123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348 |
- /**
- * Marlin 3D Printer Firmware
- * Copyright (C) 2016, 2017 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
- *
- * Based on Sprinter and grbl.
- * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
- *
- * This program is free software: you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program. If not, see <http://www.gnu.org/licenses/>.
- *
- */
-
- #include "Marlin.h"
- #include "math.h"
- #include "vector_3.h"
-
- #ifndef UNIFIED_BED_LEVELING_H
- #define UNIFIED_BED_LEVELING_H
-
- #if ENABLED(AUTO_BED_LEVELING_UBL)
-
- #define UBL_OK false
- #define UBL_ERR true
-
- typedef struct {
- int8_t x_index, y_index;
- float distance; // When populated, the distance from the search location
- } mesh_index_pair;
-
- enum MeshPointType { INVALID, REAL, SET_IN_BITMAP };
-
- bool axis_unhomed_error(bool, bool, bool);
- void dump(char * const str, const float &f);
- bool ubl_lcd_clicked();
- void probe_entire_mesh(const float&, const float&, const bool, const bool, const bool);
- void debug_current_and_destination(char *title);
- void ubl_line_to_destination(const float&, const float&, const float&, const float&, const float&, uint8_t);
- void manually_probe_remaining_mesh(const float&, const float&, const float&, const float&, const bool);
- vector_3 tilt_mesh_based_on_3pts(const float&, const float&, const float&);
- float measure_business_card_thickness(const float&);
- mesh_index_pair find_closest_mesh_point_of_type(const MeshPointType, const float&, const float&, const bool, unsigned int[16], bool);
- void find_mean_mesh_height();
- void shift_mesh_height();
- bool g29_parameter_parsing();
- void g29_what_command();
- void g29_eeprom_dump();
- void g29_compare_current_mesh_to_stored_mesh();
- void fine_tune_mesh(const float&, const float&, const bool);
- void bit_clear(uint16_t bits[16], uint8_t x, uint8_t y);
- void bit_set(uint16_t bits[16], uint8_t x, uint8_t y);
- bool is_bit_set(uint16_t bits[16], uint8_t x, uint8_t y);
- char *ftostr43sign(const float&, char);
-
- void gcode_G26();
- void gcode_G28();
- void gcode_G29();
- extern char conv[9];
-
- void save_ubl_active_state_and_disable();
- void restore_ubl_active_state_and_leave();
-
- ///////////////////////////////////////////////////////////////////////////////////////////////////////
-
- #if ENABLED(ULTRA_LCD)
- extern char lcd_status_message[];
- void lcd_quick_feedback();
- #endif
-
- enum MBLStatus { MBL_STATUS_NONE = 0, MBL_STATUS_HAS_MESH_BIT = 0, MBL_STATUS_ACTIVE_BIT = 1 };
-
- #define MESH_X_DIST ((float(UBL_MESH_MAX_X) - float(UBL_MESH_MIN_X)) / (float(UBL_MESH_NUM_X_POINTS) - 1.0))
- #define MESH_Y_DIST ((float(UBL_MESH_MAX_Y) - float(UBL_MESH_MIN_Y)) / (float(UBL_MESH_NUM_Y_POINTS) - 1.0))
-
- #if ENABLED(UBL_MESH_EDIT_ENABLED)
- extern bool g26_debug_flag;
- #else
- constexpr bool g26_debug_flag = false;
- #endif
- extern float last_specified_z;
- extern float fade_scaling_factor_for_current_height;
- extern float z_values[UBL_MESH_NUM_X_POINTS][UBL_MESH_NUM_Y_POINTS];
- extern float mesh_index_to_x_location[UBL_MESH_NUM_X_POINTS + 1]; // +1 just because of paranoia that we might end up on the
- extern float mesh_index_to_y_location[UBL_MESH_NUM_Y_POINTS + 1]; // the last Mesh Line and that is the start of a whole new cell
-
- class unified_bed_leveling {
- public:
- struct ubl_state {
- bool active = false;
- float z_offset = 0.0;
- int eeprom_storage_slot = -1,
- n_x = UBL_MESH_NUM_X_POINTS,
- n_y = UBL_MESH_NUM_Y_POINTS;
- float mesh_x_min = UBL_MESH_MIN_X,
- mesh_y_min = UBL_MESH_MIN_Y,
- mesh_x_max = UBL_MESH_MAX_X,
- mesh_y_max = UBL_MESH_MAX_Y,
- mesh_x_dist = MESH_X_DIST,
- mesh_y_dist = MESH_Y_DIST;
-
- #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
- float g29_correction_fade_height = 10.0,
- g29_fade_height_multiplier = 1.0 / 10.0; // It is cheaper to do a floating point multiply than a floating
- // point divide. So, we keep this number in both forms. The first
- // is for the user. The second one is the one that is actually used
- // again and again and again during the correction calculations.
- #endif
-
- unsigned char padding[24]; // This is just to allow room to add state variables without
- // changing the location of data structures in the EEPROM.
- // This is for compatability with future versions to keep
- // people from having to regenerate thier mesh data.
- //
- // If you change the contents of this struct, please adjust
- // the padding[] to keep the size the same!
- } state, pre_initialized;
-
- unified_bed_leveling();
- // ~unified_bed_leveling(); // No destructor because this object never goes away!
-
- void display_map(const int);
-
- void reset();
- void invalidate();
-
- void store_state();
- void load_state();
- void store_mesh(const int16_t);
- void load_mesh(const int16_t);
-
- bool sanity_check();
-
- FORCE_INLINE static float map_x_index_to_bed_location(const int8_t i) { return ((float) UBL_MESH_MIN_X) + (((float) MESH_X_DIST) * (float) i); };
- FORCE_INLINE static float map_y_index_to_bed_location(const int8_t i) { return ((float) UBL_MESH_MIN_Y) + (((float) MESH_Y_DIST) * (float) i); };
-
- FORCE_INLINE void set_z(const int8_t px, const int8_t py, const float &z) { z_values[px][py] = z; }
-
- static int8_t get_cell_index_x(const float &x) {
- const int8_t cx = (x - (UBL_MESH_MIN_X)) * (1.0 / (MESH_X_DIST));
- return constrain(cx, 0, (UBL_MESH_NUM_X_POINTS) - 1); // -1 is appropriate if we want all movement to the X_MAX
- } // position. But with this defined this way, it is possible
- // to extrapolate off of this point even further out. Probably
- // that is OK because something else should be keeping that from
- // happening and should not be worried about at this level.
- static int8_t get_cell_index_y(const float &y) {
- const int8_t cy = (y - (UBL_MESH_MIN_Y)) * (1.0 / (MESH_Y_DIST));
- return constrain(cy, 0, (UBL_MESH_NUM_Y_POINTS) - 1); // -1 is appropriate if we want all movement to the Y_MAX
- } // position. But with this defined this way, it is possible
- // to extrapolate off of this point even further out. Probably
- // that is OK because something else should be keeping that from
- // happening and should not be worried about at this level.
-
- static int8_t find_closest_x_index(const float &x) {
- const int8_t px = (x - (UBL_MESH_MIN_X) + (MESH_X_DIST) * 0.5) * (1.0 / (MESH_X_DIST));
- return (px >= 0 && px < (UBL_MESH_NUM_X_POINTS)) ? px : -1;
- }
-
- static int8_t find_closest_y_index(const float &y) {
- const int8_t py = (y - (UBL_MESH_MIN_Y) + (MESH_Y_DIST) * 0.5) * (1.0 / (MESH_Y_DIST));
- return (py >= 0 && py < (UBL_MESH_NUM_Y_POINTS)) ? py : -1;
- }
-
- /**
- * z2 --|
- * z0 | |
- * | | + (z2-z1)
- * z1 | | |
- * ---+-------------+--------+-- --|
- * a1 a0 a2
- * |<---delta_a---------->|
- *
- * calc_z0 is the basis for all the Mesh Based correction. It is used to
- * find the expected Z Height at a position between two known Z-Height locations.
- *
- * It is fairly expensive with its 4 floating point additions and 2 floating point
- * multiplications.
- */
- static FORCE_INLINE float calc_z0(const float &a0, const float &a1, const float &z1, const float &a2, const float &z2) {
- const float delta_z = (z2 - z1),
- delta_a = (a0 - a1) / (a2 - a1);
- return z1 + delta_a * delta_z;
- }
-
- /**
- * get_z_correction_at_Y_intercept(float x0, int x1_i, int yi) only takes
- * three parameters. It assumes the x0 point is on a Mesh line denoted by yi. In theory
- * we could use get_cell_index_x(float x) to obtain the 2nd parameter x1_i but any code calling
- * the get_z_correction_along_vertical_mesh_line_at_specific_X routine will already have
- * the X index of the x0 intersection available and we don't want to perform any extra floating
- * point operations.
- */
- inline float get_z_correction_along_horizontal_mesh_line_at_specific_X(const float &x0, const int x1_i, const int yi) {
- if (x1_i < 0 || yi < 0 || x1_i >= UBL_MESH_NUM_X_POINTS || yi >= UBL_MESH_NUM_Y_POINTS) {
- SERIAL_ECHOPAIR("? in get_z_correction_along_horizontal_mesh_line_at_specific_X(x0=", x0);
- SERIAL_ECHOPAIR(",x1_i=", x1_i);
- SERIAL_ECHOPAIR(",yi=", yi);
- SERIAL_CHAR(')');
- SERIAL_EOL;
- return NAN;
- }
-
- const float xratio = (RAW_X_POSITION(x0) - mesh_index_to_x_location[x1_i]) * (1.0 / (MESH_X_DIST)),
- z1 = z_values[x1_i][yi],
- z2 = z_values[x1_i + 1][yi],
- dz = (z2 - z1);
-
- return z1 + xratio * dz;
- }
-
- //
- // See comments above for get_z_correction_along_horizontal_mesh_line_at_specific_X
- //
- inline float get_z_correction_along_vertical_mesh_line_at_specific_Y(const float &y0, const int xi, const int y1_i) {
- if (xi < 0 || y1_i < 0 || xi >= UBL_MESH_NUM_X_POINTS || y1_i >= UBL_MESH_NUM_Y_POINTS) {
- SERIAL_ECHOPAIR("? in get_z_correction_along_vertical_mesh_line_at_specific_X(y0=", y0);
- SERIAL_ECHOPAIR(", x1_i=", xi);
- SERIAL_ECHOPAIR(", yi=", y1_i);
- SERIAL_CHAR(')');
- SERIAL_EOL;
- return NAN;
- }
-
- const float yratio = (RAW_Y_POSITION(y0) - mesh_index_to_y_location[y1_i]) * (1.0 / (MESH_Y_DIST)),
- z1 = z_values[xi][y1_i],
- z2 = z_values[xi][y1_i + 1],
- dz = (z2 - z1);
-
- return z1 + yratio * dz;
- }
-
- /**
- * This is the generic Z-Correction. It works anywhere within a Mesh Cell. It first
- * does a linear interpolation along both of the bounding X-Mesh-Lines to find the
- * Z-Height at both ends. Then it does a linear interpolation of these heights based
- * on the Y position within the cell.
- */
- float get_z_correction(const float &x0, const float &y0) const {
- const int8_t cx = get_cell_index_x(RAW_X_POSITION(x0)),
- cy = get_cell_index_y(RAW_Y_POSITION(y0));
-
- if (cx < 0 || cy < 0 || cx >= UBL_MESH_NUM_X_POINTS || cy >= UBL_MESH_NUM_Y_POINTS) {
-
- SERIAL_ECHOPAIR("? in get_z_correction(x0=", x0);
- SERIAL_ECHOPAIR(", y0=", y0);
- SERIAL_CHAR(')');
- SERIAL_EOL;
-
- #if ENABLED(ULTRA_LCD)
- strcpy(lcd_status_message, "get_z_correction() indexes out of range.");
- lcd_quick_feedback();
- #endif
- return 0.0; // this used to return state.z_offset
- }
-
- const float z1 = calc_z0(RAW_X_POSITION(x0),
- map_x_index_to_bed_location(cx), z_values[cx][cy],
- map_x_index_to_bed_location(cx + 1), z_values[cx + 1][cy]),
- z2 = calc_z0(RAW_X_POSITION(x0),
- map_x_index_to_bed_location(cx), z_values[cx][cy + 1],
- map_x_index_to_bed_location(cx + 1), z_values[cx + 1][cy + 1]);
- float z0 = calc_z0(RAW_Y_POSITION(y0),
- map_y_index_to_bed_location(cy), z1,
- map_y_index_to_bed_location(cy + 1), z2);
-
- #if ENABLED(DEBUG_LEVELING_FEATURE)
- if (DEBUGGING(MESH_ADJUST)) {
- SERIAL_ECHOPAIR(" raw get_z_correction(", x0);
- SERIAL_ECHOPAIR(",", y0);
- SERIAL_ECHOPGM(")=");
- SERIAL_ECHO_F(z0, 6);
- }
- #endif
-
- #if ENABLED(DEBUG_LEVELING_FEATURE)
- if (DEBUGGING(MESH_ADJUST)) {
- SERIAL_ECHOPGM(" >>>---> ");
- SERIAL_ECHO_F(z0, 6);
- SERIAL_EOL;
- }
- #endif
-
- if (isnan(z0)) { // if part of the Mesh is undefined, it will show up as NAN
- z0 = 0.0; // in ubl.z_values[][] and propagate through the
- // calculations. If our correction is NAN, we throw it out
- // because part of the Mesh is undefined and we don't have the
- // information we need to complete the height correction.
-
- #if ENABLED(DEBUG_LEVELING_FEATURE)
- if (DEBUGGING(MESH_ADJUST)) {
- SERIAL_ECHOPGM("??? Yikes! NAN in get_z_correction( ");
- SERIAL_ECHO(x0);
- SERIAL_ECHOPGM(", ");
- SERIAL_ECHO(y0);
- SERIAL_ECHOLNPGM(" )");
- }
- #endif
- }
- return z0; // there used to be a +state.z_offset on this line
- }
-
- /**
- * This routine is used to scale the Z correction depending upon the current nozzle height. It is
- * optimized for speed. It avoids floating point operations by checking if the requested scaling
- * factor is going to be the same as the last time the function calculated a value. If so, it just
- * returns it.
- *
- * It returns a scaling factor of 1.0 if UBL is inactive.
- * It returns a scaling factor of 0.0 if Z is past the specified 'Fade Height'
- */
- #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
-
- FORCE_INLINE float fade_scaling_factor_for_z(const float &lz) const {
- const float rz = RAW_Z_POSITION(lz);
- if (last_specified_z != rz) {
- last_specified_z = rz;
- fade_scaling_factor_for_current_height =
- state.active && rz < state.g29_correction_fade_height
- ? 1.0 - (rz * state.g29_fade_height_multiplier)
- : 0.0;
- }
- return fade_scaling_factor_for_current_height;
- }
-
- #else
-
- static constexpr float fade_scaling_factor_for_z(const float &lz) { UNUSED(lz); return 1.0; }
-
- #endif
-
- }; // class unified_bed_leveling
-
- extern unified_bed_leveling ubl;
- extern int ubl_eeprom_start;
-
- #define UBL_LAST_EEPROM_INDEX (E2END - sizeof(unified_bed_leveling::state))
-
- #endif // AUTO_BED_LEVELING_UBL
-
- #endif // UNIFIED_BED_LEVELING_H
|