My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

stepper.cpp 39KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * stepper.cpp - A singleton object to execute motion plans using stepper motors
  24. * Marlin Firmware
  25. *
  26. * Derived from Grbl
  27. * Copyright (c) 2009-2011 Simen Svale Skogsrud
  28. *
  29. * Grbl is free software: you can redistribute it and/or modify
  30. * it under the terms of the GNU General Public License as published by
  31. * the Free Software Foundation, either version 3 of the License, or
  32. * (at your option) any later version.
  33. *
  34. * Grbl is distributed in the hope that it will be useful,
  35. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  36. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  37. * GNU General Public License for more details.
  38. *
  39. * You should have received a copy of the GNU General Public License
  40. * along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  41. */
  42. /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
  43. and Philipp Tiefenbacher. */
  44. #include "Marlin.h"
  45. #include "stepper.h"
  46. #include "endstops.h"
  47. #include "planner.h"
  48. #include "temperature.h"
  49. #include "ultralcd.h"
  50. #include "language.h"
  51. #include "cardreader.h"
  52. #include "speed_lookuptable.h"
  53. #if HAS_DIGIPOTSS
  54. #include <SPI.h>
  55. #endif
  56. Stepper stepper; // Singleton
  57. // public:
  58. block_t* Stepper::current_block = NULL; // A pointer to the block currently being traced
  59. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  60. bool Stepper::abort_on_endstop_hit = false;
  61. #endif
  62. #if ENABLED(Z_DUAL_ENDSTOPS)
  63. bool Stepper::performing_homing = false;
  64. #endif
  65. // private:
  66. unsigned char Stepper::last_direction_bits = 0; // The next stepping-bits to be output
  67. unsigned int Stepper::cleaning_buffer_counter = 0;
  68. #if ENABLED(Z_DUAL_ENDSTOPS)
  69. bool Stepper::locked_z_motor = false;
  70. bool Stepper::locked_z2_motor = false;
  71. #endif
  72. long Stepper::counter_X = 0,
  73. Stepper::counter_Y = 0,
  74. Stepper::counter_Z = 0,
  75. Stepper::counter_E = 0;
  76. volatile uint32_t Stepper::step_events_completed = 0; // The number of step events executed in the current block
  77. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  78. unsigned char Stepper::old_OCR0A = 0;
  79. volatile unsigned char Stepper::eISR_Rate = 200; // Keep the ISR at a low rate until needed
  80. #if ENABLED(LIN_ADVANCE)
  81. volatile int Stepper::e_steps[E_STEPPERS];
  82. int Stepper::final_estep_rate,
  83. Stepper::current_estep_rate[E_STEPPERS],
  84. Stepper::current_adv_steps[E_STEPPERS];
  85. #else
  86. long Stepper::e_steps[E_STEPPERS],
  87. Stepper::final_advance = 0,
  88. Stepper::old_advance = 0,
  89. Stepper::advance_rate,
  90. Stepper::advance;
  91. #endif
  92. #endif
  93. long Stepper::acceleration_time, Stepper::deceleration_time;
  94. volatile long Stepper::count_position[NUM_AXIS] = { 0 };
  95. volatile signed char Stepper::count_direction[NUM_AXIS] = { 1, 1, 1, 1 };
  96. #if ENABLED(MIXING_EXTRUDER)
  97. long Stepper::counter_m[MIXING_STEPPERS];
  98. #endif
  99. unsigned short Stepper::acc_step_rate; // needed for deceleration start point
  100. uint8_t Stepper::step_loops, Stepper::step_loops_nominal;
  101. unsigned short Stepper::OCR1A_nominal;
  102. volatile long Stepper::endstops_trigsteps[XYZ];
  103. #if ENABLED(X_DUAL_STEPPER_DRIVERS)
  104. #define X_APPLY_DIR(v,Q) do{ X_DIR_WRITE(v); X2_DIR_WRITE((v) != INVERT_X2_VS_X_DIR); }while(0)
  105. #define X_APPLY_STEP(v,Q) do{ X_STEP_WRITE(v); X2_STEP_WRITE(v); }while(0)
  106. #elif ENABLED(DUAL_X_CARRIAGE)
  107. #define X_APPLY_DIR(v,ALWAYS) \
  108. if (extruder_duplication_enabled || ALWAYS) { \
  109. X_DIR_WRITE(v); \
  110. X2_DIR_WRITE(v); \
  111. } \
  112. else { \
  113. if (current_block->active_extruder) X2_DIR_WRITE(v); else X_DIR_WRITE(v); \
  114. }
  115. #define X_APPLY_STEP(v,ALWAYS) \
  116. if (extruder_duplication_enabled || ALWAYS) { \
  117. X_STEP_WRITE(v); \
  118. X2_STEP_WRITE(v); \
  119. } \
  120. else { \
  121. if (current_block->active_extruder != 0) X2_STEP_WRITE(v); else X_STEP_WRITE(v); \
  122. }
  123. #else
  124. #define X_APPLY_DIR(v,Q) X_DIR_WRITE(v)
  125. #define X_APPLY_STEP(v,Q) X_STEP_WRITE(v)
  126. #endif
  127. #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
  128. #define Y_APPLY_DIR(v,Q) do{ Y_DIR_WRITE(v); Y2_DIR_WRITE((v) != INVERT_Y2_VS_Y_DIR); }while(0)
  129. #define Y_APPLY_STEP(v,Q) do{ Y_STEP_WRITE(v); Y2_STEP_WRITE(v); }while(0)
  130. #else
  131. #define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v)
  132. #define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v)
  133. #endif
  134. #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
  135. #define Z_APPLY_DIR(v,Q) do{ Z_DIR_WRITE(v); Z2_DIR_WRITE(v); }while(0)
  136. #if ENABLED(Z_DUAL_ENDSTOPS)
  137. #define Z_APPLY_STEP(v,Q) \
  138. if (performing_homing) { \
  139. if (Z_HOME_DIR < 0) { \
  140. if (!(TEST(endstops.old_endstop_bits, Z_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
  141. if (!(TEST(endstops.old_endstop_bits, Z2_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
  142. } \
  143. else { \
  144. if (!(TEST(endstops.old_endstop_bits, Z_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
  145. if (!(TEST(endstops.old_endstop_bits, Z2_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
  146. } \
  147. } \
  148. else { \
  149. Z_STEP_WRITE(v); \
  150. Z2_STEP_WRITE(v); \
  151. }
  152. #else
  153. #define Z_APPLY_STEP(v,Q) do{ Z_STEP_WRITE(v); Z2_STEP_WRITE(v); }while(0)
  154. #endif
  155. #else
  156. #define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v)
  157. #define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v)
  158. #endif
  159. #if DISABLED(MIXING_EXTRUDER)
  160. #define E_APPLY_STEP(v,Q) E_STEP_WRITE(v)
  161. #endif
  162. // intRes = longIn1 * longIn2 >> 24
  163. // uses:
  164. // r26 to store 0
  165. // r27 to store bits 16-23 of the 48bit result. The top bit is used to round the two byte result.
  166. // note that the lower two bytes and the upper byte of the 48bit result are not calculated.
  167. // this can cause the result to be out by one as the lower bytes may cause carries into the upper ones.
  168. // B0 A0 are bits 24-39 and are the returned value
  169. // C1 B1 A1 is longIn1
  170. // D2 C2 B2 A2 is longIn2
  171. //
  172. #define MultiU24X32toH16(intRes, longIn1, longIn2) \
  173. asm volatile ( \
  174. "clr r26 \n\t" \
  175. "mul %A1, %B2 \n\t" \
  176. "mov r27, r1 \n\t" \
  177. "mul %B1, %C2 \n\t" \
  178. "movw %A0, r0 \n\t" \
  179. "mul %C1, %C2 \n\t" \
  180. "add %B0, r0 \n\t" \
  181. "mul %C1, %B2 \n\t" \
  182. "add %A0, r0 \n\t" \
  183. "adc %B0, r1 \n\t" \
  184. "mul %A1, %C2 \n\t" \
  185. "add r27, r0 \n\t" \
  186. "adc %A0, r1 \n\t" \
  187. "adc %B0, r26 \n\t" \
  188. "mul %B1, %B2 \n\t" \
  189. "add r27, r0 \n\t" \
  190. "adc %A0, r1 \n\t" \
  191. "adc %B0, r26 \n\t" \
  192. "mul %C1, %A2 \n\t" \
  193. "add r27, r0 \n\t" \
  194. "adc %A0, r1 \n\t" \
  195. "adc %B0, r26 \n\t" \
  196. "mul %B1, %A2 \n\t" \
  197. "add r27, r1 \n\t" \
  198. "adc %A0, r26 \n\t" \
  199. "adc %B0, r26 \n\t" \
  200. "lsr r27 \n\t" \
  201. "adc %A0, r26 \n\t" \
  202. "adc %B0, r26 \n\t" \
  203. "mul %D2, %A1 \n\t" \
  204. "add %A0, r0 \n\t" \
  205. "adc %B0, r1 \n\t" \
  206. "mul %D2, %B1 \n\t" \
  207. "add %B0, r0 \n\t" \
  208. "clr r1 \n\t" \
  209. : \
  210. "=&r" (intRes) \
  211. : \
  212. "d" (longIn1), \
  213. "d" (longIn2) \
  214. : \
  215. "r26" , "r27" \
  216. )
  217. // Some useful constants
  218. #define ENABLE_STEPPER_DRIVER_INTERRUPT() SBI(TIMSK1, OCIE1A)
  219. #define DISABLE_STEPPER_DRIVER_INTERRUPT() CBI(TIMSK1, OCIE1A)
  220. /**
  221. * __________________________
  222. * /| |\ _________________ ^
  223. * / | | \ /| |\ |
  224. * / | | \ / | | \ s
  225. * / | | | | | \ p
  226. * / | | | | | \ e
  227. * +-----+------------------------+---+--+---------------+----+ e
  228. * | BLOCK 1 | BLOCK 2 | d
  229. *
  230. * time ----->
  231. *
  232. * The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
  233. * first block->accelerate_until step_events_completed, then keeps going at constant speed until
  234. * step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
  235. * The slope of acceleration is calculated using v = u + at where t is the accumulated timer values of the steps so far.
  236. */
  237. void Stepper::wake_up() {
  238. // TCNT1 = 0;
  239. ENABLE_STEPPER_DRIVER_INTERRUPT();
  240. }
  241. /**
  242. * Set the stepper direction of each axis
  243. *
  244. * COREXY: X_AXIS=A_AXIS and Y_AXIS=B_AXIS
  245. * COREXZ: X_AXIS=A_AXIS and Z_AXIS=C_AXIS
  246. * COREYZ: Y_AXIS=B_AXIS and Z_AXIS=C_AXIS
  247. */
  248. void Stepper::set_directions() {
  249. #define SET_STEP_DIR(AXIS) \
  250. if (motor_direction(AXIS ##_AXIS)) { \
  251. AXIS ##_APPLY_DIR(INVERT_## AXIS ##_DIR, false); \
  252. count_direction[AXIS ##_AXIS] = -1; \
  253. } \
  254. else { \
  255. AXIS ##_APPLY_DIR(!INVERT_## AXIS ##_DIR, false); \
  256. count_direction[AXIS ##_AXIS] = 1; \
  257. }
  258. #if HAS_X_DIR
  259. SET_STEP_DIR(X); // A
  260. #endif
  261. #if HAS_Y_DIR
  262. SET_STEP_DIR(Y); // B
  263. #endif
  264. #if HAS_Z_DIR
  265. SET_STEP_DIR(Z); // C
  266. #endif
  267. #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
  268. if (motor_direction(E_AXIS)) {
  269. REV_E_DIR();
  270. count_direction[E_AXIS] = -1;
  271. }
  272. else {
  273. NORM_E_DIR();
  274. count_direction[E_AXIS] = 1;
  275. }
  276. #endif // !ADVANCE && !LIN_ADVANCE
  277. }
  278. /**
  279. * Stepper Driver Interrupt
  280. *
  281. * Directly pulses the stepper motors at high frequency.
  282. * Timer 1 runs at a base frequency of 2MHz, with this ISR using OCR1A compare mode.
  283. *
  284. * OCR1A Frequency
  285. * 1 2 MHz
  286. * 50 40 KHz
  287. * 100 20 KHz - capped max rate
  288. * 200 10 KHz - nominal max rate
  289. * 2000 1 KHz - sleep rate
  290. * 4000 500 Hz - init rate
  291. */
  292. ISR(TIMER1_COMPA_vect) { Stepper::isr(); }
  293. void Stepper::isr() {
  294. if (cleaning_buffer_counter) {
  295. current_block = NULL;
  296. planner.discard_current_block();
  297. #ifdef SD_FINISHED_RELEASECOMMAND
  298. if ((cleaning_buffer_counter == 1) && (SD_FINISHED_STEPPERRELEASE)) enqueue_and_echo_commands_P(PSTR(SD_FINISHED_RELEASECOMMAND));
  299. #endif
  300. cleaning_buffer_counter--;
  301. OCR1A = 200; // Run at max speed - 10 KHz
  302. return;
  303. }
  304. // If there is no current block, attempt to pop one from the buffer
  305. if (!current_block) {
  306. // Anything in the buffer?
  307. current_block = planner.get_current_block();
  308. if (current_block) {
  309. SBI(current_block->flag, BLOCK_BIT_BUSY);
  310. trapezoid_generator_reset();
  311. // Initialize Bresenham counters to 1/2 the ceiling
  312. counter_X = counter_Y = counter_Z = counter_E = -(current_block->step_event_count >> 1);
  313. #if ENABLED(MIXING_EXTRUDER)
  314. MIXING_STEPPERS_LOOP(i)
  315. counter_m[i] = -(current_block->mix_event_count[i] >> 1);
  316. #endif
  317. step_events_completed = 0;
  318. #if ENABLED(Z_LATE_ENABLE)
  319. if (current_block->steps[Z_AXIS] > 0) {
  320. enable_z();
  321. OCR1A = 2000; // Run at slow speed - 1 KHz
  322. return;
  323. }
  324. #endif
  325. // #if ENABLED(ADVANCE)
  326. // e_steps[TOOL_E_INDEX] = 0;
  327. // #endif
  328. }
  329. else {
  330. OCR1A = 2000; // Run at slow speed - 1 KHz
  331. return;
  332. }
  333. }
  334. // Update endstops state, if enabled
  335. if (endstops.enabled
  336. #if HAS_BED_PROBE
  337. || endstops.z_probe_enabled
  338. #endif
  339. ) endstops.update();
  340. // Take multiple steps per interrupt (For high speed moves)
  341. bool all_steps_done = false;
  342. for (int8_t i = 0; i < step_loops; i++) {
  343. #ifndef USBCON
  344. customizedSerial.checkRx(); // Check for serial chars.
  345. #endif
  346. #if ENABLED(LIN_ADVANCE)
  347. counter_E += current_block->steps[E_AXIS];
  348. if (counter_E > 0) {
  349. counter_E -= current_block->step_event_count;
  350. #if DISABLED(MIXING_EXTRUDER)
  351. // Don't step E here for mixing extruder
  352. count_position[E_AXIS] += count_direction[E_AXIS];
  353. motor_direction(E_AXIS) ? --e_steps[TOOL_E_INDEX] : ++e_steps[TOOL_E_INDEX];
  354. #endif
  355. }
  356. #if ENABLED(MIXING_EXTRUDER)
  357. // Step mixing steppers proportionally
  358. const bool dir = motor_direction(E_AXIS);
  359. MIXING_STEPPERS_LOOP(j) {
  360. counter_m[j] += current_block->steps[E_AXIS];
  361. if (counter_m[j] > 0) {
  362. counter_m[j] -= current_block->mix_event_count[j];
  363. dir ? --e_steps[j] : ++e_steps[j];
  364. }
  365. }
  366. #endif
  367. #elif ENABLED(ADVANCE)
  368. // Always count the unified E axis
  369. counter_E += current_block->steps[E_AXIS];
  370. if (counter_E > 0) {
  371. counter_E -= current_block->step_event_count;
  372. #if DISABLED(MIXING_EXTRUDER)
  373. // Don't step E here for mixing extruder
  374. motor_direction(E_AXIS) ? --e_steps[TOOL_E_INDEX] : ++e_steps[TOOL_E_INDEX];
  375. #endif
  376. }
  377. #if ENABLED(MIXING_EXTRUDER)
  378. // Step mixing steppers proportionally
  379. const bool dir = motor_direction(E_AXIS);
  380. MIXING_STEPPERS_LOOP(j) {
  381. counter_m[j] += current_block->steps[E_AXIS];
  382. if (counter_m[j] > 0) {
  383. counter_m[j] -= current_block->mix_event_count[j];
  384. dir ? --e_steps[j] : ++e_steps[j];
  385. }
  386. }
  387. #endif // MIXING_EXTRUDER
  388. #endif // ADVANCE or LIN_ADVANCE
  389. #define _COUNTER(AXIS) counter_## AXIS
  390. #define _APPLY_STEP(AXIS) AXIS ##_APPLY_STEP
  391. #define _INVERT_STEP_PIN(AXIS) INVERT_## AXIS ##_STEP_PIN
  392. // Advance the Bresenham counter; start a pulse if the axis needs a step
  393. #define PULSE_START(AXIS) \
  394. _COUNTER(AXIS) += current_block->steps[_AXIS(AXIS)]; \
  395. if (_COUNTER(AXIS) > 0) { _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS),0); }
  396. // Stop an active pulse, reset the Bresenham counter, update the position
  397. #define PULSE_STOP(AXIS) \
  398. if (_COUNTER(AXIS) > 0) { \
  399. _COUNTER(AXIS) -= current_block->step_event_count; \
  400. count_position[_AXIS(AXIS)] += count_direction[_AXIS(AXIS)]; \
  401. _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS),0); \
  402. }
  403. #define CYCLES_EATEN_BY_CODE 240
  404. // If a minimum pulse time was specified get the CPU clock
  405. #if STEP_PULSE_CYCLES > CYCLES_EATEN_BY_CODE
  406. static uint32_t pulse_start;
  407. pulse_start = TCNT0;
  408. #endif
  409. #if HAS_X_STEP
  410. PULSE_START(X);
  411. #endif
  412. #if HAS_Y_STEP
  413. PULSE_START(Y);
  414. #endif
  415. #if HAS_Z_STEP
  416. PULSE_START(Z);
  417. #endif
  418. // For non-advance use linear interpolation for E also
  419. #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
  420. #if ENABLED(MIXING_EXTRUDER)
  421. // Keep updating the single E axis
  422. counter_E += current_block->steps[E_AXIS];
  423. // Tick the counters used for this mix
  424. MIXING_STEPPERS_LOOP(j) {
  425. // Step mixing steppers (proportionally)
  426. counter_m[j] += current_block->steps[E_AXIS];
  427. // Step when the counter goes over zero
  428. if (counter_m[j] > 0) En_STEP_WRITE(j, !INVERT_E_STEP_PIN);
  429. }
  430. #else // !MIXING_EXTRUDER
  431. PULSE_START(E);
  432. #endif
  433. #endif // !ADVANCE && !LIN_ADVANCE
  434. // For a minimum pulse time wait before stopping pulses
  435. #if STEP_PULSE_CYCLES > CYCLES_EATEN_BY_CODE
  436. while ((uint32_t)(TCNT0 - pulse_start) < STEP_PULSE_CYCLES - CYCLES_EATEN_BY_CODE) { /* nada */ }
  437. #endif
  438. #if HAS_X_STEP
  439. PULSE_STOP(X);
  440. #endif
  441. #if HAS_Y_STEP
  442. PULSE_STOP(Y);
  443. #endif
  444. #if HAS_Z_STEP
  445. PULSE_STOP(Z);
  446. #endif
  447. #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
  448. #if ENABLED(MIXING_EXTRUDER)
  449. // Always step the single E axis
  450. if (counter_E > 0) {
  451. counter_E -= current_block->step_event_count;
  452. count_position[E_AXIS] += count_direction[E_AXIS];
  453. }
  454. MIXING_STEPPERS_LOOP(j) {
  455. if (counter_m[j] > 0) {
  456. counter_m[j] -= current_block->mix_event_count[j];
  457. En_STEP_WRITE(j, INVERT_E_STEP_PIN);
  458. }
  459. }
  460. #else // !MIXING_EXTRUDER
  461. PULSE_STOP(E);
  462. #endif
  463. #endif // !ADVANCE && !LIN_ADVANCE
  464. if (++step_events_completed >= current_block->step_event_count) {
  465. all_steps_done = true;
  466. break;
  467. }
  468. }
  469. #if ENABLED(LIN_ADVANCE)
  470. if (current_block->use_advance_lead) {
  471. int delta_adv_steps = current_estep_rate[TOOL_E_INDEX] - current_adv_steps[TOOL_E_INDEX];
  472. current_adv_steps[TOOL_E_INDEX] += delta_adv_steps;
  473. #if ENABLED(MIXING_EXTRUDER)
  474. // Mixing extruders apply advance lead proportionally
  475. MIXING_STEPPERS_LOOP(j)
  476. e_steps[j] += delta_adv_steps * current_block->step_event_count / current_block->mix_event_count[j];
  477. #else
  478. // For most extruders, advance the single E stepper
  479. e_steps[TOOL_E_INDEX] += delta_adv_steps;
  480. #endif
  481. }
  482. #endif
  483. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  484. // If we have esteps to execute, fire the next advance_isr "now"
  485. if (e_steps[TOOL_E_INDEX]) OCR0A = TCNT0 + 2;
  486. #endif
  487. // Calculate new timer value
  488. uint16_t timer, step_rate;
  489. if (step_events_completed <= (uint32_t)current_block->accelerate_until) {
  490. MultiU24X32toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
  491. acc_step_rate += current_block->initial_rate;
  492. // upper limit
  493. NOMORE(acc_step_rate, current_block->nominal_rate);
  494. // step_rate to timer interval
  495. timer = calc_timer(acc_step_rate);
  496. OCR1A = timer;
  497. acceleration_time += timer;
  498. #if ENABLED(LIN_ADVANCE)
  499. if (current_block->use_advance_lead) {
  500. #if ENABLED(MIXING_EXTRUDER)
  501. MIXING_STEPPERS_LOOP(j)
  502. current_estep_rate[j] = ((uint32_t)acc_step_rate * current_block->abs_adv_steps_multiplier8 * current_block->step_event_count / current_block->mix_event_count[j]) >> 17;
  503. #else
  504. current_estep_rate[TOOL_E_INDEX] = ((uint32_t)acc_step_rate * current_block->abs_adv_steps_multiplier8) >> 17;
  505. #endif
  506. }
  507. #elif ENABLED(ADVANCE)
  508. advance += advance_rate * step_loops;
  509. //NOLESS(advance, current_block->advance);
  510. long advance_whole = advance >> 8,
  511. advance_factor = advance_whole - old_advance;
  512. // Do E steps + advance steps
  513. #if ENABLED(MIXING_EXTRUDER)
  514. // ...for mixing steppers proportionally
  515. MIXING_STEPPERS_LOOP(j)
  516. e_steps[j] += advance_factor * current_block->step_event_count / current_block->mix_event_count[j];
  517. #else
  518. // ...for the active extruder
  519. e_steps[TOOL_E_INDEX] += advance_factor;
  520. #endif
  521. old_advance = advance_whole;
  522. #endif // ADVANCE or LIN_ADVANCE
  523. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  524. eISR_Rate = (timer >> 3) * step_loops / abs(e_steps[TOOL_E_INDEX]); //>> 3 is divide by 8. Reason: Timer 1 runs at 16/8=2MHz, Timer 0 at 16/64=0.25MHz. ==> 2/0.25=8.
  525. #endif
  526. }
  527. else if (step_events_completed > (uint32_t)current_block->decelerate_after) {
  528. MultiU24X32toH16(step_rate, deceleration_time, current_block->acceleration_rate);
  529. if (step_rate < acc_step_rate) { // Still decelerating?
  530. step_rate = acc_step_rate - step_rate;
  531. NOLESS(step_rate, current_block->final_rate);
  532. }
  533. else
  534. step_rate = current_block->final_rate;
  535. // step_rate to timer interval
  536. timer = calc_timer(step_rate);
  537. OCR1A = timer;
  538. deceleration_time += timer;
  539. #if ENABLED(LIN_ADVANCE)
  540. if (current_block->use_advance_lead) {
  541. #if ENABLED(MIXING_EXTRUDER)
  542. MIXING_STEPPERS_LOOP(j)
  543. current_estep_rate[j] = ((uint32_t)step_rate * current_block->abs_adv_steps_multiplier8 * current_block->step_event_count / current_block->mix_event_count[j]) >> 17;
  544. #else
  545. current_estep_rate[TOOL_E_INDEX] = ((uint32_t)step_rate * current_block->abs_adv_steps_multiplier8) >> 17;
  546. #endif
  547. }
  548. #elif ENABLED(ADVANCE)
  549. advance -= advance_rate * step_loops;
  550. NOLESS(advance, final_advance);
  551. // Do E steps + advance steps
  552. long advance_whole = advance >> 8,
  553. advance_factor = advance_whole - old_advance;
  554. #if ENABLED(MIXING_EXTRUDER)
  555. MIXING_STEPPERS_LOOP(j)
  556. e_steps[j] += advance_factor * current_block->step_event_count / current_block->mix_event_count[j];
  557. #else
  558. e_steps[TOOL_E_INDEX] += advance_factor;
  559. #endif
  560. old_advance = advance_whole;
  561. #endif // ADVANCE or LIN_ADVANCE
  562. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  563. eISR_Rate = (timer >> 3) * step_loops / abs(e_steps[TOOL_E_INDEX]);
  564. #endif
  565. }
  566. else {
  567. #if ENABLED(LIN_ADVANCE)
  568. if (current_block->use_advance_lead)
  569. current_estep_rate[TOOL_E_INDEX] = final_estep_rate;
  570. eISR_Rate = (OCR1A_nominal >> 3) * step_loops_nominal / abs(e_steps[TOOL_E_INDEX]);
  571. #endif
  572. OCR1A = OCR1A_nominal;
  573. // ensure we're running at the correct step rate, even if we just came off an acceleration
  574. step_loops = step_loops_nominal;
  575. }
  576. NOLESS(OCR1A, TCNT1 + 16);
  577. // If current block is finished, reset pointer
  578. if (all_steps_done) {
  579. current_block = NULL;
  580. planner.discard_current_block();
  581. }
  582. }
  583. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  584. // Timer interrupt for E. e_steps is set in the main routine;
  585. // Timer 0 is shared with millies
  586. ISR(TIMER0_COMPA_vect) { Stepper::advance_isr(); }
  587. void Stepper::advance_isr() {
  588. old_OCR0A += eISR_Rate;
  589. OCR0A = old_OCR0A;
  590. #define SET_E_STEP_DIR(INDEX) \
  591. if (e_steps[INDEX]) E## INDEX ##_DIR_WRITE(e_steps[INDEX] < 0 ? INVERT_E## INDEX ##_DIR : !INVERT_E## INDEX ##_DIR)
  592. #define START_E_PULSE(INDEX) \
  593. if (e_steps[INDEX]) E## INDEX ##_STEP_WRITE(!INVERT_E_STEP_PIN)
  594. #define STOP_E_PULSE(INDEX) \
  595. if (e_steps[INDEX]) { \
  596. e_steps[INDEX] < 0 ? ++e_steps[INDEX] : --e_steps[INDEX]; \
  597. E## INDEX ##_STEP_WRITE(INVERT_E_STEP_PIN); \
  598. }
  599. SET_E_STEP_DIR(0);
  600. #if E_STEPPERS > 1
  601. SET_E_STEP_DIR(1);
  602. #if E_STEPPERS > 2
  603. SET_E_STEP_DIR(2);
  604. #if E_STEPPERS > 3
  605. SET_E_STEP_DIR(3);
  606. #endif
  607. #endif
  608. #endif
  609. #define CYCLES_EATEN_BY_E 60
  610. // Step all E steppers that have steps
  611. for (uint8_t i = 0; i < step_loops; i++) {
  612. #if STEP_PULSE_CYCLES > CYCLES_EATEN_BY_E
  613. static uint32_t pulse_start;
  614. pulse_start = TCNT0;
  615. #endif
  616. START_E_PULSE(0);
  617. #if E_STEPPERS > 1
  618. START_E_PULSE(1);
  619. #if E_STEPPERS > 2
  620. START_E_PULSE(2);
  621. #if E_STEPPERS > 3
  622. START_E_PULSE(3);
  623. #endif
  624. #endif
  625. #endif
  626. // For a minimum pulse time wait before stopping pulses
  627. #if STEP_PULSE_CYCLES > CYCLES_EATEN_BY_E
  628. while ((uint32_t)(TCNT0 - pulse_start) < STEP_PULSE_CYCLES - CYCLES_EATEN_BY_E) { /* nada */ }
  629. #endif
  630. STOP_E_PULSE(0);
  631. #if E_STEPPERS > 1
  632. STOP_E_PULSE(1);
  633. #if E_STEPPERS > 2
  634. STOP_E_PULSE(2);
  635. #if E_STEPPERS > 3
  636. STOP_E_PULSE(3);
  637. #endif
  638. #endif
  639. #endif
  640. }
  641. }
  642. #endif // ADVANCE or LIN_ADVANCE
  643. void Stepper::init() {
  644. // Init Digipot Motor Current
  645. #if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM
  646. digipot_init();
  647. #endif
  648. // Init Microstepping Pins
  649. #if HAS_MICROSTEPS
  650. microstep_init();
  651. #endif
  652. // Init TMC Steppers
  653. #if ENABLED(HAVE_TMCDRIVER)
  654. tmc_init();
  655. #endif
  656. // Init L6470 Steppers
  657. #if ENABLED(HAVE_L6470DRIVER)
  658. L6470_init();
  659. #endif
  660. // Init Dir Pins
  661. #if HAS_X_DIR
  662. X_DIR_INIT;
  663. #endif
  664. #if HAS_X2_DIR
  665. X2_DIR_INIT;
  666. #endif
  667. #if HAS_Y_DIR
  668. Y_DIR_INIT;
  669. #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_DIR
  670. Y2_DIR_INIT;
  671. #endif
  672. #endif
  673. #if HAS_Z_DIR
  674. Z_DIR_INIT;
  675. #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_DIR
  676. Z2_DIR_INIT;
  677. #endif
  678. #endif
  679. #if HAS_E0_DIR
  680. E0_DIR_INIT;
  681. #endif
  682. #if HAS_E1_DIR
  683. E1_DIR_INIT;
  684. #endif
  685. #if HAS_E2_DIR
  686. E2_DIR_INIT;
  687. #endif
  688. #if HAS_E3_DIR
  689. E3_DIR_INIT;
  690. #endif
  691. // Init Enable Pins - steppers default to disabled.
  692. #if HAS_X_ENABLE
  693. X_ENABLE_INIT;
  694. if (!X_ENABLE_ON) X_ENABLE_WRITE(HIGH);
  695. #if ENABLED(DUAL_X_CARRIAGE) && HAS_X2_ENABLE
  696. X2_ENABLE_INIT;
  697. if (!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH);
  698. #endif
  699. #endif
  700. #if HAS_Y_ENABLE
  701. Y_ENABLE_INIT;
  702. if (!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH);
  703. #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_ENABLE
  704. Y2_ENABLE_INIT;
  705. if (!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH);
  706. #endif
  707. #endif
  708. #if HAS_Z_ENABLE
  709. Z_ENABLE_INIT;
  710. if (!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH);
  711. #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_ENABLE
  712. Z2_ENABLE_INIT;
  713. if (!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH);
  714. #endif
  715. #endif
  716. #if HAS_E0_ENABLE
  717. E0_ENABLE_INIT;
  718. if (!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH);
  719. #endif
  720. #if HAS_E1_ENABLE
  721. E1_ENABLE_INIT;
  722. if (!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH);
  723. #endif
  724. #if HAS_E2_ENABLE
  725. E2_ENABLE_INIT;
  726. if (!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH);
  727. #endif
  728. #if HAS_E3_ENABLE
  729. E3_ENABLE_INIT;
  730. if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH);
  731. #endif
  732. // Init endstops and pullups
  733. endstops.init();
  734. #define _STEP_INIT(AXIS) AXIS ##_STEP_INIT
  735. #define _WRITE_STEP(AXIS, HIGHLOW) AXIS ##_STEP_WRITE(HIGHLOW)
  736. #define _DISABLE(axis) disable_## axis()
  737. #define AXIS_INIT(axis, AXIS, PIN) \
  738. _STEP_INIT(AXIS); \
  739. _WRITE_STEP(AXIS, _INVERT_STEP_PIN(PIN)); \
  740. _DISABLE(axis)
  741. #define E_AXIS_INIT(NUM) AXIS_INIT(e## NUM, E## NUM, E)
  742. // Init Step Pins
  743. #if HAS_X_STEP
  744. #if ENABLED(X_DUAL_STEPPER_DRIVERS) || ENABLED(DUAL_X_CARRIAGE)
  745. X2_STEP_INIT;
  746. X2_STEP_WRITE(INVERT_X_STEP_PIN);
  747. #endif
  748. AXIS_INIT(x, X, X);
  749. #endif
  750. #if HAS_Y_STEP
  751. #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
  752. Y2_STEP_INIT;
  753. Y2_STEP_WRITE(INVERT_Y_STEP_PIN);
  754. #endif
  755. AXIS_INIT(y, Y, Y);
  756. #endif
  757. #if HAS_Z_STEP
  758. #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
  759. Z2_STEP_INIT;
  760. Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
  761. #endif
  762. AXIS_INIT(z, Z, Z);
  763. #endif
  764. #if HAS_E0_STEP
  765. E_AXIS_INIT(0);
  766. #endif
  767. #if HAS_E1_STEP
  768. E_AXIS_INIT(1);
  769. #endif
  770. #if HAS_E2_STEP
  771. E_AXIS_INIT(2);
  772. #endif
  773. #if HAS_E3_STEP
  774. E_AXIS_INIT(3);
  775. #endif
  776. // waveform generation = 0100 = CTC
  777. CBI(TCCR1B, WGM13);
  778. SBI(TCCR1B, WGM12);
  779. CBI(TCCR1A, WGM11);
  780. CBI(TCCR1A, WGM10);
  781. // output mode = 00 (disconnected)
  782. TCCR1A &= ~(3 << COM1A0);
  783. TCCR1A &= ~(3 << COM1B0);
  784. // Set the timer pre-scaler
  785. // Generally we use a divider of 8, resulting in a 2MHz timer
  786. // frequency on a 16MHz MCU. If you are going to change this, be
  787. // sure to regenerate speed_lookuptable.h with
  788. // create_speed_lookuptable.py
  789. TCCR1B = (TCCR1B & ~(0x07 << CS10)) | (2 << CS10);
  790. // Init Stepper ISR to 122 Hz for quick starting
  791. OCR1A = 0x4000;
  792. TCNT1 = 0;
  793. ENABLE_STEPPER_DRIVER_INTERRUPT();
  794. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  795. for (int i = 0; i < E_STEPPERS; i++) {
  796. e_steps[i] = 0;
  797. #if ENABLED(LIN_ADVANCE)
  798. current_adv_steps[i] = 0;
  799. #endif
  800. }
  801. #if defined(TCCR0A) && defined(WGM01)
  802. CBI(TCCR0A, WGM01);
  803. CBI(TCCR0A, WGM00);
  804. #endif
  805. SBI(TIMSK0, OCIE0A);
  806. #endif // ADVANCE or LIN_ADVANCE
  807. endstops.enable(true); // Start with endstops active. After homing they can be disabled
  808. sei();
  809. set_directions(); // Init directions to last_direction_bits = 0
  810. }
  811. /**
  812. * Block until all buffered steps are executed
  813. */
  814. void Stepper::synchronize() { while (planner.blocks_queued()) idle(); }
  815. /**
  816. * Set the stepper positions directly in steps
  817. *
  818. * The input is based on the typical per-axis XYZ steps.
  819. * For CORE machines XYZ needs to be translated to ABC.
  820. *
  821. * This allows get_axis_position_mm to correctly
  822. * derive the current XYZ position later on.
  823. */
  824. void Stepper::set_position(const long &a, const long &b, const long &c, const long &e) {
  825. synchronize(); // Bad to set stepper counts in the middle of a move
  826. CRITICAL_SECTION_START;
  827. #if ENABLED(COREXY)
  828. // corexy positioning
  829. // these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
  830. count_position[A_AXIS] = a + b;
  831. count_position[B_AXIS] = a - b;
  832. count_position[Z_AXIS] = c;
  833. #elif ENABLED(COREXZ)
  834. // corexz planning
  835. count_position[A_AXIS] = a + c;
  836. count_position[Y_AXIS] = b;
  837. count_position[C_AXIS] = a - c;
  838. #elif ENABLED(COREYZ)
  839. // coreyz planning
  840. count_position[X_AXIS] = a;
  841. count_position[B_AXIS] = b + c;
  842. count_position[C_AXIS] = b - c;
  843. #else
  844. // default non-h-bot planning
  845. count_position[X_AXIS] = a;
  846. count_position[Y_AXIS] = b;
  847. count_position[Z_AXIS] = c;
  848. #endif
  849. count_position[E_AXIS] = e;
  850. CRITICAL_SECTION_END;
  851. }
  852. void Stepper::set_position(const AxisEnum &axis, const long &v) {
  853. CRITICAL_SECTION_START;
  854. count_position[axis] = v;
  855. CRITICAL_SECTION_END;
  856. }
  857. void Stepper::set_e_position(const long &e) {
  858. CRITICAL_SECTION_START;
  859. count_position[E_AXIS] = e;
  860. CRITICAL_SECTION_END;
  861. }
  862. /**
  863. * Get a stepper's position in steps.
  864. */
  865. long Stepper::position(AxisEnum axis) {
  866. CRITICAL_SECTION_START;
  867. long count_pos = count_position[axis];
  868. CRITICAL_SECTION_END;
  869. return count_pos;
  870. }
  871. /**
  872. * Get an axis position according to stepper position(s)
  873. * For CORE machines apply translation from ABC to XYZ.
  874. */
  875. float Stepper::get_axis_position_mm(AxisEnum axis) {
  876. float axis_steps;
  877. #if ENABLED(COREXY) || ENABLED(COREXZ) || ENABLED(COREYZ)
  878. // Requesting one of the "core" axes?
  879. if (axis == CORE_AXIS_1 || axis == CORE_AXIS_2) {
  880. CRITICAL_SECTION_START;
  881. long pos1 = count_position[CORE_AXIS_1],
  882. pos2 = count_position[CORE_AXIS_2];
  883. CRITICAL_SECTION_END;
  884. // ((a1+a2)+(a1-a2))/2 -> (a1+a2+a1-a2)/2 -> (a1+a1)/2 -> a1
  885. // ((a1+a2)-(a1-a2))/2 -> (a1+a2-a1+a2)/2 -> (a2+a2)/2 -> a2
  886. axis_steps = (pos1 + ((axis == CORE_AXIS_1) ? pos2 : -pos2)) * 0.5f;
  887. }
  888. else
  889. axis_steps = position(axis);
  890. #else
  891. axis_steps = position(axis);
  892. #endif
  893. return axis_steps * planner.steps_to_mm[axis];
  894. }
  895. void Stepper::finish_and_disable() {
  896. synchronize();
  897. disable_all_steppers();
  898. }
  899. void Stepper::quick_stop() {
  900. cleaning_buffer_counter = 5000;
  901. DISABLE_STEPPER_DRIVER_INTERRUPT();
  902. while (planner.blocks_queued()) planner.discard_current_block();
  903. current_block = NULL;
  904. ENABLE_STEPPER_DRIVER_INTERRUPT();
  905. }
  906. void Stepper::endstop_triggered(AxisEnum axis) {
  907. #if ENABLED(COREXY) || ENABLED(COREXZ) || ENABLED(COREYZ)
  908. float axis_pos = count_position[axis];
  909. if (axis == CORE_AXIS_1)
  910. axis_pos = (axis_pos + count_position[CORE_AXIS_2]) * 0.5;
  911. else if (axis == CORE_AXIS_2)
  912. axis_pos = (count_position[CORE_AXIS_1] - axis_pos) * 0.5;
  913. endstops_trigsteps[axis] = axis_pos;
  914. #else // !COREXY && !COREXZ && !COREYZ
  915. endstops_trigsteps[axis] = count_position[axis];
  916. #endif // !COREXY && !COREXZ && !COREYZ
  917. kill_current_block();
  918. }
  919. void Stepper::report_positions() {
  920. CRITICAL_SECTION_START;
  921. long xpos = count_position[X_AXIS],
  922. ypos = count_position[Y_AXIS],
  923. zpos = count_position[Z_AXIS];
  924. CRITICAL_SECTION_END;
  925. #if ENABLED(COREXY) || ENABLED(COREXZ) || IS_SCARA
  926. SERIAL_PROTOCOLPGM(MSG_COUNT_A);
  927. #else
  928. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  929. #endif
  930. SERIAL_PROTOCOL(xpos);
  931. #if ENABLED(COREXY) || ENABLED(COREYZ) || IS_SCARA
  932. SERIAL_PROTOCOLPGM(" B:");
  933. #else
  934. SERIAL_PROTOCOLPGM(" Y:");
  935. #endif
  936. SERIAL_PROTOCOL(ypos);
  937. #if ENABLED(COREXZ) || ENABLED(COREYZ)
  938. SERIAL_PROTOCOLPGM(" C:");
  939. #else
  940. SERIAL_PROTOCOLPGM(" Z:");
  941. #endif
  942. SERIAL_PROTOCOL(zpos);
  943. SERIAL_EOL;
  944. }
  945. #if ENABLED(BABYSTEPPING)
  946. #define _ENABLE(axis) enable_## axis()
  947. #define _READ_DIR(AXIS) AXIS ##_DIR_READ
  948. #define _INVERT_DIR(AXIS) INVERT_## AXIS ##_DIR
  949. #define _APPLY_DIR(AXIS, INVERT) AXIS ##_APPLY_DIR(INVERT, true)
  950. #define BABYSTEP_AXIS(axis, AXIS, INVERT) { \
  951. _ENABLE(axis); \
  952. uint8_t old_pin = _READ_DIR(AXIS); \
  953. _APPLY_DIR(AXIS, _INVERT_DIR(AXIS)^direction^INVERT); \
  954. _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS), true); \
  955. delayMicroseconds(2); \
  956. _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS), true); \
  957. _APPLY_DIR(AXIS, old_pin); \
  958. }
  959. // MUST ONLY BE CALLED BY AN ISR,
  960. // No other ISR should ever interrupt this!
  961. void Stepper::babystep(const AxisEnum axis, const bool direction) {
  962. switch (axis) {
  963. case X_AXIS:
  964. BABYSTEP_AXIS(x, X, false);
  965. break;
  966. case Y_AXIS:
  967. BABYSTEP_AXIS(y, Y, false);
  968. break;
  969. case Z_AXIS: {
  970. #if DISABLED(DELTA)
  971. BABYSTEP_AXIS(z, Z, BABYSTEP_INVERT_Z);
  972. #else // DELTA
  973. bool z_direction = direction ^ BABYSTEP_INVERT_Z;
  974. enable_x();
  975. enable_y();
  976. enable_z();
  977. uint8_t old_x_dir_pin = X_DIR_READ,
  978. old_y_dir_pin = Y_DIR_READ,
  979. old_z_dir_pin = Z_DIR_READ;
  980. //setup new step
  981. X_DIR_WRITE(INVERT_X_DIR ^ z_direction);
  982. Y_DIR_WRITE(INVERT_Y_DIR ^ z_direction);
  983. Z_DIR_WRITE(INVERT_Z_DIR ^ z_direction);
  984. //perform step
  985. X_STEP_WRITE(!INVERT_X_STEP_PIN);
  986. Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
  987. Z_STEP_WRITE(!INVERT_Z_STEP_PIN);
  988. delayMicroseconds(2);
  989. X_STEP_WRITE(INVERT_X_STEP_PIN);
  990. Y_STEP_WRITE(INVERT_Y_STEP_PIN);
  991. Z_STEP_WRITE(INVERT_Z_STEP_PIN);
  992. //get old pin state back.
  993. X_DIR_WRITE(old_x_dir_pin);
  994. Y_DIR_WRITE(old_y_dir_pin);
  995. Z_DIR_WRITE(old_z_dir_pin);
  996. #endif
  997. } break;
  998. default: break;
  999. }
  1000. }
  1001. #endif //BABYSTEPPING
  1002. /**
  1003. * Software-controlled Stepper Motor Current
  1004. */
  1005. #if HAS_DIGIPOTSS
  1006. // From Arduino DigitalPotControl example
  1007. void Stepper::digitalPotWrite(int address, int value) {
  1008. WRITE(DIGIPOTSS_PIN, LOW); // take the SS pin low to select the chip
  1009. SPI.transfer(address); // send in the address and value via SPI:
  1010. SPI.transfer(value);
  1011. WRITE(DIGIPOTSS_PIN, HIGH); // take the SS pin high to de-select the chip:
  1012. //delay(10);
  1013. }
  1014. #endif //HAS_DIGIPOTSS
  1015. #if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM
  1016. void Stepper::digipot_init() {
  1017. #if HAS_DIGIPOTSS
  1018. static const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
  1019. SPI.begin();
  1020. SET_OUTPUT(DIGIPOTSS_PIN);
  1021. for (uint8_t i = 0; i < COUNT(digipot_motor_current); i++) {
  1022. //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
  1023. digipot_current(i, digipot_motor_current[i]);
  1024. }
  1025. #elif HAS_MOTOR_CURRENT_PWM
  1026. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  1027. SET_OUTPUT(MOTOR_CURRENT_PWM_XY_PIN);
  1028. digipot_current(0, motor_current_setting[0]);
  1029. #endif
  1030. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  1031. SET_OUTPUT(MOTOR_CURRENT_PWM_Z_PIN);
  1032. digipot_current(1, motor_current_setting[1]);
  1033. #endif
  1034. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  1035. SET_OUTPUT(MOTOR_CURRENT_PWM_E_PIN);
  1036. digipot_current(2, motor_current_setting[2]);
  1037. #endif
  1038. //Set timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
  1039. TCCR5B = (TCCR5B & ~(_BV(CS50) | _BV(CS51) | _BV(CS52))) | _BV(CS50);
  1040. #endif
  1041. }
  1042. void Stepper::digipot_current(uint8_t driver, int current) {
  1043. #if HAS_DIGIPOTSS
  1044. const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
  1045. digitalPotWrite(digipot_ch[driver], current);
  1046. #elif HAS_MOTOR_CURRENT_PWM
  1047. #define _WRITE_CURRENT_PWM(P) analogWrite(P, 255L * current / (MOTOR_CURRENT_PWM_RANGE))
  1048. switch (driver) {
  1049. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  1050. case 0: _WRITE_CURRENT_PWM(MOTOR_CURRENT_PWM_XY_PIN); break;
  1051. #endif
  1052. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  1053. case 1: _WRITE_CURRENT_PWM(MOTOR_CURRENT_PWM_Z_PIN); break;
  1054. #endif
  1055. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  1056. case 2: _WRITE_CURRENT_PWM(MOTOR_CURRENT_PWM_E_PIN); break;
  1057. #endif
  1058. }
  1059. #endif
  1060. }
  1061. #endif
  1062. #if HAS_MICROSTEPS
  1063. /**
  1064. * Software-controlled Microstepping
  1065. */
  1066. void Stepper::microstep_init() {
  1067. SET_OUTPUT(X_MS1_PIN);
  1068. SET_OUTPUT(X_MS2_PIN);
  1069. #if HAS_MICROSTEPS_Y
  1070. SET_OUTPUT(Y_MS1_PIN);
  1071. SET_OUTPUT(Y_MS2_PIN);
  1072. #endif
  1073. #if HAS_MICROSTEPS_Z
  1074. SET_OUTPUT(Z_MS1_PIN);
  1075. SET_OUTPUT(Z_MS2_PIN);
  1076. #endif
  1077. #if HAS_MICROSTEPS_E0
  1078. SET_OUTPUT(E0_MS1_PIN);
  1079. SET_OUTPUT(E0_MS2_PIN);
  1080. #endif
  1081. #if HAS_MICROSTEPS_E1
  1082. SET_OUTPUT(E1_MS1_PIN);
  1083. SET_OUTPUT(E1_MS2_PIN);
  1084. #endif
  1085. static const uint8_t microstep_modes[] = MICROSTEP_MODES;
  1086. for (uint16_t i = 0; i < COUNT(microstep_modes); i++)
  1087. microstep_mode(i, microstep_modes[i]);
  1088. }
  1089. void Stepper::microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2) {
  1090. if (ms1 >= 0) switch (driver) {
  1091. case 0: digitalWrite(X_MS1_PIN, ms1); break;
  1092. #if HAS_MICROSTEPS_Y
  1093. case 1: digitalWrite(Y_MS1_PIN, ms1); break;
  1094. #endif
  1095. #if HAS_MICROSTEPS_Z
  1096. case 2: digitalWrite(Z_MS1_PIN, ms1); break;
  1097. #endif
  1098. #if HAS_MICROSTEPS_E0
  1099. case 3: digitalWrite(E0_MS1_PIN, ms1); break;
  1100. #endif
  1101. #if HAS_MICROSTEPS_E1
  1102. case 4: digitalWrite(E1_MS1_PIN, ms1); break;
  1103. #endif
  1104. }
  1105. if (ms2 >= 0) switch (driver) {
  1106. case 0: digitalWrite(X_MS2_PIN, ms2); break;
  1107. #if HAS_MICROSTEPS_Y
  1108. case 1: digitalWrite(Y_MS2_PIN, ms2); break;
  1109. #endif
  1110. #if HAS_MICROSTEPS_Z
  1111. case 2: digitalWrite(Z_MS2_PIN, ms2); break;
  1112. #endif
  1113. #if HAS_MICROSTEPS_E0
  1114. case 3: digitalWrite(E0_MS2_PIN, ms2); break;
  1115. #endif
  1116. #if HAS_MICROSTEPS_E1
  1117. case 4: digitalWrite(E1_MS2_PIN, ms2); break;
  1118. #endif
  1119. }
  1120. }
  1121. void Stepper::microstep_mode(uint8_t driver, uint8_t stepping_mode) {
  1122. switch (stepping_mode) {
  1123. case 1: microstep_ms(driver, MICROSTEP1); break;
  1124. case 2: microstep_ms(driver, MICROSTEP2); break;
  1125. case 4: microstep_ms(driver, MICROSTEP4); break;
  1126. case 8: microstep_ms(driver, MICROSTEP8); break;
  1127. case 16: microstep_ms(driver, MICROSTEP16); break;
  1128. }
  1129. }
  1130. void Stepper::microstep_readings() {
  1131. SERIAL_PROTOCOLLNPGM("MS1,MS2 Pins");
  1132. SERIAL_PROTOCOLPGM("X: ");
  1133. SERIAL_PROTOCOL(READ(X_MS1_PIN));
  1134. SERIAL_PROTOCOLLN(READ(X_MS2_PIN));
  1135. #if HAS_MICROSTEPS_Y
  1136. SERIAL_PROTOCOLPGM("Y: ");
  1137. SERIAL_PROTOCOL(READ(Y_MS1_PIN));
  1138. SERIAL_PROTOCOLLN(READ(Y_MS2_PIN));
  1139. #endif
  1140. #if HAS_MICROSTEPS_Z
  1141. SERIAL_PROTOCOLPGM("Z: ");
  1142. SERIAL_PROTOCOL(READ(Z_MS1_PIN));
  1143. SERIAL_PROTOCOLLN(READ(Z_MS2_PIN));
  1144. #endif
  1145. #if HAS_MICROSTEPS_E0
  1146. SERIAL_PROTOCOLPGM("E0: ");
  1147. SERIAL_PROTOCOL(READ(E0_MS1_PIN));
  1148. SERIAL_PROTOCOLLN(READ(E0_MS2_PIN));
  1149. #endif
  1150. #if HAS_MICROSTEPS_E1
  1151. SERIAL_PROTOCOLPGM("E1: ");
  1152. SERIAL_PROTOCOL(READ(E1_MS1_PIN));
  1153. SERIAL_PROTOCOLLN(READ(E1_MS2_PIN));
  1154. #endif
  1155. }
  1156. #endif // HAS_MICROSTEPS