My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Vous ne pouvez pas sélectionner plus de 25 sujets Les noms de sujets doivent commencer par une lettre ou un nombre, peuvent contenir des tirets ('-') et peuvent comporter jusqu'à 35 caractères.

stepper.cpp 30KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010
  1. /*
  2. stepper.c - stepper motor driver: executes motion plans using stepper motors
  3. Part of Grbl
  4. Copyright (c) 2009-2011 Simen Svale Skogsrud
  5. Grbl is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. Grbl is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
  17. and Philipp Tiefenbacher. */
  18. #include "Marlin.h"
  19. #include "stepper.h"
  20. #include "planner.h"
  21. #include "temperature.h"
  22. #include "ultralcd.h"
  23. #include "language.h"
  24. #include "cardreader.h"
  25. #include "speed_lookuptable.h"
  26. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  27. #include <SPI.h>
  28. #endif
  29. //===========================================================================
  30. //=============================public variables ============================
  31. //===========================================================================
  32. block_t *current_block; // A pointer to the block currently being traced
  33. //===========================================================================
  34. //=============================private variables ============================
  35. //===========================================================================
  36. //static makes it inpossible to be called from outside of this file by extern.!
  37. // Variables used by The Stepper Driver Interrupt
  38. static unsigned char out_bits; // The next stepping-bits to be output
  39. static long counter_x, // Counter variables for the bresenham line tracer
  40. counter_y,
  41. counter_z,
  42. counter_e;
  43. volatile static unsigned long step_events_completed; // The number of step events executed in the current block
  44. #ifdef ADVANCE
  45. static long advance_rate, advance, final_advance = 0;
  46. static long old_advance = 0;
  47. static long e_steps[3];
  48. #endif
  49. static long acceleration_time, deceleration_time;
  50. //static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
  51. static unsigned short acc_step_rate; // needed for deccelaration start point
  52. static char step_loops;
  53. static unsigned short OCR1A_nominal;
  54. static unsigned short step_loops_nominal;
  55. volatile long endstops_trigsteps[3]={0,0,0};
  56. volatile long endstops_stepsTotal,endstops_stepsDone;
  57. static volatile bool endstop_x_hit=false;
  58. static volatile bool endstop_y_hit=false;
  59. static volatile bool endstop_z_hit=false;
  60. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  61. bool abort_on_endstop_hit = false;
  62. #endif
  63. static bool old_x_min_endstop=false;
  64. static bool old_x_max_endstop=false;
  65. static bool old_y_min_endstop=false;
  66. static bool old_y_max_endstop=false;
  67. static bool old_z_min_endstop=false;
  68. static bool old_z_max_endstop=false;
  69. static bool check_endstops = true;
  70. volatile long count_position[NUM_AXIS] = { 0, 0, 0, 0};
  71. volatile signed char count_direction[NUM_AXIS] = { 1, 1, 1, 1};
  72. //===========================================================================
  73. //=============================functions ============================
  74. //===========================================================================
  75. #define CHECK_ENDSTOPS if(check_endstops)
  76. // intRes = intIn1 * intIn2 >> 16
  77. // uses:
  78. // r26 to store 0
  79. // r27 to store the byte 1 of the 24 bit result
  80. #define MultiU16X8toH16(intRes, charIn1, intIn2) \
  81. asm volatile ( \
  82. "clr r26 \n\t" \
  83. "mul %A1, %B2 \n\t" \
  84. "movw %A0, r0 \n\t" \
  85. "mul %A1, %A2 \n\t" \
  86. "add %A0, r1 \n\t" \
  87. "adc %B0, r26 \n\t" \
  88. "lsr r0 \n\t" \
  89. "adc %A0, r26 \n\t" \
  90. "adc %B0, r26 \n\t" \
  91. "clr r1 \n\t" \
  92. : \
  93. "=&r" (intRes) \
  94. : \
  95. "d" (charIn1), \
  96. "d" (intIn2) \
  97. : \
  98. "r26" \
  99. )
  100. // intRes = longIn1 * longIn2 >> 24
  101. // uses:
  102. // r26 to store 0
  103. // r27 to store the byte 1 of the 48bit result
  104. #define MultiU24X24toH16(intRes, longIn1, longIn2) \
  105. asm volatile ( \
  106. "clr r26 \n\t" \
  107. "mul %A1, %B2 \n\t" \
  108. "mov r27, r1 \n\t" \
  109. "mul %B1, %C2 \n\t" \
  110. "movw %A0, r0 \n\t" \
  111. "mul %C1, %C2 \n\t" \
  112. "add %B0, r0 \n\t" \
  113. "mul %C1, %B2 \n\t" \
  114. "add %A0, r0 \n\t" \
  115. "adc %B0, r1 \n\t" \
  116. "mul %A1, %C2 \n\t" \
  117. "add r27, r0 \n\t" \
  118. "adc %A0, r1 \n\t" \
  119. "adc %B0, r26 \n\t" \
  120. "mul %B1, %B2 \n\t" \
  121. "add r27, r0 \n\t" \
  122. "adc %A0, r1 \n\t" \
  123. "adc %B0, r26 \n\t" \
  124. "mul %C1, %A2 \n\t" \
  125. "add r27, r0 \n\t" \
  126. "adc %A0, r1 \n\t" \
  127. "adc %B0, r26 \n\t" \
  128. "mul %B1, %A2 \n\t" \
  129. "add r27, r1 \n\t" \
  130. "adc %A0, r26 \n\t" \
  131. "adc %B0, r26 \n\t" \
  132. "lsr r27 \n\t" \
  133. "adc %A0, r26 \n\t" \
  134. "adc %B0, r26 \n\t" \
  135. "clr r1 \n\t" \
  136. : \
  137. "=&r" (intRes) \
  138. : \
  139. "d" (longIn1), \
  140. "d" (longIn2) \
  141. : \
  142. "r26" , "r27" \
  143. )
  144. // Some useful constants
  145. #define ENABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 |= (1<<OCIE1A)
  146. #define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~(1<<OCIE1A)
  147. void checkHitEndstops()
  148. {
  149. if( endstop_x_hit || endstop_y_hit || endstop_z_hit) {
  150. SERIAL_ECHO_START;
  151. SERIAL_ECHOPGM(MSG_ENDSTOPS_HIT);
  152. if(endstop_x_hit) {
  153. SERIAL_ECHOPAIR(" X:",(float)endstops_trigsteps[X_AXIS]/axis_steps_per_unit[X_AXIS]);
  154. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "X");
  155. }
  156. if(endstop_y_hit) {
  157. SERIAL_ECHOPAIR(" Y:",(float)endstops_trigsteps[Y_AXIS]/axis_steps_per_unit[Y_AXIS]);
  158. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Y");
  159. }
  160. if(endstop_z_hit) {
  161. SERIAL_ECHOPAIR(" Z:",(float)endstops_trigsteps[Z_AXIS]/axis_steps_per_unit[Z_AXIS]);
  162. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Z");
  163. }
  164. SERIAL_ECHOLN("");
  165. endstop_x_hit=false;
  166. endstop_y_hit=false;
  167. endstop_z_hit=false;
  168. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  169. if (abort_on_endstop_hit)
  170. {
  171. card.sdprinting = false;
  172. card.closefile();
  173. quickStop();
  174. setTargetHotend0(0);
  175. setTargetHotend1(0);
  176. setTargetHotend2(0);
  177. }
  178. #endif
  179. }
  180. }
  181. void endstops_hit_on_purpose()
  182. {
  183. endstop_x_hit=false;
  184. endstop_y_hit=false;
  185. endstop_z_hit=false;
  186. }
  187. void enable_endstops(bool check)
  188. {
  189. check_endstops = check;
  190. }
  191. // __________________________
  192. // /| |\ _________________ ^
  193. // / | | \ /| |\ |
  194. // / | | \ / | | \ s
  195. // / | | | | | \ p
  196. // / | | | | | \ e
  197. // +-----+------------------------+---+--+---------------+----+ e
  198. // | BLOCK 1 | BLOCK 2 | d
  199. //
  200. // time ----->
  201. //
  202. // The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
  203. // first block->accelerate_until step_events_completed, then keeps going at constant speed until
  204. // step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
  205. // The slope of acceleration is calculated with the leib ramp alghorithm.
  206. void st_wake_up() {
  207. // TCNT1 = 0;
  208. ENABLE_STEPPER_DRIVER_INTERRUPT();
  209. }
  210. void step_wait(){
  211. for(int8_t i=0; i < 6; i++){
  212. }
  213. }
  214. FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {
  215. unsigned short timer;
  216. if(step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY;
  217. if(step_rate > 20000) { // If steprate > 20kHz >> step 4 times
  218. step_rate = (step_rate >> 2)&0x3fff;
  219. step_loops = 4;
  220. }
  221. else if(step_rate > 10000) { // If steprate > 10kHz >> step 2 times
  222. step_rate = (step_rate >> 1)&0x7fff;
  223. step_loops = 2;
  224. }
  225. else {
  226. step_loops = 1;
  227. }
  228. if(step_rate < (F_CPU/500000)) step_rate = (F_CPU/500000);
  229. step_rate -= (F_CPU/500000); // Correct for minimal speed
  230. if(step_rate >= (8*256)){ // higher step rate
  231. unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0];
  232. unsigned char tmp_step_rate = (step_rate & 0x00ff);
  233. unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2);
  234. MultiU16X8toH16(timer, tmp_step_rate, gain);
  235. timer = (unsigned short)pgm_read_word_near(table_address) - timer;
  236. }
  237. else { // lower step rates
  238. unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
  239. table_address += ((step_rate)>>1) & 0xfffc;
  240. timer = (unsigned short)pgm_read_word_near(table_address);
  241. timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3);
  242. }
  243. if(timer < 100) { timer = 100; MYSERIAL.print(MSG_STEPPER_TOO_HIGH); MYSERIAL.println(step_rate); }//(20kHz this should never happen)
  244. return timer;
  245. }
  246. // Initializes the trapezoid generator from the current block. Called whenever a new
  247. // block begins.
  248. FORCE_INLINE void trapezoid_generator_reset() {
  249. #ifdef ADVANCE
  250. advance = current_block->initial_advance;
  251. final_advance = current_block->final_advance;
  252. // Do E steps + advance steps
  253. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  254. old_advance = advance >>8;
  255. #endif
  256. deceleration_time = 0;
  257. // step_rate to timer interval
  258. OCR1A_nominal = calc_timer(current_block->nominal_rate);
  259. // make a note of the number of step loops required at nominal speed
  260. step_loops_nominal = step_loops;
  261. acc_step_rate = current_block->initial_rate;
  262. acceleration_time = calc_timer(acc_step_rate);
  263. OCR1A = acceleration_time;
  264. // SERIAL_ECHO_START;
  265. // SERIAL_ECHOPGM("advance :");
  266. // SERIAL_ECHO(current_block->advance/256.0);
  267. // SERIAL_ECHOPGM("advance rate :");
  268. // SERIAL_ECHO(current_block->advance_rate/256.0);
  269. // SERIAL_ECHOPGM("initial advance :");
  270. // SERIAL_ECHO(current_block->initial_advance/256.0);
  271. // SERIAL_ECHOPGM("final advance :");
  272. // SERIAL_ECHOLN(current_block->final_advance/256.0);
  273. }
  274. // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
  275. // It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
  276. ISR(TIMER1_COMPA_vect)
  277. {
  278. // If there is no current block, attempt to pop one from the buffer
  279. if (current_block == NULL) {
  280. // Anything in the buffer?
  281. current_block = plan_get_current_block();
  282. if (current_block != NULL) {
  283. current_block->busy = true;
  284. trapezoid_generator_reset();
  285. counter_x = -(current_block->step_event_count >> 1);
  286. counter_y = counter_x;
  287. counter_z = counter_x;
  288. counter_e = counter_x;
  289. step_events_completed = 0;
  290. #ifdef Z_LATE_ENABLE
  291. if(current_block->steps_z > 0) {
  292. enable_z();
  293. OCR1A = 2000; //1ms wait
  294. return;
  295. }
  296. #endif
  297. // #ifdef ADVANCE
  298. // e_steps[current_block->active_extruder] = 0;
  299. // #endif
  300. }
  301. else {
  302. OCR1A=2000; // 1kHz.
  303. }
  304. }
  305. if (current_block != NULL) {
  306. // Set directions TO DO This should be done once during init of trapezoid. Endstops -> interrupt
  307. out_bits = current_block->direction_bits;
  308. // Set the direction bits (X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY)
  309. if((out_bits & (1<<X_AXIS))!=0){
  310. WRITE(X_DIR_PIN, INVERT_X_DIR);
  311. count_direction[X_AXIS]=-1;
  312. }
  313. else{
  314. WRITE(X_DIR_PIN, !INVERT_X_DIR);
  315. count_direction[X_AXIS]=1;
  316. }
  317. if((out_bits & (1<<Y_AXIS))!=0){
  318. WRITE(Y_DIR_PIN, INVERT_Y_DIR);
  319. count_direction[Y_AXIS]=-1;
  320. }
  321. else{
  322. WRITE(Y_DIR_PIN, !INVERT_Y_DIR);
  323. count_direction[Y_AXIS]=1;
  324. }
  325. // Set direction en check limit switches
  326. #ifndef COREXY
  327. if ((out_bits & (1<<X_AXIS)) != 0) { // stepping along -X axis
  328. #else
  329. if ((((out_bits & (1<<X_AXIS)) != 0)&&(out_bits & (1<<Y_AXIS)) != 0)) { //-X occurs for -A and -B
  330. #endif
  331. CHECK_ENDSTOPS
  332. {
  333. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  334. bool x_min_endstop=(READ(X_MIN_PIN) != X_ENDSTOPS_INVERTING);
  335. if(x_min_endstop && old_x_min_endstop && (current_block->steps_x > 0)) {
  336. endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
  337. endstop_x_hit=true;
  338. step_events_completed = current_block->step_event_count;
  339. }
  340. old_x_min_endstop = x_min_endstop;
  341. #endif
  342. }
  343. }
  344. else { // +direction
  345. CHECK_ENDSTOPS
  346. {
  347. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  348. bool x_max_endstop=(READ(X_MAX_PIN) != X_ENDSTOPS_INVERTING);
  349. if(x_max_endstop && old_x_max_endstop && (current_block->steps_x > 0)){
  350. endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
  351. endstop_x_hit=true;
  352. step_events_completed = current_block->step_event_count;
  353. }
  354. old_x_max_endstop = x_max_endstop;
  355. #endif
  356. }
  357. }
  358. #ifndef COREXY
  359. if ((out_bits & (1<<Y_AXIS)) != 0) { // -direction
  360. #else
  361. if ((((out_bits & (1<<X_AXIS)) != 0)&&(out_bits & (1<<Y_AXIS)) == 0)) { // -Y occurs for -A and +B
  362. #endif
  363. CHECK_ENDSTOPS
  364. {
  365. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  366. bool y_min_endstop=(READ(Y_MIN_PIN) != Y_ENDSTOPS_INVERTING);
  367. if(y_min_endstop && old_y_min_endstop && (current_block->steps_y > 0)) {
  368. endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
  369. endstop_y_hit=true;
  370. step_events_completed = current_block->step_event_count;
  371. }
  372. old_y_min_endstop = y_min_endstop;
  373. #endif
  374. }
  375. }
  376. else { // +direction
  377. CHECK_ENDSTOPS
  378. {
  379. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  380. bool y_max_endstop=(READ(Y_MAX_PIN) != Y_ENDSTOPS_INVERTING);
  381. if(y_max_endstop && old_y_max_endstop && (current_block->steps_y > 0)){
  382. endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
  383. endstop_y_hit=true;
  384. step_events_completed = current_block->step_event_count;
  385. }
  386. old_y_max_endstop = y_max_endstop;
  387. #endif
  388. }
  389. }
  390. if ((out_bits & (1<<Z_AXIS)) != 0) { // -direction
  391. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  392. #ifdef Z_DUAL_STEPPER_DRIVERS
  393. WRITE(Z2_DIR_PIN,INVERT_Z_DIR);
  394. #endif
  395. count_direction[Z_AXIS]=-1;
  396. CHECK_ENDSTOPS
  397. {
  398. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  399. bool z_min_endstop=(READ(Z_MIN_PIN) != Z_ENDSTOPS_INVERTING);
  400. if(z_min_endstop && old_z_min_endstop && (current_block->steps_z > 0)) {
  401. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  402. endstop_z_hit=true;
  403. step_events_completed = current_block->step_event_count;
  404. }
  405. old_z_min_endstop = z_min_endstop;
  406. #endif
  407. }
  408. }
  409. else { // +direction
  410. WRITE(Z_DIR_PIN,!INVERT_Z_DIR);
  411. #ifdef Z_DUAL_STEPPER_DRIVERS
  412. WRITE(Z2_DIR_PIN,!INVERT_Z_DIR);
  413. #endif
  414. count_direction[Z_AXIS]=1;
  415. CHECK_ENDSTOPS
  416. {
  417. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  418. bool z_max_endstop=(READ(Z_MAX_PIN) != Z_ENDSTOPS_INVERTING);
  419. if(z_max_endstop && old_z_max_endstop && (current_block->steps_z > 0)) {
  420. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  421. endstop_z_hit=true;
  422. step_events_completed = current_block->step_event_count;
  423. }
  424. old_z_max_endstop = z_max_endstop;
  425. #endif
  426. }
  427. }
  428. #ifndef ADVANCE
  429. if ((out_bits & (1<<E_AXIS)) != 0) { // -direction
  430. REV_E_DIR();
  431. count_direction[E_AXIS]=-1;
  432. }
  433. else { // +direction
  434. NORM_E_DIR();
  435. count_direction[E_AXIS]=1;
  436. }
  437. #endif //!ADVANCE
  438. for(int8_t i=0; i < step_loops; i++) { // Take multiple steps per interrupt (For high speed moves)
  439. #ifndef AT90USB
  440. MSerial.checkRx(); // Check for serial chars.
  441. #endif
  442. #ifdef ADVANCE
  443. counter_e += current_block->steps_e;
  444. if (counter_e > 0) {
  445. counter_e -= current_block->step_event_count;
  446. if ((out_bits & (1<<E_AXIS)) != 0) { // - direction
  447. e_steps[current_block->active_extruder]--;
  448. }
  449. else {
  450. e_steps[current_block->active_extruder]++;
  451. }
  452. }
  453. #endif //ADVANCE
  454. counter_x += current_block->steps_x;
  455. if (counter_x > 0) {
  456. WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
  457. counter_x -= current_block->step_event_count;
  458. count_position[X_AXIS]+=count_direction[X_AXIS];
  459. WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
  460. }
  461. counter_y += current_block->steps_y;
  462. if (counter_y > 0) {
  463. WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
  464. counter_y -= current_block->step_event_count;
  465. count_position[Y_AXIS]+=count_direction[Y_AXIS];
  466. WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN);
  467. }
  468. counter_z += current_block->steps_z;
  469. if (counter_z > 0) {
  470. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  471. #ifdef Z_DUAL_STEPPER_DRIVERS
  472. WRITE(Z2_STEP_PIN, !INVERT_Z_STEP_PIN);
  473. #endif
  474. counter_z -= current_block->step_event_count;
  475. count_position[Z_AXIS]+=count_direction[Z_AXIS];
  476. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  477. #ifdef Z_DUAL_STEPPER_DRIVERS
  478. WRITE(Z2_STEP_PIN, INVERT_Z_STEP_PIN);
  479. #endif
  480. }
  481. #ifndef ADVANCE
  482. counter_e += current_block->steps_e;
  483. if (counter_e > 0) {
  484. WRITE_E_STEP(!INVERT_E_STEP_PIN);
  485. counter_e -= current_block->step_event_count;
  486. count_position[E_AXIS]+=count_direction[E_AXIS];
  487. WRITE_E_STEP(INVERT_E_STEP_PIN);
  488. }
  489. #endif //!ADVANCE
  490. step_events_completed += 1;
  491. if(step_events_completed >= current_block->step_event_count) break;
  492. }
  493. // Calculare new timer value
  494. unsigned short timer;
  495. unsigned short step_rate;
  496. if (step_events_completed <= (unsigned long int)current_block->accelerate_until) {
  497. MultiU24X24toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
  498. acc_step_rate += current_block->initial_rate;
  499. // upper limit
  500. if(acc_step_rate > current_block->nominal_rate)
  501. acc_step_rate = current_block->nominal_rate;
  502. // step_rate to timer interval
  503. timer = calc_timer(acc_step_rate);
  504. OCR1A = timer;
  505. acceleration_time += timer;
  506. #ifdef ADVANCE
  507. for(int8_t i=0; i < step_loops; i++) {
  508. advance += advance_rate;
  509. }
  510. //if(advance > current_block->advance) advance = current_block->advance;
  511. // Do E steps + advance steps
  512. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  513. old_advance = advance >>8;
  514. #endif
  515. }
  516. else if (step_events_completed > (unsigned long int)current_block->decelerate_after) {
  517. MultiU24X24toH16(step_rate, deceleration_time, current_block->acceleration_rate);
  518. if(step_rate > acc_step_rate) { // Check step_rate stays positive
  519. step_rate = current_block->final_rate;
  520. }
  521. else {
  522. step_rate = acc_step_rate - step_rate; // Decelerate from aceleration end point.
  523. }
  524. // lower limit
  525. if(step_rate < current_block->final_rate)
  526. step_rate = current_block->final_rate;
  527. // step_rate to timer interval
  528. timer = calc_timer(step_rate);
  529. OCR1A = timer;
  530. deceleration_time += timer;
  531. #ifdef ADVANCE
  532. for(int8_t i=0; i < step_loops; i++) {
  533. advance -= advance_rate;
  534. }
  535. if(advance < final_advance) advance = final_advance;
  536. // Do E steps + advance steps
  537. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  538. old_advance = advance >>8;
  539. #endif //ADVANCE
  540. }
  541. else {
  542. OCR1A = OCR1A_nominal;
  543. // ensure we're running at the correct step rate, even if we just came off an acceleration
  544. step_loops = step_loops_nominal;
  545. }
  546. // If current block is finished, reset pointer
  547. if (step_events_completed >= current_block->step_event_count) {
  548. current_block = NULL;
  549. plan_discard_current_block();
  550. }
  551. }
  552. }
  553. #ifdef ADVANCE
  554. unsigned char old_OCR0A;
  555. // Timer interrupt for E. e_steps is set in the main routine;
  556. // Timer 0 is shared with millies
  557. ISR(TIMER0_COMPA_vect)
  558. {
  559. old_OCR0A += 52; // ~10kHz interrupt (250000 / 26 = 9615kHz)
  560. OCR0A = old_OCR0A;
  561. // Set E direction (Depends on E direction + advance)
  562. for(unsigned char i=0; i<4;i++) {
  563. if (e_steps[0] != 0) {
  564. WRITE(E0_STEP_PIN, INVERT_E_STEP_PIN);
  565. if (e_steps[0] < 0) {
  566. WRITE(E0_DIR_PIN, INVERT_E0_DIR);
  567. e_steps[0]++;
  568. WRITE(E0_STEP_PIN, !INVERT_E_STEP_PIN);
  569. }
  570. else if (e_steps[0] > 0) {
  571. WRITE(E0_DIR_PIN, !INVERT_E0_DIR);
  572. e_steps[0]--;
  573. WRITE(E0_STEP_PIN, !INVERT_E_STEP_PIN);
  574. }
  575. }
  576. #if EXTRUDERS > 1
  577. if (e_steps[1] != 0) {
  578. WRITE(E1_STEP_PIN, INVERT_E_STEP_PIN);
  579. if (e_steps[1] < 0) {
  580. WRITE(E1_DIR_PIN, INVERT_E1_DIR);
  581. e_steps[1]++;
  582. WRITE(E1_STEP_PIN, !INVERT_E_STEP_PIN);
  583. }
  584. else if (e_steps[1] > 0) {
  585. WRITE(E1_DIR_PIN, !INVERT_E1_DIR);
  586. e_steps[1]--;
  587. WRITE(E1_STEP_PIN, !INVERT_E_STEP_PIN);
  588. }
  589. }
  590. #endif
  591. #if EXTRUDERS > 2
  592. if (e_steps[2] != 0) {
  593. WRITE(E2_STEP_PIN, INVERT_E_STEP_PIN);
  594. if (e_steps[2] < 0) {
  595. WRITE(E2_DIR_PIN, INVERT_E2_DIR);
  596. e_steps[2]++;
  597. WRITE(E2_STEP_PIN, !INVERT_E_STEP_PIN);
  598. }
  599. else if (e_steps[2] > 0) {
  600. WRITE(E2_DIR_PIN, !INVERT_E2_DIR);
  601. e_steps[2]--;
  602. WRITE(E2_STEP_PIN, !INVERT_E_STEP_PIN);
  603. }
  604. }
  605. #endif
  606. }
  607. }
  608. #endif // ADVANCE
  609. void st_init()
  610. {
  611. digipot_init(); //Initialize Digipot Motor Current
  612. microstep_init(); //Initialize Microstepping Pins
  613. //Initialize Dir Pins
  614. #if defined(X_DIR_PIN) && X_DIR_PIN > -1
  615. SET_OUTPUT(X_DIR_PIN);
  616. #endif
  617. #if defined(Y_DIR_PIN) && Y_DIR_PIN > -1
  618. SET_OUTPUT(Y_DIR_PIN);
  619. #endif
  620. #if defined(Z_DIR_PIN) && Z_DIR_PIN > -1
  621. SET_OUTPUT(Z_DIR_PIN);
  622. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_DIR_PIN) && (Z2_DIR_PIN > -1)
  623. SET_OUTPUT(Z2_DIR_PIN);
  624. #endif
  625. #endif
  626. #if defined(E0_DIR_PIN) && E0_DIR_PIN > -1
  627. SET_OUTPUT(E0_DIR_PIN);
  628. #endif
  629. #if defined(E1_DIR_PIN) && (E1_DIR_PIN > -1)
  630. SET_OUTPUT(E1_DIR_PIN);
  631. #endif
  632. #if defined(E2_DIR_PIN) && (E2_DIR_PIN > -1)
  633. SET_OUTPUT(E2_DIR_PIN);
  634. #endif
  635. //Initialize Enable Pins - steppers default to disabled.
  636. #if defined(X_ENABLE_PIN) && X_ENABLE_PIN > -1
  637. SET_OUTPUT(X_ENABLE_PIN);
  638. if(!X_ENABLE_ON) WRITE(X_ENABLE_PIN,HIGH);
  639. #endif
  640. #if defined(Y_ENABLE_PIN) && Y_ENABLE_PIN > -1
  641. SET_OUTPUT(Y_ENABLE_PIN);
  642. if(!Y_ENABLE_ON) WRITE(Y_ENABLE_PIN,HIGH);
  643. #endif
  644. #if defined(Z_ENABLE_PIN) && Z_ENABLE_PIN > -1
  645. SET_OUTPUT(Z_ENABLE_PIN);
  646. if(!Z_ENABLE_ON) WRITE(Z_ENABLE_PIN,HIGH);
  647. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_ENABLE_PIN) && (Z2_ENABLE_PIN > -1)
  648. SET_OUTPUT(Z2_ENABLE_PIN);
  649. if(!Z_ENABLE_ON) WRITE(Z2_ENABLE_PIN,HIGH);
  650. #endif
  651. #endif
  652. #if defined(E0_ENABLE_PIN) && (E0_ENABLE_PIN > -1)
  653. SET_OUTPUT(E0_ENABLE_PIN);
  654. if(!E_ENABLE_ON) WRITE(E0_ENABLE_PIN,HIGH);
  655. #endif
  656. #if defined(E1_ENABLE_PIN) && (E1_ENABLE_PIN > -1)
  657. SET_OUTPUT(E1_ENABLE_PIN);
  658. if(!E_ENABLE_ON) WRITE(E1_ENABLE_PIN,HIGH);
  659. #endif
  660. #if defined(E2_ENABLE_PIN) && (E2_ENABLE_PIN > -1)
  661. SET_OUTPUT(E2_ENABLE_PIN);
  662. if(!E_ENABLE_ON) WRITE(E2_ENABLE_PIN,HIGH);
  663. #endif
  664. //endstops and pullups
  665. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  666. SET_INPUT(X_MIN_PIN);
  667. #ifdef ENDSTOPPULLUP_XMIN
  668. WRITE(X_MIN_PIN,HIGH);
  669. #endif
  670. #endif
  671. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  672. SET_INPUT(Y_MIN_PIN);
  673. #ifdef ENDSTOPPULLUP_YMIN
  674. WRITE(Y_MIN_PIN,HIGH);
  675. #endif
  676. #endif
  677. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  678. SET_INPUT(Z_MIN_PIN);
  679. #ifdef ENDSTOPPULLUP_ZMIN
  680. WRITE(Z_MIN_PIN,HIGH);
  681. #endif
  682. #endif
  683. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  684. SET_INPUT(X_MAX_PIN);
  685. #ifdef ENDSTOPPULLUP_XMAX
  686. WRITE(X_MAX_PIN,HIGH);
  687. #endif
  688. #endif
  689. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  690. SET_INPUT(Y_MAX_PIN);
  691. #ifdef ENDSTOPPULLUP_YMAX
  692. WRITE(Y_MAX_PIN,HIGH);
  693. #endif
  694. #endif
  695. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  696. SET_INPUT(Z_MAX_PIN);
  697. #ifdef ENDSTOPPULLUP_ZMAX
  698. WRITE(Z_MAX_PIN,HIGH);
  699. #endif
  700. #endif
  701. //Initialize Step Pins
  702. #if defined(X_STEP_PIN) && (X_STEP_PIN > -1)
  703. SET_OUTPUT(X_STEP_PIN);
  704. WRITE(X_STEP_PIN,INVERT_X_STEP_PIN);
  705. disable_x();
  706. #endif
  707. #if defined(Y_STEP_PIN) && (Y_STEP_PIN > -1)
  708. SET_OUTPUT(Y_STEP_PIN);
  709. WRITE(Y_STEP_PIN,INVERT_Y_STEP_PIN);
  710. disable_y();
  711. #endif
  712. #if defined(Z_STEP_PIN) && (Z_STEP_PIN > -1)
  713. SET_OUTPUT(Z_STEP_PIN);
  714. WRITE(Z_STEP_PIN,INVERT_Z_STEP_PIN);
  715. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_STEP_PIN) && (Z2_STEP_PIN > -1)
  716. SET_OUTPUT(Z2_STEP_PIN);
  717. WRITE(Z2_STEP_PIN,INVERT_Z_STEP_PIN);
  718. #endif
  719. disable_z();
  720. #endif
  721. #if defined(E0_STEP_PIN) && (E0_STEP_PIN > -1)
  722. SET_OUTPUT(E0_STEP_PIN);
  723. WRITE(E0_STEP_PIN,INVERT_E_STEP_PIN);
  724. disable_e0();
  725. #endif
  726. #if defined(E1_STEP_PIN) && (E1_STEP_PIN > -1)
  727. SET_OUTPUT(E1_STEP_PIN);
  728. WRITE(E1_STEP_PIN,INVERT_E_STEP_PIN);
  729. disable_e1();
  730. #endif
  731. #if defined(E2_STEP_PIN) && (E2_STEP_PIN > -1)
  732. SET_OUTPUT(E2_STEP_PIN);
  733. WRITE(E2_STEP_PIN,INVERT_E_STEP_PIN);
  734. disable_e2();
  735. #endif
  736. // waveform generation = 0100 = CTC
  737. TCCR1B &= ~(1<<WGM13);
  738. TCCR1B |= (1<<WGM12);
  739. TCCR1A &= ~(1<<WGM11);
  740. TCCR1A &= ~(1<<WGM10);
  741. // output mode = 00 (disconnected)
  742. TCCR1A &= ~(3<<COM1A0);
  743. TCCR1A &= ~(3<<COM1B0);
  744. // Set the timer pre-scaler
  745. // Generally we use a divider of 8, resulting in a 2MHz timer
  746. // frequency on a 16MHz MCU. If you are going to change this, be
  747. // sure to regenerate speed_lookuptable.h with
  748. // create_speed_lookuptable.py
  749. TCCR1B = (TCCR1B & ~(0x07<<CS10)) | (2<<CS10);
  750. OCR1A = 0x4000;
  751. TCNT1 = 0;
  752. ENABLE_STEPPER_DRIVER_INTERRUPT();
  753. #ifdef ADVANCE
  754. #if defined(TCCR0A) && defined(WGM01)
  755. TCCR0A &= ~(1<<WGM01);
  756. TCCR0A &= ~(1<<WGM00);
  757. #endif
  758. e_steps[0] = 0;
  759. e_steps[1] = 0;
  760. e_steps[2] = 0;
  761. TIMSK0 |= (1<<OCIE0A);
  762. #endif //ADVANCE
  763. enable_endstops(true); // Start with endstops active. After homing they can be disabled
  764. sei();
  765. }
  766. // Block until all buffered steps are executed
  767. void st_synchronize()
  768. {
  769. while( blocks_queued()) {
  770. manage_heater();
  771. manage_inactivity();
  772. lcd_update();
  773. }
  774. }
  775. void st_set_position(const long &x, const long &y, const long &z, const long &e)
  776. {
  777. CRITICAL_SECTION_START;
  778. count_position[X_AXIS] = x;
  779. count_position[Y_AXIS] = y;
  780. count_position[Z_AXIS] = z;
  781. count_position[E_AXIS] = e;
  782. CRITICAL_SECTION_END;
  783. }
  784. void st_set_e_position(const long &e)
  785. {
  786. CRITICAL_SECTION_START;
  787. count_position[E_AXIS] = e;
  788. CRITICAL_SECTION_END;
  789. }
  790. long st_get_position(uint8_t axis)
  791. {
  792. long count_pos;
  793. CRITICAL_SECTION_START;
  794. count_pos = count_position[axis];
  795. CRITICAL_SECTION_END;
  796. return count_pos;
  797. }
  798. void finishAndDisableSteppers()
  799. {
  800. st_synchronize();
  801. disable_x();
  802. disable_y();
  803. disable_z();
  804. disable_e0();
  805. disable_e1();
  806. disable_e2();
  807. }
  808. void quickStop()
  809. {
  810. DISABLE_STEPPER_DRIVER_INTERRUPT();
  811. while(blocks_queued())
  812. plan_discard_current_block();
  813. current_block = NULL;
  814. ENABLE_STEPPER_DRIVER_INTERRUPT();
  815. }
  816. void digitalPotWrite(int address, int value) // From Arduino DigitalPotControl example
  817. {
  818. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  819. digitalWrite(DIGIPOTSS_PIN,LOW); // take the SS pin low to select the chip
  820. SPI.transfer(address); // send in the address and value via SPI:
  821. SPI.transfer(value);
  822. digitalWrite(DIGIPOTSS_PIN,HIGH); // take the SS pin high to de-select the chip:
  823. //delay(10);
  824. #endif
  825. }
  826. void digipot_init() //Initialize Digipot Motor Current
  827. {
  828. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  829. const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
  830. SPI.begin();
  831. pinMode(DIGIPOTSS_PIN, OUTPUT);
  832. for(int i=0;i<=4;i++)
  833. //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
  834. digipot_current(i,digipot_motor_current[i]);
  835. #endif
  836. }
  837. void digipot_current(uint8_t driver, int current)
  838. {
  839. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  840. const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
  841. digitalPotWrite(digipot_ch[driver], current);
  842. #endif
  843. }
  844. void microstep_init()
  845. {
  846. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  847. const uint8_t microstep_modes[] = MICROSTEP_MODES;
  848. pinMode(X_MS2_PIN,OUTPUT);
  849. pinMode(Y_MS2_PIN,OUTPUT);
  850. pinMode(Z_MS2_PIN,OUTPUT);
  851. pinMode(E0_MS2_PIN,OUTPUT);
  852. pinMode(E1_MS2_PIN,OUTPUT);
  853. for(int i=0;i<=4;i++) microstep_mode(i,microstep_modes[i]);
  854. #endif
  855. }
  856. void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2)
  857. {
  858. if(ms1 > -1) switch(driver)
  859. {
  860. case 0: digitalWrite( X_MS1_PIN,ms1); break;
  861. case 1: digitalWrite( Y_MS1_PIN,ms1); break;
  862. case 2: digitalWrite( Z_MS1_PIN,ms1); break;
  863. case 3: digitalWrite(E0_MS1_PIN,ms1); break;
  864. case 4: digitalWrite(E1_MS1_PIN,ms1); break;
  865. }
  866. if(ms2 > -1) switch(driver)
  867. {
  868. case 0: digitalWrite( X_MS2_PIN,ms2); break;
  869. case 1: digitalWrite( Y_MS2_PIN,ms2); break;
  870. case 2: digitalWrite( Z_MS2_PIN,ms2); break;
  871. case 3: digitalWrite(E0_MS2_PIN,ms2); break;
  872. case 4: digitalWrite(E1_MS2_PIN,ms2); break;
  873. }
  874. }
  875. void microstep_mode(uint8_t driver, uint8_t stepping_mode)
  876. {
  877. switch(stepping_mode)
  878. {
  879. case 1: microstep_ms(driver,MICROSTEP1); break;
  880. case 2: microstep_ms(driver,MICROSTEP2); break;
  881. case 4: microstep_ms(driver,MICROSTEP4); break;
  882. case 8: microstep_ms(driver,MICROSTEP8); break;
  883. case 16: microstep_ms(driver,MICROSTEP16); break;
  884. }
  885. }
  886. void microstep_readings()
  887. {
  888. SERIAL_PROTOCOLPGM("MS1,MS2 Pins\n");
  889. SERIAL_PROTOCOLPGM("X: ");
  890. SERIAL_PROTOCOL( digitalRead(X_MS1_PIN));
  891. SERIAL_PROTOCOLLN( digitalRead(X_MS2_PIN));
  892. SERIAL_PROTOCOLPGM("Y: ");
  893. SERIAL_PROTOCOL( digitalRead(Y_MS1_PIN));
  894. SERIAL_PROTOCOLLN( digitalRead(Y_MS2_PIN));
  895. SERIAL_PROTOCOLPGM("Z: ");
  896. SERIAL_PROTOCOL( digitalRead(Z_MS1_PIN));
  897. SERIAL_PROTOCOLLN( digitalRead(Z_MS2_PIN));
  898. SERIAL_PROTOCOLPGM("E0: ");
  899. SERIAL_PROTOCOL( digitalRead(E0_MS1_PIN));
  900. SERIAL_PROTOCOLLN( digitalRead(E0_MS2_PIN));
  901. SERIAL_PROTOCOLPGM("E1: ");
  902. SERIAL_PROTOCOL( digitalRead(E1_MS1_PIN));
  903. SERIAL_PROTOCOLLN( digitalRead(E1_MS2_PIN));
  904. }