My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

stepper.cpp 40KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269
  1. /*
  2. stepper.c - stepper motor driver: executes motion plans using stepper motors
  3. Part of Grbl
  4. Copyright (c) 2009-2011 Simen Svale Skogsrud
  5. Grbl is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. Grbl is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
  17. and Philipp Tiefenbacher. */
  18. #include "Marlin.h"
  19. #include "stepper.h"
  20. #include "planner.h"
  21. #include "temperature.h"
  22. #include "ultralcd.h"
  23. #include "language.h"
  24. #include "cardreader.h"
  25. #include "speed_lookuptable.h"
  26. #if HAS_DIGIPOTSS
  27. #include <SPI.h>
  28. #endif
  29. //===========================================================================
  30. //============================= public variables ============================
  31. //===========================================================================
  32. block_t *current_block; // A pointer to the block currently being traced
  33. //===========================================================================
  34. //============================= private variables ===========================
  35. //===========================================================================
  36. //static makes it impossible to be called from outside of this file by extern.!
  37. // Variables used by The Stepper Driver Interrupt
  38. static unsigned char out_bits; // The next stepping-bits to be output
  39. static unsigned int cleaning_buffer_counter;
  40. #ifdef Z_DUAL_ENDSTOPS
  41. static bool performing_homing = false,
  42. locked_z_motor = false,
  43. locked_z2_motor = false;
  44. #endif
  45. // Counter variables for the bresenham line tracer
  46. static long counter_x, counter_y, counter_z, counter_e;
  47. volatile static unsigned long step_events_completed; // The number of step events executed in the current block
  48. #ifdef ADVANCE
  49. static long advance_rate, advance, final_advance = 0;
  50. static long old_advance = 0;
  51. static long e_steps[4];
  52. #endif
  53. static long acceleration_time, deceleration_time;
  54. //static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
  55. static unsigned short acc_step_rate; // needed for deccelaration start point
  56. static char step_loops;
  57. static unsigned short OCR1A_nominal;
  58. static unsigned short step_loops_nominal;
  59. volatile long endstops_trigsteps[3] = { 0 };
  60. volatile long endstops_stepsTotal, endstops_stepsDone;
  61. static volatile bool endstop_x_hit = false;
  62. static volatile bool endstop_y_hit = false;
  63. static volatile bool endstop_z_hit = false;
  64. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  65. bool abort_on_endstop_hit = false;
  66. #endif
  67. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  68. int motor_current_setting[3] = DEFAULT_PWM_MOTOR_CURRENT;
  69. #endif
  70. #if defined(X_MIN_PIN) && X_MIN_PIN >= 0
  71. static bool old_x_min_endstop = false;
  72. #endif
  73. #if defined(X_MAX_PIN) && X_MAX_PIN >= 0
  74. static bool old_x_max_endstop = false;
  75. #endif
  76. #if defined(Y_MIN_PIN) && Y_MIN_PIN >= 0
  77. static bool old_y_min_endstop = false;
  78. #endif
  79. #if defined(Y_MAX_PIN) && Y_MAX_PIN >= 0
  80. static bool old_y_max_endstop = false;
  81. #endif
  82. #if defined(Z_MIN_PIN) && Z_MIN_PIN >= 0
  83. static bool old_z_min_endstop = false;
  84. #endif
  85. #if defined(Z_MAX_PIN) && Z_MAX_PIN >= 0
  86. static bool old_z_max_endstop = false;
  87. #endif
  88. #ifdef Z_DUAL_ENDSTOPS
  89. #if defined(Z2_MIN_PIN) && Z2_MIN_PIN >= 0
  90. static bool old_z2_min_endstop = false;
  91. #endif
  92. #if defined(Z2_MAX_PIN) && Z2_MAX_PIN >= 0
  93. static bool old_z2_max_endstop = false;
  94. #endif
  95. #endif
  96. static bool check_endstops = true;
  97. volatile long count_position[NUM_AXIS] = { 0 };
  98. volatile signed char count_direction[NUM_AXIS] = { 1, 1, 1, 1 };
  99. //===========================================================================
  100. //================================ functions ================================
  101. //===========================================================================
  102. #ifdef DUAL_X_CARRIAGE
  103. #define X_APPLY_DIR(v,ALWAYS) \
  104. if (extruder_duplication_enabled || ALWAYS) { \
  105. X_DIR_WRITE(v); \
  106. X2_DIR_WRITE(v); \
  107. } \
  108. else { \
  109. if (current_block->active_extruder) X2_DIR_WRITE(v); else X_DIR_WRITE(v); \
  110. }
  111. #define X_APPLY_STEP(v,ALWAYS) \
  112. if (extruder_duplication_enabled || ALWAYS) { \
  113. X_STEP_WRITE(v); \
  114. X2_STEP_WRITE(v); \
  115. } \
  116. else { \
  117. if (current_block->active_extruder != 0) X2_STEP_WRITE(v); else X_STEP_WRITE(v); \
  118. }
  119. #else
  120. #define X_APPLY_DIR(v,Q) X_DIR_WRITE(v)
  121. #define X_APPLY_STEP(v,Q) X_STEP_WRITE(v)
  122. #endif
  123. #ifdef Y_DUAL_STEPPER_DRIVERS
  124. #define Y_APPLY_DIR(v,Q) { Y_DIR_WRITE(v); Y2_DIR_WRITE((v) != INVERT_Y2_VS_Y_DIR); }
  125. #define Y_APPLY_STEP(v,Q) { Y_STEP_WRITE(v); Y2_STEP_WRITE(v); }
  126. #else
  127. #define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v)
  128. #define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v)
  129. #endif
  130. #ifdef Z_DUAL_STEPPER_DRIVERS
  131. #define Z_APPLY_DIR(v,Q) { Z_DIR_WRITE(v); Z2_DIR_WRITE(v); }
  132. #ifdef Z_DUAL_ENDSTOPS
  133. #define Z_APPLY_STEP(v,Q) \
  134. if (performing_homing) { \
  135. if (Z_HOME_DIR > 0) {\
  136. if (!(old_z_max_endstop && (count_direction[Z_AXIS] > 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
  137. if (!(old_z2_max_endstop && (count_direction[Z_AXIS] > 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
  138. } else {\
  139. if (!(old_z_min_endstop && (count_direction[Z_AXIS] < 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
  140. if (!(old_z2_min_endstop && (count_direction[Z_AXIS] < 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
  141. } \
  142. } else { \
  143. Z_STEP_WRITE(v); \
  144. Z2_STEP_WRITE(v); \
  145. }
  146. #else
  147. #define Z_APPLY_STEP(v,Q) { Z_STEP_WRITE(v); Z2_STEP_WRITE(v); }
  148. #endif
  149. #else
  150. #define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v)
  151. #define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v)
  152. #endif
  153. #define E_APPLY_STEP(v,Q) E_STEP_WRITE(v)
  154. // intRes = intIn1 * intIn2 >> 16
  155. // uses:
  156. // r26 to store 0
  157. // r27 to store the byte 1 of the 24 bit result
  158. #define MultiU16X8toH16(intRes, charIn1, intIn2) \
  159. asm volatile ( \
  160. "clr r26 \n\t" \
  161. "mul %A1, %B2 \n\t" \
  162. "movw %A0, r0 \n\t" \
  163. "mul %A1, %A2 \n\t" \
  164. "add %A0, r1 \n\t" \
  165. "adc %B0, r26 \n\t" \
  166. "lsr r0 \n\t" \
  167. "adc %A0, r26 \n\t" \
  168. "adc %B0, r26 \n\t" \
  169. "clr r1 \n\t" \
  170. : \
  171. "=&r" (intRes) \
  172. : \
  173. "d" (charIn1), \
  174. "d" (intIn2) \
  175. : \
  176. "r26" \
  177. )
  178. // intRes = longIn1 * longIn2 >> 24
  179. // uses:
  180. // r26 to store 0
  181. // r27 to store the byte 1 of the 48bit result
  182. #define MultiU24X24toH16(intRes, longIn1, longIn2) \
  183. asm volatile ( \
  184. "clr r26 \n\t" \
  185. "mul %A1, %B2 \n\t" \
  186. "mov r27, r1 \n\t" \
  187. "mul %B1, %C2 \n\t" \
  188. "movw %A0, r0 \n\t" \
  189. "mul %C1, %C2 \n\t" \
  190. "add %B0, r0 \n\t" \
  191. "mul %C1, %B2 \n\t" \
  192. "add %A0, r0 \n\t" \
  193. "adc %B0, r1 \n\t" \
  194. "mul %A1, %C2 \n\t" \
  195. "add r27, r0 \n\t" \
  196. "adc %A0, r1 \n\t" \
  197. "adc %B0, r26 \n\t" \
  198. "mul %B1, %B2 \n\t" \
  199. "add r27, r0 \n\t" \
  200. "adc %A0, r1 \n\t" \
  201. "adc %B0, r26 \n\t" \
  202. "mul %C1, %A2 \n\t" \
  203. "add r27, r0 \n\t" \
  204. "adc %A0, r1 \n\t" \
  205. "adc %B0, r26 \n\t" \
  206. "mul %B1, %A2 \n\t" \
  207. "add r27, r1 \n\t" \
  208. "adc %A0, r26 \n\t" \
  209. "adc %B0, r26 \n\t" \
  210. "lsr r27 \n\t" \
  211. "adc %A0, r26 \n\t" \
  212. "adc %B0, r26 \n\t" \
  213. "clr r1 \n\t" \
  214. : \
  215. "=&r" (intRes) \
  216. : \
  217. "d" (longIn1), \
  218. "d" (longIn2) \
  219. : \
  220. "r26" , "r27" \
  221. )
  222. // Some useful constants
  223. #define ENABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 |= BIT(OCIE1A)
  224. #define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~BIT(OCIE1A)
  225. void endstops_hit_on_purpose() {
  226. endstop_x_hit = endstop_y_hit = endstop_z_hit = false;
  227. }
  228. void checkHitEndstops() {
  229. if (endstop_x_hit || endstop_y_hit || endstop_z_hit) {
  230. SERIAL_ECHO_START;
  231. SERIAL_ECHOPGM(MSG_ENDSTOPS_HIT);
  232. if (endstop_x_hit) {
  233. SERIAL_ECHOPAIR(" X:", (float)endstops_trigsteps[X_AXIS] / axis_steps_per_unit[X_AXIS]);
  234. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "X");
  235. }
  236. if (endstop_y_hit) {
  237. SERIAL_ECHOPAIR(" Y:", (float)endstops_trigsteps[Y_AXIS] / axis_steps_per_unit[Y_AXIS]);
  238. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Y");
  239. }
  240. if (endstop_z_hit) {
  241. SERIAL_ECHOPAIR(" Z:", (float)endstops_trigsteps[Z_AXIS] / axis_steps_per_unit[Z_AXIS]);
  242. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Z");
  243. }
  244. SERIAL_EOL;
  245. endstops_hit_on_purpose();
  246. #if defined(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && defined(SDSUPPORT)
  247. if (abort_on_endstop_hit) {
  248. card.sdprinting = false;
  249. card.closefile();
  250. quickStop();
  251. setTargetHotend0(0);
  252. setTargetHotend1(0);
  253. setTargetHotend2(0);
  254. setTargetHotend3(0);
  255. setTargetBed(0);
  256. }
  257. #endif
  258. }
  259. }
  260. void enable_endstops(bool check) { check_endstops = check; }
  261. // __________________________
  262. // /| |\ _________________ ^
  263. // / | | \ /| |\ |
  264. // / | | \ / | | \ s
  265. // / | | | | | \ p
  266. // / | | | | | \ e
  267. // +-----+------------------------+---+--+---------------+----+ e
  268. // | BLOCK 1 | BLOCK 2 | d
  269. //
  270. // time ----->
  271. //
  272. // The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
  273. // first block->accelerate_until step_events_completed, then keeps going at constant speed until
  274. // step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
  275. // The slope of acceleration is calculated with the leib ramp alghorithm.
  276. void st_wake_up() {
  277. // TCNT1 = 0;
  278. ENABLE_STEPPER_DRIVER_INTERRUPT();
  279. }
  280. FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {
  281. unsigned short timer;
  282. if (step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY;
  283. if (step_rate > 20000) { // If steprate > 20kHz >> step 4 times
  284. step_rate = (step_rate >> 2) & 0x3fff;
  285. step_loops = 4;
  286. }
  287. else if (step_rate > 10000) { // If steprate > 10kHz >> step 2 times
  288. step_rate = (step_rate >> 1) & 0x7fff;
  289. step_loops = 2;
  290. }
  291. else {
  292. step_loops = 1;
  293. }
  294. if (step_rate < (F_CPU / 500000)) step_rate = (F_CPU / 500000);
  295. step_rate -= (F_CPU / 500000); // Correct for minimal speed
  296. if (step_rate >= (8 * 256)) { // higher step rate
  297. unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0];
  298. unsigned char tmp_step_rate = (step_rate & 0x00ff);
  299. unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2);
  300. MultiU16X8toH16(timer, tmp_step_rate, gain);
  301. timer = (unsigned short)pgm_read_word_near(table_address) - timer;
  302. }
  303. else { // lower step rates
  304. unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
  305. table_address += ((step_rate)>>1) & 0xfffc;
  306. timer = (unsigned short)pgm_read_word_near(table_address);
  307. timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3);
  308. }
  309. if (timer < 100) { timer = 100; MYSERIAL.print(MSG_STEPPER_TOO_HIGH); MYSERIAL.println(step_rate); }//(20kHz this should never happen)
  310. return timer;
  311. }
  312. // Initializes the trapezoid generator from the current block. Called whenever a new
  313. // block begins.
  314. FORCE_INLINE void trapezoid_generator_reset() {
  315. #ifdef ADVANCE
  316. advance = current_block->initial_advance;
  317. final_advance = current_block->final_advance;
  318. // Do E steps + advance steps
  319. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  320. old_advance = advance >>8;
  321. #endif
  322. deceleration_time = 0;
  323. // step_rate to timer interval
  324. OCR1A_nominal = calc_timer(current_block->nominal_rate);
  325. // make a note of the number of step loops required at nominal speed
  326. step_loops_nominal = step_loops;
  327. acc_step_rate = current_block->initial_rate;
  328. acceleration_time = calc_timer(acc_step_rate);
  329. OCR1A = acceleration_time;
  330. // SERIAL_ECHO_START;
  331. // SERIAL_ECHOPGM("advance :");
  332. // SERIAL_ECHO(current_block->advance/256.0);
  333. // SERIAL_ECHOPGM("advance rate :");
  334. // SERIAL_ECHO(current_block->advance_rate/256.0);
  335. // SERIAL_ECHOPGM("initial advance :");
  336. // SERIAL_ECHO(current_block->initial_advance/256.0);
  337. // SERIAL_ECHOPGM("final advance :");
  338. // SERIAL_ECHOLN(current_block->final_advance/256.0);
  339. }
  340. // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
  341. // It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
  342. ISR(TIMER1_COMPA_vect) {
  343. if(cleaning_buffer_counter)
  344. {
  345. current_block = NULL;
  346. plan_discard_current_block();
  347. if ((cleaning_buffer_counter == 1) && (SD_FINISHED_STEPPERRELEASE)) enquecommands_P(PSTR(SD_FINISHED_RELEASECOMMAND));
  348. cleaning_buffer_counter--;
  349. OCR1A = 200;
  350. return;
  351. }
  352. // If there is no current block, attempt to pop one from the buffer
  353. if (!current_block) {
  354. // Anything in the buffer?
  355. current_block = plan_get_current_block();
  356. if (current_block) {
  357. current_block->busy = true;
  358. trapezoid_generator_reset();
  359. counter_x = -(current_block->step_event_count >> 1);
  360. counter_y = counter_z = counter_e = counter_x;
  361. step_events_completed = 0;
  362. #ifdef Z_LATE_ENABLE
  363. if (current_block->steps[Z_AXIS] > 0) {
  364. enable_z();
  365. OCR1A = 2000; //1ms wait
  366. return;
  367. }
  368. #endif
  369. // #ifdef ADVANCE
  370. // e_steps[current_block->active_extruder] = 0;
  371. // #endif
  372. }
  373. else {
  374. OCR1A = 2000; // 1kHz.
  375. }
  376. }
  377. if (current_block != NULL) {
  378. // Set directions TO DO This should be done once during init of trapezoid. Endstops -> interrupt
  379. out_bits = current_block->direction_bits;
  380. // Set the direction bits (X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY)
  381. if (TEST(out_bits, X_AXIS)) {
  382. X_APPLY_DIR(INVERT_X_DIR,0);
  383. count_direction[X_AXIS] = -1;
  384. }
  385. else {
  386. X_APPLY_DIR(!INVERT_X_DIR,0);
  387. count_direction[X_AXIS] = 1;
  388. }
  389. if (TEST(out_bits, Y_AXIS)) {
  390. Y_APPLY_DIR(INVERT_Y_DIR,0);
  391. count_direction[Y_AXIS] = -1;
  392. }
  393. else {
  394. Y_APPLY_DIR(!INVERT_Y_DIR,0);
  395. count_direction[Y_AXIS] = 1;
  396. }
  397. #define UPDATE_ENDSTOP(axis,AXIS,minmax,MINMAX) \
  398. bool axis ##_## minmax ##_endstop = (READ(AXIS ##_## MINMAX ##_PIN) != AXIS ##_## MINMAX ##_ENDSTOP_INVERTING); \
  399. if (axis ##_## minmax ##_endstop && old_## axis ##_## minmax ##_endstop && (current_block->steps[AXIS ##_AXIS] > 0)) { \
  400. endstops_trigsteps[AXIS ##_AXIS] = count_position[AXIS ##_AXIS]; \
  401. endstop_## axis ##_hit = true; \
  402. step_events_completed = current_block->step_event_count; \
  403. } \
  404. old_## axis ##_## minmax ##_endstop = axis ##_## minmax ##_endstop;
  405. // Check X and Y endstops
  406. if (check_endstops) {
  407. #ifdef COREXY
  408. // Head direction in -X axis for CoreXY bots.
  409. // If DeltaX == -DeltaY, the movement is only in Y axis
  410. if (current_block->steps[A_AXIS] != current_block->steps[B_AXIS] || (TEST(out_bits, A_AXIS) == TEST(out_bits, B_AXIS)))
  411. if (TEST(out_bits, X_HEAD))
  412. #else
  413. if (TEST(out_bits, X_AXIS)) // stepping along -X axis (regular cartesians bot)
  414. #endif
  415. { // -direction
  416. #ifdef DUAL_X_CARRIAGE
  417. // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
  418. if ((current_block->active_extruder == 0 && X_HOME_DIR == -1) || (current_block->active_extruder != 0 && X2_HOME_DIR == -1))
  419. #endif
  420. {
  421. #if defined(X_MIN_PIN) && X_MIN_PIN >= 0
  422. UPDATE_ENDSTOP(x, X, min, MIN);
  423. #endif
  424. }
  425. }
  426. else { // +direction
  427. #ifdef DUAL_X_CARRIAGE
  428. // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
  429. if ((current_block->active_extruder == 0 && X_HOME_DIR == 1) || (current_block->active_extruder != 0 && X2_HOME_DIR == 1))
  430. #endif
  431. {
  432. #if defined(X_MAX_PIN) && X_MAX_PIN >= 0
  433. UPDATE_ENDSTOP(x, X, max, MAX);
  434. #endif
  435. }
  436. }
  437. #ifdef COREXY
  438. // Head direction in -Y axis for CoreXY bots.
  439. // If DeltaX == DeltaY, the movement is only in X axis
  440. if (current_block->steps[A_AXIS] != current_block->steps[B_AXIS] || (TEST(out_bits, A_AXIS) != TEST(out_bits, B_AXIS)))
  441. if (TEST(out_bits, Y_HEAD))
  442. #else
  443. if (TEST(out_bits, Y_AXIS)) // -direction
  444. #endif
  445. { // -direction
  446. #if defined(Y_MIN_PIN) && Y_MIN_PIN >= 0
  447. UPDATE_ENDSTOP(y, Y, min, MIN);
  448. #endif
  449. }
  450. else { // +direction
  451. #if defined(Y_MAX_PIN) && Y_MAX_PIN >= 0
  452. UPDATE_ENDSTOP(y, Y, max, MAX);
  453. #endif
  454. }
  455. }
  456. if (TEST(out_bits, Z_AXIS)) { // -direction
  457. Z_APPLY_DIR(INVERT_Z_DIR,0);
  458. count_direction[Z_AXIS] = -1;
  459. if (check_endstops)
  460. {
  461. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  462. #ifndef Z_DUAL_ENDSTOPS
  463. UPDATE_ENDSTOP(z, Z, min, MIN);
  464. #else
  465. bool z_min_endstop=(READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  466. #if defined(Z2_MIN_PIN) && Z2_MIN_PIN > -1
  467. bool z2_min_endstop=(READ(Z2_MIN_PIN) != Z2_MIN_ENDSTOP_INVERTING);
  468. #else
  469. bool z2_min_endstop=z_min_endstop;
  470. #endif
  471. if(((z_min_endstop && old_z_min_endstop) || (z2_min_endstop && old_z2_min_endstop)) && (current_block->steps[Z_AXIS] > 0))
  472. {
  473. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  474. endstop_z_hit=true;
  475. if (!(performing_homing) || ((performing_homing)&&(z_min_endstop && old_z_min_endstop)&&(z2_min_endstop && old_z2_min_endstop))) //if not performing home or if both endstops were trigged during homing...
  476. {
  477. step_events_completed = current_block->step_event_count;
  478. }
  479. }
  480. old_z_min_endstop = z_min_endstop;
  481. old_z2_min_endstop = z2_min_endstop;
  482. #endif
  483. #endif
  484. }
  485. }
  486. else { // +direction
  487. Z_APPLY_DIR(!INVERT_Z_DIR,0);
  488. count_direction[Z_AXIS] = 1;
  489. if (check_endstops) {
  490. #if defined(Z_MAX_PIN) && Z_MAX_PIN >= 0
  491. #ifndef Z_DUAL_ENDSTOPS
  492. UPDATE_ENDSTOP(z, Z, max, MAX);
  493. #else
  494. bool z_max_endstop=(READ(Z_MAX_PIN) != Z_MAX_ENDSTOP_INVERTING);
  495. #if defined(Z2_MAX_PIN) && Z2_MAX_PIN > -1
  496. bool z2_max_endstop=(READ(Z2_MAX_PIN) != Z2_MAX_ENDSTOP_INVERTING);
  497. #else
  498. bool z2_max_endstop=z_max_endstop;
  499. #endif
  500. if(((z_max_endstop && old_z_max_endstop) || (z2_max_endstop && old_z2_max_endstop)) && (current_block->steps[Z_AXIS] > 0))
  501. {
  502. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  503. endstop_z_hit=true;
  504. // if (z_max_endstop && old_z_max_endstop) SERIAL_ECHOLN("z_max_endstop = true");
  505. // if (z2_max_endstop && old_z2_max_endstop) SERIAL_ECHOLN("z2_max_endstop = true");
  506. if (!(performing_homing) || ((performing_homing)&&(z_max_endstop && old_z_max_endstop)&&(z2_max_endstop && old_z2_max_endstop))) //if not performing home or if both endstops were trigged during homing...
  507. {
  508. step_events_completed = current_block->step_event_count;
  509. }
  510. }
  511. old_z_max_endstop = z_max_endstop;
  512. old_z2_max_endstop = z2_max_endstop;
  513. #endif
  514. #endif
  515. }
  516. }
  517. #ifndef ADVANCE
  518. if (TEST(out_bits, E_AXIS)) { // -direction
  519. REV_E_DIR();
  520. count_direction[E_AXIS]=-1;
  521. }
  522. else { // +direction
  523. NORM_E_DIR();
  524. count_direction[E_AXIS]=1;
  525. }
  526. #endif //!ADVANCE
  527. // Take multiple steps per interrupt (For high speed moves)
  528. for (int8_t i=0; i < step_loops; i++) {
  529. #ifndef AT90USB
  530. MSerial.checkRx(); // Check for serial chars.
  531. #endif
  532. #ifdef ADVANCE
  533. counter_e += current_block->steps[E_AXIS];
  534. if (counter_e > 0) {
  535. counter_e -= current_block->step_event_count;
  536. e_steps[current_block->active_extruder] += TEST(out_bits, E_AXIS) ? -1 : 1;
  537. }
  538. #endif //ADVANCE
  539. #ifdef CONFIG_STEPPERS_TOSHIBA
  540. /**
  541. * The Toshiba stepper controller require much longer pulses.
  542. * So we 'stage' decompose the pulses between high and low
  543. * instead of doing each in turn. The extra tests add enough
  544. * lag to allow it work with without needing NOPs
  545. */
  546. #define STEP_ADD(axis, AXIS) \
  547. counter_## axis += current_block->steps[AXIS ##_AXIS]; \
  548. if (counter_## axis > 0) { AXIS ##_STEP_WRITE(HIGH); }
  549. STEP_ADD(x,X);
  550. STEP_ADD(y,Y);
  551. STEP_ADD(z,Z);
  552. #ifndef ADVANCE
  553. STEP_ADD(e,E);
  554. #endif
  555. #define STEP_IF_COUNTER(axis, AXIS) \
  556. if (counter_## axis > 0) { \
  557. counter_## axis -= current_block->step_event_count; \
  558. count_position[AXIS ##_AXIS] += count_direction[AXIS ##_AXIS]; \
  559. AXIS ##_STEP_WRITE(LOW); \
  560. }
  561. STEP_IF_COUNTER(x, X);
  562. STEP_IF_COUNTER(y, Y);
  563. STEP_IF_COUNTER(z, Z);
  564. #ifndef ADVANCE
  565. STEP_IF_COUNTER(e, E);
  566. #endif
  567. #else // !CONFIG_STEPPERS_TOSHIBA
  568. #define APPLY_MOVEMENT(axis, AXIS) \
  569. counter_## axis += current_block->steps[AXIS ##_AXIS]; \
  570. if (counter_## axis > 0) { \
  571. AXIS ##_APPLY_STEP(!INVERT_## AXIS ##_STEP_PIN,0); \
  572. counter_## axis -= current_block->step_event_count; \
  573. count_position[AXIS ##_AXIS] += count_direction[AXIS ##_AXIS]; \
  574. AXIS ##_APPLY_STEP(INVERT_## AXIS ##_STEP_PIN,0); \
  575. }
  576. APPLY_MOVEMENT(x, X);
  577. APPLY_MOVEMENT(y, Y);
  578. APPLY_MOVEMENT(z, Z);
  579. #ifndef ADVANCE
  580. APPLY_MOVEMENT(e, E);
  581. #endif
  582. #endif // CONFIG_STEPPERS_TOSHIBA
  583. step_events_completed++;
  584. if (step_events_completed >= current_block->step_event_count) break;
  585. }
  586. // Calculare new timer value
  587. unsigned short timer;
  588. unsigned short step_rate;
  589. if (step_events_completed <= (unsigned long int)current_block->accelerate_until) {
  590. MultiU24X24toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
  591. acc_step_rate += current_block->initial_rate;
  592. // upper limit
  593. if (acc_step_rate > current_block->nominal_rate)
  594. acc_step_rate = current_block->nominal_rate;
  595. // step_rate to timer interval
  596. timer = calc_timer(acc_step_rate);
  597. OCR1A = timer;
  598. acceleration_time += timer;
  599. #ifdef ADVANCE
  600. for(int8_t i=0; i < step_loops; i++) {
  601. advance += advance_rate;
  602. }
  603. //if (advance > current_block->advance) advance = current_block->advance;
  604. // Do E steps + advance steps
  605. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  606. old_advance = advance >>8;
  607. #endif
  608. }
  609. else if (step_events_completed > (unsigned long int)current_block->decelerate_after) {
  610. MultiU24X24toH16(step_rate, deceleration_time, current_block->acceleration_rate);
  611. if (step_rate > acc_step_rate) { // Check step_rate stays positive
  612. step_rate = current_block->final_rate;
  613. }
  614. else {
  615. step_rate = acc_step_rate - step_rate; // Decelerate from aceleration end point.
  616. }
  617. // lower limit
  618. if (step_rate < current_block->final_rate)
  619. step_rate = current_block->final_rate;
  620. // step_rate to timer interval
  621. timer = calc_timer(step_rate);
  622. OCR1A = timer;
  623. deceleration_time += timer;
  624. #ifdef ADVANCE
  625. for(int8_t i=0; i < step_loops; i++) {
  626. advance -= advance_rate;
  627. }
  628. if (advance < final_advance) advance = final_advance;
  629. // Do E steps + advance steps
  630. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  631. old_advance = advance >>8;
  632. #endif //ADVANCE
  633. }
  634. else {
  635. OCR1A = OCR1A_nominal;
  636. // ensure we're running at the correct step rate, even if we just came off an acceleration
  637. step_loops = step_loops_nominal;
  638. }
  639. // If current block is finished, reset pointer
  640. if (step_events_completed >= current_block->step_event_count) {
  641. current_block = NULL;
  642. plan_discard_current_block();
  643. }
  644. }
  645. }
  646. #ifdef ADVANCE
  647. unsigned char old_OCR0A;
  648. // Timer interrupt for E. e_steps is set in the main routine;
  649. // Timer 0 is shared with millies
  650. ISR(TIMER0_COMPA_vect)
  651. {
  652. old_OCR0A += 52; // ~10kHz interrupt (250000 / 26 = 9615kHz)
  653. OCR0A = old_OCR0A;
  654. // Set E direction (Depends on E direction + advance)
  655. for(unsigned char i=0; i<4;i++) {
  656. if (e_steps[0] != 0) {
  657. E0_STEP_WRITE(INVERT_E_STEP_PIN);
  658. if (e_steps[0] < 0) {
  659. E0_DIR_WRITE(INVERT_E0_DIR);
  660. e_steps[0]++;
  661. E0_STEP_WRITE(!INVERT_E_STEP_PIN);
  662. }
  663. else if (e_steps[0] > 0) {
  664. E0_DIR_WRITE(!INVERT_E0_DIR);
  665. e_steps[0]--;
  666. E0_STEP_WRITE(!INVERT_E_STEP_PIN);
  667. }
  668. }
  669. #if EXTRUDERS > 1
  670. if (e_steps[1] != 0) {
  671. E1_STEP_WRITE(INVERT_E_STEP_PIN);
  672. if (e_steps[1] < 0) {
  673. E1_DIR_WRITE(INVERT_E1_DIR);
  674. e_steps[1]++;
  675. E1_STEP_WRITE(!INVERT_E_STEP_PIN);
  676. }
  677. else if (e_steps[1] > 0) {
  678. E1_DIR_WRITE(!INVERT_E1_DIR);
  679. e_steps[1]--;
  680. E1_STEP_WRITE(!INVERT_E_STEP_PIN);
  681. }
  682. }
  683. #endif
  684. #if EXTRUDERS > 2
  685. if (e_steps[2] != 0) {
  686. E2_STEP_WRITE(INVERT_E_STEP_PIN);
  687. if (e_steps[2] < 0) {
  688. E2_DIR_WRITE(INVERT_E2_DIR);
  689. e_steps[2]++;
  690. E2_STEP_WRITE(!INVERT_E_STEP_PIN);
  691. }
  692. else if (e_steps[2] > 0) {
  693. E2_DIR_WRITE(!INVERT_E2_DIR);
  694. e_steps[2]--;
  695. E2_STEP_WRITE(!INVERT_E_STEP_PIN);
  696. }
  697. }
  698. #endif
  699. #if EXTRUDERS > 3
  700. if (e_steps[3] != 0) {
  701. E3_STEP_WRITE(INVERT_E_STEP_PIN);
  702. if (e_steps[3] < 0) {
  703. E3_DIR_WRITE(INVERT_E3_DIR);
  704. e_steps[3]++;
  705. E3_STEP_WRITE(!INVERT_E_STEP_PIN);
  706. }
  707. else if (e_steps[3] > 0) {
  708. E3_DIR_WRITE(!INVERT_E3_DIR);
  709. e_steps[3]--;
  710. E3_STEP_WRITE(!INVERT_E_STEP_PIN);
  711. }
  712. }
  713. #endif
  714. }
  715. }
  716. #endif // ADVANCE
  717. void st_init() {
  718. digipot_init(); //Initialize Digipot Motor Current
  719. microstep_init(); //Initialize Microstepping Pins
  720. // initialise TMC Steppers
  721. #ifdef HAVE_TMCDRIVER
  722. tmc_init();
  723. #endif
  724. // initialise L6470 Steppers
  725. #ifdef HAVE_L6470DRIVER
  726. L6470_init();
  727. #endif
  728. // Initialize Dir Pins
  729. #if defined(X_DIR_PIN) && X_DIR_PIN >= 0
  730. X_DIR_INIT;
  731. #endif
  732. #if defined(X2_DIR_PIN) && X2_DIR_PIN >= 0
  733. X2_DIR_INIT;
  734. #endif
  735. #if defined(Y_DIR_PIN) && Y_DIR_PIN >= 0
  736. Y_DIR_INIT;
  737. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_DIR_PIN) && Y2_DIR_PIN >= 0
  738. Y2_DIR_INIT;
  739. #endif
  740. #endif
  741. #if defined(Z_DIR_PIN) && Z_DIR_PIN >= 0
  742. Z_DIR_INIT;
  743. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_DIR_PIN) && Z2_DIR_PIN >= 0
  744. Z2_DIR_INIT;
  745. #endif
  746. #endif
  747. #if defined(E0_DIR_PIN) && E0_DIR_PIN >= 0
  748. E0_DIR_INIT;
  749. #endif
  750. #if defined(E1_DIR_PIN) && E1_DIR_PIN >= 0
  751. E1_DIR_INIT;
  752. #endif
  753. #if defined(E2_DIR_PIN) && E2_DIR_PIN >= 0
  754. E2_DIR_INIT;
  755. #endif
  756. #if defined(E3_DIR_PIN) && E3_DIR_PIN >= 0
  757. E3_DIR_INIT;
  758. #endif
  759. //Initialize Enable Pins - steppers default to disabled.
  760. #if defined(X_ENABLE_PIN) && X_ENABLE_PIN >= 0
  761. X_ENABLE_INIT;
  762. if (!X_ENABLE_ON) X_ENABLE_WRITE(HIGH);
  763. #endif
  764. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN >= 0
  765. X2_ENABLE_INIT;
  766. if (!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH);
  767. #endif
  768. #if defined(Y_ENABLE_PIN) && Y_ENABLE_PIN >= 0
  769. Y_ENABLE_INIT;
  770. if (!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH);
  771. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_ENABLE_PIN) && Y2_ENABLE_PIN >= 0
  772. Y2_ENABLE_INIT;
  773. if (!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH);
  774. #endif
  775. #endif
  776. #if defined(Z_ENABLE_PIN) && Z_ENABLE_PIN >= 0
  777. Z_ENABLE_INIT;
  778. if (!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH);
  779. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_ENABLE_PIN) && Z2_ENABLE_PIN >= 0
  780. Z2_ENABLE_INIT;
  781. if (!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH);
  782. #endif
  783. #endif
  784. #if defined(E0_ENABLE_PIN) && E0_ENABLE_PIN >= 0
  785. E0_ENABLE_INIT;
  786. if (!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH);
  787. #endif
  788. #if defined(E1_ENABLE_PIN) && E1_ENABLE_PIN >= 0
  789. E1_ENABLE_INIT;
  790. if (!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH);
  791. #endif
  792. #if defined(E2_ENABLE_PIN) && E2_ENABLE_PIN >= 0
  793. E2_ENABLE_INIT;
  794. if (!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH);
  795. #endif
  796. #if defined(E3_ENABLE_PIN) && E3_ENABLE_PIN >= 0
  797. E3_ENABLE_INIT;
  798. if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH);
  799. #endif
  800. //endstops and pullups
  801. #if defined(X_MIN_PIN) && X_MIN_PIN >= 0
  802. SET_INPUT(X_MIN_PIN);
  803. #ifdef ENDSTOPPULLUP_XMIN
  804. WRITE(X_MIN_PIN,HIGH);
  805. #endif
  806. #endif
  807. #if defined(Y_MIN_PIN) && Y_MIN_PIN >= 0
  808. SET_INPUT(Y_MIN_PIN);
  809. #ifdef ENDSTOPPULLUP_YMIN
  810. WRITE(Y_MIN_PIN,HIGH);
  811. #endif
  812. #endif
  813. #if defined(Z_MIN_PIN) && Z_MIN_PIN >= 0
  814. SET_INPUT(Z_MIN_PIN);
  815. #ifdef ENDSTOPPULLUP_ZMIN
  816. WRITE(Z_MIN_PIN,HIGH);
  817. #endif
  818. #endif
  819. #if defined(X_MAX_PIN) && X_MAX_PIN >= 0
  820. SET_INPUT(X_MAX_PIN);
  821. #ifdef ENDSTOPPULLUP_XMAX
  822. WRITE(X_MAX_PIN,HIGH);
  823. #endif
  824. #endif
  825. #if defined(Y_MAX_PIN) && Y_MAX_PIN >= 0
  826. SET_INPUT(Y_MAX_PIN);
  827. #ifdef ENDSTOPPULLUP_YMAX
  828. WRITE(Y_MAX_PIN,HIGH);
  829. #endif
  830. #endif
  831. #if defined(Z_MAX_PIN) && Z_MAX_PIN >= 0
  832. SET_INPUT(Z_MAX_PIN);
  833. #ifdef ENDSTOPPULLUP_ZMAX
  834. WRITE(Z_MAX_PIN,HIGH);
  835. #endif
  836. #endif
  837. #if defined(Z2_MAX_PIN) && Z2_MAX_PIN >= 0
  838. SET_INPUT(Z2_MAX_PIN);
  839. #ifdef ENDSTOPPULLUP_ZMAX
  840. WRITE(Z2_MAX_PIN,HIGH);
  841. #endif
  842. #endif
  843. #define AXIS_INIT(axis, AXIS, PIN) \
  844. AXIS ##_STEP_INIT; \
  845. AXIS ##_STEP_WRITE(INVERT_## PIN ##_STEP_PIN); \
  846. disable_## axis()
  847. #define E_AXIS_INIT(NUM) AXIS_INIT(e## NUM, E## NUM, E)
  848. // Initialize Step Pins
  849. #if defined(X_STEP_PIN) && X_STEP_PIN >= 0
  850. AXIS_INIT(x, X, X);
  851. #endif
  852. #if defined(X2_STEP_PIN) && X2_STEP_PIN >= 0
  853. AXIS_INIT(x, X2, X);
  854. #endif
  855. #if defined(Y_STEP_PIN) && Y_STEP_PIN >= 0
  856. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_STEP_PIN) && Y2_STEP_PIN >= 0
  857. Y2_STEP_INIT;
  858. Y2_STEP_WRITE(INVERT_Y_STEP_PIN);
  859. #endif
  860. AXIS_INIT(y, Y, Y);
  861. #endif
  862. #if defined(Z_STEP_PIN) && Z_STEP_PIN >= 0
  863. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_STEP_PIN) && Z2_STEP_PIN >= 0
  864. Z2_STEP_INIT;
  865. Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
  866. #endif
  867. AXIS_INIT(z, Z, Z);
  868. #endif
  869. #if defined(E0_STEP_PIN) && E0_STEP_PIN >= 0
  870. E_AXIS_INIT(0);
  871. #endif
  872. #if defined(E1_STEP_PIN) && E1_STEP_PIN >= 0
  873. E_AXIS_INIT(1);
  874. #endif
  875. #if defined(E2_STEP_PIN) && E2_STEP_PIN >= 0
  876. E_AXIS_INIT(2);
  877. #endif
  878. #if defined(E3_STEP_PIN) && E3_STEP_PIN >= 0
  879. E_AXIS_INIT(3);
  880. #endif
  881. // waveform generation = 0100 = CTC
  882. TCCR1B &= ~BIT(WGM13);
  883. TCCR1B |= BIT(WGM12);
  884. TCCR1A &= ~BIT(WGM11);
  885. TCCR1A &= ~BIT(WGM10);
  886. // output mode = 00 (disconnected)
  887. TCCR1A &= ~(3<<COM1A0);
  888. TCCR1A &= ~(3<<COM1B0);
  889. // Set the timer pre-scaler
  890. // Generally we use a divider of 8, resulting in a 2MHz timer
  891. // frequency on a 16MHz MCU. If you are going to change this, be
  892. // sure to regenerate speed_lookuptable.h with
  893. // create_speed_lookuptable.py
  894. TCCR1B = (TCCR1B & ~(0x07<<CS10)) | (2<<CS10);
  895. OCR1A = 0x4000;
  896. TCNT1 = 0;
  897. ENABLE_STEPPER_DRIVER_INTERRUPT();
  898. #ifdef ADVANCE
  899. #if defined(TCCR0A) && defined(WGM01)
  900. TCCR0A &= ~BIT(WGM01);
  901. TCCR0A &= ~BIT(WGM00);
  902. #endif
  903. e_steps[0] = 0;
  904. e_steps[1] = 0;
  905. e_steps[2] = 0;
  906. e_steps[3] = 0;
  907. TIMSK0 |= BIT(OCIE0A);
  908. #endif //ADVANCE
  909. enable_endstops(true); // Start with endstops active. After homing they can be disabled
  910. sei();
  911. }
  912. // Block until all buffered steps are executed
  913. void st_synchronize() {
  914. while (blocks_queued()) {
  915. manage_heater();
  916. manage_inactivity();
  917. lcd_update();
  918. }
  919. }
  920. void st_set_position(const long &x, const long &y, const long &z, const long &e) {
  921. CRITICAL_SECTION_START;
  922. count_position[X_AXIS] = x;
  923. count_position[Y_AXIS] = y;
  924. count_position[Z_AXIS] = z;
  925. count_position[E_AXIS] = e;
  926. CRITICAL_SECTION_END;
  927. }
  928. void st_set_e_position(const long &e) {
  929. CRITICAL_SECTION_START;
  930. count_position[E_AXIS] = e;
  931. CRITICAL_SECTION_END;
  932. }
  933. long st_get_position(uint8_t axis) {
  934. long count_pos;
  935. CRITICAL_SECTION_START;
  936. count_pos = count_position[axis];
  937. CRITICAL_SECTION_END;
  938. return count_pos;
  939. }
  940. #ifdef ENABLE_AUTO_BED_LEVELING
  941. float st_get_position_mm(uint8_t axis) {
  942. float steper_position_in_steps = st_get_position(axis);
  943. return steper_position_in_steps / axis_steps_per_unit[axis];
  944. }
  945. #endif // ENABLE_AUTO_BED_LEVELING
  946. void finishAndDisableSteppers() {
  947. st_synchronize();
  948. disable_x();
  949. disable_y();
  950. disable_z();
  951. disable_e0();
  952. disable_e1();
  953. disable_e2();
  954. disable_e3();
  955. }
  956. void quickStop() {
  957. cleaning_buffer_counter = 5000;
  958. DISABLE_STEPPER_DRIVER_INTERRUPT();
  959. while (blocks_queued()) plan_discard_current_block();
  960. current_block = NULL;
  961. ENABLE_STEPPER_DRIVER_INTERRUPT();
  962. }
  963. #ifdef BABYSTEPPING
  964. // MUST ONLY BE CALLED BY AN ISR,
  965. // No other ISR should ever interrupt this!
  966. void babystep(const uint8_t axis, const bool direction) {
  967. #define BABYSTEP_AXIS(axis, AXIS, INVERT) { \
  968. enable_## axis(); \
  969. uint8_t old_pin = AXIS ##_DIR_READ; \
  970. AXIS ##_APPLY_DIR(INVERT_## AXIS ##_DIR^direction^INVERT, true); \
  971. AXIS ##_APPLY_STEP(!INVERT_## AXIS ##_STEP_PIN, true); \
  972. _delay_us(1U); \
  973. AXIS ##_APPLY_STEP(INVERT_## AXIS ##_STEP_PIN, true); \
  974. AXIS ##_APPLY_DIR(old_pin, true); \
  975. }
  976. switch(axis) {
  977. case X_AXIS:
  978. BABYSTEP_AXIS(x, X, false);
  979. break;
  980. case Y_AXIS:
  981. BABYSTEP_AXIS(y, Y, false);
  982. break;
  983. case Z_AXIS: {
  984. #ifndef DELTA
  985. BABYSTEP_AXIS(z, Z, BABYSTEP_INVERT_Z);
  986. #else // DELTA
  987. bool z_direction = direction ^ BABYSTEP_INVERT_Z;
  988. enable_x();
  989. enable_y();
  990. enable_z();
  991. uint8_t old_x_dir_pin = X_DIR_READ,
  992. old_y_dir_pin = Y_DIR_READ,
  993. old_z_dir_pin = Z_DIR_READ;
  994. //setup new step
  995. X_DIR_WRITE(INVERT_X_DIR^z_direction);
  996. Y_DIR_WRITE(INVERT_Y_DIR^z_direction);
  997. Z_DIR_WRITE(INVERT_Z_DIR^z_direction);
  998. //perform step
  999. X_STEP_WRITE(!INVERT_X_STEP_PIN);
  1000. Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
  1001. Z_STEP_WRITE(!INVERT_Z_STEP_PIN);
  1002. _delay_us(1U);
  1003. X_STEP_WRITE(INVERT_X_STEP_PIN);
  1004. Y_STEP_WRITE(INVERT_Y_STEP_PIN);
  1005. Z_STEP_WRITE(INVERT_Z_STEP_PIN);
  1006. //get old pin state back.
  1007. X_DIR_WRITE(old_x_dir_pin);
  1008. Y_DIR_WRITE(old_y_dir_pin);
  1009. Z_DIR_WRITE(old_z_dir_pin);
  1010. #endif
  1011. } break;
  1012. default: break;
  1013. }
  1014. }
  1015. #endif //BABYSTEPPING
  1016. // From Arduino DigitalPotControl example
  1017. void digitalPotWrite(int address, int value) {
  1018. #if HAS_DIGIPOTSS
  1019. digitalWrite(DIGIPOTSS_PIN,LOW); // take the SS pin low to select the chip
  1020. SPI.transfer(address); // send in the address and value via SPI:
  1021. SPI.transfer(value);
  1022. digitalWrite(DIGIPOTSS_PIN,HIGH); // take the SS pin high to de-select the chip:
  1023. //delay(10);
  1024. #endif
  1025. }
  1026. // Initialize Digipot Motor Current
  1027. void digipot_init() {
  1028. #if HAS_DIGIPOTSS
  1029. const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
  1030. SPI.begin();
  1031. pinMode(DIGIPOTSS_PIN, OUTPUT);
  1032. for (int i = 0; i <= 4; i++) {
  1033. //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
  1034. digipot_current(i,digipot_motor_current[i]);
  1035. }
  1036. #endif
  1037. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  1038. pinMode(MOTOR_CURRENT_PWM_XY_PIN, OUTPUT);
  1039. pinMode(MOTOR_CURRENT_PWM_Z_PIN, OUTPUT);
  1040. pinMode(MOTOR_CURRENT_PWM_E_PIN, OUTPUT);
  1041. digipot_current(0, motor_current_setting[0]);
  1042. digipot_current(1, motor_current_setting[1]);
  1043. digipot_current(2, motor_current_setting[2]);
  1044. //Set timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
  1045. TCCR5B = (TCCR5B & ~(_BV(CS50) | _BV(CS51) | _BV(CS52))) | _BV(CS50);
  1046. #endif
  1047. }
  1048. void digipot_current(uint8_t driver, int current) {
  1049. #if HAS_DIGIPOTSS
  1050. const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
  1051. digitalPotWrite(digipot_ch[driver], current);
  1052. #endif
  1053. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  1054. switch(driver) {
  1055. case 0: analogWrite(MOTOR_CURRENT_PWM_XY_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
  1056. case 1: analogWrite(MOTOR_CURRENT_PWM_Z_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
  1057. case 2: analogWrite(MOTOR_CURRENT_PWM_E_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
  1058. }
  1059. #endif
  1060. }
  1061. void microstep_init() {
  1062. #if defined(E1_MS1_PIN) && E1_MS1_PIN >= 0
  1063. pinMode(E1_MS1_PIN,OUTPUT);
  1064. pinMode(E1_MS2_PIN,OUTPUT);
  1065. #endif
  1066. #if defined(X_MS1_PIN) && X_MS1_PIN >= 0
  1067. pinMode(X_MS1_PIN,OUTPUT);
  1068. pinMode(X_MS2_PIN,OUTPUT);
  1069. pinMode(Y_MS1_PIN,OUTPUT);
  1070. pinMode(Y_MS2_PIN,OUTPUT);
  1071. pinMode(Z_MS1_PIN,OUTPUT);
  1072. pinMode(Z_MS2_PIN,OUTPUT);
  1073. pinMode(E0_MS1_PIN,OUTPUT);
  1074. pinMode(E0_MS2_PIN,OUTPUT);
  1075. const uint8_t microstep_modes[] = MICROSTEP_MODES;
  1076. for (int i = 0; i < sizeof(microstep_modes) / sizeof(microstep_modes[0]); i++)
  1077. microstep_mode(i, microstep_modes[i]);
  1078. #endif
  1079. }
  1080. void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2) {
  1081. if (ms1 >= 0) switch(driver) {
  1082. case 0: digitalWrite(X_MS1_PIN, ms1); break;
  1083. case 1: digitalWrite(Y_MS1_PIN, ms1); break;
  1084. case 2: digitalWrite(Z_MS1_PIN, ms1); break;
  1085. case 3: digitalWrite(E0_MS1_PIN, ms1); break;
  1086. #if defined(E1_MS1_PIN) && E1_MS1_PIN >= 0
  1087. case 4: digitalWrite(E1_MS1_PIN, ms1); break;
  1088. #endif
  1089. }
  1090. if (ms2 >= 0) switch(driver) {
  1091. case 0: digitalWrite(X_MS2_PIN, ms2); break;
  1092. case 1: digitalWrite(Y_MS2_PIN, ms2); break;
  1093. case 2: digitalWrite(Z_MS2_PIN, ms2); break;
  1094. case 3: digitalWrite(E0_MS2_PIN, ms2); break;
  1095. #if defined(E1_MS2_PIN) && E1_MS2_PIN >= 0
  1096. case 4: digitalWrite(E1_MS2_PIN, ms2); break;
  1097. #endif
  1098. }
  1099. }
  1100. void microstep_mode(uint8_t driver, uint8_t stepping_mode) {
  1101. switch(stepping_mode) {
  1102. case 1: microstep_ms(driver,MICROSTEP1); break;
  1103. case 2: microstep_ms(driver,MICROSTEP2); break;
  1104. case 4: microstep_ms(driver,MICROSTEP4); break;
  1105. case 8: microstep_ms(driver,MICROSTEP8); break;
  1106. case 16: microstep_ms(driver,MICROSTEP16); break;
  1107. }
  1108. }
  1109. void microstep_readings() {
  1110. SERIAL_PROTOCOLPGM("MS1,MS2 Pins\n");
  1111. SERIAL_PROTOCOLPGM("X: ");
  1112. SERIAL_PROTOCOL(digitalRead(X_MS1_PIN));
  1113. SERIAL_PROTOCOLLN(digitalRead(X_MS2_PIN));
  1114. SERIAL_PROTOCOLPGM("Y: ");
  1115. SERIAL_PROTOCOL(digitalRead(Y_MS1_PIN));
  1116. SERIAL_PROTOCOLLN(digitalRead(Y_MS2_PIN));
  1117. SERIAL_PROTOCOLPGM("Z: ");
  1118. SERIAL_PROTOCOL(digitalRead(Z_MS1_PIN));
  1119. SERIAL_PROTOCOLLN(digitalRead(Z_MS2_PIN));
  1120. SERIAL_PROTOCOLPGM("E0: ");
  1121. SERIAL_PROTOCOL(digitalRead(E0_MS1_PIN));
  1122. SERIAL_PROTOCOLLN(digitalRead(E0_MS2_PIN));
  1123. #if defined(E1_MS1_PIN) && E1_MS1_PIN >= 0
  1124. SERIAL_PROTOCOLPGM("E1: ");
  1125. SERIAL_PROTOCOL(digitalRead(E1_MS1_PIN));
  1126. SERIAL_PROTOCOLLN(digitalRead(E1_MS2_PIN));
  1127. #endif
  1128. }
  1129. #ifdef Z_DUAL_ENDSTOPS
  1130. void In_Homing_Process(bool state) { performing_homing = state; }
  1131. void Lock_z_motor(bool state) { locked_z_motor = state; }
  1132. void Lock_z2_motor(bool state) { locked_z2_motor = state; }
  1133. #endif