My Marlin configs for Fabrikator Mini and CTC i3 Pro B
選択できるのは25トピックまでです。 トピックは、先頭が英数字で、英数字とダッシュ('-')を使用した35文字以内のものにしてください。

G26_Mesh_Validation_Tool.cpp 39KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * Marlin Firmware -- G26 - Mesh Validation Tool
  24. */
  25. #include "MarlinConfig.h"
  26. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_MESH_EDIT_ENABLED)
  27. #include "Marlin.h"
  28. #include "Configuration.h"
  29. #include "planner.h"
  30. #include "stepper.h"
  31. #include "temperature.h"
  32. #include "UBL.h"
  33. #include "ultralcd.h"
  34. //#include <avr/pgmspace.h>
  35. #define EXTRUSION_MULTIPLIER 1.0 // This is too much clutter for the main Configuration.h file But
  36. #define RETRACTION_MULTIPLIER 1.0 // some user have expressed an interest in being able to customize
  37. #define NOZZLE 0.3 // these numbers for thier printer so they don't need to type all
  38. #define FILAMENT 1.75 // the options every time they do a Mesh Validation Print.
  39. #define LAYER_HEIGHT 0.2
  40. #define PRIME_LENGTH 10.0 // So, we put these number in an easy to find and change place.
  41. #define BED_TEMP 60.0
  42. #define HOTEND_TEMP 205.0
  43. #define OOZE_AMOUNT 0.3
  44. #define SIZE_OF_INTERSECTION_CIRCLES 5
  45. #define SIZE_OF_CROSS_HAIRS 3 // cross hairs inside the circle. This number should be
  46. // less than SIZE_OR_INTERSECTION_CIRCLES
  47. /**
  48. * Roxy's G26 Mesh Validation Tool
  49. *
  50. * G26 Is a Mesh Validation Tool intended to provide support for the Marlin Unified Bed Leveling System.
  51. * In order to fully utilize and benefit from the Marlin Unified Bed Leveling System an accurate Mesh must
  52. * be defined. G29 is designed to allow the user to quickly validate the correctness of her Mesh. It will
  53. * first heat the bed and nozzle. It will then print lines and circles along the Mesh Cell boundaries and
  54. * the intersections of those lines (respectively).
  55. *
  56. * This action allows the user to immediately see where the Mesh is properly defined and where it needs to
  57. * be edited. The command will generate the Mesh lines closest to the nozzle's starting position. Alternatively
  58. * the user can specify the X and Y position of interest with command parameters. This allows the user to
  59. * focus on a particular area of the Mesh where attention is needed.
  60. *
  61. * B # Bed Set the Bed Temperature. If not specified, a default of 60 C. will be assumed.
  62. *
  63. * C Current When searching for Mesh Intersection points to draw, use the current nozzle location
  64. * as the base for any distance comparison.
  65. *
  66. * D Disable Disable the Unified Bed Leveling System. In the normal case the user is invoking this
  67. * command to see how well a Mesh as been adjusted to match a print surface. In order to do
  68. * this the Unified Bed Leveling System is turned on by the G26 command. The D parameter
  69. * alters the command's normal behaviour and disables the Unified Bed Leveling System even if
  70. * it is on.
  71. *
  72. * H # Hotend Set the Nozzle Temperature. If not specified, a default of 205 C. will be assumed.
  73. *
  74. * F # Filament Used to specify the diameter of the filament being used. If not specified
  75. * 1.75mm filament is assumed. If you are not getting acceptable results by using the
  76. * 'correct' numbers, you can scale this number up or down a little bit to change the amount
  77. * of filament that is being extruded during the printing of the various lines on the bed.
  78. *
  79. * K Keep-On Keep the heaters turned on at the end of the command.
  80. *
  81. * L # Layer Layer height. (Height of nozzle above bed) If not specified .20mm will be used.
  82. *
  83. * Q # Multiplier Retraction Multiplier. Normally not needed. Retraction defaults to 1.0mm and
  84. * un-retraction is at 1.2mm These numbers will be scaled by the specified amount
  85. *
  86. * N # Nozzle Used to control the size of nozzle diameter. If not specified, a .4mm nozzle is assumed.
  87. *
  88. * O # Ooooze How much your nozzle will Ooooze filament while getting in position to print. This
  89. * is over kill, but using this parameter will let you get the very first 'cicle' perfect
  90. * so you have a trophy to peel off of the bed and hang up to show how perfectly you have your
  91. * Mesh calibrated. If not specified, a filament length of .3mm is assumed.
  92. *
  93. * P # Prime Prime the nozzle with specified length of filament. If this parameter is not
  94. * given, no prime action will take place. If the parameter specifies an amount, that much
  95. * will be purged before continuing. If no amount is specified the command will start
  96. * purging filament until the user provides an LCD Click and then it will continue with
  97. * printing the Mesh. You can carefully remove the spent filament with a needle nose
  98. * pliers while holding the LCD Click wheel in a depressed state.
  99. *
  100. * R # Random Randomize the order that the circles are drawn on the bed. The search for the closest
  101. * undrawn cicle is still done. But the distance to the location for each circle has a
  102. * random number of the size specified added to it. Specifying R50 will give an interesting
  103. * deviation from the normal behaviour on a 10 x 10 Mesh.
  104. *
  105. * X # X coordinate Specify the starting location of the drawing activity.
  106. *
  107. * Y # Y coordinate Specify the starting location of the drawing activity.
  108. */
  109. extern bool ubl_has_control_of_lcd_panel;
  110. extern float feedrate;
  111. //extern bool relative_mode;
  112. extern Planner planner;
  113. //#if ENABLED(ULTRA_LCD)
  114. extern char lcd_status_message[];
  115. //#endif
  116. extern float destination[];
  117. extern void set_destination_to_current();
  118. extern void set_current_to_destination();
  119. extern float code_value_float();
  120. extern bool code_value_bool();
  121. extern bool code_has_value();
  122. extern void lcd_init();
  123. extern void lcd_setstatuspgm(const char* const message, uint8_t level);
  124. #define PLANNER_XY_FEEDRATE() (min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS])) //bob
  125. bool prepare_move_to_destination_cartesian();
  126. void line_to_destination();
  127. void line_to_destination(float );
  128. void gcode_G28();
  129. void sync_plan_position_e();
  130. void un_retract_filament();
  131. void retract_filament();
  132. void look_for_lines_to_connect();
  133. bool parse_G26_parameters();
  134. void move_to(const float&, const float&, const float&, const float&) ;
  135. void print_line_from_here_to_there(float sx, float sy, float sz, float ex, float ey, float ez);
  136. bool turn_on_heaters();
  137. bool prime_nozzle();
  138. void chirp_at_user();
  139. static uint16_t circle_flags[16], horizontal_mesh_line_flags[16], vertical_mesh_line_flags[16], continue_with_closest = 0;
  140. float g26_e_axis_feedrate = 0.020,
  141. random_deviation = 0.0,
  142. layer_height = LAYER_HEIGHT;
  143. bool g26_retracted = false; // We keep track of the state of the nozzle to know if it
  144. // is currently retracted or not. This allows us to be
  145. // less careful because mis-matched retractions and un-retractions
  146. // won't leave us in a bad state.
  147. float valid_trig_angle(float);
  148. mesh_index_pair find_closest_circle_to_print(float, float);
  149. void ubl_line_to_destination(const float&, const float&, const float&, const float&, const float&, uint8_t);
  150. //uint16_t x_splits = 0xFFFF, uint16_t y_splits = 0xFFFF); /* needed for the old mesh_buffer_line() routine */
  151. static float extrusion_multiplier = EXTRUSION_MULTIPLIER,
  152. retraction_multiplier = RETRACTION_MULTIPLIER,
  153. nozzle = NOZZLE,
  154. filament_diameter = FILAMENT,
  155. prime_length = PRIME_LENGTH,
  156. x_pos, y_pos,
  157. bed_temp = BED_TEMP,
  158. hotend_temp = HOTEND_TEMP,
  159. ooze_amount = OOZE_AMOUNT;
  160. int8_t prime_flag = 0;
  161. bool keep_heaters_on = false,
  162. g26_debug_flag = false;
  163. /**
  164. * G26: Mesh Validation Pattern generation.
  165. *
  166. * Used to interactively edit UBL's Mesh by placing the
  167. * nozzle in a problem area and doing a G29 P4 R command.
  168. */
  169. void gcode_G26() {
  170. float circle_x, circle_y, x, y, xe, ye, tmp,
  171. start_angle, end_angle;
  172. int i, xi, yi, lcd_init_counter = 0;
  173. mesh_index_pair location;
  174. if (axis_unhomed_error(true, true, true)) // Don't allow Mesh Validation without homing first
  175. gcode_G28();
  176. if (parse_G26_parameters()) return; // If the paramter parsing did not go OK, we abort the command
  177. if (current_position[Z_AXIS] < Z_CLEARANCE_BETWEEN_PROBES) {
  178. do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
  179. stepper.synchronize();
  180. set_current_to_destination();
  181. }
  182. ubl_has_control_of_lcd_panel = true; // Take control of the LCD Panel!
  183. if (turn_on_heaters()) // Turn on the heaters, leave the command if anything
  184. goto LEAVE; // has gone wrong.
  185. axis_relative_modes[E_AXIS] = false; // Get things setup so we can take control of the
  186. //relative_mode = false; // planner and stepper motors!
  187. current_position[E_AXIS] = 0.0;
  188. sync_plan_position_e();
  189. if (prime_flag && prime_nozzle()) // if prime_nozzle() returns an error, we just bail out.
  190. goto LEAVE;
  191. /**
  192. * Bed is preheated
  193. *
  194. * Nozzle is at temperature
  195. *
  196. * Filament is primed!
  197. *
  198. * It's "Show Time" !!!
  199. */
  200. // Clear all of the flags we need
  201. ZERO(circle_flags);
  202. ZERO(horizontal_mesh_line_flags);
  203. ZERO(vertical_mesh_line_flags);
  204. //
  205. // Move nozzle to the specified height for the first layer
  206. //
  207. set_destination_to_current();
  208. destination[Z_AXIS] = layer_height;
  209. move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 0.0);
  210. move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], ooze_amount);
  211. ubl_has_control_of_lcd_panel = true; // Take control of the LCD Panel!
  212. // debug_current_and_destination((char*)"Starting G26 Mesh Validation Pattern.");
  213. /**
  214. * Declare and generate a sin() & cos() table to be used during the circle drawing. This will lighten
  215. * the CPU load and make the arc drawing faster and more smooth
  216. */
  217. float sin_table[360 / 30 + 1], cos_table[360 / 30 + 1];
  218. for (i = 0; i <= 360 / 30; i++) {
  219. cos_table[i] = SIZE_OF_INTERSECTION_CIRCLES * cos(RADIANS(valid_trig_angle(i * 30.0)));
  220. sin_table[i] = SIZE_OF_INTERSECTION_CIRCLES * sin(RADIANS(valid_trig_angle(i * 30.0)));
  221. }
  222. do {
  223. if (ubl_lcd_clicked()) { // Check if the user wants to stop the Mesh Validation
  224. #if ENABLED(ULTRA_LCD)
  225. lcd_setstatuspgm(PSTR("Mesh Validation Stopped."), (uint8_t) 99);
  226. lcd_quick_feedback();
  227. #endif
  228. while (!ubl_lcd_clicked()) { // Wait until the user is done pressing the
  229. idle(); // Encoder Wheel if that is why we are leaving
  230. lcd_setstatuspgm(PSTR(" "), (uint8_t) 99);
  231. }
  232. while ( ubl_lcd_clicked()) { // Wait until the user is done pressing the
  233. idle(); // Encoder Wheel if that is why we are leaving
  234. lcd_setstatuspgm(PSTR("Unpress Wheel "), (uint8_t) 99);
  235. }
  236. goto LEAVE;
  237. }
  238. if (continue_with_closest)
  239. location = find_closest_circle_to_print(current_position[X_AXIS], current_position[Y_AXIS]);
  240. else
  241. location = find_closest_circle_to_print(x_pos, y_pos); // Find the closest Mesh Intersection to where we are now.
  242. if (location.x_index >= 0 && location.y_index >= 0) {
  243. circle_x = ubl.map_x_index_to_bed_location(location.x_index);
  244. circle_y = ubl.map_y_index_to_bed_location(location.y_index);
  245. // Let's do a couple of quick sanity checks. We can pull this code out later if we never see it catch a problem
  246. #ifdef DELTA
  247. if (HYPOT2(circle_x, circle_y) > sq(DELTA_PRINTABLE_RADIUS)) {
  248. SERIAL_PROTOCOLLNPGM("?Error: Attempt to print outside of DELTA_PRINTABLE_RADIUS.");
  249. goto LEAVE;
  250. }
  251. #endif
  252. if (circle_x < X_MIN_POS || circle_x > X_MAX_POS || circle_y < Y_MIN_POS || circle_y > Y_MAX_POS) {
  253. SERIAL_PROTOCOLLNPGM("?Error: Attempt to print off the bed.");
  254. goto LEAVE;
  255. }
  256. xi = location.x_index; // Just to shrink the next few lines and make them easier to understand
  257. yi = location.y_index;
  258. if (g26_debug_flag) {
  259. SERIAL_ECHOPGM(" Doing circle at: (xi=");
  260. SERIAL_ECHO(xi);
  261. SERIAL_ECHOPGM(", yi=");
  262. SERIAL_ECHO(yi);
  263. SERIAL_ECHOLNPGM(")");
  264. }
  265. start_angle = 0.0; // assume it is going to be a full circle
  266. end_angle = 360.0;
  267. if (xi == 0) { // Check for bottom edge
  268. start_angle = -90.0;
  269. end_angle = 90.0;
  270. if (yi == 0) // it is an edge, check for the two left corners
  271. start_angle = 0.0;
  272. else if (yi == UBL_MESH_NUM_Y_POINTS - 1)
  273. end_angle = 0.0;
  274. }
  275. else if (xi == UBL_MESH_NUM_X_POINTS - 1) { // Check for top edge
  276. start_angle = 90.0;
  277. end_angle = 270.0;
  278. if (yi == 0) // it is an edge, check for the two right corners
  279. end_angle = 180.0;
  280. else if (yi == UBL_MESH_NUM_Y_POINTS - 1)
  281. start_angle = 180.0;
  282. }
  283. else if (yi == 0) {
  284. start_angle = 0.0; // only do the top side of the cirlce
  285. end_angle = 180.0;
  286. }
  287. else if (yi == UBL_MESH_NUM_Y_POINTS - 1) {
  288. start_angle = 180.0; // only do the bottom side of the cirlce
  289. end_angle = 360.0;
  290. }
  291. for (tmp = start_angle; tmp < end_angle - 0.1; tmp += 30.0) {
  292. int tmp_div_30 = tmp / 30.0;
  293. if (tmp_div_30 < 0) tmp_div_30 += 360 / 30;
  294. x = circle_x + cos_table[tmp_div_30]; // for speed, these are now a lookup table entry
  295. y = circle_y + sin_table[tmp_div_30];
  296. if (tmp_div_30 > 11) tmp_div_30 -= 360 / 30;
  297. xe = circle_x + cos_table[tmp_div_30 + 1]; // for speed, these are now a lookup table entry
  298. ye = circle_y + sin_table[tmp_div_30 + 1];
  299. #ifdef DELTA
  300. if (HYPOT2(x, y) > sq(DELTA_PRINTABLE_RADIUS)) // Check to make sure this part of
  301. continue; // the 'circle' is on the bed. If
  302. #else // not, we need to skip
  303. x = constrain(x, X_MIN_POS + 1, X_MAX_POS - 1); // This keeps us from bumping the endstops
  304. y = constrain(y, Y_MIN_POS + 1, Y_MAX_POS - 1);
  305. xe = constrain(xe, X_MIN_POS + 1, X_MAX_POS - 1);
  306. ye = constrain(ye, Y_MIN_POS + 1, Y_MAX_POS - 1);
  307. #endif
  308. // if (g26_debug_flag) {
  309. // char ccc, *cptr, seg_msg[50], seg_num[10];
  310. // strcpy(seg_msg, " segment: ");
  311. // strcpy(seg_num, " \n");
  312. // cptr = (char*) "01234567890ABCDEF????????";
  313. // ccc = cptr[tmp_div_30];
  314. // seg_num[1] = ccc;
  315. // strcat(seg_msg, seg_num);
  316. // debug_current_and_destination(seg_msg);
  317. // }
  318. print_line_from_here_to_there(x, y, layer_height, xe, ye, layer_height);
  319. }
  320. // lcd_init_counter++;
  321. // if (lcd_init_counter > 10) {
  322. // lcd_init_counter = 0;
  323. // lcd_init(); // Some people's LCD Displays are locking up. This might help them
  324. // ubl_has_control_of_lcd_panel = true; // Make sure UBL still is controlling the LCD Panel
  325. // }
  326. // If the end point of the line is closer to the nozzle, we are going to
  327. // debug_current_and_destination((char*)"Looking for lines to connect.");
  328. look_for_lines_to_connect();
  329. // debug_current_and_destination((char*)"Done with line connect.");
  330. }
  331. // debug_current_and_destination((char*)"Done with current circle.");
  332. // If the end point of the line is closer to the nozzle, we are going to
  333. }
  334. while (location.x_index >= 0 && location.y_index >= 0);
  335. LEAVE:
  336. lcd_setstatuspgm(PSTR("Leaving G26 "), (uint8_t) 99);
  337. retract_filament();
  338. destination[Z_AXIS] = Z_CLEARANCE_BETWEEN_PROBES; // Raise the nozzle
  339. // debug_current_and_destination((char*)"ready to do Z-Raise.");
  340. move_to( destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 0); // Raise the nozzle
  341. // debug_current_and_destination((char*)"done doing Z-Raise.");
  342. destination[X_AXIS] = x_pos; // Move back to the starting position
  343. destination[Y_AXIS] = y_pos;
  344. destination[Z_AXIS] = Z_CLEARANCE_BETWEEN_PROBES; // Keep the nozzle where it is
  345. move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 0); // Move back to the starting position
  346. // debug_current_and_destination((char*)"done doing X/Y move.");
  347. ubl_has_control_of_lcd_panel = false; // Give back control of the LCD Panel!
  348. if (!keep_heaters_on) {
  349. #if HAS_TEMP_BED
  350. thermalManager.setTargetBed(0.0);
  351. #endif
  352. thermalManager.setTargetHotend(0.0, 0);
  353. }
  354. }
  355. float valid_trig_angle(float d) {
  356. while (d > 360.0) d -= 360.0;
  357. while (d < 0.0) d += 360.0;
  358. return d;
  359. }
  360. mesh_index_pair find_closest_circle_to_print( float X, float Y) {
  361. float f, mx, my, dx, dy, closest = 99999.99;
  362. mesh_index_pair return_val;
  363. return_val.x_index = return_val.y_index = -1;
  364. for (uint8_t i = 0; i < UBL_MESH_NUM_X_POINTS; i++) {
  365. for (uint8_t j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) {
  366. if (!is_bit_set(circle_flags, i, j)) {
  367. mx = ubl.map_x_index_to_bed_location(i); // We found a circle that needs to be printed
  368. my = ubl.map_y_index_to_bed_location(j);
  369. dx = X - mx; // Get the distance to this intersection
  370. dy = Y - my;
  371. f = HYPOT(dx, dy);
  372. dx = x_pos - mx; // It is possible that we are being called with the values
  373. dy = y_pos - my; // to let us find the closest circle to the start position.
  374. f += HYPOT(dx, dy) / 15.0; // But if this is not the case,
  375. // we are going to add in a small
  376. // weighting to the distance calculation to help it choose
  377. // a better place to continue.
  378. if (random_deviation > 1.0)
  379. f += random(0.0, random_deviation); // Add in the specified amount of Random Noise to our search
  380. if (f < closest) {
  381. closest = f; // We found a closer location that is still
  382. return_val.x_index = i; // un-printed --- save the data for it
  383. return_val.y_index = j;
  384. return_val.distance= closest;
  385. }
  386. }
  387. }
  388. }
  389. bit_set(circle_flags, return_val.x_index, return_val.y_index); // Mark this location as done.
  390. return return_val;
  391. }
  392. void look_for_lines_to_connect() {
  393. float sx, sy, ex, ey;
  394. for (uint8_t i = 0; i < UBL_MESH_NUM_X_POINTS; i++) {
  395. for (uint8_t j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) {
  396. if (i < UBL_MESH_NUM_X_POINTS) { // We can't connect to anything to the right than UBL_MESH_NUM_X_POINTS.
  397. // This is already a half circle because we are at the edge of the bed.
  398. if (is_bit_set(circle_flags, i, j) && is_bit_set(circle_flags, i + 1, j)) { // check if we can do a line to the left
  399. if (!is_bit_set(horizontal_mesh_line_flags, i, j)) {
  400. //
  401. // We found two circles that need a horizontal line to connect them
  402. // Print it!
  403. //
  404. sx = ubl.map_x_index_to_bed_location(i);
  405. sx = sx + SIZE_OF_INTERSECTION_CIRCLES - SIZE_OF_CROSS_HAIRS; // get the right edge of the circle
  406. sy = ubl.map_y_index_to_bed_location(j);
  407. ex = ubl.map_x_index_to_bed_location(i + 1);
  408. ex = ex - SIZE_OF_INTERSECTION_CIRCLES + SIZE_OF_CROSS_HAIRS; // get the left edge of the circle
  409. ey = sy;
  410. sx = constrain(sx, X_MIN_POS + 1, X_MAX_POS - 1); // This keeps us from bumping the endstops
  411. sy = constrain(sy, Y_MIN_POS + 1, Y_MAX_POS - 1);
  412. ex = constrain(ex, X_MIN_POS + 1, X_MAX_POS - 1);
  413. ey = constrain(ey, Y_MIN_POS + 1, Y_MAX_POS - 1);
  414. if (g26_debug_flag) {
  415. SERIAL_ECHOPGM(" Connecting with horizontal line (sx=");
  416. SERIAL_ECHO(sx);
  417. SERIAL_ECHOPGM(", sy=");
  418. SERIAL_ECHO(sy);
  419. SERIAL_ECHOPGM(") -> (ex=");
  420. SERIAL_ECHO(ex);
  421. SERIAL_ECHOPGM(", ey=");
  422. SERIAL_ECHO(ey);
  423. SERIAL_ECHOLNPGM(")");
  424. // debug_current_and_destination((char*)"Connecting horizontal line.");
  425. }
  426. print_line_from_here_to_there(sx, sy, layer_height, ex, ey, layer_height);
  427. bit_set(horizontal_mesh_line_flags, i, j); // Mark it as done so we don't do it again
  428. }
  429. }
  430. if (j < UBL_MESH_NUM_Y_POINTS) { // We can't connect to anything further back than UBL_MESH_NUM_Y_POINTS.
  431. // This is already a half circle because we are at the edge of the bed.
  432. if (is_bit_set(circle_flags, i, j) && is_bit_set(circle_flags, i, j + 1)) { // check if we can do a line straight down
  433. if (!is_bit_set( vertical_mesh_line_flags, i, j)) {
  434. //
  435. // We found two circles that need a vertical line to connect them
  436. // Print it!
  437. //
  438. sx = ubl.map_x_index_to_bed_location(i);
  439. sy = ubl.map_y_index_to_bed_location(j);
  440. sy = sy + SIZE_OF_INTERSECTION_CIRCLES - SIZE_OF_CROSS_HAIRS; // get the top edge of the circle
  441. ex = sx;
  442. ey = ubl.map_y_index_to_bed_location(j + 1);
  443. ey = ey - SIZE_OF_INTERSECTION_CIRCLES + SIZE_OF_CROSS_HAIRS; // get the bottom edge of the circle
  444. sx = constrain(sx, X_MIN_POS + 1, X_MAX_POS - 1); // This keeps us from bumping the endstops
  445. sy = constrain(sy, Y_MIN_POS + 1, Y_MAX_POS - 1);
  446. ex = constrain(ex, X_MIN_POS + 1, X_MAX_POS - 1);
  447. ey = constrain(ey, Y_MIN_POS + 1, Y_MAX_POS - 1);
  448. if (g26_debug_flag) {
  449. SERIAL_ECHOPGM(" Connecting with vertical line (sx=");
  450. SERIAL_ECHO(sx);
  451. SERIAL_ECHOPGM(", sy=");
  452. SERIAL_ECHO(sy);
  453. SERIAL_ECHOPGM(") -> (ex=");
  454. SERIAL_ECHO(ex);
  455. SERIAL_ECHOPGM(", ey=");
  456. SERIAL_ECHO(ey);
  457. SERIAL_ECHOLNPGM(")");
  458. debug_current_and_destination((char*)"Connecting vertical line.");
  459. }
  460. print_line_from_here_to_there(sx, sy, layer_height, ex, ey, layer_height);
  461. bit_set( vertical_mesh_line_flags, i, j); // Mark it as done so we don't do it again
  462. }
  463. }
  464. }
  465. }
  466. }
  467. }
  468. }
  469. void move_to(const float &x, const float &y, const float &z, const float &e_delta) {
  470. float feed_value;
  471. static float last_z = -999.99;
  472. bool has_xy_component = (x != current_position[X_AXIS] || y != current_position[Y_AXIS]); // Check if X or Y is involved in the movement.
  473. // if (g26_debug_flag) {
  474. // SERIAL_ECHOPAIR("in move_to() has_xy_component:", (int)has_xy_component);
  475. // SERIAL_EOL;
  476. // }
  477. if (z != last_z) {
  478. // if (g26_debug_flag) {
  479. // SERIAL_ECHOPAIR("in move_to() changing Z to ", (int)z);
  480. // SERIAL_EOL;
  481. // }
  482. last_z = z;
  483. feed_value = planner.max_feedrate_mm_s[Z_AXIS]/(3.0); // Base the feed rate off of the configured Z_AXIS feed rate
  484. destination[X_AXIS] = current_position[X_AXIS];
  485. destination[Y_AXIS] = current_position[Y_AXIS];
  486. destination[Z_AXIS] = z; // We know the last_z==z or we wouldn't be in this block of code.
  487. destination[E_AXIS] = current_position[E_AXIS];
  488. ubl_line_to_destination(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feed_value, 0);
  489. stepper.synchronize();
  490. set_destination_to_current();
  491. // if (g26_debug_flag)
  492. // debug_current_and_destination((char*)" in move_to() done with Z move");
  493. }
  494. // Check if X or Y is involved in the movement.
  495. // Yes: a 'normal' movement. No: a retract() or un_retract()
  496. feed_value = has_xy_component ? PLANNER_XY_FEEDRATE() / 10.0 : planner.max_feedrate_mm_s[E_AXIS] / 1.5;
  497. if (g26_debug_flag) {
  498. SERIAL_ECHOPAIR("in move_to() feed_value for XY:", feed_value);
  499. SERIAL_EOL;
  500. }
  501. destination[X_AXIS] = x;
  502. destination[Y_AXIS] = y;
  503. destination[E_AXIS] += e_delta;
  504. // if (g26_debug_flag)
  505. // debug_current_and_destination((char*)" in move_to() doing last move");
  506. ubl_line_to_destination(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feed_value, 0);
  507. // if (g26_debug_flag)
  508. // debug_current_and_destination((char*)" in move_to() after last move");
  509. stepper.synchronize();
  510. set_destination_to_current();
  511. }
  512. void retract_filament() {
  513. if (!g26_retracted) { // Only retract if we are not already retracted!
  514. g26_retracted = true;
  515. // if (g26_debug_flag) SERIAL_ECHOLNPGM(" Decided to do retract.");
  516. move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], -1.0 * retraction_multiplier);
  517. // if (g26_debug_flag) SERIAL_ECHOLNPGM(" Retraction done.");
  518. }
  519. }
  520. void un_retract_filament() {
  521. if (g26_retracted) { // Only un-retract if we are retracted.
  522. move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 1.2 * retraction_multiplier);
  523. g26_retracted = false;
  524. // if (g26_debug_flag) SERIAL_ECHOLNPGM(" unretract done.");
  525. }
  526. }
  527. /**
  528. * print_line_from_here_to_there() takes two cartesian coordinates and draws a line from one
  529. * to the other. But there are really three sets of coordinates involved. The first coordinate
  530. * is the present location of the nozzle. We don't necessarily want to print from this location.
  531. * We first need to move the nozzle to the start of line segment where we want to print. Once
  532. * there, we can use the two coordinates supplied to draw the line.
  533. *
  534. * Note: Although we assume the first set of coordinates is the start of the line and the second
  535. * set of coordinates is the end of the line, it does not always work out that way. This function
  536. * optimizes the movement to minimize the travel distance before it can start printing. This saves
  537. * a lot of time and eleminates a lot of non-sensical movement of the nozzle. However, it does
  538. * cause a lot of very little short retracement of th nozzle when it draws the very first line
  539. * segment of a 'circle'. The time this requires is very short and is easily saved by the other
  540. * cases where the optimization comes into play.
  541. */
  542. void print_line_from_here_to_there( float sx, float sy, float sz, float ex, float ey, float ez) {
  543. float dx, dy, dx_s, dy_s, dx_e, dy_e, dist_start, dist_end, Line_Length;
  544. dx_s = current_position[X_AXIS] - sx; // find our distance from the start of the actual line segment
  545. dy_s = current_position[Y_AXIS] - sy;
  546. dist_start = HYPOT2(dx_s, dy_s); // We don't need to do a sqrt(), we can compare the distance^2
  547. // to save computation time
  548. dx_e = current_position[X_AXIS] - ex; // find our distance from the end of the actual line segment
  549. dy_e = current_position[Y_AXIS] - ey;
  550. dist_end = HYPOT2(dx_e, dy_e);
  551. dx = ex - sx;
  552. dy = ey - sy;
  553. Line_Length = HYPOT(dx, dy);
  554. // If the end point of the line is closer to the nozzle, we are going to
  555. // flip the direction of this line. We will print it from the end to the start.
  556. // On very small lines we don't do the optimization because it just isn't worth it.
  557. //
  558. if (dist_end < dist_start && (SIZE_OF_INTERSECTION_CIRCLES) < abs(Line_Length)) {
  559. // if (g26_debug_flag)
  560. // SERIAL_ECHOLNPGM(" Reversing start and end of print_line_from_here_to_there()");
  561. print_line_from_here_to_there(ex, ey, ez, sx, sy, sz);
  562. return;
  563. }
  564. // Now decide if we should retract.
  565. if (dist_start > 2.0) {
  566. retract_filament();
  567. // if (g26_debug_flag)
  568. // SERIAL_ECHOLNPGM(" filament retracted.");
  569. }
  570. // If the end point of the line is closer to the nozzle, we are going to
  571. move_to(sx, sy, sz, 0.0); // Get to the starting point with no extrusion
  572. // If the end point of the line is closer to the nozzle, we are going to
  573. float e_pos_delta = Line_Length * g26_e_axis_feedrate * extrusion_multiplier;
  574. un_retract_filament();
  575. // If the end point of the line is closer to the nozzle, we are going to
  576. // if (g26_debug_flag) {
  577. // SERIAL_ECHOLNPGM(" doing printing move.");
  578. // debug_current_and_destination((char*)"doing final move_to() inside print_line_from_here_to_there()");
  579. // }
  580. move_to(ex, ey, ez, e_pos_delta); // Get to the ending point with an appropriate amount of extrusion
  581. // If the end point of the line is closer to the nozzle, we are going to
  582. }
  583. /**
  584. * This function used to be inline code in G26. But there are so many
  585. * parameters it made sense to turn them into static globals and get
  586. * this code out of sight of the main routine.
  587. */
  588. bool parse_G26_parameters() {
  589. extrusion_multiplier = EXTRUSION_MULTIPLIER;
  590. retraction_multiplier = RETRACTION_MULTIPLIER;
  591. nozzle = NOZZLE;
  592. filament_diameter = FILAMENT;
  593. layer_height = LAYER_HEIGHT;
  594. prime_length = PRIME_LENGTH;
  595. bed_temp = BED_TEMP;
  596. hotend_temp = HOTEND_TEMP;
  597. ooze_amount = OOZE_AMOUNT;
  598. prime_flag = 0;
  599. keep_heaters_on = false;
  600. if (code_seen('B')) {
  601. bed_temp = code_value_float();
  602. if (bed_temp < 15.0 || bed_temp > 140.0) {
  603. SERIAL_PROTOCOLLNPGM("?Specified bed temperature not plausible.");
  604. return UBL_ERR;
  605. }
  606. }
  607. if (code_seen('C')) continue_with_closest++;
  608. if (code_seen('L')) {
  609. layer_height = code_value_float();
  610. if (layer_height < 0.0 || layer_height > 2.0) {
  611. SERIAL_PROTOCOLLNPGM("?Specified layer height not plausible.");
  612. return UBL_ERR;
  613. }
  614. }
  615. if (code_seen('Q')) {
  616. if (code_has_value()) {
  617. retraction_multiplier = code_value_float();
  618. if (retraction_multiplier < 0.05 || retraction_multiplier > 15.0) {
  619. SERIAL_PROTOCOLLNPGM("?Specified Retraction Multiplier not plausible.");
  620. return UBL_ERR;
  621. }
  622. }
  623. else {
  624. SERIAL_PROTOCOLLNPGM("?Retraction Multiplier must be specified.");
  625. return UBL_ERR;
  626. }
  627. }
  628. if (code_seen('N')) {
  629. nozzle = code_value_float();
  630. if (nozzle < 0.1 || nozzle > 1.0) {
  631. SERIAL_PROTOCOLLNPGM("?Specified nozzle size not plausible.");
  632. return UBL_ERR;
  633. }
  634. }
  635. if (code_seen('K')) keep_heaters_on++;
  636. if (code_seen('O') && code_has_value())
  637. ooze_amount = code_value_float();
  638. if (code_seen('P')) {
  639. if (!code_has_value())
  640. prime_flag = -1;
  641. else {
  642. prime_flag++;
  643. prime_length = code_value_float();
  644. if (prime_length < 0.0 || prime_length > 25.0) {
  645. SERIAL_PROTOCOLLNPGM("?Specified prime length not plausible.");
  646. return UBL_ERR;
  647. }
  648. }
  649. }
  650. if (code_seen('F')) {
  651. filament_diameter = code_value_float();
  652. if (filament_diameter < 1.0 || filament_diameter > 4.0) {
  653. SERIAL_PROTOCOLLNPGM("?Specified filament size not plausible.");
  654. return UBL_ERR;
  655. }
  656. }
  657. extrusion_multiplier *= sq(1.75) / sq(filament_diameter); // If we aren't using 1.75mm filament, we need to
  658. // scale up or down the length needed to get the
  659. // same volume of filament
  660. extrusion_multiplier *= filament_diameter * sq(nozzle) / sq(0.3); // Scale up by nozzle size
  661. if (code_seen('H')) {
  662. hotend_temp = code_value_float();
  663. if (hotend_temp < 165.0 || hotend_temp > 280.0) {
  664. SERIAL_PROTOCOLLNPGM("?Specified nozzle temperature not plausible.");
  665. return UBL_ERR;
  666. }
  667. }
  668. if (code_seen('R')) {
  669. randomSeed(millis());
  670. random_deviation = code_has_value() ? code_value_float() : 50.0;
  671. }
  672. x_pos = current_position[X_AXIS];
  673. y_pos = current_position[Y_AXIS];
  674. if (code_seen('X')) {
  675. x_pos = code_value_float();
  676. if (x_pos < X_MIN_POS || x_pos > X_MAX_POS) {
  677. SERIAL_PROTOCOLLNPGM("?Specified X coordinate not plausible.");
  678. return UBL_ERR;
  679. }
  680. }
  681. else
  682. if (code_seen('Y')) {
  683. y_pos = code_value_float();
  684. if (y_pos < Y_MIN_POS || y_pos > Y_MAX_POS) {
  685. SERIAL_PROTOCOLLNPGM("?Specified Y coordinate not plausible.");
  686. return UBL_ERR;
  687. }
  688. }
  689. /**
  690. * We save the question of what to do with the Unified Bed Leveling System's Activation until the very
  691. * end. The reason is, if one of the parameters specified up above is incorrect, we don't want to
  692. * alter the system's status. We wait until we know everything is correct before altering the state
  693. * of the system.
  694. */
  695. ubl.state.active = !code_seen('D');
  696. return UBL_OK;
  697. }
  698. /**
  699. * Turn on the bed and nozzle heat and
  700. * wait for them to get up to temperature.
  701. */
  702. bool turn_on_heaters() {
  703. #if HAS_TEMP_BED
  704. #if ENABLED(ULTRA_LCD)
  705. if (bed_temp > 25) {
  706. lcd_setstatuspgm(PSTR("G26 Heating Bed."), (uint8_t) 99);
  707. lcd_quick_feedback();
  708. #endif
  709. ubl_has_control_of_lcd_panel = true;
  710. thermalManager.setTargetBed(bed_temp);
  711. while (abs(thermalManager.degBed() - bed_temp) > 3) {
  712. if (ubl_lcd_clicked()) {
  713. strcpy(lcd_status_message, "Leaving G26"); // We can't do lcd_setstatus() without having it continue;
  714. lcd_setstatuspgm(PSTR("Leaving G26"), (uint8_t) 99); // Now we do it right.
  715. while (ubl_lcd_clicked()) // Debounce Encoder Wheel
  716. idle();
  717. return UBL_ERR;
  718. }
  719. idle();
  720. }
  721. #if ENABLED(ULTRA_LCD)
  722. }
  723. lcd_setstatuspgm(PSTR("G26 Heating Nozzle."), (uint8_t) 99);
  724. lcd_quick_feedback();
  725. #endif
  726. #endif
  727. // Start heating the nozzle and wait for it to reach temperature.
  728. thermalManager.setTargetHotend(hotend_temp, 0);
  729. while (abs(thermalManager.degHotend(0) - hotend_temp) > 3) {
  730. if (ubl_lcd_clicked()) {
  731. strcpy(lcd_status_message, "Leaving G26"); // We can't do lcd_setstatuspgm() without having it continue;
  732. lcd_setstatuspgm(PSTR("Leaving G26"), (uint8_t) 99); // Now we do it right.
  733. while (ubl_lcd_clicked()) // Debounce Encoder Wheel
  734. idle();
  735. return UBL_ERR;
  736. }
  737. idle();
  738. }
  739. #if ENABLED(ULTRA_LCD)
  740. lcd_setstatuspgm(PSTR(""), (uint8_t) 99);
  741. lcd_quick_feedback();
  742. #endif
  743. return UBL_OK;
  744. }
  745. /**
  746. * Prime the nozzle if needed. Return true on error.
  747. */
  748. bool prime_nozzle() {
  749. float Total_Prime = 0.0;
  750. if (prime_flag == -1) { // The user wants to control how much filament gets purged
  751. lcd_setstatuspgm(PSTR("User-Controlled Prime"), (uint8_t) 99);
  752. chirp_at_user();
  753. set_destination_to_current();
  754. un_retract_filament(); // Lets make sure the G26 command doesn't think the filament is
  755. // retracted(). We are here because we want to prime the nozzle.
  756. // So let's just unretract just to be sure.
  757. while (!ubl_lcd_clicked()) {
  758. chirp_at_user();
  759. destination[E_AXIS] += 0.25;
  760. #ifdef PREVENT_LENGTHY_EXTRUDE
  761. Total_Prime += 0.25;
  762. if (Total_Prime >= EXTRUDE_MAXLENGTH) return UBL_ERR;
  763. #endif
  764. ubl_line_to_destination(
  765. destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS],
  766. //planner.max_feedrate_mm_s[E_AXIS] / 15.0, 0, 0xFFFF, 0xFFFF);
  767. planner.max_feedrate_mm_s[E_AXIS] / 15.0, 0
  768. );
  769. stepper.synchronize(); // Without this synchronize, the purge is more consistent,
  770. // but because the planner has a buffer, we won't be able
  771. // to stop as quickly. So we put up with the less smooth
  772. // action to give the user a more responsive 'Stop'.
  773. set_destination_to_current();
  774. idle();
  775. }
  776. strcpy(lcd_status_message, "Done Priming"); // We can't do lcd_setstatuspgm() without having it continue;
  777. // So... We cheat to get a message up.
  778. while (ubl_lcd_clicked()) // Debounce Encoder Wheel
  779. idle();
  780. #if ENABLED(ULTRA_LCD)
  781. lcd_setstatuspgm(PSTR("Done Priming"), (uint8_t) 99);
  782. lcd_quick_feedback();
  783. #endif
  784. }
  785. else {
  786. #if ENABLED(ULTRA_LCD)
  787. lcd_setstatuspgm(PSTR("Fixed Length Prime."), (uint8_t) 99);
  788. lcd_quick_feedback();
  789. #endif
  790. set_destination_to_current();
  791. destination[E_AXIS] += prime_length;
  792. ubl_line_to_destination(
  793. destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS],
  794. //planner.max_feedrate_mm_s[E_AXIS] / 15.0, 0, 0xFFFF, 0xFFFF);
  795. planner.max_feedrate_mm_s[E_AXIS] / 15.0, 0
  796. );
  797. stepper.synchronize();
  798. set_destination_to_current();
  799. retract_filament();
  800. }
  801. return UBL_OK;
  802. }
  803. #endif // AUTO_BED_LEVELING_UBL && UBL_MESH_EDIT_ENABLED