My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

UBL_line_to_destination.cpp 23KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. #include "MarlinConfig.h"
  23. #if ENABLED(AUTO_BED_LEVELING_UBL)
  24. #include "Marlin.h"
  25. #include "UBL.h"
  26. #include "planner.h"
  27. #include <avr/io.h>
  28. #include <math.h>
  29. extern float destination[XYZE];
  30. extern void set_current_to_destination();
  31. void debug_current_and_destination(char *title) {
  32. // if the title message starts with a '!' it is so important, we are going to
  33. // ignore the status of the g26_debug_flag
  34. if (*title != '!' && !g26_debug_flag) return;
  35. const float de = destination[E_AXIS] - current_position[E_AXIS];
  36. if (de == 0.0) return;
  37. const float dx = current_position[X_AXIS] - destination[X_AXIS],
  38. dy = current_position[Y_AXIS] - destination[Y_AXIS],
  39. xy_dist = HYPOT(dx, dy);
  40. if (xy_dist == 0.0) {
  41. return;
  42. //SERIAL_ECHOPGM(" FPMM=");
  43. //const float fpmm = de / xy_dist;
  44. //SERIAL_PROTOCOL_F(fpmm, 6);
  45. }
  46. else {
  47. SERIAL_ECHOPGM(" fpmm=");
  48. const float fpmm = de / xy_dist;
  49. SERIAL_ECHO_F(fpmm, 6);
  50. }
  51. SERIAL_ECHOPGM(" current=( ");
  52. SERIAL_ECHO_F(current_position[X_AXIS], 6);
  53. SERIAL_ECHOPGM(", ");
  54. SERIAL_ECHO_F(current_position[Y_AXIS], 6);
  55. SERIAL_ECHOPGM(", ");
  56. SERIAL_ECHO_F(current_position[Z_AXIS], 6);
  57. SERIAL_ECHOPGM(", ");
  58. SERIAL_ECHO_F(current_position[E_AXIS], 6);
  59. SERIAL_ECHOPGM(" ) destination=( ");
  60. if (current_position[X_AXIS] == destination[X_AXIS])
  61. SERIAL_ECHOPGM("-------------");
  62. else
  63. SERIAL_ECHO_F(destination[X_AXIS], 6);
  64. SERIAL_ECHOPGM(", ");
  65. if (current_position[Y_AXIS] == destination[Y_AXIS])
  66. SERIAL_ECHOPGM("-------------");
  67. else
  68. SERIAL_ECHO_F(destination[Y_AXIS], 6);
  69. SERIAL_ECHOPGM(", ");
  70. if (current_position[Z_AXIS] == destination[Z_AXIS])
  71. SERIAL_ECHOPGM("-------------");
  72. else
  73. SERIAL_ECHO_F(destination[Z_AXIS], 6);
  74. SERIAL_ECHOPGM(", ");
  75. if (current_position[E_AXIS] == destination[E_AXIS])
  76. SERIAL_ECHOPGM("-------------");
  77. else
  78. SERIAL_ECHO_F(destination[E_AXIS], 6);
  79. SERIAL_ECHOPGM(" ) ");
  80. SERIAL_ECHO(title);
  81. SERIAL_EOL;
  82. SET_INPUT_PULLUP(66); // Roxy's Left Switch is on pin 66. Right Switch is on pin 65
  83. //if (been_to_2_6) {
  84. //while ((digitalRead(66) & 0x01) != 0)
  85. // idle();
  86. //}
  87. }
  88. void ubl_line_to_destination(const float &x_end, const float &y_end, const float &z_end, const float &e_end, const float &feed_rate, uint8_t extruder) {
  89. /**
  90. * Much of the nozzle movement will be within the same cell. So we will do as little computation
  91. * as possible to determine if this is the case. If this move is within the same cell, we will
  92. * just do the required Z-Height correction, call the Planner's buffer_line() routine, and leave
  93. */
  94. const float x_start = current_position[X_AXIS],
  95. y_start = current_position[Y_AXIS],
  96. z_start = current_position[Z_AXIS],
  97. e_start = current_position[E_AXIS];
  98. const int cell_start_xi = ubl.get_cell_index_x(RAW_X_POSITION(x_start)),
  99. cell_start_yi = ubl.get_cell_index_y(RAW_Y_POSITION(y_start)),
  100. cell_dest_xi = ubl.get_cell_index_x(RAW_X_POSITION(x_end)),
  101. cell_dest_yi = ubl.get_cell_index_y(RAW_Y_POSITION(y_end));
  102. if (g26_debug_flag) {
  103. SERIAL_ECHOPGM(" ubl_line_to_destination(xe=");
  104. SERIAL_ECHO(x_end);
  105. SERIAL_ECHOPGM(", ye=");
  106. SERIAL_ECHO(y_end);
  107. SERIAL_ECHOPGM(", ze=");
  108. SERIAL_ECHO(z_end);
  109. SERIAL_ECHOPGM(", ee=");
  110. SERIAL_ECHO(e_end);
  111. SERIAL_ECHOLNPGM(")");
  112. debug_current_and_destination((char*)"Start of ubl_line_to_destination()");
  113. }
  114. if (cell_start_xi == cell_dest_xi && cell_start_yi == cell_dest_yi) { // if the whole move is within the same cell,
  115. /**
  116. * we don't need to break up the move
  117. *
  118. * If we are moving off the print bed, we are going to allow the move at this level.
  119. * But we detect it and isolate it. For now, we just pass along the request.
  120. */
  121. if (cell_dest_xi < 0 || cell_dest_yi < 0 || cell_dest_xi >= UBL_MESH_NUM_X_POINTS || cell_dest_yi >= UBL_MESH_NUM_Y_POINTS) {
  122. // Note: There is no Z Correction in this case. We are off the grid and don't know what
  123. // a reasonable correction would be.
  124. planner.buffer_line(x_end, y_end, z_end + ubl.state.z_offset, e_end, feed_rate, extruder);
  125. set_current_to_destination();
  126. if (g26_debug_flag)
  127. debug_current_and_destination((char*)"out of bounds in ubl_line_to_destination()");
  128. return;
  129. }
  130. FINAL_MOVE:
  131. /**
  132. * Optimize some floating point operations here. We could call float get_z_correction(float x0, float y0) to
  133. * generate the correction for us. But we can lighten the load on the CPU by doing a modified version of the function.
  134. * We are going to only calculate the amount we are from the first mesh line towards the second mesh line once.
  135. * We will use this fraction in both of the original two Z Height calculations for the bi-linear interpolation. And,
  136. * instead of doing a generic divide of the distance, we know the distance is MESH_X_DIST so we can use the preprocessor
  137. * to create a 1-over number for us. That will allow us to do a floating point multiply instead of a floating point divide.
  138. */
  139. const float xratio = (RAW_X_POSITION(x_end) - mesh_index_to_x_location[cell_dest_xi]) * (1.0 / (MESH_X_DIST)),
  140. z1 = z_values[cell_dest_xi ][cell_dest_yi ] + xratio *
  141. (z_values[cell_dest_xi + 1][cell_dest_yi ] - z_values[cell_dest_xi][cell_dest_yi ]),
  142. z2 = z_values[cell_dest_xi ][cell_dest_yi + 1] + xratio *
  143. (z_values[cell_dest_xi + 1][cell_dest_yi + 1] - z_values[cell_dest_xi][cell_dest_yi + 1]);
  144. // we are done with the fractional X distance into the cell. Now with the two Z-Heights we have calculated, we
  145. // are going to apply the Y-Distance into the cell to interpolate the final Z correction.
  146. const float yratio = (RAW_Y_POSITION(y_end) - mesh_index_to_y_location[cell_dest_yi]) * (1.0 / (MESH_Y_DIST));
  147. float z0 = z1 + (z2 - z1) * yratio;
  148. /**
  149. * Debug code to use non-optimized get_z_correction() and to do a sanity check
  150. * that the correct value is being passed to planner.buffer_line()
  151. */
  152. /*
  153. z_optimized = z0;
  154. z0 = ubl.get_z_correction(x_end, y_end);
  155. if (fabs(z_optimized - z0) > .01 || isnan(z0) || isnan(z_optimized)) {
  156. debug_current_and_destination((char*)"FINAL_MOVE: z_correction()");
  157. if (isnan(z0)) SERIAL_ECHO(" z0==NAN ");
  158. if (isnan(z_optimized)) SERIAL_ECHO(" z_optimized==NAN ");
  159. SERIAL_ECHOPAIR(" x_end=", x_end);
  160. SERIAL_ECHOPAIR(" y_end=", y_end);
  161. SERIAL_ECHOPAIR(" z0=", z0);
  162. SERIAL_ECHOPAIR(" z_optimized=", z_optimized);
  163. SERIAL_ECHOPAIR(" err=",fabs(z_optimized - z0));
  164. SERIAL_EOL;
  165. }
  166. //*/
  167. z0 *= ubl.fade_scaling_factor_for_z(z_end);
  168. /**
  169. * If part of the Mesh is undefined, it will show up as NAN
  170. * in z_values[][] and propagate through the
  171. * calculations. If our correction is NAN, we throw it out
  172. * because part of the Mesh is undefined and we don't have the
  173. * information we need to complete the height correction.
  174. */
  175. if (isnan(z0)) z0 = 0.0;
  176. planner.buffer_line(x_end, y_end, z_end + z0 + ubl.state.z_offset, e_end, feed_rate, extruder);
  177. if (g26_debug_flag)
  178. debug_current_and_destination((char*)"FINAL_MOVE in ubl_line_to_destination()");
  179. set_current_to_destination();
  180. return;
  181. }
  182. /**
  183. * If we get here, we are processing a move that crosses at least one Mesh Line. We will check
  184. * for the simple case of just crossing X or just crossing Y Mesh Lines after we get all the details
  185. * of the move figured out. We can process the easy case of just crossing an X or Y Mesh Line with less
  186. * computation and in fact most lines are of this nature. We will check for that in the following
  187. * blocks of code:
  188. */
  189. const float dx = x_end - x_start,
  190. dy = y_end - y_start;
  191. const int left_flag = dx < 0.0 ? 1 : 0,
  192. down_flag = dy < 0.0 ? 1 : 0;
  193. const float adx = left_flag ? -dx : dx,
  194. ady = down_flag ? -dy : dy;
  195. const int dxi = cell_start_xi == cell_dest_xi ? 0 : left_flag ? -1 : 1,
  196. dyi = cell_start_yi == cell_dest_yi ? 0 : down_flag ? -1 : 1;
  197. /**
  198. * Compute the scaling factor for the extruder for each partial move.
  199. * We need to watch out for zero length moves because it will cause us to
  200. * have an infinate scaling factor. We are stuck doing a floating point
  201. * divide to get our scaling factor, but after that, we just multiply by this
  202. * number. We also pick our scaling factor based on whether the X or Y
  203. * component is larger. We use the biggest of the two to preserve precision.
  204. */
  205. const bool use_x_dist = adx > ady;
  206. float on_axis_distance = use_x_dist ? dx : dy,
  207. e_position = e_end - e_start,
  208. z_position = z_end - z_start;
  209. const float e_normalized_dist = e_position / on_axis_distance,
  210. z_normalized_dist = z_position / on_axis_distance;
  211. int current_xi = cell_start_xi, current_yi = cell_start_yi;
  212. const float m = dy / dx,
  213. c = y_start - m * x_start;
  214. const bool inf_normalized_flag = NEAR_ZERO(on_axis_distance),
  215. inf_m_flag = NEAR_ZERO(dx);
  216. /**
  217. * This block handles vertical lines. These are lines that stay within the same
  218. * X Cell column. They do not need to be perfectly vertical. They just can
  219. * not cross into another X Cell column.
  220. */
  221. if (dxi == 0) { // Check for a vertical line
  222. current_yi += down_flag; // Line is heading down, we just want to go to the bottom
  223. while (current_yi != cell_dest_yi + down_flag) {
  224. current_yi += dyi;
  225. const float next_mesh_line_y = LOGICAL_Y_POSITION(mesh_index_to_y_location[current_yi]);
  226. /**
  227. * inf_m_flag? the slope of the line is infinite, we won't do the calculations
  228. * else, we know the next X is the same so we can recover and continue!
  229. * Calculate X at the next Y mesh line
  230. */
  231. const float x = inf_m_flag ? x_start : (next_mesh_line_y - c) / m;
  232. float z0 = ubl.get_z_correction_along_horizontal_mesh_line_at_specific_X(x, current_xi, current_yi);
  233. /**
  234. * Debug code to use non-optimized get_z_correction() and to do a sanity check
  235. * that the correct value is being passed to planner.buffer_line()
  236. */
  237. /*
  238. z_optimized = z0;
  239. z0 = ubl.get_z_correction(x, next_mesh_line_y);
  240. if (fabs(z_optimized - z0) > .01 || isnan(z0) || isnan(z_optimized)) {
  241. debug_current_and_destination((char*)"VERTICAL z_correction()");
  242. if (isnan(z0)) SERIAL_ECHO(" z0==NAN ");
  243. if (isnan(z_optimized)) SERIAL_ECHO(" z_optimized==NAN ");
  244. SERIAL_ECHOPAIR(" x=", x);
  245. SERIAL_ECHOPAIR(" next_mesh_line_y=", next_mesh_line_y);
  246. SERIAL_ECHOPAIR(" z0=", z0);
  247. SERIAL_ECHOPAIR(" z_optimized=", z_optimized);
  248. SERIAL_ECHOPAIR(" err=",fabs(z_optimized-z0));
  249. SERIAL_ECHO("\n");
  250. }
  251. //*/
  252. z0 *= ubl.fade_scaling_factor_for_z(z_end);
  253. /**
  254. * If part of the Mesh is undefined, it will show up as NAN
  255. * in z_values[][] and propagate through the
  256. * calculations. If our correction is NAN, we throw it out
  257. * because part of the Mesh is undefined and we don't have the
  258. * information we need to complete the height correction.
  259. */
  260. if (isnan(z0)) z0 = 0.0;
  261. const float y = LOGICAL_Y_POSITION(mesh_index_to_y_location[current_yi]);
  262. /**
  263. * Without this check, it is possible for the algorithm to generate a zero length move in the case
  264. * where the line is heading down and it is starting right on a Mesh Line boundary. For how often that
  265. * happens, it might be best to remove the check and always 'schedule' the move because
  266. * the planner.buffer_line() routine will filter it if that happens.
  267. */
  268. if (y != y_start) {
  269. if (!inf_normalized_flag) {
  270. on_axis_distance = y - y_start; // we don't need to check if the extruder position
  271. e_position = e_start + on_axis_distance * e_normalized_dist; // is based on X or Y because this is a vertical move
  272. z_position = z_start + on_axis_distance * z_normalized_dist;
  273. }
  274. else {
  275. e_position = e_start;
  276. z_position = z_start;
  277. }
  278. planner.buffer_line(x, y, z_position + z0 + ubl.state.z_offset, e_position, feed_rate, extruder);
  279. } //else printf("FIRST MOVE PRUNED ");
  280. }
  281. if (g26_debug_flag)
  282. debug_current_and_destination((char*)"vertical move done in ubl_line_to_destination()");
  283. //
  284. // Check if we are at the final destination. Usually, we won't be, but if it is on a Y Mesh Line, we are done.
  285. //
  286. if (current_position[X_AXIS] != x_end || current_position[Y_AXIS] != y_end)
  287. goto FINAL_MOVE;
  288. set_current_to_destination();
  289. return;
  290. }
  291. /**
  292. *
  293. * This block handles horizontal lines. These are lines that stay within the same
  294. * Y Cell row. They do not need to be perfectly horizontal. They just can
  295. * not cross into another Y Cell row.
  296. *
  297. */
  298. if (dyi == 0) { // Check for a horizontal line
  299. current_xi += left_flag; // Line is heading left, we just want to go to the left
  300. // edge of this cell for the first move.
  301. while (current_xi != cell_dest_xi + left_flag) {
  302. current_xi += dxi;
  303. const float next_mesh_line_x = LOGICAL_X_POSITION(mesh_index_to_x_location[current_xi]),
  304. y = m * next_mesh_line_x + c; // Calculate X at the next Y mesh line
  305. float z0 = ubl.get_z_correction_along_vertical_mesh_line_at_specific_Y(y, current_xi, current_yi);
  306. /**
  307. * Debug code to use non-optimized get_z_correction() and to do a sanity check
  308. * that the correct value is being passed to planner.buffer_line()
  309. */
  310. /*
  311. z_optimized = z0;
  312. z0 = ubl.get_z_correction(next_mesh_line_x, y);
  313. if (fabs(z_optimized - z0) > .01 || isnan(z0) || isnan(z_optimized)) {
  314. debug_current_and_destination((char*)"HORIZONTAL z_correction()");
  315. if (isnan(z0)) SERIAL_ECHO(" z0==NAN ");
  316. if (isnan(z_optimized)) SERIAL_ECHO(" z_optimized==NAN ");
  317. SERIAL_ECHOPAIR(" next_mesh_line_x=", next_mesh_line_x);
  318. SERIAL_ECHOPAIR(" y=", y);
  319. SERIAL_ECHOPAIR(" z0=", z0);
  320. SERIAL_ECHOPAIR(" z_optimized=", z_optimized);
  321. SERIAL_ECHOPAIR(" err=",fabs(z_optimized-z0));
  322. SERIAL_ECHO("\n");
  323. }
  324. //*/
  325. z0 = z0 * ubl.fade_scaling_factor_for_z(z_end);
  326. /**
  327. * If part of the Mesh is undefined, it will show up as NAN
  328. * in z_values[][] and propagate through the
  329. * calculations. If our correction is NAN, we throw it out
  330. * because part of the Mesh is undefined and we don't have the
  331. * information we need to complete the height correction.
  332. */
  333. if (isnan(z0)) z0 = 0.0;
  334. const float x = LOGICAL_X_POSITION(mesh_index_to_x_location[current_xi]);
  335. /**
  336. * Without this check, it is possible for the algorithm to generate a zero length move in the case
  337. * where the line is heading left and it is starting right on a Mesh Line boundary. For how often
  338. * that happens, it might be best to remove the check and always 'schedule' the move because
  339. * the planner.buffer_line() routine will filter it if that happens.
  340. */
  341. if (x != x_start) {
  342. if (!inf_normalized_flag) {
  343. on_axis_distance = x - x_start; // we don't need to check if the extruder position
  344. e_position = e_start + on_axis_distance * e_normalized_dist; // is based on X or Y because this is a horizontal move
  345. z_position = z_start + on_axis_distance * z_normalized_dist;
  346. }
  347. else {
  348. e_position = e_start;
  349. z_position = z_start;
  350. }
  351. planner.buffer_line(x, y, z_position + z0 + ubl.state.z_offset, e_position, feed_rate, extruder);
  352. } //else printf("FIRST MOVE PRUNED ");
  353. }
  354. if (g26_debug_flag)
  355. debug_current_and_destination((char*)"horizontal move done in ubl_line_to_destination()");
  356. if (current_position[X_AXIS] != x_end || current_position[Y_AXIS] != y_end)
  357. goto FINAL_MOVE;
  358. set_current_to_destination();
  359. return;
  360. }
  361. /**
  362. *
  363. * This block handles the generic case of a line crossing both X and Y Mesh lines.
  364. *
  365. */
  366. int xi_cnt = cell_start_xi - cell_dest_xi,
  367. yi_cnt = cell_start_yi - cell_dest_yi;
  368. if (xi_cnt < 0) xi_cnt = -xi_cnt;
  369. if (yi_cnt < 0) yi_cnt = -yi_cnt;
  370. current_xi += left_flag;
  371. current_yi += down_flag;
  372. while (xi_cnt > 0 || yi_cnt > 0) {
  373. const float next_mesh_line_x = LOGICAL_X_POSITION(mesh_index_to_x_location[current_xi + dxi]),
  374. next_mesh_line_y = LOGICAL_Y_POSITION(mesh_index_to_y_location[current_yi + dyi]),
  375. y = m * next_mesh_line_x + c, // Calculate Y at the next X mesh line
  376. x = (next_mesh_line_y - c) / m; // Calculate X at the next Y mesh line (we don't have to worry
  377. // about m being equal to 0.0 If this was the case, we would have
  378. // detected this as a vertical line move up above and we wouldn't
  379. // be down here doing a generic type of move.
  380. if (left_flag == (x > next_mesh_line_x)) { // Check if we hit the Y line first
  381. //
  382. // Yes! Crossing a Y Mesh Line next
  383. //
  384. float z0 = ubl.get_z_correction_along_horizontal_mesh_line_at_specific_X(x, current_xi - left_flag, current_yi + dyi);
  385. /**
  386. * Debug code to use non-optimized get_z_correction() and to do a sanity check
  387. * that the correct value is being passed to planner.buffer_line()
  388. */
  389. /*
  390. z_optimized = z0;
  391. z0 = ubl.get_z_correction(x, next_mesh_line_y);
  392. if (fabs(z_optimized - z0) > .01 || isnan(z0) || isnan(z_optimized)) {
  393. debug_current_and_destination((char*)"General_1: z_correction()");
  394. if (isnan(z0)) SERIAL_ECHO(" z0==NAN ");
  395. if (isnan(z_optimized)) SERIAL_ECHO(" z_optimized==NAN "); {
  396. SERIAL_ECHOPAIR(" x=", x);
  397. }
  398. SERIAL_ECHOPAIR(" next_mesh_line_y=", next_mesh_line_y);
  399. SERIAL_ECHOPAIR(" z0=", z0);
  400. SERIAL_ECHOPAIR(" z_optimized=", z_optimized);
  401. SERIAL_ECHOPAIR(" err=",fabs(z_optimized-z0));
  402. SERIAL_ECHO("\n");
  403. }
  404. //*/
  405. z0 *= ubl.fade_scaling_factor_for_z(z_end);
  406. /**
  407. * If part of the Mesh is undefined, it will show up as NAN
  408. * in z_values[][] and propagate through the
  409. * calculations. If our correction is NAN, we throw it out
  410. * because part of the Mesh is undefined and we don't have the
  411. * information we need to complete the height correction.
  412. */
  413. if (isnan(z0)) z0 = 0.0;
  414. if (!inf_normalized_flag) {
  415. on_axis_distance = use_x_dist ? x - x_start : next_mesh_line_y - y_start;
  416. e_position = e_start + on_axis_distance * e_normalized_dist;
  417. z_position = z_start + on_axis_distance * z_normalized_dist;
  418. }
  419. else {
  420. e_position = e_start;
  421. z_position = z_start;
  422. }
  423. planner.buffer_line(x, next_mesh_line_y, z_position + z0 + ubl.state.z_offset, e_position, feed_rate, extruder);
  424. current_yi += dyi;
  425. yi_cnt--;
  426. }
  427. else {
  428. //
  429. // Yes! Crossing a X Mesh Line next
  430. //
  431. float z0 = ubl.get_z_correction_along_vertical_mesh_line_at_specific_Y(y, current_xi + dxi, current_yi - down_flag);
  432. /**
  433. * Debug code to use non-optimized get_z_correction() and to do a sanity check
  434. * that the correct value is being passed to planner.buffer_line()
  435. */
  436. /*
  437. z_optimized = z0;
  438. z0 = ubl.get_z_correction(next_mesh_line_x, y);
  439. if (fabs(z_optimized - z0) > .01 || isnan(z0) || isnan(z_optimized)) {
  440. debug_current_and_destination((char*)"General_2: z_correction()");
  441. if (isnan(z0)) SERIAL_ECHO(" z0==NAN ");
  442. if (isnan(z_optimized)) SERIAL_ECHO(" z_optimized==NAN ");
  443. SERIAL_ECHOPAIR(" next_mesh_line_x=", next_mesh_line_x);
  444. SERIAL_ECHOPAIR(" y=", y);
  445. SERIAL_ECHOPAIR(" z0=", z0);
  446. SERIAL_ECHOPAIR(" z_optimized=", z_optimized);
  447. SERIAL_ECHOPAIR(" err=",fabs(z_optimized-z0));
  448. SERIAL_ECHO("\n");
  449. }
  450. //*/
  451. z0 *= ubl.fade_scaling_factor_for_z(z_end);
  452. /**
  453. * If part of the Mesh is undefined, it will show up as NAN
  454. * in z_values[][] and propagate through the
  455. * calculations. If our correction is NAN, we throw it out
  456. * because part of the Mesh is undefined and we don't have the
  457. * information we need to complete the height correction.
  458. */
  459. if (isnan(z0)) z0 = 0.0;
  460. if (!inf_normalized_flag) {
  461. on_axis_distance = use_x_dist ? next_mesh_line_x - x_start : y - y_start;
  462. e_position = e_start + on_axis_distance * e_normalized_dist;
  463. z_position = z_start + on_axis_distance * z_normalized_dist;
  464. }
  465. else {
  466. e_position = e_start;
  467. z_position = z_start;
  468. }
  469. planner.buffer_line(next_mesh_line_x, y, z_position + z0 + ubl.state.z_offset, e_position, feed_rate, extruder);
  470. current_xi += dxi;
  471. xi_cnt--;
  472. }
  473. }
  474. if (g26_debug_flag)
  475. debug_current_and_destination((char*)"generic move done in ubl_line_to_destination()");
  476. if (current_position[0] != x_end || current_position[1] != y_end)
  477. goto FINAL_MOVE;
  478. set_current_to_destination();
  479. }
  480. #endif