My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

UBL.h 15KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016, 2017 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. #include "Marlin.h"
  23. #include "math.h"
  24. #include "vector_3.h"
  25. #ifndef UNIFIED_BED_LEVELING_H
  26. #define UNIFIED_BED_LEVELING_H
  27. #if ENABLED(AUTO_BED_LEVELING_UBL)
  28. #define UBL_OK false
  29. #define UBL_ERR true
  30. typedef struct {
  31. int8_t x_index, y_index;
  32. float distance; // When populated, the distance from the search location
  33. } mesh_index_pair;
  34. enum MeshPointType { INVALID, REAL, SET_IN_BITMAP };
  35. bool axis_unhomed_error(bool, bool, bool);
  36. void dump(char * const str, const float &f);
  37. bool ubl_lcd_clicked();
  38. void probe_entire_mesh(const float&, const float&, const bool, const bool, const bool);
  39. void debug_current_and_destination(char *title);
  40. void ubl_line_to_destination(const float&, const float&, const float&, const float&, const float&, uint8_t);
  41. void manually_probe_remaining_mesh(const float&, const float&, const float&, const float&, const bool);
  42. vector_3 tilt_mesh_based_on_3pts(const float&, const float&, const float&);
  43. float measure_business_card_thickness(const float&);
  44. mesh_index_pair find_closest_mesh_point_of_type(const MeshPointType, const float&, const float&, const bool, unsigned int[16], bool);
  45. void find_mean_mesh_height();
  46. void shift_mesh_height();
  47. bool g29_parameter_parsing();
  48. void g29_what_command();
  49. void g29_eeprom_dump();
  50. void g29_compare_current_mesh_to_stored_mesh();
  51. void fine_tune_mesh(const float&, const float&, const bool);
  52. void bit_clear(uint16_t bits[16], uint8_t x, uint8_t y);
  53. void bit_set(uint16_t bits[16], uint8_t x, uint8_t y);
  54. bool is_bit_set(uint16_t bits[16], uint8_t x, uint8_t y);
  55. char *ftostr43sign(const float&, char);
  56. void gcode_G26();
  57. void gcode_G28();
  58. void gcode_G29();
  59. extern char conv[9];
  60. void save_ubl_active_state_and_disable();
  61. void restore_ubl_active_state_and_leave();
  62. ///////////////////////////////////////////////////////////////////////////////////////////////////////
  63. #if ENABLED(ULTRA_LCD)
  64. extern char lcd_status_message[];
  65. void lcd_quick_feedback();
  66. #endif
  67. enum MBLStatus { MBL_STATUS_NONE = 0, MBL_STATUS_HAS_MESH_BIT = 0, MBL_STATUS_ACTIVE_BIT = 1 };
  68. #define MESH_X_DIST ((float(UBL_MESH_MAX_X) - float(UBL_MESH_MIN_X)) / (float(UBL_MESH_NUM_X_POINTS) - 1.0))
  69. #define MESH_Y_DIST ((float(UBL_MESH_MAX_Y) - float(UBL_MESH_MIN_Y)) / (float(UBL_MESH_NUM_Y_POINTS) - 1.0))
  70. #if ENABLED(UBL_MESH_EDIT_ENABLED)
  71. extern bool g26_debug_flag;
  72. #else
  73. constexpr bool g26_debug_flag = false;
  74. #endif
  75. extern float last_specified_z;
  76. extern float fade_scaling_factor_for_current_height;
  77. extern float z_values[UBL_MESH_NUM_X_POINTS][UBL_MESH_NUM_Y_POINTS];
  78. extern float mesh_index_to_x_location[UBL_MESH_NUM_X_POINTS + 1]; // +1 just because of paranoia that we might end up on the
  79. extern float mesh_index_to_y_location[UBL_MESH_NUM_Y_POINTS + 1]; // the last Mesh Line and that is the start of a whole new cell
  80. class unified_bed_leveling {
  81. public:
  82. struct ubl_state {
  83. bool active = false;
  84. float z_offset = 0.0;
  85. int eeprom_storage_slot = -1,
  86. n_x = UBL_MESH_NUM_X_POINTS,
  87. n_y = UBL_MESH_NUM_Y_POINTS;
  88. float mesh_x_min = UBL_MESH_MIN_X,
  89. mesh_y_min = UBL_MESH_MIN_Y,
  90. mesh_x_max = UBL_MESH_MAX_X,
  91. mesh_y_max = UBL_MESH_MAX_Y,
  92. mesh_x_dist = MESH_X_DIST,
  93. mesh_y_dist = MESH_Y_DIST;
  94. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  95. float g29_correction_fade_height = 10.0,
  96. g29_fade_height_multiplier = 1.0 / 10.0; // It is cheaper to do a floating point multiply than a floating
  97. // point divide. So, we keep this number in both forms. The first
  98. // is for the user. The second one is the one that is actually used
  99. // again and again and again during the correction calculations.
  100. #endif
  101. unsigned char padding[24]; // This is just to allow room to add state variables without
  102. // changing the location of data structures in the EEPROM.
  103. // This is for compatability with future versions to keep
  104. // people from having to regenerate thier mesh data.
  105. //
  106. // If you change the contents of this struct, please adjust
  107. // the padding[] to keep the size the same!
  108. } state, pre_initialized;
  109. unified_bed_leveling();
  110. // ~unified_bed_leveling(); // No destructor because this object never goes away!
  111. void display_map(const int);
  112. void reset();
  113. void invalidate();
  114. void store_state();
  115. void load_state();
  116. void store_mesh(const int16_t);
  117. void load_mesh(const int16_t);
  118. bool sanity_check();
  119. FORCE_INLINE static float map_x_index_to_bed_location(const int8_t i) { return ((float) UBL_MESH_MIN_X) + (((float) MESH_X_DIST) * (float) i); };
  120. FORCE_INLINE static float map_y_index_to_bed_location(const int8_t i) { return ((float) UBL_MESH_MIN_Y) + (((float) MESH_Y_DIST) * (float) i); };
  121. FORCE_INLINE void set_z(const int8_t px, const int8_t py, const float &z) { z_values[px][py] = z; }
  122. static int8_t get_cell_index_x(const float &x) {
  123. const int8_t cx = (x - (UBL_MESH_MIN_X)) * (1.0 / (MESH_X_DIST));
  124. return constrain(cx, 0, (UBL_MESH_NUM_X_POINTS) - 1); // -1 is appropriate if we want all movement to the X_MAX
  125. } // position. But with this defined this way, it is possible
  126. // to extrapolate off of this point even further out. Probably
  127. // that is OK because something else should be keeping that from
  128. // happening and should not be worried about at this level.
  129. static int8_t get_cell_index_y(const float &y) {
  130. const int8_t cy = (y - (UBL_MESH_MIN_Y)) * (1.0 / (MESH_Y_DIST));
  131. return constrain(cy, 0, (UBL_MESH_NUM_Y_POINTS) - 1); // -1 is appropriate if we want all movement to the Y_MAX
  132. } // position. But with this defined this way, it is possible
  133. // to extrapolate off of this point even further out. Probably
  134. // that is OK because something else should be keeping that from
  135. // happening and should not be worried about at this level.
  136. static int8_t find_closest_x_index(const float &x) {
  137. const int8_t px = (x - (UBL_MESH_MIN_X) + (MESH_X_DIST) * 0.5) * (1.0 / (MESH_X_DIST));
  138. return (px >= 0 && px < (UBL_MESH_NUM_X_POINTS)) ? px : -1;
  139. }
  140. static int8_t find_closest_y_index(const float &y) {
  141. const int8_t py = (y - (UBL_MESH_MIN_Y) + (MESH_Y_DIST) * 0.5) * (1.0 / (MESH_Y_DIST));
  142. return (py >= 0 && py < (UBL_MESH_NUM_Y_POINTS)) ? py : -1;
  143. }
  144. /**
  145. * z2 --|
  146. * z0 | |
  147. * | | + (z2-z1)
  148. * z1 | | |
  149. * ---+-------------+--------+-- --|
  150. * a1 a0 a2
  151. * |<---delta_a---------->|
  152. *
  153. * calc_z0 is the basis for all the Mesh Based correction. It is used to
  154. * find the expected Z Height at a position between two known Z-Height locations.
  155. *
  156. * It is fairly expensive with its 4 floating point additions and 2 floating point
  157. * multiplications.
  158. */
  159. static FORCE_INLINE float calc_z0(const float &a0, const float &a1, const float &z1, const float &a2, const float &z2) {
  160. const float delta_z = (z2 - z1),
  161. delta_a = (a0 - a1) / (a2 - a1);
  162. return z1 + delta_a * delta_z;
  163. }
  164. /**
  165. * get_z_correction_at_Y_intercept(float x0, int x1_i, int yi) only takes
  166. * three parameters. It assumes the x0 point is on a Mesh line denoted by yi. In theory
  167. * we could use get_cell_index_x(float x) to obtain the 2nd parameter x1_i but any code calling
  168. * the get_z_correction_along_vertical_mesh_line_at_specific_X routine will already have
  169. * the X index of the x0 intersection available and we don't want to perform any extra floating
  170. * point operations.
  171. */
  172. inline float get_z_correction_along_horizontal_mesh_line_at_specific_X(const float &x0, const int x1_i, const int yi) {
  173. if (x1_i < 0 || yi < 0 || x1_i >= UBL_MESH_NUM_X_POINTS || yi >= UBL_MESH_NUM_Y_POINTS) {
  174. SERIAL_ECHOPAIR("? in get_z_correction_along_horizontal_mesh_line_at_specific_X(x0=", x0);
  175. SERIAL_ECHOPAIR(",x1_i=", x1_i);
  176. SERIAL_ECHOPAIR(",yi=", yi);
  177. SERIAL_CHAR(')');
  178. SERIAL_EOL;
  179. return NAN;
  180. }
  181. const float xratio = (RAW_X_POSITION(x0) - mesh_index_to_x_location[x1_i]) * (1.0 / (MESH_X_DIST)),
  182. z1 = z_values[x1_i][yi],
  183. z2 = z_values[x1_i + 1][yi],
  184. dz = (z2 - z1);
  185. return z1 + xratio * dz;
  186. }
  187. //
  188. // See comments above for get_z_correction_along_horizontal_mesh_line_at_specific_X
  189. //
  190. inline float get_z_correction_along_vertical_mesh_line_at_specific_Y(const float &y0, const int xi, const int y1_i) {
  191. if (xi < 0 || y1_i < 0 || xi >= UBL_MESH_NUM_X_POINTS || y1_i >= UBL_MESH_NUM_Y_POINTS) {
  192. SERIAL_ECHOPAIR("? in get_z_correction_along_vertical_mesh_line_at_specific_X(y0=", y0);
  193. SERIAL_ECHOPAIR(", x1_i=", xi);
  194. SERIAL_ECHOPAIR(", yi=", y1_i);
  195. SERIAL_CHAR(')');
  196. SERIAL_EOL;
  197. return NAN;
  198. }
  199. const float yratio = (RAW_Y_POSITION(y0) - mesh_index_to_y_location[y1_i]) * (1.0 / (MESH_Y_DIST)),
  200. z1 = z_values[xi][y1_i],
  201. z2 = z_values[xi][y1_i + 1],
  202. dz = (z2 - z1);
  203. return z1 + yratio * dz;
  204. }
  205. /**
  206. * This is the generic Z-Correction. It works anywhere within a Mesh Cell. It first
  207. * does a linear interpolation along both of the bounding X-Mesh-Lines to find the
  208. * Z-Height at both ends. Then it does a linear interpolation of these heights based
  209. * on the Y position within the cell.
  210. */
  211. float get_z_correction(const float &x0, const float &y0) const {
  212. const int8_t cx = get_cell_index_x(RAW_X_POSITION(x0)),
  213. cy = get_cell_index_y(RAW_Y_POSITION(y0));
  214. if (cx < 0 || cy < 0 || cx >= UBL_MESH_NUM_X_POINTS || cy >= UBL_MESH_NUM_Y_POINTS) {
  215. SERIAL_ECHOPAIR("? in get_z_correction(x0=", x0);
  216. SERIAL_ECHOPAIR(", y0=", y0);
  217. SERIAL_CHAR(')');
  218. SERIAL_EOL;
  219. #if ENABLED(ULTRA_LCD)
  220. strcpy(lcd_status_message, "get_z_correction() indexes out of range.");
  221. lcd_quick_feedback();
  222. #endif
  223. return 0.0; // this used to return state.z_offset
  224. }
  225. const float z1 = calc_z0(RAW_X_POSITION(x0),
  226. map_x_index_to_bed_location(cx), z_values[cx][cy],
  227. map_x_index_to_bed_location(cx + 1), z_values[cx + 1][cy]),
  228. z2 = calc_z0(RAW_X_POSITION(x0),
  229. map_x_index_to_bed_location(cx), z_values[cx][cy + 1],
  230. map_x_index_to_bed_location(cx + 1), z_values[cx + 1][cy + 1]);
  231. float z0 = calc_z0(RAW_Y_POSITION(y0),
  232. map_y_index_to_bed_location(cy), z1,
  233. map_y_index_to_bed_location(cy + 1), z2);
  234. #if ENABLED(DEBUG_LEVELING_FEATURE)
  235. if (DEBUGGING(MESH_ADJUST)) {
  236. SERIAL_ECHOPAIR(" raw get_z_correction(", x0);
  237. SERIAL_ECHOPAIR(",", y0);
  238. SERIAL_ECHOPGM(")=");
  239. SERIAL_ECHO_F(z0, 6);
  240. }
  241. #endif
  242. #if ENABLED(DEBUG_LEVELING_FEATURE)
  243. if (DEBUGGING(MESH_ADJUST)) {
  244. SERIAL_ECHOPGM(" >>>---> ");
  245. SERIAL_ECHO_F(z0, 6);
  246. SERIAL_EOL;
  247. }
  248. #endif
  249. if (isnan(z0)) { // if part of the Mesh is undefined, it will show up as NAN
  250. z0 = 0.0; // in ubl.z_values[][] and propagate through the
  251. // calculations. If our correction is NAN, we throw it out
  252. // because part of the Mesh is undefined and we don't have the
  253. // information we need to complete the height correction.
  254. #if ENABLED(DEBUG_LEVELING_FEATURE)
  255. if (DEBUGGING(MESH_ADJUST)) {
  256. SERIAL_ECHOPGM("??? Yikes! NAN in get_z_correction( ");
  257. SERIAL_ECHO(x0);
  258. SERIAL_ECHOPGM(", ");
  259. SERIAL_ECHO(y0);
  260. SERIAL_ECHOLNPGM(" )");
  261. }
  262. #endif
  263. }
  264. return z0; // there used to be a +state.z_offset on this line
  265. }
  266. /**
  267. * This routine is used to scale the Z correction depending upon the current nozzle height. It is
  268. * optimized for speed. It avoids floating point operations by checking if the requested scaling
  269. * factor is going to be the same as the last time the function calculated a value. If so, it just
  270. * returns it.
  271. *
  272. * It returns a scaling factor of 1.0 if UBL is inactive.
  273. * It returns a scaling factor of 0.0 if Z is past the specified 'Fade Height'
  274. */
  275. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  276. FORCE_INLINE float fade_scaling_factor_for_z(const float &lz) const {
  277. const float rz = RAW_Z_POSITION(lz);
  278. if (last_specified_z != rz) {
  279. last_specified_z = rz;
  280. fade_scaling_factor_for_current_height =
  281. state.active && rz < state.g29_correction_fade_height
  282. ? 1.0 - (rz * state.g29_fade_height_multiplier)
  283. : 0.0;
  284. }
  285. return fade_scaling_factor_for_current_height;
  286. }
  287. #else
  288. static constexpr float fade_scaling_factor_for_z(const float &lz) { UNUSED(lz); return 1.0; }
  289. #endif
  290. }; // class unified_bed_leveling
  291. extern unified_bed_leveling ubl;
  292. extern int ubl_eeprom_start;
  293. #define UBL_LAST_EEPROM_INDEX (E2END - sizeof(unified_bed_leveling::state))
  294. #endif // AUTO_BED_LEVELING_UBL
  295. #endif // UNIFIED_BED_LEVELING_H