123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110 |
- /*
- stepper.h - stepper motor driver: executes motion plans of planner.c using the stepper motors
- Part of Grbl
-
- Copyright (c) 2009-2011 Simen Svale Skogsrud
-
- Grbl is free software: you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation, either version 3 of the License, or
- (at your option) any later version.
-
- Grbl is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with Grbl. If not, see <http://www.gnu.org/licenses/>.
- */
-
- #ifndef stepper_h
- #define stepper_h
-
- #include "planner.h"
- #include "stepper_indirection.h"
-
- #if EXTRUDERS > 3
- #define E_STEP_WRITE(v) { if(current_block->active_extruder == 3) { E3_STEP_WRITE(v); } else { if(current_block->active_extruder == 2) { E2_STEP_WRITE(v); } else { if(current_block->active_extruder == 1) { E1_STEP_WRITE(v); } else { E0_STEP_WRITE(v); }}}}
- #define NORM_E_DIR() { if(current_block->active_extruder == 3) { E3_DIR_WRITE( !INVERT_E3_DIR); } else { if(current_block->active_extruder == 2) { E2_DIR_WRITE(!INVERT_E2_DIR); } else { if(current_block->active_extruder == 1) { E1_DIR_WRITE(!INVERT_E1_DIR); } else { E0_DIR_WRITE(!INVERT_E0_DIR); }}}}
- #define REV_E_DIR() { if(current_block->active_extruder == 3) { E3_DIR_WRITE(INVERT_E3_DIR); } else { if(current_block->active_extruder == 2) { E2_DIR_WRITE(INVERT_E2_DIR); } else { if(current_block->active_extruder == 1) { E1_DIR_WRITE(INVERT_E1_DIR); } else { E0_DIR_WRITE(INVERT_E0_DIR); }}}}
- #elif EXTRUDERS > 2
- #define E_STEP_WRITE(v) { if(current_block->active_extruder == 2) { E2_STEP_WRITE(v); } else { if(current_block->active_extruder == 1) { E1_STEP_WRITE(v); } else { E0_STEP_WRITE(v); }}}
- #define NORM_E_DIR() { if(current_block->active_extruder == 2) { E2_DIR_WRITE(!INVERT_E2_DIR); } else { if(current_block->active_extruder == 1) { E1_DIR_WRITE(!INVERT_E1_DIR); } else { E0_DIR_WRITE(!INVERT_E0_DIR); }}}
- #define REV_E_DIR() { if(current_block->active_extruder == 2) { E2_DIR_WRITE(INVERT_E2_DIR); } else { if(current_block->active_extruder == 1) { E1_DIR_WRITE(INVERT_E1_DIR); } else { E0_DIR_WRITE(INVERT_E0_DIR); }}}
- #elif EXTRUDERS > 1
- #ifndef DUAL_X_CARRIAGE
- #define E_STEP_WRITE(v) { if(current_block->active_extruder == 1) { E1_STEP_WRITE(v); } else { E0_STEP_WRITE(v); }}
- #define NORM_E_DIR() { if(current_block->active_extruder == 1) { E1_DIR_WRITE(!INVERT_E1_DIR); } else { E0_DIR_WRITE(!INVERT_E0_DIR); }}
- #define REV_E_DIR() { if(current_block->active_extruder == 1) { E1_DIR_WRITE(INVERT_E1_DIR); } else { E0_DIR_WRITE(INVERT_E0_DIR); }}
- #else
- extern bool extruder_duplication_enabled;
- #define E_STEP_WRITE(v) { if(extruder_duplication_enabled) { E0_STEP_WRITE(v); E1_STEP_WRITE(v); } else if(current_block->active_extruder == 1) { E1_STEP_WRITE(v); } else { E0_STEP_WRITE(v); }}
- #define NORM_E_DIR() { if(extruder_duplication_enabled) { E0_DIR_WRITE(!INVERT_E0_DIR); E1_DIR_WRITE(!INVERT_E1_DIR); } else if(current_block->active_extruder == 1) { E1_DIR_WRITE(!INVERT_E1_DIR); } else { E0_DIR_WRITE(!INVERT_E0_DIR); }}
- #define REV_E_DIR() { if(extruder_duplication_enabled) { E0_DIR_WRITE(INVERT_E0_DIR); E1_DIR_WRITE(INVERT_E1_DIR); } else if(current_block->active_extruder == 1) { E1_DIR_WRITE(INVERT_E1_DIR); } else { E0_DIR_WRITE(INVERT_E0_DIR); }}
- #endif
- #else
- #define E_STEP_WRITE(v) E0_STEP_WRITE(v)
- #define NORM_E_DIR() E0_DIR_WRITE(!INVERT_E0_DIR)
- #define REV_E_DIR() E0_DIR_WRITE(INVERT_E0_DIR)
- #endif
-
- #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
- extern bool abort_on_endstop_hit;
- #endif
-
- // Initialize and start the stepper motor subsystem
- void st_init();
-
- // Block until all buffered steps are executed
- void st_synchronize();
-
- // Set current position in steps
- void st_set_position(const long &x, const long &y, const long &z, const long &e);
- void st_set_e_position(const long &e);
-
- // Get current position in steps
- long st_get_position(uint8_t axis);
-
- #ifdef ENABLE_AUTO_BED_LEVELING
- // Get current position in mm
- float st_get_position_mm(uint8_t axis);
- #endif //ENABLE_AUTO_BED_LEVELING
-
- // The stepper subsystem goes to sleep when it runs out of things to execute. Call this
- // to notify the subsystem that it is time to go to work.
- void st_wake_up();
-
-
- void checkHitEndstops(); //call from somewhere to create an serial error message with the locations the endstops where hit, in case they were triggered
- void endstops_hit_on_purpose(); //avoid creation of the message, i.e. after homing and before a routine call of checkHitEndstops();
-
- void enable_endstops(bool check); // Enable/disable endstop checking
-
- void checkStepperErrors(); //Print errors detected by the stepper
-
- void finishAndDisableSteppers();
-
- extern block_t *current_block; // A pointer to the block currently being traced
-
- void quickStop();
-
- void digitalPotWrite(int address, int value);
- void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2);
- void microstep_mode(uint8_t driver, uint8_t stepping);
- void digipot_init();
- void digipot_current(uint8_t driver, int current);
- void microstep_init();
- void microstep_readings();
-
- #ifdef Z_DUAL_ENDSTOPS
- void In_Homing_Process(bool state);
- void Lock_z_motor(bool state);
- void Lock_z2_motor(bool state);
- #endif
-
- #ifdef BABYSTEPPING
- void babystep(const uint8_t axis,const bool direction); // perform a short step with a single stepper motor, outside of any convention
- #endif
-
- #endif
|