My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Du kan inte välja fler än 25 ämnen Ämnen måste starta med en bokstav eller siffra, kan innehålla bindestreck ('-') och vara max 35 tecken långa.

stepper.cpp 41KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338
  1. /*
  2. stepper.c - stepper motor driver: executes motion plans using stepper motors
  3. Part of Grbl
  4. Copyright (c) 2009-2011 Simen Svale Skogsrud
  5. Grbl is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. Grbl is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
  17. and Philipp Tiefenbacher. */
  18. #include "Marlin.h"
  19. #include "stepper.h"
  20. #include "planner.h"
  21. #include "temperature.h"
  22. #include "ultralcd.h"
  23. #include "language.h"
  24. #include "cardreader.h"
  25. #include "speed_lookuptable.h"
  26. #if HAS_DIGIPOTSS
  27. #include <SPI.h>
  28. #endif
  29. //===========================================================================
  30. //============================= public variables ============================
  31. //===========================================================================
  32. block_t *current_block; // A pointer to the block currently being traced
  33. //===========================================================================
  34. //============================= private variables ===========================
  35. //===========================================================================
  36. //static makes it impossible to be called from outside of this file by extern.!
  37. // Variables used by The Stepper Driver Interrupt
  38. static unsigned char out_bits; // The next stepping-bits to be output
  39. static unsigned int cleaning_buffer_counter;
  40. #ifdef Z_DUAL_ENDSTOPS
  41. static bool performing_homing = false,
  42. locked_z_motor = false,
  43. locked_z2_motor = false;
  44. #endif
  45. // Counter variables for the Bresenham line tracer
  46. static long counter_x, counter_y, counter_z, counter_e;
  47. volatile static unsigned long step_events_completed; // The number of step events executed in the current block
  48. #ifdef ADVANCE
  49. static long advance_rate, advance, final_advance = 0;
  50. static long old_advance = 0;
  51. static long e_steps[4];
  52. #endif
  53. static long acceleration_time, deceleration_time;
  54. //static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
  55. static unsigned short acc_step_rate; // needed for deceleration start point
  56. static char step_loops;
  57. static unsigned short OCR1A_nominal;
  58. static unsigned short step_loops_nominal;
  59. volatile long endstops_trigsteps[3] = { 0 };
  60. volatile long endstops_stepsTotal, endstops_stepsDone;
  61. static volatile bool endstop_x_hit = false;
  62. static volatile bool endstop_y_hit = false;
  63. static volatile bool endstop_z_hit = false;
  64. static volatile bool endstop_z_probe_hit = false; // Leaving this in even if Z_PROBE_ENDSTOP isn't defined, keeps code below cleaner. #ifdef it and usage below to save space.
  65. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  66. bool abort_on_endstop_hit = false;
  67. #endif
  68. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  69. int motor_current_setting[3] = DEFAULT_PWM_MOTOR_CURRENT;
  70. #endif
  71. #if HAS_X_MIN
  72. static bool old_x_min_endstop = false;
  73. #endif
  74. #if HAS_X_MAX
  75. static bool old_x_max_endstop = false;
  76. #endif
  77. #if HAS_Y_MIN
  78. static bool old_y_min_endstop = false;
  79. #endif
  80. #if HAS_Y_MAX
  81. static bool old_y_max_endstop = false;
  82. #endif
  83. static bool old_z_min_endstop = false;
  84. static bool old_z_max_endstop = false;
  85. #ifdef Z_DUAL_ENDSTOPS
  86. static bool old_z2_min_endstop = false;
  87. static bool old_z2_max_endstop = false;
  88. #endif
  89. #ifdef Z_PROBE_ENDSTOP // No need to check for valid pin, SanityCheck.h already does this.
  90. static bool old_z_probe_endstop = false;
  91. #endif
  92. static bool check_endstops = true;
  93. volatile long count_position[NUM_AXIS] = { 0 };
  94. volatile signed char count_direction[NUM_AXIS] = { 1, 1, 1, 1 };
  95. //===========================================================================
  96. //================================ functions ================================
  97. //===========================================================================
  98. #ifdef DUAL_X_CARRIAGE
  99. #define X_APPLY_DIR(v,ALWAYS) \
  100. if (extruder_duplication_enabled || ALWAYS) { \
  101. X_DIR_WRITE(v); \
  102. X2_DIR_WRITE(v); \
  103. } \
  104. else { \
  105. if (current_block->active_extruder) X2_DIR_WRITE(v); else X_DIR_WRITE(v); \
  106. }
  107. #define X_APPLY_STEP(v,ALWAYS) \
  108. if (extruder_duplication_enabled || ALWAYS) { \
  109. X_STEP_WRITE(v); \
  110. X2_STEP_WRITE(v); \
  111. } \
  112. else { \
  113. if (current_block->active_extruder != 0) X2_STEP_WRITE(v); else X_STEP_WRITE(v); \
  114. }
  115. #else
  116. #define X_APPLY_DIR(v,Q) X_DIR_WRITE(v)
  117. #define X_APPLY_STEP(v,Q) X_STEP_WRITE(v)
  118. #endif
  119. #ifdef Y_DUAL_STEPPER_DRIVERS
  120. #define Y_APPLY_DIR(v,Q) { Y_DIR_WRITE(v); Y2_DIR_WRITE((v) != INVERT_Y2_VS_Y_DIR); }
  121. #define Y_APPLY_STEP(v,Q) { Y_STEP_WRITE(v); Y2_STEP_WRITE(v); }
  122. #else
  123. #define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v)
  124. #define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v)
  125. #endif
  126. #ifdef Z_DUAL_STEPPER_DRIVERS
  127. #define Z_APPLY_DIR(v,Q) { Z_DIR_WRITE(v); Z2_DIR_WRITE(v); }
  128. #ifdef Z_DUAL_ENDSTOPS
  129. #define Z_APPLY_STEP(v,Q) \
  130. if (performing_homing) { \
  131. if (Z_HOME_DIR > 0) {\
  132. if (!(old_z_max_endstop && (count_direction[Z_AXIS] > 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
  133. if (!(old_z2_max_endstop && (count_direction[Z_AXIS] > 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
  134. } else {\
  135. if (!(old_z_min_endstop && (count_direction[Z_AXIS] < 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
  136. if (!(old_z2_min_endstop && (count_direction[Z_AXIS] < 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
  137. } \
  138. } else { \
  139. Z_STEP_WRITE(v); \
  140. Z2_STEP_WRITE(v); \
  141. }
  142. #else
  143. #define Z_APPLY_STEP(v,Q) { Z_STEP_WRITE(v); Z2_STEP_WRITE(v); }
  144. #endif
  145. #else
  146. #define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v)
  147. #define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v)
  148. #endif
  149. #define E_APPLY_STEP(v,Q) E_STEP_WRITE(v)
  150. // intRes = intIn1 * intIn2 >> 16
  151. // uses:
  152. // r26 to store 0
  153. // r27 to store the byte 1 of the 24 bit result
  154. #define MultiU16X8toH16(intRes, charIn1, intIn2) \
  155. asm volatile ( \
  156. "clr r26 \n\t" \
  157. "mul %A1, %B2 \n\t" \
  158. "movw %A0, r0 \n\t" \
  159. "mul %A1, %A2 \n\t" \
  160. "add %A0, r1 \n\t" \
  161. "adc %B0, r26 \n\t" \
  162. "lsr r0 \n\t" \
  163. "adc %A0, r26 \n\t" \
  164. "adc %B0, r26 \n\t" \
  165. "clr r1 \n\t" \
  166. : \
  167. "=&r" (intRes) \
  168. : \
  169. "d" (charIn1), \
  170. "d" (intIn2) \
  171. : \
  172. "r26" \
  173. )
  174. // intRes = longIn1 * longIn2 >> 24
  175. // uses:
  176. // r26 to store 0
  177. // r27 to store bits 16-23 of the 48bit result. The top bit is used to round the two byte result.
  178. // note that the lower two bytes and the upper byte of the 48bit result are not calculated.
  179. // this can cause the result to be out by one as the lower bytes may cause carries into the upper ones.
  180. // B0 A0 are bits 24-39 and are the returned value
  181. // C1 B1 A1 is longIn1
  182. // D2 C2 B2 A2 is longIn2
  183. //
  184. #define MultiU24X32toH16(intRes, longIn1, longIn2) \
  185. asm volatile ( \
  186. "clr r26 \n\t" \
  187. "mul %A1, %B2 \n\t" \
  188. "mov r27, r1 \n\t" \
  189. "mul %B1, %C2 \n\t" \
  190. "movw %A0, r0 \n\t" \
  191. "mul %C1, %C2 \n\t" \
  192. "add %B0, r0 \n\t" \
  193. "mul %C1, %B2 \n\t" \
  194. "add %A0, r0 \n\t" \
  195. "adc %B0, r1 \n\t" \
  196. "mul %A1, %C2 \n\t" \
  197. "add r27, r0 \n\t" \
  198. "adc %A0, r1 \n\t" \
  199. "adc %B0, r26 \n\t" \
  200. "mul %B1, %B2 \n\t" \
  201. "add r27, r0 \n\t" \
  202. "adc %A0, r1 \n\t" \
  203. "adc %B0, r26 \n\t" \
  204. "mul %C1, %A2 \n\t" \
  205. "add r27, r0 \n\t" \
  206. "adc %A0, r1 \n\t" \
  207. "adc %B0, r26 \n\t" \
  208. "mul %B1, %A2 \n\t" \
  209. "add r27, r1 \n\t" \
  210. "adc %A0, r26 \n\t" \
  211. "adc %B0, r26 \n\t" \
  212. "lsr r27 \n\t" \
  213. "adc %A0, r26 \n\t" \
  214. "adc %B0, r26 \n\t" \
  215. "mul %D2, %A1 \n\t" \
  216. "add %A0, r0 \n\t" \
  217. "adc %B0, r1 \n\t" \
  218. "mul %D2, %B1 \n\t" \
  219. "add %B0, r0 \n\t" \
  220. "clr r1 \n\t" \
  221. : \
  222. "=&r" (intRes) \
  223. : \
  224. "d" (longIn1), \
  225. "d" (longIn2) \
  226. : \
  227. "r26" , "r27" \
  228. )
  229. // Some useful constants
  230. #define ENABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 |= BIT(OCIE1A)
  231. #define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~BIT(OCIE1A)
  232. void endstops_hit_on_purpose() {
  233. endstop_x_hit = endstop_y_hit = endstop_z_hit = endstop_z_probe_hit = false; // #ifdef endstop_z_probe_hit = to save space if needed.
  234. }
  235. void checkHitEndstops() {
  236. if (endstop_x_hit || endstop_y_hit || endstop_z_hit || endstop_z_probe_hit) { // #ifdef || endstop_z_probe_hit to save space if needed.
  237. SERIAL_ECHO_START;
  238. SERIAL_ECHOPGM(MSG_ENDSTOPS_HIT);
  239. if (endstop_x_hit) {
  240. SERIAL_ECHOPAIR(" X:", (float)endstops_trigsteps[X_AXIS] / axis_steps_per_unit[X_AXIS]);
  241. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "X");
  242. }
  243. if (endstop_y_hit) {
  244. SERIAL_ECHOPAIR(" Y:", (float)endstops_trigsteps[Y_AXIS] / axis_steps_per_unit[Y_AXIS]);
  245. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Y");
  246. }
  247. if (endstop_z_hit) {
  248. SERIAL_ECHOPAIR(" Z:", (float)endstops_trigsteps[Z_AXIS] / axis_steps_per_unit[Z_AXIS]);
  249. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Z");
  250. }
  251. #ifdef Z_PROBE_ENDSTOP
  252. if (endstop_z_probe_hit) {
  253. SERIAL_ECHOPAIR(" Z_PROBE:", (float)endstops_trigsteps[Z_AXIS] / axis_steps_per_unit[Z_AXIS]);
  254. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "ZP");
  255. }
  256. #endif
  257. SERIAL_EOL;
  258. endstops_hit_on_purpose();
  259. #if defined(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && defined(SDSUPPORT)
  260. if (abort_on_endstop_hit) {
  261. card.sdprinting = false;
  262. card.closefile();
  263. quickStop();
  264. setTargetHotend0(0);
  265. setTargetHotend1(0);
  266. setTargetHotend2(0);
  267. setTargetHotend3(0);
  268. setTargetBed(0);
  269. }
  270. #endif
  271. }
  272. }
  273. void enable_endstops(bool check) { check_endstops = check; }
  274. // __________________________
  275. // /| |\ _________________ ^
  276. // / | | \ /| |\ |
  277. // / | | \ / | | \ s
  278. // / | | | | | \ p
  279. // / | | | | | \ e
  280. // +-----+------------------------+---+--+---------------+----+ e
  281. // | BLOCK 1 | BLOCK 2 | d
  282. //
  283. // time ----->
  284. //
  285. // The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
  286. // first block->accelerate_until step_events_completed, then keeps going at constant speed until
  287. // step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
  288. // The slope of acceleration is calculated using v = u + at where t is the accumulated timer values of the steps so far.
  289. void st_wake_up() {
  290. // TCNT1 = 0;
  291. ENABLE_STEPPER_DRIVER_INTERRUPT();
  292. }
  293. FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {
  294. unsigned short timer;
  295. if (step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY;
  296. if (step_rate > 20000) { // If steprate > 20kHz >> step 4 times
  297. step_rate = (step_rate >> 2) & 0x3fff;
  298. step_loops = 4;
  299. }
  300. else if (step_rate > 10000) { // If steprate > 10kHz >> step 2 times
  301. step_rate = (step_rate >> 1) & 0x7fff;
  302. step_loops = 2;
  303. }
  304. else {
  305. step_loops = 1;
  306. }
  307. if (step_rate < (F_CPU / 500000)) step_rate = (F_CPU / 500000);
  308. step_rate -= (F_CPU / 500000); // Correct for minimal speed
  309. if (step_rate >= (8 * 256)) { // higher step rate
  310. unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0];
  311. unsigned char tmp_step_rate = (step_rate & 0x00ff);
  312. unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2);
  313. MultiU16X8toH16(timer, tmp_step_rate, gain);
  314. timer = (unsigned short)pgm_read_word_near(table_address) - timer;
  315. }
  316. else { // lower step rates
  317. unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
  318. table_address += ((step_rate)>>1) & 0xfffc;
  319. timer = (unsigned short)pgm_read_word_near(table_address);
  320. timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3);
  321. }
  322. if (timer < 100) { timer = 100; MYSERIAL.print(MSG_STEPPER_TOO_HIGH); MYSERIAL.println(step_rate); }//(20kHz this should never happen)
  323. return timer;
  324. }
  325. // Initializes the trapezoid generator from the current block. Called whenever a new
  326. // block begins.
  327. FORCE_INLINE void trapezoid_generator_reset() {
  328. #ifdef ADVANCE
  329. advance = current_block->initial_advance;
  330. final_advance = current_block->final_advance;
  331. // Do E steps + advance steps
  332. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  333. old_advance = advance >>8;
  334. #endif
  335. deceleration_time = 0;
  336. // step_rate to timer interval
  337. OCR1A_nominal = calc_timer(current_block->nominal_rate);
  338. // make a note of the number of step loops required at nominal speed
  339. step_loops_nominal = step_loops;
  340. acc_step_rate = current_block->initial_rate;
  341. acceleration_time = calc_timer(acc_step_rate);
  342. OCR1A = acceleration_time;
  343. // SERIAL_ECHO_START;
  344. // SERIAL_ECHOPGM("advance :");
  345. // SERIAL_ECHO(current_block->advance/256.0);
  346. // SERIAL_ECHOPGM("advance rate :");
  347. // SERIAL_ECHO(current_block->advance_rate/256.0);
  348. // SERIAL_ECHOPGM("initial advance :");
  349. // SERIAL_ECHO(current_block->initial_advance/256.0);
  350. // SERIAL_ECHOPGM("final advance :");
  351. // SERIAL_ECHOLN(current_block->final_advance/256.0);
  352. }
  353. // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
  354. // It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
  355. ISR(TIMER1_COMPA_vect) {
  356. if(cleaning_buffer_counter)
  357. {
  358. current_block = NULL;
  359. plan_discard_current_block();
  360. #ifdef SD_FINISHED_RELEASECOMMAND
  361. if ((cleaning_buffer_counter == 1) && (SD_FINISHED_STEPPERRELEASE)) enqueuecommands_P(PSTR(SD_FINISHED_RELEASECOMMAND));
  362. #endif
  363. cleaning_buffer_counter--;
  364. OCR1A = 200;
  365. return;
  366. }
  367. // If there is no current block, attempt to pop one from the buffer
  368. if (!current_block) {
  369. // Anything in the buffer?
  370. current_block = plan_get_current_block();
  371. if (current_block) {
  372. current_block->busy = true;
  373. trapezoid_generator_reset();
  374. counter_x = -(current_block->step_event_count >> 1);
  375. counter_y = counter_z = counter_e = counter_x;
  376. step_events_completed = 0;
  377. #ifdef Z_LATE_ENABLE
  378. if (current_block->steps[Z_AXIS] > 0) {
  379. enable_z();
  380. OCR1A = 2000; //1ms wait
  381. return;
  382. }
  383. #endif
  384. // #ifdef ADVANCE
  385. // e_steps[current_block->active_extruder] = 0;
  386. // #endif
  387. }
  388. else {
  389. OCR1A = 2000; // 1kHz.
  390. }
  391. }
  392. if (current_block != NULL) {
  393. // Set directions TO DO This should be done once during init of trapezoid. Endstops -> interrupt
  394. out_bits = current_block->direction_bits;
  395. // Set the direction bits (X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY)
  396. if (TEST(out_bits, X_AXIS)) {
  397. X_APPLY_DIR(INVERT_X_DIR,0);
  398. count_direction[X_AXIS] = -1;
  399. }
  400. else {
  401. X_APPLY_DIR(!INVERT_X_DIR,0);
  402. count_direction[X_AXIS] = 1;
  403. }
  404. if (TEST(out_bits, Y_AXIS)) {
  405. Y_APPLY_DIR(INVERT_Y_DIR,0);
  406. count_direction[Y_AXIS] = -1;
  407. }
  408. else {
  409. Y_APPLY_DIR(!INVERT_Y_DIR,0);
  410. count_direction[Y_AXIS] = 1;
  411. }
  412. #define UPDATE_ENDSTOP(axis,AXIS,minmax,MINMAX) \
  413. bool axis ##_## minmax ##_endstop = (READ(AXIS ##_## MINMAX ##_PIN) != AXIS ##_## MINMAX ##_ENDSTOP_INVERTING); \
  414. if (axis ##_## minmax ##_endstop && old_## axis ##_## minmax ##_endstop && (current_block->steps[AXIS ##_AXIS] > 0)) { \
  415. endstops_trigsteps[AXIS ##_AXIS] = count_position[AXIS ##_AXIS]; \
  416. endstop_## axis ##_hit = true; \
  417. step_events_completed = current_block->step_event_count; \
  418. } \
  419. old_## axis ##_## minmax ##_endstop = axis ##_## minmax ##_endstop;
  420. // Check X and Y endstops
  421. if (check_endstops) {
  422. #ifdef COREXY
  423. // Head direction in -X axis for CoreXY bots.
  424. // If DeltaX == -DeltaY, the movement is only in Y axis
  425. if ((current_block->steps[A_AXIS] != current_block->steps[B_AXIS]) || (TEST(out_bits, A_AXIS) == TEST(out_bits, B_AXIS))) {
  426. if (TEST(out_bits, X_HEAD))
  427. #else
  428. if (TEST(out_bits, X_AXIS)) // stepping along -X axis (regular Cartesian bot)
  429. #endif
  430. { // -direction
  431. #ifdef DUAL_X_CARRIAGE
  432. // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
  433. if ((current_block->active_extruder == 0 && X_HOME_DIR == -1) || (current_block->active_extruder != 0 && X2_HOME_DIR == -1))
  434. #endif
  435. {
  436. #if HAS_X_MIN
  437. UPDATE_ENDSTOP(x, X, min, MIN);
  438. #endif
  439. }
  440. }
  441. else { // +direction
  442. #ifdef DUAL_X_CARRIAGE
  443. // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
  444. if ((current_block->active_extruder == 0 && X_HOME_DIR == 1) || (current_block->active_extruder != 0 && X2_HOME_DIR == 1))
  445. #endif
  446. {
  447. #if HAS_X_MAX
  448. UPDATE_ENDSTOP(x, X, max, MAX);
  449. #endif
  450. }
  451. }
  452. #ifdef COREXY
  453. }
  454. // Head direction in -Y axis for CoreXY bots.
  455. // If DeltaX == DeltaY, the movement is only in X axis
  456. if ((current_block->steps[A_AXIS] != current_block->steps[B_AXIS]) || (TEST(out_bits, A_AXIS) != TEST(out_bits, B_AXIS))) {
  457. if (TEST(out_bits, Y_HEAD))
  458. #else
  459. if (TEST(out_bits, Y_AXIS)) // -direction
  460. #endif
  461. { // -direction
  462. #if HAS_Y_MIN
  463. UPDATE_ENDSTOP(y, Y, min, MIN);
  464. #endif
  465. }
  466. else { // +direction
  467. #if HAS_Y_MAX
  468. UPDATE_ENDSTOP(y, Y, max, MAX);
  469. #endif
  470. }
  471. #ifdef COREXY
  472. }
  473. #endif
  474. }
  475. if (TEST(out_bits, Z_AXIS)) { // -direction
  476. Z_APPLY_DIR(INVERT_Z_DIR,0);
  477. count_direction[Z_AXIS] = -1;
  478. if (check_endstops) {
  479. #if HAS_Z_MIN
  480. #ifdef Z_DUAL_ENDSTOPS
  481. bool z_min_endstop = READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING,
  482. z2_min_endstop =
  483. #if HAS_Z2_MIN
  484. READ(Z2_MIN_PIN) != Z2_MIN_ENDSTOP_INVERTING
  485. #else
  486. z_min_endstop
  487. #endif
  488. ;
  489. bool z_min_both = z_min_endstop && old_z_min_endstop,
  490. z2_min_both = z2_min_endstop && old_z2_min_endstop;
  491. if ((z_min_both || z2_min_both) && current_block->steps[Z_AXIS] > 0) {
  492. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  493. endstop_z_hit = true;
  494. if (!performing_homing || (performing_homing && z_min_both && z2_min_both)) //if not performing home or if both endstops were trigged during homing...
  495. step_events_completed = current_block->step_event_count;
  496. }
  497. old_z_min_endstop = z_min_endstop;
  498. old_z2_min_endstop = z2_min_endstop;
  499. #else // !Z_DUAL_ENDSTOPS
  500. UPDATE_ENDSTOP(z, Z, min, MIN);
  501. #endif // !Z_DUAL_ENDSTOPS
  502. #endif // Z_MIN_PIN
  503. #ifdef Z_PROBE_ENDSTOP
  504. UPDATE_ENDSTOP(z, Z, probe, PROBE);
  505. z_probe_endstop=(READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  506. if(z_probe_endstop && old_z_probe_endstop)
  507. {
  508. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  509. endstop_z_probe_hit=true;
  510. // if (z_probe_endstop && old_z_probe_endstop) SERIAL_ECHOLN("z_probe_endstop = true");
  511. }
  512. old_z_probe_endstop = z_probe_endstop;
  513. #endif
  514. } // check_endstops
  515. }
  516. else { // +direction
  517. Z_APPLY_DIR(!INVERT_Z_DIR,0);
  518. count_direction[Z_AXIS] = 1;
  519. if (check_endstops) {
  520. #if HAS_Z_MAX
  521. #ifdef Z_DUAL_ENDSTOPS
  522. bool z_max_endstop = READ(Z_MAX_PIN) != Z_MAX_ENDSTOP_INVERTING,
  523. z2_max_endstop =
  524. #if HAS_Z2_MAX
  525. READ(Z2_MAX_PIN) != Z2_MAX_ENDSTOP_INVERTING
  526. #else
  527. z_max_endstop
  528. #endif
  529. ;
  530. bool z_max_both = z_max_endstop && old_z_max_endstop,
  531. z2_max_both = z2_max_endstop && old_z2_max_endstop;
  532. if ((z_max_both || z2_max_both) && current_block->steps[Z_AXIS] > 0) {
  533. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  534. endstop_z_hit = true;
  535. // if (z_max_both) SERIAL_ECHOLN("z_max_endstop = true");
  536. // if (z2_max_both) SERIAL_ECHOLN("z2_max_endstop = true");
  537. if (!performing_homing || (performing_homing && z_max_both && z2_max_both)) //if not performing home or if both endstops were trigged during homing...
  538. step_events_completed = current_block->step_event_count;
  539. }
  540. old_z_max_endstop = z_max_endstop;
  541. old_z2_max_endstop = z2_max_endstop;
  542. #else // !Z_DUAL_ENDSTOPS
  543. UPDATE_ENDSTOP(z, Z, max, MAX);
  544. #endif // !Z_DUAL_ENDSTOPS
  545. #endif // Z_MAX_PIN
  546. #ifdef Z_PROBE_ENDSTOP
  547. UPDATE_ENDSTOP(z, Z, probe, PROBE);
  548. z_probe_endstop=(READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  549. if(z_probe_endstop && old_z_probe_endstop)
  550. {
  551. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  552. endstop_z_probe_hit=true;
  553. // if (z_probe_endstop && old_z_probe_endstop) SERIAL_ECHOLN("z_probe_endstop = true");
  554. }
  555. old_z_probe_endstop = z_probe_endstop;
  556. #endif
  557. } // check_endstops
  558. } // +direction
  559. #ifndef ADVANCE
  560. if (TEST(out_bits, E_AXIS)) { // -direction
  561. REV_E_DIR();
  562. count_direction[E_AXIS] = -1;
  563. }
  564. else { // +direction
  565. NORM_E_DIR();
  566. count_direction[E_AXIS] = 1;
  567. }
  568. #endif //!ADVANCE
  569. // Take multiple steps per interrupt (For high speed moves)
  570. for (int8_t i = 0; i < step_loops; i++) {
  571. #ifndef AT90USB
  572. MSerial.checkRx(); // Check for serial chars.
  573. #endif
  574. #ifdef ADVANCE
  575. counter_e += current_block->steps[E_AXIS];
  576. if (counter_e > 0) {
  577. counter_e -= current_block->step_event_count;
  578. e_steps[current_block->active_extruder] += TEST(out_bits, E_AXIS) ? -1 : 1;
  579. }
  580. #endif //ADVANCE
  581. #ifdef CONFIG_STEPPERS_TOSHIBA
  582. /**
  583. * The Toshiba stepper controller require much longer pulses.
  584. * So we 'stage' decompose the pulses between high and low
  585. * instead of doing each in turn. The extra tests add enough
  586. * lag to allow it work with without needing NOPs
  587. */
  588. #define STEP_ADD(axis, AXIS) \
  589. counter_## axis += current_block->steps[AXIS ##_AXIS]; \
  590. if (counter_## axis > 0) { AXIS ##_STEP_WRITE(HIGH); }
  591. STEP_ADD(x,X);
  592. STEP_ADD(y,Y);
  593. STEP_ADD(z,Z);
  594. #ifndef ADVANCE
  595. STEP_ADD(e,E);
  596. #endif
  597. #define STEP_IF_COUNTER(axis, AXIS) \
  598. if (counter_## axis > 0) { \
  599. counter_## axis -= current_block->step_event_count; \
  600. count_position[AXIS ##_AXIS] += count_direction[AXIS ##_AXIS]; \
  601. AXIS ##_STEP_WRITE(LOW); \
  602. }
  603. STEP_IF_COUNTER(x, X);
  604. STEP_IF_COUNTER(y, Y);
  605. STEP_IF_COUNTER(z, Z);
  606. #ifndef ADVANCE
  607. STEP_IF_COUNTER(e, E);
  608. #endif
  609. #else // !CONFIG_STEPPERS_TOSHIBA
  610. #define APPLY_MOVEMENT(axis, AXIS) \
  611. counter_## axis += current_block->steps[AXIS ##_AXIS]; \
  612. if (counter_## axis > 0) { \
  613. AXIS ##_APPLY_STEP(!INVERT_## AXIS ##_STEP_PIN,0); \
  614. counter_## axis -= current_block->step_event_count; \
  615. count_position[AXIS ##_AXIS] += count_direction[AXIS ##_AXIS]; \
  616. AXIS ##_APPLY_STEP(INVERT_## AXIS ##_STEP_PIN,0); \
  617. }
  618. APPLY_MOVEMENT(x, X);
  619. APPLY_MOVEMENT(y, Y);
  620. APPLY_MOVEMENT(z, Z);
  621. #ifndef ADVANCE
  622. APPLY_MOVEMENT(e, E);
  623. #endif
  624. #endif // CONFIG_STEPPERS_TOSHIBA
  625. step_events_completed++;
  626. if (step_events_completed >= current_block->step_event_count) break;
  627. }
  628. // Calculate new timer value
  629. unsigned short timer;
  630. unsigned short step_rate;
  631. if (step_events_completed <= (unsigned long)current_block->accelerate_until) {
  632. MultiU24X32toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
  633. acc_step_rate += current_block->initial_rate;
  634. // upper limit
  635. if (acc_step_rate > current_block->nominal_rate)
  636. acc_step_rate = current_block->nominal_rate;
  637. // step_rate to timer interval
  638. timer = calc_timer(acc_step_rate);
  639. OCR1A = timer;
  640. acceleration_time += timer;
  641. #ifdef ADVANCE
  642. for(int8_t i=0; i < step_loops; i++) {
  643. advance += advance_rate;
  644. }
  645. //if (advance > current_block->advance) advance = current_block->advance;
  646. // Do E steps + advance steps
  647. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  648. old_advance = advance >>8;
  649. #endif
  650. }
  651. else if (step_events_completed > (unsigned long)current_block->decelerate_after) {
  652. MultiU24X32toH16(step_rate, deceleration_time, current_block->acceleration_rate);
  653. if (step_rate > acc_step_rate) { // Check step_rate stays positive
  654. step_rate = current_block->final_rate;
  655. }
  656. else {
  657. step_rate = acc_step_rate - step_rate; // Decelerate from aceleration end point.
  658. }
  659. // lower limit
  660. if (step_rate < current_block->final_rate)
  661. step_rate = current_block->final_rate;
  662. // step_rate to timer interval
  663. timer = calc_timer(step_rate);
  664. OCR1A = timer;
  665. deceleration_time += timer;
  666. #ifdef ADVANCE
  667. for(int8_t i=0; i < step_loops; i++) {
  668. advance -= advance_rate;
  669. }
  670. if (advance < final_advance) advance = final_advance;
  671. // Do E steps + advance steps
  672. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  673. old_advance = advance >>8;
  674. #endif //ADVANCE
  675. }
  676. else {
  677. OCR1A = OCR1A_nominal;
  678. // ensure we're running at the correct step rate, even if we just came off an acceleration
  679. step_loops = step_loops_nominal;
  680. }
  681. // If current block is finished, reset pointer
  682. if (step_events_completed >= current_block->step_event_count) {
  683. current_block = NULL;
  684. plan_discard_current_block();
  685. }
  686. }
  687. }
  688. #ifdef ADVANCE
  689. unsigned char old_OCR0A;
  690. // Timer interrupt for E. e_steps is set in the main routine;
  691. // Timer 0 is shared with millies
  692. ISR(TIMER0_COMPA_vect)
  693. {
  694. old_OCR0A += 52; // ~10kHz interrupt (250000 / 26 = 9615kHz)
  695. OCR0A = old_OCR0A;
  696. // Set E direction (Depends on E direction + advance)
  697. for(unsigned char i=0; i<4;i++) {
  698. if (e_steps[0] != 0) {
  699. E0_STEP_WRITE(INVERT_E_STEP_PIN);
  700. if (e_steps[0] < 0) {
  701. E0_DIR_WRITE(INVERT_E0_DIR);
  702. e_steps[0]++;
  703. E0_STEP_WRITE(!INVERT_E_STEP_PIN);
  704. }
  705. else if (e_steps[0] > 0) {
  706. E0_DIR_WRITE(!INVERT_E0_DIR);
  707. e_steps[0]--;
  708. E0_STEP_WRITE(!INVERT_E_STEP_PIN);
  709. }
  710. }
  711. #if EXTRUDERS > 1
  712. if (e_steps[1] != 0) {
  713. E1_STEP_WRITE(INVERT_E_STEP_PIN);
  714. if (e_steps[1] < 0) {
  715. E1_DIR_WRITE(INVERT_E1_DIR);
  716. e_steps[1]++;
  717. E1_STEP_WRITE(!INVERT_E_STEP_PIN);
  718. }
  719. else if (e_steps[1] > 0) {
  720. E1_DIR_WRITE(!INVERT_E1_DIR);
  721. e_steps[1]--;
  722. E1_STEP_WRITE(!INVERT_E_STEP_PIN);
  723. }
  724. }
  725. #endif
  726. #if EXTRUDERS > 2
  727. if (e_steps[2] != 0) {
  728. E2_STEP_WRITE(INVERT_E_STEP_PIN);
  729. if (e_steps[2] < 0) {
  730. E2_DIR_WRITE(INVERT_E2_DIR);
  731. e_steps[2]++;
  732. E2_STEP_WRITE(!INVERT_E_STEP_PIN);
  733. }
  734. else if (e_steps[2] > 0) {
  735. E2_DIR_WRITE(!INVERT_E2_DIR);
  736. e_steps[2]--;
  737. E2_STEP_WRITE(!INVERT_E_STEP_PIN);
  738. }
  739. }
  740. #endif
  741. #if EXTRUDERS > 3
  742. if (e_steps[3] != 0) {
  743. E3_STEP_WRITE(INVERT_E_STEP_PIN);
  744. if (e_steps[3] < 0) {
  745. E3_DIR_WRITE(INVERT_E3_DIR);
  746. e_steps[3]++;
  747. E3_STEP_WRITE(!INVERT_E_STEP_PIN);
  748. }
  749. else if (e_steps[3] > 0) {
  750. E3_DIR_WRITE(!INVERT_E3_DIR);
  751. e_steps[3]--;
  752. E3_STEP_WRITE(!INVERT_E_STEP_PIN);
  753. }
  754. }
  755. #endif
  756. }
  757. }
  758. #endif // ADVANCE
  759. void st_init() {
  760. digipot_init(); //Initialize Digipot Motor Current
  761. microstep_init(); //Initialize Microstepping Pins
  762. // initialise TMC Steppers
  763. #ifdef HAVE_TMCDRIVER
  764. tmc_init();
  765. #endif
  766. // initialise L6470 Steppers
  767. #ifdef HAVE_L6470DRIVER
  768. L6470_init();
  769. #endif
  770. // Initialize Dir Pins
  771. #if HAS_X_DIR
  772. X_DIR_INIT;
  773. #endif
  774. #if HAS_X2_DIR
  775. X2_DIR_INIT;
  776. #endif
  777. #if HAS_Y_DIR
  778. Y_DIR_INIT;
  779. #if defined(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_DIR
  780. Y2_DIR_INIT;
  781. #endif
  782. #endif
  783. #if HAS_Z_DIR
  784. Z_DIR_INIT;
  785. #if defined(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_DIR
  786. Z2_DIR_INIT;
  787. #endif
  788. #endif
  789. #if HAS_E0_DIR
  790. E0_DIR_INIT;
  791. #endif
  792. #if HAS_E1_DIR
  793. E1_DIR_INIT;
  794. #endif
  795. #if HAS_E2_DIR
  796. E2_DIR_INIT;
  797. #endif
  798. #if HAS_E3_DIR
  799. E3_DIR_INIT;
  800. #endif
  801. //Initialize Enable Pins - steppers default to disabled.
  802. #if HAS_X_ENABLE
  803. X_ENABLE_INIT;
  804. if (!X_ENABLE_ON) X_ENABLE_WRITE(HIGH);
  805. #endif
  806. #if HAS_X2_ENABLE
  807. X2_ENABLE_INIT;
  808. if (!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH);
  809. #endif
  810. #if HAS_Y_ENABLE
  811. Y_ENABLE_INIT;
  812. if (!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH);
  813. #if defined(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_ENABLE
  814. Y2_ENABLE_INIT;
  815. if (!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH);
  816. #endif
  817. #endif
  818. #if HAS_Z_ENABLE
  819. Z_ENABLE_INIT;
  820. if (!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH);
  821. #if defined(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_ENABLE
  822. Z2_ENABLE_INIT;
  823. if (!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH);
  824. #endif
  825. #endif
  826. #if HAS_E0_ENABLE
  827. E0_ENABLE_INIT;
  828. if (!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH);
  829. #endif
  830. #if HAS_E1_ENABLE
  831. E1_ENABLE_INIT;
  832. if (!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH);
  833. #endif
  834. #if HAS_E2_ENABLE
  835. E2_ENABLE_INIT;
  836. if (!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH);
  837. #endif
  838. #if HAS_E3_ENABLE
  839. E3_ENABLE_INIT;
  840. if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH);
  841. #endif
  842. //endstops and pullups
  843. #if HAS_X_MIN
  844. SET_INPUT(X_MIN_PIN);
  845. #ifdef ENDSTOPPULLUP_XMIN
  846. WRITE(X_MIN_PIN,HIGH);
  847. #endif
  848. #endif
  849. #if HAS_Y_MIN
  850. SET_INPUT(Y_MIN_PIN);
  851. #ifdef ENDSTOPPULLUP_YMIN
  852. WRITE(Y_MIN_PIN,HIGH);
  853. #endif
  854. #endif
  855. #if HAS_Z_MIN
  856. SET_INPUT(Z_MIN_PIN);
  857. #ifdef ENDSTOPPULLUP_ZMIN
  858. WRITE(Z_MIN_PIN,HIGH);
  859. #endif
  860. #endif
  861. #if HAS_X_MAX
  862. SET_INPUT(X_MAX_PIN);
  863. #ifdef ENDSTOPPULLUP_XMAX
  864. WRITE(X_MAX_PIN,HIGH);
  865. #endif
  866. #endif
  867. #if HAS_Y_MAX
  868. SET_INPUT(Y_MAX_PIN);
  869. #ifdef ENDSTOPPULLUP_YMAX
  870. WRITE(Y_MAX_PIN,HIGH);
  871. #endif
  872. #endif
  873. #if HAS_Z_MAX
  874. SET_INPUT(Z_MAX_PIN);
  875. #ifdef ENDSTOPPULLUP_ZMAX
  876. WRITE(Z_MAX_PIN,HIGH);
  877. #endif
  878. #endif
  879. #if HAS_Z2_MAX
  880. SET_INPUT(Z2_MAX_PIN);
  881. #ifdef ENDSTOPPULLUP_ZMAX
  882. WRITE(Z2_MAX_PIN,HIGH);
  883. #endif
  884. #endif
  885. #if (defined(Z_PROBE_PIN) && Z_PROBE_PIN >= 0) && defined(Z_PROBE_ENDSTOP) // Check for Z_PROBE_ENDSTOP so we don't pull a pin high unless it's to be used.
  886. SET_INPUT(Z_PROBE_PIN);
  887. #ifdef ENDSTOPPULLUP_ZPROBE
  888. WRITE(Z_PROBE_PIN,HIGH);
  889. #endif
  890. #endif
  891. #define AXIS_INIT(axis, AXIS, PIN) \
  892. AXIS ##_STEP_INIT; \
  893. AXIS ##_STEP_WRITE(INVERT_## PIN ##_STEP_PIN); \
  894. disable_## axis()
  895. #define E_AXIS_INIT(NUM) AXIS_INIT(e## NUM, E## NUM, E)
  896. // Initialize Step Pins
  897. #if HAS_X_STEP
  898. AXIS_INIT(x, X, X);
  899. #endif
  900. #if HAS_X2_STEP
  901. AXIS_INIT(x, X2, X);
  902. #endif
  903. #if HAS_Y_STEP
  904. #if defined(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_STEP
  905. Y2_STEP_INIT;
  906. Y2_STEP_WRITE(INVERT_Y_STEP_PIN);
  907. #endif
  908. AXIS_INIT(y, Y, Y);
  909. #endif
  910. #if HAS_Z_STEP
  911. #if defined(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_STEP
  912. Z2_STEP_INIT;
  913. Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
  914. #endif
  915. AXIS_INIT(z, Z, Z);
  916. #endif
  917. #if HAS_E0_STEP
  918. E_AXIS_INIT(0);
  919. #endif
  920. #if HAS_E1_STEP
  921. E_AXIS_INIT(1);
  922. #endif
  923. #if HAS_E2_STEP
  924. E_AXIS_INIT(2);
  925. #endif
  926. #if HAS_E3_STEP
  927. E_AXIS_INIT(3);
  928. #endif
  929. // waveform generation = 0100 = CTC
  930. TCCR1B &= ~BIT(WGM13);
  931. TCCR1B |= BIT(WGM12);
  932. TCCR1A &= ~BIT(WGM11);
  933. TCCR1A &= ~BIT(WGM10);
  934. // output mode = 00 (disconnected)
  935. TCCR1A &= ~(3<<COM1A0);
  936. TCCR1A &= ~(3<<COM1B0);
  937. // Set the timer pre-scaler
  938. // Generally we use a divider of 8, resulting in a 2MHz timer
  939. // frequency on a 16MHz MCU. If you are going to change this, be
  940. // sure to regenerate speed_lookuptable.h with
  941. // create_speed_lookuptable.py
  942. TCCR1B = (TCCR1B & ~(0x07<<CS10)) | (2<<CS10);
  943. OCR1A = 0x4000;
  944. TCNT1 = 0;
  945. ENABLE_STEPPER_DRIVER_INTERRUPT();
  946. #ifdef ADVANCE
  947. #if defined(TCCR0A) && defined(WGM01)
  948. TCCR0A &= ~BIT(WGM01);
  949. TCCR0A &= ~BIT(WGM00);
  950. #endif
  951. e_steps[0] = e_steps[1] = e_steps[2] = e_steps[3] = 0;
  952. TIMSK0 |= BIT(OCIE0A);
  953. #endif //ADVANCE
  954. enable_endstops(true); // Start with endstops active. After homing they can be disabled
  955. sei();
  956. }
  957. // Block until all buffered steps are executed
  958. void st_synchronize() {
  959. while (blocks_queued()) {
  960. manage_heater();
  961. manage_inactivity();
  962. lcd_update();
  963. }
  964. }
  965. void st_set_position(const long &x, const long &y, const long &z, const long &e) {
  966. CRITICAL_SECTION_START;
  967. count_position[X_AXIS] = x;
  968. count_position[Y_AXIS] = y;
  969. count_position[Z_AXIS] = z;
  970. count_position[E_AXIS] = e;
  971. CRITICAL_SECTION_END;
  972. }
  973. void st_set_e_position(const long &e) {
  974. CRITICAL_SECTION_START;
  975. count_position[E_AXIS] = e;
  976. CRITICAL_SECTION_END;
  977. }
  978. long st_get_position(uint8_t axis) {
  979. long count_pos;
  980. CRITICAL_SECTION_START;
  981. count_pos = count_position[axis];
  982. CRITICAL_SECTION_END;
  983. return count_pos;
  984. }
  985. #ifdef ENABLE_AUTO_BED_LEVELING
  986. float st_get_position_mm(uint8_t axis) {
  987. float steper_position_in_steps = st_get_position(axis);
  988. return steper_position_in_steps / axis_steps_per_unit[axis];
  989. }
  990. #endif // ENABLE_AUTO_BED_LEVELING
  991. void finishAndDisableSteppers() {
  992. st_synchronize();
  993. disable_all_steppers();
  994. }
  995. void quickStop() {
  996. cleaning_buffer_counter = 5000;
  997. DISABLE_STEPPER_DRIVER_INTERRUPT();
  998. while (blocks_queued()) plan_discard_current_block();
  999. current_block = NULL;
  1000. ENABLE_STEPPER_DRIVER_INTERRUPT();
  1001. }
  1002. #ifdef BABYSTEPPING
  1003. // MUST ONLY BE CALLED BY AN ISR,
  1004. // No other ISR should ever interrupt this!
  1005. void babystep(const uint8_t axis, const bool direction) {
  1006. #define BABYSTEP_AXIS(axis, AXIS, INVERT) { \
  1007. enable_## axis(); \
  1008. uint8_t old_pin = AXIS ##_DIR_READ; \
  1009. AXIS ##_APPLY_DIR(INVERT_## AXIS ##_DIR^direction^INVERT, true); \
  1010. AXIS ##_APPLY_STEP(!INVERT_## AXIS ##_STEP_PIN, true); \
  1011. delayMicroseconds(2); \
  1012. AXIS ##_APPLY_STEP(INVERT_## AXIS ##_STEP_PIN, true); \
  1013. AXIS ##_APPLY_DIR(old_pin, true); \
  1014. }
  1015. switch(axis) {
  1016. case X_AXIS:
  1017. BABYSTEP_AXIS(x, X, false);
  1018. break;
  1019. case Y_AXIS:
  1020. BABYSTEP_AXIS(y, Y, false);
  1021. break;
  1022. case Z_AXIS: {
  1023. #ifndef DELTA
  1024. BABYSTEP_AXIS(z, Z, BABYSTEP_INVERT_Z);
  1025. #else // DELTA
  1026. bool z_direction = direction ^ BABYSTEP_INVERT_Z;
  1027. enable_x();
  1028. enable_y();
  1029. enable_z();
  1030. uint8_t old_x_dir_pin = X_DIR_READ,
  1031. old_y_dir_pin = Y_DIR_READ,
  1032. old_z_dir_pin = Z_DIR_READ;
  1033. //setup new step
  1034. X_DIR_WRITE(INVERT_X_DIR^z_direction);
  1035. Y_DIR_WRITE(INVERT_Y_DIR^z_direction);
  1036. Z_DIR_WRITE(INVERT_Z_DIR^z_direction);
  1037. //perform step
  1038. X_STEP_WRITE(!INVERT_X_STEP_PIN);
  1039. Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
  1040. Z_STEP_WRITE(!INVERT_Z_STEP_PIN);
  1041. delayMicroseconds(2);
  1042. X_STEP_WRITE(INVERT_X_STEP_PIN);
  1043. Y_STEP_WRITE(INVERT_Y_STEP_PIN);
  1044. Z_STEP_WRITE(INVERT_Z_STEP_PIN);
  1045. //get old pin state back.
  1046. X_DIR_WRITE(old_x_dir_pin);
  1047. Y_DIR_WRITE(old_y_dir_pin);
  1048. Z_DIR_WRITE(old_z_dir_pin);
  1049. #endif
  1050. } break;
  1051. default: break;
  1052. }
  1053. }
  1054. #endif //BABYSTEPPING
  1055. // From Arduino DigitalPotControl example
  1056. void digitalPotWrite(int address, int value) {
  1057. #if HAS_DIGIPOTSS
  1058. digitalWrite(DIGIPOTSS_PIN,LOW); // take the SS pin low to select the chip
  1059. SPI.transfer(address); // send in the address and value via SPI:
  1060. SPI.transfer(value);
  1061. digitalWrite(DIGIPOTSS_PIN,HIGH); // take the SS pin high to de-select the chip:
  1062. //delay(10);
  1063. #endif
  1064. }
  1065. // Initialize Digipot Motor Current
  1066. void digipot_init() {
  1067. #if HAS_DIGIPOTSS
  1068. const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
  1069. SPI.begin();
  1070. pinMode(DIGIPOTSS_PIN, OUTPUT);
  1071. for (int i = 0; i <= 4; i++) {
  1072. //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
  1073. digipot_current(i,digipot_motor_current[i]);
  1074. }
  1075. #endif
  1076. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  1077. pinMode(MOTOR_CURRENT_PWM_XY_PIN, OUTPUT);
  1078. pinMode(MOTOR_CURRENT_PWM_Z_PIN, OUTPUT);
  1079. pinMode(MOTOR_CURRENT_PWM_E_PIN, OUTPUT);
  1080. digipot_current(0, motor_current_setting[0]);
  1081. digipot_current(1, motor_current_setting[1]);
  1082. digipot_current(2, motor_current_setting[2]);
  1083. //Set timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
  1084. TCCR5B = (TCCR5B & ~(_BV(CS50) | _BV(CS51) | _BV(CS52))) | _BV(CS50);
  1085. #endif
  1086. }
  1087. void digipot_current(uint8_t driver, int current) {
  1088. #if HAS_DIGIPOTSS
  1089. const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
  1090. digitalPotWrite(digipot_ch[driver], current);
  1091. #endif
  1092. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  1093. switch(driver) {
  1094. case 0: analogWrite(MOTOR_CURRENT_PWM_XY_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
  1095. case 1: analogWrite(MOTOR_CURRENT_PWM_Z_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
  1096. case 2: analogWrite(MOTOR_CURRENT_PWM_E_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
  1097. }
  1098. #endif
  1099. }
  1100. void microstep_init() {
  1101. #if HAS_MICROSTEPS_E1
  1102. pinMode(E1_MS1_PIN,OUTPUT);
  1103. pinMode(E1_MS2_PIN,OUTPUT);
  1104. #endif
  1105. #if HAS_MICROSTEPS
  1106. pinMode(X_MS1_PIN,OUTPUT);
  1107. pinMode(X_MS2_PIN,OUTPUT);
  1108. pinMode(Y_MS1_PIN,OUTPUT);
  1109. pinMode(Y_MS2_PIN,OUTPUT);
  1110. pinMode(Z_MS1_PIN,OUTPUT);
  1111. pinMode(Z_MS2_PIN,OUTPUT);
  1112. pinMode(E0_MS1_PIN,OUTPUT);
  1113. pinMode(E0_MS2_PIN,OUTPUT);
  1114. const uint8_t microstep_modes[] = MICROSTEP_MODES;
  1115. for (uint16_t i = 0; i < sizeof(microstep_modes) / sizeof(microstep_modes[0]); i++)
  1116. microstep_mode(i, microstep_modes[i]);
  1117. #endif
  1118. }
  1119. void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2) {
  1120. if (ms1 >= 0) switch(driver) {
  1121. case 0: digitalWrite(X_MS1_PIN, ms1); break;
  1122. case 1: digitalWrite(Y_MS1_PIN, ms1); break;
  1123. case 2: digitalWrite(Z_MS1_PIN, ms1); break;
  1124. case 3: digitalWrite(E0_MS1_PIN, ms1); break;
  1125. #if HAS_MICROSTEPS_E1
  1126. case 4: digitalWrite(E1_MS1_PIN, ms1); break;
  1127. #endif
  1128. }
  1129. if (ms2 >= 0) switch(driver) {
  1130. case 0: digitalWrite(X_MS2_PIN, ms2); break;
  1131. case 1: digitalWrite(Y_MS2_PIN, ms2); break;
  1132. case 2: digitalWrite(Z_MS2_PIN, ms2); break;
  1133. case 3: digitalWrite(E0_MS2_PIN, ms2); break;
  1134. #if defined(E1_MS2_PIN) && E1_MS2_PIN >= 0
  1135. case 4: digitalWrite(E1_MS2_PIN, ms2); break;
  1136. #endif
  1137. }
  1138. }
  1139. void microstep_mode(uint8_t driver, uint8_t stepping_mode) {
  1140. switch(stepping_mode) {
  1141. case 1: microstep_ms(driver,MICROSTEP1); break;
  1142. case 2: microstep_ms(driver,MICROSTEP2); break;
  1143. case 4: microstep_ms(driver,MICROSTEP4); break;
  1144. case 8: microstep_ms(driver,MICROSTEP8); break;
  1145. case 16: microstep_ms(driver,MICROSTEP16); break;
  1146. }
  1147. }
  1148. void microstep_readings() {
  1149. SERIAL_PROTOCOLPGM("MS1,MS2 Pins\n");
  1150. SERIAL_PROTOCOLPGM("X: ");
  1151. SERIAL_PROTOCOL(digitalRead(X_MS1_PIN));
  1152. SERIAL_PROTOCOLLN(digitalRead(X_MS2_PIN));
  1153. SERIAL_PROTOCOLPGM("Y: ");
  1154. SERIAL_PROTOCOL(digitalRead(Y_MS1_PIN));
  1155. SERIAL_PROTOCOLLN(digitalRead(Y_MS2_PIN));
  1156. SERIAL_PROTOCOLPGM("Z: ");
  1157. SERIAL_PROTOCOL(digitalRead(Z_MS1_PIN));
  1158. SERIAL_PROTOCOLLN(digitalRead(Z_MS2_PIN));
  1159. SERIAL_PROTOCOLPGM("E0: ");
  1160. SERIAL_PROTOCOL(digitalRead(E0_MS1_PIN));
  1161. SERIAL_PROTOCOLLN(digitalRead(E0_MS2_PIN));
  1162. #if HAS_MICROSTEPS_E1
  1163. SERIAL_PROTOCOLPGM("E1: ");
  1164. SERIAL_PROTOCOL(digitalRead(E1_MS1_PIN));
  1165. SERIAL_PROTOCOLLN(digitalRead(E1_MS2_PIN));
  1166. #endif
  1167. }
  1168. #ifdef Z_DUAL_ENDSTOPS
  1169. void In_Homing_Process(bool state) { performing_homing = state; }
  1170. void Lock_z_motor(bool state) { locked_z_motor = state; }
  1171. void Lock_z2_motor(bool state) { locked_z2_motor = state; }
  1172. #endif