My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Du kannst nicht mehr als 25 Themen auswählen Themen müssen mit entweder einem Buchstaben oder einer Ziffer beginnen. Sie können Bindestriche („-“) enthalten und bis zu 35 Zeichen lang sein.

stepper.cpp 39KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * stepper.cpp - A singleton object to execute motion plans using stepper motors
  24. * Marlin Firmware
  25. *
  26. * Derived from Grbl
  27. * Copyright (c) 2009-2011 Simen Svale Skogsrud
  28. *
  29. * Grbl is free software: you can redistribute it and/or modify
  30. * it under the terms of the GNU General Public License as published by
  31. * the Free Software Foundation, either version 3 of the License, or
  32. * (at your option) any later version.
  33. *
  34. * Grbl is distributed in the hope that it will be useful,
  35. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  36. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  37. * GNU General Public License for more details.
  38. *
  39. * You should have received a copy of the GNU General Public License
  40. * along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  41. */
  42. /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
  43. and Philipp Tiefenbacher. */
  44. #include "Marlin.h"
  45. #include "stepper.h"
  46. #include "endstops.h"
  47. #include "planner.h"
  48. #include "temperature.h"
  49. #include "ultralcd.h"
  50. #include "language.h"
  51. #include "cardreader.h"
  52. #include "speed_lookuptable.h"
  53. #if HAS_DIGIPOTSS
  54. #include <SPI.h>
  55. #endif
  56. Stepper stepper; // Singleton
  57. // public:
  58. block_t* Stepper::current_block = NULL; // A pointer to the block currently being traced
  59. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  60. bool Stepper::abort_on_endstop_hit = false;
  61. #endif
  62. #if ENABLED(Z_DUAL_ENDSTOPS)
  63. bool Stepper::performing_homing = false;
  64. #endif
  65. // private:
  66. unsigned char Stepper::last_direction_bits = 0; // The next stepping-bits to be output
  67. unsigned int Stepper::cleaning_buffer_counter = 0;
  68. #if ENABLED(Z_DUAL_ENDSTOPS)
  69. bool Stepper::locked_z_motor = false;
  70. bool Stepper::locked_z2_motor = false;
  71. #endif
  72. long Stepper::counter_X = 0,
  73. Stepper::counter_Y = 0,
  74. Stepper::counter_Z = 0,
  75. Stepper::counter_E = 0;
  76. volatile uint32_t Stepper::step_events_completed = 0; // The number of step events executed in the current block
  77. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  78. unsigned char Stepper::old_OCR0A;
  79. volatile unsigned char Stepper::eISR_Rate = 200; // Keep the ISR at a low rate until needed
  80. #if ENABLED(LIN_ADVANCE)
  81. volatile int Stepper::e_steps[E_STEPPERS];
  82. int Stepper::extruder_advance_k = LIN_ADVANCE_K,
  83. Stepper::final_estep_rate,
  84. Stepper::current_estep_rate[E_STEPPERS],
  85. Stepper::current_adv_steps[E_STEPPERS];
  86. #else
  87. long Stepper::e_steps[E_STEPPERS],
  88. Stepper::final_advance = 0,
  89. Stepper::old_advance = 0,
  90. Stepper::advance_rate,
  91. Stepper::advance;
  92. #endif
  93. #endif
  94. long Stepper::acceleration_time, Stepper::deceleration_time;
  95. volatile long Stepper::count_position[NUM_AXIS] = { 0 };
  96. volatile signed char Stepper::count_direction[NUM_AXIS] = { 1, 1, 1, 1 };
  97. #if ENABLED(MIXING_EXTRUDER)
  98. long Stepper::counter_M[MIXING_STEPPERS];
  99. #endif
  100. unsigned short Stepper::acc_step_rate; // needed for deceleration start point
  101. uint8_t Stepper::step_loops, Stepper::step_loops_nominal;
  102. unsigned short Stepper::OCR1A_nominal;
  103. volatile long Stepper::endstops_trigsteps[XYZ];
  104. #if ENABLED(X_DUAL_STEPPER_DRIVERS)
  105. #define X_APPLY_DIR(v,Q) do{ X_DIR_WRITE(v); X2_DIR_WRITE((v) != INVERT_X2_VS_X_DIR); }while(0)
  106. #define X_APPLY_STEP(v,Q) do{ X_STEP_WRITE(v); X2_STEP_WRITE(v); }while(0)
  107. #elif ENABLED(DUAL_X_CARRIAGE)
  108. #define X_APPLY_DIR(v,ALWAYS) \
  109. if (extruder_duplication_enabled || ALWAYS) { \
  110. X_DIR_WRITE(v); \
  111. X2_DIR_WRITE(v); \
  112. } \
  113. else { \
  114. if (current_block->active_extruder) X2_DIR_WRITE(v); else X_DIR_WRITE(v); \
  115. }
  116. #define X_APPLY_STEP(v,ALWAYS) \
  117. if (extruder_duplication_enabled || ALWAYS) { \
  118. X_STEP_WRITE(v); \
  119. X2_STEP_WRITE(v); \
  120. } \
  121. else { \
  122. if (current_block->active_extruder != 0) X2_STEP_WRITE(v); else X_STEP_WRITE(v); \
  123. }
  124. #else
  125. #define X_APPLY_DIR(v,Q) X_DIR_WRITE(v)
  126. #define X_APPLY_STEP(v,Q) X_STEP_WRITE(v)
  127. #endif
  128. #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
  129. #define Y_APPLY_DIR(v,Q) do{ Y_DIR_WRITE(v); Y2_DIR_WRITE((v) != INVERT_Y2_VS_Y_DIR); }while(0)
  130. #define Y_APPLY_STEP(v,Q) do{ Y_STEP_WRITE(v); Y2_STEP_WRITE(v); }while(0)
  131. #else
  132. #define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v)
  133. #define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v)
  134. #endif
  135. #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
  136. #define Z_APPLY_DIR(v,Q) do{ Z_DIR_WRITE(v); Z2_DIR_WRITE(v); }while(0)
  137. #if ENABLED(Z_DUAL_ENDSTOPS)
  138. #define Z_APPLY_STEP(v,Q) \
  139. if (performing_homing) { \
  140. if (Z_HOME_DIR > 0) {\
  141. if (!(TEST(endstops.old_endstop_bits, Z_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
  142. if (!(TEST(endstops.old_endstop_bits, Z2_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
  143. } \
  144. else { \
  145. if (!(TEST(endstops.old_endstop_bits, Z_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
  146. if (!(TEST(endstops.old_endstop_bits, Z2_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
  147. } \
  148. } \
  149. else { \
  150. Z_STEP_WRITE(v); \
  151. Z2_STEP_WRITE(v); \
  152. }
  153. #else
  154. #define Z_APPLY_STEP(v,Q) do{ Z_STEP_WRITE(v); Z2_STEP_WRITE(v); }while(0)
  155. #endif
  156. #else
  157. #define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v)
  158. #define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v)
  159. #endif
  160. #if DISABLED(MIXING_EXTRUDER)
  161. #define E_APPLY_STEP(v,Q) E_STEP_WRITE(v)
  162. #endif
  163. // intRes = longIn1 * longIn2 >> 24
  164. // uses:
  165. // r26 to store 0
  166. // r27 to store bits 16-23 of the 48bit result. The top bit is used to round the two byte result.
  167. // note that the lower two bytes and the upper byte of the 48bit result are not calculated.
  168. // this can cause the result to be out by one as the lower bytes may cause carries into the upper ones.
  169. // B0 A0 are bits 24-39 and are the returned value
  170. // C1 B1 A1 is longIn1
  171. // D2 C2 B2 A2 is longIn2
  172. //
  173. #define MultiU24X32toH16(intRes, longIn1, longIn2) \
  174. asm volatile ( \
  175. "clr r26 \n\t" \
  176. "mul %A1, %B2 \n\t" \
  177. "mov r27, r1 \n\t" \
  178. "mul %B1, %C2 \n\t" \
  179. "movw %A0, r0 \n\t" \
  180. "mul %C1, %C2 \n\t" \
  181. "add %B0, r0 \n\t" \
  182. "mul %C1, %B2 \n\t" \
  183. "add %A0, r0 \n\t" \
  184. "adc %B0, r1 \n\t" \
  185. "mul %A1, %C2 \n\t" \
  186. "add r27, r0 \n\t" \
  187. "adc %A0, r1 \n\t" \
  188. "adc %B0, r26 \n\t" \
  189. "mul %B1, %B2 \n\t" \
  190. "add r27, r0 \n\t" \
  191. "adc %A0, r1 \n\t" \
  192. "adc %B0, r26 \n\t" \
  193. "mul %C1, %A2 \n\t" \
  194. "add r27, r0 \n\t" \
  195. "adc %A0, r1 \n\t" \
  196. "adc %B0, r26 \n\t" \
  197. "mul %B1, %A2 \n\t" \
  198. "add r27, r1 \n\t" \
  199. "adc %A0, r26 \n\t" \
  200. "adc %B0, r26 \n\t" \
  201. "lsr r27 \n\t" \
  202. "adc %A0, r26 \n\t" \
  203. "adc %B0, r26 \n\t" \
  204. "mul %D2, %A1 \n\t" \
  205. "add %A0, r0 \n\t" \
  206. "adc %B0, r1 \n\t" \
  207. "mul %D2, %B1 \n\t" \
  208. "add %B0, r0 \n\t" \
  209. "clr r1 \n\t" \
  210. : \
  211. "=&r" (intRes) \
  212. : \
  213. "d" (longIn1), \
  214. "d" (longIn2) \
  215. : \
  216. "r26" , "r27" \
  217. )
  218. // Some useful constants
  219. #define ENABLE_STEPPER_DRIVER_INTERRUPT() SBI(TIMSK1, OCIE1A)
  220. #define DISABLE_STEPPER_DRIVER_INTERRUPT() CBI(TIMSK1, OCIE1A)
  221. /**
  222. * __________________________
  223. * /| |\ _________________ ^
  224. * / | | \ /| |\ |
  225. * / | | \ / | | \ s
  226. * / | | | | | \ p
  227. * / | | | | | \ e
  228. * +-----+------------------------+---+--+---------------+----+ e
  229. * | BLOCK 1 | BLOCK 2 | d
  230. *
  231. * time ----->
  232. *
  233. * The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
  234. * first block->accelerate_until step_events_completed, then keeps going at constant speed until
  235. * step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
  236. * The slope of acceleration is calculated using v = u + at where t is the accumulated timer values of the steps so far.
  237. */
  238. void Stepper::wake_up() {
  239. // TCNT1 = 0;
  240. ENABLE_STEPPER_DRIVER_INTERRUPT();
  241. }
  242. /**
  243. * Set the stepper direction of each axis
  244. *
  245. * COREXY: X_AXIS=A_AXIS and Y_AXIS=B_AXIS
  246. * COREXZ: X_AXIS=A_AXIS and Z_AXIS=C_AXIS
  247. * COREYZ: Y_AXIS=B_AXIS and Z_AXIS=C_AXIS
  248. */
  249. void Stepper::set_directions() {
  250. #define SET_STEP_DIR(AXIS) \
  251. if (motor_direction(AXIS ##_AXIS)) { \
  252. AXIS ##_APPLY_DIR(INVERT_## AXIS ##_DIR, false); \
  253. count_direction[AXIS ##_AXIS] = -1; \
  254. } \
  255. else { \
  256. AXIS ##_APPLY_DIR(!INVERT_## AXIS ##_DIR, false); \
  257. count_direction[AXIS ##_AXIS] = 1; \
  258. }
  259. #if HAS_X_DIR
  260. SET_STEP_DIR(X); // A
  261. #endif
  262. #if HAS_Y_DIR
  263. SET_STEP_DIR(Y); // B
  264. #endif
  265. #if HAS_Z_DIR
  266. SET_STEP_DIR(Z); // C
  267. #endif
  268. #if DISABLED(ADVANCE)
  269. if (motor_direction(E_AXIS)) {
  270. REV_E_DIR();
  271. count_direction[E_AXIS] = -1;
  272. }
  273. else {
  274. NORM_E_DIR();
  275. count_direction[E_AXIS] = 1;
  276. }
  277. #endif //!ADVANCE
  278. }
  279. // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
  280. // It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
  281. ISR(TIMER1_COMPA_vect) { Stepper::isr(); }
  282. void Stepper::isr() {
  283. if (cleaning_buffer_counter) {
  284. current_block = NULL;
  285. planner.discard_current_block();
  286. #ifdef SD_FINISHED_RELEASECOMMAND
  287. if ((cleaning_buffer_counter == 1) && (SD_FINISHED_STEPPERRELEASE)) enqueue_and_echo_commands_P(PSTR(SD_FINISHED_RELEASECOMMAND));
  288. #endif
  289. cleaning_buffer_counter--;
  290. OCR1A = 200;
  291. return;
  292. }
  293. // If there is no current block, attempt to pop one from the buffer
  294. if (!current_block) {
  295. // Anything in the buffer?
  296. current_block = planner.get_current_block();
  297. if (current_block) {
  298. current_block->busy = true;
  299. trapezoid_generator_reset();
  300. // Initialize Bresenham counters to 1/2 the ceiling
  301. counter_X = counter_Y = counter_Z = counter_E = -(current_block->step_event_count >> 1);
  302. #if ENABLED(MIXING_EXTRUDER)
  303. MIXING_STEPPERS_LOOP(i)
  304. counter_M[i] = -(current_block->mix_event_count[i] >> 1);
  305. #endif
  306. step_events_completed = 0;
  307. #if ENABLED(Z_LATE_ENABLE)
  308. if (current_block->steps[Z_AXIS] > 0) {
  309. enable_z();
  310. OCR1A = 2000; //1ms wait
  311. return;
  312. }
  313. #endif
  314. // #if ENABLED(ADVANCE)
  315. // e_steps[TOOL_E_INDEX] = 0;
  316. // #endif
  317. }
  318. else {
  319. OCR1A = 2000; // 1kHz.
  320. }
  321. }
  322. if (current_block) {
  323. // Update endstops state, if enabled
  324. if (endstops.enabled
  325. #if HAS_BED_PROBE
  326. || endstops.z_probe_enabled
  327. #endif
  328. ) endstops.update();
  329. // Take multiple steps per interrupt (For high speed moves)
  330. bool all_steps_done = false;
  331. for (int8_t i = 0; i < step_loops; i++) {
  332. #ifndef USBCON
  333. customizedSerial.checkRx(); // Check for serial chars.
  334. #endif
  335. #if ENABLED(LIN_ADVANCE)
  336. counter_E += current_block->steps[E_AXIS];
  337. if (counter_E > 0) {
  338. counter_E -= current_block->step_event_count;
  339. #if DISABLED(MIXING_EXTRUDER)
  340. // Don't step E here for mixing extruder
  341. count_position[E_AXIS] += count_direction[E_AXIS];
  342. motor_direction(E_AXIS) ? --e_steps[TOOL_E_INDEX] : ++e_steps[TOOL_E_INDEX];
  343. #endif
  344. }
  345. #if ENABLED(MIXING_EXTRUDER)
  346. // Step mixing steppers proportionally
  347. long dir = motor_direction(E_AXIS) ? -1 : 1;
  348. MIXING_STEPPERS_LOOP(j) {
  349. counter_m[j] += current_block->steps[E_AXIS];
  350. if (counter_m[j] > 0) {
  351. counter_m[j] -= current_block->mix_event_count[j];
  352. e_steps[j] += dir;
  353. }
  354. }
  355. #endif
  356. if (current_block->use_advance_lead) {
  357. int delta_adv_steps = (((long)extruder_advance_k * current_estep_rate[TOOL_E_INDEX]) >> 9) - current_adv_steps[TOOL_E_INDEX];
  358. #if ENABLED(MIXING_EXTRUDER)
  359. // Mixing extruders apply advance lead proportionally
  360. MIXING_STEPPERS_LOOP(j) {
  361. int steps = delta_adv_steps * current_block->step_event_count / current_block->mix_event_count[j];
  362. e_steps[j] += steps;
  363. current_adv_steps[j] += steps;
  364. }
  365. #else
  366. // For most extruders, advance the single E stepper
  367. e_steps[TOOL_E_INDEX] += delta_adv_steps;
  368. current_adv_steps[TOOL_E_INDEX] += delta_adv_steps;
  369. #endif
  370. }
  371. #elif ENABLED(ADVANCE)
  372. // Always count the unified E axis
  373. counter_E += current_block->steps[E_AXIS];
  374. if (counter_E > 0) {
  375. counter_E -= current_block->step_event_count;
  376. #if DISABLED(MIXING_EXTRUDER)
  377. // Don't step E here for mixing extruder
  378. e_steps[TOOL_E_INDEX] += motor_direction(E_AXIS) ? -1 : 1;
  379. #endif
  380. }
  381. #if ENABLED(MIXING_EXTRUDER)
  382. // Step mixing steppers proportionally
  383. long dir = motor_direction(E_AXIS) ? -1 : 1;
  384. MIXING_STEPPERS_LOOP(j) {
  385. counter_m[j] += current_block->steps[E_AXIS];
  386. if (counter_m[j] > 0) {
  387. counter_m[j] -= current_block->mix_event_count[j];
  388. e_steps[j] += dir;
  389. }
  390. }
  391. #endif // MIXING_EXTRUDER
  392. #endif // ADVANCE or LIN_ADVANCE
  393. #define _COUNTER(AXIS) counter_## AXIS
  394. #define _APPLY_STEP(AXIS) AXIS ##_APPLY_STEP
  395. #define _INVERT_STEP_PIN(AXIS) INVERT_## AXIS ##_STEP_PIN
  396. // Advance the Bresenham counter; start a pulse if the axis needs a step
  397. #define PULSE_START(AXIS) \
  398. _COUNTER(AXIS) += current_block->steps[_AXIS(AXIS)]; \
  399. if (_COUNTER(AXIS) > 0) { _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS),0); }
  400. // Stop an active pulse, reset the Bresenham counter, update the position
  401. #define PULSE_STOP(AXIS) \
  402. if (_COUNTER(AXIS) > 0) { \
  403. _COUNTER(AXIS) -= current_block->step_event_count; \
  404. count_position[_AXIS(AXIS)] += count_direction[_AXIS(AXIS)]; \
  405. _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS),0); \
  406. }
  407. // If a minimum pulse time was specified get the CPU clock
  408. #if MINIMUM_STEPPER_PULSE > 0
  409. static uint32_t pulse_start;
  410. pulse_start = TCNT0;
  411. #endif
  412. #if HAS_X_STEP
  413. PULSE_START(X);
  414. #endif
  415. #if HAS_Y_STEP
  416. PULSE_START(Y);
  417. #endif
  418. #if HAS_Z_STEP
  419. PULSE_START(Z);
  420. #endif
  421. // For non-advance use linear interpolation for E also
  422. #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
  423. #if ENABLED(MIXING_EXTRUDER)
  424. // Keep updating the single E axis
  425. counter_E += current_block->steps[E_AXIS];
  426. // Tick the counters used for this mix
  427. MIXING_STEPPERS_LOOP(j) {
  428. // Step mixing steppers (proportionally)
  429. counter_M[j] += current_block->steps[E_AXIS];
  430. // Step when the counter goes over zero
  431. if (counter_M[j] > 0) En_STEP_WRITE(j, !INVERT_E_STEP_PIN);
  432. }
  433. #else // !MIXING_EXTRUDER
  434. PULSE_START(E);
  435. #endif
  436. #endif // !ADVANCE && !LIN_ADVANCE
  437. // For a minimum pulse time wait before stopping pulses
  438. #if MINIMUM_STEPPER_PULSE > 0
  439. #define CYCLES_EATEN_BY_CODE 10
  440. while ((uint32_t)(TCNT0 - pulse_start) < (MINIMUM_STEPPER_PULSE * (F_CPU / 1000000UL)) - CYCLES_EATEN_BY_CODE) { /* nada */ }
  441. #endif
  442. #if HAS_X_STEP
  443. PULSE_STOP(X);
  444. #endif
  445. #if HAS_Y_STEP
  446. PULSE_STOP(Y);
  447. #endif
  448. #if HAS_Z_STEP
  449. PULSE_STOP(Z);
  450. #endif
  451. #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
  452. #if ENABLED(MIXING_EXTRUDER)
  453. // Always step the single E axis
  454. if (counter_E > 0) {
  455. counter_E -= current_block->step_event_count;
  456. count_position[E_AXIS] += count_direction[E_AXIS];
  457. }
  458. MIXING_STEPPERS_LOOP(j) {
  459. if (counter_M[j] > 0) {
  460. counter_M[j] -= current_block->mix_event_count[j];
  461. En_STEP_WRITE(j, INVERT_E_STEP_PIN);
  462. }
  463. }
  464. #else // !MIXING_EXTRUDER
  465. PULSE_STOP(E);
  466. #endif
  467. #endif // !ADVANCE && !LIN_ADVANCE
  468. if (++step_events_completed >= current_block->step_event_count) {
  469. all_steps_done = true;
  470. break;
  471. }
  472. }
  473. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  474. // If we have esteps to execute, fire the next advance_isr "now"
  475. if (e_steps[TOOL_E_INDEX]) OCR0A = TCNT0 + 2;
  476. #endif
  477. // Calculate new timer value
  478. uint16_t timer, step_rate;
  479. if (step_events_completed <= (uint32_t)current_block->accelerate_until) {
  480. MultiU24X32toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
  481. acc_step_rate += current_block->initial_rate;
  482. // upper limit
  483. NOMORE(acc_step_rate, current_block->nominal_rate);
  484. // step_rate to timer interval
  485. timer = calc_timer(acc_step_rate);
  486. OCR1A = timer;
  487. acceleration_time += timer;
  488. #if ENABLED(LIN_ADVANCE)
  489. if (current_block->use_advance_lead)
  490. current_estep_rate[TOOL_E_INDEX] = ((uint32_t)acc_step_rate * current_block->e_speed_multiplier8) >> 8;
  491. if (current_block->use_advance_lead) {
  492. #if ENABLED(MIXING_EXTRUDER)
  493. MIXING_STEPPERS_LOOP(j)
  494. current_estep_rate[j] = ((uint32_t)acc_step_rate * current_block->e_speed_multiplier8 * current_block->step_event_count / current_block->mix_event_count[j]) >> 8;
  495. #else
  496. current_estep_rate[TOOL_E_INDEX] = ((uint32_t)acc_step_rate * current_block->e_speed_multiplier8) >> 8;
  497. #endif
  498. }
  499. #elif ENABLED(ADVANCE)
  500. advance += advance_rate * step_loops;
  501. //NOLESS(advance, current_block->advance);
  502. long advance_whole = advance >> 8,
  503. advance_factor = advance_whole - old_advance;
  504. // Do E steps + advance steps
  505. #if ENABLED(MIXING_EXTRUDER)
  506. // ...for mixing steppers proportionally
  507. MIXING_STEPPERS_LOOP(j)
  508. e_steps[j] += advance_factor * current_block->step_event_count / current_block->mix_event_count[j];
  509. #else
  510. // ...for the active extruder
  511. e_steps[TOOL_E_INDEX] += advance_factor;
  512. #endif
  513. old_advance = advance_whole;
  514. #endif // ADVANCE or LIN_ADVANCE
  515. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  516. eISR_Rate = (timer >> 2) * step_loops / abs(e_steps[TOOL_E_INDEX]);
  517. #endif
  518. }
  519. else if (step_events_completed > (uint32_t)current_block->decelerate_after) {
  520. MultiU24X32toH16(step_rate, deceleration_time, current_block->acceleration_rate);
  521. if (step_rate < acc_step_rate) { // Still decelerating?
  522. step_rate = acc_step_rate - step_rate;
  523. NOLESS(step_rate, current_block->final_rate);
  524. }
  525. else
  526. step_rate = current_block->final_rate;
  527. // step_rate to timer interval
  528. timer = calc_timer(step_rate);
  529. OCR1A = timer;
  530. deceleration_time += timer;
  531. #if ENABLED(LIN_ADVANCE)
  532. if (current_block->use_advance_lead) {
  533. #if ENABLED(MIXING_EXTRUDER)
  534. MIXING_STEPPERS_LOOP(j)
  535. current_estep_rate[j] = ((uint32_t)step_rate * current_block->e_speed_multiplier8 * current_block->step_event_count / current_block->mix_event_count[j]) >> 8;
  536. #else
  537. current_estep_rate[TOOL_E_INDEX] = ((uint32_t)step_rate * current_block->e_speed_multiplier8) >> 8;
  538. #endif
  539. }
  540. #elif ENABLED(ADVANCE)
  541. advance -= advance_rate * step_loops;
  542. NOLESS(advance, final_advance);
  543. // Do E steps + advance steps
  544. long advance_whole = advance >> 8,
  545. advance_factor = advance_whole - old_advance;
  546. #if ENABLED(MIXING_EXTRUDER)
  547. MIXING_STEPPERS_LOOP(j)
  548. e_steps[j] += advance_factor * current_block->step_event_count / current_block->mix_event_count[j];
  549. #else
  550. e_steps[TOOL_E_INDEX] += advance_factor;
  551. #endif
  552. old_advance = advance_whole;
  553. #endif // ADVANCE or LIN_ADVANCE
  554. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  555. eISR_Rate = (timer >> 2) * step_loops / abs(e_steps[TOOL_E_INDEX]);
  556. #endif
  557. }
  558. else {
  559. #if ENABLED(LIN_ADVANCE)
  560. if (current_block->use_advance_lead)
  561. current_estep_rate[TOOL_E_INDEX] = final_estep_rate;
  562. eISR_Rate = (OCR1A_nominal >> 2) * step_loops_nominal / abs(e_steps[TOOL_E_INDEX]);
  563. #endif
  564. OCR1A = OCR1A_nominal;
  565. // ensure we're running at the correct step rate, even if we just came off an acceleration
  566. step_loops = step_loops_nominal;
  567. }
  568. NOLESS(OCR1A, TCNT1 + 16);
  569. // If current block is finished, reset pointer
  570. if (all_steps_done) {
  571. current_block = NULL;
  572. planner.discard_current_block();
  573. }
  574. }
  575. }
  576. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  577. // Timer interrupt for E. e_steps is set in the main routine;
  578. // Timer 0 is shared with millies
  579. ISR(TIMER0_COMPA_vect) { Stepper::advance_isr(); }
  580. void Stepper::advance_isr() {
  581. old_OCR0A += eISR_Rate;
  582. OCR0A = old_OCR0A;
  583. #define SET_E_STEP_DIR(INDEX) \
  584. E## INDEX ##_DIR_WRITE(e_steps[INDEX] <= 0 ? INVERT_E## INDEX ##_DIR : !INVERT_E## INDEX ##_DIR)
  585. #define START_E_PULSE(INDEX) \
  586. if (e_steps[INDEX]) E## INDEX ##_STEP_WRITE(INVERT_E_STEP_PIN)
  587. #define STOP_E_PULSE(INDEX) \
  588. if (e_steps[INDEX]) { \
  589. e_steps[INDEX] < 0 ? ++e_steps[INDEX] : --e_steps[INDEX]; \
  590. E## INDEX ##_STEP_WRITE(!INVERT_E_STEP_PIN); \
  591. }
  592. SET_E_STEP_DIR(0);
  593. #if E_STEPPERS > 1
  594. SET_E_STEP_DIR(1);
  595. #if E_STEPPERS > 2
  596. SET_E_STEP_DIR(2);
  597. #if E_STEPPERS > 3
  598. SET_E_STEP_DIR(3);
  599. #endif
  600. #endif
  601. #endif
  602. // Step all E steppers that have steps
  603. for (uint8_t i = 0; i < step_loops; i++) {
  604. #if MINIMUM_STEPPER_PULSE > 0
  605. static uint32_t pulse_start;
  606. pulse_start = TCNT0;
  607. #endif
  608. START_E_PULSE(0);
  609. #if E_STEPPERS > 1
  610. START_E_PULSE(1);
  611. #if E_STEPPERS > 2
  612. START_E_PULSE(2);
  613. #if E_STEPPERS > 3
  614. START_E_PULSE(3);
  615. #endif
  616. #endif
  617. #endif
  618. // For a minimum pulse time wait before stopping pulses
  619. #if MINIMUM_STEPPER_PULSE > 0
  620. #define CYCLES_EATEN_BY_E 10
  621. while ((uint32_t)(TCNT0 - pulse_start) < (MINIMUM_STEPPER_PULSE * (F_CPU / 1000000UL)) - CYCLES_EATEN_BY_E) { /* nada */ }
  622. #endif
  623. STOP_E_PULSE(0);
  624. #if E_STEPPERS > 1
  625. STOP_E_PULSE(1);
  626. #if E_STEPPERS > 2
  627. STOP_E_PULSE(2);
  628. #if E_STEPPERS > 3
  629. STOP_E_PULSE(3);
  630. #endif
  631. #endif
  632. #endif
  633. }
  634. }
  635. #endif // ADVANCE or LIN_ADVANCE
  636. void Stepper::init() {
  637. digipot_init(); //Initialize Digipot Motor Current
  638. microstep_init(); //Initialize Microstepping Pins
  639. // initialise TMC Steppers
  640. #if ENABLED(HAVE_TMCDRIVER)
  641. tmc_init();
  642. #endif
  643. // initialise L6470 Steppers
  644. #if ENABLED(HAVE_L6470DRIVER)
  645. L6470_init();
  646. #endif
  647. // Initialize Dir Pins
  648. #if HAS_X_DIR
  649. X_DIR_INIT;
  650. #endif
  651. #if HAS_X2_DIR
  652. X2_DIR_INIT;
  653. #endif
  654. #if HAS_Y_DIR
  655. Y_DIR_INIT;
  656. #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_DIR
  657. Y2_DIR_INIT;
  658. #endif
  659. #endif
  660. #if HAS_Z_DIR
  661. Z_DIR_INIT;
  662. #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_DIR
  663. Z2_DIR_INIT;
  664. #endif
  665. #endif
  666. #if HAS_E0_DIR
  667. E0_DIR_INIT;
  668. #endif
  669. #if HAS_E1_DIR
  670. E1_DIR_INIT;
  671. #endif
  672. #if HAS_E2_DIR
  673. E2_DIR_INIT;
  674. #endif
  675. #if HAS_E3_DIR
  676. E3_DIR_INIT;
  677. #endif
  678. //Initialize Enable Pins - steppers default to disabled.
  679. #if HAS_X_ENABLE
  680. X_ENABLE_INIT;
  681. if (!X_ENABLE_ON) X_ENABLE_WRITE(HIGH);
  682. #if ENABLED(DUAL_X_CARRIAGE) && HAS_X2_ENABLE
  683. X2_ENABLE_INIT;
  684. if (!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH);
  685. #endif
  686. #endif
  687. #if HAS_Y_ENABLE
  688. Y_ENABLE_INIT;
  689. if (!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH);
  690. #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_ENABLE
  691. Y2_ENABLE_INIT;
  692. if (!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH);
  693. #endif
  694. #endif
  695. #if HAS_Z_ENABLE
  696. Z_ENABLE_INIT;
  697. if (!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH);
  698. #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_ENABLE
  699. Z2_ENABLE_INIT;
  700. if (!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH);
  701. #endif
  702. #endif
  703. #if HAS_E0_ENABLE
  704. E0_ENABLE_INIT;
  705. if (!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH);
  706. #endif
  707. #if HAS_E1_ENABLE
  708. E1_ENABLE_INIT;
  709. if (!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH);
  710. #endif
  711. #if HAS_E2_ENABLE
  712. E2_ENABLE_INIT;
  713. if (!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH);
  714. #endif
  715. #if HAS_E3_ENABLE
  716. E3_ENABLE_INIT;
  717. if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH);
  718. #endif
  719. //
  720. // Init endstops and pullups here
  721. //
  722. endstops.init();
  723. #define _STEP_INIT(AXIS) AXIS ##_STEP_INIT
  724. #define _WRITE_STEP(AXIS, HIGHLOW) AXIS ##_STEP_WRITE(HIGHLOW)
  725. #define _DISABLE(axis) disable_## axis()
  726. #define AXIS_INIT(axis, AXIS, PIN) \
  727. _STEP_INIT(AXIS); \
  728. _WRITE_STEP(AXIS, _INVERT_STEP_PIN(PIN)); \
  729. _DISABLE(axis)
  730. #define E_AXIS_INIT(NUM) AXIS_INIT(e## NUM, E## NUM, E)
  731. // Initialize Step Pins
  732. #if HAS_X_STEP
  733. #if ENABLED(X_DUAL_STEPPER_DRIVERS) || ENABLED(DUAL_X_CARRIAGE)
  734. X2_STEP_INIT;
  735. X2_STEP_WRITE(INVERT_X_STEP_PIN);
  736. #endif
  737. AXIS_INIT(x, X, X);
  738. #endif
  739. #if HAS_Y_STEP
  740. #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
  741. Y2_STEP_INIT;
  742. Y2_STEP_WRITE(INVERT_Y_STEP_PIN);
  743. #endif
  744. AXIS_INIT(y, Y, Y);
  745. #endif
  746. #if HAS_Z_STEP
  747. #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
  748. Z2_STEP_INIT;
  749. Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
  750. #endif
  751. AXIS_INIT(z, Z, Z);
  752. #endif
  753. #if HAS_E0_STEP
  754. E_AXIS_INIT(0);
  755. #endif
  756. #if HAS_E1_STEP
  757. E_AXIS_INIT(1);
  758. #endif
  759. #if HAS_E2_STEP
  760. E_AXIS_INIT(2);
  761. #endif
  762. #if HAS_E3_STEP
  763. E_AXIS_INIT(3);
  764. #endif
  765. // waveform generation = 0100 = CTC
  766. CBI(TCCR1B, WGM13);
  767. SBI(TCCR1B, WGM12);
  768. CBI(TCCR1A, WGM11);
  769. CBI(TCCR1A, WGM10);
  770. // output mode = 00 (disconnected)
  771. TCCR1A &= ~(3 << COM1A0);
  772. TCCR1A &= ~(3 << COM1B0);
  773. // Set the timer pre-scaler
  774. // Generally we use a divider of 8, resulting in a 2MHz timer
  775. // frequency on a 16MHz MCU. If you are going to change this, be
  776. // sure to regenerate speed_lookuptable.h with
  777. // create_speed_lookuptable.py
  778. TCCR1B = (TCCR1B & ~(0x07 << CS10)) | (2 << CS10);
  779. OCR1A = 0x4000;
  780. TCNT1 = 0;
  781. ENABLE_STEPPER_DRIVER_INTERRUPT();
  782. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  783. for (int i = 0; i < E_STEPPERS; i++) {
  784. e_steps[i] = 0;
  785. #if ENABLED(LIN_ADVANCE)
  786. current_adv_steps[i] = 0;
  787. #endif
  788. }
  789. #if defined(TCCR0A) && defined(WGM01)
  790. CBI(TCCR0A, WGM01);
  791. CBI(TCCR0A, WGM00);
  792. #endif
  793. SBI(TIMSK0, OCIE0A);
  794. #endif // ADVANCE or LIN_ADVANCE
  795. endstops.enable(true); // Start with endstops active. After homing they can be disabled
  796. sei();
  797. set_directions(); // Init directions to last_direction_bits = 0
  798. }
  799. /**
  800. * Block until all buffered steps are executed
  801. */
  802. void Stepper::synchronize() { while (planner.blocks_queued()) idle(); }
  803. /**
  804. * Set the stepper positions directly in steps
  805. *
  806. * The input is based on the typical per-axis XYZ steps.
  807. * For CORE machines XYZ needs to be translated to ABC.
  808. *
  809. * This allows get_axis_position_mm to correctly
  810. * derive the current XYZ position later on.
  811. */
  812. void Stepper::set_position(const long& x, const long& y, const long& z, const long& e) {
  813. CRITICAL_SECTION_START;
  814. #if ENABLED(COREXY)
  815. // corexy positioning
  816. // these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
  817. count_position[A_AXIS] = x + y;
  818. count_position[B_AXIS] = x - y;
  819. count_position[Z_AXIS] = z;
  820. #elif ENABLED(COREXZ)
  821. // corexz planning
  822. count_position[A_AXIS] = x + z;
  823. count_position[Y_AXIS] = y;
  824. count_position[C_AXIS] = x - z;
  825. #elif ENABLED(COREYZ)
  826. // coreyz planning
  827. count_position[X_AXIS] = x;
  828. count_position[B_AXIS] = y + z;
  829. count_position[C_AXIS] = y - z;
  830. #else
  831. // default non-h-bot planning
  832. count_position[X_AXIS] = x;
  833. count_position[Y_AXIS] = y;
  834. count_position[Z_AXIS] = z;
  835. #endif
  836. count_position[E_AXIS] = e;
  837. CRITICAL_SECTION_END;
  838. }
  839. void Stepper::set_e_position(const long& e) {
  840. CRITICAL_SECTION_START;
  841. count_position[E_AXIS] = e;
  842. CRITICAL_SECTION_END;
  843. }
  844. /**
  845. * Get a stepper's position in steps.
  846. */
  847. long Stepper::position(AxisEnum axis) {
  848. CRITICAL_SECTION_START;
  849. long count_pos = count_position[axis];
  850. CRITICAL_SECTION_END;
  851. return count_pos;
  852. }
  853. /**
  854. * Get an axis position according to stepper position(s)
  855. * For CORE machines apply translation from ABC to XYZ.
  856. */
  857. float Stepper::get_axis_position_mm(AxisEnum axis) {
  858. float axis_steps;
  859. #if ENABLED(COREXY) || ENABLED(COREXZ) || ENABLED(COREYZ)
  860. // Requesting one of the "core" axes?
  861. if (axis == CORE_AXIS_1 || axis == CORE_AXIS_2) {
  862. CRITICAL_SECTION_START;
  863. long pos1 = count_position[CORE_AXIS_1],
  864. pos2 = count_position[CORE_AXIS_2];
  865. CRITICAL_SECTION_END;
  866. // ((a1+a2)+(a1-a2))/2 -> (a1+a2+a1-a2)/2 -> (a1+a1)/2 -> a1
  867. // ((a1+a2)-(a1-a2))/2 -> (a1+a2-a1+a2)/2 -> (a2+a2)/2 -> a2
  868. axis_steps = (pos1 + ((axis == CORE_AXIS_1) ? pos2 : -pos2)) * 0.5f;
  869. }
  870. else
  871. axis_steps = position(axis);
  872. #else
  873. axis_steps = position(axis);
  874. #endif
  875. return axis_steps * planner.steps_to_mm[axis];
  876. }
  877. void Stepper::finish_and_disable() {
  878. synchronize();
  879. disable_all_steppers();
  880. }
  881. void Stepper::quick_stop() {
  882. cleaning_buffer_counter = 5000;
  883. DISABLE_STEPPER_DRIVER_INTERRUPT();
  884. while (planner.blocks_queued()) planner.discard_current_block();
  885. current_block = NULL;
  886. ENABLE_STEPPER_DRIVER_INTERRUPT();
  887. }
  888. void Stepper::endstop_triggered(AxisEnum axis) {
  889. #if ENABLED(COREXY) || ENABLED(COREXZ) || ENABLED(COREYZ)
  890. float axis_pos = count_position[axis];
  891. if (axis == CORE_AXIS_1)
  892. axis_pos = (axis_pos + count_position[CORE_AXIS_2]) * 0.5;
  893. else if (axis == CORE_AXIS_2)
  894. axis_pos = (count_position[CORE_AXIS_1] - axis_pos) * 0.5;
  895. endstops_trigsteps[axis] = axis_pos;
  896. #else // !COREXY && !COREXZ && !COREYZ
  897. endstops_trigsteps[axis] = count_position[axis];
  898. #endif // !COREXY && !COREXZ && !COREYZ
  899. kill_current_block();
  900. }
  901. void Stepper::report_positions() {
  902. CRITICAL_SECTION_START;
  903. long xpos = count_position[X_AXIS],
  904. ypos = count_position[Y_AXIS],
  905. zpos = count_position[Z_AXIS];
  906. CRITICAL_SECTION_END;
  907. #if ENABLED(COREXY) || ENABLED(COREXZ)
  908. SERIAL_PROTOCOLPGM(MSG_COUNT_A);
  909. #else
  910. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  911. #endif
  912. SERIAL_PROTOCOL(xpos);
  913. #if ENABLED(COREXY) || ENABLED(COREYZ)
  914. SERIAL_PROTOCOLPGM(" B:");
  915. #else
  916. SERIAL_PROTOCOLPGM(" Y:");
  917. #endif
  918. SERIAL_PROTOCOL(ypos);
  919. #if ENABLED(COREXZ) || ENABLED(COREYZ)
  920. SERIAL_PROTOCOLPGM(" C:");
  921. #else
  922. SERIAL_PROTOCOLPGM(" Z:");
  923. #endif
  924. SERIAL_PROTOCOL(zpos);
  925. SERIAL_EOL;
  926. }
  927. #if ENABLED(BABYSTEPPING)
  928. // MUST ONLY BE CALLED BY AN ISR,
  929. // No other ISR should ever interrupt this!
  930. void Stepper::babystep(const uint8_t axis, const bool direction) {
  931. #define _ENABLE(axis) enable_## axis()
  932. #define _READ_DIR(AXIS) AXIS ##_DIR_READ
  933. #define _INVERT_DIR(AXIS) INVERT_## AXIS ##_DIR
  934. #define _APPLY_DIR(AXIS, INVERT) AXIS ##_APPLY_DIR(INVERT, true)
  935. #define BABYSTEP_AXIS(axis, AXIS, INVERT) { \
  936. _ENABLE(axis); \
  937. uint8_t old_pin = _READ_DIR(AXIS); \
  938. _APPLY_DIR(AXIS, _INVERT_DIR(AXIS)^direction^INVERT); \
  939. _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS), true); \
  940. delayMicroseconds(2); \
  941. _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS), true); \
  942. _APPLY_DIR(AXIS, old_pin); \
  943. }
  944. switch (axis) {
  945. case X_AXIS:
  946. BABYSTEP_AXIS(x, X, false);
  947. break;
  948. case Y_AXIS:
  949. BABYSTEP_AXIS(y, Y, false);
  950. break;
  951. case Z_AXIS: {
  952. #if DISABLED(DELTA)
  953. BABYSTEP_AXIS(z, Z, BABYSTEP_INVERT_Z);
  954. #else // DELTA
  955. bool z_direction = direction ^ BABYSTEP_INVERT_Z;
  956. enable_x();
  957. enable_y();
  958. enable_z();
  959. uint8_t old_x_dir_pin = X_DIR_READ,
  960. old_y_dir_pin = Y_DIR_READ,
  961. old_z_dir_pin = Z_DIR_READ;
  962. //setup new step
  963. X_DIR_WRITE(INVERT_X_DIR ^ z_direction);
  964. Y_DIR_WRITE(INVERT_Y_DIR ^ z_direction);
  965. Z_DIR_WRITE(INVERT_Z_DIR ^ z_direction);
  966. //perform step
  967. X_STEP_WRITE(!INVERT_X_STEP_PIN);
  968. Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
  969. Z_STEP_WRITE(!INVERT_Z_STEP_PIN);
  970. delayMicroseconds(2);
  971. X_STEP_WRITE(INVERT_X_STEP_PIN);
  972. Y_STEP_WRITE(INVERT_Y_STEP_PIN);
  973. Z_STEP_WRITE(INVERT_Z_STEP_PIN);
  974. //get old pin state back.
  975. X_DIR_WRITE(old_x_dir_pin);
  976. Y_DIR_WRITE(old_y_dir_pin);
  977. Z_DIR_WRITE(old_z_dir_pin);
  978. #endif
  979. } break;
  980. default: break;
  981. }
  982. }
  983. #endif //BABYSTEPPING
  984. /**
  985. * Software-controlled Stepper Motor Current
  986. */
  987. #if HAS_DIGIPOTSS
  988. // From Arduino DigitalPotControl example
  989. void Stepper::digitalPotWrite(int address, int value) {
  990. digitalWrite(DIGIPOTSS_PIN, LOW); // take the SS pin low to select the chip
  991. SPI.transfer(address); // send in the address and value via SPI:
  992. SPI.transfer(value);
  993. digitalWrite(DIGIPOTSS_PIN, HIGH); // take the SS pin high to de-select the chip:
  994. //delay(10);
  995. }
  996. #endif //HAS_DIGIPOTSS
  997. void Stepper::digipot_init() {
  998. #if HAS_DIGIPOTSS
  999. const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
  1000. SPI.begin();
  1001. pinMode(DIGIPOTSS_PIN, OUTPUT);
  1002. for (uint8_t i = 0; i < COUNT(digipot_motor_current); i++) {
  1003. //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
  1004. digipot_current(i, digipot_motor_current[i]);
  1005. }
  1006. #endif
  1007. #if HAS_MOTOR_CURRENT_PWM
  1008. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  1009. pinMode(MOTOR_CURRENT_PWM_XY_PIN, OUTPUT);
  1010. digipot_current(0, motor_current_setting[0]);
  1011. #endif
  1012. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  1013. pinMode(MOTOR_CURRENT_PWM_Z_PIN, OUTPUT);
  1014. digipot_current(1, motor_current_setting[1]);
  1015. #endif
  1016. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  1017. pinMode(MOTOR_CURRENT_PWM_E_PIN, OUTPUT);
  1018. digipot_current(2, motor_current_setting[2]);
  1019. #endif
  1020. //Set timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
  1021. TCCR5B = (TCCR5B & ~(_BV(CS50) | _BV(CS51) | _BV(CS52))) | _BV(CS50);
  1022. #endif
  1023. }
  1024. void Stepper::digipot_current(uint8_t driver, int current) {
  1025. #if HAS_DIGIPOTSS
  1026. const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
  1027. digitalPotWrite(digipot_ch[driver], current);
  1028. #elif HAS_MOTOR_CURRENT_PWM
  1029. #define _WRITE_CURRENT_PWM(P) analogWrite(P, 255L * current / (MOTOR_CURRENT_PWM_RANGE))
  1030. switch (driver) {
  1031. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  1032. case 0: _WRITE_CURRENT_PWM(MOTOR_CURRENT_PWM_XY_PIN); break;
  1033. #endif
  1034. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  1035. case 1: _WRITE_CURRENT_PWM(MOTOR_CURRENT_PWM_Z_PIN); break;
  1036. #endif
  1037. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  1038. case 2: _WRITE_CURRENT_PWM(MOTOR_CURRENT_PWM_E_PIN); break;
  1039. #endif
  1040. }
  1041. #else
  1042. UNUSED(driver);
  1043. UNUSED(current);
  1044. #endif
  1045. }
  1046. void Stepper::microstep_init() {
  1047. #if HAS_MICROSTEPS_E1
  1048. pinMode(E1_MS1_PIN, OUTPUT);
  1049. pinMode(E1_MS2_PIN, OUTPUT);
  1050. #endif
  1051. #if HAS_MICROSTEPS
  1052. pinMode(X_MS1_PIN, OUTPUT);
  1053. pinMode(X_MS2_PIN, OUTPUT);
  1054. pinMode(Y_MS1_PIN, OUTPUT);
  1055. pinMode(Y_MS2_PIN, OUTPUT);
  1056. pinMode(Z_MS1_PIN, OUTPUT);
  1057. pinMode(Z_MS2_PIN, OUTPUT);
  1058. pinMode(E0_MS1_PIN, OUTPUT);
  1059. pinMode(E0_MS2_PIN, OUTPUT);
  1060. const uint8_t microstep_modes[] = MICROSTEP_MODES;
  1061. for (uint16_t i = 0; i < COUNT(microstep_modes); i++)
  1062. microstep_mode(i, microstep_modes[i]);
  1063. #endif
  1064. }
  1065. /**
  1066. * Software-controlled Microstepping
  1067. */
  1068. void Stepper::microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2) {
  1069. if (ms1 >= 0) switch (driver) {
  1070. case 0: digitalWrite(X_MS1_PIN, ms1); break;
  1071. case 1: digitalWrite(Y_MS1_PIN, ms1); break;
  1072. case 2: digitalWrite(Z_MS1_PIN, ms1); break;
  1073. case 3: digitalWrite(E0_MS1_PIN, ms1); break;
  1074. #if HAS_MICROSTEPS_E1
  1075. case 4: digitalWrite(E1_MS1_PIN, ms1); break;
  1076. #endif
  1077. }
  1078. if (ms2 >= 0) switch (driver) {
  1079. case 0: digitalWrite(X_MS2_PIN, ms2); break;
  1080. case 1: digitalWrite(Y_MS2_PIN, ms2); break;
  1081. case 2: digitalWrite(Z_MS2_PIN, ms2); break;
  1082. case 3: digitalWrite(E0_MS2_PIN, ms2); break;
  1083. #if PIN_EXISTS(E1_MS2)
  1084. case 4: digitalWrite(E1_MS2_PIN, ms2); break;
  1085. #endif
  1086. }
  1087. }
  1088. void Stepper::microstep_mode(uint8_t driver, uint8_t stepping_mode) {
  1089. switch (stepping_mode) {
  1090. case 1: microstep_ms(driver, MICROSTEP1); break;
  1091. case 2: microstep_ms(driver, MICROSTEP2); break;
  1092. case 4: microstep_ms(driver, MICROSTEP4); break;
  1093. case 8: microstep_ms(driver, MICROSTEP8); break;
  1094. case 16: microstep_ms(driver, MICROSTEP16); break;
  1095. }
  1096. }
  1097. void Stepper::microstep_readings() {
  1098. SERIAL_PROTOCOLLNPGM("MS1,MS2 Pins");
  1099. SERIAL_PROTOCOLPGM("X: ");
  1100. SERIAL_PROTOCOL(digitalRead(X_MS1_PIN));
  1101. SERIAL_PROTOCOLLN(digitalRead(X_MS2_PIN));
  1102. SERIAL_PROTOCOLPGM("Y: ");
  1103. SERIAL_PROTOCOL(digitalRead(Y_MS1_PIN));
  1104. SERIAL_PROTOCOLLN(digitalRead(Y_MS2_PIN));
  1105. SERIAL_PROTOCOLPGM("Z: ");
  1106. SERIAL_PROTOCOL(digitalRead(Z_MS1_PIN));
  1107. SERIAL_PROTOCOLLN(digitalRead(Z_MS2_PIN));
  1108. SERIAL_PROTOCOLPGM("E0: ");
  1109. SERIAL_PROTOCOL(digitalRead(E0_MS1_PIN));
  1110. SERIAL_PROTOCOLLN(digitalRead(E0_MS2_PIN));
  1111. #if HAS_MICROSTEPS_E1
  1112. SERIAL_PROTOCOLPGM("E1: ");
  1113. SERIAL_PROTOCOL(digitalRead(E1_MS1_PIN));
  1114. SERIAL_PROTOCOLLN(digitalRead(E1_MS2_PIN));
  1115. #endif
  1116. }
  1117. #if ENABLED(LIN_ADVANCE)
  1118. void Stepper::advance_M905(const float &k) {
  1119. if (k >= 0) extruder_advance_k = k;
  1120. SERIAL_ECHO_START;
  1121. SERIAL_ECHOPAIR("Advance factor: ", extruder_advance_k);
  1122. SERIAL_EOL;
  1123. }
  1124. #endif // LIN_ADVANCE