- int ind;
- int itask;
- int *jpvt;
- int kr;
- int lda;
- double *qraux;
- double *r;
- double tol;
- double *x;
-
- a_qr = r8mat_copy_new ( m, n, a );
- lda = m;
- tol = r8_epsilon ( ) / r8mat_amax ( m, n, a_qr );
- x = ( double * ) malloc ( n * sizeof ( double ) );
- jpvt = ( int * ) malloc ( n * sizeof ( int ) );
- qraux = ( double * ) malloc ( n * sizeof ( double ) );
- r = ( double * ) malloc ( m * sizeof ( double ) );
- itask = 1;
-
- ind = dqrls ( a_qr, lda, m, n, tol, &kr, b, x, r, jpvt, qraux, itask );
-
- free ( a_qr );
- free ( jpvt );
- free ( qraux );
- free ( r );
-
- return x;
- }
- /******************************************************************************/
-
- #endif
|