My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 316KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * About Marlin
  24. *
  25. * This firmware is a mashup between Sprinter and grbl.
  26. * - https://github.com/kliment/Sprinter
  27. * - https://github.com/simen/grbl/tree
  28. *
  29. * It has preliminary support for Matthew Roberts advance algorithm
  30. * - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  31. */
  32. /**
  33. * -----------------
  34. * G-Codes in Marlin
  35. * -----------------
  36. *
  37. * Helpful G-code references:
  38. * - http://linuxcnc.org/handbook/gcode/g-code.html
  39. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  40. *
  41. * Help to document Marlin's G-codes online:
  42. * - http://reprap.org/wiki/G-code
  43. * - https://github.com/MarlinFirmware/MarlinDocumentation
  44. *
  45. * -----------------
  46. *
  47. * "G" Codes
  48. *
  49. * G0 -> G1
  50. * G1 - Coordinated Movement X Y Z E
  51. * G2 - CW ARC
  52. * G3 - CCW ARC
  53. * G4 - Dwell S<seconds> or P<milliseconds>
  54. * G5 - Cubic B-spline with XYZE destination and IJPQ offsets
  55. * G10 - Retract filament according to settings of M207
  56. * G11 - Retract recover filament according to settings of M208
  57. * G12 - Clean tool
  58. * G20 - Set input units to inches
  59. * G21 - Set input units to millimeters
  60. * G28 - Home one or more axes
  61. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  62. * G30 - Single Z probe, probes bed at X Y location (defaults to current XY location)
  63. * G31 - Dock sled (Z_PROBE_SLED only)
  64. * G32 - Undock sled (Z_PROBE_SLED only)
  65. * G38 - Probe target - similar to G28 except it uses the Z_MIN endstop for all three axes
  66. * G90 - Use Absolute Coordinates
  67. * G91 - Use Relative Coordinates
  68. * G92 - Set current position to coordinates given
  69. *
  70. * "M" Codes
  71. *
  72. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  73. * M1 - Same as M0
  74. * M17 - Enable/Power all stepper motors
  75. * M18 - Disable all stepper motors; same as M84
  76. * M20 - List SD card. (Requires SDSUPPORT)
  77. * M21 - Init SD card. (Requires SDSUPPORT)
  78. * M22 - Release SD card. (Requires SDSUPPORT)
  79. * M23 - Select SD file: "M23 /path/file.gco". (Requires SDSUPPORT)
  80. * M24 - Start/resume SD print. (Requires SDSUPPORT)
  81. * M25 - Pause SD print. (Requires SDSUPPORT)
  82. * M26 - Set SD position in bytes: "M26 S12345". (Requires SDSUPPORT)
  83. * M27 - Report SD print status. (Requires SDSUPPORT)
  84. * M28 - Start SD write: "M28 /path/file.gco". (Requires SDSUPPORT)
  85. * M29 - Stop SD write. (Requires SDSUPPORT)
  86. * M30 - Delete file from SD: "M30 /path/file.gco"
  87. * M31 - Report time since last M109 or SD card start to serial.
  88. * M32 - Select file and start SD print: "M32 [S<bytepos>] !/path/file.gco#". (Requires SDSUPPORT)
  89. * Use P to run other files as sub-programs: "M32 P !filename#"
  90. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  91. * M33 - Get the longname version of a path. (Requires LONG_FILENAME_HOST_SUPPORT)
  92. * M42 - Change pin status via gcode: M42 P<pin> S<value>. LED pin assumed if P is omitted.
  93. * M43 - Monitor pins & report changes - report active pins
  94. * M48 - Measure Z Probe repeatability: M48 P<points> X<pos> Y<pos> V<level> E<engage> L<legs>. (Requires Z_MIN_PROBE_REPEATABILITY_TEST)
  95. * M75 - Start the print job timer.
  96. * M76 - Pause the print job timer.
  97. * M77 - Stop the print job timer.
  98. * M78 - Show statistical information about the print jobs. (Requires PRINTCOUNTER)
  99. * M80 - Turn on Power Supply. (Requires POWER_SUPPLY)
  100. * M81 - Turn off Power Supply. (Requires POWER_SUPPLY)
  101. * M82 - Set E codes absolute (default).
  102. * M83 - Set E codes relative while in Absolute (G90) mode.
  103. * M84 - Disable steppers until next move, or use S<seconds> to specify an idle
  104. * duration after which steppers should turn off. S0 disables the timeout.
  105. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  106. * M92 - Set planner.axis_steps_per_mm for one or more axes.
  107. * M104 - Set extruder target temp.
  108. * M105 - Report current temperatures.
  109. * M106 - Fan on.
  110. * M107 - Fan off.
  111. * M108 - Break out of heating loops (M109, M190, M303). With no controller, breaks out of M0/M1. (Requires EMERGENCY_PARSER)
  112. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  113. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  114. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  115. * M110 - Set the current line number. (Used by host printing)
  116. * M111 - Set debug flags: "M111 S<flagbits>". See flag bits defined in enum.h.
  117. * M112 - Emergency stop.
  118. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages. (Requires HOST_KEEPALIVE_FEATURE)
  119. * M114 - Report current position.
  120. * M115 - Report capabilities. (Extended capabilities requires EXTENDED_CAPABILITIES_REPORT)
  121. * M117 - Display a message on the controller screen. (Requires an LCD)
  122. * M119 - Report endstops status.
  123. * M120 - Enable endstops detection.
  124. * M121 - Disable endstops detection.
  125. * M126 - Solenoid Air Valve Open. (Requires BARICUDA)
  126. * M127 - Solenoid Air Valve Closed. (Requires BARICUDA)
  127. * M128 - EtoP Open. (Requires BARICUDA)
  128. * M129 - EtoP Closed. (Requires BARICUDA)
  129. * M140 - Set bed target temp. S<temp>
  130. * M145 - Set heatup values for materials on the LCD. H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  131. * M149 - Set temperature units. (Requires TEMPERATURE_UNITS_SUPPORT)
  132. * M150 - Set BlinkM Color R<red> U<green> B<blue>. Values 0-255. (Requires BLINKM)
  133. * M155 - Auto-report temperatures with interval of S<seconds>. (Requires AUTO_REPORT_TEMPERATURES)
  134. * M163 - Set a single proportion for a mixing extruder. (Requires MIXING_EXTRUDER)
  135. * M164 - Save the mix as a virtual extruder. (Requires MIXING_EXTRUDER and MIXING_VIRTUAL_TOOLS)
  136. * M165 - Set the proportions for a mixing extruder. Use parameters ABCDHI to set the mixing factors. (Requires MIXING_EXTRUDER)
  137. * M190 - Sxxx Wait for bed current temp to reach target temp. ** Waits only when heating! **
  138. * Rxxx Wait for bed current temp to reach target temp. ** Waits for heating or cooling. **
  139. * M200 - Set filament diameter, D<diameter>, setting E axis units to cubic. (Use S0 to revert to linear units.)
  140. * M201 - Set max acceleration in units/s^2 for print moves: "M201 X<accel> Y<accel> Z<accel> E<accel>"
  141. * M202 - Set max acceleration in units/s^2 for travel moves: "M202 X<accel> Y<accel> Z<accel> E<accel>" ** UNUSED IN MARLIN! **
  142. * M203 - Set maximum feedrate: "M203 X<fr> Y<fr> Z<fr> E<fr>" in units/sec.
  143. * M204 - Set default acceleration in units/sec^2: P<printing> R<extruder_only> T<travel>
  144. * M205 - Set advanced settings. Current units apply:
  145. S<print> T<travel> minimum speeds
  146. B<minimum segment time>
  147. X<max X jerk>, Y<max Y jerk>, Z<max Z jerk>, E<max E jerk>
  148. * M206 - Set additional homing offset.
  149. * M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>. (Requires FWRETRACT)
  150. * M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>. (Requires FWRETRACT)
  151. * M209 - Turn Automatic Retract Detection on/off: S<0|1> (For slicers that don't support G10/11). (Requires FWRETRACT)
  152. Every normal extrude-only move will be classified as retract depending on the direction.
  153. * M211 - Enable, Disable, and/or Report software endstops: S<0|1>
  154. * M218 - Set a tool offset: "M218 T<index> X<offset> Y<offset>". (Requires 2 or more extruders)
  155. * M220 - Set Feedrate Percentage: "M220 S<percent>" (i.e., "FR" on the LCD)
  156. * M221 - Set Flow Percentage: "M221 S<percent>"
  157. * M226 - Wait until a pin is in a given state: "M226 P<pin> S<state>"
  158. * M240 - Trigger a camera to take a photograph. (Requires CHDK or PHOTOGRAPH_PIN)
  159. * M250 - Set LCD contrast: "M250 C<contrast>" (0-63). (Requires LCD support)
  160. * M260 - i2c Send Data (Requires EXPERIMENTAL_I2CBUS)
  161. * M261 - i2c Request Data (Requires EXPERIMENTAL_I2CBUS)
  162. * M280 - Set servo position absolute: "M280 P<index> S<angle|µs>". (Requires servos)
  163. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  164. * M301 - Set PID parameters P I and D. (Requires PIDTEMP)
  165. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>. (Requires PREVENT_COLD_EXTRUSION)
  166. * M303 - PID relay autotune S<temperature> sets the target temperature. Default 150C. (Requires PIDTEMP)
  167. * M304 - Set bed PID parameters P I and D. (Requires PIDTEMPBED)
  168. * M355 - Turn the Case Light on/off and set its brightness. (Requires CASE_LIGHT_PIN)
  169. * M380 - Activate solenoid on active extruder. (Requires EXT_SOLENOID)
  170. * M381 - Disable all solenoids. (Requires EXT_SOLENOID)
  171. * M400 - Finish all moves.
  172. * M401 - Lower Z probe. (Requires a probe)
  173. * M402 - Raise Z probe. (Requires a probe)
  174. * M404 - Display or set the Nominal Filament Width: "W<diameter>". (Requires FILAMENT_WIDTH_SENSOR)
  175. * M405 - Enable Filament Sensor flow control. "M405 D<delay_cm>". (Requires FILAMENT_WIDTH_SENSOR)
  176. * M406 - Disable Filament Sensor flow control. (Requires FILAMENT_WIDTH_SENSOR)
  177. * M407 - Display measured filament diameter in millimeters. (Requires FILAMENT_WIDTH_SENSOR)
  178. * M410 - Quickstop. Abort all planned moves.
  179. * M420 - Enable/Disable Leveling (with current values) S1=enable S0=disable (Requires MESH_BED_LEVELING or ABL)
  180. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<units> Y<units> Z<units> (Requires MESH_BED_LEVELING)
  181. * M428 - Set the home_offset based on the current_position. Nearest edge applies.
  182. * M500 - Store parameters in EEPROM. (Requires EEPROM_SETTINGS)
  183. * M501 - Restore parameters from EEPROM. (Requires EEPROM_SETTINGS)
  184. * M502 - Revert to the default "factory settings". ** Does not write them to EEPROM! **
  185. * M503 - Print the current settings (in memory): "M503 S<verbose>". S0 specifies compact output.
  186. * M540 - Enable/disable SD card abort on endstop hit: "M540 S<state>". (Requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  187. * M600 - Pause for filament change: "M600 X<pos> Y<pos> Z<raise> E<first_retract> L<later_retract>". (Requires FILAMENT_CHANGE_FEATURE)
  188. * M665 - Set delta configurations: "M665 L<diagonal rod> R<delta radius> S<segments/s>" (Requires DELTA)
  189. * M666 - Set delta endstop adjustment. (Requires DELTA)
  190. * M605 - Set dual x-carriage movement mode: "M605 S<mode> [X<x_offset>] [R<temp_offset>]". (Requires DUAL_X_CARRIAGE)
  191. * M851 - Set Z probe's Z offset in current units. (Negative = below the nozzle.)
  192. * M907 - Set digital trimpot motor current using axis codes. (Requires a board with digital trimpots)
  193. * M908 - Control digital trimpot directly. (Requires DAC_STEPPER_CURRENT or DIGIPOTSS_PIN)
  194. * M909 - Print digipot/DAC current value. (Requires DAC_STEPPER_CURRENT)
  195. * M910 - Commit digipot/DAC value to external EEPROM via I2C. (Requires DAC_STEPPER_CURRENT)
  196. * M350 - Set microstepping mode. (Requires digital microstepping pins.)
  197. * M351 - Toggle MS1 MS2 pins directly. (Requires digital microstepping pins.)
  198. *
  199. * ************ SCARA Specific - This can change to suit future G-code regulations
  200. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  201. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  202. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  203. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  204. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  205. * ************* SCARA End ***************
  206. *
  207. * ************ Custom codes - This can change to suit future G-code regulations
  208. * M100 - Watch Free Memory (For Debugging). (Requires M100_FREE_MEMORY_WATCHER)
  209. * M928 - Start SD logging: "M928 filename.gco". Stop with M29. (Requires SDSUPPORT)
  210. * M999 - Restart after being stopped by error
  211. *
  212. * "T" Codes
  213. *
  214. * T0-T3 - Select an extruder (tool) by index: "T<n> F<units/min>"
  215. *
  216. */
  217. #include "Marlin.h"
  218. #include "ultralcd.h"
  219. #include "planner.h"
  220. #include "stepper.h"
  221. #include "endstops.h"
  222. #include "temperature.h"
  223. #include "cardreader.h"
  224. #include "configuration_store.h"
  225. #include "language.h"
  226. #include "pins_arduino.h"
  227. #include "math.h"
  228. #include "nozzle.h"
  229. #include "duration_t.h"
  230. #include "types.h"
  231. #if HAS_ABL
  232. #include "vector_3.h"
  233. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  234. #include "qr_solve.h"
  235. #endif
  236. #elif ENABLED(MESH_BED_LEVELING)
  237. #include "mesh_bed_leveling.h"
  238. #endif
  239. #if ENABLED(BEZIER_CURVE_SUPPORT)
  240. #include "planner_bezier.h"
  241. #endif
  242. #if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
  243. #include "buzzer.h"
  244. #endif
  245. #if ENABLED(USE_WATCHDOG)
  246. #include "watchdog.h"
  247. #endif
  248. #if ENABLED(BLINKM)
  249. #include "blinkm.h"
  250. #include "Wire.h"
  251. #endif
  252. #if HAS_SERVOS
  253. #include "servo.h"
  254. #endif
  255. #if HAS_DIGIPOTSS
  256. #include <SPI.h>
  257. #endif
  258. #if ENABLED(DAC_STEPPER_CURRENT)
  259. #include "stepper_dac.h"
  260. #endif
  261. #if ENABLED(EXPERIMENTAL_I2CBUS)
  262. #include "twibus.h"
  263. #endif
  264. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  265. #include "endstop_interrupts.h"
  266. #endif
  267. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  268. void gcode_M100();
  269. #endif
  270. #if ENABLED(SDSUPPORT)
  271. CardReader card;
  272. #endif
  273. #if ENABLED(EXPERIMENTAL_I2CBUS)
  274. TWIBus i2c;
  275. #endif
  276. #if ENABLED(G38_PROBE_TARGET)
  277. bool G38_move = false,
  278. G38_endstop_hit = false;
  279. #endif
  280. bool Running = true;
  281. uint8_t marlin_debug_flags = DEBUG_NONE;
  282. /**
  283. * Cartesian Current Position
  284. * Used to track the logical position as moves are queued.
  285. * Used by 'line_to_current_position' to do a move after changing it.
  286. * Used by 'SYNC_PLAN_POSITION_KINEMATIC' to update 'planner.position'.
  287. */
  288. float current_position[XYZE] = { 0.0 };
  289. /**
  290. * Cartesian Destination
  291. * A temporary position, usually applied to 'current_position'.
  292. * Set with 'gcode_get_destination' or 'set_destination_to_current'.
  293. * 'line_to_destination' sets 'current_position' to 'destination'.
  294. */
  295. static float destination[XYZE] = { 0.0 };
  296. /**
  297. * axis_homed
  298. * Flags that each linear axis was homed.
  299. * XYZ on cartesian, ABC on delta, ABZ on SCARA.
  300. *
  301. * axis_known_position
  302. * Flags that the position is known in each linear axis. Set when homed.
  303. * Cleared whenever a stepper powers off, potentially losing its position.
  304. */
  305. bool axis_homed[XYZ] = { false }, axis_known_position[XYZ] = { false };
  306. /**
  307. * GCode line number handling. Hosts may opt to include line numbers when
  308. * sending commands to Marlin, and lines will be checked for sequentiality.
  309. * M110 S<int> sets the current line number.
  310. */
  311. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  312. /**
  313. * GCode Command Queue
  314. * A simple ring buffer of BUFSIZE command strings.
  315. *
  316. * Commands are copied into this buffer by the command injectors
  317. * (immediate, serial, sd card) and they are processed sequentially by
  318. * the main loop. The process_next_command function parses the next
  319. * command and hands off execution to individual handler functions.
  320. */
  321. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  322. static uint8_t cmd_queue_index_r = 0, // Ring buffer read position
  323. cmd_queue_index_w = 0, // Ring buffer write position
  324. commands_in_queue = 0; // Count of commands in the queue
  325. /**
  326. * Current GCode Command
  327. * When a GCode handler is running, these will be set
  328. */
  329. static char *current_command, // The command currently being executed
  330. *current_command_args, // The address where arguments begin
  331. *seen_pointer; // Set by code_seen(), used by the code_value functions
  332. /**
  333. * Next Injected Command pointer. NULL if no commands are being injected.
  334. * Used by Marlin internally to ensure that commands initiated from within
  335. * are enqueued ahead of any pending serial or sd card commands.
  336. */
  337. static const char *injected_commands_P = NULL;
  338. #if ENABLED(INCH_MODE_SUPPORT)
  339. float linear_unit_factor = 1.0, volumetric_unit_factor = 1.0;
  340. #endif
  341. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  342. TempUnit input_temp_units = TEMPUNIT_C;
  343. #endif
  344. /**
  345. * Feed rates are often configured with mm/m
  346. * but the planner and stepper like mm/s units.
  347. */
  348. float constexpr homing_feedrate_mm_s[] = {
  349. #if ENABLED(DELTA)
  350. MMM_TO_MMS(HOMING_FEEDRATE_Z), MMM_TO_MMS(HOMING_FEEDRATE_Z),
  351. #else
  352. MMM_TO_MMS(HOMING_FEEDRATE_XY), MMM_TO_MMS(HOMING_FEEDRATE_XY),
  353. #endif
  354. MMM_TO_MMS(HOMING_FEEDRATE_Z), 0
  355. };
  356. static float feedrate_mm_s = MMM_TO_MMS(1500.0), saved_feedrate_mm_s;
  357. int feedrate_percentage = 100, saved_feedrate_percentage,
  358. flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  359. bool axis_relative_modes[] = AXIS_RELATIVE_MODES,
  360. volumetric_enabled = false;
  361. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA),
  362. volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  363. // The distance that XYZ has been offset by G92. Reset by G28.
  364. float position_shift[XYZ] = { 0 };
  365. // This offset is added to the configured home position.
  366. // Set by M206, M428, or menu item. Saved to EEPROM.
  367. float home_offset[XYZ] = { 0 };
  368. // Software Endstops are based on the configured limits.
  369. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  370. bool soft_endstops_enabled = true;
  371. #endif
  372. float soft_endstop_min[XYZ] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS },
  373. soft_endstop_max[XYZ] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  374. #if FAN_COUNT > 0
  375. int fanSpeeds[FAN_COUNT] = { 0 };
  376. #endif
  377. // The active extruder (tool). Set with T<extruder> command.
  378. uint8_t active_extruder = 0;
  379. // Relative Mode. Enable with G91, disable with G90.
  380. static bool relative_mode = false;
  381. // For M109 and M190, this flag may be cleared (by M108) to exit the wait loop
  382. volatile bool wait_for_heatup = true;
  383. // For M0/M1, this flag may be cleared (by M108) to exit the wait-for-user loop
  384. #if ENABLED(EMERGENCY_PARSER) || ENABLED(ULTIPANEL)
  385. volatile bool wait_for_user = false;
  386. #endif
  387. const char errormagic[] PROGMEM = "Error:";
  388. const char echomagic[] PROGMEM = "echo:";
  389. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  390. // Number of characters read in the current line of serial input
  391. static int serial_count = 0;
  392. // Inactivity shutdown
  393. millis_t previous_cmd_ms = 0;
  394. static millis_t max_inactive_time = 0;
  395. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
  396. // Print Job Timer
  397. #if ENABLED(PRINTCOUNTER)
  398. PrintCounter print_job_timer = PrintCounter();
  399. #else
  400. Stopwatch print_job_timer = Stopwatch();
  401. #endif
  402. // Buzzer - I2C on the LCD or a BEEPER_PIN
  403. #if ENABLED(LCD_USE_I2C_BUZZER)
  404. #define BUZZ(d,f) lcd_buzz(d, f)
  405. #elif PIN_EXISTS(BEEPER)
  406. Buzzer buzzer;
  407. #define BUZZ(d,f) buzzer.tone(d, f)
  408. #else
  409. #define BUZZ(d,f) NOOP
  410. #endif
  411. static uint8_t target_extruder;
  412. #if HAS_BED_PROBE
  413. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  414. #endif
  415. #define PLANNER_XY_FEEDRATE() (min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS]))
  416. #if HAS_ABL
  417. float xy_probe_feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  418. #define XY_PROBE_FEEDRATE_MM_S xy_probe_feedrate_mm_s
  419. #elif defined(XY_PROBE_SPEED)
  420. #define XY_PROBE_FEEDRATE_MM_S MMM_TO_MMS(XY_PROBE_SPEED)
  421. #else
  422. #define XY_PROBE_FEEDRATE_MM_S PLANNER_XY_FEEDRATE()
  423. #endif
  424. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  425. #if ENABLED(DELTA)
  426. #define ADJUST_DELTA(V) \
  427. if (planner.abl_enabled) { \
  428. const float zadj = bilinear_z_offset(V); \
  429. delta[A_AXIS] += zadj; \
  430. delta[B_AXIS] += zadj; \
  431. delta[C_AXIS] += zadj; \
  432. }
  433. #else
  434. #define ADJUST_DELTA(V) if (planner.abl_enabled) { delta[Z_AXIS] += bilinear_z_offset(V); }
  435. #endif
  436. #elif IS_KINEMATIC
  437. #define ADJUST_DELTA(V) NOOP
  438. #endif
  439. #if ENABLED(Z_DUAL_ENDSTOPS)
  440. float z_endstop_adj = 0;
  441. #endif
  442. // Extruder offsets
  443. #if HOTENDS > 1
  444. float hotend_offset[XYZ][HOTENDS];
  445. #endif
  446. #if HAS_Z_SERVO_ENDSTOP
  447. const int z_servo_angle[2] = Z_SERVO_ANGLES;
  448. #endif
  449. #if ENABLED(BARICUDA)
  450. int baricuda_valve_pressure = 0;
  451. int baricuda_e_to_p_pressure = 0;
  452. #endif
  453. #if ENABLED(FWRETRACT)
  454. bool autoretract_enabled = false;
  455. bool retracted[EXTRUDERS] = { false };
  456. bool retracted_swap[EXTRUDERS] = { false };
  457. float retract_length = RETRACT_LENGTH;
  458. float retract_length_swap = RETRACT_LENGTH_SWAP;
  459. float retract_feedrate_mm_s = RETRACT_FEEDRATE;
  460. float retract_zlift = RETRACT_ZLIFT;
  461. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  462. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  463. float retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE;
  464. #endif // FWRETRACT
  465. #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
  466. bool powersupply =
  467. #if ENABLED(PS_DEFAULT_OFF)
  468. false
  469. #else
  470. true
  471. #endif
  472. ;
  473. #endif
  474. #if ENABLED(ULTIPANEL) && HAS_CASE_LIGHT
  475. bool case_light_on =
  476. #if ENABLED(CASE_LIGHT_DEFAULT_ON)
  477. true
  478. #else
  479. false
  480. #endif
  481. ;
  482. #endif
  483. #if ENABLED(DELTA)
  484. #define SIN_60 0.8660254037844386
  485. #define COS_60 0.5
  486. float delta[ABC],
  487. endstop_adj[ABC] = { 0 };
  488. // these are the default values, can be overriden with M665
  489. float delta_radius = DELTA_RADIUS,
  490. delta_tower1_x = -SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1), // front left tower
  491. delta_tower1_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1),
  492. delta_tower2_x = SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2), // front right tower
  493. delta_tower2_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2),
  494. delta_tower3_x = 0, // back middle tower
  495. delta_tower3_y = (delta_radius + DELTA_RADIUS_TRIM_TOWER_3),
  496. delta_diagonal_rod = DELTA_DIAGONAL_ROD,
  497. delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1,
  498. delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2,
  499. delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3,
  500. delta_diagonal_rod_2_tower_1 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_1),
  501. delta_diagonal_rod_2_tower_2 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_2),
  502. delta_diagonal_rod_2_tower_3 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_3),
  503. delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND,
  504. delta_clip_start_height = Z_MAX_POS;
  505. float delta_safe_distance_from_top();
  506. #else
  507. static bool home_all_axis = true;
  508. #endif
  509. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  510. int bilinear_grid_spacing[2] = { 0 }, bilinear_start[2] = { 0 };
  511. float bed_level_grid[ABL_GRID_POINTS_X][ABL_GRID_POINTS_Y];
  512. #endif
  513. #if IS_SCARA
  514. // Float constants for SCARA calculations
  515. const float L1 = SCARA_LINKAGE_1, L2 = SCARA_LINKAGE_2,
  516. L1_2 = sq(float(L1)), L1_2_2 = 2.0 * L1_2,
  517. L2_2 = sq(float(L2));
  518. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND,
  519. delta[ABC];
  520. #endif
  521. float cartes[XYZ] = { 0 };
  522. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  523. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  524. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA, // Nominal filament width. Change with M404
  525. filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; // Measured filament diameter
  526. int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; // Ring buffer to delayed measurement. Store extruder factor after subtracting 100
  527. int filwidth_delay_index[2] = { 0, -1 }; // Indexes into ring buffer
  528. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  529. #endif
  530. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  531. static bool filament_ran_out = false;
  532. #endif
  533. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  534. FilamentChangeMenuResponse filament_change_menu_response;
  535. #endif
  536. #if ENABLED(MIXING_EXTRUDER)
  537. float mixing_factor[MIXING_STEPPERS]; // Reciprocal of mix proportion. 0.0 = off, otherwise >= 1.0.
  538. #if MIXING_VIRTUAL_TOOLS > 1
  539. float mixing_virtual_tool_mix[MIXING_VIRTUAL_TOOLS][MIXING_STEPPERS];
  540. #endif
  541. #endif
  542. static bool send_ok[BUFSIZE];
  543. #if HAS_SERVOS
  544. Servo servo[NUM_SERVOS];
  545. #define MOVE_SERVO(I, P) servo[I].move(P)
  546. #if HAS_Z_SERVO_ENDSTOP
  547. #define DEPLOY_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[0])
  548. #define STOW_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[1])
  549. #endif
  550. #endif
  551. #ifdef CHDK
  552. millis_t chdkHigh = 0;
  553. boolean chdkActive = false;
  554. #endif
  555. #if ENABLED(PID_EXTRUSION_SCALING)
  556. int lpq_len = 20;
  557. #endif
  558. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  559. static MarlinBusyState busy_state = NOT_BUSY;
  560. static millis_t next_busy_signal_ms = 0;
  561. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  562. #define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0)
  563. #else
  564. #define host_keepalive() ;
  565. #define KEEPALIVE_STATE(n) ;
  566. #endif // HOST_KEEPALIVE_FEATURE
  567. #define DEFINE_PGM_READ_ANY(type, reader) \
  568. static inline type pgm_read_any(const type *p) \
  569. { return pgm_read_##reader##_near(p); }
  570. DEFINE_PGM_READ_ANY(float, float)
  571. DEFINE_PGM_READ_ANY(signed char, byte)
  572. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  573. static const PROGMEM type array##_P[XYZ] = \
  574. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  575. static inline type array(int axis) \
  576. { return pgm_read_any(&array##_P[axis]); }
  577. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS)
  578. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS)
  579. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS)
  580. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH)
  581. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM)
  582. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR)
  583. /**
  584. * ***************************************************************************
  585. * ******************************** FUNCTIONS ********************************
  586. * ***************************************************************************
  587. */
  588. void stop();
  589. void get_available_commands();
  590. void process_next_command();
  591. void prepare_move_to_destination();
  592. void get_cartesian_from_steppers();
  593. void set_current_from_steppers_for_axis(const AxisEnum axis);
  594. #if ENABLED(ARC_SUPPORT)
  595. void plan_arc(float target[NUM_AXIS], float* offset, uint8_t clockwise);
  596. #endif
  597. #if ENABLED(BEZIER_CURVE_SUPPORT)
  598. void plan_cubic_move(const float offset[4]);
  599. #endif
  600. void serial_echopair_P(const char* s_P, const char *v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  601. void serial_echopair_P(const char* s_P, char v) { serialprintPGM(s_P); SERIAL_CHAR(v); }
  602. void serial_echopair_P(const char* s_P, int v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  603. void serial_echopair_P(const char* s_P, long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  604. void serial_echopair_P(const char* s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  605. void serial_echopair_P(const char* s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  606. void serial_echopair_P(const char* s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  607. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s=0.0, bool no_move=false);
  608. static void report_current_position();
  609. #if ENABLED(DEBUG_LEVELING_FEATURE)
  610. void print_xyz(const char* prefix, const char* suffix, const float x, const float y, const float z) {
  611. serialprintPGM(prefix);
  612. SERIAL_ECHOPAIR("(", x);
  613. SERIAL_ECHOPAIR(", ", y);
  614. SERIAL_ECHOPAIR(", ", z);
  615. SERIAL_ECHOPGM(")");
  616. if (suffix) serialprintPGM(suffix);
  617. else SERIAL_EOL;
  618. }
  619. void print_xyz(const char* prefix, const char* suffix, const float xyz[]) {
  620. print_xyz(prefix, suffix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  621. }
  622. #if HAS_ABL
  623. void print_xyz(const char* prefix, const char* suffix, const vector_3 &xyz) {
  624. print_xyz(prefix, suffix, xyz.x, xyz.y, xyz.z);
  625. }
  626. #endif
  627. #define DEBUG_POS(SUFFIX,VAR) do { \
  628. print_xyz(PSTR(" " STRINGIFY(VAR) "="), PSTR(" : " SUFFIX "\n"), VAR); } while(0)
  629. #endif
  630. /**
  631. * sync_plan_position
  632. *
  633. * Set the planner/stepper positions directly from current_position with
  634. * no kinematic translation. Used for homing axes and cartesian/core syncing.
  635. */
  636. inline void sync_plan_position() {
  637. #if ENABLED(DEBUG_LEVELING_FEATURE)
  638. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  639. #endif
  640. planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  641. }
  642. inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
  643. #if IS_KINEMATIC
  644. inline void sync_plan_position_kinematic() {
  645. #if ENABLED(DEBUG_LEVELING_FEATURE)
  646. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_kinematic", current_position);
  647. #endif
  648. planner.set_position_mm_kinematic(current_position);
  649. }
  650. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_kinematic()
  651. #else
  652. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position()
  653. #endif
  654. #if ENABLED(SDSUPPORT)
  655. #include "SdFatUtil.h"
  656. int freeMemory() { return SdFatUtil::FreeRam(); }
  657. #else
  658. extern "C" {
  659. extern unsigned int __bss_end;
  660. extern unsigned int __heap_start;
  661. extern void* __brkval;
  662. int freeMemory() {
  663. int free_memory;
  664. if ((int)__brkval == 0)
  665. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  666. else
  667. free_memory = ((int)&free_memory) - ((int)__brkval);
  668. return free_memory;
  669. }
  670. }
  671. #endif //!SDSUPPORT
  672. #if ENABLED(DIGIPOT_I2C)
  673. extern void digipot_i2c_set_current(int channel, float current);
  674. extern void digipot_i2c_init();
  675. #endif
  676. /**
  677. * Inject the next "immediate" command, when possible.
  678. * Return true if any immediate commands remain to inject.
  679. */
  680. static bool drain_injected_commands_P() {
  681. if (injected_commands_P != NULL) {
  682. size_t i = 0;
  683. char c, cmd[30];
  684. strncpy_P(cmd, injected_commands_P, sizeof(cmd) - 1);
  685. cmd[sizeof(cmd) - 1] = '\0';
  686. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  687. cmd[i] = '\0';
  688. if (enqueue_and_echo_command(cmd)) { // success?
  689. if (c) // newline char?
  690. injected_commands_P += i + 1; // advance to the next command
  691. else
  692. injected_commands_P = NULL; // nul char? no more commands
  693. }
  694. }
  695. return (injected_commands_P != NULL); // return whether any more remain
  696. }
  697. /**
  698. * Record one or many commands to run from program memory.
  699. * Aborts the current queue, if any.
  700. * Note: drain_injected_commands_P() must be called repeatedly to drain the commands afterwards
  701. */
  702. void enqueue_and_echo_commands_P(const char* pgcode) {
  703. injected_commands_P = pgcode;
  704. drain_injected_commands_P(); // first command executed asap (when possible)
  705. }
  706. void clear_command_queue() {
  707. cmd_queue_index_r = cmd_queue_index_w;
  708. commands_in_queue = 0;
  709. }
  710. /**
  711. * Once a new command is in the ring buffer, call this to commit it
  712. */
  713. inline void _commit_command(bool say_ok) {
  714. send_ok[cmd_queue_index_w] = say_ok;
  715. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  716. commands_in_queue++;
  717. }
  718. /**
  719. * Copy a command directly into the main command buffer, from RAM.
  720. * Returns true if successfully adds the command
  721. */
  722. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  723. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  724. strcpy(command_queue[cmd_queue_index_w], cmd);
  725. _commit_command(say_ok);
  726. return true;
  727. }
  728. void enqueue_and_echo_command_now(const char* cmd) {
  729. while (!enqueue_and_echo_command(cmd)) idle();
  730. }
  731. /**
  732. * Enqueue with Serial Echo
  733. */
  734. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  735. if (_enqueuecommand(cmd, say_ok)) {
  736. SERIAL_ECHO_START;
  737. SERIAL_ECHOPAIR(MSG_Enqueueing, cmd);
  738. SERIAL_CHAR('"');
  739. SERIAL_EOL;
  740. return true;
  741. }
  742. return false;
  743. }
  744. void setup_killpin() {
  745. #if HAS_KILL
  746. SET_INPUT(KILL_PIN);
  747. WRITE(KILL_PIN, HIGH);
  748. #endif
  749. }
  750. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  751. void setup_filrunoutpin() {
  752. SET_INPUT(FIL_RUNOUT_PIN);
  753. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  754. WRITE(FIL_RUNOUT_PIN, HIGH);
  755. #endif
  756. }
  757. #endif
  758. // Set home pin
  759. void setup_homepin(void) {
  760. #if HAS_HOME
  761. SET_INPUT(HOME_PIN);
  762. WRITE(HOME_PIN, HIGH);
  763. #endif
  764. }
  765. void setup_powerhold() {
  766. #if HAS_SUICIDE
  767. OUT_WRITE(SUICIDE_PIN, HIGH);
  768. #endif
  769. #if HAS_POWER_SWITCH
  770. #if ENABLED(PS_DEFAULT_OFF)
  771. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  772. #else
  773. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  774. #endif
  775. #endif
  776. }
  777. void suicide() {
  778. #if HAS_SUICIDE
  779. OUT_WRITE(SUICIDE_PIN, LOW);
  780. #endif
  781. }
  782. void servo_init() {
  783. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  784. servo[0].attach(SERVO0_PIN);
  785. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  786. #endif
  787. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  788. servo[1].attach(SERVO1_PIN);
  789. servo[1].detach();
  790. #endif
  791. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  792. servo[2].attach(SERVO2_PIN);
  793. servo[2].detach();
  794. #endif
  795. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  796. servo[3].attach(SERVO3_PIN);
  797. servo[3].detach();
  798. #endif
  799. #if HAS_Z_SERVO_ENDSTOP
  800. /**
  801. * Set position of Z Servo Endstop
  802. *
  803. * The servo might be deployed and positioned too low to stow
  804. * when starting up the machine or rebooting the board.
  805. * There's no way to know where the nozzle is positioned until
  806. * homing has been done - no homing with z-probe without init!
  807. *
  808. */
  809. STOW_Z_SERVO();
  810. #endif
  811. }
  812. /**
  813. * Stepper Reset (RigidBoard, et.al.)
  814. */
  815. #if HAS_STEPPER_RESET
  816. void disableStepperDrivers() {
  817. OUT_WRITE(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  818. }
  819. void enableStepperDrivers() { SET_INPUT(STEPPER_RESET_PIN); } // set to input, which allows it to be pulled high by pullups
  820. #endif
  821. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  822. void i2c_on_receive(int bytes) { // just echo all bytes received to serial
  823. i2c.receive(bytes);
  824. }
  825. void i2c_on_request() { // just send dummy data for now
  826. i2c.reply("Hello World!\n");
  827. }
  828. #endif
  829. void gcode_line_error(const char* err, bool doFlush = true) {
  830. SERIAL_ERROR_START;
  831. serialprintPGM(err);
  832. SERIAL_ERRORLN(gcode_LastN);
  833. //Serial.println(gcode_N);
  834. if (doFlush) FlushSerialRequestResend();
  835. serial_count = 0;
  836. }
  837. inline void get_serial_commands() {
  838. static char serial_line_buffer[MAX_CMD_SIZE];
  839. static boolean serial_comment_mode = false;
  840. // If the command buffer is empty for too long,
  841. // send "wait" to indicate Marlin is still waiting.
  842. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  843. static millis_t last_command_time = 0;
  844. millis_t ms = millis();
  845. if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
  846. SERIAL_ECHOLNPGM(MSG_WAIT);
  847. last_command_time = ms;
  848. }
  849. #endif
  850. /**
  851. * Loop while serial characters are incoming and the queue is not full
  852. */
  853. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  854. char serial_char = MYSERIAL.read();
  855. /**
  856. * If the character ends the line
  857. */
  858. if (serial_char == '\n' || serial_char == '\r') {
  859. serial_comment_mode = false; // end of line == end of comment
  860. if (!serial_count) continue; // skip empty lines
  861. serial_line_buffer[serial_count] = 0; // terminate string
  862. serial_count = 0; //reset buffer
  863. char* command = serial_line_buffer;
  864. while (*command == ' ') command++; // skip any leading spaces
  865. char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  866. char* apos = strchr(command, '*');
  867. if (npos) {
  868. boolean M110 = strstr_P(command, PSTR("M110")) != NULL;
  869. if (M110) {
  870. char* n2pos = strchr(command + 4, 'N');
  871. if (n2pos) npos = n2pos;
  872. }
  873. gcode_N = strtol(npos + 1, NULL, 10);
  874. if (gcode_N != gcode_LastN + 1 && !M110) {
  875. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  876. return;
  877. }
  878. if (apos) {
  879. byte checksum = 0, count = 0;
  880. while (command[count] != '*') checksum ^= command[count++];
  881. if (strtol(apos + 1, NULL, 10) != checksum) {
  882. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  883. return;
  884. }
  885. // if no errors, continue parsing
  886. }
  887. else {
  888. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  889. return;
  890. }
  891. gcode_LastN = gcode_N;
  892. // if no errors, continue parsing
  893. }
  894. else if (apos) { // No '*' without 'N'
  895. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  896. return;
  897. }
  898. // Movement commands alert when stopped
  899. if (IsStopped()) {
  900. char* gpos = strchr(command, 'G');
  901. if (gpos) {
  902. int codenum = strtol(gpos + 1, NULL, 10);
  903. switch (codenum) {
  904. case 0:
  905. case 1:
  906. case 2:
  907. case 3:
  908. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  909. LCD_MESSAGEPGM(MSG_STOPPED);
  910. break;
  911. }
  912. }
  913. }
  914. #if DISABLED(EMERGENCY_PARSER)
  915. // If command was e-stop process now
  916. if (strcmp(command, "M108") == 0) {
  917. wait_for_heatup = false;
  918. #if ENABLED(ULTIPANEL)
  919. wait_for_user = false;
  920. #endif
  921. }
  922. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  923. if (strcmp(command, "M410") == 0) { quickstop_stepper(); }
  924. #endif
  925. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  926. last_command_time = ms;
  927. #endif
  928. // Add the command to the queue
  929. _enqueuecommand(serial_line_buffer, true);
  930. }
  931. else if (serial_count >= MAX_CMD_SIZE - 1) {
  932. // Keep fetching, but ignore normal characters beyond the max length
  933. // The command will be injected when EOL is reached
  934. }
  935. else if (serial_char == '\\') { // Handle escapes
  936. if (MYSERIAL.available() > 0) {
  937. // if we have one more character, copy it over
  938. serial_char = MYSERIAL.read();
  939. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  940. }
  941. // otherwise do nothing
  942. }
  943. else { // it's not a newline, carriage return or escape char
  944. if (serial_char == ';') serial_comment_mode = true;
  945. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  946. }
  947. } // queue has space, serial has data
  948. }
  949. #if ENABLED(SDSUPPORT)
  950. inline void get_sdcard_commands() {
  951. static bool stop_buffering = false,
  952. sd_comment_mode = false;
  953. if (!card.sdprinting) return;
  954. /**
  955. * '#' stops reading from SD to the buffer prematurely, so procedural
  956. * macro calls are possible. If it occurs, stop_buffering is triggered
  957. * and the buffer is run dry; this character _can_ occur in serial com
  958. * due to checksums, however, no checksums are used in SD printing.
  959. */
  960. if (commands_in_queue == 0) stop_buffering = false;
  961. uint16_t sd_count = 0;
  962. bool card_eof = card.eof();
  963. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  964. int16_t n = card.get();
  965. char sd_char = (char)n;
  966. card_eof = card.eof();
  967. if (card_eof || n == -1
  968. || sd_char == '\n' || sd_char == '\r'
  969. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  970. ) {
  971. if (card_eof) {
  972. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  973. card.printingHasFinished();
  974. card.checkautostart(true);
  975. }
  976. else if (n == -1) {
  977. SERIAL_ERROR_START;
  978. SERIAL_ECHOLNPGM(MSG_SD_ERR_READ);
  979. }
  980. if (sd_char == '#') stop_buffering = true;
  981. sd_comment_mode = false; //for new command
  982. if (!sd_count) continue; //skip empty lines
  983. command_queue[cmd_queue_index_w][sd_count] = '\0'; //terminate string
  984. sd_count = 0; //clear buffer
  985. _commit_command(false);
  986. }
  987. else if (sd_count >= MAX_CMD_SIZE - 1) {
  988. /**
  989. * Keep fetching, but ignore normal characters beyond the max length
  990. * The command will be injected when EOL is reached
  991. */
  992. }
  993. else {
  994. if (sd_char == ';') sd_comment_mode = true;
  995. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  996. }
  997. }
  998. }
  999. #endif // SDSUPPORT
  1000. /**
  1001. * Add to the circular command queue the next command from:
  1002. * - The command-injection queue (injected_commands_P)
  1003. * - The active serial input (usually USB)
  1004. * - The SD card file being actively printed
  1005. */
  1006. void get_available_commands() {
  1007. // if any immediate commands remain, don't get other commands yet
  1008. if (drain_injected_commands_P()) return;
  1009. get_serial_commands();
  1010. #if ENABLED(SDSUPPORT)
  1011. get_sdcard_commands();
  1012. #endif
  1013. }
  1014. inline bool code_has_value() {
  1015. int i = 1;
  1016. char c = seen_pointer[i];
  1017. while (c == ' ') c = seen_pointer[++i];
  1018. if (c == '-' || c == '+') c = seen_pointer[++i];
  1019. if (c == '.') c = seen_pointer[++i];
  1020. return NUMERIC(c);
  1021. }
  1022. inline float code_value_float() {
  1023. float ret;
  1024. char* e = strchr(seen_pointer, 'E');
  1025. if (e) {
  1026. *e = 0;
  1027. ret = strtod(seen_pointer + 1, NULL);
  1028. *e = 'E';
  1029. }
  1030. else
  1031. ret = strtod(seen_pointer + 1, NULL);
  1032. return ret;
  1033. }
  1034. inline unsigned long code_value_ulong() { return strtoul(seen_pointer + 1, NULL, 10); }
  1035. inline long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  1036. inline int code_value_int() { return (int)strtol(seen_pointer + 1, NULL, 10); }
  1037. inline uint16_t code_value_ushort() { return (uint16_t)strtoul(seen_pointer + 1, NULL, 10); }
  1038. inline uint8_t code_value_byte() { return (uint8_t)(constrain(strtol(seen_pointer + 1, NULL, 10), 0, 255)); }
  1039. inline bool code_value_bool() { return !code_has_value() || code_value_byte() > 0; }
  1040. #if ENABLED(INCH_MODE_SUPPORT)
  1041. inline void set_input_linear_units(LinearUnit units) {
  1042. switch (units) {
  1043. case LINEARUNIT_INCH:
  1044. linear_unit_factor = 25.4;
  1045. break;
  1046. case LINEARUNIT_MM:
  1047. default:
  1048. linear_unit_factor = 1.0;
  1049. break;
  1050. }
  1051. volumetric_unit_factor = pow(linear_unit_factor, 3.0);
  1052. }
  1053. inline float axis_unit_factor(int axis) {
  1054. return (axis == E_AXIS && volumetric_enabled ? volumetric_unit_factor : linear_unit_factor);
  1055. }
  1056. inline float code_value_linear_units() { return code_value_float() * linear_unit_factor; }
  1057. inline float code_value_axis_units(int axis) { return code_value_float() * axis_unit_factor(axis); }
  1058. inline float code_value_per_axis_unit(int axis) { return code_value_float() / axis_unit_factor(axis); }
  1059. #else
  1060. inline float code_value_linear_units() { return code_value_float(); }
  1061. inline float code_value_axis_units(int axis) { UNUSED(axis); return code_value_float(); }
  1062. inline float code_value_per_axis_unit(int axis) { UNUSED(axis); return code_value_float(); }
  1063. #endif
  1064. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  1065. inline void set_input_temp_units(TempUnit units) { input_temp_units = units; }
  1066. float code_value_temp_abs() {
  1067. switch (input_temp_units) {
  1068. case TEMPUNIT_C:
  1069. return code_value_float();
  1070. case TEMPUNIT_F:
  1071. return (code_value_float() - 32) * 0.5555555556;
  1072. case TEMPUNIT_K:
  1073. return code_value_float() - 272.15;
  1074. default:
  1075. return code_value_float();
  1076. }
  1077. }
  1078. float code_value_temp_diff() {
  1079. switch (input_temp_units) {
  1080. case TEMPUNIT_C:
  1081. case TEMPUNIT_K:
  1082. return code_value_float();
  1083. case TEMPUNIT_F:
  1084. return code_value_float() * 0.5555555556;
  1085. default:
  1086. return code_value_float();
  1087. }
  1088. }
  1089. #else
  1090. float code_value_temp_abs() { return code_value_float(); }
  1091. float code_value_temp_diff() { return code_value_float(); }
  1092. #endif
  1093. FORCE_INLINE millis_t code_value_millis() { return code_value_ulong(); }
  1094. inline millis_t code_value_millis_from_seconds() { return code_value_float() * 1000; }
  1095. bool code_seen(char code) {
  1096. seen_pointer = strchr(current_command_args, code);
  1097. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  1098. }
  1099. /**
  1100. * Set target_extruder from the T parameter or the active_extruder
  1101. *
  1102. * Returns TRUE if the target is invalid
  1103. */
  1104. bool get_target_extruder_from_command(int code) {
  1105. if (code_seen('T')) {
  1106. if (code_value_byte() >= EXTRUDERS) {
  1107. SERIAL_ECHO_START;
  1108. SERIAL_CHAR('M');
  1109. SERIAL_ECHO(code);
  1110. SERIAL_ECHOLNPAIR(" " MSG_INVALID_EXTRUDER " ", code_value_byte());
  1111. return true;
  1112. }
  1113. target_extruder = code_value_byte();
  1114. }
  1115. else
  1116. target_extruder = active_extruder;
  1117. return false;
  1118. }
  1119. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  1120. bool extruder_duplication_enabled = false; // Used in Dual X mode 2
  1121. #endif
  1122. #if ENABLED(DUAL_X_CARRIAGE)
  1123. static DualXMode dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1124. static float x_home_pos(int extruder) {
  1125. if (extruder == 0)
  1126. return LOGICAL_X_POSITION(base_home_pos(X_AXIS));
  1127. else
  1128. /**
  1129. * In dual carriage mode the extruder offset provides an override of the
  1130. * second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  1131. * This allow soft recalibration of the second extruder offset position
  1132. * without firmware reflash (through the M218 command).
  1133. */
  1134. return (hotend_offset[X_AXIS][1] > 0) ? hotend_offset[X_AXIS][1] : X2_HOME_POS;
  1135. }
  1136. static int x_home_dir(int extruder) {
  1137. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  1138. }
  1139. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1140. static bool active_extruder_parked = false; // used in mode 1 & 2
  1141. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  1142. static millis_t delayed_move_time = 0; // used in mode 1
  1143. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1144. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  1145. #endif // DUAL_X_CARRIAGE
  1146. /**
  1147. * Software endstops can be used to monitor the open end of
  1148. * an axis that has a hardware endstop on the other end. Or
  1149. * they can prevent axes from moving past endstops and grinding.
  1150. *
  1151. * To keep doing their job as the coordinate system changes,
  1152. * the software endstop positions must be refreshed to remain
  1153. * at the same positions relative to the machine.
  1154. */
  1155. void update_software_endstops(AxisEnum axis) {
  1156. float offs = LOGICAL_POSITION(0, axis);
  1157. #if ENABLED(DUAL_X_CARRIAGE)
  1158. if (axis == X_AXIS) {
  1159. float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS);
  1160. if (active_extruder != 0) {
  1161. soft_endstop_min[X_AXIS] = X2_MIN_POS + offs;
  1162. soft_endstop_max[X_AXIS] = dual_max_x + offs;
  1163. return;
  1164. }
  1165. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1166. soft_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
  1167. soft_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
  1168. return;
  1169. }
  1170. }
  1171. else
  1172. #endif
  1173. {
  1174. soft_endstop_min[axis] = base_min_pos(axis) + offs;
  1175. soft_endstop_max[axis] = base_max_pos(axis) + offs;
  1176. }
  1177. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1178. if (DEBUGGING(LEVELING)) {
  1179. SERIAL_ECHOPAIR("For ", axis_codes[axis]);
  1180. SERIAL_ECHOPAIR(" axis:\n home_offset = ", home_offset[axis]);
  1181. SERIAL_ECHOPAIR("\n position_shift = ", position_shift[axis]);
  1182. SERIAL_ECHOPAIR("\n soft_endstop_min = ", soft_endstop_min[axis]);
  1183. SERIAL_ECHOLNPAIR("\n soft_endstop_max = ", soft_endstop_max[axis]);
  1184. }
  1185. #endif
  1186. #if ENABLED(DELTA)
  1187. if (axis == Z_AXIS)
  1188. delta_clip_start_height = soft_endstop_max[axis] - delta_safe_distance_from_top();
  1189. #endif
  1190. }
  1191. /**
  1192. * Change the home offset for an axis, update the current
  1193. * position and the software endstops to retain the same
  1194. * relative distance to the new home.
  1195. *
  1196. * Since this changes the current_position, code should
  1197. * call sync_plan_position soon after this.
  1198. */
  1199. static void set_home_offset(AxisEnum axis, float v) {
  1200. current_position[axis] += v - home_offset[axis];
  1201. home_offset[axis] = v;
  1202. update_software_endstops(axis);
  1203. }
  1204. /**
  1205. * Set an axis' current position to its home position (after homing).
  1206. *
  1207. * For Core and Cartesian robots this applies one-to-one when an
  1208. * individual axis has been homed.
  1209. *
  1210. * DELTA should wait until all homing is done before setting the XYZ
  1211. * current_position to home, because homing is a single operation.
  1212. * In the case where the axis positions are already known and previously
  1213. * homed, DELTA could home to X or Y individually by moving either one
  1214. * to the center. However, homing Z always homes XY and Z.
  1215. *
  1216. * SCARA should wait until all XY homing is done before setting the XY
  1217. * current_position to home, because neither X nor Y is at home until
  1218. * both are at home. Z can however be homed individually.
  1219. *
  1220. */
  1221. static void set_axis_is_at_home(AxisEnum axis) {
  1222. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1223. if (DEBUGGING(LEVELING)) {
  1224. SERIAL_ECHOPAIR(">>> set_axis_is_at_home(", axis_codes[axis]);
  1225. SERIAL_CHAR(')');
  1226. SERIAL_EOL;
  1227. }
  1228. #endif
  1229. axis_known_position[axis] = axis_homed[axis] = true;
  1230. position_shift[axis] = 0;
  1231. update_software_endstops(axis);
  1232. #if ENABLED(DUAL_X_CARRIAGE)
  1233. if (axis == X_AXIS && (active_extruder != 0 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
  1234. if (active_extruder != 0)
  1235. current_position[X_AXIS] = x_home_pos(active_extruder);
  1236. else
  1237. current_position[X_AXIS] = LOGICAL_X_POSITION(base_home_pos(X_AXIS));
  1238. update_software_endstops(X_AXIS);
  1239. return;
  1240. }
  1241. #endif
  1242. #if ENABLED(MORGAN_SCARA)
  1243. /**
  1244. * Morgan SCARA homes XY at the same time
  1245. */
  1246. if (axis == X_AXIS || axis == Y_AXIS) {
  1247. float homeposition[XYZ];
  1248. LOOP_XYZ(i) homeposition[i] = LOGICAL_POSITION(base_home_pos((AxisEnum)i), i);
  1249. // SERIAL_ECHOPAIR("homeposition X:", homeposition[X_AXIS]);
  1250. // SERIAL_ECHOLNPAIR(" Y:", homeposition[Y_AXIS]);
  1251. /**
  1252. * Get Home position SCARA arm angles using inverse kinematics,
  1253. * and calculate homing offset using forward kinematics
  1254. */
  1255. inverse_kinematics(homeposition);
  1256. forward_kinematics_SCARA(delta[A_AXIS], delta[B_AXIS]);
  1257. // SERIAL_ECHOPAIR("Cartesian X:", cartes[X_AXIS]);
  1258. // SERIAL_ECHOLNPAIR(" Y:", cartes[Y_AXIS]);
  1259. current_position[axis] = LOGICAL_POSITION(cartes[axis], axis);
  1260. /**
  1261. * SCARA home positions are based on configuration since the actual
  1262. * limits are determined by the inverse kinematic transform.
  1263. */
  1264. soft_endstop_min[axis] = base_min_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1265. soft_endstop_max[axis] = base_max_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1266. }
  1267. else
  1268. #endif
  1269. {
  1270. current_position[axis] = LOGICAL_POSITION(base_home_pos(axis), axis);
  1271. }
  1272. /**
  1273. * Z Probe Z Homing? Account for the probe's Z offset.
  1274. */
  1275. #if HAS_BED_PROBE && Z_HOME_DIR < 0
  1276. if (axis == Z_AXIS) {
  1277. #if HOMING_Z_WITH_PROBE
  1278. current_position[Z_AXIS] -= zprobe_zoffset;
  1279. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1280. if (DEBUGGING(LEVELING)) {
  1281. SERIAL_ECHOLNPGM("*** Z HOMED WITH PROBE (Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) ***");
  1282. SERIAL_ECHOLNPAIR("> zprobe_zoffset = ", zprobe_zoffset);
  1283. }
  1284. #endif
  1285. #elif ENABLED(DEBUG_LEVELING_FEATURE)
  1286. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("*** Z HOMED TO ENDSTOP (Z_MIN_PROBE_ENDSTOP) ***");
  1287. #endif
  1288. }
  1289. #endif
  1290. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1291. if (DEBUGGING(LEVELING)) {
  1292. SERIAL_ECHOPAIR("> home_offset[", axis_codes[axis]);
  1293. SERIAL_ECHOLNPAIR("] = ", home_offset[axis]);
  1294. DEBUG_POS("", current_position);
  1295. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis_codes[axis]);
  1296. SERIAL_CHAR(')');
  1297. SERIAL_EOL;
  1298. }
  1299. #endif
  1300. }
  1301. /**
  1302. * Some planner shorthand inline functions
  1303. */
  1304. inline float get_homing_bump_feedrate(AxisEnum axis) {
  1305. int constexpr homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  1306. int hbd = homing_bump_divisor[axis];
  1307. if (hbd < 1) {
  1308. hbd = 10;
  1309. SERIAL_ECHO_START;
  1310. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1311. }
  1312. return homing_feedrate_mm_s[axis] / hbd;
  1313. }
  1314. //
  1315. // line_to_current_position
  1316. // Move the planner to the current position from wherever it last moved
  1317. // (or from wherever it has been told it is located).
  1318. //
  1319. inline void line_to_current_position() {
  1320. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate_mm_s, active_extruder);
  1321. }
  1322. //
  1323. // line_to_destination
  1324. // Move the planner, not necessarily synced with current_position
  1325. //
  1326. inline void line_to_destination(float fr_mm_s) {
  1327. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], fr_mm_s, active_extruder);
  1328. }
  1329. inline void line_to_destination() { line_to_destination(feedrate_mm_s); }
  1330. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1331. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1332. #if IS_KINEMATIC
  1333. /**
  1334. * Calculate delta, start a line, and set current_position to destination
  1335. */
  1336. void prepare_uninterpolated_move_to_destination(const float fr_mm_s=0.0) {
  1337. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1338. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_uninterpolated_move_to_destination", destination);
  1339. #endif
  1340. if ( current_position[X_AXIS] == destination[X_AXIS]
  1341. && current_position[Y_AXIS] == destination[Y_AXIS]
  1342. && current_position[Z_AXIS] == destination[Z_AXIS]
  1343. && current_position[E_AXIS] == destination[E_AXIS]
  1344. ) return;
  1345. refresh_cmd_timeout();
  1346. planner.buffer_line_kinematic(destination, MMS_SCALED(fr_mm_s ? fr_mm_s : feedrate_mm_s), active_extruder);
  1347. set_current_to_destination();
  1348. }
  1349. #endif // IS_KINEMATIC
  1350. /**
  1351. * Plan a move to (X, Y, Z) and set the current_position
  1352. * The final current_position may not be the one that was requested
  1353. */
  1354. void do_blocking_move_to(const float &x, const float &y, const float &z, const float &fr_mm_s /*=0.0*/) {
  1355. float old_feedrate_mm_s = feedrate_mm_s;
  1356. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1357. if (DEBUGGING(LEVELING)) print_xyz(PSTR(">>> do_blocking_move_to"), NULL, x, y, z);
  1358. #endif
  1359. #if ENABLED(DELTA)
  1360. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1361. set_destination_to_current(); // sync destination at the start
  1362. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1363. if (DEBUGGING(LEVELING)) DEBUG_POS("set_destination_to_current", destination);
  1364. #endif
  1365. // when in the danger zone
  1366. if (current_position[Z_AXIS] > delta_clip_start_height) {
  1367. if (z > delta_clip_start_height) { // staying in the danger zone
  1368. destination[X_AXIS] = x; // move directly (uninterpolated)
  1369. destination[Y_AXIS] = y;
  1370. destination[Z_AXIS] = z;
  1371. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1372. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1373. if (DEBUGGING(LEVELING)) DEBUG_POS("danger zone move", current_position);
  1374. #endif
  1375. return;
  1376. }
  1377. else {
  1378. destination[Z_AXIS] = delta_clip_start_height;
  1379. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1380. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1381. if (DEBUGGING(LEVELING)) DEBUG_POS("zone border move", current_position);
  1382. #endif
  1383. }
  1384. }
  1385. if (z > current_position[Z_AXIS]) { // raising?
  1386. destination[Z_AXIS] = z;
  1387. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1388. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1389. if (DEBUGGING(LEVELING)) DEBUG_POS("z raise move", current_position);
  1390. #endif
  1391. }
  1392. destination[X_AXIS] = x;
  1393. destination[Y_AXIS] = y;
  1394. prepare_move_to_destination(); // set_current_to_destination
  1395. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1396. if (DEBUGGING(LEVELING)) DEBUG_POS("xy move", current_position);
  1397. #endif
  1398. if (z < current_position[Z_AXIS]) { // lowering?
  1399. destination[Z_AXIS] = z;
  1400. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1401. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1402. if (DEBUGGING(LEVELING)) DEBUG_POS("z lower move", current_position);
  1403. #endif
  1404. }
  1405. #elif IS_SCARA
  1406. set_destination_to_current();
  1407. // If Z needs to raise, do it before moving XY
  1408. if (destination[Z_AXIS] < z) {
  1409. destination[Z_AXIS] = z;
  1410. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS]);
  1411. }
  1412. destination[X_AXIS] = x;
  1413. destination[Y_AXIS] = y;
  1414. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S);
  1415. // If Z needs to lower, do it after moving XY
  1416. if (destination[Z_AXIS] > z) {
  1417. destination[Z_AXIS] = z;
  1418. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS]);
  1419. }
  1420. #else
  1421. // If Z needs to raise, do it before moving XY
  1422. if (current_position[Z_AXIS] < z) {
  1423. feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1424. current_position[Z_AXIS] = z;
  1425. line_to_current_position();
  1426. }
  1427. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1428. current_position[X_AXIS] = x;
  1429. current_position[Y_AXIS] = y;
  1430. line_to_current_position();
  1431. // If Z needs to lower, do it after moving XY
  1432. if (current_position[Z_AXIS] > z) {
  1433. feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1434. current_position[Z_AXIS] = z;
  1435. line_to_current_position();
  1436. }
  1437. #endif
  1438. stepper.synchronize();
  1439. feedrate_mm_s = old_feedrate_mm_s;
  1440. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1441. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< do_blocking_move_to");
  1442. #endif
  1443. }
  1444. void do_blocking_move_to_x(const float &x, const float &fr_mm_s/*=0.0*/) {
  1445. do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS], fr_mm_s);
  1446. }
  1447. void do_blocking_move_to_z(const float &z, const float &fr_mm_s/*=0.0*/) {
  1448. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z, fr_mm_s);
  1449. }
  1450. void do_blocking_move_to_xy(const float &x, const float &y, const float &fr_mm_s/*=0.0*/) {
  1451. do_blocking_move_to(x, y, current_position[Z_AXIS], fr_mm_s);
  1452. }
  1453. //
  1454. // Prepare to do endstop or probe moves
  1455. // with custom feedrates.
  1456. //
  1457. // - Save current feedrates
  1458. // - Reset the rate multiplier
  1459. // - Reset the command timeout
  1460. // - Enable the endstops (for endstop moves)
  1461. //
  1462. static void setup_for_endstop_or_probe_move() {
  1463. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1464. if (DEBUGGING(LEVELING)) DEBUG_POS("setup_for_endstop_or_probe_move", current_position);
  1465. #endif
  1466. saved_feedrate_mm_s = feedrate_mm_s;
  1467. saved_feedrate_percentage = feedrate_percentage;
  1468. feedrate_percentage = 100;
  1469. refresh_cmd_timeout();
  1470. }
  1471. static void clean_up_after_endstop_or_probe_move() {
  1472. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1473. if (DEBUGGING(LEVELING)) DEBUG_POS("clean_up_after_endstop_or_probe_move", current_position);
  1474. #endif
  1475. feedrate_mm_s = saved_feedrate_mm_s;
  1476. feedrate_percentage = saved_feedrate_percentage;
  1477. refresh_cmd_timeout();
  1478. }
  1479. #if HAS_BED_PROBE
  1480. /**
  1481. * Raise Z to a minimum height to make room for a probe to move
  1482. */
  1483. inline void do_probe_raise(float z_raise) {
  1484. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1485. if (DEBUGGING(LEVELING)) {
  1486. SERIAL_ECHOPAIR("do_probe_raise(", z_raise);
  1487. SERIAL_CHAR(')');
  1488. SERIAL_EOL;
  1489. }
  1490. #endif
  1491. float z_dest = LOGICAL_Z_POSITION(z_raise);
  1492. if (zprobe_zoffset < 0) z_dest -= zprobe_zoffset;
  1493. if (z_dest > current_position[Z_AXIS])
  1494. do_blocking_move_to_z(z_dest);
  1495. }
  1496. #endif //HAS_BED_PROBE
  1497. #if ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED) || HAS_PROBING_PROCEDURE || HOTENDS > 1 || ENABLED(NOZZLE_CLEAN_FEATURE) || ENABLED(NOZZLE_PARK_FEATURE)
  1498. static bool axis_unhomed_error(const bool x, const bool y, const bool z) {
  1499. const bool xx = x && !axis_homed[X_AXIS],
  1500. yy = y && !axis_homed[Y_AXIS],
  1501. zz = z && !axis_homed[Z_AXIS];
  1502. if (xx || yy || zz) {
  1503. SERIAL_ECHO_START;
  1504. SERIAL_ECHOPGM(MSG_HOME " ");
  1505. if (xx) SERIAL_ECHOPGM(MSG_X);
  1506. if (yy) SERIAL_ECHOPGM(MSG_Y);
  1507. if (zz) SERIAL_ECHOPGM(MSG_Z);
  1508. SERIAL_ECHOLNPGM(" " MSG_FIRST);
  1509. #if ENABLED(ULTRA_LCD)
  1510. char message[3 * (LCD_WIDTH) + 1] = ""; // worst case is kana.utf with up to 3*LCD_WIDTH+1
  1511. strcat_P(message, PSTR(MSG_HOME " "));
  1512. if (xx) strcat_P(message, PSTR(MSG_X));
  1513. if (yy) strcat_P(message, PSTR(MSG_Y));
  1514. if (zz) strcat_P(message, PSTR(MSG_Z));
  1515. strcat_P(message, PSTR(" " MSG_FIRST));
  1516. lcd_setstatus(message);
  1517. #endif
  1518. return true;
  1519. }
  1520. return false;
  1521. }
  1522. #endif
  1523. #if ENABLED(Z_PROBE_SLED)
  1524. #ifndef SLED_DOCKING_OFFSET
  1525. #define SLED_DOCKING_OFFSET 0
  1526. #endif
  1527. /**
  1528. * Method to dock/undock a sled designed by Charles Bell.
  1529. *
  1530. * stow[in] If false, move to MAX_X and engage the solenoid
  1531. * If true, move to MAX_X and release the solenoid
  1532. */
  1533. static void dock_sled(bool stow) {
  1534. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1535. if (DEBUGGING(LEVELING)) {
  1536. SERIAL_ECHOPAIR("dock_sled(", stow);
  1537. SERIAL_CHAR(')');
  1538. SERIAL_EOL;
  1539. }
  1540. #endif
  1541. // Dock sled a bit closer to ensure proper capturing
  1542. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET - ((stow) ? 1 : 0));
  1543. #if PIN_EXISTS(SLED)
  1544. digitalWrite(SLED_PIN, !stow); // switch solenoid
  1545. #endif
  1546. }
  1547. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1548. void run_deploy_moves_script() {
  1549. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1550. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_X
  1551. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_X current_position[X_AXIS]
  1552. #endif
  1553. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Y
  1554. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Y current_position[Y_AXIS]
  1555. #endif
  1556. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Z
  1557. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Z current_position[Z_AXIS]
  1558. #endif
  1559. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE
  1560. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE 0.0
  1561. #endif
  1562. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_1_X, Z_PROBE_ALLEN_KEY_DEPLOY_1_Y, Z_PROBE_ALLEN_KEY_DEPLOY_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE));
  1563. #endif
  1564. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1565. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_X
  1566. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_X current_position[X_AXIS]
  1567. #endif
  1568. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Y
  1569. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Y current_position[Y_AXIS]
  1570. #endif
  1571. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Z
  1572. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Z current_position[Z_AXIS]
  1573. #endif
  1574. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE
  1575. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE 0.0
  1576. #endif
  1577. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_2_X, Z_PROBE_ALLEN_KEY_DEPLOY_2_Y, Z_PROBE_ALLEN_KEY_DEPLOY_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE));
  1578. #endif
  1579. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Z)
  1580. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1581. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_X current_position[X_AXIS]
  1582. #endif
  1583. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Y
  1584. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Y current_position[Y_AXIS]
  1585. #endif
  1586. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Z
  1587. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Z current_position[Z_AXIS]
  1588. #endif
  1589. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE
  1590. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE 0.0
  1591. #endif
  1592. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_3_X, Z_PROBE_ALLEN_KEY_DEPLOY_3_Y, Z_PROBE_ALLEN_KEY_DEPLOY_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE));
  1593. #endif
  1594. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Z)
  1595. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_X
  1596. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_X current_position[X_AXIS]
  1597. #endif
  1598. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Y
  1599. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Y current_position[Y_AXIS]
  1600. #endif
  1601. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Z
  1602. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Z current_position[Z_AXIS]
  1603. #endif
  1604. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE
  1605. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE 0.0
  1606. #endif
  1607. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_4_X, Z_PROBE_ALLEN_KEY_DEPLOY_4_Y, Z_PROBE_ALLEN_KEY_DEPLOY_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE));
  1608. #endif
  1609. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Z)
  1610. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_X
  1611. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_X current_position[X_AXIS]
  1612. #endif
  1613. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Y
  1614. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Y current_position[Y_AXIS]
  1615. #endif
  1616. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Z
  1617. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Z current_position[Z_AXIS]
  1618. #endif
  1619. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE
  1620. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE 0.0
  1621. #endif
  1622. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_5_X, Z_PROBE_ALLEN_KEY_DEPLOY_5_Y, Z_PROBE_ALLEN_KEY_DEPLOY_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE));
  1623. #endif
  1624. }
  1625. void run_stow_moves_script() {
  1626. #if defined(Z_PROBE_ALLEN_KEY_STOW_1_X) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Z)
  1627. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_X
  1628. #define Z_PROBE_ALLEN_KEY_STOW_1_X current_position[X_AXIS]
  1629. #endif
  1630. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Y
  1631. #define Z_PROBE_ALLEN_KEY_STOW_1_Y current_position[Y_AXIS]
  1632. #endif
  1633. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Z
  1634. #define Z_PROBE_ALLEN_KEY_STOW_1_Z current_position[Z_AXIS]
  1635. #endif
  1636. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE
  1637. #define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE 0.0
  1638. #endif
  1639. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_1_X, Z_PROBE_ALLEN_KEY_STOW_1_Y, Z_PROBE_ALLEN_KEY_STOW_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE));
  1640. #endif
  1641. #if defined(Z_PROBE_ALLEN_KEY_STOW_2_X) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Z)
  1642. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_X
  1643. #define Z_PROBE_ALLEN_KEY_STOW_2_X current_position[X_AXIS]
  1644. #endif
  1645. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Y
  1646. #define Z_PROBE_ALLEN_KEY_STOW_2_Y current_position[Y_AXIS]
  1647. #endif
  1648. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Z
  1649. #define Z_PROBE_ALLEN_KEY_STOW_2_Z current_position[Z_AXIS]
  1650. #endif
  1651. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE
  1652. #define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE 0.0
  1653. #endif
  1654. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_2_X, Z_PROBE_ALLEN_KEY_STOW_2_Y, Z_PROBE_ALLEN_KEY_STOW_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE));
  1655. #endif
  1656. #if defined(Z_PROBE_ALLEN_KEY_STOW_3_X) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Z)
  1657. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_X
  1658. #define Z_PROBE_ALLEN_KEY_STOW_3_X current_position[X_AXIS]
  1659. #endif
  1660. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Y
  1661. #define Z_PROBE_ALLEN_KEY_STOW_3_Y current_position[Y_AXIS]
  1662. #endif
  1663. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Z
  1664. #define Z_PROBE_ALLEN_KEY_STOW_3_Z current_position[Z_AXIS]
  1665. #endif
  1666. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE
  1667. #define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE 0.0
  1668. #endif
  1669. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_3_X, Z_PROBE_ALLEN_KEY_STOW_3_Y, Z_PROBE_ALLEN_KEY_STOW_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE));
  1670. #endif
  1671. #if defined(Z_PROBE_ALLEN_KEY_STOW_4_X) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Z)
  1672. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_X
  1673. #define Z_PROBE_ALLEN_KEY_STOW_4_X current_position[X_AXIS]
  1674. #endif
  1675. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Y
  1676. #define Z_PROBE_ALLEN_KEY_STOW_4_Y current_position[Y_AXIS]
  1677. #endif
  1678. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Z
  1679. #define Z_PROBE_ALLEN_KEY_STOW_4_Z current_position[Z_AXIS]
  1680. #endif
  1681. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE
  1682. #define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE 0.0
  1683. #endif
  1684. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_4_X, Z_PROBE_ALLEN_KEY_STOW_4_Y, Z_PROBE_ALLEN_KEY_STOW_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE));
  1685. #endif
  1686. #if defined(Z_PROBE_ALLEN_KEY_STOW_5_X) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Z)
  1687. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_X
  1688. #define Z_PROBE_ALLEN_KEY_STOW_5_X current_position[X_AXIS]
  1689. #endif
  1690. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Y
  1691. #define Z_PROBE_ALLEN_KEY_STOW_5_Y current_position[Y_AXIS]
  1692. #endif
  1693. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Z
  1694. #define Z_PROBE_ALLEN_KEY_STOW_5_Z current_position[Z_AXIS]
  1695. #endif
  1696. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE
  1697. #define Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE 0.0
  1698. #endif
  1699. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_5_X, Z_PROBE_ALLEN_KEY_STOW_5_Y, Z_PROBE_ALLEN_KEY_STOW_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE));
  1700. #endif
  1701. }
  1702. #endif
  1703. #if HAS_BED_PROBE
  1704. // TRIGGERED_WHEN_STOWED_TEST can easily be extended to servo probes, ... if needed.
  1705. #if ENABLED(PROBE_IS_TRIGGERED_WHEN_STOWED_TEST)
  1706. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1707. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING)
  1708. #else
  1709. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)
  1710. #endif
  1711. #endif
  1712. #define DEPLOY_PROBE() set_probe_deployed(true)
  1713. #define STOW_PROBE() set_probe_deployed(false)
  1714. #if ENABLED(BLTOUCH)
  1715. FORCE_INLINE void set_bltouch_deployed(const bool &deploy) {
  1716. servo[Z_ENDSTOP_SERVO_NR].move(deploy ? BLTOUCH_DEPLOY : BLTOUCH_STOW);
  1717. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1718. if (DEBUGGING(LEVELING)) {
  1719. SERIAL_ECHOPAIR("set_bltouch_deployed(", deploy);
  1720. SERIAL_CHAR(')');
  1721. SERIAL_EOL;
  1722. }
  1723. #endif
  1724. }
  1725. #endif
  1726. // returns false for ok and true for failure
  1727. static bool set_probe_deployed(bool deploy) {
  1728. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1729. if (DEBUGGING(LEVELING)) {
  1730. DEBUG_POS("set_probe_deployed", current_position);
  1731. SERIAL_ECHOLNPAIR("deploy: ", deploy);
  1732. }
  1733. #endif
  1734. if (endstops.z_probe_enabled == deploy) return false;
  1735. // Make room for probe
  1736. do_probe_raise(_Z_CLEARANCE_DEPLOY_PROBE);
  1737. // When deploying make sure BLTOUCH is not already triggered
  1738. #if ENABLED(BLTOUCH)
  1739. if (deploy && TEST_BLTOUCH()) { stop(); return true; }
  1740. #elif ENABLED(Z_PROBE_SLED)
  1741. if (axis_unhomed_error(true, false, false)) { stop(); return true; }
  1742. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1743. if (axis_unhomed_error(true, true, true )) { stop(); return true; }
  1744. #endif
  1745. float oldXpos = current_position[X_AXIS],
  1746. oldYpos = current_position[Y_AXIS];
  1747. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1748. // If endstop is already false, the Z probe is deployed
  1749. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // closed after the probe specific actions.
  1750. // Would a goto be less ugly?
  1751. //while (!_TRIGGERED_WHEN_STOWED_TEST) idle(); // would offer the opportunity
  1752. // for a triggered when stowed manual probe.
  1753. if (!deploy) endstops.enable_z_probe(false); // Switch off triggered when stowed probes early
  1754. // otherwise an Allen-Key probe can't be stowed.
  1755. #endif
  1756. #if ENABLED(Z_PROBE_SLED)
  1757. dock_sled(!deploy);
  1758. #elif HAS_Z_SERVO_ENDSTOP && DISABLED(BLTOUCH)
  1759. servo[Z_ENDSTOP_SERVO_NR].move(z_servo_angle[deploy ? 0 : 1]);
  1760. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1761. deploy ? run_deploy_moves_script() : run_stow_moves_script();
  1762. #endif
  1763. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1764. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1765. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // State hasn't changed?
  1766. if (IsRunning()) {
  1767. SERIAL_ERROR_START;
  1768. SERIAL_ERRORLNPGM("Z-Probe failed");
  1769. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1770. }
  1771. stop();
  1772. return true;
  1773. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1774. #endif
  1775. do_blocking_move_to(oldXpos, oldYpos, current_position[Z_AXIS]); // return to position before deploy
  1776. endstops.enable_z_probe(deploy);
  1777. return false;
  1778. }
  1779. static void do_probe_move(float z, float fr_mm_m) {
  1780. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1781. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> do_probe_move", current_position);
  1782. #endif
  1783. // Deploy BLTouch at the start of any probe
  1784. #if ENABLED(BLTOUCH)
  1785. set_bltouch_deployed(true);
  1786. #endif
  1787. // Move down until probe triggered
  1788. do_blocking_move_to_z(LOGICAL_Z_POSITION(z), MMM_TO_MMS(fr_mm_m));
  1789. // Retract BLTouch immediately after a probe
  1790. #if ENABLED(BLTOUCH)
  1791. set_bltouch_deployed(false);
  1792. #endif
  1793. // Clear endstop flags
  1794. endstops.hit_on_purpose();
  1795. // Get Z where the steppers were interrupted
  1796. set_current_from_steppers_for_axis(Z_AXIS);
  1797. // Tell the planner where we actually are
  1798. SYNC_PLAN_POSITION_KINEMATIC();
  1799. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1800. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< do_probe_move", current_position);
  1801. #endif
  1802. }
  1803. // Do a single Z probe and return with current_position[Z_AXIS]
  1804. // at the height where the probe triggered.
  1805. static float run_z_probe() {
  1806. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1807. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> run_z_probe", current_position);
  1808. #endif
  1809. // Prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
  1810. refresh_cmd_timeout();
  1811. #if ENABLED(PROBE_DOUBLE_TOUCH)
  1812. // Do a first probe at the fast speed
  1813. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_FAST);
  1814. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1815. float first_probe_z = current_position[Z_AXIS];
  1816. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("1st Probe Z:", first_probe_z);
  1817. #endif
  1818. // move up by the bump distance
  1819. do_blocking_move_to_z(current_position[Z_AXIS] + home_bump_mm(Z_AXIS), MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1820. #else
  1821. // If the nozzle is above the travel height then
  1822. // move down quickly before doing the slow probe
  1823. float z = LOGICAL_Z_POSITION(Z_CLEARANCE_BETWEEN_PROBES);
  1824. if (zprobe_zoffset < 0) z -= zprobe_zoffset;
  1825. if (z < current_position[Z_AXIS])
  1826. do_blocking_move_to_z(z, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1827. #endif
  1828. // move down slowly to find bed
  1829. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_SLOW);
  1830. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1831. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< run_z_probe", current_position);
  1832. #endif
  1833. // Debug: compare probe heights
  1834. #if ENABLED(PROBE_DOUBLE_TOUCH) && ENABLED(DEBUG_LEVELING_FEATURE)
  1835. if (DEBUGGING(LEVELING)) {
  1836. SERIAL_ECHOPAIR("2nd Probe Z:", current_position[Z_AXIS]);
  1837. SERIAL_ECHOLNPAIR(" Discrepancy:", first_probe_z - current_position[Z_AXIS]);
  1838. }
  1839. #endif
  1840. return current_position[Z_AXIS];
  1841. }
  1842. //
  1843. // - Move to the given XY
  1844. // - Deploy the probe, if not already deployed
  1845. // - Probe the bed, get the Z position
  1846. // - Depending on the 'stow' flag
  1847. // - Stow the probe, or
  1848. // - Raise to the BETWEEN height
  1849. // - Return the probed Z position
  1850. //
  1851. static float probe_pt(const float &x, const float &y, bool stow = true, int verbose_level = 1) {
  1852. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1853. if (DEBUGGING(LEVELING)) {
  1854. SERIAL_ECHOPAIR(">>> probe_pt(", x);
  1855. SERIAL_ECHOPAIR(", ", y);
  1856. SERIAL_ECHOPAIR(", ", stow ? "" : "no ");
  1857. SERIAL_ECHOLNPGM("stow)");
  1858. DEBUG_POS("", current_position);
  1859. }
  1860. #endif
  1861. float old_feedrate_mm_s = feedrate_mm_s;
  1862. // Ensure a minimum height before moving the probe
  1863. do_probe_raise(Z_CLEARANCE_BETWEEN_PROBES);
  1864. feedrate_mm_s = XY_PROBE_FEEDRATE_MM_S;
  1865. // Move the probe to the given XY
  1866. do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1867. if (DEPLOY_PROBE()) return NAN;
  1868. float measured_z = run_z_probe();
  1869. if (!stow)
  1870. do_probe_raise(Z_CLEARANCE_BETWEEN_PROBES);
  1871. else
  1872. if (STOW_PROBE()) return NAN;
  1873. if (verbose_level > 2) {
  1874. SERIAL_PROTOCOLPGM("Bed X: ");
  1875. SERIAL_PROTOCOL_F(x, 3);
  1876. SERIAL_PROTOCOLPGM(" Y: ");
  1877. SERIAL_PROTOCOL_F(y, 3);
  1878. SERIAL_PROTOCOLPGM(" Z: ");
  1879. SERIAL_PROTOCOL_F(measured_z, 3);
  1880. SERIAL_EOL;
  1881. }
  1882. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1883. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  1884. #endif
  1885. feedrate_mm_s = old_feedrate_mm_s;
  1886. return measured_z;
  1887. }
  1888. #endif // HAS_BED_PROBE
  1889. #if PLANNER_LEVELING
  1890. /**
  1891. * Turn bed leveling on or off, fixing the current
  1892. * position as-needed.
  1893. *
  1894. * Disable: Current position = physical position
  1895. * Enable: Current position = "unleveled" physical position
  1896. */
  1897. void set_bed_leveling_enabled(bool enable=true) {
  1898. #if ENABLED(MESH_BED_LEVELING)
  1899. if (!enable && mbl.active())
  1900. current_position[Z_AXIS] +=
  1901. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS)) - (MESH_HOME_SEARCH_Z);
  1902. mbl.set_active(enable && mbl.has_mesh()); // was set_has_mesh(). Is this not correct?
  1903. #elif HAS_ABL
  1904. if (enable != planner.abl_enabled) {
  1905. planner.abl_enabled = enable;
  1906. if (!enable)
  1907. set_current_from_steppers_for_axis(
  1908. #if ABL_PLANAR
  1909. ALL_AXES
  1910. #else
  1911. Z_AXIS
  1912. #endif
  1913. );
  1914. else
  1915. planner.unapply_leveling(current_position);
  1916. }
  1917. #endif
  1918. }
  1919. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  1920. void set_z_fade_height(const float zfh) {
  1921. planner.z_fade_height = zfh;
  1922. planner.inverse_z_fade_height = RECIPROCAL(zfh);
  1923. if (
  1924. #if ENABLED(MESH_BED_LEVELING)
  1925. mbl.active()
  1926. #else
  1927. planner.abl_enabled
  1928. #endif
  1929. ) {
  1930. set_current_from_steppers_for_axis(
  1931. #if ABL_PLANAR
  1932. ALL_AXES
  1933. #else
  1934. Z_AXIS
  1935. #endif
  1936. );
  1937. }
  1938. }
  1939. #endif // LEVELING_FADE_HEIGHT
  1940. /**
  1941. * Reset calibration results to zero.
  1942. */
  1943. void reset_bed_level() {
  1944. #if ENABLED(MESH_BED_LEVELING)
  1945. if (mbl.has_mesh()) {
  1946. set_bed_leveling_enabled(false);
  1947. mbl.reset();
  1948. mbl.set_has_mesh(false);
  1949. }
  1950. #else
  1951. planner.abl_enabled = false;
  1952. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1953. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  1954. #endif
  1955. #if ABL_PLANAR
  1956. planner.bed_level_matrix.set_to_identity();
  1957. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  1958. for (uint8_t x = 0; x < ABL_GRID_POINTS_X; x++)
  1959. for (uint8_t y = 0; y < ABL_GRID_POINTS_Y; y++)
  1960. bed_level_grid[x][y] = 1000.0;
  1961. #endif
  1962. #endif
  1963. }
  1964. #endif // PLANNER_LEVELING
  1965. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  1966. /**
  1967. * Extrapolate a single point from its neighbors
  1968. */
  1969. static void extrapolate_one_point(uint8_t x, uint8_t y, int8_t xdir, int8_t ydir) {
  1970. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1971. if (DEBUGGING(LEVELING)) {
  1972. SERIAL_ECHOPGM("Extrapolate [");
  1973. if (x < 10) SERIAL_CHAR(' ');
  1974. SERIAL_ECHO((int)x);
  1975. SERIAL_CHAR(xdir ? (xdir > 0 ? '+' : '-') : ' ');
  1976. SERIAL_CHAR(' ');
  1977. if (y < 10) SERIAL_CHAR(' ');
  1978. SERIAL_ECHO((int)y);
  1979. SERIAL_CHAR(ydir ? (ydir > 0 ? '+' : '-') : ' ');
  1980. SERIAL_CHAR(']');
  1981. }
  1982. #endif
  1983. if (bed_level_grid[x][y] < 999.0) {
  1984. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1985. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM(" (done)");
  1986. #endif
  1987. return; // Don't overwrite good values.
  1988. }
  1989. SERIAL_EOL;
  1990. // Get X neighbors, Y neighbors, and XY neighbors
  1991. float a1 = bed_level_grid[x + xdir][y], a2 = bed_level_grid[x + xdir * 2][y],
  1992. b1 = bed_level_grid[x][y + ydir], b2 = bed_level_grid[x][y + ydir * 2],
  1993. c1 = bed_level_grid[x + xdir][y + ydir], c2 = bed_level_grid[x + xdir * 2][y + ydir * 2];
  1994. // Treat far unprobed points as zero, near as equal to far
  1995. if (a2 > 999.0) a2 = 0.0; if (a1 > 999.0) a1 = a2;
  1996. if (b2 > 999.0) b2 = 0.0; if (b1 > 999.0) b1 = b2;
  1997. if (c2 > 999.0) c2 = 0.0; if (c1 > 999.0) c1 = c2;
  1998. float a = 2 * a1 - a2, b = 2 * b1 - b2, c = 2 * c1 - c2;
  1999. // Take the average intstead of the median
  2000. bed_level_grid[x][y] = (a + b + c) / 3.0;
  2001. // Median is robust (ignores outliers).
  2002. // bed_level_grid[x][y] = (a < b) ? ((b < c) ? b : (c < a) ? a : c)
  2003. // : ((c < b) ? b : (a < c) ? a : c);
  2004. }
  2005. //Enable this if your SCARA uses 180° of total area
  2006. //#define EXTRAPOLATE_FROM_EDGE
  2007. #if ENABLED(EXTRAPOLATE_FROM_EDGE)
  2008. #if ABL_GRID_POINTS_X < ABL_GRID_POINTS_Y
  2009. #define HALF_IN_X
  2010. #elif ABL_GRID_POINTS_Y < ABL_GRID_POINTS_X
  2011. #define HALF_IN_Y
  2012. #endif
  2013. #endif
  2014. /**
  2015. * Fill in the unprobed points (corners of circular print surface)
  2016. * using linear extrapolation, away from the center.
  2017. */
  2018. static void extrapolate_unprobed_bed_level() {
  2019. #ifdef HALF_IN_X
  2020. const uint8_t ctrx2 = 0, xlen = ABL_GRID_POINTS_X - 1;
  2021. #else
  2022. const uint8_t ctrx1 = (ABL_GRID_POINTS_X - 1) / 2, // left-of-center
  2023. ctrx2 = ABL_GRID_POINTS_X / 2, // right-of-center
  2024. xlen = ctrx1;
  2025. #endif
  2026. #ifdef HALF_IN_Y
  2027. const uint8_t ctry2 = 0, ylen = ABL_GRID_POINTS_Y - 1;
  2028. #else
  2029. const uint8_t ctry1 = (ABL_GRID_POINTS_Y - 1) / 2, // top-of-center
  2030. ctry2 = ABL_GRID_POINTS_Y / 2, // bottom-of-center
  2031. ylen = ctry1;
  2032. #endif
  2033. for (uint8_t xo = 0; xo <= xlen; xo++)
  2034. for (uint8_t yo = 0; yo <= ylen; yo++) {
  2035. uint8_t x2 = ctrx2 + xo, y2 = ctry2 + yo;
  2036. #ifndef HALF_IN_X
  2037. uint8_t x1 = ctrx1 - xo;
  2038. #endif
  2039. #ifndef HALF_IN_Y
  2040. uint8_t y1 = ctry1 - yo;
  2041. #ifndef HALF_IN_X
  2042. extrapolate_one_point(x1, y1, +1, +1); // left-below + +
  2043. #endif
  2044. extrapolate_one_point(x2, y1, -1, +1); // right-below - +
  2045. #endif
  2046. #ifndef HALF_IN_X
  2047. extrapolate_one_point(x1, y2, +1, -1); // left-above + -
  2048. #endif
  2049. extrapolate_one_point(x2, y2, -1, -1); // right-above - -
  2050. }
  2051. }
  2052. /**
  2053. * Print calibration results for plotting or manual frame adjustment.
  2054. */
  2055. static void print_bed_level() {
  2056. SERIAL_ECHOPGM("Bilinear Leveling Grid:\n ");
  2057. for (uint8_t x = 0; x < ABL_GRID_POINTS_X; x++) {
  2058. SERIAL_PROTOCOLPGM(" ");
  2059. if (x < 10) SERIAL_PROTOCOLCHAR(' ');
  2060. SERIAL_PROTOCOL((int)x);
  2061. }
  2062. SERIAL_EOL;
  2063. for (uint8_t y = 0; y < ABL_GRID_POINTS_Y; y++) {
  2064. if (y < 10) SERIAL_PROTOCOLCHAR(' ');
  2065. SERIAL_PROTOCOL((int)y);
  2066. for (uint8_t x = 0; x < ABL_GRID_POINTS_X; x++) {
  2067. SERIAL_PROTOCOLCHAR(' ');
  2068. float offset = bed_level_grid[x][y];
  2069. if (offset < 999.0) {
  2070. if (offset > 0) SERIAL_CHAR('+');
  2071. SERIAL_PROTOCOL_F(offset, 2);
  2072. }
  2073. else
  2074. SERIAL_PROTOCOLPGM(" ====");
  2075. }
  2076. SERIAL_EOL;
  2077. }
  2078. SERIAL_EOL;
  2079. }
  2080. #endif // AUTO_BED_LEVELING_BILINEAR
  2081. /**
  2082. * Home an individual linear axis
  2083. */
  2084. static void do_homing_move(const AxisEnum axis, float distance, float fr_mm_s=0.0) {
  2085. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2086. if (DEBUGGING(LEVELING)) {
  2087. SERIAL_ECHOPAIR(">>> do_homing_move(", axis_codes[axis]);
  2088. SERIAL_ECHOPAIR(", ", distance);
  2089. SERIAL_ECHOPAIR(", ", fr_mm_s);
  2090. SERIAL_CHAR(')');
  2091. SERIAL_EOL;
  2092. }
  2093. #endif
  2094. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  2095. bool deploy_bltouch = (axis == Z_AXIS && distance < 0);
  2096. if (deploy_bltouch) set_bltouch_deployed(true);
  2097. #endif
  2098. // Tell the planner we're at Z=0
  2099. current_position[axis] = 0;
  2100. #if IS_SCARA
  2101. SYNC_PLAN_POSITION_KINEMATIC();
  2102. current_position[axis] = distance;
  2103. inverse_kinematics(current_position);
  2104. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[axis], active_extruder);
  2105. #else
  2106. sync_plan_position();
  2107. current_position[axis] = distance;
  2108. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[axis], active_extruder);
  2109. #endif
  2110. stepper.synchronize();
  2111. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  2112. if (deploy_bltouch) set_bltouch_deployed(false);
  2113. #endif
  2114. endstops.hit_on_purpose();
  2115. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2116. if (DEBUGGING(LEVELING)) {
  2117. SERIAL_ECHOPAIR("<<< do_homing_move(", axis_codes[axis]);
  2118. SERIAL_CHAR(')');
  2119. SERIAL_EOL;
  2120. }
  2121. #endif
  2122. }
  2123. /**
  2124. * Home an individual "raw axis" to its endstop.
  2125. * This applies to XYZ on Cartesian and Core robots, and
  2126. * to the individual ABC steppers on DELTA and SCARA.
  2127. *
  2128. * At the end of the procedure the axis is marked as
  2129. * homed and the current position of that axis is updated.
  2130. * Kinematic robots should wait till all axes are homed
  2131. * before updating the current position.
  2132. */
  2133. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  2134. static void homeaxis(AxisEnum axis) {
  2135. #if IS_SCARA
  2136. // Only Z homing (with probe) is permitted
  2137. if (axis != Z_AXIS) { BUZZ(100, 880); return; }
  2138. #else
  2139. #define CAN_HOME(A) \
  2140. (axis == A##_AXIS && ((A##_MIN_PIN > -1 && A##_HOME_DIR < 0) || (A##_MAX_PIN > -1 && A##_HOME_DIR > 0)))
  2141. if (!CAN_HOME(X) && !CAN_HOME(Y) && !CAN_HOME(Z)) return;
  2142. #endif
  2143. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2144. if (DEBUGGING(LEVELING)) {
  2145. SERIAL_ECHOPAIR(">>> homeaxis(", axis_codes[axis]);
  2146. SERIAL_CHAR(')');
  2147. SERIAL_EOL;
  2148. }
  2149. #endif
  2150. int axis_home_dir =
  2151. #if ENABLED(DUAL_X_CARRIAGE)
  2152. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  2153. #endif
  2154. home_dir(axis);
  2155. // Homing Z towards the bed? Deploy the Z probe or endstop.
  2156. #if HOMING_Z_WITH_PROBE
  2157. if (axis == Z_AXIS && DEPLOY_PROBE()) return;
  2158. #endif
  2159. // Set a flag for Z motor locking
  2160. #if ENABLED(Z_DUAL_ENDSTOPS)
  2161. if (axis == Z_AXIS) stepper.set_homing_flag(true);
  2162. #endif
  2163. // Fast move towards endstop until triggered
  2164. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2165. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 1 Fast:");
  2166. #endif
  2167. do_homing_move(axis, 1.5 * max_length(axis) * axis_home_dir);
  2168. // When homing Z with probe respect probe clearance
  2169. const float bump = axis_home_dir * (
  2170. #if HOMING_Z_WITH_PROBE
  2171. (axis == Z_AXIS) ? max(Z_CLEARANCE_BETWEEN_PROBES, home_bump_mm(Z_AXIS)) :
  2172. #endif
  2173. home_bump_mm(axis)
  2174. );
  2175. // If a second homing move is configured...
  2176. if (bump) {
  2177. // Move away from the endstop by the axis HOME_BUMP_MM
  2178. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2179. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Move Away:");
  2180. #endif
  2181. do_homing_move(axis, -bump);
  2182. // Slow move towards endstop until triggered
  2183. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2184. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 2 Slow:");
  2185. #endif
  2186. do_homing_move(axis, 2 * bump, get_homing_bump_feedrate(axis));
  2187. }
  2188. #if ENABLED(Z_DUAL_ENDSTOPS)
  2189. if (axis == Z_AXIS) {
  2190. float adj = fabs(z_endstop_adj);
  2191. bool lockZ1;
  2192. if (axis_home_dir > 0) {
  2193. adj = -adj;
  2194. lockZ1 = (z_endstop_adj > 0);
  2195. }
  2196. else
  2197. lockZ1 = (z_endstop_adj < 0);
  2198. if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
  2199. // Move to the adjusted endstop height
  2200. do_homing_move(axis, adj);
  2201. if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
  2202. stepper.set_homing_flag(false);
  2203. } // Z_AXIS
  2204. #endif
  2205. #if IS_SCARA
  2206. set_axis_is_at_home(axis);
  2207. SYNC_PLAN_POSITION_KINEMATIC();
  2208. #elif ENABLED(DELTA)
  2209. // Delta has already moved all three towers up in G28
  2210. // so here it re-homes each tower in turn.
  2211. // Delta homing treats the axes as normal linear axes.
  2212. // retrace by the amount specified in endstop_adj
  2213. if (endstop_adj[axis] * Z_HOME_DIR < 0) {
  2214. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2215. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("endstop_adj:");
  2216. #endif
  2217. do_homing_move(axis, endstop_adj[axis]);
  2218. }
  2219. #else
  2220. // For cartesian/core machines,
  2221. // set the axis to its home position
  2222. set_axis_is_at_home(axis);
  2223. sync_plan_position();
  2224. destination[axis] = current_position[axis];
  2225. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2226. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  2227. #endif
  2228. #endif
  2229. // Put away the Z probe
  2230. #if HOMING_Z_WITH_PROBE
  2231. if (axis == Z_AXIS && STOW_PROBE()) return;
  2232. #endif
  2233. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2234. if (DEBUGGING(LEVELING)) {
  2235. SERIAL_ECHOPAIR("<<< homeaxis(", axis_codes[axis]);
  2236. SERIAL_CHAR(')');
  2237. SERIAL_EOL;
  2238. }
  2239. #endif
  2240. } // homeaxis()
  2241. #if ENABLED(FWRETRACT)
  2242. void retract(bool retracting, bool swapping = false) {
  2243. if (retracting == retracted[active_extruder]) return;
  2244. float old_feedrate_mm_s = feedrate_mm_s;
  2245. set_destination_to_current();
  2246. if (retracting) {
  2247. feedrate_mm_s = retract_feedrate_mm_s;
  2248. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  2249. sync_plan_position_e();
  2250. prepare_move_to_destination();
  2251. if (retract_zlift > 0.01) {
  2252. current_position[Z_AXIS] -= retract_zlift;
  2253. SYNC_PLAN_POSITION_KINEMATIC();
  2254. prepare_move_to_destination();
  2255. }
  2256. }
  2257. else {
  2258. if (retract_zlift > 0.01) {
  2259. current_position[Z_AXIS] += retract_zlift;
  2260. SYNC_PLAN_POSITION_KINEMATIC();
  2261. }
  2262. feedrate_mm_s = retract_recover_feedrate_mm_s;
  2263. float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  2264. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  2265. sync_plan_position_e();
  2266. prepare_move_to_destination();
  2267. }
  2268. feedrate_mm_s = old_feedrate_mm_s;
  2269. retracted[active_extruder] = retracting;
  2270. } // retract()
  2271. #endif // FWRETRACT
  2272. #if ENABLED(MIXING_EXTRUDER)
  2273. void normalize_mix() {
  2274. float mix_total = 0.0;
  2275. for (int i = 0; i < MIXING_STEPPERS; i++) mix_total += RECIPROCAL(mixing_factor[i]);
  2276. // Scale all values if they don't add up to ~1.0
  2277. if (!NEAR(mix_total, 1.0)) {
  2278. SERIAL_PROTOCOLLNPGM("Warning: Mix factors must add up to 1.0. Scaling.");
  2279. for (int i = 0; i < MIXING_STEPPERS; i++) mixing_factor[i] *= mix_total;
  2280. }
  2281. }
  2282. #if ENABLED(DIRECT_MIXING_IN_G1)
  2283. // Get mixing parameters from the GCode
  2284. // The total "must" be 1.0 (but it will be normalized)
  2285. // If no mix factors are given, the old mix is preserved
  2286. void gcode_get_mix() {
  2287. const char* mixing_codes = "ABCDHI";
  2288. byte mix_bits = 0;
  2289. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) {
  2290. if (code_seen(mixing_codes[i])) {
  2291. SBI(mix_bits, i);
  2292. float v = code_value_float();
  2293. NOLESS(v, 0.0);
  2294. mixing_factor[i] = RECIPROCAL(v);
  2295. }
  2296. }
  2297. // If any mixing factors were included, clear the rest
  2298. // If none were included, preserve the last mix
  2299. if (mix_bits) {
  2300. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  2301. if (!TEST(mix_bits, i)) mixing_factor[i] = 0.0;
  2302. normalize_mix();
  2303. }
  2304. }
  2305. #endif
  2306. #endif
  2307. /**
  2308. * ***************************************************************************
  2309. * ***************************** G-CODE HANDLING *****************************
  2310. * ***************************************************************************
  2311. */
  2312. /**
  2313. * Set XYZE destination and feedrate from the current GCode command
  2314. *
  2315. * - Set destination from included axis codes
  2316. * - Set to current for missing axis codes
  2317. * - Set the feedrate, if included
  2318. */
  2319. void gcode_get_destination() {
  2320. LOOP_XYZE(i) {
  2321. if (code_seen(axis_codes[i]))
  2322. destination[i] = code_value_axis_units(i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  2323. else
  2324. destination[i] = current_position[i];
  2325. }
  2326. if (code_seen('F') && code_value_linear_units() > 0.0)
  2327. feedrate_mm_s = MMM_TO_MMS(code_value_linear_units());
  2328. #if ENABLED(PRINTCOUNTER)
  2329. if (!DEBUGGING(DRYRUN))
  2330. print_job_timer.incFilamentUsed(destination[E_AXIS] - current_position[E_AXIS]);
  2331. #endif
  2332. // Get ABCDHI mixing factors
  2333. #if ENABLED(MIXING_EXTRUDER) && ENABLED(DIRECT_MIXING_IN_G1)
  2334. gcode_get_mix();
  2335. #endif
  2336. }
  2337. void unknown_command_error() {
  2338. SERIAL_ECHO_START;
  2339. SERIAL_ECHOPAIR(MSG_UNKNOWN_COMMAND, current_command);
  2340. SERIAL_CHAR('"');
  2341. SERIAL_EOL;
  2342. }
  2343. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  2344. /**
  2345. * Output a "busy" message at regular intervals
  2346. * while the machine is not accepting commands.
  2347. */
  2348. void host_keepalive() {
  2349. millis_t ms = millis();
  2350. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  2351. if (PENDING(ms, next_busy_signal_ms)) return;
  2352. switch (busy_state) {
  2353. case IN_HANDLER:
  2354. case IN_PROCESS:
  2355. SERIAL_ECHO_START;
  2356. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  2357. break;
  2358. case PAUSED_FOR_USER:
  2359. SERIAL_ECHO_START;
  2360. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  2361. break;
  2362. case PAUSED_FOR_INPUT:
  2363. SERIAL_ECHO_START;
  2364. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  2365. break;
  2366. default:
  2367. break;
  2368. }
  2369. }
  2370. next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
  2371. }
  2372. #endif //HOST_KEEPALIVE_FEATURE
  2373. bool position_is_reachable(float target[XYZ]
  2374. #if HAS_BED_PROBE
  2375. , bool by_probe=false
  2376. #endif
  2377. ) {
  2378. float dx = RAW_X_POSITION(target[X_AXIS]),
  2379. dy = RAW_Y_POSITION(target[Y_AXIS]);
  2380. #if HAS_BED_PROBE
  2381. if (by_probe) {
  2382. dx -= X_PROBE_OFFSET_FROM_EXTRUDER;
  2383. dy -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  2384. }
  2385. #endif
  2386. #if IS_SCARA
  2387. #if MIDDLE_DEAD_ZONE_R > 0
  2388. const float R2 = HYPOT2(dx - SCARA_OFFSET_X, dy - SCARA_OFFSET_Y);
  2389. return R2 >= sq(float(MIDDLE_DEAD_ZONE_R)) && R2 <= sq(L1 + L2);
  2390. #else
  2391. return HYPOT2(dx - SCARA_OFFSET_X, dy - SCARA_OFFSET_Y) <= sq(L1 + L2);
  2392. #endif
  2393. #elif ENABLED(DELTA)
  2394. return HYPOT2(dx, dy) <= sq(DELTA_PRINTABLE_RADIUS);
  2395. #else
  2396. const float dz = RAW_Z_POSITION(target[Z_AXIS]);
  2397. return dx >= X_MIN_POS - 0.0001 && dx <= X_MAX_POS + 0.0001
  2398. && dy >= Y_MIN_POS - 0.0001 && dy <= Y_MAX_POS + 0.0001
  2399. && dz >= Z_MIN_POS - 0.0001 && dz <= Z_MAX_POS + 0.0001;
  2400. #endif
  2401. }
  2402. /**************************************************
  2403. ***************** GCode Handlers *****************
  2404. **************************************************/
  2405. /**
  2406. * G0, G1: Coordinated movement of X Y Z E axes
  2407. */
  2408. inline void gcode_G0_G1(
  2409. #if IS_SCARA
  2410. bool fast_move=false
  2411. #endif
  2412. ) {
  2413. if (IsRunning()) {
  2414. gcode_get_destination(); // For X Y Z E F
  2415. #if ENABLED(FWRETRACT)
  2416. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2417. float echange = destination[E_AXIS] - current_position[E_AXIS];
  2418. // Is this move an attempt to retract or recover?
  2419. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  2420. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  2421. sync_plan_position_e(); // AND from the planner
  2422. retract(!retracted[active_extruder]);
  2423. return;
  2424. }
  2425. }
  2426. #endif //FWRETRACT
  2427. #if IS_SCARA
  2428. fast_move ? prepare_uninterpolated_move_to_destination() : prepare_move_to_destination();
  2429. #else
  2430. prepare_move_to_destination();
  2431. #endif
  2432. }
  2433. }
  2434. /**
  2435. * G2: Clockwise Arc
  2436. * G3: Counterclockwise Arc
  2437. *
  2438. * This command has two forms: IJ-form and R-form.
  2439. *
  2440. * - I specifies an X offset. J specifies a Y offset.
  2441. * At least one of the IJ parameters is required.
  2442. * X and Y can be omitted to do a complete circle.
  2443. * The given XY is not error-checked. The arc ends
  2444. * based on the angle of the destination.
  2445. * Mixing I or J with R will throw an error.
  2446. *
  2447. * - R specifies the radius. X or Y is required.
  2448. * Omitting both X and Y will throw an error.
  2449. * X or Y must differ from the current XY.
  2450. * Mixing R with I or J will throw an error.
  2451. *
  2452. * Examples:
  2453. *
  2454. * G2 I10 ; CW circle centered at X+10
  2455. * G3 X20 Y12 R14 ; CCW circle with r=14 ending at X20 Y12
  2456. */
  2457. #if ENABLED(ARC_SUPPORT)
  2458. inline void gcode_G2_G3(bool clockwise) {
  2459. if (IsRunning()) {
  2460. #if ENABLED(SF_ARC_FIX)
  2461. bool relative_mode_backup = relative_mode;
  2462. relative_mode = true;
  2463. #endif
  2464. gcode_get_destination();
  2465. #if ENABLED(SF_ARC_FIX)
  2466. relative_mode = relative_mode_backup;
  2467. #endif
  2468. float arc_offset[2] = { 0.0, 0.0 };
  2469. if (code_seen('R')) {
  2470. const float r = code_value_axis_units(X_AXIS),
  2471. x1 = current_position[X_AXIS], y1 = current_position[Y_AXIS],
  2472. x2 = destination[X_AXIS], y2 = destination[Y_AXIS];
  2473. if (r && (x2 != x1 || y2 != y1)) {
  2474. const float e = clockwise ^ (r < 0) ? -1 : 1, // clockwise -1/1, counterclockwise 1/-1
  2475. dx = x2 - x1, dy = y2 - y1, // X and Y differences
  2476. d = HYPOT(dx, dy), // Linear distance between the points
  2477. h = sqrt(sq(r) - sq(d * 0.5)), // Distance to the arc pivot-point
  2478. mx = (x1 + x2) * 0.5, my = (y1 + y2) * 0.5, // Point between the two points
  2479. sx = -dy / d, sy = dx / d, // Slope of the perpendicular bisector
  2480. cx = mx + e * h * sx, cy = my + e * h * sy; // Pivot-point of the arc
  2481. arc_offset[X_AXIS] = cx - x1;
  2482. arc_offset[Y_AXIS] = cy - y1;
  2483. }
  2484. }
  2485. else {
  2486. if (code_seen('I')) arc_offset[X_AXIS] = code_value_axis_units(X_AXIS);
  2487. if (code_seen('J')) arc_offset[Y_AXIS] = code_value_axis_units(Y_AXIS);
  2488. }
  2489. if (arc_offset[0] || arc_offset[1]) {
  2490. // Send an arc to the planner
  2491. plan_arc(destination, arc_offset, clockwise);
  2492. refresh_cmd_timeout();
  2493. }
  2494. else {
  2495. // Bad arguments
  2496. SERIAL_ERROR_START;
  2497. SERIAL_ERRORLNPGM(MSG_ERR_ARC_ARGS);
  2498. }
  2499. }
  2500. }
  2501. #endif
  2502. /**
  2503. * G4: Dwell S<seconds> or P<milliseconds>
  2504. */
  2505. inline void gcode_G4() {
  2506. millis_t dwell_ms = 0;
  2507. if (code_seen('P')) dwell_ms = code_value_millis(); // milliseconds to wait
  2508. if (code_seen('S')) dwell_ms = code_value_millis_from_seconds(); // seconds to wait
  2509. stepper.synchronize();
  2510. refresh_cmd_timeout();
  2511. dwell_ms += previous_cmd_ms; // keep track of when we started waiting
  2512. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  2513. while (PENDING(millis(), dwell_ms)) idle();
  2514. }
  2515. #if ENABLED(BEZIER_CURVE_SUPPORT)
  2516. /**
  2517. * Parameters interpreted according to:
  2518. * http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline
  2519. * However I, J omission is not supported at this point; all
  2520. * parameters can be omitted and default to zero.
  2521. */
  2522. /**
  2523. * G5: Cubic B-spline
  2524. */
  2525. inline void gcode_G5() {
  2526. if (IsRunning()) {
  2527. gcode_get_destination();
  2528. float offset[] = {
  2529. code_seen('I') ? code_value_axis_units(X_AXIS) : 0.0,
  2530. code_seen('J') ? code_value_axis_units(Y_AXIS) : 0.0,
  2531. code_seen('P') ? code_value_axis_units(X_AXIS) : 0.0,
  2532. code_seen('Q') ? code_value_axis_units(Y_AXIS) : 0.0
  2533. };
  2534. plan_cubic_move(offset);
  2535. }
  2536. }
  2537. #endif // BEZIER_CURVE_SUPPORT
  2538. #if ENABLED(FWRETRACT)
  2539. /**
  2540. * G10 - Retract filament according to settings of M207
  2541. * G11 - Recover filament according to settings of M208
  2542. */
  2543. inline void gcode_G10_G11(bool doRetract=false) {
  2544. #if EXTRUDERS > 1
  2545. if (doRetract) {
  2546. retracted_swap[active_extruder] = (code_seen('S') && code_value_bool()); // checks for swap retract argument
  2547. }
  2548. #endif
  2549. retract(doRetract
  2550. #if EXTRUDERS > 1
  2551. , retracted_swap[active_extruder]
  2552. #endif
  2553. );
  2554. }
  2555. #endif //FWRETRACT
  2556. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  2557. /**
  2558. * G12: Clean the nozzle
  2559. */
  2560. inline void gcode_G12() {
  2561. // Don't allow nozzle cleaning without homing first
  2562. if (axis_unhomed_error(true, true, true)) { return; }
  2563. uint8_t const pattern = code_seen('P') ? code_value_ushort() : 0;
  2564. uint8_t const strokes = code_seen('S') ? code_value_ushort() : NOZZLE_CLEAN_STROKES;
  2565. uint8_t const objects = code_seen('T') ? code_value_ushort() : 3;
  2566. Nozzle::clean(pattern, strokes, objects);
  2567. }
  2568. #endif
  2569. #if ENABLED(INCH_MODE_SUPPORT)
  2570. /**
  2571. * G20: Set input mode to inches
  2572. */
  2573. inline void gcode_G20() { set_input_linear_units(LINEARUNIT_INCH); }
  2574. /**
  2575. * G21: Set input mode to millimeters
  2576. */
  2577. inline void gcode_G21() { set_input_linear_units(LINEARUNIT_MM); }
  2578. #endif
  2579. #if ENABLED(NOZZLE_PARK_FEATURE)
  2580. /**
  2581. * G27: Park the nozzle
  2582. */
  2583. inline void gcode_G27() {
  2584. // Don't allow nozzle parking without homing first
  2585. if (axis_unhomed_error(true, true, true)) { return; }
  2586. uint8_t const z_action = code_seen('P') ? code_value_ushort() : 0;
  2587. Nozzle::park(z_action);
  2588. }
  2589. #endif // NOZZLE_PARK_FEATURE
  2590. #if ENABLED(QUICK_HOME)
  2591. static void quick_home_xy() {
  2592. // Pretend the current position is 0,0
  2593. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2594. sync_plan_position();
  2595. int x_axis_home_dir =
  2596. #if ENABLED(DUAL_X_CARRIAGE)
  2597. x_home_dir(active_extruder)
  2598. #else
  2599. home_dir(X_AXIS)
  2600. #endif
  2601. ;
  2602. float mlx = max_length(X_AXIS),
  2603. mly = max_length(Y_AXIS),
  2604. mlratio = mlx > mly ? mly / mlx : mlx / mly,
  2605. fr_mm_s = min(homing_feedrate_mm_s[X_AXIS], homing_feedrate_mm_s[Y_AXIS]) * sqrt(sq(mlratio) + 1.0);
  2606. do_blocking_move_to_xy(1.5 * mlx * x_axis_home_dir, 1.5 * mly * home_dir(Y_AXIS), fr_mm_s);
  2607. endstops.hit_on_purpose(); // clear endstop hit flags
  2608. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2609. }
  2610. #endif // QUICK_HOME
  2611. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2612. void log_machine_info() {
  2613. SERIAL_ECHOPGM("Machine Type: ");
  2614. #if ENABLED(DELTA)
  2615. SERIAL_ECHOLNPGM("Delta");
  2616. #elif IS_SCARA
  2617. SERIAL_ECHOLNPGM("SCARA");
  2618. #elif IS_CORE
  2619. SERIAL_ECHOLNPGM("Core");
  2620. #else
  2621. SERIAL_ECHOLNPGM("Cartesian");
  2622. #endif
  2623. SERIAL_ECHOPGM("Probe: ");
  2624. #if ENABLED(FIX_MOUNTED_PROBE)
  2625. SERIAL_ECHOLNPGM("FIX_MOUNTED_PROBE");
  2626. #elif ENABLED(BLTOUCH)
  2627. SERIAL_ECHOLNPGM("BLTOUCH");
  2628. #elif HAS_Z_SERVO_ENDSTOP
  2629. SERIAL_ECHOLNPGM("SERVO PROBE");
  2630. #elif ENABLED(Z_PROBE_SLED)
  2631. SERIAL_ECHOLNPGM("Z_PROBE_SLED");
  2632. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  2633. SERIAL_ECHOLNPGM("Z_PROBE_ALLEN_KEY");
  2634. #else
  2635. SERIAL_ECHOLNPGM("NONE");
  2636. #endif
  2637. #if HAS_BED_PROBE
  2638. SERIAL_ECHOPAIR("Probe Offset X:", X_PROBE_OFFSET_FROM_EXTRUDER);
  2639. SERIAL_ECHOPAIR(" Y:", Y_PROBE_OFFSET_FROM_EXTRUDER);
  2640. SERIAL_ECHOPAIR(" Z:", zprobe_zoffset);
  2641. #if (X_PROBE_OFFSET_FROM_EXTRUDER > 0)
  2642. SERIAL_ECHOPGM(" (Right");
  2643. #elif (X_PROBE_OFFSET_FROM_EXTRUDER < 0)
  2644. SERIAL_ECHOPGM(" (Left");
  2645. #elif (Y_PROBE_OFFSET_FROM_EXTRUDER != 0)
  2646. SERIAL_ECHOPGM(" (Middle");
  2647. #else
  2648. SERIAL_ECHOPGM(" (Aligned With");
  2649. #endif
  2650. #if (Y_PROBE_OFFSET_FROM_EXTRUDER > 0)
  2651. SERIAL_ECHOPGM("-Back");
  2652. #elif (Y_PROBE_OFFSET_FROM_EXTRUDER < 0)
  2653. SERIAL_ECHOPGM("-Front");
  2654. #elif (X_PROBE_OFFSET_FROM_EXTRUDER != 0)
  2655. SERIAL_ECHOPGM("-Center");
  2656. #endif
  2657. if (zprobe_zoffset < 0)
  2658. SERIAL_ECHOPGM(" & Below");
  2659. else if (zprobe_zoffset > 0)
  2660. SERIAL_ECHOPGM(" & Above");
  2661. else
  2662. SERIAL_ECHOPGM(" & Same Z as");
  2663. SERIAL_ECHOLNPGM(" Nozzle)");
  2664. #endif
  2665. #if HAS_ABL
  2666. SERIAL_ECHOPGM("Auto Bed Leveling: ");
  2667. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  2668. SERIAL_ECHOPGM("LINEAR");
  2669. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2670. SERIAL_ECHOPGM("BILINEAR");
  2671. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  2672. SERIAL_ECHOPGM("3POINT");
  2673. #endif
  2674. if (planner.abl_enabled) {
  2675. SERIAL_ECHOLNPGM(" (enabled)");
  2676. #if ENABLED(AUTO_BED_LEVELING_LINEAR) || ENABLED(AUTO_BED_LEVELING_3POINT)
  2677. float diff[XYZ] = {
  2678. stepper.get_axis_position_mm(X_AXIS) - current_position[X_AXIS],
  2679. stepper.get_axis_position_mm(Y_AXIS) - current_position[Y_AXIS],
  2680. stepper.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS]
  2681. };
  2682. SERIAL_ECHOPGM("ABL Adjustment X");
  2683. if (diff[X_AXIS] > 0) SERIAL_CHAR('+');
  2684. SERIAL_ECHO(diff[X_AXIS]);
  2685. SERIAL_ECHOPGM(" Y");
  2686. if (diff[Y_AXIS] > 0) SERIAL_CHAR('+');
  2687. SERIAL_ECHO(diff[Y_AXIS]);
  2688. SERIAL_ECHOPGM(" Z");
  2689. if (diff[Z_AXIS] > 0) SERIAL_CHAR('+');
  2690. SERIAL_ECHO(diff[Z_AXIS]);
  2691. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2692. SERIAL_ECHOPAIR("ABL Adjustment Z", bilinear_z_offset(current_position));
  2693. #endif
  2694. }
  2695. SERIAL_EOL;
  2696. #elif ENABLED(MESH_BED_LEVELING)
  2697. SERIAL_ECHOPGM("Mesh Bed Leveling");
  2698. if (mbl.active()) {
  2699. SERIAL_ECHOLNPGM(" (enabled)");
  2700. SERIAL_ECHOPAIR("MBL Adjustment Z", mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS)));
  2701. }
  2702. SERIAL_EOL;
  2703. #endif
  2704. }
  2705. #endif // DEBUG_LEVELING_FEATURE
  2706. #if ENABLED(DELTA)
  2707. /**
  2708. * A delta can only safely home all axes at the same time
  2709. * This is like quick_home_xy() but for 3 towers.
  2710. */
  2711. inline void home_delta() {
  2712. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2713. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> home_delta", current_position);
  2714. #endif
  2715. // Init the current position of all carriages to 0,0,0
  2716. ZERO(current_position);
  2717. sync_plan_position();
  2718. // Move all carriages together linearly until an endstop is hit.
  2719. current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = (Z_MAX_LENGTH + 10);
  2720. feedrate_mm_s = homing_feedrate_mm_s[X_AXIS];
  2721. line_to_current_position();
  2722. stepper.synchronize();
  2723. endstops.hit_on_purpose(); // clear endstop hit flags
  2724. // At least one carriage has reached the top.
  2725. // Now re-home each carriage separately.
  2726. HOMEAXIS(A);
  2727. HOMEAXIS(B);
  2728. HOMEAXIS(C);
  2729. // Set all carriages to their home positions
  2730. // Do this here all at once for Delta, because
  2731. // XYZ isn't ABC. Applying this per-tower would
  2732. // give the impression that they are the same.
  2733. LOOP_XYZ(i) set_axis_is_at_home((AxisEnum)i);
  2734. SYNC_PLAN_POSITION_KINEMATIC();
  2735. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2736. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< home_delta", current_position);
  2737. #endif
  2738. }
  2739. #endif // DELTA
  2740. #if ENABLED(Z_SAFE_HOMING)
  2741. inline void home_z_safely() {
  2742. // Disallow Z homing if X or Y are unknown
  2743. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  2744. LCD_MESSAGEPGM(MSG_ERR_Z_HOMING);
  2745. SERIAL_ECHO_START;
  2746. SERIAL_ECHOLNPGM(MSG_ERR_Z_HOMING);
  2747. return;
  2748. }
  2749. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2750. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Z_SAFE_HOMING >>>");
  2751. #endif
  2752. SYNC_PLAN_POSITION_KINEMATIC();
  2753. /**
  2754. * Move the Z probe (or just the nozzle) to the safe homing point
  2755. */
  2756. destination[X_AXIS] = LOGICAL_X_POSITION(Z_SAFE_HOMING_X_POINT);
  2757. destination[Y_AXIS] = LOGICAL_Y_POSITION(Z_SAFE_HOMING_Y_POINT);
  2758. destination[Z_AXIS] = current_position[Z_AXIS]; // Z is already at the right height
  2759. if (position_is_reachable(
  2760. destination
  2761. #if HOMING_Z_WITH_PROBE
  2762. , true
  2763. #endif
  2764. )
  2765. ) {
  2766. #if HOMING_Z_WITH_PROBE
  2767. destination[X_AXIS] -= X_PROBE_OFFSET_FROM_EXTRUDER;
  2768. destination[Y_AXIS] -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  2769. #endif
  2770. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2771. if (DEBUGGING(LEVELING)) DEBUG_POS("Z_SAFE_HOMING", destination);
  2772. #endif
  2773. do_blocking_move_to_xy(destination[X_AXIS], destination[Y_AXIS]);
  2774. HOMEAXIS(Z);
  2775. }
  2776. else {
  2777. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  2778. SERIAL_ECHO_START;
  2779. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  2780. }
  2781. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2782. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  2783. #endif
  2784. }
  2785. #endif // Z_SAFE_HOMING
  2786. /**
  2787. * G28: Home all axes according to settings
  2788. *
  2789. * Parameters
  2790. *
  2791. * None Home to all axes with no parameters.
  2792. * With QUICK_HOME enabled XY will home together, then Z.
  2793. *
  2794. * Cartesian parameters
  2795. *
  2796. * X Home to the X endstop
  2797. * Y Home to the Y endstop
  2798. * Z Home to the Z endstop
  2799. *
  2800. */
  2801. inline void gcode_G28() {
  2802. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2803. if (DEBUGGING(LEVELING)) {
  2804. SERIAL_ECHOLNPGM(">>> gcode_G28");
  2805. log_machine_info();
  2806. }
  2807. #endif
  2808. // Wait for planner moves to finish!
  2809. stepper.synchronize();
  2810. // For auto bed leveling, clear the level matrix
  2811. #if HAS_ABL
  2812. reset_bed_level();
  2813. #endif
  2814. // Always home with tool 0 active
  2815. #if HOTENDS > 1
  2816. uint8_t old_tool_index = active_extruder;
  2817. tool_change(0, 0, true);
  2818. #endif
  2819. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  2820. extruder_duplication_enabled = false;
  2821. #endif
  2822. /**
  2823. * For mesh bed leveling deactivate the mesh calculations, will be turned
  2824. * on again when homing all axis
  2825. */
  2826. #if ENABLED(MESH_BED_LEVELING)
  2827. float pre_home_z = MESH_HOME_SEARCH_Z;
  2828. if (mbl.active()) {
  2829. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2830. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL was active");
  2831. #endif
  2832. // Save known Z position if already homed
  2833. if (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) {
  2834. pre_home_z = current_position[Z_AXIS];
  2835. pre_home_z += mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS));
  2836. }
  2837. mbl.set_active(false);
  2838. current_position[Z_AXIS] = pre_home_z;
  2839. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2840. if (DEBUGGING(LEVELING)) DEBUG_POS("Set Z to pre_home_z", current_position);
  2841. #endif
  2842. }
  2843. #endif
  2844. setup_for_endstop_or_probe_move();
  2845. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2846. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  2847. #endif
  2848. endstops.enable(true); // Enable endstops for next homing move
  2849. #if ENABLED(DELTA)
  2850. home_delta();
  2851. #else // NOT DELTA
  2852. bool homeX = code_seen('X'), homeY = code_seen('Y'), homeZ = code_seen('Z');
  2853. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  2854. set_destination_to_current();
  2855. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2856. if (home_all_axis || homeZ) {
  2857. HOMEAXIS(Z);
  2858. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2859. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  2860. #endif
  2861. }
  2862. #else
  2863. if (home_all_axis || homeX || homeY) {
  2864. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  2865. destination[Z_AXIS] = LOGICAL_Z_POSITION(Z_HOMING_HEIGHT);
  2866. if (destination[Z_AXIS] > current_position[Z_AXIS]) {
  2867. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2868. if (DEBUGGING(LEVELING))
  2869. SERIAL_ECHOLNPAIR("Raise Z (before homing) to ", destination[Z_AXIS]);
  2870. #endif
  2871. do_blocking_move_to_z(destination[Z_AXIS]);
  2872. }
  2873. }
  2874. #endif
  2875. #if ENABLED(QUICK_HOME)
  2876. if (home_all_axis || (homeX && homeY)) quick_home_xy();
  2877. #endif
  2878. #if ENABLED(HOME_Y_BEFORE_X)
  2879. // Home Y
  2880. if (home_all_axis || homeY) {
  2881. HOMEAXIS(Y);
  2882. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2883. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2884. #endif
  2885. }
  2886. #endif
  2887. // Home X
  2888. if (home_all_axis || homeX) {
  2889. #if ENABLED(DUAL_X_CARRIAGE)
  2890. int tmp_extruder = active_extruder;
  2891. active_extruder = !active_extruder;
  2892. HOMEAXIS(X);
  2893. inactive_extruder_x_pos = RAW_X_POSITION(current_position[X_AXIS]);
  2894. active_extruder = tmp_extruder;
  2895. HOMEAXIS(X);
  2896. // reset state used by the different modes
  2897. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2898. delayed_move_time = 0;
  2899. active_extruder_parked = true;
  2900. #else
  2901. HOMEAXIS(X);
  2902. #endif
  2903. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2904. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  2905. #endif
  2906. }
  2907. #if DISABLED(HOME_Y_BEFORE_X)
  2908. // Home Y
  2909. if (home_all_axis || homeY) {
  2910. HOMEAXIS(Y);
  2911. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2912. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2913. #endif
  2914. }
  2915. #endif
  2916. // Home Z last if homing towards the bed
  2917. #if Z_HOME_DIR < 0
  2918. if (home_all_axis || homeZ) {
  2919. #if ENABLED(Z_SAFE_HOMING)
  2920. home_z_safely();
  2921. #else
  2922. HOMEAXIS(Z);
  2923. #endif
  2924. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2925. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all_axis || homeZ) > final", current_position);
  2926. #endif
  2927. } // home_all_axis || homeZ
  2928. #endif // Z_HOME_DIR < 0
  2929. SYNC_PLAN_POSITION_KINEMATIC();
  2930. #endif // !DELTA (gcode_G28)
  2931. endstops.not_homing();
  2932. #if ENABLED(DELTA) && ENABLED(DELTA_HOME_TO_SAFE_ZONE)
  2933. // move to a height where we can use the full xy-area
  2934. do_blocking_move_to_z(delta_clip_start_height);
  2935. #endif
  2936. // Enable mesh leveling again
  2937. #if ENABLED(MESH_BED_LEVELING)
  2938. if (mbl.has_mesh()) {
  2939. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2940. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL has mesh");
  2941. #endif
  2942. if (home_all_axis || (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && homeZ)) {
  2943. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2944. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL Z homing");
  2945. #endif
  2946. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2947. #if Z_HOME_DIR > 0
  2948. + Z_MAX_POS
  2949. #endif
  2950. ;
  2951. SYNC_PLAN_POSITION_KINEMATIC();
  2952. mbl.set_active(true);
  2953. #if ENABLED(MESH_G28_REST_ORIGIN)
  2954. current_position[Z_AXIS] = 0.0;
  2955. set_destination_to_current();
  2956. line_to_destination(homing_feedrate_mm_s[Z_AXIS]);
  2957. stepper.synchronize();
  2958. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2959. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL Rest Origin", current_position);
  2960. #endif
  2961. #else
  2962. planner.unapply_leveling(current_position);
  2963. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2964. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL adjusted MESH_HOME_SEARCH_Z", current_position);
  2965. #endif
  2966. #endif
  2967. }
  2968. else if ((axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) && (homeX || homeY)) {
  2969. current_position[Z_AXIS] = pre_home_z;
  2970. SYNC_PLAN_POSITION_KINEMATIC();
  2971. mbl.set_active(true);
  2972. planner.unapply_leveling(current_position);
  2973. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2974. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL Home X or Y", current_position);
  2975. #endif
  2976. }
  2977. }
  2978. #endif
  2979. clean_up_after_endstop_or_probe_move();
  2980. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2981. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G28");
  2982. #endif
  2983. // Restore the active tool after homing
  2984. #if HOTENDS > 1
  2985. tool_change(old_tool_index, 0, true);
  2986. #endif
  2987. report_current_position();
  2988. }
  2989. #if HAS_PROBING_PROCEDURE
  2990. void out_of_range_error(const char* p_edge) {
  2991. SERIAL_PROTOCOLPGM("?Probe ");
  2992. serialprintPGM(p_edge);
  2993. SERIAL_PROTOCOLLNPGM(" position out of range.");
  2994. }
  2995. #endif
  2996. #if ENABLED(MESH_BED_LEVELING)
  2997. inline void _mbl_goto_xy(float x, float y) {
  2998. float old_feedrate_mm_s = feedrate_mm_s;
  2999. feedrate_mm_s = homing_feedrate_mm_s[Z_AXIS];
  3000. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  3001. #if Z_CLEARANCE_BETWEEN_PROBES > Z_HOMING_HEIGHT
  3002. + Z_CLEARANCE_BETWEEN_PROBES
  3003. #elif Z_HOMING_HEIGHT > 0
  3004. + Z_HOMING_HEIGHT
  3005. #endif
  3006. ;
  3007. line_to_current_position();
  3008. feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  3009. current_position[X_AXIS] = LOGICAL_X_POSITION(x);
  3010. current_position[Y_AXIS] = LOGICAL_Y_POSITION(y);
  3011. line_to_current_position();
  3012. #if Z_CLEARANCE_BETWEEN_PROBES > 0 || Z_HOMING_HEIGHT > 0
  3013. feedrate_mm_s = homing_feedrate_mm_s[Z_AXIS];
  3014. current_position[Z_AXIS] = LOGICAL_Z_POSITION(MESH_HOME_SEARCH_Z);
  3015. line_to_current_position();
  3016. #endif
  3017. feedrate_mm_s = old_feedrate_mm_s;
  3018. stepper.synchronize();
  3019. }
  3020. /**
  3021. * G29: Mesh-based Z probe, probes a grid and produces a
  3022. * mesh to compensate for variable bed height
  3023. *
  3024. * Parameters With MESH_BED_LEVELING:
  3025. *
  3026. * S0 Produce a mesh report
  3027. * S1 Start probing mesh points
  3028. * S2 Probe the next mesh point
  3029. * S3 Xn Yn Zn.nn Manually modify a single point
  3030. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  3031. * S5 Reset and disable mesh
  3032. *
  3033. * The S0 report the points as below
  3034. *
  3035. * +----> X-axis 1-n
  3036. * |
  3037. * |
  3038. * v Y-axis 1-n
  3039. *
  3040. */
  3041. inline void gcode_G29() {
  3042. static int probe_point = -1;
  3043. MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_byte() : MeshReport;
  3044. if (state < 0 || state > 5) {
  3045. SERIAL_PROTOCOLLNPGM("S out of range (0-5).");
  3046. return;
  3047. }
  3048. int8_t px, py;
  3049. switch (state) {
  3050. case MeshReport:
  3051. if (mbl.has_mesh()) {
  3052. SERIAL_PROTOCOLPAIR("State: ", mbl.active() ? MSG_ON : MSG_OFF);
  3053. SERIAL_PROTOCOLLNPGM("\nNum X,Y: " STRINGIFY(MESH_NUM_X_POINTS) "," STRINGIFY(MESH_NUM_Y_POINTS));
  3054. SERIAL_PROTOCOLLNPGM("Z search height: " STRINGIFY(MESH_HOME_SEARCH_Z));
  3055. SERIAL_PROTOCOLPGM("Z offset: "); SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  3056. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3057. for (py = 0; py < MESH_NUM_Y_POINTS; py++) {
  3058. for (px = 0; px < MESH_NUM_X_POINTS; px++) {
  3059. SERIAL_PROTOCOLPGM(" ");
  3060. SERIAL_PROTOCOL_F(mbl.z_values[py][px], 5);
  3061. }
  3062. SERIAL_EOL;
  3063. }
  3064. }
  3065. else
  3066. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  3067. break;
  3068. case MeshStart:
  3069. mbl.reset();
  3070. probe_point = 0;
  3071. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  3072. break;
  3073. case MeshNext:
  3074. if (probe_point < 0) {
  3075. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  3076. return;
  3077. }
  3078. // For each G29 S2...
  3079. if (probe_point == 0) {
  3080. // For the initial G29 S2 make Z a positive value (e.g., 4.0)
  3081. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  3082. #if Z_HOME_DIR > 0
  3083. + Z_MAX_POS
  3084. #endif
  3085. ;
  3086. SYNC_PLAN_POSITION_KINEMATIC();
  3087. }
  3088. else {
  3089. // For G29 S2 after adjusting Z.
  3090. mbl.set_zigzag_z(probe_point - 1, current_position[Z_AXIS]);
  3091. }
  3092. // If there's another point to sample, move there with optional lift.
  3093. if (probe_point < (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)) {
  3094. mbl.zigzag(probe_point, px, py);
  3095. _mbl_goto_xy(mbl.get_probe_x(px), mbl.get_probe_y(py));
  3096. probe_point++;
  3097. }
  3098. else {
  3099. // One last "return to the bed" (as originally coded) at completion
  3100. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  3101. #if Z_CLEARANCE_BETWEEN_PROBES > Z_HOMING_HEIGHT
  3102. + Z_CLEARANCE_BETWEEN_PROBES
  3103. #elif Z_HOMING_HEIGHT > 0
  3104. + Z_HOMING_HEIGHT
  3105. #endif
  3106. ;
  3107. line_to_current_position();
  3108. stepper.synchronize();
  3109. // After recording the last point, activate the mbl and home
  3110. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  3111. probe_point = -1;
  3112. mbl.set_has_mesh(true);
  3113. enqueue_and_echo_commands_P(PSTR("G28"));
  3114. }
  3115. break;
  3116. case MeshSet:
  3117. if (code_seen('X')) {
  3118. px = code_value_int() - 1;
  3119. if (px < 0 || px >= MESH_NUM_X_POINTS) {
  3120. SERIAL_PROTOCOLLNPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").");
  3121. return;
  3122. }
  3123. }
  3124. else {
  3125. SERIAL_CHAR('X'); SERIAL_PROTOCOLLNPGM(" not entered.");
  3126. return;
  3127. }
  3128. if (code_seen('Y')) {
  3129. py = code_value_int() - 1;
  3130. if (py < 0 || py >= MESH_NUM_Y_POINTS) {
  3131. SERIAL_PROTOCOLLNPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").");
  3132. return;
  3133. }
  3134. }
  3135. else {
  3136. SERIAL_CHAR('Y'); SERIAL_PROTOCOLLNPGM(" not entered.");
  3137. return;
  3138. }
  3139. if (code_seen('Z')) {
  3140. mbl.z_values[py][px] = code_value_axis_units(Z_AXIS);
  3141. }
  3142. else {
  3143. SERIAL_CHAR('Z'); SERIAL_PROTOCOLLNPGM(" not entered.");
  3144. return;
  3145. }
  3146. break;
  3147. case MeshSetZOffset:
  3148. if (code_seen('Z')) {
  3149. mbl.z_offset = code_value_axis_units(Z_AXIS);
  3150. }
  3151. else {
  3152. SERIAL_CHAR('Z'); SERIAL_PROTOCOLLNPGM(" not entered.");
  3153. return;
  3154. }
  3155. break;
  3156. case MeshReset:
  3157. if (mbl.active()) {
  3158. current_position[Z_AXIS] +=
  3159. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS)) - MESH_HOME_SEARCH_Z;
  3160. mbl.reset();
  3161. SYNC_PLAN_POSITION_KINEMATIC();
  3162. }
  3163. else
  3164. mbl.reset();
  3165. } // switch(state)
  3166. report_current_position();
  3167. }
  3168. #elif HAS_ABL
  3169. /**
  3170. * G29: Detailed Z probe, probes the bed at 3 or more points.
  3171. * Will fail if the printer has not been homed with G28.
  3172. *
  3173. * Enhanced G29 Auto Bed Leveling Probe Routine
  3174. *
  3175. * Parameters With ABL_GRID:
  3176. *
  3177. * P Set the size of the grid that will be probed (P x P points).
  3178. * Not supported by non-linear delta printer bed leveling.
  3179. * Example: "G29 P4"
  3180. *
  3181. * S Set the XY travel speed between probe points (in units/min)
  3182. *
  3183. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  3184. * or clean the rotation Matrix. Useful to check the topology
  3185. * after a first run of G29.
  3186. *
  3187. * V Set the verbose level (0-4). Example: "G29 V3"
  3188. *
  3189. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  3190. * This is useful for manual bed leveling and finding flaws in the bed (to
  3191. * assist with part placement).
  3192. * Not supported by non-linear delta printer bed leveling.
  3193. *
  3194. * F Set the Front limit of the probing grid
  3195. * B Set the Back limit of the probing grid
  3196. * L Set the Left limit of the probing grid
  3197. * R Set the Right limit of the probing grid
  3198. *
  3199. * Global Parameters:
  3200. *
  3201. * E/e By default G29 will engage the Z probe, test the bed, then disengage.
  3202. * Include "E" to engage/disengage the Z probe for each sample.
  3203. * There's no extra effect if you have a fixed Z probe.
  3204. * Usage: "G29 E" or "G29 e"
  3205. *
  3206. */
  3207. inline void gcode_G29() {
  3208. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3209. bool query = code_seen('Q');
  3210. uint8_t old_debug_flags = marlin_debug_flags;
  3211. if (query) marlin_debug_flags |= DEBUG_LEVELING;
  3212. if (DEBUGGING(LEVELING)) {
  3213. DEBUG_POS(">>> gcode_G29", current_position);
  3214. log_machine_info();
  3215. }
  3216. marlin_debug_flags = old_debug_flags;
  3217. if (query) return;
  3218. #endif
  3219. // Don't allow auto-leveling without homing first
  3220. if (axis_unhomed_error(true, true, true)) return;
  3221. int verbose_level = code_seen('V') ? code_value_int() : 1;
  3222. if (verbose_level < 0 || verbose_level > 4) {
  3223. SERIAL_PROTOCOLLNPGM("?(V)erbose Level is implausible (0-4).");
  3224. return;
  3225. }
  3226. bool dryrun = code_seen('D'),
  3227. stow_probe_after_each = code_seen('E');
  3228. #if ABL_GRID
  3229. if (verbose_level > 0) {
  3230. SERIAL_PROTOCOLLNPGM("G29 Auto Bed Leveling");
  3231. if (dryrun) SERIAL_PROTOCOLLNPGM("Running in DRY-RUN mode");
  3232. }
  3233. #if ABL_PLANAR
  3234. bool do_topography_map = verbose_level > 2 || code_seen('T');
  3235. // X and Y specify points in each direction, overriding the default
  3236. // These values may be saved with the completed mesh
  3237. int abl_grid_points_x = code_seen('X') ? code_value_int() : ABL_GRID_POINTS_X,
  3238. abl_grid_points_y = code_seen('Y') ? code_value_int() : ABL_GRID_POINTS_Y;
  3239. if (code_seen('P')) abl_grid_points_x = abl_grid_points_y = code_value_int();
  3240. if (abl_grid_points_x < 2 || abl_grid_points_y < 2) {
  3241. SERIAL_PROTOCOLLNPGM("?Number of probe points is implausible (2 minimum).");
  3242. return;
  3243. }
  3244. #else
  3245. const int abl_grid_points_x = ABL_GRID_POINTS_X, abl_grid_points_y = ABL_GRID_POINTS_Y;
  3246. #endif
  3247. xy_probe_feedrate_mm_s = MMM_TO_MMS(code_seen('S') ? code_value_linear_units() : XY_PROBE_SPEED);
  3248. int left_probe_bed_position = code_seen('L') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(LEFT_PROBE_BED_POSITION),
  3249. right_probe_bed_position = code_seen('R') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(RIGHT_PROBE_BED_POSITION),
  3250. front_probe_bed_position = code_seen('F') ? (int)code_value_axis_units(Y_AXIS) : LOGICAL_Y_POSITION(FRONT_PROBE_BED_POSITION),
  3251. back_probe_bed_position = code_seen('B') ? (int)code_value_axis_units(Y_AXIS) : LOGICAL_Y_POSITION(BACK_PROBE_BED_POSITION);
  3252. bool left_out_l = left_probe_bed_position < LOGICAL_X_POSITION(MIN_PROBE_X),
  3253. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  3254. right_out_r = right_probe_bed_position > LOGICAL_X_POSITION(MAX_PROBE_X),
  3255. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  3256. front_out_f = front_probe_bed_position < LOGICAL_Y_POSITION(MIN_PROBE_Y),
  3257. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  3258. back_out_b = back_probe_bed_position > LOGICAL_Y_POSITION(MAX_PROBE_Y),
  3259. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  3260. if (left_out || right_out || front_out || back_out) {
  3261. if (left_out) {
  3262. out_of_range_error(PSTR("(L)eft"));
  3263. left_probe_bed_position = left_out_l ? LOGICAL_X_POSITION(MIN_PROBE_X) : right_probe_bed_position - (MIN_PROBE_EDGE);
  3264. }
  3265. if (right_out) {
  3266. out_of_range_error(PSTR("(R)ight"));
  3267. right_probe_bed_position = right_out_r ? LOGICAL_Y_POSITION(MAX_PROBE_X) : left_probe_bed_position + MIN_PROBE_EDGE;
  3268. }
  3269. if (front_out) {
  3270. out_of_range_error(PSTR("(F)ront"));
  3271. front_probe_bed_position = front_out_f ? LOGICAL_Y_POSITION(MIN_PROBE_Y) : back_probe_bed_position - (MIN_PROBE_EDGE);
  3272. }
  3273. if (back_out) {
  3274. out_of_range_error(PSTR("(B)ack"));
  3275. back_probe_bed_position = back_out_b ? LOGICAL_Y_POSITION(MAX_PROBE_Y) : front_probe_bed_position + MIN_PROBE_EDGE;
  3276. }
  3277. return;
  3278. }
  3279. #endif // ABL_GRID
  3280. stepper.synchronize();
  3281. // Disable auto bed leveling during G29
  3282. bool abl_should_enable = planner.abl_enabled;
  3283. planner.abl_enabled = false;
  3284. if (!dryrun) {
  3285. // Re-orient the current position without leveling
  3286. // based on where the steppers are positioned.
  3287. set_current_from_steppers_for_axis(ALL_AXES);
  3288. // Sync the planner to where the steppers stopped
  3289. SYNC_PLAN_POSITION_KINEMATIC();
  3290. }
  3291. setup_for_endstop_or_probe_move();
  3292. // Deploy the probe. Probe will raise if needed.
  3293. if (DEPLOY_PROBE()) {
  3294. planner.abl_enabled = abl_should_enable;
  3295. return;
  3296. }
  3297. float xProbe = 0, yProbe = 0, measured_z = 0;
  3298. #if ABL_GRID
  3299. // probe at the points of a lattice grid
  3300. const float xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (abl_grid_points_x - 1),
  3301. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (abl_grid_points_y - 1);
  3302. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3303. float zoffset = zprobe_zoffset;
  3304. if (code_seen('Z')) zoffset += code_value_axis_units(Z_AXIS);
  3305. if ( xGridSpacing != bilinear_grid_spacing[X_AXIS]
  3306. || yGridSpacing != bilinear_grid_spacing[Y_AXIS]
  3307. || left_probe_bed_position != bilinear_start[X_AXIS]
  3308. || front_probe_bed_position != bilinear_start[Y_AXIS]
  3309. ) {
  3310. reset_bed_level();
  3311. bilinear_grid_spacing[X_AXIS] = xGridSpacing;
  3312. bilinear_grid_spacing[Y_AXIS] = yGridSpacing;
  3313. bilinear_start[X_AXIS] = RAW_X_POSITION(left_probe_bed_position);
  3314. bilinear_start[Y_AXIS] = RAW_Y_POSITION(front_probe_bed_position);
  3315. // Can't re-enable (on error) until the new grid is written
  3316. abl_should_enable = false;
  3317. }
  3318. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3319. /**
  3320. * solve the plane equation ax + by + d = z
  3321. * A is the matrix with rows [x y 1] for all the probed points
  3322. * B is the vector of the Z positions
  3323. * the normal vector to the plane is formed by the coefficients of the
  3324. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3325. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3326. */
  3327. int abl2 = abl_grid_points_x * abl_grid_points_y,
  3328. indexIntoAB[abl_grid_points_x][abl_grid_points_y],
  3329. probePointCounter = -1;
  3330. float eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  3331. eqnBVector[abl2], // "B" vector of Z points
  3332. mean = 0.0;
  3333. #endif // AUTO_BED_LEVELING_LINEAR
  3334. #if ENABLED(PROBE_Y_FIRST)
  3335. #define PR_OUTER_VAR xCount
  3336. #define PR_OUTER_END abl_grid_points_x
  3337. #define PR_INNER_VAR yCount
  3338. #define PR_INNER_END abl_grid_points_y
  3339. #else
  3340. #define PR_OUTER_VAR yCount
  3341. #define PR_OUTER_END abl_grid_points_y
  3342. #define PR_INNER_VAR xCount
  3343. #define PR_INNER_END abl_grid_points_x
  3344. #endif
  3345. bool zig = PR_OUTER_END & 1; // Always end at RIGHT and BACK_PROBE_BED_POSITION
  3346. // Outer loop is Y with PROBE_Y_FIRST disabled
  3347. for (uint8_t PR_OUTER_VAR = 0; PR_OUTER_VAR < PR_OUTER_END; PR_OUTER_VAR++) {
  3348. int8_t inStart, inStop, inInc;
  3349. if (zig) { // away from origin
  3350. inStart = 0;
  3351. inStop = PR_INNER_END;
  3352. inInc = 1;
  3353. }
  3354. else { // towards origin
  3355. inStart = PR_INNER_END - 1;
  3356. inStop = -1;
  3357. inInc = -1;
  3358. }
  3359. zig = !zig; // zag
  3360. // Inner loop is Y with PROBE_Y_FIRST enabled
  3361. for (int8_t PR_INNER_VAR = inStart; PR_INNER_VAR != inStop; PR_INNER_VAR += inInc) {
  3362. float xBase = left_probe_bed_position + xGridSpacing * xCount,
  3363. yBase = front_probe_bed_position + yGridSpacing * yCount;
  3364. xProbe = floor(xBase + (xBase < 0 ? 0 : 0.5));
  3365. yProbe = floor(yBase + (yBase < 0 ? 0 : 0.5));
  3366. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3367. indexIntoAB[xCount][yCount] = ++probePointCounter;
  3368. #endif
  3369. #if IS_KINEMATIC
  3370. // Avoid probing outside the round or hexagonal area
  3371. float pos[XYZ] = { xProbe, yProbe, 0 };
  3372. if (!position_is_reachable(pos, true)) continue;
  3373. #endif
  3374. measured_z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  3375. if (measured_z == NAN) {
  3376. planner.abl_enabled = abl_should_enable;
  3377. return;
  3378. }
  3379. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3380. mean += measured_z;
  3381. eqnBVector[probePointCounter] = measured_z;
  3382. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  3383. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  3384. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  3385. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3386. bed_level_grid[xCount][yCount] = measured_z + zoffset;
  3387. #endif
  3388. idle();
  3389. } //xProbe
  3390. } //yProbe
  3391. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3392. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3393. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> 3-point Leveling");
  3394. #endif
  3395. // Probe at 3 arbitrary points
  3396. vector_3 points[3] = {
  3397. vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, 0),
  3398. vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, 0),
  3399. vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, 0)
  3400. };
  3401. for (uint8_t i = 0; i < 3; ++i) {
  3402. // Retain the last probe position
  3403. xProbe = LOGICAL_X_POSITION(points[i].x);
  3404. yProbe = LOGICAL_Y_POSITION(points[i].y);
  3405. measured_z = points[i].z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  3406. }
  3407. if (measured_z == NAN) {
  3408. planner.abl_enabled = abl_should_enable;
  3409. return;
  3410. }
  3411. if (!dryrun) {
  3412. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  3413. if (planeNormal.z < 0) {
  3414. planeNormal.x *= -1;
  3415. planeNormal.y *= -1;
  3416. planeNormal.z *= -1;
  3417. }
  3418. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  3419. // Can't re-enable (on error) until the new grid is written
  3420. abl_should_enable = false;
  3421. }
  3422. #endif // AUTO_BED_LEVELING_3POINT
  3423. // Raise to _Z_CLEARANCE_DEPLOY_PROBE. Stow the probe.
  3424. if (STOW_PROBE()) {
  3425. planner.abl_enabled = abl_should_enable;
  3426. return;
  3427. }
  3428. //
  3429. // Unless this is a dry run, auto bed leveling will
  3430. // definitely be enabled after this point
  3431. //
  3432. // Restore state after probing
  3433. clean_up_after_endstop_or_probe_move();
  3434. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3435. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  3436. #endif
  3437. // Calculate leveling, print reports, correct the position
  3438. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3439. if (!dryrun) extrapolate_unprobed_bed_level();
  3440. print_bed_level();
  3441. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3442. // For LINEAR leveling calculate matrix, print reports, correct the position
  3443. // solve lsq problem
  3444. float plane_equation_coefficients[3];
  3445. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  3446. mean /= abl2;
  3447. if (verbose_level) {
  3448. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3449. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  3450. SERIAL_PROTOCOLPGM(" b: ");
  3451. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  3452. SERIAL_PROTOCOLPGM(" d: ");
  3453. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  3454. SERIAL_EOL;
  3455. if (verbose_level > 2) {
  3456. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  3457. SERIAL_PROTOCOL_F(mean, 8);
  3458. SERIAL_EOL;
  3459. }
  3460. }
  3461. // Create the matrix but don't correct the position yet
  3462. if (!dryrun) {
  3463. planner.bed_level_matrix = matrix_3x3::create_look_at(
  3464. vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1)
  3465. );
  3466. }
  3467. // Show the Topography map if enabled
  3468. if (do_topography_map) {
  3469. SERIAL_PROTOCOLLNPGM("\nBed Height Topography:\n"
  3470. " +--- BACK --+\n"
  3471. " | |\n"
  3472. " L | (+) | R\n"
  3473. " E | | I\n"
  3474. " F | (-) N (+) | G\n"
  3475. " T | | H\n"
  3476. " | (-) | T\n"
  3477. " | |\n"
  3478. " O-- FRONT --+\n"
  3479. " (0,0)");
  3480. float min_diff = 999;
  3481. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  3482. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  3483. int ind = indexIntoAB[xx][yy];
  3484. float diff = eqnBVector[ind] - mean,
  3485. x_tmp = eqnAMatrix[ind + 0 * abl2],
  3486. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3487. z_tmp = 0;
  3488. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3489. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  3490. if (diff >= 0.0)
  3491. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  3492. else
  3493. SERIAL_PROTOCOLCHAR(' ');
  3494. SERIAL_PROTOCOL_F(diff, 5);
  3495. } // xx
  3496. SERIAL_EOL;
  3497. } // yy
  3498. SERIAL_EOL;
  3499. if (verbose_level > 3) {
  3500. SERIAL_PROTOCOLLNPGM("\nCorrected Bed Height vs. Bed Topology:");
  3501. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  3502. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  3503. int ind = indexIntoAB[xx][yy];
  3504. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  3505. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3506. z_tmp = 0;
  3507. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3508. float diff = eqnBVector[ind] - z_tmp - min_diff;
  3509. if (diff >= 0.0)
  3510. SERIAL_PROTOCOLPGM(" +");
  3511. // Include + for column alignment
  3512. else
  3513. SERIAL_PROTOCOLCHAR(' ');
  3514. SERIAL_PROTOCOL_F(diff, 5);
  3515. } // xx
  3516. SERIAL_EOL;
  3517. } // yy
  3518. SERIAL_EOL;
  3519. }
  3520. } //do_topography_map
  3521. #endif // AUTO_BED_LEVELING_LINEAR
  3522. #if ABL_PLANAR
  3523. // For LINEAR and 3POINT leveling correct the current position
  3524. if (verbose_level > 0)
  3525. planner.bed_level_matrix.debug("\n\nBed Level Correction Matrix:");
  3526. if (!dryrun) {
  3527. //
  3528. // Correct the current XYZ position based on the tilted plane.
  3529. //
  3530. // 1. Get the distance from the current position to the reference point.
  3531. float x_dist = RAW_CURRENT_POSITION(X_AXIS) - X_TILT_FULCRUM,
  3532. y_dist = RAW_CURRENT_POSITION(Y_AXIS) - Y_TILT_FULCRUM,
  3533. z_real = current_position[Z_AXIS],
  3534. z_zero = 0;
  3535. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3536. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 uncorrected XYZ", current_position);
  3537. #endif
  3538. matrix_3x3 inverse = matrix_3x3::transpose(planner.bed_level_matrix);
  3539. // 2. Apply the inverse matrix to the distance
  3540. // from the reference point to X, Y, and zero.
  3541. apply_rotation_xyz(inverse, x_dist, y_dist, z_zero);
  3542. // 3. Get the matrix-based corrected Z.
  3543. // (Even if not used, get it for comparison.)
  3544. float new_z = z_real + z_zero;
  3545. // 4. Use the last measured distance to the bed, if possible
  3546. if ( NEAR(current_position[X_AXIS], xProbe - (X_PROBE_OFFSET_FROM_EXTRUDER))
  3547. && NEAR(current_position[Y_AXIS], yProbe - (Y_PROBE_OFFSET_FROM_EXTRUDER))
  3548. ) {
  3549. float simple_z = z_real - (measured_z - (-zprobe_zoffset));
  3550. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3551. if (DEBUGGING(LEVELING)) {
  3552. SERIAL_ECHOPAIR("Z from Probe:", simple_z);
  3553. SERIAL_ECHOPAIR(" Matrix:", new_z);
  3554. SERIAL_ECHOLNPAIR(" Discrepancy:", simple_z - new_z);
  3555. }
  3556. #endif
  3557. new_z = simple_z;
  3558. }
  3559. // 5. The rotated XY and corrected Z are now current_position
  3560. current_position[X_AXIS] = LOGICAL_X_POSITION(x_dist) + X_TILT_FULCRUM;
  3561. current_position[Y_AXIS] = LOGICAL_Y_POSITION(y_dist) + Y_TILT_FULCRUM;
  3562. current_position[Z_AXIS] = new_z;
  3563. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3564. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 corrected XYZ", current_position);
  3565. #endif
  3566. }
  3567. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3568. if (!dryrun) {
  3569. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3570. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("G29 uncorrected Z:", current_position[Z_AXIS]);
  3571. #endif
  3572. // Unapply the offset because it is going to be immediately applied
  3573. // and cause compensation movement in Z
  3574. current_position[Z_AXIS] -= bilinear_z_offset(current_position);
  3575. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3576. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR(" corrected Z:", current_position[Z_AXIS]);
  3577. #endif
  3578. }
  3579. #endif // ABL_PLANAR
  3580. #ifdef Z_PROBE_END_SCRIPT
  3581. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3582. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("Z Probe End Script: ", Z_PROBE_END_SCRIPT);
  3583. #endif
  3584. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  3585. stepper.synchronize();
  3586. #endif
  3587. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3588. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G29");
  3589. #endif
  3590. report_current_position();
  3591. KEEPALIVE_STATE(IN_HANDLER);
  3592. // Auto Bed Leveling is complete! Enable if possible.
  3593. planner.abl_enabled = dryrun ? abl_should_enable : true;
  3594. if (planner.abl_enabled)
  3595. SYNC_PLAN_POSITION_KINEMATIC();
  3596. }
  3597. #endif // HAS_ABL
  3598. #if HAS_BED_PROBE
  3599. /**
  3600. * G30: Do a single Z probe at the current XY
  3601. * Usage:
  3602. * G30 <X#> <Y#> <S#>
  3603. * X = Probe X position (default=current probe position)
  3604. * Y = Probe Y position (default=current probe position)
  3605. * S = Stows the probe if 1 (default=1)
  3606. */
  3607. inline void gcode_G30() {
  3608. float X_probe_location = code_seen('X') ? code_value_axis_units(X_AXIS) : current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  3609. Y_probe_location = code_seen('Y') ? code_value_axis_units(Y_AXIS) : current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3610. float pos[XYZ] = { X_probe_location, Y_probe_location, LOGICAL_Z_POSITION(0) };
  3611. if (!position_is_reachable(pos, true)) return;
  3612. bool stow = code_seen('S') ? code_value_bool() : true;
  3613. // Disable leveling so the planner won't mess with us
  3614. #if PLANNER_LEVELING
  3615. set_bed_leveling_enabled(false);
  3616. #endif
  3617. setup_for_endstop_or_probe_move();
  3618. float measured_z = probe_pt(X_probe_location, Y_probe_location, stow, 1);
  3619. SERIAL_PROTOCOLPGM("Bed X: ");
  3620. SERIAL_PROTOCOL(X_probe_location + 0.0001);
  3621. SERIAL_PROTOCOLPGM(" Y: ");
  3622. SERIAL_PROTOCOL(Y_probe_location + 0.0001);
  3623. SERIAL_PROTOCOLPGM(" Z: ");
  3624. SERIAL_PROTOCOLLN(measured_z + 0.0001);
  3625. clean_up_after_endstop_or_probe_move();
  3626. report_current_position();
  3627. }
  3628. #if ENABLED(Z_PROBE_SLED)
  3629. /**
  3630. * G31: Deploy the Z probe
  3631. */
  3632. inline void gcode_G31() { DEPLOY_PROBE(); }
  3633. /**
  3634. * G32: Stow the Z probe
  3635. */
  3636. inline void gcode_G32() { STOW_PROBE(); }
  3637. #endif // Z_PROBE_SLED
  3638. #endif // HAS_BED_PROBE
  3639. #if ENABLED(G38_PROBE_TARGET)
  3640. static bool G38_run_probe() {
  3641. bool G38_pass_fail = false;
  3642. // Get direction of move and retract
  3643. float retract_mm[XYZ];
  3644. LOOP_XYZ(i) {
  3645. float dist = destination[i] - current_position[i];
  3646. retract_mm[i] = fabs(dist) < G38_MINIMUM_MOVE ? 0 : home_bump_mm((AxisEnum)i) * (dist > 0 ? -1 : 1);
  3647. }
  3648. stepper.synchronize(); // wait until the machine is idle
  3649. // Move until destination reached or target hit
  3650. endstops.enable(true);
  3651. G38_move = true;
  3652. G38_endstop_hit = false;
  3653. prepare_move_to_destination();
  3654. stepper.synchronize();
  3655. G38_move = false;
  3656. endstops.hit_on_purpose();
  3657. set_current_from_steppers_for_axis(ALL_AXES);
  3658. SYNC_PLAN_POSITION_KINEMATIC();
  3659. // Only do remaining moves if target was hit
  3660. if (G38_endstop_hit) {
  3661. G38_pass_fail = true;
  3662. // Move away by the retract distance
  3663. set_destination_to_current();
  3664. LOOP_XYZ(i) destination[i] += retract_mm[i];
  3665. endstops.enable(false);
  3666. prepare_move_to_destination();
  3667. stepper.synchronize();
  3668. feedrate_mm_s /= 4;
  3669. // Bump the target more slowly
  3670. LOOP_XYZ(i) destination[i] -= retract_mm[i] * 2;
  3671. endstops.enable(true);
  3672. G38_move = true;
  3673. prepare_move_to_destination();
  3674. stepper.synchronize();
  3675. G38_move = false;
  3676. set_current_from_steppers_for_axis(ALL_AXES);
  3677. SYNC_PLAN_POSITION_KINEMATIC();
  3678. }
  3679. endstops.hit_on_purpose();
  3680. endstops.not_homing();
  3681. return G38_pass_fail;
  3682. }
  3683. /**
  3684. * G38.2 - probe toward workpiece, stop on contact, signal error if failure
  3685. * G38.3 - probe toward workpiece, stop on contact
  3686. *
  3687. * Like G28 except uses Z min endstop for all axes
  3688. */
  3689. inline void gcode_G38(bool is_38_2) {
  3690. // Get X Y Z E F
  3691. gcode_get_destination();
  3692. setup_for_endstop_or_probe_move();
  3693. // If any axis has enough movement, do the move
  3694. LOOP_XYZ(i)
  3695. if (fabs(destination[i] - current_position[i]) >= G38_MINIMUM_MOVE) {
  3696. if (!code_seen('F')) feedrate_mm_s = homing_feedrate_mm_s[i];
  3697. // If G38.2 fails throw an error
  3698. if (!G38_run_probe() && is_38_2) {
  3699. SERIAL_ERROR_START;
  3700. SERIAL_ERRORLNPGM("Failed to reach target");
  3701. }
  3702. break;
  3703. }
  3704. clean_up_after_endstop_or_probe_move();
  3705. }
  3706. #endif // G38_PROBE_TARGET
  3707. /**
  3708. * G92: Set current position to given X Y Z E
  3709. */
  3710. inline void gcode_G92() {
  3711. bool didXYZ = false,
  3712. didE = code_seen('E');
  3713. if (!didE) stepper.synchronize();
  3714. LOOP_XYZE(i) {
  3715. if (code_seen(axis_codes[i])) {
  3716. #if IS_SCARA
  3717. current_position[i] = code_value_axis_units(i);
  3718. if (i != E_AXIS) didXYZ = true;
  3719. #else
  3720. float p = current_position[i],
  3721. v = code_value_axis_units(i);
  3722. current_position[i] = v;
  3723. if (i != E_AXIS) {
  3724. didXYZ = true;
  3725. position_shift[i] += v - p; // Offset the coordinate space
  3726. update_software_endstops((AxisEnum)i);
  3727. }
  3728. #endif
  3729. }
  3730. }
  3731. if (didXYZ)
  3732. SYNC_PLAN_POSITION_KINEMATIC();
  3733. else if (didE)
  3734. sync_plan_position_e();
  3735. report_current_position();
  3736. }
  3737. #if ENABLED(EMERGENCY_PARSER) || ENABLED(ULTIPANEL)
  3738. /**
  3739. * M0: Unconditional stop - Wait for user button press on LCD
  3740. * M1: Conditional stop - Wait for user button press on LCD
  3741. */
  3742. inline void gcode_M0_M1() {
  3743. char* args = current_command_args;
  3744. millis_t codenum = 0;
  3745. bool hasP = false, hasS = false;
  3746. if (code_seen('P')) {
  3747. codenum = code_value_millis(); // milliseconds to wait
  3748. hasP = codenum > 0;
  3749. }
  3750. if (code_seen('S')) {
  3751. codenum = code_value_millis_from_seconds(); // seconds to wait
  3752. hasS = codenum > 0;
  3753. }
  3754. #if ENABLED(ULTIPANEL)
  3755. if (!hasP && !hasS && *args != '\0')
  3756. lcd_setstatus(args, true);
  3757. else {
  3758. LCD_MESSAGEPGM(MSG_USERWAIT);
  3759. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  3760. dontExpireStatus();
  3761. #endif
  3762. }
  3763. #else
  3764. if (!hasP && !hasS && *args != '\0') {
  3765. SERIAL_ECHO_START;
  3766. SERIAL_ECHOLN(args);
  3767. }
  3768. #endif
  3769. wait_for_user = true;
  3770. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3771. stepper.synchronize();
  3772. refresh_cmd_timeout();
  3773. if (codenum > 0) {
  3774. codenum += previous_cmd_ms; // wait until this time for a click
  3775. while (PENDING(millis(), codenum) && wait_for_user) idle();
  3776. }
  3777. else {
  3778. #if ENABLED(ULTIPANEL)
  3779. if (lcd_detected()) {
  3780. while (wait_for_user) idle();
  3781. IS_SD_PRINTING ? LCD_MESSAGEPGM(MSG_RESUMING) : LCD_MESSAGEPGM(WELCOME_MSG);
  3782. }
  3783. #else
  3784. while (wait_for_user) idle();
  3785. #endif
  3786. }
  3787. wait_for_user = false;
  3788. KEEPALIVE_STATE(IN_HANDLER);
  3789. }
  3790. #endif // EMERGENCY_PARSER || ULTIPANEL
  3791. /**
  3792. * M17: Enable power on all stepper motors
  3793. */
  3794. inline void gcode_M17() {
  3795. LCD_MESSAGEPGM(MSG_NO_MOVE);
  3796. enable_all_steppers();
  3797. }
  3798. #if ENABLED(SDSUPPORT)
  3799. /**
  3800. * M20: List SD card to serial output
  3801. */
  3802. inline void gcode_M20() {
  3803. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  3804. card.ls();
  3805. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  3806. }
  3807. /**
  3808. * M21: Init SD Card
  3809. */
  3810. inline void gcode_M21() { card.initsd(); }
  3811. /**
  3812. * M22: Release SD Card
  3813. */
  3814. inline void gcode_M22() { card.release(); }
  3815. /**
  3816. * M23: Open a file
  3817. */
  3818. inline void gcode_M23() { card.openFile(current_command_args, true); }
  3819. /**
  3820. * M24: Start SD Print
  3821. */
  3822. inline void gcode_M24() {
  3823. card.startFileprint();
  3824. print_job_timer.start();
  3825. }
  3826. /**
  3827. * M25: Pause SD Print
  3828. */
  3829. inline void gcode_M25() { card.pauseSDPrint(); }
  3830. /**
  3831. * M26: Set SD Card file index
  3832. */
  3833. inline void gcode_M26() {
  3834. if (card.cardOK && code_seen('S'))
  3835. card.setIndex(code_value_long());
  3836. }
  3837. /**
  3838. * M27: Get SD Card status
  3839. */
  3840. inline void gcode_M27() { card.getStatus(); }
  3841. /**
  3842. * M28: Start SD Write
  3843. */
  3844. inline void gcode_M28() { card.openFile(current_command_args, false); }
  3845. /**
  3846. * M29: Stop SD Write
  3847. * Processed in write to file routine above
  3848. */
  3849. inline void gcode_M29() {
  3850. // card.saving = false;
  3851. }
  3852. /**
  3853. * M30 <filename>: Delete SD Card file
  3854. */
  3855. inline void gcode_M30() {
  3856. if (card.cardOK) {
  3857. card.closefile();
  3858. card.removeFile(current_command_args);
  3859. }
  3860. }
  3861. #endif // SDSUPPORT
  3862. /**
  3863. * M31: Get the time since the start of SD Print (or last M109)
  3864. */
  3865. inline void gcode_M31() {
  3866. char buffer[21];
  3867. duration_t elapsed = print_job_timer.duration();
  3868. elapsed.toString(buffer);
  3869. lcd_setstatus(buffer);
  3870. SERIAL_ECHO_START;
  3871. SERIAL_ECHOLNPAIR("Print time: ", buffer);
  3872. #if ENABLED(AUTOTEMP)
  3873. thermalManager.autotempShutdown();
  3874. #endif
  3875. }
  3876. #if ENABLED(SDSUPPORT)
  3877. /**
  3878. * M32: Select file and start SD Print
  3879. */
  3880. inline void gcode_M32() {
  3881. if (card.sdprinting)
  3882. stepper.synchronize();
  3883. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  3884. if (!namestartpos)
  3885. namestartpos = current_command_args; // Default name position, 4 letters after the M
  3886. else
  3887. namestartpos++; //to skip the '!'
  3888. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  3889. if (card.cardOK) {
  3890. card.openFile(namestartpos, true, call_procedure);
  3891. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  3892. card.setIndex(code_value_long());
  3893. card.startFileprint();
  3894. // Procedure calls count as normal print time.
  3895. if (!call_procedure) print_job_timer.start();
  3896. }
  3897. }
  3898. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  3899. /**
  3900. * M33: Get the long full path of a file or folder
  3901. *
  3902. * Parameters:
  3903. * <dospath> Case-insensitive DOS-style path to a file or folder
  3904. *
  3905. * Example:
  3906. * M33 miscel~1/armchair/armcha~1.gco
  3907. *
  3908. * Output:
  3909. * /Miscellaneous/Armchair/Armchair.gcode
  3910. */
  3911. inline void gcode_M33() {
  3912. card.printLongPath(current_command_args);
  3913. }
  3914. #endif
  3915. /**
  3916. * M928: Start SD Write
  3917. */
  3918. inline void gcode_M928() {
  3919. card.openLogFile(current_command_args);
  3920. }
  3921. #endif // SDSUPPORT
  3922. /**
  3923. * Sensitive pin test for M42, M226
  3924. */
  3925. static bool pin_is_protected(uint8_t pin) {
  3926. static const int sensitive_pins[] = SENSITIVE_PINS;
  3927. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  3928. if (sensitive_pins[i] == pin) return true;
  3929. return false;
  3930. }
  3931. /**
  3932. * M42: Change pin status via GCode
  3933. *
  3934. * P<pin> Pin number (LED if omitted)
  3935. * S<byte> Pin status from 0 - 255
  3936. */
  3937. inline void gcode_M42() {
  3938. if (!code_seen('S')) return;
  3939. int pin_status = code_value_int();
  3940. if (pin_status < 0 || pin_status > 255) return;
  3941. int pin_number = code_seen('P') ? code_value_int() : LED_PIN;
  3942. if (pin_number < 0) return;
  3943. if (pin_is_protected(pin_number)) {
  3944. SERIAL_ERROR_START;
  3945. SERIAL_ERRORLNPGM(MSG_ERR_PROTECTED_PIN);
  3946. return;
  3947. }
  3948. pinMode(pin_number, OUTPUT);
  3949. digitalWrite(pin_number, pin_status);
  3950. analogWrite(pin_number, pin_status);
  3951. #if FAN_COUNT > 0
  3952. switch (pin_number) {
  3953. #if HAS_FAN0
  3954. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  3955. #endif
  3956. #if HAS_FAN1
  3957. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  3958. #endif
  3959. #if HAS_FAN2
  3960. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  3961. #endif
  3962. }
  3963. #endif
  3964. }
  3965. #if ENABLED(PINS_DEBUGGING)
  3966. #include "pinsDebug.h"
  3967. /**
  3968. * M43: Pin report and debug
  3969. *
  3970. * E<bool> Enable / disable background endstop monitoring
  3971. * - Machine continues to operate
  3972. * - Reports changes to endstops
  3973. * - Toggles LED when an endstop changes
  3974. *
  3975. * or
  3976. *
  3977. * P<pin> Pin to read or watch. If omitted, read/watch all pins.
  3978. * W<bool> Watch pins -reporting changes- until reset, click, or M108.
  3979. * I<bool> Flag to ignore Marlin's pin protection.
  3980. *
  3981. */
  3982. inline void gcode_M43() {
  3983. // Enable or disable endstop monitoring
  3984. if (code_seen('E')) {
  3985. endstop_monitor_flag = code_value_bool();
  3986. SERIAL_PROTOCOLPGM("endstop monitor ");
  3987. SERIAL_PROTOCOL(endstop_monitor_flag ? "en" : "dis");
  3988. SERIAL_PROTOCOLLNPGM("abled");
  3989. return;
  3990. }
  3991. // Get the range of pins to test or watch
  3992. int first_pin = 0, last_pin = NUM_DIGITAL_PINS - 1;
  3993. if (code_seen('P')) {
  3994. first_pin = last_pin = code_value_byte();
  3995. if (first_pin > NUM_DIGITAL_PINS - 1) return;
  3996. }
  3997. bool ignore_protection = code_seen('I') ? code_value_bool() : false;
  3998. // Watch until click, M108, or reset
  3999. if (code_seen('W') && code_value_bool()) { // watch digital pins
  4000. byte pin_state[last_pin - first_pin + 1];
  4001. for (int8_t pin = first_pin; pin <= last_pin; pin++) {
  4002. if (pin_is_protected(pin) && !ignore_protection) continue;
  4003. pinMode(pin, INPUT_PULLUP);
  4004. // if (IS_ANALOG(pin))
  4005. // pin_state[pin - first_pin] = analogRead(pin - analogInputToDigitalPin(0)); // int16_t pin_state[...]
  4006. // else
  4007. pin_state[pin - first_pin] = digitalRead(pin);
  4008. }
  4009. #if ENABLED(EMERGENCY_PARSER) || ENABLED(ULTIPANEL)
  4010. wait_for_user = true;
  4011. #endif
  4012. for(;;) {
  4013. for (int8_t pin = first_pin; pin <= last_pin; pin++) {
  4014. if (pin_is_protected(pin)) continue;
  4015. byte val;
  4016. // if (IS_ANALOG(pin))
  4017. // val = analogRead(pin - analogInputToDigitalPin(0)); // int16_t val
  4018. // else
  4019. val = digitalRead(pin);
  4020. if (val != pin_state[pin - first_pin]) {
  4021. report_pin_state(pin);
  4022. pin_state[pin - first_pin] = val;
  4023. }
  4024. }
  4025. #if ENABLED(EMERGENCY_PARSER) || ENABLED(ULTIPANEL)
  4026. if (!wait_for_user) break;
  4027. #endif
  4028. safe_delay(500);
  4029. }
  4030. return;
  4031. }
  4032. // Report current state of selected pin(s)
  4033. for (uint8_t pin = first_pin; pin <= last_pin; pin++)
  4034. report_pin_state_extended(pin, ignore_protection);
  4035. }
  4036. #endif // PINS_DEBUGGING
  4037. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  4038. /**
  4039. * M48: Z probe repeatability measurement function.
  4040. *
  4041. * Usage:
  4042. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  4043. * P = Number of sampled points (4-50, default 10)
  4044. * X = Sample X position
  4045. * Y = Sample Y position
  4046. * V = Verbose level (0-4, default=1)
  4047. * E = Engage Z probe for each reading
  4048. * L = Number of legs of movement before probe
  4049. * S = Schizoid (Or Star if you prefer)
  4050. *
  4051. * This function assumes the bed has been homed. Specifically, that a G28 command
  4052. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  4053. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4054. * regenerated.
  4055. */
  4056. inline void gcode_M48() {
  4057. if (axis_unhomed_error(true, true, true)) return;
  4058. int8_t verbose_level = code_seen('V') ? code_value_byte() : 1;
  4059. if (verbose_level < 0 || verbose_level > 4) {
  4060. SERIAL_PROTOCOLLNPGM("?Verbose Level not plausible (0-4).");
  4061. return;
  4062. }
  4063. if (verbose_level > 0)
  4064. SERIAL_PROTOCOLLNPGM("M48 Z-Probe Repeatability Test");
  4065. int8_t n_samples = code_seen('P') ? code_value_byte() : 10;
  4066. if (n_samples < 4 || n_samples > 50) {
  4067. SERIAL_PROTOCOLLNPGM("?Sample size not plausible (4-50).");
  4068. return;
  4069. }
  4070. float X_current = current_position[X_AXIS],
  4071. Y_current = current_position[Y_AXIS];
  4072. bool stow_probe_after_each = code_seen('E');
  4073. float X_probe_location = code_seen('X') ? code_value_axis_units(X_AXIS) : X_current + X_PROBE_OFFSET_FROM_EXTRUDER;
  4074. #if DISABLED(DELTA)
  4075. if (X_probe_location < LOGICAL_X_POSITION(MIN_PROBE_X) || X_probe_location > LOGICAL_X_POSITION(MAX_PROBE_X)) {
  4076. out_of_range_error(PSTR("X"));
  4077. return;
  4078. }
  4079. #endif
  4080. float Y_probe_location = code_seen('Y') ? code_value_axis_units(Y_AXIS) : Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER;
  4081. #if DISABLED(DELTA)
  4082. if (Y_probe_location < LOGICAL_Y_POSITION(MIN_PROBE_Y) || Y_probe_location > LOGICAL_Y_POSITION(MAX_PROBE_Y)) {
  4083. out_of_range_error(PSTR("Y"));
  4084. return;
  4085. }
  4086. #else
  4087. float pos[XYZ] = { X_probe_location, Y_probe_location, 0 };
  4088. if (!position_is_reachable(pos, true)) {
  4089. SERIAL_PROTOCOLLNPGM("? (X,Y) location outside of probeable radius.");
  4090. return;
  4091. }
  4092. #endif
  4093. bool seen_L = code_seen('L');
  4094. uint8_t n_legs = seen_L ? code_value_byte() : 0;
  4095. if (n_legs > 15) {
  4096. SERIAL_PROTOCOLLNPGM("?Number of legs in movement not plausible (0-15).");
  4097. return;
  4098. }
  4099. if (n_legs == 1) n_legs = 2;
  4100. bool schizoid_flag = code_seen('S');
  4101. if (schizoid_flag && !seen_L) n_legs = 7;
  4102. /**
  4103. * Now get everything to the specified probe point So we can safely do a
  4104. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  4105. * we don't want to use that as a starting point for each probe.
  4106. */
  4107. if (verbose_level > 2)
  4108. SERIAL_PROTOCOLLNPGM("Positioning the probe...");
  4109. // Disable bed level correction in M48 because we want the raw data when we probe
  4110. #if HAS_ABL
  4111. reset_bed_level();
  4112. #endif
  4113. setup_for_endstop_or_probe_move();
  4114. // Move to the first point, deploy, and probe
  4115. probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  4116. randomSeed(millis());
  4117. double mean = 0.0, sigma = 0.0, min = 99999.9, max = -99999.9, sample_set[n_samples];
  4118. for (uint8_t n = 0; n < n_samples; n++) {
  4119. if (n_legs) {
  4120. int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  4121. float angle = random(0.0, 360.0),
  4122. radius = random(
  4123. #if ENABLED(DELTA)
  4124. DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
  4125. #else
  4126. 5, X_MAX_LENGTH / 8
  4127. #endif
  4128. );
  4129. if (verbose_level > 3) {
  4130. SERIAL_ECHOPAIR("Starting radius: ", radius);
  4131. SERIAL_ECHOPAIR(" angle: ", angle);
  4132. SERIAL_ECHOPGM(" Direction: ");
  4133. if (dir > 0) SERIAL_ECHOPGM("Counter-");
  4134. SERIAL_ECHOLNPGM("Clockwise");
  4135. }
  4136. for (uint8_t l = 0; l < n_legs - 1; l++) {
  4137. double delta_angle;
  4138. if (schizoid_flag)
  4139. // The points of a 5 point star are 72 degrees apart. We need to
  4140. // skip a point and go to the next one on the star.
  4141. delta_angle = dir * 2.0 * 72.0;
  4142. else
  4143. // If we do this line, we are just trying to move further
  4144. // around the circle.
  4145. delta_angle = dir * (float) random(25, 45);
  4146. angle += delta_angle;
  4147. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  4148. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  4149. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  4150. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  4151. X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
  4152. Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
  4153. #if DISABLED(DELTA)
  4154. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  4155. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  4156. #else
  4157. // If we have gone out too far, we can do a simple fix and scale the numbers
  4158. // back in closer to the origin.
  4159. while (HYPOT(X_current, Y_current) > DELTA_PROBEABLE_RADIUS) {
  4160. X_current /= 1.25;
  4161. Y_current /= 1.25;
  4162. if (verbose_level > 3) {
  4163. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  4164. SERIAL_ECHOLNPAIR(", ", Y_current);
  4165. }
  4166. }
  4167. #endif
  4168. if (verbose_level > 3) {
  4169. SERIAL_PROTOCOLPGM("Going to:");
  4170. SERIAL_ECHOPAIR(" X", X_current);
  4171. SERIAL_ECHOPAIR(" Y", Y_current);
  4172. SERIAL_ECHOLNPAIR(" Z", current_position[Z_AXIS]);
  4173. }
  4174. do_blocking_move_to_xy(X_current, Y_current);
  4175. } // n_legs loop
  4176. } // n_legs
  4177. // Probe a single point
  4178. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, 0);
  4179. /**
  4180. * Get the current mean for the data points we have so far
  4181. */
  4182. double sum = 0.0;
  4183. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  4184. mean = sum / (n + 1);
  4185. NOMORE(min, sample_set[n]);
  4186. NOLESS(max, sample_set[n]);
  4187. /**
  4188. * Now, use that mean to calculate the standard deviation for the
  4189. * data points we have so far
  4190. */
  4191. sum = 0.0;
  4192. for (uint8_t j = 0; j <= n; j++)
  4193. sum += sq(sample_set[j] - mean);
  4194. sigma = sqrt(sum / (n + 1));
  4195. if (verbose_level > 0) {
  4196. if (verbose_level > 1) {
  4197. SERIAL_PROTOCOL(n + 1);
  4198. SERIAL_PROTOCOLPGM(" of ");
  4199. SERIAL_PROTOCOL((int)n_samples);
  4200. SERIAL_PROTOCOLPGM(": z: ");
  4201. SERIAL_PROTOCOL_F(sample_set[n], 3);
  4202. if (verbose_level > 2) {
  4203. SERIAL_PROTOCOLPGM(" mean: ");
  4204. SERIAL_PROTOCOL_F(mean, 4);
  4205. SERIAL_PROTOCOLPGM(" sigma: ");
  4206. SERIAL_PROTOCOL_F(sigma, 6);
  4207. SERIAL_PROTOCOLPGM(" min: ");
  4208. SERIAL_PROTOCOL_F(min, 3);
  4209. SERIAL_PROTOCOLPGM(" max: ");
  4210. SERIAL_PROTOCOL_F(max, 3);
  4211. SERIAL_PROTOCOLPGM(" range: ");
  4212. SERIAL_PROTOCOL_F(max-min, 3);
  4213. }
  4214. }
  4215. SERIAL_EOL;
  4216. }
  4217. } // End of probe loop
  4218. if (STOW_PROBE()) return;
  4219. SERIAL_PROTOCOLPGM("Finished!");
  4220. SERIAL_EOL;
  4221. if (verbose_level > 0) {
  4222. SERIAL_PROTOCOLPGM("Mean: ");
  4223. SERIAL_PROTOCOL_F(mean, 6);
  4224. SERIAL_PROTOCOLPGM(" Min: ");
  4225. SERIAL_PROTOCOL_F(min, 3);
  4226. SERIAL_PROTOCOLPGM(" Max: ");
  4227. SERIAL_PROTOCOL_F(max, 3);
  4228. SERIAL_PROTOCOLPGM(" Range: ");
  4229. SERIAL_PROTOCOL_F(max-min, 3);
  4230. SERIAL_EOL;
  4231. }
  4232. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4233. SERIAL_PROTOCOL_F(sigma, 6);
  4234. SERIAL_EOL;
  4235. SERIAL_EOL;
  4236. clean_up_after_endstop_or_probe_move();
  4237. report_current_position();
  4238. }
  4239. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  4240. /**
  4241. * M75: Start print timer
  4242. */
  4243. inline void gcode_M75() { print_job_timer.start(); }
  4244. /**
  4245. * M76: Pause print timer
  4246. */
  4247. inline void gcode_M76() { print_job_timer.pause(); }
  4248. /**
  4249. * M77: Stop print timer
  4250. */
  4251. inline void gcode_M77() { print_job_timer.stop(); }
  4252. #if ENABLED(PRINTCOUNTER)
  4253. /**
  4254. * M78: Show print statistics
  4255. */
  4256. inline void gcode_M78() {
  4257. // "M78 S78" will reset the statistics
  4258. if (code_seen('S') && code_value_int() == 78)
  4259. print_job_timer.initStats();
  4260. else
  4261. print_job_timer.showStats();
  4262. }
  4263. #endif
  4264. /**
  4265. * M104: Set hot end temperature
  4266. */
  4267. inline void gcode_M104() {
  4268. if (get_target_extruder_from_command(104)) return;
  4269. if (DEBUGGING(DRYRUN)) return;
  4270. #if ENABLED(SINGLENOZZLE)
  4271. if (target_extruder != active_extruder) return;
  4272. #endif
  4273. if (code_seen('S')) {
  4274. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  4275. #if ENABLED(DUAL_X_CARRIAGE)
  4276. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  4277. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  4278. #endif
  4279. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  4280. /**
  4281. * Stop the timer at the end of print, starting is managed by
  4282. * 'heat and wait' M109.
  4283. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  4284. * stand by mode, for instance in a dual extruder setup, without affecting
  4285. * the running print timer.
  4286. */
  4287. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  4288. print_job_timer.stop();
  4289. LCD_MESSAGEPGM(WELCOME_MSG);
  4290. }
  4291. #endif
  4292. if (code_value_temp_abs() > thermalManager.degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  4293. }
  4294. #if ENABLED(AUTOTEMP)
  4295. planner.autotemp_M104_M109();
  4296. #endif
  4297. }
  4298. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  4299. void print_heaterstates() {
  4300. #if HAS_TEMP_HOTEND
  4301. SERIAL_PROTOCOLPGM(" T:");
  4302. SERIAL_PROTOCOL_F(thermalManager.degHotend(target_extruder), 1);
  4303. SERIAL_PROTOCOLPGM(" /");
  4304. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(target_extruder), 1);
  4305. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  4306. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[target_extruder] / OVERSAMPLENR);
  4307. SERIAL_CHAR(')');
  4308. #endif
  4309. #endif
  4310. #if HAS_TEMP_BED
  4311. SERIAL_PROTOCOLPGM(" B:");
  4312. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  4313. SERIAL_PROTOCOLPGM(" /");
  4314. SERIAL_PROTOCOL_F(thermalManager.degTargetBed(), 1);
  4315. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  4316. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_bed_raw / OVERSAMPLENR);
  4317. SERIAL_CHAR(')');
  4318. #endif
  4319. #endif
  4320. #if HOTENDS > 1
  4321. HOTEND_LOOP() {
  4322. SERIAL_PROTOCOLPAIR(" T", e);
  4323. SERIAL_PROTOCOLCHAR(':');
  4324. SERIAL_PROTOCOL_F(thermalManager.degHotend(e), 1);
  4325. SERIAL_PROTOCOLPGM(" /");
  4326. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(e), 1);
  4327. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  4328. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[e] / OVERSAMPLENR);
  4329. SERIAL_CHAR(')');
  4330. #endif
  4331. }
  4332. #endif
  4333. SERIAL_PROTOCOLPGM(" @:");
  4334. SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder));
  4335. #if HAS_TEMP_BED
  4336. SERIAL_PROTOCOLPGM(" B@:");
  4337. SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1));
  4338. #endif
  4339. #if HOTENDS > 1
  4340. HOTEND_LOOP() {
  4341. SERIAL_PROTOCOLPAIR(" @", e);
  4342. SERIAL_PROTOCOLCHAR(':');
  4343. SERIAL_PROTOCOL(thermalManager.getHeaterPower(e));
  4344. }
  4345. #endif
  4346. }
  4347. #endif
  4348. /**
  4349. * M105: Read hot end and bed temperature
  4350. */
  4351. inline void gcode_M105() {
  4352. if (get_target_extruder_from_command(105)) return;
  4353. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  4354. SERIAL_PROTOCOLPGM(MSG_OK);
  4355. print_heaterstates();
  4356. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  4357. SERIAL_ERROR_START;
  4358. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  4359. #endif
  4360. SERIAL_EOL;
  4361. }
  4362. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  4363. static uint8_t auto_report_temp_interval;
  4364. static millis_t next_temp_report_ms;
  4365. /**
  4366. * M155: Set temperature auto-report interval. M155 S<seconds>
  4367. */
  4368. inline void gcode_M155() {
  4369. if (code_seen('S')) {
  4370. auto_report_temp_interval = code_value_byte();
  4371. NOMORE(auto_report_temp_interval, 60);
  4372. next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval;
  4373. }
  4374. }
  4375. inline void auto_report_temperatures() {
  4376. if (auto_report_temp_interval && ELAPSED(millis(), next_temp_report_ms)) {
  4377. next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval;
  4378. print_heaterstates();
  4379. }
  4380. }
  4381. #endif // AUTO_REPORT_TEMPERATURES
  4382. #if FAN_COUNT > 0
  4383. /**
  4384. * M106: Set Fan Speed
  4385. *
  4386. * S<int> Speed between 0-255
  4387. * P<index> Fan index, if more than one fan
  4388. */
  4389. inline void gcode_M106() {
  4390. uint16_t s = code_seen('S') ? code_value_ushort() : 255,
  4391. p = code_seen('P') ? code_value_ushort() : 0;
  4392. NOMORE(s, 255);
  4393. if (p < FAN_COUNT) fanSpeeds[p] = s;
  4394. }
  4395. /**
  4396. * M107: Fan Off
  4397. */
  4398. inline void gcode_M107() {
  4399. uint16_t p = code_seen('P') ? code_value_ushort() : 0;
  4400. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  4401. }
  4402. #endif // FAN_COUNT > 0
  4403. #if DISABLED(EMERGENCY_PARSER)
  4404. /**
  4405. * M108: Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  4406. */
  4407. inline void gcode_M108() { wait_for_heatup = false; }
  4408. /**
  4409. * M112: Emergency Stop
  4410. */
  4411. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  4412. /**
  4413. * M410: Quickstop - Abort all planned moves
  4414. *
  4415. * This will stop the carriages mid-move, so most likely they
  4416. * will be out of sync with the stepper position after this.
  4417. */
  4418. inline void gcode_M410() { quickstop_stepper(); }
  4419. #endif
  4420. #ifndef MIN_COOLING_SLOPE_DEG
  4421. #define MIN_COOLING_SLOPE_DEG 1.50
  4422. #endif
  4423. #ifndef MIN_COOLING_SLOPE_TIME
  4424. #define MIN_COOLING_SLOPE_TIME 60
  4425. #endif
  4426. /**
  4427. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  4428. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  4429. */
  4430. inline void gcode_M109() {
  4431. if (get_target_extruder_from_command(109)) return;
  4432. if (DEBUGGING(DRYRUN)) return;
  4433. #if ENABLED(SINGLENOZZLE)
  4434. if (target_extruder != active_extruder) return;
  4435. #endif
  4436. bool no_wait_for_cooling = code_seen('S');
  4437. if (no_wait_for_cooling || code_seen('R')) {
  4438. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  4439. #if ENABLED(DUAL_X_CARRIAGE)
  4440. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  4441. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  4442. #endif
  4443. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  4444. /**
  4445. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  4446. * stand by mode, for instance in a dual extruder setup, without affecting
  4447. * the running print timer.
  4448. */
  4449. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  4450. print_job_timer.stop();
  4451. LCD_MESSAGEPGM(WELCOME_MSG);
  4452. }
  4453. /**
  4454. * We do not check if the timer is already running because this check will
  4455. * be done for us inside the Stopwatch::start() method thus a running timer
  4456. * will not restart.
  4457. */
  4458. else print_job_timer.start();
  4459. #endif
  4460. if (thermalManager.isHeatingHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  4461. }
  4462. #if ENABLED(AUTOTEMP)
  4463. planner.autotemp_M104_M109();
  4464. #endif
  4465. #if TEMP_RESIDENCY_TIME > 0
  4466. millis_t residency_start_ms = 0;
  4467. // Loop until the temperature has stabilized
  4468. #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  4469. #else
  4470. // Loop until the temperature is very close target
  4471. #define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
  4472. #endif //TEMP_RESIDENCY_TIME > 0
  4473. float theTarget = -1.0, old_temp = 9999.0;
  4474. bool wants_to_cool = false;
  4475. wait_for_heatup = true;
  4476. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  4477. KEEPALIVE_STATE(NOT_BUSY);
  4478. do {
  4479. // Target temperature might be changed during the loop
  4480. if (theTarget != thermalManager.degTargetHotend(target_extruder)) {
  4481. wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
  4482. theTarget = thermalManager.degTargetHotend(target_extruder);
  4483. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  4484. if (no_wait_for_cooling && wants_to_cool) break;
  4485. }
  4486. now = millis();
  4487. if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
  4488. next_temp_ms = now + 1000UL;
  4489. print_heaterstates();
  4490. #if TEMP_RESIDENCY_TIME > 0
  4491. SERIAL_PROTOCOLPGM(" W:");
  4492. if (residency_start_ms) {
  4493. long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  4494. SERIAL_PROTOCOLLN(rem);
  4495. }
  4496. else {
  4497. SERIAL_PROTOCOLLNPGM("?");
  4498. }
  4499. #else
  4500. SERIAL_EOL;
  4501. #endif
  4502. }
  4503. idle();
  4504. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  4505. float temp = thermalManager.degHotend(target_extruder);
  4506. #if TEMP_RESIDENCY_TIME > 0
  4507. float temp_diff = fabs(theTarget - temp);
  4508. if (!residency_start_ms) {
  4509. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  4510. if (temp_diff < TEMP_WINDOW) residency_start_ms = now;
  4511. }
  4512. else if (temp_diff > TEMP_HYSTERESIS) {
  4513. // Restart the timer whenever the temperature falls outside the hysteresis.
  4514. residency_start_ms = now;
  4515. }
  4516. #endif //TEMP_RESIDENCY_TIME > 0
  4517. // Prevent a wait-forever situation if R is misused i.e. M109 R0
  4518. if (wants_to_cool) {
  4519. // break after MIN_COOLING_SLOPE_TIME seconds
  4520. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG
  4521. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  4522. if (old_temp - temp < MIN_COOLING_SLOPE_DEG) break;
  4523. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME;
  4524. old_temp = temp;
  4525. }
  4526. }
  4527. } while (wait_for_heatup && TEMP_CONDITIONS);
  4528. if (wait_for_heatup) LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  4529. KEEPALIVE_STATE(IN_HANDLER);
  4530. }
  4531. #if HAS_TEMP_BED
  4532. #ifndef MIN_COOLING_SLOPE_DEG_BED
  4533. #define MIN_COOLING_SLOPE_DEG_BED 1.50
  4534. #endif
  4535. #ifndef MIN_COOLING_SLOPE_TIME_BED
  4536. #define MIN_COOLING_SLOPE_TIME_BED 60
  4537. #endif
  4538. /**
  4539. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  4540. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  4541. */
  4542. inline void gcode_M190() {
  4543. if (DEBUGGING(DRYRUN)) return;
  4544. LCD_MESSAGEPGM(MSG_BED_HEATING);
  4545. bool no_wait_for_cooling = code_seen('S');
  4546. if (no_wait_for_cooling || code_seen('R')) {
  4547. thermalManager.setTargetBed(code_value_temp_abs());
  4548. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  4549. if (code_value_temp_abs() > BED_MINTEMP) {
  4550. /**
  4551. * We start the timer when 'heating and waiting' command arrives, LCD
  4552. * functions never wait. Cooling down managed by extruders.
  4553. *
  4554. * We do not check if the timer is already running because this check will
  4555. * be done for us inside the Stopwatch::start() method thus a running timer
  4556. * will not restart.
  4557. */
  4558. print_job_timer.start();
  4559. }
  4560. #endif
  4561. }
  4562. #if TEMP_BED_RESIDENCY_TIME > 0
  4563. millis_t residency_start_ms = 0;
  4564. // Loop until the temperature has stabilized
  4565. #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
  4566. #else
  4567. // Loop until the temperature is very close target
  4568. #define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
  4569. #endif //TEMP_BED_RESIDENCY_TIME > 0
  4570. float theTarget = -1.0, old_temp = 9999.0;
  4571. bool wants_to_cool = false;
  4572. wait_for_heatup = true;
  4573. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  4574. KEEPALIVE_STATE(NOT_BUSY);
  4575. target_extruder = active_extruder; // for print_heaterstates
  4576. do {
  4577. // Target temperature might be changed during the loop
  4578. if (theTarget != thermalManager.degTargetBed()) {
  4579. wants_to_cool = thermalManager.isCoolingBed();
  4580. theTarget = thermalManager.degTargetBed();
  4581. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  4582. if (no_wait_for_cooling && wants_to_cool) break;
  4583. }
  4584. now = millis();
  4585. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
  4586. next_temp_ms = now + 1000UL;
  4587. print_heaterstates();
  4588. #if TEMP_BED_RESIDENCY_TIME > 0
  4589. SERIAL_PROTOCOLPGM(" W:");
  4590. if (residency_start_ms) {
  4591. long rem = (((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  4592. SERIAL_PROTOCOLLN(rem);
  4593. }
  4594. else {
  4595. SERIAL_PROTOCOLLNPGM("?");
  4596. }
  4597. #else
  4598. SERIAL_EOL;
  4599. #endif
  4600. }
  4601. idle();
  4602. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  4603. float temp = thermalManager.degBed();
  4604. #if TEMP_BED_RESIDENCY_TIME > 0
  4605. float temp_diff = fabs(theTarget - temp);
  4606. if (!residency_start_ms) {
  4607. // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
  4608. if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = now;
  4609. }
  4610. else if (temp_diff > TEMP_BED_HYSTERESIS) {
  4611. // Restart the timer whenever the temperature falls outside the hysteresis.
  4612. residency_start_ms = now;
  4613. }
  4614. #endif //TEMP_BED_RESIDENCY_TIME > 0
  4615. // Prevent a wait-forever situation if R is misused i.e. M190 R0
  4616. if (wants_to_cool) {
  4617. // break after MIN_COOLING_SLOPE_TIME_BED seconds
  4618. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_BED
  4619. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  4620. if (old_temp - temp < MIN_COOLING_SLOPE_DEG_BED) break;
  4621. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_BED;
  4622. old_temp = temp;
  4623. }
  4624. }
  4625. } while (wait_for_heatup && TEMP_BED_CONDITIONS);
  4626. if (wait_for_heatup) LCD_MESSAGEPGM(MSG_BED_DONE);
  4627. KEEPALIVE_STATE(IN_HANDLER);
  4628. }
  4629. #endif // HAS_TEMP_BED
  4630. /**
  4631. * M110: Set Current Line Number
  4632. */
  4633. inline void gcode_M110() {
  4634. if (code_seen('N')) gcode_N = code_value_long();
  4635. }
  4636. /**
  4637. * M111: Set the debug level
  4638. */
  4639. inline void gcode_M111() {
  4640. marlin_debug_flags = code_seen('S') ? code_value_byte() : (uint8_t) DEBUG_NONE;
  4641. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
  4642. const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
  4643. const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
  4644. const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
  4645. const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
  4646. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4647. const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
  4648. #endif
  4649. const static char* const debug_strings[] PROGMEM = {
  4650. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16,
  4651. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4652. str_debug_32
  4653. #endif
  4654. };
  4655. SERIAL_ECHO_START;
  4656. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  4657. if (marlin_debug_flags) {
  4658. uint8_t comma = 0;
  4659. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  4660. if (TEST(marlin_debug_flags, i)) {
  4661. if (comma++) SERIAL_CHAR(',');
  4662. serialprintPGM((char*)pgm_read_word(&(debug_strings[i])));
  4663. }
  4664. }
  4665. }
  4666. else {
  4667. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  4668. }
  4669. SERIAL_EOL;
  4670. }
  4671. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  4672. /**
  4673. * M113: Get or set Host Keepalive interval (0 to disable)
  4674. *
  4675. * S<seconds> Optional. Set the keepalive interval.
  4676. */
  4677. inline void gcode_M113() {
  4678. if (code_seen('S')) {
  4679. host_keepalive_interval = code_value_byte();
  4680. NOMORE(host_keepalive_interval, 60);
  4681. }
  4682. else {
  4683. SERIAL_ECHO_START;
  4684. SERIAL_ECHOLNPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4685. }
  4686. }
  4687. #endif
  4688. #if ENABLED(BARICUDA)
  4689. #if HAS_HEATER_1
  4690. /**
  4691. * M126: Heater 1 valve open
  4692. */
  4693. inline void gcode_M126() { baricuda_valve_pressure = code_seen('S') ? code_value_byte() : 255; }
  4694. /**
  4695. * M127: Heater 1 valve close
  4696. */
  4697. inline void gcode_M127() { baricuda_valve_pressure = 0; }
  4698. #endif
  4699. #if HAS_HEATER_2
  4700. /**
  4701. * M128: Heater 2 valve open
  4702. */
  4703. inline void gcode_M128() { baricuda_e_to_p_pressure = code_seen('S') ? code_value_byte() : 255; }
  4704. /**
  4705. * M129: Heater 2 valve close
  4706. */
  4707. inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
  4708. #endif
  4709. #endif //BARICUDA
  4710. /**
  4711. * M140: Set bed temperature
  4712. */
  4713. inline void gcode_M140() {
  4714. if (DEBUGGING(DRYRUN)) return;
  4715. if (code_seen('S')) thermalManager.setTargetBed(code_value_temp_abs());
  4716. }
  4717. #if ENABLED(ULTIPANEL)
  4718. /**
  4719. * M145: Set the heatup state for a material in the LCD menu
  4720. * S<material> (0=PLA, 1=ABS)
  4721. * H<hotend temp>
  4722. * B<bed temp>
  4723. * F<fan speed>
  4724. */
  4725. inline void gcode_M145() {
  4726. uint8_t material = code_seen('S') ? (uint8_t)code_value_int() : 0;
  4727. if (material >= COUNT(lcd_preheat_hotend_temp)) {
  4728. SERIAL_ERROR_START;
  4729. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  4730. }
  4731. else {
  4732. int v;
  4733. if (code_seen('H')) {
  4734. v = code_value_int();
  4735. lcd_preheat_hotend_temp[material] = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4736. }
  4737. if (code_seen('F')) {
  4738. v = code_value_int();
  4739. lcd_preheat_fan_speed[material] = constrain(v, 0, 255);
  4740. }
  4741. #if TEMP_SENSOR_BED != 0
  4742. if (code_seen('B')) {
  4743. v = code_value_int();
  4744. lcd_preheat_bed_temp[material] = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4745. }
  4746. #endif
  4747. }
  4748. }
  4749. #endif // ULTIPANEL
  4750. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  4751. /**
  4752. * M149: Set temperature units
  4753. */
  4754. inline void gcode_M149() {
  4755. if (code_seen('C')) set_input_temp_units(TEMPUNIT_C);
  4756. else if (code_seen('K')) set_input_temp_units(TEMPUNIT_K);
  4757. else if (code_seen('F')) set_input_temp_units(TEMPUNIT_F);
  4758. }
  4759. #endif
  4760. #if HAS_POWER_SWITCH
  4761. /**
  4762. * M80: Turn on Power Supply
  4763. */
  4764. inline void gcode_M80() {
  4765. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  4766. /**
  4767. * If you have a switch on suicide pin, this is useful
  4768. * if you want to start another print with suicide feature after
  4769. * a print without suicide...
  4770. */
  4771. #if HAS_SUICIDE
  4772. OUT_WRITE(SUICIDE_PIN, HIGH);
  4773. #endif
  4774. #if ENABLED(ULTIPANEL)
  4775. powersupply = true;
  4776. LCD_MESSAGEPGM(WELCOME_MSG);
  4777. lcd_update();
  4778. #endif
  4779. }
  4780. #endif // HAS_POWER_SWITCH
  4781. /**
  4782. * M81: Turn off Power, including Power Supply, if there is one.
  4783. *
  4784. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  4785. */
  4786. inline void gcode_M81() {
  4787. thermalManager.disable_all_heaters();
  4788. stepper.finish_and_disable();
  4789. #if FAN_COUNT > 0
  4790. #if FAN_COUNT > 1
  4791. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  4792. #else
  4793. fanSpeeds[0] = 0;
  4794. #endif
  4795. #endif
  4796. delay(1000); // Wait 1 second before switching off
  4797. #if HAS_SUICIDE
  4798. stepper.synchronize();
  4799. suicide();
  4800. #elif HAS_POWER_SWITCH
  4801. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4802. #endif
  4803. #if ENABLED(ULTIPANEL)
  4804. #if HAS_POWER_SWITCH
  4805. powersupply = false;
  4806. #endif
  4807. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  4808. lcd_update();
  4809. #endif
  4810. }
  4811. /**
  4812. * M82: Set E codes absolute (default)
  4813. */
  4814. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  4815. /**
  4816. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  4817. */
  4818. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  4819. /**
  4820. * M18, M84: Disable all stepper motors
  4821. */
  4822. inline void gcode_M18_M84() {
  4823. if (code_seen('S')) {
  4824. stepper_inactive_time = code_value_millis_from_seconds();
  4825. }
  4826. else {
  4827. bool all_axis = !((code_seen('X')) || (code_seen('Y')) || (code_seen('Z')) || (code_seen('E')));
  4828. if (all_axis) {
  4829. stepper.finish_and_disable();
  4830. }
  4831. else {
  4832. stepper.synchronize();
  4833. if (code_seen('X')) disable_x();
  4834. if (code_seen('Y')) disable_y();
  4835. if (code_seen('Z')) disable_z();
  4836. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4837. if (code_seen('E')) {
  4838. disable_e0();
  4839. disable_e1();
  4840. disable_e2();
  4841. disable_e3();
  4842. }
  4843. #endif
  4844. }
  4845. }
  4846. }
  4847. /**
  4848. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  4849. */
  4850. inline void gcode_M85() {
  4851. if (code_seen('S')) max_inactive_time = code_value_millis_from_seconds();
  4852. }
  4853. /**
  4854. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  4855. * (Follows the same syntax as G92)
  4856. */
  4857. inline void gcode_M92() {
  4858. LOOP_XYZE(i) {
  4859. if (code_seen(axis_codes[i])) {
  4860. if (i == E_AXIS) {
  4861. float value = code_value_per_axis_unit(i);
  4862. if (value < 20.0) {
  4863. float factor = planner.axis_steps_per_mm[i] / value; // increase e constants if M92 E14 is given for netfab.
  4864. planner.max_jerk[E_AXIS] *= factor;
  4865. planner.max_feedrate_mm_s[E_AXIS] *= factor;
  4866. planner.max_acceleration_steps_per_s2[E_AXIS] *= factor;
  4867. }
  4868. planner.axis_steps_per_mm[E_AXIS] = value;
  4869. }
  4870. else {
  4871. planner.axis_steps_per_mm[i] = code_value_per_axis_unit(i);
  4872. }
  4873. }
  4874. }
  4875. planner.refresh_positioning();
  4876. }
  4877. /**
  4878. * Output the current position to serial
  4879. */
  4880. static void report_current_position() {
  4881. SERIAL_PROTOCOLPGM("X:");
  4882. SERIAL_PROTOCOL(current_position[X_AXIS]);
  4883. SERIAL_PROTOCOLPGM(" Y:");
  4884. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  4885. SERIAL_PROTOCOLPGM(" Z:");
  4886. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  4887. SERIAL_PROTOCOLPGM(" E:");
  4888. SERIAL_PROTOCOL(current_position[E_AXIS]);
  4889. stepper.report_positions();
  4890. #if IS_SCARA
  4891. SERIAL_PROTOCOLPAIR("SCARA Theta:", stepper.get_axis_position_degrees(A_AXIS));
  4892. SERIAL_PROTOCOLLNPAIR(" Psi+Theta:", stepper.get_axis_position_degrees(B_AXIS));
  4893. SERIAL_EOL;
  4894. #endif
  4895. }
  4896. /**
  4897. * M114: Output current position to serial port
  4898. */
  4899. inline void gcode_M114() { report_current_position(); }
  4900. /**
  4901. * M115: Capabilities string
  4902. */
  4903. inline void gcode_M115() {
  4904. SERIAL_PROTOCOLLNPGM(MSG_M115_REPORT);
  4905. #if ENABLED(EXTENDED_CAPABILITIES_REPORT)
  4906. // EEPROM (M500, M501)
  4907. SERIAL_PROTOCOLPGM("Cap:");
  4908. #if ENABLED(EEPROM_SETTINGS)
  4909. SERIAL_PROTOCOLLNPGM("EEPROM:1");
  4910. #else
  4911. SERIAL_PROTOCOLLNPGM("EEPROM:0");
  4912. #endif
  4913. // AUTOREPORT_TEMP (M155)
  4914. SERIAL_PROTOCOLPGM("Cap:");
  4915. #if ENABLED(AUTO_REPORT_TEMPERATURES)
  4916. SERIAL_PROTOCOLLNPGM("AUTOREPORT_TEMP:1");
  4917. #else
  4918. SERIAL_PROTOCOLLNPGM("AUTOREPORT_TEMP:0");
  4919. #endif
  4920. // PROGRESS (M530 S L, M531 <file>, M532 X L)
  4921. SERIAL_PROTOCOLPGM("Cap:");
  4922. SERIAL_PROTOCOLLNPGM("PROGRESS:0");
  4923. // AUTOLEVEL (G29)
  4924. SERIAL_PROTOCOLPGM("Cap:");
  4925. #if HAS_ABL
  4926. SERIAL_PROTOCOLLNPGM("AUTOLEVEL:1");
  4927. #else
  4928. SERIAL_PROTOCOLLNPGM("AUTOLEVEL:0");
  4929. #endif
  4930. // Z_PROBE (G30)
  4931. SERIAL_PROTOCOLPGM("Cap:");
  4932. #if HAS_BED_PROBE
  4933. SERIAL_PROTOCOLLNPGM("Z_PROBE:1");
  4934. #else
  4935. SERIAL_PROTOCOLLNPGM("Z_PROBE:0");
  4936. #endif
  4937. // SOFTWARE_POWER (G30)
  4938. SERIAL_PROTOCOLPGM("Cap:");
  4939. #if HAS_POWER_SWITCH
  4940. SERIAL_PROTOCOLLNPGM("SOFTWARE_POWER:1");
  4941. #else
  4942. SERIAL_PROTOCOLLNPGM("SOFTWARE_POWER:0");
  4943. #endif
  4944. // TOGGLE_LIGHTS (M355)
  4945. SERIAL_PROTOCOLPGM("Cap:");
  4946. #if HAS_CASE_LIGHT
  4947. SERIAL_PROTOCOLLNPGM("TOGGLE_LIGHTS:1");
  4948. #else
  4949. SERIAL_PROTOCOLLNPGM("TOGGLE_LIGHTS:0");
  4950. #endif
  4951. // EMERGENCY_PARSER (M108, M112, M410)
  4952. SERIAL_PROTOCOLPGM("Cap:");
  4953. #if ENABLED(EMERGENCY_PARSER)
  4954. SERIAL_PROTOCOLLNPGM("EMERGENCY_PARSER:1");
  4955. #else
  4956. SERIAL_PROTOCOLLNPGM("EMERGENCY_PARSER:0");
  4957. #endif
  4958. #endif // EXTENDED_CAPABILITIES_REPORT
  4959. }
  4960. /**
  4961. * M117: Set LCD Status Message
  4962. */
  4963. inline void gcode_M117() {
  4964. lcd_setstatus(current_command_args);
  4965. }
  4966. /**
  4967. * M119: Output endstop states to serial output
  4968. */
  4969. inline void gcode_M119() { endstops.M119(); }
  4970. /**
  4971. * M120: Enable endstops and set non-homing endstop state to "enabled"
  4972. */
  4973. inline void gcode_M120() { endstops.enable_globally(true); }
  4974. /**
  4975. * M121: Disable endstops and set non-homing endstop state to "disabled"
  4976. */
  4977. inline void gcode_M121() { endstops.enable_globally(false); }
  4978. #if ENABLED(HAVE_TMC2130DRIVER)
  4979. /**
  4980. * M122: Output Trinamic TMC2130 status to serial output. Very bad formatting.
  4981. */
  4982. static void tmc2130_report(Trinamic_TMC2130 &stepr, const char *name) {
  4983. stepr.read_STAT();
  4984. SERIAL_PROTOCOL(name);
  4985. SERIAL_PROTOCOL(": ");
  4986. stepr.isReset() ? SERIAL_PROTOCOLPGM("RESET ") : SERIAL_PROTOCOLPGM("----- ");
  4987. stepr.isError() ? SERIAL_PROTOCOLPGM("ERROR ") : SERIAL_PROTOCOLPGM("----- ");
  4988. stepr.isStallguard() ? SERIAL_PROTOCOLPGM("SLGRD ") : SERIAL_PROTOCOLPGM("----- ");
  4989. stepr.isStandstill() ? SERIAL_PROTOCOLPGM("STILL ") : SERIAL_PROTOCOLPGM("----- ");
  4990. SERIAL_PROTOCOLLN(stepr.debug());
  4991. }
  4992. inline void gcode_M122() {
  4993. SERIAL_PROTOCOLLNPGM("Reporting TMC2130 status");
  4994. #if ENABLED(X_IS_TMC2130)
  4995. tmc2130_report(stepperX, "X");
  4996. #endif
  4997. #if ENABLED(X2_IS_TMC2130)
  4998. tmc2130_report(stepperX2, "X2");
  4999. #endif
  5000. #if ENABLED(Y_IS_TMC2130)
  5001. tmc2130_report(stepperY, "Y");
  5002. #endif
  5003. #if ENABLED(Y2_IS_TMC2130)
  5004. tmc2130_report(stepperY2, "Y2");
  5005. #endif
  5006. #if ENABLED(Z_IS_TMC2130)
  5007. tmc2130_report(stepperZ, "Z");
  5008. #endif
  5009. #if ENABLED(Z2_IS_TMC2130)
  5010. tmc2130_report(stepperZ2, "Z2");
  5011. #endif
  5012. #if ENABLED(E0_IS_TMC2130)
  5013. tmc2130_report(stepperE0, "E0");
  5014. #endif
  5015. #if ENABLED(E1_IS_TMC2130)
  5016. tmc2130_report(stepperE1, "E1");
  5017. #endif
  5018. #if ENABLED(E2_IS_TMC2130)
  5019. tmc2130_report(stepperE2, "E2");
  5020. #endif
  5021. #if ENABLED(E3_IS_TMC2130)
  5022. tmc2130_report(stepperE3, "E3");
  5023. #endif
  5024. }
  5025. #endif // HAVE_TMC2130DRIVER
  5026. #if ENABLED(BLINKM)
  5027. /**
  5028. * M150: Set Status LED Color - Use R-U-B for R-G-B
  5029. */
  5030. inline void gcode_M150() {
  5031. SendColors(
  5032. code_seen('R') ? code_value_byte() : 0,
  5033. code_seen('U') ? code_value_byte() : 0,
  5034. code_seen('B') ? code_value_byte() : 0
  5035. );
  5036. }
  5037. #endif // BLINKM
  5038. /**
  5039. * M200: Set filament diameter and set E axis units to cubic units
  5040. *
  5041. * T<extruder> - Optional extruder number. Current extruder if omitted.
  5042. * D<linear> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.
  5043. */
  5044. inline void gcode_M200() {
  5045. if (get_target_extruder_from_command(200)) return;
  5046. if (code_seen('D')) {
  5047. // setting any extruder filament size disables volumetric on the assumption that
  5048. // slicers either generate in extruder values as cubic mm or as as filament feeds
  5049. // for all extruders
  5050. volumetric_enabled = (code_value_linear_units() != 0.0);
  5051. if (volumetric_enabled) {
  5052. filament_size[target_extruder] = code_value_linear_units();
  5053. // make sure all extruders have some sane value for the filament size
  5054. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  5055. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  5056. }
  5057. }
  5058. else {
  5059. //reserved for setting filament diameter via UFID or filament measuring device
  5060. return;
  5061. }
  5062. calculate_volumetric_multipliers();
  5063. }
  5064. /**
  5065. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  5066. */
  5067. inline void gcode_M201() {
  5068. LOOP_XYZE(i) {
  5069. if (code_seen(axis_codes[i])) {
  5070. planner.max_acceleration_mm_per_s2[i] = code_value_axis_units(i);
  5071. }
  5072. }
  5073. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  5074. planner.reset_acceleration_rates();
  5075. }
  5076. #if 0 // Not used for Sprinter/grbl gen6
  5077. inline void gcode_M202() {
  5078. LOOP_XYZE(i) {
  5079. if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value_axis_units(i) * planner.axis_steps_per_mm[i];
  5080. }
  5081. }
  5082. #endif
  5083. /**
  5084. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  5085. */
  5086. inline void gcode_M203() {
  5087. LOOP_XYZE(i)
  5088. if (code_seen(axis_codes[i]))
  5089. planner.max_feedrate_mm_s[i] = code_value_axis_units(i);
  5090. }
  5091. /**
  5092. * M204: Set Accelerations in units/sec^2 (M204 P1200 R3000 T3000)
  5093. *
  5094. * P = Printing moves
  5095. * R = Retract only (no X, Y, Z) moves
  5096. * T = Travel (non printing) moves
  5097. *
  5098. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  5099. */
  5100. inline void gcode_M204() {
  5101. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  5102. planner.travel_acceleration = planner.acceleration = code_value_linear_units();
  5103. SERIAL_ECHOLNPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
  5104. }
  5105. if (code_seen('P')) {
  5106. planner.acceleration = code_value_linear_units();
  5107. SERIAL_ECHOLNPAIR("Setting Print Acceleration: ", planner.acceleration);
  5108. }
  5109. if (code_seen('R')) {
  5110. planner.retract_acceleration = code_value_linear_units();
  5111. SERIAL_ECHOLNPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
  5112. }
  5113. if (code_seen('T')) {
  5114. planner.travel_acceleration = code_value_linear_units();
  5115. SERIAL_ECHOLNPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
  5116. }
  5117. }
  5118. /**
  5119. * M205: Set Advanced Settings
  5120. *
  5121. * S = Min Feed Rate (units/s)
  5122. * T = Min Travel Feed Rate (units/s)
  5123. * B = Min Segment Time (µs)
  5124. * X = Max X Jerk (units/sec^2)
  5125. * Y = Max Y Jerk (units/sec^2)
  5126. * Z = Max Z Jerk (units/sec^2)
  5127. * E = Max E Jerk (units/sec^2)
  5128. */
  5129. inline void gcode_M205() {
  5130. if (code_seen('S')) planner.min_feedrate_mm_s = code_value_linear_units();
  5131. if (code_seen('T')) planner.min_travel_feedrate_mm_s = code_value_linear_units();
  5132. if (code_seen('B')) planner.min_segment_time = code_value_millis();
  5133. if (code_seen('X')) planner.max_jerk[X_AXIS] = code_value_axis_units(X_AXIS);
  5134. if (code_seen('Y')) planner.max_jerk[Y_AXIS] = code_value_axis_units(Y_AXIS);
  5135. if (code_seen('Z')) planner.max_jerk[Z_AXIS] = code_value_axis_units(Z_AXIS);
  5136. if (code_seen('E')) planner.max_jerk[E_AXIS] = code_value_axis_units(E_AXIS);
  5137. }
  5138. /**
  5139. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  5140. */
  5141. inline void gcode_M206() {
  5142. LOOP_XYZ(i)
  5143. if (code_seen(axis_codes[i]))
  5144. set_home_offset((AxisEnum)i, code_value_axis_units(i));
  5145. #if ENABLED(MORGAN_SCARA)
  5146. if (code_seen('T')) set_home_offset(A_AXIS, code_value_axis_units(A_AXIS)); // Theta
  5147. if (code_seen('P')) set_home_offset(B_AXIS, code_value_axis_units(B_AXIS)); // Psi
  5148. #endif
  5149. SYNC_PLAN_POSITION_KINEMATIC();
  5150. report_current_position();
  5151. }
  5152. #if ENABLED(DELTA)
  5153. /**
  5154. * M665: Set delta configurations
  5155. *
  5156. * L = diagonal rod
  5157. * R = delta radius
  5158. * S = segments per second
  5159. * A = Alpha (Tower 1) diagonal rod trim
  5160. * B = Beta (Tower 2) diagonal rod trim
  5161. * C = Gamma (Tower 3) diagonal rod trim
  5162. */
  5163. inline void gcode_M665() {
  5164. if (code_seen('L')) delta_diagonal_rod = code_value_linear_units();
  5165. if (code_seen('R')) delta_radius = code_value_linear_units();
  5166. if (code_seen('S')) delta_segments_per_second = code_value_float();
  5167. if (code_seen('A')) delta_diagonal_rod_trim_tower_1 = code_value_linear_units();
  5168. if (code_seen('B')) delta_diagonal_rod_trim_tower_2 = code_value_linear_units();
  5169. if (code_seen('C')) delta_diagonal_rod_trim_tower_3 = code_value_linear_units();
  5170. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  5171. }
  5172. /**
  5173. * M666: Set delta endstop adjustment
  5174. */
  5175. inline void gcode_M666() {
  5176. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5177. if (DEBUGGING(LEVELING)) {
  5178. SERIAL_ECHOLNPGM(">>> gcode_M666");
  5179. }
  5180. #endif
  5181. LOOP_XYZ(i) {
  5182. if (code_seen(axis_codes[i])) {
  5183. endstop_adj[i] = code_value_axis_units(i);
  5184. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5185. if (DEBUGGING(LEVELING)) {
  5186. SERIAL_ECHOPAIR("endstop_adj[", axis_codes[i]);
  5187. SERIAL_ECHOLNPAIR("] = ", endstop_adj[i]);
  5188. }
  5189. #endif
  5190. }
  5191. }
  5192. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5193. if (DEBUGGING(LEVELING)) {
  5194. SERIAL_ECHOLNPGM("<<< gcode_M666");
  5195. }
  5196. #endif
  5197. }
  5198. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  5199. /**
  5200. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  5201. */
  5202. inline void gcode_M666() {
  5203. if (code_seen('Z')) z_endstop_adj = code_value_axis_units(Z_AXIS);
  5204. SERIAL_ECHOLNPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  5205. }
  5206. #endif // !DELTA && Z_DUAL_ENDSTOPS
  5207. #if ENABLED(FWRETRACT)
  5208. /**
  5209. * M207: Set firmware retraction values
  5210. *
  5211. * S[+units] retract_length
  5212. * W[+units] retract_length_swap (multi-extruder)
  5213. * F[units/min] retract_feedrate_mm_s
  5214. * Z[units] retract_zlift
  5215. */
  5216. inline void gcode_M207() {
  5217. if (code_seen('S')) retract_length = code_value_axis_units(E_AXIS);
  5218. if (code_seen('F')) retract_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  5219. if (code_seen('Z')) retract_zlift = code_value_axis_units(Z_AXIS);
  5220. #if EXTRUDERS > 1
  5221. if (code_seen('W')) retract_length_swap = code_value_axis_units(E_AXIS);
  5222. #endif
  5223. }
  5224. /**
  5225. * M208: Set firmware un-retraction values
  5226. *
  5227. * S[+units] retract_recover_length (in addition to M207 S*)
  5228. * W[+units] retract_recover_length_swap (multi-extruder)
  5229. * F[units/min] retract_recover_feedrate_mm_s
  5230. */
  5231. inline void gcode_M208() {
  5232. if (code_seen('S')) retract_recover_length = code_value_axis_units(E_AXIS);
  5233. if (code_seen('F')) retract_recover_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  5234. #if EXTRUDERS > 1
  5235. if (code_seen('W')) retract_recover_length_swap = code_value_axis_units(E_AXIS);
  5236. #endif
  5237. }
  5238. /**
  5239. * M209: Enable automatic retract (M209 S1)
  5240. * For slicers that don't support G10/11, reversed extrude-only
  5241. * moves will be classified as retraction.
  5242. */
  5243. inline void gcode_M209() {
  5244. if (code_seen('S')) {
  5245. autoretract_enabled = code_value_bool();
  5246. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  5247. }
  5248. }
  5249. #endif // FWRETRACT
  5250. /**
  5251. * M211: Enable, Disable, and/or Report software endstops
  5252. *
  5253. * Usage: M211 S1 to enable, M211 S0 to disable, M211 alone for report
  5254. */
  5255. inline void gcode_M211() {
  5256. SERIAL_ECHO_START;
  5257. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  5258. if (code_seen('S')) soft_endstops_enabled = code_value_bool();
  5259. #endif
  5260. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  5261. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  5262. serialprintPGM(soft_endstops_enabled ? PSTR(MSG_ON) : PSTR(MSG_OFF));
  5263. #else
  5264. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  5265. SERIAL_ECHOPGM(MSG_OFF);
  5266. #endif
  5267. SERIAL_ECHOPGM(MSG_SOFT_MIN);
  5268. SERIAL_ECHOPAIR( MSG_X, soft_endstop_min[X_AXIS]);
  5269. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_min[Y_AXIS]);
  5270. SERIAL_ECHOPAIR(" " MSG_Z, soft_endstop_min[Z_AXIS]);
  5271. SERIAL_ECHOPGM(MSG_SOFT_MAX);
  5272. SERIAL_ECHOPAIR( MSG_X, soft_endstop_max[X_AXIS]);
  5273. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_max[Y_AXIS]);
  5274. SERIAL_ECHOLNPAIR(" " MSG_Z, soft_endstop_max[Z_AXIS]);
  5275. }
  5276. #if HOTENDS > 1
  5277. /**
  5278. * M218 - set hotend offset (in linear units)
  5279. *
  5280. * T<tool>
  5281. * X<xoffset>
  5282. * Y<yoffset>
  5283. * Z<zoffset> - Available with DUAL_X_CARRIAGE and SWITCHING_EXTRUDER
  5284. */
  5285. inline void gcode_M218() {
  5286. if (get_target_extruder_from_command(218) || target_extruder == 0) return;
  5287. if (code_seen('X')) hotend_offset[X_AXIS][target_extruder] = code_value_axis_units(X_AXIS);
  5288. if (code_seen('Y')) hotend_offset[Y_AXIS][target_extruder] = code_value_axis_units(Y_AXIS);
  5289. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  5290. if (code_seen('Z')) hotend_offset[Z_AXIS][target_extruder] = code_value_axis_units(Z_AXIS);
  5291. #endif
  5292. SERIAL_ECHO_START;
  5293. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  5294. HOTEND_LOOP() {
  5295. SERIAL_CHAR(' ');
  5296. SERIAL_ECHO(hotend_offset[X_AXIS][e]);
  5297. SERIAL_CHAR(',');
  5298. SERIAL_ECHO(hotend_offset[Y_AXIS][e]);
  5299. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  5300. SERIAL_CHAR(',');
  5301. SERIAL_ECHO(hotend_offset[Z_AXIS][e]);
  5302. #endif
  5303. }
  5304. SERIAL_EOL;
  5305. }
  5306. #endif // HOTENDS > 1
  5307. /**
  5308. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  5309. */
  5310. inline void gcode_M220() {
  5311. if (code_seen('S')) feedrate_percentage = code_value_int();
  5312. }
  5313. /**
  5314. * M221: Set extrusion percentage (M221 T0 S95)
  5315. */
  5316. inline void gcode_M221() {
  5317. if (get_target_extruder_from_command(221)) return;
  5318. if (code_seen('S'))
  5319. flow_percentage[target_extruder] = code_value_int();
  5320. }
  5321. /**
  5322. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  5323. */
  5324. inline void gcode_M226() {
  5325. if (code_seen('P')) {
  5326. int pin_number = code_value_int(),
  5327. pin_state = code_seen('S') ? code_value_int() : -1; // required pin state - default is inverted
  5328. if (pin_state >= -1 && pin_state <= 1 && pin_number > -1 && !pin_is_protected(pin_number)) {
  5329. int target = LOW;
  5330. stepper.synchronize();
  5331. pinMode(pin_number, INPUT);
  5332. switch (pin_state) {
  5333. case 1:
  5334. target = HIGH;
  5335. break;
  5336. case 0:
  5337. target = LOW;
  5338. break;
  5339. case -1:
  5340. target = !digitalRead(pin_number);
  5341. break;
  5342. }
  5343. while (digitalRead(pin_number) != target) idle();
  5344. } // pin_state -1 0 1 && pin_number > -1
  5345. } // code_seen('P')
  5346. }
  5347. #if ENABLED(EXPERIMENTAL_I2CBUS)
  5348. /**
  5349. * M260: Send data to a I2C slave device
  5350. *
  5351. * This is a PoC, the formating and arguments for the GCODE will
  5352. * change to be more compatible, the current proposal is:
  5353. *
  5354. * M260 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  5355. *
  5356. * M260 B<byte-1 value in base 10>
  5357. * M260 B<byte-2 value in base 10>
  5358. * M260 B<byte-3 value in base 10>
  5359. *
  5360. * M260 S1 ; Send the buffered data and reset the buffer
  5361. * M260 R1 ; Reset the buffer without sending data
  5362. *
  5363. */
  5364. inline void gcode_M260() {
  5365. // Set the target address
  5366. if (code_seen('A')) i2c.address(code_value_byte());
  5367. // Add a new byte to the buffer
  5368. if (code_seen('B')) i2c.addbyte(code_value_byte());
  5369. // Flush the buffer to the bus
  5370. if (code_seen('S')) i2c.send();
  5371. // Reset and rewind the buffer
  5372. else if (code_seen('R')) i2c.reset();
  5373. }
  5374. /**
  5375. * M261: Request X bytes from I2C slave device
  5376. *
  5377. * Usage: M261 A<slave device address base 10> B<number of bytes>
  5378. */
  5379. inline void gcode_M261() {
  5380. if (code_seen('A')) i2c.address(code_value_byte());
  5381. uint8_t bytes = code_seen('B') ? code_value_byte() : 1;
  5382. if (i2c.addr && bytes && bytes <= TWIBUS_BUFFER_SIZE) {
  5383. i2c.relay(bytes);
  5384. }
  5385. else {
  5386. SERIAL_ERROR_START;
  5387. SERIAL_ERRORLN("Bad i2c request");
  5388. }
  5389. }
  5390. #endif // EXPERIMENTAL_I2CBUS
  5391. #if HAS_SERVOS
  5392. /**
  5393. * M280: Get or set servo position. P<index> [S<angle>]
  5394. */
  5395. inline void gcode_M280() {
  5396. if (!code_seen('P')) return;
  5397. int servo_index = code_value_int();
  5398. if (servo_index >= 0 && servo_index < NUM_SERVOS) {
  5399. if (code_seen('S'))
  5400. MOVE_SERVO(servo_index, code_value_int());
  5401. else {
  5402. SERIAL_ECHO_START;
  5403. SERIAL_ECHOPAIR(" Servo ", servo_index);
  5404. SERIAL_ECHOLNPAIR(": ", servo[servo_index].read());
  5405. }
  5406. }
  5407. else {
  5408. SERIAL_ERROR_START;
  5409. SERIAL_ECHOPAIR("Servo ", servo_index);
  5410. SERIAL_ECHOLNPGM(" out of range");
  5411. }
  5412. }
  5413. #endif // HAS_SERVOS
  5414. #if HAS_BUZZER
  5415. /**
  5416. * M300: Play beep sound S<frequency Hz> P<duration ms>
  5417. */
  5418. inline void gcode_M300() {
  5419. uint16_t const frequency = code_seen('S') ? code_value_ushort() : 260;
  5420. uint16_t duration = code_seen('P') ? code_value_ushort() : 1000;
  5421. // Limits the tone duration to 0-5 seconds.
  5422. NOMORE(duration, 5000);
  5423. BUZZ(duration, frequency);
  5424. }
  5425. #endif // HAS_BUZZER
  5426. #if ENABLED(PIDTEMP)
  5427. /**
  5428. * M301: Set PID parameters P I D (and optionally C, L)
  5429. *
  5430. * P[float] Kp term
  5431. * I[float] Ki term (unscaled)
  5432. * D[float] Kd term (unscaled)
  5433. *
  5434. * With PID_EXTRUSION_SCALING:
  5435. *
  5436. * C[float] Kc term
  5437. * L[float] LPQ length
  5438. */
  5439. inline void gcode_M301() {
  5440. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  5441. // default behaviour (omitting E parameter) is to update for extruder 0 only
  5442. int e = code_seen('E') ? code_value_int() : 0; // extruder being updated
  5443. if (e < HOTENDS) { // catch bad input value
  5444. if (code_seen('P')) PID_PARAM(Kp, e) = code_value_float();
  5445. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value_float());
  5446. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value_float());
  5447. #if ENABLED(PID_EXTRUSION_SCALING)
  5448. if (code_seen('C')) PID_PARAM(Kc, e) = code_value_float();
  5449. if (code_seen('L')) lpq_len = code_value_float();
  5450. NOMORE(lpq_len, LPQ_MAX_LEN);
  5451. #endif
  5452. thermalManager.updatePID();
  5453. SERIAL_ECHO_START;
  5454. #if ENABLED(PID_PARAMS_PER_HOTEND)
  5455. SERIAL_ECHOPAIR(" e:", e); // specify extruder in serial output
  5456. #endif // PID_PARAMS_PER_HOTEND
  5457. SERIAL_ECHOPAIR(" p:", PID_PARAM(Kp, e));
  5458. SERIAL_ECHOPAIR(" i:", unscalePID_i(PID_PARAM(Ki, e)));
  5459. SERIAL_ECHOPAIR(" d:", unscalePID_d(PID_PARAM(Kd, e)));
  5460. #if ENABLED(PID_EXTRUSION_SCALING)
  5461. //Kc does not have scaling applied above, or in resetting defaults
  5462. SERIAL_ECHOPAIR(" c:", PID_PARAM(Kc, e));
  5463. #endif
  5464. SERIAL_EOL;
  5465. }
  5466. else {
  5467. SERIAL_ERROR_START;
  5468. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  5469. }
  5470. }
  5471. #endif // PIDTEMP
  5472. #if ENABLED(PIDTEMPBED)
  5473. inline void gcode_M304() {
  5474. if (code_seen('P')) thermalManager.bedKp = code_value_float();
  5475. if (code_seen('I')) thermalManager.bedKi = scalePID_i(code_value_float());
  5476. if (code_seen('D')) thermalManager.bedKd = scalePID_d(code_value_float());
  5477. thermalManager.updatePID();
  5478. SERIAL_ECHO_START;
  5479. SERIAL_ECHOPAIR(" p:", thermalManager.bedKp);
  5480. SERIAL_ECHOPAIR(" i:", unscalePID_i(thermalManager.bedKi));
  5481. SERIAL_ECHOLNPAIR(" d:", unscalePID_d(thermalManager.bedKd));
  5482. }
  5483. #endif // PIDTEMPBED
  5484. #if defined(CHDK) || HAS_PHOTOGRAPH
  5485. /**
  5486. * M240: Trigger a camera by emulating a Canon RC-1
  5487. * See http://www.doc-diy.net/photo/rc-1_hacked/
  5488. */
  5489. inline void gcode_M240() {
  5490. #ifdef CHDK
  5491. OUT_WRITE(CHDK, HIGH);
  5492. chdkHigh = millis();
  5493. chdkActive = true;
  5494. #elif HAS_PHOTOGRAPH
  5495. const uint8_t NUM_PULSES = 16;
  5496. const float PULSE_LENGTH = 0.01524;
  5497. for (int i = 0; i < NUM_PULSES; i++) {
  5498. WRITE(PHOTOGRAPH_PIN, HIGH);
  5499. _delay_ms(PULSE_LENGTH);
  5500. WRITE(PHOTOGRAPH_PIN, LOW);
  5501. _delay_ms(PULSE_LENGTH);
  5502. }
  5503. delay(7.33);
  5504. for (int i = 0; i < NUM_PULSES; i++) {
  5505. WRITE(PHOTOGRAPH_PIN, HIGH);
  5506. _delay_ms(PULSE_LENGTH);
  5507. WRITE(PHOTOGRAPH_PIN, LOW);
  5508. _delay_ms(PULSE_LENGTH);
  5509. }
  5510. #endif // !CHDK && HAS_PHOTOGRAPH
  5511. }
  5512. #endif // CHDK || PHOTOGRAPH_PIN
  5513. #if HAS_LCD_CONTRAST
  5514. /**
  5515. * M250: Read and optionally set the LCD contrast
  5516. */
  5517. inline void gcode_M250() {
  5518. if (code_seen('C')) set_lcd_contrast(code_value_int());
  5519. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  5520. SERIAL_PROTOCOL(lcd_contrast);
  5521. SERIAL_EOL;
  5522. }
  5523. #endif // HAS_LCD_CONTRAST
  5524. #if ENABLED(PREVENT_COLD_EXTRUSION)
  5525. /**
  5526. * M302: Allow cold extrudes, or set the minimum extrude temperature
  5527. *
  5528. * S<temperature> sets the minimum extrude temperature
  5529. * P<bool> enables (1) or disables (0) cold extrusion
  5530. *
  5531. * Examples:
  5532. *
  5533. * M302 ; report current cold extrusion state
  5534. * M302 P0 ; enable cold extrusion checking
  5535. * M302 P1 ; disables cold extrusion checking
  5536. * M302 S0 ; always allow extrusion (disables checking)
  5537. * M302 S170 ; only allow extrusion above 170
  5538. * M302 S170 P1 ; set min extrude temp to 170 but leave disabled
  5539. */
  5540. inline void gcode_M302() {
  5541. bool seen_S = code_seen('S');
  5542. if (seen_S) {
  5543. thermalManager.extrude_min_temp = code_value_temp_abs();
  5544. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0);
  5545. }
  5546. if (code_seen('P'))
  5547. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0) || code_value_bool();
  5548. else if (!seen_S) {
  5549. // Report current state
  5550. SERIAL_ECHO_START;
  5551. SERIAL_ECHOPAIR("Cold extrudes are ", (thermalManager.allow_cold_extrude ? "en" : "dis"));
  5552. SERIAL_ECHOPAIR("abled (min temp ", int(thermalManager.extrude_min_temp + 0.5));
  5553. SERIAL_ECHOLNPGM("C)");
  5554. }
  5555. }
  5556. #endif // PREVENT_COLD_EXTRUSION
  5557. /**
  5558. * M303: PID relay autotune
  5559. *
  5560. * S<temperature> sets the target temperature. (default 150C)
  5561. * E<extruder> (-1 for the bed) (default 0)
  5562. * C<cycles>
  5563. * U<bool> with a non-zero value will apply the result to current settings
  5564. */
  5565. inline void gcode_M303() {
  5566. #if HAS_PID_HEATING
  5567. int e = code_seen('E') ? code_value_int() : 0;
  5568. int c = code_seen('C') ? code_value_int() : 5;
  5569. bool u = code_seen('U') && code_value_bool();
  5570. float temp = code_seen('S') ? code_value_temp_abs() : (e < 0 ? 70.0 : 150.0);
  5571. if (e >= 0 && e < HOTENDS)
  5572. target_extruder = e;
  5573. KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
  5574. thermalManager.PID_autotune(temp, e, c, u);
  5575. KEEPALIVE_STATE(IN_HANDLER);
  5576. #else
  5577. SERIAL_ERROR_START;
  5578. SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
  5579. #endif
  5580. }
  5581. #if ENABLED(MORGAN_SCARA)
  5582. bool SCARA_move_to_cal(uint8_t delta_a, uint8_t delta_b) {
  5583. if (IsRunning()) {
  5584. forward_kinematics_SCARA(delta_a, delta_b);
  5585. destination[X_AXIS] = LOGICAL_X_POSITION(cartes[X_AXIS]);
  5586. destination[Y_AXIS] = LOGICAL_Y_POSITION(cartes[Y_AXIS]);
  5587. destination[Z_AXIS] = current_position[Z_AXIS];
  5588. prepare_move_to_destination();
  5589. return true;
  5590. }
  5591. return false;
  5592. }
  5593. /**
  5594. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  5595. */
  5596. inline bool gcode_M360() {
  5597. SERIAL_ECHOLNPGM(" Cal: Theta 0");
  5598. return SCARA_move_to_cal(0, 120);
  5599. }
  5600. /**
  5601. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  5602. */
  5603. inline bool gcode_M361() {
  5604. SERIAL_ECHOLNPGM(" Cal: Theta 90");
  5605. return SCARA_move_to_cal(90, 130);
  5606. }
  5607. /**
  5608. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  5609. */
  5610. inline bool gcode_M362() {
  5611. SERIAL_ECHOLNPGM(" Cal: Psi 0");
  5612. return SCARA_move_to_cal(60, 180);
  5613. }
  5614. /**
  5615. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  5616. */
  5617. inline bool gcode_M363() {
  5618. SERIAL_ECHOLNPGM(" Cal: Psi 90");
  5619. return SCARA_move_to_cal(50, 90);
  5620. }
  5621. /**
  5622. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  5623. */
  5624. inline bool gcode_M364() {
  5625. SERIAL_ECHOLNPGM(" Cal: Theta-Psi 90");
  5626. return SCARA_move_to_cal(45, 135);
  5627. }
  5628. #endif // SCARA
  5629. #if ENABLED(EXT_SOLENOID)
  5630. void enable_solenoid(uint8_t num) {
  5631. switch (num) {
  5632. case 0:
  5633. OUT_WRITE(SOL0_PIN, HIGH);
  5634. break;
  5635. #if HAS_SOLENOID_1
  5636. case 1:
  5637. OUT_WRITE(SOL1_PIN, HIGH);
  5638. break;
  5639. #endif
  5640. #if HAS_SOLENOID_2
  5641. case 2:
  5642. OUT_WRITE(SOL2_PIN, HIGH);
  5643. break;
  5644. #endif
  5645. #if HAS_SOLENOID_3
  5646. case 3:
  5647. OUT_WRITE(SOL3_PIN, HIGH);
  5648. break;
  5649. #endif
  5650. default:
  5651. SERIAL_ECHO_START;
  5652. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  5653. break;
  5654. }
  5655. }
  5656. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  5657. void disable_all_solenoids() {
  5658. OUT_WRITE(SOL0_PIN, LOW);
  5659. OUT_WRITE(SOL1_PIN, LOW);
  5660. OUT_WRITE(SOL2_PIN, LOW);
  5661. OUT_WRITE(SOL3_PIN, LOW);
  5662. }
  5663. /**
  5664. * M380: Enable solenoid on the active extruder
  5665. */
  5666. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  5667. /**
  5668. * M381: Disable all solenoids
  5669. */
  5670. inline void gcode_M381() { disable_all_solenoids(); }
  5671. #endif // EXT_SOLENOID
  5672. /**
  5673. * M400: Finish all moves
  5674. */
  5675. inline void gcode_M400() { stepper.synchronize(); }
  5676. #if HAS_BED_PROBE
  5677. /**
  5678. * M401: Engage Z Servo endstop if available
  5679. */
  5680. inline void gcode_M401() { DEPLOY_PROBE(); }
  5681. /**
  5682. * M402: Retract Z Servo endstop if enabled
  5683. */
  5684. inline void gcode_M402() { STOW_PROBE(); }
  5685. #endif // HAS_BED_PROBE
  5686. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  5687. /**
  5688. * M404: Display or set (in current units) the nominal filament width (3mm, 1.75mm ) W<3.0>
  5689. */
  5690. inline void gcode_M404() {
  5691. if (code_seen('W')) {
  5692. filament_width_nominal = code_value_linear_units();
  5693. }
  5694. else {
  5695. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  5696. SERIAL_PROTOCOLLN(filament_width_nominal);
  5697. }
  5698. }
  5699. /**
  5700. * M405: Turn on filament sensor for control
  5701. */
  5702. inline void gcode_M405() {
  5703. // This is technically a linear measurement, but since it's quantized to centimeters and is a different unit than
  5704. // everything else, it uses code_value_int() instead of code_value_linear_units().
  5705. if (code_seen('D')) meas_delay_cm = code_value_int();
  5706. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  5707. if (filwidth_delay_index[1] == -1) { // Initialize the ring buffer if not done since startup
  5708. int temp_ratio = thermalManager.widthFil_to_size_ratio();
  5709. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  5710. measurement_delay[i] = temp_ratio - 100; // Subtract 100 to scale within a signed byte
  5711. filwidth_delay_index[0] = filwidth_delay_index[1] = 0;
  5712. }
  5713. filament_sensor = true;
  5714. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5715. //SERIAL_PROTOCOL(filament_width_meas);
  5716. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  5717. //SERIAL_PROTOCOL(flow_percentage[active_extruder]);
  5718. }
  5719. /**
  5720. * M406: Turn off filament sensor for control
  5721. */
  5722. inline void gcode_M406() { filament_sensor = false; }
  5723. /**
  5724. * M407: Get measured filament diameter on serial output
  5725. */
  5726. inline void gcode_M407() {
  5727. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5728. SERIAL_PROTOCOLLN(filament_width_meas);
  5729. }
  5730. #endif // FILAMENT_WIDTH_SENSOR
  5731. void quickstop_stepper() {
  5732. stepper.quick_stop();
  5733. stepper.synchronize();
  5734. set_current_from_steppers_for_axis(ALL_AXES);
  5735. SYNC_PLAN_POSITION_KINEMATIC();
  5736. }
  5737. #if PLANNER_LEVELING
  5738. /**
  5739. * M420: Enable/Disable Bed Leveling and/or set the Z fade height.
  5740. *
  5741. * S[bool] Turns leveling on or off
  5742. * Z[height] Sets the Z fade height (0 or none to disable)
  5743. */
  5744. inline void gcode_M420() {
  5745. if (code_seen('S')) set_bed_leveling_enabled(code_value_bool());
  5746. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  5747. if (code_seen('Z')) set_z_fade_height(code_value_linear_units());
  5748. #endif
  5749. }
  5750. #endif
  5751. #if ENABLED(MESH_BED_LEVELING)
  5752. /**
  5753. * M421: Set a single Mesh Bed Leveling Z coordinate
  5754. * Use either 'M421 X<linear> Y<linear> Z<linear>' or 'M421 I<xindex> J<yindex> Z<linear>'
  5755. */
  5756. inline void gcode_M421() {
  5757. int8_t px = 0, py = 0;
  5758. float z = 0;
  5759. bool hasX, hasY, hasZ, hasI, hasJ;
  5760. if ((hasX = code_seen('X'))) px = mbl.probe_index_x(code_value_axis_units(X_AXIS));
  5761. if ((hasY = code_seen('Y'))) py = mbl.probe_index_y(code_value_axis_units(Y_AXIS));
  5762. if ((hasI = code_seen('I'))) px = code_value_axis_units(X_AXIS);
  5763. if ((hasJ = code_seen('J'))) py = code_value_axis_units(Y_AXIS);
  5764. if ((hasZ = code_seen('Z'))) z = code_value_axis_units(Z_AXIS);
  5765. if (hasX && hasY && hasZ) {
  5766. if (px >= 0 && py >= 0)
  5767. mbl.set_z(px, py, z);
  5768. else {
  5769. SERIAL_ERROR_START;
  5770. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5771. }
  5772. }
  5773. else if (hasI && hasJ && hasZ) {
  5774. if (px >= 0 && px < MESH_NUM_X_POINTS && py >= 0 && py < MESH_NUM_Y_POINTS)
  5775. mbl.set_z(px, py, z);
  5776. else {
  5777. SERIAL_ERROR_START;
  5778. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5779. }
  5780. }
  5781. else {
  5782. SERIAL_ERROR_START;
  5783. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  5784. }
  5785. }
  5786. #endif
  5787. /**
  5788. * M428: Set home_offset based on the distance between the
  5789. * current_position and the nearest "reference point."
  5790. * If an axis is past center its endstop position
  5791. * is the reference-point. Otherwise it uses 0. This allows
  5792. * the Z offset to be set near the bed when using a max endstop.
  5793. *
  5794. * M428 can't be used more than 2cm away from 0 or an endstop.
  5795. *
  5796. * Use M206 to set these values directly.
  5797. */
  5798. inline void gcode_M428() {
  5799. bool err = false;
  5800. LOOP_XYZ(i) {
  5801. if (axis_homed[i]) {
  5802. float base = (current_position[i] > (soft_endstop_min[i] + soft_endstop_max[i]) * 0.5) ? base_home_pos((AxisEnum)i) : 0,
  5803. diff = current_position[i] - LOGICAL_POSITION(base, i);
  5804. if (diff > -20 && diff < 20) {
  5805. set_home_offset((AxisEnum)i, home_offset[i] - diff);
  5806. }
  5807. else {
  5808. SERIAL_ERROR_START;
  5809. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  5810. LCD_ALERTMESSAGEPGM("Err: Too far!");
  5811. BUZZ(200, 40);
  5812. err = true;
  5813. break;
  5814. }
  5815. }
  5816. }
  5817. if (!err) {
  5818. SYNC_PLAN_POSITION_KINEMATIC();
  5819. report_current_position();
  5820. LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  5821. BUZZ(200, 659);
  5822. BUZZ(200, 698);
  5823. }
  5824. }
  5825. /**
  5826. * M500: Store settings in EEPROM
  5827. */
  5828. inline void gcode_M500() {
  5829. Config_StoreSettings();
  5830. }
  5831. /**
  5832. * M501: Read settings from EEPROM
  5833. */
  5834. inline void gcode_M501() {
  5835. Config_RetrieveSettings();
  5836. }
  5837. /**
  5838. * M502: Revert to default settings
  5839. */
  5840. inline void gcode_M502() {
  5841. Config_ResetDefault();
  5842. }
  5843. /**
  5844. * M503: print settings currently in memory
  5845. */
  5846. inline void gcode_M503() {
  5847. Config_PrintSettings(code_seen('S') && !code_value_bool());
  5848. }
  5849. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  5850. /**
  5851. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  5852. */
  5853. inline void gcode_M540() {
  5854. if (code_seen('S')) stepper.abort_on_endstop_hit = code_value_bool();
  5855. }
  5856. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5857. #if HAS_BED_PROBE
  5858. inline void gcode_M851() {
  5859. SERIAL_ECHO_START;
  5860. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  5861. SERIAL_CHAR(' ');
  5862. if (code_seen('Z')) {
  5863. float value = code_value_axis_units(Z_AXIS);
  5864. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  5865. zprobe_zoffset = value;
  5866. SERIAL_ECHO(zprobe_zoffset);
  5867. }
  5868. else {
  5869. SERIAL_ECHOPAIR(MSG_Z_MIN, Z_PROBE_OFFSET_RANGE_MIN);
  5870. SERIAL_CHAR(' ');
  5871. SERIAL_ECHOPAIR(MSG_Z_MAX, Z_PROBE_OFFSET_RANGE_MAX);
  5872. }
  5873. }
  5874. else {
  5875. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  5876. }
  5877. SERIAL_EOL;
  5878. }
  5879. #endif // HAS_BED_PROBE
  5880. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  5881. /**
  5882. * M600: Pause for filament change
  5883. *
  5884. * E[distance] - Retract the filament this far (negative value)
  5885. * Z[distance] - Move the Z axis by this distance
  5886. * X[position] - Move to this X position, with Y
  5887. * Y[position] - Move to this Y position, with X
  5888. * L[distance] - Retract distance for removal (manual reload)
  5889. *
  5890. * Default values are used for omitted arguments.
  5891. *
  5892. */
  5893. inline void gcode_M600() {
  5894. if (thermalManager.tooColdToExtrude(active_extruder)) {
  5895. SERIAL_ERROR_START;
  5896. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  5897. return;
  5898. }
  5899. // Show initial message and wait for synchronize steppers
  5900. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INIT);
  5901. stepper.synchronize();
  5902. float lastpos[NUM_AXIS];
  5903. // Save current position of all axes
  5904. LOOP_XYZE(i)
  5905. lastpos[i] = destination[i] = current_position[i];
  5906. // Define runplan for move axes
  5907. #if IS_KINEMATIC
  5908. #define RUNPLAN(RATE_MM_S) planner.buffer_line_kinematic(destination, RATE_MM_S, active_extruder);
  5909. #else
  5910. #define RUNPLAN(RATE_MM_S) line_to_destination(RATE_MM_S);
  5911. #endif
  5912. KEEPALIVE_STATE(IN_HANDLER);
  5913. // Initial retract before move to filament change position
  5914. if (code_seen('E')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  5915. #if defined(FILAMENT_CHANGE_RETRACT_LENGTH) && FILAMENT_CHANGE_RETRACT_LENGTH > 0
  5916. else destination[E_AXIS] -= FILAMENT_CHANGE_RETRACT_LENGTH;
  5917. #endif
  5918. RUNPLAN(FILAMENT_CHANGE_RETRACT_FEEDRATE);
  5919. // Lift Z axis
  5920. float z_lift = code_seen('Z') ? code_value_axis_units(Z_AXIS) :
  5921. #if defined(FILAMENT_CHANGE_Z_ADD) && FILAMENT_CHANGE_Z_ADD > 0
  5922. FILAMENT_CHANGE_Z_ADD
  5923. #else
  5924. 0
  5925. #endif
  5926. ;
  5927. if (z_lift > 0) {
  5928. destination[Z_AXIS] += z_lift;
  5929. NOMORE(destination[Z_AXIS], Z_MAX_POS);
  5930. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  5931. }
  5932. // Move XY axes to filament exchange position
  5933. if (code_seen('X')) destination[X_AXIS] = code_value_axis_units(X_AXIS);
  5934. #ifdef FILAMENT_CHANGE_X_POS
  5935. else destination[X_AXIS] = FILAMENT_CHANGE_X_POS;
  5936. #endif
  5937. if (code_seen('Y')) destination[Y_AXIS] = code_value_axis_units(Y_AXIS);
  5938. #ifdef FILAMENT_CHANGE_Y_POS
  5939. else destination[Y_AXIS] = FILAMENT_CHANGE_Y_POS;
  5940. #endif
  5941. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  5942. stepper.synchronize();
  5943. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_UNLOAD);
  5944. // Unload filament
  5945. if (code_seen('L')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  5946. #if defined(FILAMENT_CHANGE_UNLOAD_LENGTH) && FILAMENT_CHANGE_UNLOAD_LENGTH > 0
  5947. else destination[E_AXIS] -= FILAMENT_CHANGE_UNLOAD_LENGTH;
  5948. #endif
  5949. RUNPLAN(FILAMENT_CHANGE_UNLOAD_FEEDRATE);
  5950. // Synchronize steppers and then disable extruders steppers for manual filament changing
  5951. stepper.synchronize();
  5952. disable_e0();
  5953. disable_e1();
  5954. disable_e2();
  5955. disable_e3();
  5956. delay(100);
  5957. #if HAS_BUZZER
  5958. millis_t next_buzz = 0;
  5959. #endif
  5960. // Wait for filament insert by user and press button
  5961. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INSERT);
  5962. // LCD click or M108 will clear this
  5963. wait_for_user = true;
  5964. while (wait_for_user) {
  5965. #if HAS_BUZZER
  5966. millis_t ms = millis();
  5967. if (ms >= next_buzz) {
  5968. BUZZ(300, 2000);
  5969. next_buzz = ms + 2500; // Beep every 2.5s while waiting
  5970. }
  5971. #endif
  5972. idle(true);
  5973. }
  5974. // Show load message
  5975. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_LOAD);
  5976. // Load filament
  5977. if (code_seen('L')) destination[E_AXIS] -= code_value_axis_units(E_AXIS);
  5978. #if defined(FILAMENT_CHANGE_LOAD_LENGTH) && FILAMENT_CHANGE_LOAD_LENGTH > 0
  5979. else destination[E_AXIS] += FILAMENT_CHANGE_LOAD_LENGTH;
  5980. #endif
  5981. RUNPLAN(FILAMENT_CHANGE_LOAD_FEEDRATE);
  5982. stepper.synchronize();
  5983. #if defined(FILAMENT_CHANGE_EXTRUDE_LENGTH) && FILAMENT_CHANGE_EXTRUDE_LENGTH > 0
  5984. do {
  5985. // Extrude filament to get into hotend
  5986. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_EXTRUDE);
  5987. destination[E_AXIS] += FILAMENT_CHANGE_EXTRUDE_LENGTH;
  5988. RUNPLAN(FILAMENT_CHANGE_EXTRUDE_FEEDRATE);
  5989. stepper.synchronize();
  5990. // Ask user if more filament should be extruded
  5991. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5992. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_OPTION);
  5993. while (filament_change_menu_response == FILAMENT_CHANGE_RESPONSE_WAIT_FOR) idle(true);
  5994. KEEPALIVE_STATE(IN_HANDLER);
  5995. } while (filament_change_menu_response != FILAMENT_CHANGE_RESPONSE_RESUME_PRINT);
  5996. #endif
  5997. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_RESUME);
  5998. KEEPALIVE_STATE(IN_HANDLER);
  5999. // Set extruder to saved position
  6000. destination[E_AXIS] = current_position[E_AXIS] = lastpos[E_AXIS];
  6001. planner.set_e_position_mm(current_position[E_AXIS]);
  6002. #if IS_KINEMATIC
  6003. // Move XYZ to starting position
  6004. planner.buffer_line_kinematic(lastpos, FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  6005. #else
  6006. // Move XY to starting position, then Z
  6007. destination[X_AXIS] = lastpos[X_AXIS];
  6008. destination[Y_AXIS] = lastpos[Y_AXIS];
  6009. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  6010. destination[Z_AXIS] = lastpos[Z_AXIS];
  6011. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  6012. #endif
  6013. stepper.synchronize();
  6014. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  6015. filament_ran_out = false;
  6016. #endif
  6017. // Show status screen
  6018. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_STATUS);
  6019. }
  6020. #endif // FILAMENT_CHANGE_FEATURE
  6021. #if ENABLED(DUAL_X_CARRIAGE)
  6022. /**
  6023. * M605: Set dual x-carriage movement mode
  6024. *
  6025. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  6026. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  6027. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  6028. * units x-offset and an optional differential hotend temperature of
  6029. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  6030. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  6031. *
  6032. * Note: the X axis should be homed after changing dual x-carriage mode.
  6033. */
  6034. inline void gcode_M605() {
  6035. stepper.synchronize();
  6036. if (code_seen('S')) dual_x_carriage_mode = (DualXMode)code_value_byte();
  6037. switch (dual_x_carriage_mode) {
  6038. case DXC_FULL_CONTROL_MODE:
  6039. case DXC_AUTO_PARK_MODE:
  6040. break;
  6041. case DXC_DUPLICATION_MODE:
  6042. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value_axis_units(X_AXIS), X2_MIN_POS - x_home_pos(0));
  6043. if (code_seen('R')) duplicate_extruder_temp_offset = code_value_temp_diff();
  6044. SERIAL_ECHO_START;
  6045. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  6046. SERIAL_CHAR(' ');
  6047. SERIAL_ECHO(hotend_offset[X_AXIS][0]);
  6048. SERIAL_CHAR(',');
  6049. SERIAL_ECHO(hotend_offset[Y_AXIS][0]);
  6050. SERIAL_CHAR(' ');
  6051. SERIAL_ECHO(duplicate_extruder_x_offset);
  6052. SERIAL_CHAR(',');
  6053. SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]);
  6054. break;
  6055. default:
  6056. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  6057. break;
  6058. }
  6059. active_extruder_parked = false;
  6060. extruder_duplication_enabled = false;
  6061. delayed_move_time = 0;
  6062. }
  6063. #elif ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  6064. inline void gcode_M605() {
  6065. stepper.synchronize();
  6066. extruder_duplication_enabled = code_seen('S') && code_value_int() == 2;
  6067. SERIAL_ECHO_START;
  6068. SERIAL_ECHOLNPAIR(MSG_DUPLICATION_MODE, extruder_duplication_enabled ? MSG_ON : MSG_OFF);
  6069. }
  6070. #endif // M605
  6071. #if ENABLED(LIN_ADVANCE)
  6072. /**
  6073. * M905: Set advance factor
  6074. */
  6075. inline void gcode_M905() {
  6076. stepper.synchronize();
  6077. planner.advance_M905(code_seen('K') ? code_value_float() : -1.0);
  6078. }
  6079. #endif
  6080. /**
  6081. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  6082. */
  6083. inline void gcode_M907() {
  6084. #if HAS_DIGIPOTSS
  6085. LOOP_XYZE(i)
  6086. if (code_seen(axis_codes[i])) stepper.digipot_current(i, code_value_int());
  6087. if (code_seen('B')) stepper.digipot_current(4, code_value_int());
  6088. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.digipot_current(i, code_value_int());
  6089. #elif HAS_MOTOR_CURRENT_PWM
  6090. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  6091. if (code_seen('X')) stepper.digipot_current(0, code_value_int());
  6092. #endif
  6093. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  6094. if (code_seen('Z')) stepper.digipot_current(1, code_value_int());
  6095. #endif
  6096. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  6097. if (code_seen('E')) stepper.digipot_current(2, code_value_int());
  6098. #endif
  6099. #endif
  6100. #if ENABLED(DIGIPOT_I2C)
  6101. // this one uses actual amps in floating point
  6102. LOOP_XYZE(i) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value_float());
  6103. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  6104. for (int i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value_float());
  6105. #endif
  6106. #if ENABLED(DAC_STEPPER_CURRENT)
  6107. if (code_seen('S')) {
  6108. float dac_percent = code_value_float();
  6109. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  6110. }
  6111. LOOP_XYZE(i) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value_float());
  6112. #endif
  6113. }
  6114. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  6115. /**
  6116. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  6117. */
  6118. inline void gcode_M908() {
  6119. #if HAS_DIGIPOTSS
  6120. stepper.digitalPotWrite(
  6121. code_seen('P') ? code_value_int() : 0,
  6122. code_seen('S') ? code_value_int() : 0
  6123. );
  6124. #endif
  6125. #ifdef DAC_STEPPER_CURRENT
  6126. dac_current_raw(
  6127. code_seen('P') ? code_value_byte() : -1,
  6128. code_seen('S') ? code_value_ushort() : 0
  6129. );
  6130. #endif
  6131. }
  6132. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  6133. inline void gcode_M909() { dac_print_values(); }
  6134. inline void gcode_M910() { dac_commit_eeprom(); }
  6135. #endif
  6136. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  6137. #if HAS_MICROSTEPS
  6138. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  6139. inline void gcode_M350() {
  6140. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, code_value_byte());
  6141. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_mode(i, code_value_byte());
  6142. if (code_seen('B')) stepper.microstep_mode(4, code_value_byte());
  6143. stepper.microstep_readings();
  6144. }
  6145. /**
  6146. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  6147. * S# determines MS1 or MS2, X# sets the pin high/low.
  6148. */
  6149. inline void gcode_M351() {
  6150. if (code_seen('S')) switch (code_value_byte()) {
  6151. case 1:
  6152. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, code_value_byte(), -1);
  6153. if (code_seen('B')) stepper.microstep_ms(4, code_value_byte(), -1);
  6154. break;
  6155. case 2:
  6156. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, -1, code_value_byte());
  6157. if (code_seen('B')) stepper.microstep_ms(4, -1, code_value_byte());
  6158. break;
  6159. }
  6160. stepper.microstep_readings();
  6161. }
  6162. #endif // HAS_MICROSTEPS
  6163. #if HAS_CASE_LIGHT
  6164. uint8_t case_light_brightness = 255;
  6165. void update_case_light() {
  6166. digitalWrite(CASE_LIGHT_PIN, case_light_on ? HIGH : LOW);
  6167. analogWrite(CASE_LIGHT_PIN, case_light_on ? case_light_brightness : 0);
  6168. }
  6169. /**
  6170. * M355: Turn case lights on/off and set brightness
  6171. *
  6172. * S<bool> Turn case light on or off
  6173. * P<byte> Set case light brightness (PWM pin required)
  6174. */
  6175. inline void gcode_M355() {
  6176. if (code_seen('P')) case_light_brightness = code_value_byte();
  6177. if (code_seen('S')) case_light_on = code_value_bool();
  6178. update_case_light();
  6179. SERIAL_ECHO_START;
  6180. SERIAL_ECHOPGM("Case lights ");
  6181. case_light_on ? SERIAL_ECHOLNPGM("on") : SERIAL_ECHOLNPGM("off");
  6182. }
  6183. #endif // HAS_CASE_LIGHT
  6184. #if ENABLED(MIXING_EXTRUDER)
  6185. /**
  6186. * M163: Set a single mix factor for a mixing extruder
  6187. * This is called "weight" by some systems.
  6188. *
  6189. * S[index] The channel index to set
  6190. * P[float] The mix value
  6191. *
  6192. */
  6193. inline void gcode_M163() {
  6194. int mix_index = code_seen('S') ? code_value_int() : 0;
  6195. if (mix_index < MIXING_STEPPERS) {
  6196. float mix_value = code_seen('P') ? code_value_float() : 0.0;
  6197. NOLESS(mix_value, 0.0);
  6198. mixing_factor[mix_index] = RECIPROCAL(mix_value);
  6199. }
  6200. }
  6201. #if MIXING_VIRTUAL_TOOLS > 1
  6202. /**
  6203. * M164: Store the current mix factors as a virtual tool.
  6204. *
  6205. * S[index] The virtual tool to store
  6206. *
  6207. */
  6208. inline void gcode_M164() {
  6209. int tool_index = code_seen('S') ? code_value_int() : 0;
  6210. if (tool_index < MIXING_VIRTUAL_TOOLS) {
  6211. normalize_mix();
  6212. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  6213. mixing_virtual_tool_mix[tool_index][i] = mixing_factor[i];
  6214. }
  6215. }
  6216. #endif
  6217. #if ENABLED(DIRECT_MIXING_IN_G1)
  6218. /**
  6219. * M165: Set multiple mix factors for a mixing extruder.
  6220. * Factors that are left out will be set to 0.
  6221. * All factors together must add up to 1.0.
  6222. *
  6223. * A[factor] Mix factor for extruder stepper 1
  6224. * B[factor] Mix factor for extruder stepper 2
  6225. * C[factor] Mix factor for extruder stepper 3
  6226. * D[factor] Mix factor for extruder stepper 4
  6227. * H[factor] Mix factor for extruder stepper 5
  6228. * I[factor] Mix factor for extruder stepper 6
  6229. *
  6230. */
  6231. inline void gcode_M165() { gcode_get_mix(); }
  6232. #endif
  6233. #endif // MIXING_EXTRUDER
  6234. /**
  6235. * M999: Restart after being stopped
  6236. *
  6237. * Default behaviour is to flush the serial buffer and request
  6238. * a resend to the host starting on the last N line received.
  6239. *
  6240. * Sending "M999 S1" will resume printing without flushing the
  6241. * existing command buffer.
  6242. *
  6243. */
  6244. inline void gcode_M999() {
  6245. Running = true;
  6246. lcd_reset_alert_level();
  6247. if (code_seen('S') && code_value_bool()) return;
  6248. // gcode_LastN = Stopped_gcode_LastN;
  6249. FlushSerialRequestResend();
  6250. }
  6251. #if ENABLED(SWITCHING_EXTRUDER)
  6252. inline void move_extruder_servo(uint8_t e) {
  6253. const int angles[2] = SWITCHING_EXTRUDER_SERVO_ANGLES;
  6254. MOVE_SERVO(SWITCHING_EXTRUDER_SERVO_NR, angles[e]);
  6255. }
  6256. #endif
  6257. inline void invalid_extruder_error(const uint8_t &e) {
  6258. SERIAL_ECHO_START;
  6259. SERIAL_CHAR('T');
  6260. SERIAL_PROTOCOL_F(e, DEC);
  6261. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  6262. }
  6263. /**
  6264. * Perform a tool-change, which may result in moving the
  6265. * previous tool out of the way and the new tool into place.
  6266. */
  6267. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s/*=0.0*/, bool no_move/*=false*/) {
  6268. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  6269. if (tmp_extruder >= MIXING_VIRTUAL_TOOLS) {
  6270. invalid_extruder_error(tmp_extruder);
  6271. return;
  6272. }
  6273. // T0-Tnnn: Switch virtual tool by changing the mix
  6274. for (uint8_t j = 0; j < MIXING_STEPPERS; j++)
  6275. mixing_factor[j] = mixing_virtual_tool_mix[tmp_extruder][j];
  6276. #else //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  6277. #if HOTENDS > 1
  6278. if (tmp_extruder >= EXTRUDERS) {
  6279. invalid_extruder_error(tmp_extruder);
  6280. return;
  6281. }
  6282. float old_feedrate_mm_s = feedrate_mm_s;
  6283. feedrate_mm_s = fr_mm_s > 0.0 ? (old_feedrate_mm_s = fr_mm_s) : XY_PROBE_FEEDRATE_MM_S;
  6284. if (tmp_extruder != active_extruder) {
  6285. if (!no_move && axis_unhomed_error(true, true, true)) {
  6286. SERIAL_ECHOLNPGM("No move on toolchange");
  6287. no_move = true;
  6288. }
  6289. // Save current position to destination, for use later
  6290. set_destination_to_current();
  6291. #if ENABLED(DUAL_X_CARRIAGE)
  6292. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6293. if (DEBUGGING(LEVELING)) {
  6294. SERIAL_ECHOPGM("Dual X Carriage Mode ");
  6295. switch (dual_x_carriage_mode) {
  6296. case DXC_FULL_CONTROL_MODE: SERIAL_ECHOLNPGM("DXC_FULL_CONTROL_MODE"); break;
  6297. case DXC_AUTO_PARK_MODE: SERIAL_ECHOLNPGM("DXC_AUTO_PARK_MODE"); break;
  6298. case DXC_DUPLICATION_MODE: SERIAL_ECHOLNPGM("DXC_DUPLICATION_MODE"); break;
  6299. }
  6300. }
  6301. #endif
  6302. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  6303. (delayed_move_time || current_position[X_AXIS] != x_home_pos(active_extruder))
  6304. ) {
  6305. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6306. if (DEBUGGING(LEVELING)) {
  6307. SERIAL_ECHOPAIR("Raise to ", current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT); SERIAL_EOL;
  6308. SERIAL_ECHOPAIR("MoveX to ", x_home_pos(active_extruder)); SERIAL_EOL;
  6309. SERIAL_ECHOPAIR("Lower to ", current_position[Z_AXIS]); SERIAL_EOL;
  6310. }
  6311. #endif
  6312. // Park old head: 1) raise 2) move to park position 3) lower
  6313. for (uint8_t i = 0; i < 3; i++)
  6314. planner.buffer_line(
  6315. i == 0 ? current_position[X_AXIS] : x_home_pos(active_extruder),
  6316. current_position[Y_AXIS],
  6317. current_position[Z_AXIS] + (i == 2 ? 0 : TOOLCHANGE_PARK_ZLIFT),
  6318. current_position[E_AXIS],
  6319. planner.max_feedrate_mm_s[i == 1 ? X_AXIS : Z_AXIS],
  6320. active_extruder
  6321. );
  6322. stepper.synchronize();
  6323. }
  6324. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  6325. current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
  6326. current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
  6327. active_extruder = tmp_extruder;
  6328. // This function resets the max/min values - the current position may be overwritten below.
  6329. set_axis_is_at_home(X_AXIS);
  6330. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6331. if (DEBUGGING(LEVELING)) DEBUG_POS("New Extruder", current_position);
  6332. #endif
  6333. switch (dual_x_carriage_mode) {
  6334. case DXC_FULL_CONTROL_MODE:
  6335. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  6336. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  6337. break;
  6338. case DXC_AUTO_PARK_MODE:
  6339. // record raised toolhead position for use by unpark
  6340. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  6341. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  6342. #if ENABLED(max_software_endstops)
  6343. NOMORE(raised_parked_position[Z_AXIS], soft_endstop_max[Z_AXIS]);
  6344. #endif
  6345. active_extruder_parked = true;
  6346. delayed_move_time = 0;
  6347. break;
  6348. case DXC_DUPLICATION_MODE:
  6349. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  6350. if (active_extruder_parked)
  6351. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  6352. else
  6353. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  6354. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  6355. extruder_duplication_enabled = false;
  6356. break;
  6357. }
  6358. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6359. if (DEBUGGING(LEVELING)) {
  6360. SERIAL_ECHOLNPAIR("Active extruder parked: ", active_extruder_parked ? "yes" : "no");
  6361. DEBUG_POS("New extruder (parked)", current_position);
  6362. }
  6363. #endif
  6364. // No extra case for HAS_ABL in DUAL_X_CARRIAGE. Does that mean they don't work together?
  6365. #else // !DUAL_X_CARRIAGE
  6366. #if ENABLED(SWITCHING_EXTRUDER)
  6367. // <0 if the new nozzle is higher, >0 if lower. A bigger raise when lower.
  6368. float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder],
  6369. z_raise = 0.3 + (z_diff > 0.0 ? z_diff : 0.0);
  6370. set_destination_to_current();
  6371. // Always raise by some amount
  6372. destination[Z_AXIS] += z_raise;
  6373. planner.buffer_line_kinematic(destination, planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  6374. stepper.synchronize();
  6375. move_extruder_servo(active_extruder);
  6376. delay(500);
  6377. // Move back down, if needed
  6378. if (z_raise != z_diff) {
  6379. destination[Z_AXIS] = current_position[Z_AXIS] + z_diff;
  6380. planner.buffer_line_kinematic(destination, planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  6381. stepper.synchronize();
  6382. }
  6383. #endif
  6384. /**
  6385. * Set current_position to the position of the new nozzle.
  6386. * Offsets are based on linear distance, so we need to get
  6387. * the resulting position in coordinate space.
  6388. *
  6389. * - With grid or 3-point leveling, offset XYZ by a tilted vector
  6390. * - With mesh leveling, update Z for the new position
  6391. * - Otherwise, just use the raw linear distance
  6392. *
  6393. * Software endstops are altered here too. Consider a case where:
  6394. * E0 at X=0 ... E1 at X=10
  6395. * When we switch to E1 now X=10, but E1 can't move left.
  6396. * To express this we apply the change in XY to the software endstops.
  6397. * E1 can move farther right than E0, so the right limit is extended.
  6398. *
  6399. * Note that we don't adjust the Z software endstops. Why not?
  6400. * Consider a case where Z=0 (here) and switching to E1 makes Z=1
  6401. * because the bed is 1mm lower at the new position. As long as
  6402. * the first nozzle is out of the way, the carriage should be
  6403. * allowed to move 1mm lower. This technically "breaks" the
  6404. * Z software endstop. But this is technically correct (and
  6405. * there is no viable alternative).
  6406. */
  6407. #if ABL_PLANAR
  6408. // Offset extruder, make sure to apply the bed level rotation matrix
  6409. vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder],
  6410. hotend_offset[Y_AXIS][tmp_extruder],
  6411. 0),
  6412. act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder],
  6413. hotend_offset[Y_AXIS][active_extruder],
  6414. 0),
  6415. offset_vec = tmp_offset_vec - act_offset_vec;
  6416. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6417. if (DEBUGGING(LEVELING)) {
  6418. tmp_offset_vec.debug("tmp_offset_vec");
  6419. act_offset_vec.debug("act_offset_vec");
  6420. offset_vec.debug("offset_vec (BEFORE)");
  6421. }
  6422. #endif
  6423. offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
  6424. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6425. if (DEBUGGING(LEVELING)) offset_vec.debug("offset_vec (AFTER)");
  6426. #endif
  6427. // Adjustments to the current position
  6428. float xydiff[2] = { offset_vec.x, offset_vec.y };
  6429. current_position[Z_AXIS] += offset_vec.z;
  6430. #else // !ABL_PLANAR
  6431. float xydiff[2] = {
  6432. hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder],
  6433. hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder]
  6434. };
  6435. #if ENABLED(MESH_BED_LEVELING)
  6436. if (mbl.active()) {
  6437. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6438. if (DEBUGGING(LEVELING)) SERIAL_ECHOPAIR("Z before MBL: ", current_position[Z_AXIS]);
  6439. #endif
  6440. float xpos = RAW_CURRENT_POSITION(X_AXIS),
  6441. ypos = RAW_CURRENT_POSITION(Y_AXIS);
  6442. current_position[Z_AXIS] += mbl.get_z(xpos + xydiff[X_AXIS], ypos + xydiff[Y_AXIS]) - mbl.get_z(xpos, ypos);
  6443. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6444. if (DEBUGGING(LEVELING))
  6445. SERIAL_ECHOLNPAIR(" after: ", current_position[Z_AXIS]);
  6446. #endif
  6447. }
  6448. #endif // MESH_BED_LEVELING
  6449. #endif // !HAS_ABL
  6450. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6451. if (DEBUGGING(LEVELING)) {
  6452. SERIAL_ECHOPAIR("Offset Tool XY by { ", xydiff[X_AXIS]);
  6453. SERIAL_ECHOPAIR(", ", xydiff[Y_AXIS]);
  6454. SERIAL_ECHOLNPGM(" }");
  6455. }
  6456. #endif
  6457. // The newly-selected extruder XY is actually at...
  6458. current_position[X_AXIS] += xydiff[X_AXIS];
  6459. current_position[Y_AXIS] += xydiff[Y_AXIS];
  6460. for (uint8_t i = X_AXIS; i <= Y_AXIS; i++) {
  6461. position_shift[i] += xydiff[i];
  6462. update_software_endstops((AxisEnum)i);
  6463. }
  6464. // Set the new active extruder
  6465. active_extruder = tmp_extruder;
  6466. #endif // !DUAL_X_CARRIAGE
  6467. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6468. if (DEBUGGING(LEVELING)) DEBUG_POS("Sync After Toolchange", current_position);
  6469. #endif
  6470. // Tell the planner the new "current position"
  6471. SYNC_PLAN_POSITION_KINEMATIC();
  6472. // Move to the "old position" (move the extruder into place)
  6473. if (!no_move && IsRunning()) {
  6474. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6475. if (DEBUGGING(LEVELING)) DEBUG_POS("Move back", destination);
  6476. #endif
  6477. prepare_move_to_destination();
  6478. }
  6479. } // (tmp_extruder != active_extruder)
  6480. stepper.synchronize();
  6481. #if ENABLED(EXT_SOLENOID)
  6482. disable_all_solenoids();
  6483. enable_solenoid_on_active_extruder();
  6484. #endif // EXT_SOLENOID
  6485. feedrate_mm_s = old_feedrate_mm_s;
  6486. #else // HOTENDS <= 1
  6487. // Set the new active extruder
  6488. active_extruder = tmp_extruder;
  6489. UNUSED(fr_mm_s);
  6490. UNUSED(no_move);
  6491. #endif // HOTENDS <= 1
  6492. SERIAL_ECHO_START;
  6493. SERIAL_ECHOLNPAIR(MSG_ACTIVE_EXTRUDER, (int)active_extruder);
  6494. #endif //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  6495. }
  6496. /**
  6497. * T0-T3: Switch tool, usually switching extruders
  6498. *
  6499. * F[units/min] Set the movement feedrate
  6500. * S1 Don't move the tool in XY after change
  6501. */
  6502. inline void gcode_T(uint8_t tmp_extruder) {
  6503. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6504. if (DEBUGGING(LEVELING)) {
  6505. SERIAL_ECHOPAIR(">>> gcode_T(", tmp_extruder);
  6506. SERIAL_CHAR(')');
  6507. SERIAL_EOL;
  6508. DEBUG_POS("BEFORE", current_position);
  6509. }
  6510. #endif
  6511. #if HOTENDS == 1 || (ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1)
  6512. tool_change(tmp_extruder);
  6513. #elif HOTENDS > 1
  6514. tool_change(
  6515. tmp_extruder,
  6516. code_seen('F') ? MMM_TO_MMS(code_value_axis_units(X_AXIS)) : 0.0,
  6517. (tmp_extruder == active_extruder) || (code_seen('S') && code_value_bool())
  6518. );
  6519. #endif
  6520. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6521. if (DEBUGGING(LEVELING)) {
  6522. DEBUG_POS("AFTER", current_position);
  6523. SERIAL_ECHOLNPGM("<<< gcode_T");
  6524. }
  6525. #endif
  6526. }
  6527. /**
  6528. * Process a single command and dispatch it to its handler
  6529. * This is called from the main loop()
  6530. */
  6531. void process_next_command() {
  6532. current_command = command_queue[cmd_queue_index_r];
  6533. if (DEBUGGING(ECHO)) {
  6534. SERIAL_ECHO_START;
  6535. SERIAL_ECHOLN(current_command);
  6536. }
  6537. // Sanitize the current command:
  6538. // - Skip leading spaces
  6539. // - Bypass N[-0-9][0-9]*[ ]*
  6540. // - Overwrite * with nul to mark the end
  6541. while (*current_command == ' ') ++current_command;
  6542. if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) {
  6543. current_command += 2; // skip N[-0-9]
  6544. while (NUMERIC(*current_command)) ++current_command; // skip [0-9]*
  6545. while (*current_command == ' ') ++current_command; // skip [ ]*
  6546. }
  6547. char* starpos = strchr(current_command, '*'); // * should always be the last parameter
  6548. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  6549. char *cmd_ptr = current_command;
  6550. // Get the command code, which must be G, M, or T
  6551. char command_code = *cmd_ptr++;
  6552. // Skip spaces to get the numeric part
  6553. while (*cmd_ptr == ' ') cmd_ptr++;
  6554. // Allow for decimal point in command
  6555. #if ENABLED(G38_PROBE_TARGET)
  6556. uint8_t subcode = 0;
  6557. #endif
  6558. uint16_t codenum = 0; // define ahead of goto
  6559. // Bail early if there's no code
  6560. bool code_is_good = NUMERIC(*cmd_ptr);
  6561. if (!code_is_good) goto ExitUnknownCommand;
  6562. // Get and skip the code number
  6563. do {
  6564. codenum = (codenum * 10) + (*cmd_ptr - '0');
  6565. cmd_ptr++;
  6566. } while (NUMERIC(*cmd_ptr));
  6567. // Allow for decimal point in command
  6568. #if ENABLED(G38_PROBE_TARGET)
  6569. if (*cmd_ptr == '.') {
  6570. cmd_ptr++;
  6571. while (NUMERIC(*cmd_ptr))
  6572. subcode = (subcode * 10) + (*cmd_ptr++ - '0');
  6573. }
  6574. #endif
  6575. // Skip all spaces to get to the first argument, or nul
  6576. while (*cmd_ptr == ' ') cmd_ptr++;
  6577. // The command's arguments (if any) start here, for sure!
  6578. current_command_args = cmd_ptr;
  6579. KEEPALIVE_STATE(IN_HANDLER);
  6580. // Handle a known G, M, or T
  6581. switch (command_code) {
  6582. case 'G': switch (codenum) {
  6583. // G0, G1
  6584. case 0:
  6585. case 1:
  6586. #if IS_SCARA
  6587. gcode_G0_G1(codenum == 0);
  6588. #else
  6589. gcode_G0_G1();
  6590. #endif
  6591. break;
  6592. // G2, G3
  6593. #if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
  6594. case 2: // G2 - CW ARC
  6595. case 3: // G3 - CCW ARC
  6596. gcode_G2_G3(codenum == 2);
  6597. break;
  6598. #endif
  6599. // G4 Dwell
  6600. case 4:
  6601. gcode_G4();
  6602. break;
  6603. #if ENABLED(BEZIER_CURVE_SUPPORT)
  6604. // G5
  6605. case 5: // G5 - Cubic B_spline
  6606. gcode_G5();
  6607. break;
  6608. #endif // BEZIER_CURVE_SUPPORT
  6609. #if ENABLED(FWRETRACT)
  6610. case 10: // G10: retract
  6611. case 11: // G11: retract_recover
  6612. gcode_G10_G11(codenum == 10);
  6613. break;
  6614. #endif // FWRETRACT
  6615. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  6616. case 12:
  6617. gcode_G12(); // G12: Nozzle Clean
  6618. break;
  6619. #endif // NOZZLE_CLEAN_FEATURE
  6620. #if ENABLED(INCH_MODE_SUPPORT)
  6621. case 20: //G20: Inch Mode
  6622. gcode_G20();
  6623. break;
  6624. case 21: //G21: MM Mode
  6625. gcode_G21();
  6626. break;
  6627. #endif // INCH_MODE_SUPPORT
  6628. #if ENABLED(NOZZLE_PARK_FEATURE)
  6629. case 27: // G27: Nozzle Park
  6630. gcode_G27();
  6631. break;
  6632. #endif // NOZZLE_PARK_FEATURE
  6633. case 28: // G28: Home all axes, one at a time
  6634. gcode_G28();
  6635. break;
  6636. #if PLANNER_LEVELING
  6637. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points.
  6638. gcode_G29();
  6639. break;
  6640. #endif // PLANNER_LEVELING
  6641. #if HAS_BED_PROBE
  6642. case 30: // G30 Single Z probe
  6643. gcode_G30();
  6644. break;
  6645. #if ENABLED(Z_PROBE_SLED)
  6646. case 31: // G31: dock the sled
  6647. gcode_G31();
  6648. break;
  6649. case 32: // G32: undock the sled
  6650. gcode_G32();
  6651. break;
  6652. #endif // Z_PROBE_SLED
  6653. #endif // HAS_BED_PROBE
  6654. #if ENABLED(G38_PROBE_TARGET)
  6655. case 38: // G38.2 & G38.3
  6656. if (subcode == 2 || subcode == 3)
  6657. gcode_G38(subcode == 2);
  6658. break;
  6659. #endif
  6660. case 90: // G90
  6661. relative_mode = false;
  6662. break;
  6663. case 91: // G91
  6664. relative_mode = true;
  6665. break;
  6666. case 92: // G92
  6667. gcode_G92();
  6668. break;
  6669. }
  6670. break;
  6671. case 'M': switch (codenum) {
  6672. #if ENABLED(ULTIPANEL) || ENABLED(EMERGENCY_PARSER)
  6673. case 0: // M0: Unconditional stop - Wait for user button press on LCD
  6674. case 1: // M1: Conditional stop - Wait for user button press on LCD
  6675. gcode_M0_M1();
  6676. break;
  6677. #endif // ULTIPANEL
  6678. case 17: // M17: Enable all stepper motors
  6679. gcode_M17();
  6680. break;
  6681. #if ENABLED(SDSUPPORT)
  6682. case 20: // M20: list SD card
  6683. gcode_M20(); break;
  6684. case 21: // M21: init SD card
  6685. gcode_M21(); break;
  6686. case 22: // M22: release SD card
  6687. gcode_M22(); break;
  6688. case 23: // M23: Select file
  6689. gcode_M23(); break;
  6690. case 24: // M24: Start SD print
  6691. gcode_M24(); break;
  6692. case 25: // M25: Pause SD print
  6693. gcode_M25(); break;
  6694. case 26: // M26: Set SD index
  6695. gcode_M26(); break;
  6696. case 27: // M27: Get SD status
  6697. gcode_M27(); break;
  6698. case 28: // M28: Start SD write
  6699. gcode_M28(); break;
  6700. case 29: // M29: Stop SD write
  6701. gcode_M29(); break;
  6702. case 30: // M30 <filename> Delete File
  6703. gcode_M30(); break;
  6704. case 32: // M32: Select file and start SD print
  6705. gcode_M32(); break;
  6706. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  6707. case 33: // M33: Get the long full path to a file or folder
  6708. gcode_M33(); break;
  6709. #endif
  6710. case 928: // M928: Start SD write
  6711. gcode_M928(); break;
  6712. #endif //SDSUPPORT
  6713. case 31: // M31: Report time since the start of SD print or last M109
  6714. gcode_M31(); break;
  6715. case 42: // M42: Change pin state
  6716. gcode_M42(); break;
  6717. #if ENABLED(PINS_DEBUGGING)
  6718. case 43: // M43: Read pin state
  6719. gcode_M43(); break;
  6720. #endif
  6721. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  6722. case 48: // M48: Z probe repeatability test
  6723. gcode_M48();
  6724. break;
  6725. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  6726. case 75: // M75: Start print timer
  6727. gcode_M75(); break;
  6728. case 76: // M76: Pause print timer
  6729. gcode_M76(); break;
  6730. case 77: // M77: Stop print timer
  6731. gcode_M77(); break;
  6732. #if ENABLED(PRINTCOUNTER)
  6733. case 78: // M78: Show print statistics
  6734. gcode_M78(); break;
  6735. #endif
  6736. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  6737. case 100: // M100: Free Memory Report
  6738. gcode_M100();
  6739. break;
  6740. #endif
  6741. case 104: // M104: Set hot end temperature
  6742. gcode_M104();
  6743. break;
  6744. case 110: // M110: Set Current Line Number
  6745. gcode_M110();
  6746. break;
  6747. case 111: // M111: Set debug level
  6748. gcode_M111();
  6749. break;
  6750. #if DISABLED(EMERGENCY_PARSER)
  6751. case 108: // M108: Cancel Waiting
  6752. gcode_M108();
  6753. break;
  6754. case 112: // M112: Emergency Stop
  6755. gcode_M112();
  6756. break;
  6757. case 410: // M410 quickstop - Abort all the planned moves.
  6758. gcode_M410();
  6759. break;
  6760. #endif
  6761. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  6762. case 113: // M113: Set Host Keepalive interval
  6763. gcode_M113();
  6764. break;
  6765. #endif
  6766. case 140: // M140: Set bed temperature
  6767. gcode_M140();
  6768. break;
  6769. case 105: // M105: Report current temperature
  6770. gcode_M105();
  6771. KEEPALIVE_STATE(NOT_BUSY);
  6772. return; // "ok" already printed
  6773. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  6774. case 155: // M155: Set temperature auto-report interval
  6775. gcode_M155();
  6776. break;
  6777. #endif
  6778. case 109: // M109: Wait for hotend temperature to reach target
  6779. gcode_M109();
  6780. break;
  6781. #if HAS_TEMP_BED
  6782. case 190: // M190: Wait for bed temperature to reach target
  6783. gcode_M190();
  6784. break;
  6785. #endif // HAS_TEMP_BED
  6786. #if FAN_COUNT > 0
  6787. case 106: // M106: Fan On
  6788. gcode_M106();
  6789. break;
  6790. case 107: // M107: Fan Off
  6791. gcode_M107();
  6792. break;
  6793. #endif // FAN_COUNT > 0
  6794. #if ENABLED(BARICUDA)
  6795. // PWM for HEATER_1_PIN
  6796. #if HAS_HEATER_1
  6797. case 126: // M126: valve open
  6798. gcode_M126();
  6799. break;
  6800. case 127: // M127: valve closed
  6801. gcode_M127();
  6802. break;
  6803. #endif // HAS_HEATER_1
  6804. // PWM for HEATER_2_PIN
  6805. #if HAS_HEATER_2
  6806. case 128: // M128: valve open
  6807. gcode_M128();
  6808. break;
  6809. case 129: // M129: valve closed
  6810. gcode_M129();
  6811. break;
  6812. #endif // HAS_HEATER_2
  6813. #endif // BARICUDA
  6814. #if HAS_POWER_SWITCH
  6815. case 80: // M80: Turn on Power Supply
  6816. gcode_M80();
  6817. break;
  6818. #endif // HAS_POWER_SWITCH
  6819. case 81: // M81: Turn off Power, including Power Supply, if possible
  6820. gcode_M81();
  6821. break;
  6822. case 82: // M83: Set E axis normal mode (same as other axes)
  6823. gcode_M82();
  6824. break;
  6825. case 83: // M83: Set E axis relative mode
  6826. gcode_M83();
  6827. break;
  6828. case 18: // M18 => M84
  6829. case 84: // M84: Disable all steppers or set timeout
  6830. gcode_M18_M84();
  6831. break;
  6832. case 85: // M85: Set inactivity stepper shutdown timeout
  6833. gcode_M85();
  6834. break;
  6835. case 92: // M92: Set the steps-per-unit for one or more axes
  6836. gcode_M92();
  6837. break;
  6838. case 114: // M114: Report current position
  6839. gcode_M114();
  6840. break;
  6841. case 115: // M115: Report capabilities
  6842. gcode_M115();
  6843. break;
  6844. case 117: // M117: Set LCD message text, if possible
  6845. gcode_M117();
  6846. break;
  6847. case 119: // M119: Report endstop states
  6848. gcode_M119();
  6849. break;
  6850. case 120: // M120: Enable endstops
  6851. gcode_M120();
  6852. break;
  6853. case 121: // M121: Disable endstops
  6854. gcode_M121();
  6855. break;
  6856. #if ENABLED(HAVE_TMC2130DRIVER)
  6857. case 122: // M122: Diagnose, used to debug TMC2130
  6858. gcode_M122();
  6859. break;
  6860. #endif
  6861. #if ENABLED(ULTIPANEL)
  6862. case 145: // M145: Set material heatup parameters
  6863. gcode_M145();
  6864. break;
  6865. #endif
  6866. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  6867. case 149: // M149: Set temperature units
  6868. gcode_M149();
  6869. break;
  6870. #endif
  6871. #if ENABLED(BLINKM)
  6872. case 150: // M150: Set the BlinkM LCD color
  6873. gcode_M150();
  6874. break;
  6875. #endif // BLINKM
  6876. #if ENABLED(MIXING_EXTRUDER)
  6877. case 163: // M163: Set a component weight for mixing extruder
  6878. gcode_M163();
  6879. break;
  6880. #if MIXING_VIRTUAL_TOOLS > 1
  6881. case 164: // M164: Save current mix as a virtual extruder
  6882. gcode_M164();
  6883. break;
  6884. #endif
  6885. #if ENABLED(DIRECT_MIXING_IN_G1)
  6886. case 165: // M165: Set multiple mix weights
  6887. gcode_M165();
  6888. break;
  6889. #endif
  6890. #endif
  6891. case 200: // M200: Set filament diameter, E to cubic units
  6892. gcode_M200();
  6893. break;
  6894. case 201: // M201: Set max acceleration for print moves (units/s^2)
  6895. gcode_M201();
  6896. break;
  6897. #if 0 // Not used for Sprinter/grbl gen6
  6898. case 202: // M202
  6899. gcode_M202();
  6900. break;
  6901. #endif
  6902. case 203: // M203: Set max feedrate (units/sec)
  6903. gcode_M203();
  6904. break;
  6905. case 204: // M204: Set acceleration
  6906. gcode_M204();
  6907. break;
  6908. case 205: //M205: Set advanced settings
  6909. gcode_M205();
  6910. break;
  6911. case 206: // M206: Set home offsets
  6912. gcode_M206();
  6913. break;
  6914. #if ENABLED(DELTA)
  6915. case 665: // M665: Set delta configurations
  6916. gcode_M665();
  6917. break;
  6918. #endif
  6919. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  6920. case 666: // M666: Set delta or dual endstop adjustment
  6921. gcode_M666();
  6922. break;
  6923. #endif
  6924. #if ENABLED(FWRETRACT)
  6925. case 207: // M207: Set Retract Length, Feedrate, and Z lift
  6926. gcode_M207();
  6927. break;
  6928. case 208: // M208: Set Recover (unretract) Additional Length and Feedrate
  6929. gcode_M208();
  6930. break;
  6931. case 209: // M209: Turn Automatic Retract Detection on/off
  6932. gcode_M209();
  6933. break;
  6934. #endif // FWRETRACT
  6935. case 211: // M211: Enable, Disable, and/or Report software endstops
  6936. gcode_M211();
  6937. break;
  6938. #if HOTENDS > 1
  6939. case 218: // M218: Set a tool offset
  6940. gcode_M218();
  6941. break;
  6942. #endif
  6943. case 220: // M220: Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  6944. gcode_M220();
  6945. break;
  6946. case 221: // M221: Set Flow Percentage
  6947. gcode_M221();
  6948. break;
  6949. case 226: // M226: Wait until a pin reaches a state
  6950. gcode_M226();
  6951. break;
  6952. #if HAS_SERVOS
  6953. case 280: // M280: Set servo position absolute
  6954. gcode_M280();
  6955. break;
  6956. #endif // HAS_SERVOS
  6957. #if HAS_BUZZER
  6958. case 300: // M300: Play beep tone
  6959. gcode_M300();
  6960. break;
  6961. #endif // HAS_BUZZER
  6962. #if ENABLED(PIDTEMP)
  6963. case 301: // M301: Set hotend PID parameters
  6964. gcode_M301();
  6965. break;
  6966. #endif // PIDTEMP
  6967. #if ENABLED(PIDTEMPBED)
  6968. case 304: // M304: Set bed PID parameters
  6969. gcode_M304();
  6970. break;
  6971. #endif // PIDTEMPBED
  6972. #if defined(CHDK) || HAS_PHOTOGRAPH
  6973. case 240: // M240: Trigger a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  6974. gcode_M240();
  6975. break;
  6976. #endif // CHDK || PHOTOGRAPH_PIN
  6977. #if HAS_LCD_CONTRAST
  6978. case 250: // M250: Set LCD contrast
  6979. gcode_M250();
  6980. break;
  6981. #endif // HAS_LCD_CONTRAST
  6982. #if ENABLED(EXPERIMENTAL_I2CBUS)
  6983. case 260: // M260: Send data to an i2c slave
  6984. gcode_M260();
  6985. break;
  6986. case 261: // M261: Request data from an i2c slave
  6987. gcode_M261();
  6988. break;
  6989. #endif // EXPERIMENTAL_I2CBUS
  6990. #if ENABLED(PREVENT_COLD_EXTRUSION)
  6991. case 302: // M302: Allow cold extrudes (set the minimum extrude temperature)
  6992. gcode_M302();
  6993. break;
  6994. #endif // PREVENT_COLD_EXTRUSION
  6995. case 303: // M303: PID autotune
  6996. gcode_M303();
  6997. break;
  6998. #if ENABLED(MORGAN_SCARA)
  6999. case 360: // M360: SCARA Theta pos1
  7000. if (gcode_M360()) return;
  7001. break;
  7002. case 361: // M361: SCARA Theta pos2
  7003. if (gcode_M361()) return;
  7004. break;
  7005. case 362: // M362: SCARA Psi pos1
  7006. if (gcode_M362()) return;
  7007. break;
  7008. case 363: // M363: SCARA Psi pos2
  7009. if (gcode_M363()) return;
  7010. break;
  7011. case 364: // M364: SCARA Psi pos3 (90 deg to Theta)
  7012. if (gcode_M364()) return;
  7013. break;
  7014. #endif // SCARA
  7015. case 400: // M400: Finish all moves
  7016. gcode_M400();
  7017. break;
  7018. #if HAS_BED_PROBE
  7019. case 401: // M401: Deploy probe
  7020. gcode_M401();
  7021. break;
  7022. case 402: // M402: Stow probe
  7023. gcode_M402();
  7024. break;
  7025. #endif // HAS_BED_PROBE
  7026. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  7027. case 404: // M404: Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  7028. gcode_M404();
  7029. break;
  7030. case 405: // M405: Turn on filament sensor for control
  7031. gcode_M405();
  7032. break;
  7033. case 406: // M406: Turn off filament sensor for control
  7034. gcode_M406();
  7035. break;
  7036. case 407: // M407: Display measured filament diameter
  7037. gcode_M407();
  7038. break;
  7039. #endif // ENABLED(FILAMENT_WIDTH_SENSOR)
  7040. #if PLANNER_LEVELING
  7041. case 420: // M420: Enable/Disable Bed Leveling
  7042. gcode_M420();
  7043. break;
  7044. #endif
  7045. #if ENABLED(MESH_BED_LEVELING)
  7046. case 421: // M421: Set a Mesh Bed Leveling Z coordinate
  7047. gcode_M421();
  7048. break;
  7049. #endif
  7050. case 428: // M428: Apply current_position to home_offset
  7051. gcode_M428();
  7052. break;
  7053. case 500: // M500: Store settings in EEPROM
  7054. gcode_M500();
  7055. break;
  7056. case 501: // M501: Read settings from EEPROM
  7057. gcode_M501();
  7058. break;
  7059. case 502: // M502: Revert to default settings
  7060. gcode_M502();
  7061. break;
  7062. case 503: // M503: print settings currently in memory
  7063. gcode_M503();
  7064. break;
  7065. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  7066. case 540: // M540: Set abort on endstop hit for SD printing
  7067. gcode_M540();
  7068. break;
  7069. #endif
  7070. #if HAS_BED_PROBE
  7071. case 851: // M851: Set Z Probe Z Offset
  7072. gcode_M851();
  7073. break;
  7074. #endif // HAS_BED_PROBE
  7075. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  7076. case 600: // M600: Pause for filament change
  7077. gcode_M600();
  7078. break;
  7079. #endif // FILAMENT_CHANGE_FEATURE
  7080. #if ENABLED(DUAL_X_CARRIAGE)
  7081. case 605: // M605: Set Dual X Carriage movement mode
  7082. gcode_M605();
  7083. break;
  7084. #endif // DUAL_X_CARRIAGE
  7085. #if ENABLED(LIN_ADVANCE)
  7086. case 905: // M905: Set advance K factor.
  7087. gcode_M905();
  7088. break;
  7089. #endif
  7090. case 907: // M907: Set digital trimpot motor current using axis codes.
  7091. gcode_M907();
  7092. break;
  7093. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  7094. case 908: // M908: Control digital trimpot directly.
  7095. gcode_M908();
  7096. break;
  7097. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  7098. case 909: // M909: Print digipot/DAC current value
  7099. gcode_M909();
  7100. break;
  7101. case 910: // M910: Commit digipot/DAC value to external EEPROM
  7102. gcode_M910();
  7103. break;
  7104. #endif
  7105. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  7106. #if HAS_MICROSTEPS
  7107. case 350: // M350: Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  7108. gcode_M350();
  7109. break;
  7110. case 351: // M351: Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  7111. gcode_M351();
  7112. break;
  7113. #endif // HAS_MICROSTEPS
  7114. #if HAS_CASE_LIGHT
  7115. case 355: // M355 Turn case lights on/off
  7116. gcode_M355();
  7117. break;
  7118. #endif // HAS_CASE_LIGHT
  7119. case 999: // M999: Restart after being Stopped
  7120. gcode_M999();
  7121. break;
  7122. }
  7123. break;
  7124. case 'T':
  7125. gcode_T(codenum);
  7126. break;
  7127. default: code_is_good = false;
  7128. }
  7129. KEEPALIVE_STATE(NOT_BUSY);
  7130. ExitUnknownCommand:
  7131. // Still unknown command? Throw an error
  7132. if (!code_is_good) unknown_command_error();
  7133. ok_to_send();
  7134. }
  7135. /**
  7136. * Send a "Resend: nnn" message to the host to
  7137. * indicate that a command needs to be re-sent.
  7138. */
  7139. void FlushSerialRequestResend() {
  7140. //char command_queue[cmd_queue_index_r][100]="Resend:";
  7141. MYSERIAL.flush();
  7142. SERIAL_PROTOCOLPGM(MSG_RESEND);
  7143. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  7144. ok_to_send();
  7145. }
  7146. /**
  7147. * Send an "ok" message to the host, indicating
  7148. * that a command was successfully processed.
  7149. *
  7150. * If ADVANCED_OK is enabled also include:
  7151. * N<int> Line number of the command, if any
  7152. * P<int> Planner space remaining
  7153. * B<int> Block queue space remaining
  7154. */
  7155. void ok_to_send() {
  7156. refresh_cmd_timeout();
  7157. if (!send_ok[cmd_queue_index_r]) return;
  7158. SERIAL_PROTOCOLPGM(MSG_OK);
  7159. #if ENABLED(ADVANCED_OK)
  7160. char* p = command_queue[cmd_queue_index_r];
  7161. if (*p == 'N') {
  7162. SERIAL_PROTOCOL(' ');
  7163. SERIAL_ECHO(*p++);
  7164. while (NUMERIC_SIGNED(*p))
  7165. SERIAL_ECHO(*p++);
  7166. }
  7167. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
  7168. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  7169. #endif
  7170. SERIAL_EOL;
  7171. }
  7172. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  7173. /**
  7174. * Constrain the given coordinates to the software endstops.
  7175. */
  7176. void clamp_to_software_endstops(float target[XYZ]) {
  7177. #if ENABLED(min_software_endstops)
  7178. NOLESS(target[X_AXIS], soft_endstop_min[X_AXIS]);
  7179. NOLESS(target[Y_AXIS], soft_endstop_min[Y_AXIS]);
  7180. NOLESS(target[Z_AXIS], soft_endstop_min[Z_AXIS]);
  7181. #endif
  7182. #if ENABLED(max_software_endstops)
  7183. NOMORE(target[X_AXIS], soft_endstop_max[X_AXIS]);
  7184. NOMORE(target[Y_AXIS], soft_endstop_max[Y_AXIS]);
  7185. NOMORE(target[Z_AXIS], soft_endstop_max[Z_AXIS]);
  7186. #endif
  7187. }
  7188. #endif
  7189. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  7190. // Get the Z adjustment for non-linear bed leveling
  7191. float bilinear_z_offset(float cartesian[XYZ]) {
  7192. // XY relative to the probed area
  7193. const float x = RAW_X_POSITION(cartesian[X_AXIS]) - bilinear_start[X_AXIS],
  7194. y = RAW_Y_POSITION(cartesian[Y_AXIS]) - bilinear_start[Y_AXIS];
  7195. // Convert to grid box units
  7196. float ratio_x = x / bilinear_grid_spacing[X_AXIS],
  7197. ratio_y = y / bilinear_grid_spacing[Y_AXIS];
  7198. // Whole units for the grid line indices. Constrained within bounds.
  7199. const int gridx = constrain(floor(ratio_x), 0, ABL_GRID_POINTS_X - 1),
  7200. gridy = constrain(floor(ratio_y), 0, ABL_GRID_POINTS_Y - 1),
  7201. nextx = min(gridx + 1, ABL_GRID_POINTS_X - 1),
  7202. nexty = min(gridy + 1, ABL_GRID_POINTS_Y - 1);
  7203. // Subtract whole to get the ratio within the grid box
  7204. ratio_x -= gridx; ratio_y -= gridy;
  7205. // Never less than 0.0. (Over 1.0 is fine due to previous contraints.)
  7206. NOLESS(ratio_x, 0); NOLESS(ratio_y, 0);
  7207. // Z at the box corners
  7208. const float z1 = bed_level_grid[gridx][gridy], // left-front
  7209. z2 = bed_level_grid[gridx][nexty], // left-back
  7210. z3 = bed_level_grid[nextx][gridy], // right-front
  7211. z4 = bed_level_grid[nextx][nexty], // right-back
  7212. // Bilinear interpolate
  7213. L = z1 + (z2 - z1) * ratio_y, // Linear interp. LF -> LB
  7214. R = z3 + (z4 - z3) * ratio_y, // Linear interp. RF -> RB
  7215. offset = L + ratio_x * (R - L);
  7216. /*
  7217. static float last_offset = 0;
  7218. if (fabs(last_offset - offset) > 0.2) {
  7219. SERIAL_ECHOPGM("Sudden Shift at ");
  7220. SERIAL_ECHOPAIR("x=", x);
  7221. SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[X_AXIS]);
  7222. SERIAL_ECHOLNPAIR(" -> gridx=", gridx);
  7223. SERIAL_ECHOPAIR(" y=", y);
  7224. SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[Y_AXIS]);
  7225. SERIAL_ECHOLNPAIR(" -> gridy=", gridy);
  7226. SERIAL_ECHOPAIR(" ratio_x=", ratio_x);
  7227. SERIAL_ECHOLNPAIR(" ratio_y=", ratio_y);
  7228. SERIAL_ECHOPAIR(" z1=", z1);
  7229. SERIAL_ECHOPAIR(" z2=", z2);
  7230. SERIAL_ECHOPAIR(" z3=", z3);
  7231. SERIAL_ECHOLNPAIR(" z4=", z4);
  7232. SERIAL_ECHOPAIR(" L=", L);
  7233. SERIAL_ECHOPAIR(" R=", R);
  7234. SERIAL_ECHOLNPAIR(" offset=", offset);
  7235. }
  7236. last_offset = offset;
  7237. //*/
  7238. return offset;
  7239. }
  7240. #endif // AUTO_BED_LEVELING_BILINEAR
  7241. #if ENABLED(DELTA)
  7242. /**
  7243. * Recalculate factors used for delta kinematics whenever
  7244. * settings have been changed (e.g., by M665).
  7245. */
  7246. void recalc_delta_settings(float radius, float diagonal_rod) {
  7247. delta_tower1_x = -SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  7248. delta_tower1_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1);
  7249. delta_tower2_x = SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  7250. delta_tower2_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2);
  7251. delta_tower3_x = 0.0; // back middle tower
  7252. delta_tower3_y = (radius + DELTA_RADIUS_TRIM_TOWER_3);
  7253. delta_diagonal_rod_2_tower_1 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_1);
  7254. delta_diagonal_rod_2_tower_2 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_2);
  7255. delta_diagonal_rod_2_tower_3 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_3);
  7256. }
  7257. #if ENABLED(DELTA_FAST_SQRT)
  7258. /**
  7259. * Fast inverse sqrt from Quake III Arena
  7260. * See: https://en.wikipedia.org/wiki/Fast_inverse_square_root
  7261. */
  7262. float Q_rsqrt(float number) {
  7263. long i;
  7264. float x2, y;
  7265. const float threehalfs = 1.5f;
  7266. x2 = number * 0.5f;
  7267. y = number;
  7268. i = * ( long * ) &y; // evil floating point bit level hacking
  7269. i = 0x5f3759df - ( i >> 1 ); // what the f***?
  7270. y = * ( float * ) &i;
  7271. y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
  7272. // y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed
  7273. return y;
  7274. }
  7275. #define _SQRT(n) (1.0f / Q_rsqrt(n))
  7276. #else
  7277. #define _SQRT(n) sqrt(n)
  7278. #endif
  7279. /**
  7280. * Delta Inverse Kinematics
  7281. *
  7282. * Calculate the tower positions for a given logical
  7283. * position, storing the result in the delta[] array.
  7284. *
  7285. * This is an expensive calculation, requiring 3 square
  7286. * roots per segmented linear move, and strains the limits
  7287. * of a Mega2560 with a Graphical Display.
  7288. *
  7289. * Suggested optimizations include:
  7290. *
  7291. * - Disable the home_offset (M206) and/or position_shift (G92)
  7292. * features to remove up to 12 float additions.
  7293. *
  7294. * - Use a fast-inverse-sqrt function and add the reciprocal.
  7295. * (see above)
  7296. */
  7297. // Macro to obtain the Z position of an individual tower
  7298. #define DELTA_Z(T) raw[Z_AXIS] + _SQRT( \
  7299. delta_diagonal_rod_2_tower_##T - HYPOT2( \
  7300. delta_tower##T##_x - raw[X_AXIS], \
  7301. delta_tower##T##_y - raw[Y_AXIS] \
  7302. ) \
  7303. )
  7304. #define DELTA_RAW_IK() do { \
  7305. delta[A_AXIS] = DELTA_Z(1); \
  7306. delta[B_AXIS] = DELTA_Z(2); \
  7307. delta[C_AXIS] = DELTA_Z(3); \
  7308. } while(0)
  7309. #define DELTA_LOGICAL_IK() do { \
  7310. const float raw[XYZ] = { \
  7311. RAW_X_POSITION(logical[X_AXIS]), \
  7312. RAW_Y_POSITION(logical[Y_AXIS]), \
  7313. RAW_Z_POSITION(logical[Z_AXIS]) \
  7314. }; \
  7315. DELTA_RAW_IK(); \
  7316. } while(0)
  7317. #define DELTA_DEBUG() do { \
  7318. SERIAL_ECHOPAIR("cartesian X:", raw[X_AXIS]); \
  7319. SERIAL_ECHOPAIR(" Y:", raw[Y_AXIS]); \
  7320. SERIAL_ECHOLNPAIR(" Z:", raw[Z_AXIS]); \
  7321. SERIAL_ECHOPAIR("delta A:", delta[A_AXIS]); \
  7322. SERIAL_ECHOPAIR(" B:", delta[B_AXIS]); \
  7323. SERIAL_ECHOLNPAIR(" C:", delta[C_AXIS]); \
  7324. } while(0)
  7325. void inverse_kinematics(const float logical[XYZ]) {
  7326. DELTA_LOGICAL_IK();
  7327. // DELTA_DEBUG();
  7328. }
  7329. /**
  7330. * Calculate the highest Z position where the
  7331. * effector has the full range of XY motion.
  7332. */
  7333. float delta_safe_distance_from_top() {
  7334. float cartesian[XYZ] = {
  7335. LOGICAL_X_POSITION(0),
  7336. LOGICAL_Y_POSITION(0),
  7337. LOGICAL_Z_POSITION(0)
  7338. };
  7339. inverse_kinematics(cartesian);
  7340. float distance = delta[A_AXIS];
  7341. cartesian[Y_AXIS] = LOGICAL_Y_POSITION(DELTA_PRINTABLE_RADIUS);
  7342. inverse_kinematics(cartesian);
  7343. return abs(distance - delta[A_AXIS]);
  7344. }
  7345. /**
  7346. * Delta Forward Kinematics
  7347. *
  7348. * See the Wikipedia article "Trilateration"
  7349. * https://en.wikipedia.org/wiki/Trilateration
  7350. *
  7351. * Establish a new coordinate system in the plane of the
  7352. * three carriage points. This system has its origin at
  7353. * tower1, with tower2 on the X axis. Tower3 is in the X-Y
  7354. * plane with a Z component of zero.
  7355. * We will define unit vectors in this coordinate system
  7356. * in our original coordinate system. Then when we calculate
  7357. * the Xnew, Ynew and Znew values, we can translate back into
  7358. * the original system by moving along those unit vectors
  7359. * by the corresponding values.
  7360. *
  7361. * Variable names matched to Marlin, c-version, and avoid the
  7362. * use of any vector library.
  7363. *
  7364. * by Andreas Hardtung 2016-06-07
  7365. * based on a Java function from "Delta Robot Kinematics V3"
  7366. * by Steve Graves
  7367. *
  7368. * The result is stored in the cartes[] array.
  7369. */
  7370. void forward_kinematics_DELTA(float z1, float z2, float z3) {
  7371. // Create a vector in old coordinates along x axis of new coordinate
  7372. float p12[3] = { delta_tower2_x - delta_tower1_x, delta_tower2_y - delta_tower1_y, z2 - z1 };
  7373. // Get the Magnitude of vector.
  7374. float d = sqrt( sq(p12[0]) + sq(p12[1]) + sq(p12[2]) );
  7375. // Create unit vector by dividing by magnitude.
  7376. float ex[3] = { p12[0] / d, p12[1] / d, p12[2] / d };
  7377. // Get the vector from the origin of the new system to the third point.
  7378. float p13[3] = { delta_tower3_x - delta_tower1_x, delta_tower3_y - delta_tower1_y, z3 - z1 };
  7379. // Use the dot product to find the component of this vector on the X axis.
  7380. float i = ex[0] * p13[0] + ex[1] * p13[1] + ex[2] * p13[2];
  7381. // Create a vector along the x axis that represents the x component of p13.
  7382. float iex[3] = { ex[0] * i, ex[1] * i, ex[2] * i };
  7383. // Subtract the X component from the original vector leaving only Y. We use the
  7384. // variable that will be the unit vector after we scale it.
  7385. float ey[3] = { p13[0] - iex[0], p13[1] - iex[1], p13[2] - iex[2] };
  7386. // The magnitude of Y component
  7387. float j = sqrt( sq(ey[0]) + sq(ey[1]) + sq(ey[2]) );
  7388. // Convert to a unit vector
  7389. ey[0] /= j; ey[1] /= j; ey[2] /= j;
  7390. // The cross product of the unit x and y is the unit z
  7391. // float[] ez = vectorCrossProd(ex, ey);
  7392. float ez[3] = {
  7393. ex[1] * ey[2] - ex[2] * ey[1],
  7394. ex[2] * ey[0] - ex[0] * ey[2],
  7395. ex[0] * ey[1] - ex[1] * ey[0]
  7396. };
  7397. // We now have the d, i and j values defined in Wikipedia.
  7398. // Plug them into the equations defined in Wikipedia for Xnew, Ynew and Znew
  7399. float Xnew = (delta_diagonal_rod_2_tower_1 - delta_diagonal_rod_2_tower_2 + sq(d)) / (d * 2),
  7400. Ynew = ((delta_diagonal_rod_2_tower_1 - delta_diagonal_rod_2_tower_3 + HYPOT2(i, j)) / 2 - i * Xnew) / j,
  7401. Znew = sqrt(delta_diagonal_rod_2_tower_1 - HYPOT2(Xnew, Ynew));
  7402. // Start from the origin of the old coordinates and add vectors in the
  7403. // old coords that represent the Xnew, Ynew and Znew to find the point
  7404. // in the old system.
  7405. cartes[X_AXIS] = delta_tower1_x + ex[0] * Xnew + ey[0] * Ynew - ez[0] * Znew;
  7406. cartes[Y_AXIS] = delta_tower1_y + ex[1] * Xnew + ey[1] * Ynew - ez[1] * Znew;
  7407. cartes[Z_AXIS] = z1 + ex[2] * Xnew + ey[2] * Ynew - ez[2] * Znew;
  7408. }
  7409. void forward_kinematics_DELTA(float point[ABC]) {
  7410. forward_kinematics_DELTA(point[A_AXIS], point[B_AXIS], point[C_AXIS]);
  7411. }
  7412. #endif // DELTA
  7413. /**
  7414. * Get the stepper positions in the cartes[] array.
  7415. * Forward kinematics are applied for DELTA and SCARA.
  7416. *
  7417. * The result is in the current coordinate space with
  7418. * leveling applied. The coordinates need to be run through
  7419. * unapply_leveling to obtain the "ideal" coordinates
  7420. * suitable for current_position, etc.
  7421. */
  7422. void get_cartesian_from_steppers() {
  7423. #if ENABLED(DELTA)
  7424. forward_kinematics_DELTA(
  7425. stepper.get_axis_position_mm(A_AXIS),
  7426. stepper.get_axis_position_mm(B_AXIS),
  7427. stepper.get_axis_position_mm(C_AXIS)
  7428. );
  7429. cartes[X_AXIS] += LOGICAL_X_POSITION(0);
  7430. cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
  7431. cartes[Z_AXIS] += LOGICAL_Z_POSITION(0);
  7432. #elif IS_SCARA
  7433. forward_kinematics_SCARA(
  7434. stepper.get_axis_position_degrees(A_AXIS),
  7435. stepper.get_axis_position_degrees(B_AXIS)
  7436. );
  7437. cartes[X_AXIS] += LOGICAL_X_POSITION(0);
  7438. cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
  7439. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  7440. #else
  7441. cartes[X_AXIS] = stepper.get_axis_position_mm(X_AXIS);
  7442. cartes[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS);
  7443. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  7444. #endif
  7445. }
  7446. /**
  7447. * Set the current_position for an axis based on
  7448. * the stepper positions, removing any leveling that
  7449. * may have been applied.
  7450. */
  7451. void set_current_from_steppers_for_axis(const AxisEnum axis) {
  7452. get_cartesian_from_steppers();
  7453. #if PLANNER_LEVELING
  7454. planner.unapply_leveling(cartes);
  7455. #endif
  7456. if (axis == ALL_AXES)
  7457. memcpy(current_position, cartes, sizeof(cartes));
  7458. else
  7459. current_position[axis] = cartes[axis];
  7460. }
  7461. #if ENABLED(MESH_BED_LEVELING)
  7462. /**
  7463. * Prepare a mesh-leveled linear move in a Cartesian setup,
  7464. * splitting the move where it crosses mesh borders.
  7465. */
  7466. void mesh_line_to_destination(float fr_mm_s, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
  7467. int cx1 = mbl.cell_index_x(RAW_CURRENT_POSITION(X_AXIS)),
  7468. cy1 = mbl.cell_index_y(RAW_CURRENT_POSITION(Y_AXIS)),
  7469. cx2 = mbl.cell_index_x(RAW_X_POSITION(destination[X_AXIS])),
  7470. cy2 = mbl.cell_index_y(RAW_Y_POSITION(destination[Y_AXIS]));
  7471. NOMORE(cx1, MESH_NUM_X_POINTS - 2);
  7472. NOMORE(cy1, MESH_NUM_Y_POINTS - 2);
  7473. NOMORE(cx2, MESH_NUM_X_POINTS - 2);
  7474. NOMORE(cy2, MESH_NUM_Y_POINTS - 2);
  7475. if (cx1 == cx2 && cy1 == cy2) {
  7476. // Start and end on same mesh square
  7477. line_to_destination(fr_mm_s);
  7478. set_current_to_destination();
  7479. return;
  7480. }
  7481. #define MBL_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  7482. float normalized_dist, end[XYZE];
  7483. // Split at the left/front border of the right/top square
  7484. int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  7485. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  7486. memcpy(end, destination, sizeof(end));
  7487. destination[X_AXIS] = LOGICAL_X_POSITION(mbl.get_probe_x(gcx));
  7488. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  7489. destination[Y_AXIS] = MBL_SEGMENT_END(Y);
  7490. CBI(x_splits, gcx);
  7491. }
  7492. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  7493. memcpy(end, destination, sizeof(end));
  7494. destination[Y_AXIS] = LOGICAL_Y_POSITION(mbl.get_probe_y(gcy));
  7495. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  7496. destination[X_AXIS] = MBL_SEGMENT_END(X);
  7497. CBI(y_splits, gcy);
  7498. }
  7499. else {
  7500. // Already split on a border
  7501. line_to_destination(fr_mm_s);
  7502. set_current_to_destination();
  7503. return;
  7504. }
  7505. destination[Z_AXIS] = MBL_SEGMENT_END(Z);
  7506. destination[E_AXIS] = MBL_SEGMENT_END(E);
  7507. // Do the split and look for more borders
  7508. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  7509. // Restore destination from stack
  7510. memcpy(destination, end, sizeof(end));
  7511. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  7512. }
  7513. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR) && !IS_KINEMATIC
  7514. #define CELL_INDEX(A,V) ((RAW_##A##_POSITION(V) - bilinear_start[A##_AXIS]) / bilinear_grid_spacing[A##_AXIS])
  7515. /**
  7516. * Prepare a bilinear-leveled linear move on Cartesian,
  7517. * splitting the move where it crosses grid borders.
  7518. */
  7519. void bilinear_line_to_destination(float fr_mm_s, uint16_t x_splits = 0xFFFF, uint16_t y_splits = 0xFFFF) {
  7520. int cx1 = CELL_INDEX(X, current_position[X_AXIS]),
  7521. cy1 = CELL_INDEX(Y, current_position[Y_AXIS]),
  7522. cx2 = CELL_INDEX(X, destination[X_AXIS]),
  7523. cy2 = CELL_INDEX(Y, destination[Y_AXIS]);
  7524. cx1 = constrain(cx1, 0, ABL_GRID_POINTS_X - 2);
  7525. cy1 = constrain(cy1, 0, ABL_GRID_POINTS_Y - 2);
  7526. cx2 = constrain(cx2, 0, ABL_GRID_POINTS_X - 2);
  7527. cy2 = constrain(cy2, 0, ABL_GRID_POINTS_Y - 2);
  7528. if (cx1 == cx2 && cy1 == cy2) {
  7529. // Start and end on same mesh square
  7530. line_to_destination(fr_mm_s);
  7531. set_current_to_destination();
  7532. return;
  7533. }
  7534. #define LINE_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  7535. float normalized_dist, end[XYZE];
  7536. // Split at the left/front border of the right/top square
  7537. int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  7538. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  7539. memcpy(end, destination, sizeof(end));
  7540. destination[X_AXIS] = LOGICAL_X_POSITION(bilinear_start[X_AXIS] + bilinear_grid_spacing[X_AXIS] * gcx);
  7541. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  7542. destination[Y_AXIS] = LINE_SEGMENT_END(Y);
  7543. CBI(x_splits, gcx);
  7544. }
  7545. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  7546. memcpy(end, destination, sizeof(end));
  7547. destination[Y_AXIS] = LOGICAL_Y_POSITION(bilinear_start[Y_AXIS] + bilinear_grid_spacing[Y_AXIS] * gcy);
  7548. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  7549. destination[X_AXIS] = LINE_SEGMENT_END(X);
  7550. CBI(y_splits, gcy);
  7551. }
  7552. else {
  7553. // Already split on a border
  7554. line_to_destination(fr_mm_s);
  7555. set_current_to_destination();
  7556. return;
  7557. }
  7558. destination[Z_AXIS] = LINE_SEGMENT_END(Z);
  7559. destination[E_AXIS] = LINE_SEGMENT_END(E);
  7560. // Do the split and look for more borders
  7561. bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
  7562. // Restore destination from stack
  7563. memcpy(destination, end, sizeof(end));
  7564. bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
  7565. }
  7566. #endif // AUTO_BED_LEVELING_BILINEAR
  7567. #if IS_KINEMATIC
  7568. /**
  7569. * Prepare a linear move in a DELTA or SCARA setup.
  7570. *
  7571. * This calls planner.buffer_line several times, adding
  7572. * small incremental moves for DELTA or SCARA.
  7573. */
  7574. inline bool prepare_kinematic_move_to(float ltarget[NUM_AXIS]) {
  7575. // Get the top feedrate of the move in the XY plane
  7576. float _feedrate_mm_s = MMS_SCALED(feedrate_mm_s);
  7577. // If the move is only in Z/E don't split up the move
  7578. if (ltarget[X_AXIS] == current_position[X_AXIS] && ltarget[Y_AXIS] == current_position[Y_AXIS]) {
  7579. planner.buffer_line_kinematic(ltarget, _feedrate_mm_s, active_extruder);
  7580. return true;
  7581. }
  7582. // Get the cartesian distances moved in XYZE
  7583. float difference[NUM_AXIS];
  7584. LOOP_XYZE(i) difference[i] = ltarget[i] - current_position[i];
  7585. // Get the linear distance in XYZ
  7586. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  7587. // If the move is very short, check the E move distance
  7588. if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = abs(difference[E_AXIS]);
  7589. // No E move either? Game over.
  7590. if (UNEAR_ZERO(cartesian_mm)) return false;
  7591. // Minimum number of seconds to move the given distance
  7592. float seconds = cartesian_mm / _feedrate_mm_s;
  7593. // The number of segments-per-second times the duration
  7594. // gives the number of segments
  7595. uint16_t segments = delta_segments_per_second * seconds;
  7596. // For SCARA minimum segment size is 0.5mm
  7597. #if IS_SCARA
  7598. NOMORE(segments, cartesian_mm * 2);
  7599. #endif
  7600. // At least one segment is required
  7601. NOLESS(segments, 1);
  7602. // The approximate length of each segment
  7603. float segment_distance[XYZE] = {
  7604. difference[X_AXIS] / segments,
  7605. difference[Y_AXIS] / segments,
  7606. difference[Z_AXIS] / segments,
  7607. difference[E_AXIS] / segments
  7608. };
  7609. // SERIAL_ECHOPAIR("mm=", cartesian_mm);
  7610. // SERIAL_ECHOPAIR(" seconds=", seconds);
  7611. // SERIAL_ECHOLNPAIR(" segments=", segments);
  7612. // Drop one segment so the last move is to the exact target.
  7613. // If there's only 1 segment, loops will be skipped entirely.
  7614. --segments;
  7615. // Using "raw" coordinates saves 6 float subtractions
  7616. // per segment, saving valuable CPU cycles
  7617. #if ENABLED(USE_RAW_KINEMATICS)
  7618. // Get the raw current position as starting point
  7619. float raw[XYZE] = {
  7620. RAW_CURRENT_POSITION(X_AXIS),
  7621. RAW_CURRENT_POSITION(Y_AXIS),
  7622. RAW_CURRENT_POSITION(Z_AXIS),
  7623. current_position[E_AXIS]
  7624. };
  7625. #define DELTA_VAR raw
  7626. // Delta can inline its kinematics
  7627. #if ENABLED(DELTA)
  7628. #define DELTA_IK() DELTA_RAW_IK()
  7629. #else
  7630. #define DELTA_IK() inverse_kinematics(raw)
  7631. #endif
  7632. #else
  7633. // Get the logical current position as starting point
  7634. float logical[XYZE];
  7635. memcpy(logical, current_position, sizeof(logical));
  7636. #define DELTA_VAR logical
  7637. // Delta can inline its kinematics
  7638. #if ENABLED(DELTA)
  7639. #define DELTA_IK() DELTA_LOGICAL_IK()
  7640. #else
  7641. #define DELTA_IK() inverse_kinematics(logical)
  7642. #endif
  7643. #endif
  7644. #if ENABLED(USE_DELTA_IK_INTERPOLATION)
  7645. // Only interpolate XYZ. Advance E normally.
  7646. #define DELTA_NEXT(ADDEND) LOOP_XYZ(i) DELTA_VAR[i] += ADDEND;
  7647. // Get the starting delta if interpolation is possible
  7648. if (segments >= 2) {
  7649. DELTA_IK();
  7650. ADJUST_DELTA(DELTA_VAR); // Adjust Z if bed leveling is enabled
  7651. }
  7652. // Loop using decrement
  7653. for (uint16_t s = segments + 1; --s;) {
  7654. // Are there at least 2 moves left?
  7655. if (s >= 2) {
  7656. // Save the previous delta for interpolation
  7657. float prev_delta[ABC] = { delta[A_AXIS], delta[B_AXIS], delta[C_AXIS] };
  7658. // Get the delta 2 segments ahead (rather than the next)
  7659. DELTA_NEXT(segment_distance[i] + segment_distance[i]);
  7660. // Advance E normally
  7661. DELTA_VAR[E_AXIS] += segment_distance[E_AXIS];
  7662. // Get the exact delta for the move after this
  7663. DELTA_IK();
  7664. ADJUST_DELTA(DELTA_VAR); // Adjust Z if bed leveling is enabled
  7665. // Move to the interpolated delta position first
  7666. planner.buffer_line(
  7667. (prev_delta[A_AXIS] + delta[A_AXIS]) * 0.5,
  7668. (prev_delta[B_AXIS] + delta[B_AXIS]) * 0.5,
  7669. (prev_delta[C_AXIS] + delta[C_AXIS]) * 0.5,
  7670. DELTA_VAR[E_AXIS], _feedrate_mm_s, active_extruder
  7671. );
  7672. // Advance E once more for the next move
  7673. DELTA_VAR[E_AXIS] += segment_distance[E_AXIS];
  7674. // Do an extra decrement of the loop
  7675. --s;
  7676. }
  7677. else {
  7678. // Get the last segment delta. (Used when segments is odd)
  7679. DELTA_NEXT(segment_distance[i]);
  7680. DELTA_VAR[E_AXIS] += segment_distance[E_AXIS];
  7681. DELTA_IK();
  7682. ADJUST_DELTA(DELTA_VAR); // Adjust Z if bed leveling is enabled
  7683. }
  7684. // Move to the non-interpolated position
  7685. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], DELTA_VAR[E_AXIS], _feedrate_mm_s, active_extruder);
  7686. }
  7687. #else
  7688. #define DELTA_NEXT(ADDEND) LOOP_XYZE(i) DELTA_VAR[i] += ADDEND;
  7689. // For non-interpolated delta calculate every segment
  7690. for (uint16_t s = segments + 1; --s;) {
  7691. DELTA_NEXT(segment_distance[i]);
  7692. planner.buffer_line_kinematic(DELTA_VAR, _feedrate_mm_s, active_extruder);
  7693. }
  7694. #endif
  7695. // Since segment_distance is only approximate,
  7696. // the final move must be to the exact destination.
  7697. planner.buffer_line_kinematic(ltarget, _feedrate_mm_s, active_extruder);
  7698. return true;
  7699. }
  7700. #else // !IS_KINEMATIC
  7701. /**
  7702. * Prepare a linear move in a Cartesian setup.
  7703. * If Mesh Bed Leveling is enabled, perform a mesh move.
  7704. */
  7705. inline bool prepare_move_to_destination_cartesian() {
  7706. // Do not use feedrate_percentage for E or Z only moves
  7707. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  7708. line_to_destination();
  7709. }
  7710. else {
  7711. #if ENABLED(MESH_BED_LEVELING)
  7712. if (mbl.active()) {
  7713. mesh_line_to_destination(MMS_SCALED(feedrate_mm_s));
  7714. return false;
  7715. }
  7716. else
  7717. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  7718. if (planner.abl_enabled) {
  7719. bilinear_line_to_destination(MMS_SCALED(feedrate_mm_s));
  7720. return false;
  7721. }
  7722. else
  7723. #endif
  7724. line_to_destination(MMS_SCALED(feedrate_mm_s));
  7725. }
  7726. return true;
  7727. }
  7728. #endif // !IS_KINEMATIC
  7729. #if ENABLED(DUAL_X_CARRIAGE)
  7730. /**
  7731. * Prepare a linear move in a dual X axis setup
  7732. */
  7733. inline bool prepare_move_to_destination_dualx() {
  7734. if (active_extruder_parked) {
  7735. switch (dual_x_carriage_mode) {
  7736. case DXC_FULL_CONTROL_MODE:
  7737. break;
  7738. case DXC_DUPLICATION_MODE:
  7739. if (active_extruder == 0) {
  7740. // move duplicate extruder into correct duplication position.
  7741. planner.set_position_mm(
  7742. LOGICAL_X_POSITION(inactive_extruder_x_pos),
  7743. current_position[Y_AXIS],
  7744. current_position[Z_AXIS],
  7745. current_position[E_AXIS]
  7746. );
  7747. planner.buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  7748. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[X_AXIS], 1);
  7749. SYNC_PLAN_POSITION_KINEMATIC();
  7750. stepper.synchronize();
  7751. extruder_duplication_enabled = true;
  7752. active_extruder_parked = false;
  7753. }
  7754. break;
  7755. case DXC_AUTO_PARK_MODE:
  7756. if (current_position[E_AXIS] == destination[E_AXIS]) {
  7757. // This is a travel move (with no extrusion)
  7758. // Skip it, but keep track of the current position
  7759. // (so it can be used as the start of the next non-travel move)
  7760. if (delayed_move_time != 0xFFFFFFFFUL) {
  7761. set_current_to_destination();
  7762. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  7763. delayed_move_time = millis();
  7764. return false;
  7765. }
  7766. }
  7767. delayed_move_time = 0;
  7768. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  7769. planner.buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  7770. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], PLANNER_XY_FEEDRATE(), active_extruder);
  7771. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  7772. active_extruder_parked = false;
  7773. break;
  7774. }
  7775. }
  7776. return true;
  7777. }
  7778. #endif // DUAL_X_CARRIAGE
  7779. /**
  7780. * Prepare a single move and get ready for the next one
  7781. *
  7782. * This may result in several calls to planner.buffer_line to
  7783. * do smaller moves for DELTA, SCARA, mesh moves, etc.
  7784. */
  7785. void prepare_move_to_destination() {
  7786. clamp_to_software_endstops(destination);
  7787. refresh_cmd_timeout();
  7788. #if ENABLED(PREVENT_COLD_EXTRUSION)
  7789. if (!DEBUGGING(DRYRUN)) {
  7790. if (destination[E_AXIS] != current_position[E_AXIS]) {
  7791. if (thermalManager.tooColdToExtrude(active_extruder)) {
  7792. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  7793. SERIAL_ECHO_START;
  7794. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  7795. }
  7796. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  7797. if (labs(destination[E_AXIS] - current_position[E_AXIS]) > EXTRUDE_MAXLENGTH) {
  7798. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  7799. SERIAL_ECHO_START;
  7800. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  7801. }
  7802. #endif
  7803. }
  7804. }
  7805. #endif
  7806. #if IS_KINEMATIC
  7807. if (!prepare_kinematic_move_to(destination)) return;
  7808. #else
  7809. #if ENABLED(DUAL_X_CARRIAGE)
  7810. if (!prepare_move_to_destination_dualx()) return;
  7811. #endif
  7812. if (!prepare_move_to_destination_cartesian()) return;
  7813. #endif
  7814. set_current_to_destination();
  7815. }
  7816. #if ENABLED(ARC_SUPPORT)
  7817. /**
  7818. * Plan an arc in 2 dimensions
  7819. *
  7820. * The arc is approximated by generating many small linear segments.
  7821. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  7822. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  7823. * larger segments will tend to be more efficient. Your slicer should have
  7824. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  7825. */
  7826. void plan_arc(
  7827. float logical[NUM_AXIS], // Destination position
  7828. float* offset, // Center of rotation relative to current_position
  7829. uint8_t clockwise // Clockwise?
  7830. ) {
  7831. float radius = HYPOT(offset[X_AXIS], offset[Y_AXIS]),
  7832. center_X = current_position[X_AXIS] + offset[X_AXIS],
  7833. center_Y = current_position[Y_AXIS] + offset[Y_AXIS],
  7834. linear_travel = logical[Z_AXIS] - current_position[Z_AXIS],
  7835. extruder_travel = logical[E_AXIS] - current_position[E_AXIS],
  7836. r_X = -offset[X_AXIS], // Radius vector from center to current location
  7837. r_Y = -offset[Y_AXIS],
  7838. rt_X = logical[X_AXIS] - center_X,
  7839. rt_Y = logical[Y_AXIS] - center_Y;
  7840. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  7841. float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
  7842. if (angular_travel < 0) angular_travel += RADIANS(360);
  7843. if (clockwise) angular_travel -= RADIANS(360);
  7844. // Make a circle if the angular rotation is 0
  7845. if (angular_travel == 0 && current_position[X_AXIS] == logical[X_AXIS] && current_position[Y_AXIS] == logical[Y_AXIS])
  7846. angular_travel += RADIANS(360);
  7847. float mm_of_travel = HYPOT(angular_travel * radius, fabs(linear_travel));
  7848. if (mm_of_travel < 0.001) return;
  7849. uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
  7850. if (segments == 0) segments = 1;
  7851. /**
  7852. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  7853. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  7854. * r_T = [cos(phi) -sin(phi);
  7855. * sin(phi) cos(phi)] * r ;
  7856. *
  7857. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  7858. * defined from the circle center to the initial position. Each line segment is formed by successive
  7859. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  7860. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  7861. * all double numbers are single precision on the Arduino. (True double precision will not have
  7862. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  7863. * tool precision in some cases. Therefore, arc path correction is implemented.
  7864. *
  7865. * Small angle approximation may be used to reduce computation overhead further. This approximation
  7866. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  7867. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  7868. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  7869. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  7870. * issue for CNC machines with the single precision Arduino calculations.
  7871. *
  7872. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  7873. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  7874. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  7875. * This is important when there are successive arc motions.
  7876. */
  7877. // Vector rotation matrix values
  7878. float arc_target[XYZE],
  7879. theta_per_segment = angular_travel / segments,
  7880. linear_per_segment = linear_travel / segments,
  7881. extruder_per_segment = extruder_travel / segments,
  7882. sin_T = theta_per_segment,
  7883. cos_T = 1 - 0.5 * sq(theta_per_segment); // Small angle approximation
  7884. // Initialize the linear axis
  7885. arc_target[Z_AXIS] = current_position[Z_AXIS];
  7886. // Initialize the extruder axis
  7887. arc_target[E_AXIS] = current_position[E_AXIS];
  7888. float fr_mm_s = MMS_SCALED(feedrate_mm_s);
  7889. millis_t next_idle_ms = millis() + 200UL;
  7890. int8_t count = 0;
  7891. for (uint16_t i = 1; i < segments; i++) { // Iterate (segments-1) times
  7892. thermalManager.manage_heater();
  7893. if (ELAPSED(millis(), next_idle_ms)) {
  7894. next_idle_ms = millis() + 200UL;
  7895. idle();
  7896. }
  7897. if (++count < N_ARC_CORRECTION) {
  7898. // Apply vector rotation matrix to previous r_X / 1
  7899. float r_new_Y = r_X * sin_T + r_Y * cos_T;
  7900. r_X = r_X * cos_T - r_Y * sin_T;
  7901. r_Y = r_new_Y;
  7902. }
  7903. else {
  7904. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  7905. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  7906. // To reduce stuttering, the sin and cos could be computed at different times.
  7907. // For now, compute both at the same time.
  7908. float cos_Ti = cos(i * theta_per_segment),
  7909. sin_Ti = sin(i * theta_per_segment);
  7910. r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
  7911. r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
  7912. count = 0;
  7913. }
  7914. // Update arc_target location
  7915. arc_target[X_AXIS] = center_X + r_X;
  7916. arc_target[Y_AXIS] = center_Y + r_Y;
  7917. arc_target[Z_AXIS] += linear_per_segment;
  7918. arc_target[E_AXIS] += extruder_per_segment;
  7919. clamp_to_software_endstops(arc_target);
  7920. planner.buffer_line_kinematic(arc_target, fr_mm_s, active_extruder);
  7921. }
  7922. // Ensure last segment arrives at target location.
  7923. planner.buffer_line_kinematic(logical, fr_mm_s, active_extruder);
  7924. // As far as the parser is concerned, the position is now == target. In reality the
  7925. // motion control system might still be processing the action and the real tool position
  7926. // in any intermediate location.
  7927. set_current_to_destination();
  7928. }
  7929. #endif
  7930. #if ENABLED(BEZIER_CURVE_SUPPORT)
  7931. void plan_cubic_move(const float offset[4]) {
  7932. cubic_b_spline(current_position, destination, offset, MMS_SCALED(feedrate_mm_s), active_extruder);
  7933. // As far as the parser is concerned, the position is now == destination. In reality the
  7934. // motion control system might still be processing the action and the real tool position
  7935. // in any intermediate location.
  7936. set_current_to_destination();
  7937. }
  7938. #endif // BEZIER_CURVE_SUPPORT
  7939. #if HAS_CONTROLLERFAN
  7940. void controllerFan() {
  7941. static millis_t lastMotorOn = 0; // Last time a motor was turned on
  7942. static millis_t nextMotorCheck = 0; // Last time the state was checked
  7943. millis_t ms = millis();
  7944. if (ELAPSED(ms, nextMotorCheck)) {
  7945. nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
  7946. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_bed > 0
  7947. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  7948. #if E_STEPPERS > 1
  7949. || E1_ENABLE_READ == E_ENABLE_ON
  7950. #if HAS_X2_ENABLE
  7951. || X2_ENABLE_READ == X_ENABLE_ON
  7952. #endif
  7953. #if E_STEPPERS > 2
  7954. || E2_ENABLE_READ == E_ENABLE_ON
  7955. #if E_STEPPERS > 3
  7956. || E3_ENABLE_READ == E_ENABLE_ON
  7957. #endif
  7958. #endif
  7959. #endif
  7960. ) {
  7961. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  7962. }
  7963. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  7964. uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  7965. // allows digital or PWM fan output to be used (see M42 handling)
  7966. digitalWrite(CONTROLLERFAN_PIN, speed);
  7967. analogWrite(CONTROLLERFAN_PIN, speed);
  7968. }
  7969. }
  7970. #endif // HAS_CONTROLLERFAN
  7971. #if ENABLED(MORGAN_SCARA)
  7972. /**
  7973. * Morgan SCARA Forward Kinematics. Results in cartes[].
  7974. * Maths and first version by QHARLEY.
  7975. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  7976. */
  7977. void forward_kinematics_SCARA(const float &a, const float &b) {
  7978. float a_sin = sin(RADIANS(a)) * L1,
  7979. a_cos = cos(RADIANS(a)) * L1,
  7980. b_sin = sin(RADIANS(b)) * L2,
  7981. b_cos = cos(RADIANS(b)) * L2;
  7982. cartes[X_AXIS] = a_cos + b_cos + SCARA_OFFSET_X; //theta
  7983. cartes[Y_AXIS] = a_sin + b_sin + SCARA_OFFSET_Y; //theta+phi
  7984. /*
  7985. SERIAL_ECHOPAIR("SCARA FK Angle a=", a);
  7986. SERIAL_ECHOPAIR(" b=", b);
  7987. SERIAL_ECHOPAIR(" a_sin=", a_sin);
  7988. SERIAL_ECHOPAIR(" a_cos=", a_cos);
  7989. SERIAL_ECHOPAIR(" b_sin=", b_sin);
  7990. SERIAL_ECHOLNPAIR(" b_cos=", b_cos);
  7991. SERIAL_ECHOPAIR(" cartes[X_AXIS]=", cartes[X_AXIS]);
  7992. SERIAL_ECHOLNPAIR(" cartes[Y_AXIS]=", cartes[Y_AXIS]);
  7993. //*/
  7994. }
  7995. /**
  7996. * Morgan SCARA Inverse Kinematics. Results in delta[].
  7997. *
  7998. * See http://forums.reprap.org/read.php?185,283327
  7999. *
  8000. * Maths and first version by QHARLEY.
  8001. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  8002. */
  8003. void inverse_kinematics(const float logical[XYZ]) {
  8004. static float C2, S2, SK1, SK2, THETA, PSI;
  8005. float sx = RAW_X_POSITION(logical[X_AXIS]) - SCARA_OFFSET_X, // Translate SCARA to standard X Y
  8006. sy = RAW_Y_POSITION(logical[Y_AXIS]) - SCARA_OFFSET_Y; // With scaling factor.
  8007. if (L1 == L2)
  8008. C2 = HYPOT2(sx, sy) / L1_2_2 - 1;
  8009. else
  8010. C2 = (HYPOT2(sx, sy) - (L1_2 + L2_2)) / (2.0 * L1 * L2);
  8011. S2 = sqrt(sq(C2) - 1);
  8012. // Unrotated Arm1 plus rotated Arm2 gives the distance from Center to End
  8013. SK1 = L1 + L2 * C2;
  8014. // Rotated Arm2 gives the distance from Arm1 to Arm2
  8015. SK2 = L2 * S2;
  8016. // Angle of Arm1 is the difference between Center-to-End angle and the Center-to-Elbow
  8017. THETA = atan2(SK1, SK2) - atan2(sx, sy);
  8018. // Angle of Arm2
  8019. PSI = atan2(S2, C2);
  8020. delta[A_AXIS] = DEGREES(THETA); // theta is support arm angle
  8021. delta[B_AXIS] = DEGREES(THETA + PSI); // equal to sub arm angle (inverted motor)
  8022. delta[C_AXIS] = logical[Z_AXIS];
  8023. /*
  8024. DEBUG_POS("SCARA IK", logical);
  8025. DEBUG_POS("SCARA IK", delta);
  8026. SERIAL_ECHOPAIR(" SCARA (x,y) ", sx);
  8027. SERIAL_ECHOPAIR(",", sy);
  8028. SERIAL_ECHOPAIR(" C2=", C2);
  8029. SERIAL_ECHOPAIR(" S2=", S2);
  8030. SERIAL_ECHOPAIR(" Theta=", THETA);
  8031. SERIAL_ECHOLNPAIR(" Phi=", PHI);
  8032. //*/
  8033. }
  8034. #endif // MORGAN_SCARA
  8035. #if ENABLED(TEMP_STAT_LEDS)
  8036. static bool red_led = false;
  8037. static millis_t next_status_led_update_ms = 0;
  8038. void handle_status_leds(void) {
  8039. if (ELAPSED(millis(), next_status_led_update_ms)) {
  8040. next_status_led_update_ms += 500; // Update every 0.5s
  8041. float max_temp = 0.0;
  8042. #if HAS_TEMP_BED
  8043. max_temp = MAX3(max_temp, thermalManager.degTargetBed(), thermalManager.degBed());
  8044. #endif
  8045. HOTEND_LOOP() {
  8046. max_temp = MAX3(max_temp, thermalManager.degHotend(e), thermalManager.degTargetHotend(e));
  8047. }
  8048. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  8049. if (new_led != red_led) {
  8050. red_led = new_led;
  8051. #if PIN_EXISTS(STAT_LED_RED)
  8052. WRITE(STAT_LED_RED_PIN, new_led ? HIGH : LOW);
  8053. #if PIN_EXISTS(STAT_LED_BLUE)
  8054. WRITE(STAT_LED_BLUE_PIN, new_led ? LOW : HIGH);
  8055. #endif
  8056. #else
  8057. WRITE(STAT_LED_BLUE_PIN, new_led ? HIGH : LOW);
  8058. #endif
  8059. }
  8060. }
  8061. }
  8062. #endif
  8063. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  8064. void handle_filament_runout() {
  8065. if (!filament_ran_out) {
  8066. filament_ran_out = true;
  8067. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  8068. stepper.synchronize();
  8069. }
  8070. }
  8071. #endif // FILAMENT_RUNOUT_SENSOR
  8072. #if ENABLED(FAST_PWM_FAN)
  8073. void setPwmFrequency(uint8_t pin, int val) {
  8074. val &= 0x07;
  8075. switch (digitalPinToTimer(pin)) {
  8076. #if defined(TCCR0A)
  8077. case TIMER0A:
  8078. case TIMER0B:
  8079. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  8080. // TCCR0B |= val;
  8081. break;
  8082. #endif
  8083. #if defined(TCCR1A)
  8084. case TIMER1A:
  8085. case TIMER1B:
  8086. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  8087. // TCCR1B |= val;
  8088. break;
  8089. #endif
  8090. #if defined(TCCR2)
  8091. case TIMER2:
  8092. case TIMER2:
  8093. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  8094. TCCR2 |= val;
  8095. break;
  8096. #endif
  8097. #if defined(TCCR2A)
  8098. case TIMER2A:
  8099. case TIMER2B:
  8100. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  8101. TCCR2B |= val;
  8102. break;
  8103. #endif
  8104. #if defined(TCCR3A)
  8105. case TIMER3A:
  8106. case TIMER3B:
  8107. case TIMER3C:
  8108. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  8109. TCCR3B |= val;
  8110. break;
  8111. #endif
  8112. #if defined(TCCR4A)
  8113. case TIMER4A:
  8114. case TIMER4B:
  8115. case TIMER4C:
  8116. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  8117. TCCR4B |= val;
  8118. break;
  8119. #endif
  8120. #if defined(TCCR5A)
  8121. case TIMER5A:
  8122. case TIMER5B:
  8123. case TIMER5C:
  8124. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  8125. TCCR5B |= val;
  8126. break;
  8127. #endif
  8128. }
  8129. }
  8130. #endif // FAST_PWM_FAN
  8131. float calculate_volumetric_multiplier(float diameter) {
  8132. if (!volumetric_enabled || diameter == 0) return 1.0;
  8133. return 1.0 / (M_PI * diameter * 0.5 * diameter * 0.5);
  8134. }
  8135. void calculate_volumetric_multipliers() {
  8136. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  8137. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  8138. }
  8139. void enable_all_steppers() {
  8140. enable_x();
  8141. enable_y();
  8142. enable_z();
  8143. enable_e0();
  8144. enable_e1();
  8145. enable_e2();
  8146. enable_e3();
  8147. }
  8148. void disable_all_steppers() {
  8149. disable_x();
  8150. disable_y();
  8151. disable_z();
  8152. disable_e0();
  8153. disable_e1();
  8154. disable_e2();
  8155. disable_e3();
  8156. }
  8157. /**
  8158. * Manage several activities:
  8159. * - Check for Filament Runout
  8160. * - Keep the command buffer full
  8161. * - Check for maximum inactive time between commands
  8162. * - Check for maximum inactive time between stepper commands
  8163. * - Check if pin CHDK needs to go LOW
  8164. * - Check for KILL button held down
  8165. * - Check for HOME button held down
  8166. * - Check if cooling fan needs to be switched on
  8167. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  8168. */
  8169. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  8170. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  8171. if ((IS_SD_PRINTING || print_job_timer.isRunning()) && (READ(FIL_RUNOUT_PIN) == FIL_RUNOUT_INVERTING))
  8172. handle_filament_runout();
  8173. #endif
  8174. if (commands_in_queue < BUFSIZE) get_available_commands();
  8175. millis_t ms = millis();
  8176. if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) kill(PSTR(MSG_KILLED));
  8177. if (stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
  8178. && !ignore_stepper_queue && !planner.blocks_queued()) {
  8179. #if ENABLED(DISABLE_INACTIVE_X)
  8180. disable_x();
  8181. #endif
  8182. #if ENABLED(DISABLE_INACTIVE_Y)
  8183. disable_y();
  8184. #endif
  8185. #if ENABLED(DISABLE_INACTIVE_Z)
  8186. disable_z();
  8187. #endif
  8188. #if ENABLED(DISABLE_INACTIVE_E)
  8189. disable_e0();
  8190. disable_e1();
  8191. disable_e2();
  8192. disable_e3();
  8193. #endif
  8194. }
  8195. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  8196. if (chdkActive && PENDING(ms, chdkHigh + CHDK_DELAY)) {
  8197. chdkActive = false;
  8198. WRITE(CHDK, LOW);
  8199. }
  8200. #endif
  8201. #if HAS_KILL
  8202. // Check if the kill button was pressed and wait just in case it was an accidental
  8203. // key kill key press
  8204. // -------------------------------------------------------------------------------
  8205. static int killCount = 0; // make the inactivity button a bit less responsive
  8206. const int KILL_DELAY = 750;
  8207. if (!READ(KILL_PIN))
  8208. killCount++;
  8209. else if (killCount > 0)
  8210. killCount--;
  8211. // Exceeded threshold and we can confirm that it was not accidental
  8212. // KILL the machine
  8213. // ----------------------------------------------------------------
  8214. if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED));
  8215. #endif
  8216. #if HAS_HOME
  8217. // Check to see if we have to home, use poor man's debouncer
  8218. // ---------------------------------------------------------
  8219. static int homeDebounceCount = 0; // poor man's debouncing count
  8220. const int HOME_DEBOUNCE_DELAY = 2500;
  8221. if (!READ(HOME_PIN)) {
  8222. if (!homeDebounceCount) {
  8223. enqueue_and_echo_commands_P(PSTR("G28"));
  8224. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  8225. }
  8226. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  8227. homeDebounceCount++;
  8228. else
  8229. homeDebounceCount = 0;
  8230. }
  8231. #endif
  8232. #if HAS_CONTROLLERFAN
  8233. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  8234. #endif
  8235. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  8236. if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL)
  8237. && thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  8238. bool oldstatus;
  8239. #if ENABLED(SWITCHING_EXTRUDER)
  8240. oldstatus = E0_ENABLE_READ;
  8241. enable_e0();
  8242. #else // !SWITCHING_EXTRUDER
  8243. switch (active_extruder) {
  8244. case 0:
  8245. oldstatus = E0_ENABLE_READ;
  8246. enable_e0();
  8247. break;
  8248. #if E_STEPPERS > 1
  8249. case 1:
  8250. oldstatus = E1_ENABLE_READ;
  8251. enable_e1();
  8252. break;
  8253. #if E_STEPPERS > 2
  8254. case 2:
  8255. oldstatus = E2_ENABLE_READ;
  8256. enable_e2();
  8257. break;
  8258. #if E_STEPPERS > 3
  8259. case 3:
  8260. oldstatus = E3_ENABLE_READ;
  8261. enable_e3();
  8262. break;
  8263. #endif
  8264. #endif
  8265. #endif
  8266. }
  8267. #endif // !SWITCHING_EXTRUDER
  8268. previous_cmd_ms = ms; // refresh_cmd_timeout()
  8269. #if IS_KINEMATIC
  8270. inverse_kinematics(current_position);
  8271. ADJUST_DELTA(current_position);
  8272. planner.buffer_line(
  8273. delta[A_AXIS], delta[B_AXIS], delta[C_AXIS],
  8274. current_position[E_AXIS] + EXTRUDER_RUNOUT_EXTRUDE,
  8275. MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED), active_extruder
  8276. );
  8277. #else
  8278. planner.buffer_line(
  8279. current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  8280. current_position[E_AXIS] + EXTRUDER_RUNOUT_EXTRUDE,
  8281. MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED), active_extruder
  8282. );
  8283. #endif
  8284. stepper.synchronize();
  8285. planner.set_e_position_mm(current_position[E_AXIS]);
  8286. #if ENABLED(SWITCHING_EXTRUDER)
  8287. E0_ENABLE_WRITE(oldstatus);
  8288. #else
  8289. switch (active_extruder) {
  8290. case 0:
  8291. E0_ENABLE_WRITE(oldstatus);
  8292. break;
  8293. #if E_STEPPERS > 1
  8294. case 1:
  8295. E1_ENABLE_WRITE(oldstatus);
  8296. break;
  8297. #if E_STEPPERS > 2
  8298. case 2:
  8299. E2_ENABLE_WRITE(oldstatus);
  8300. break;
  8301. #if E_STEPPERS > 3
  8302. case 3:
  8303. E3_ENABLE_WRITE(oldstatus);
  8304. break;
  8305. #endif
  8306. #endif
  8307. #endif
  8308. }
  8309. #endif // !SWITCHING_EXTRUDER
  8310. }
  8311. #endif // EXTRUDER_RUNOUT_PREVENT
  8312. #if ENABLED(DUAL_X_CARRIAGE)
  8313. // handle delayed move timeout
  8314. if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
  8315. // travel moves have been received so enact them
  8316. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  8317. set_destination_to_current();
  8318. prepare_move_to_destination();
  8319. }
  8320. #endif
  8321. #if ENABLED(TEMP_STAT_LEDS)
  8322. handle_status_leds();
  8323. #endif
  8324. planner.check_axes_activity();
  8325. }
  8326. /**
  8327. * Standard idle routine keeps the machine alive
  8328. */
  8329. void idle(
  8330. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  8331. bool no_stepper_sleep/*=false*/
  8332. #endif
  8333. ) {
  8334. lcd_update();
  8335. host_keepalive();
  8336. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  8337. auto_report_temperatures();
  8338. #endif
  8339. manage_inactivity(
  8340. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  8341. no_stepper_sleep
  8342. #endif
  8343. );
  8344. thermalManager.manage_heater();
  8345. #if ENABLED(PRINTCOUNTER)
  8346. print_job_timer.tick();
  8347. #endif
  8348. #if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
  8349. buzzer.tick();
  8350. #endif
  8351. }
  8352. /**
  8353. * Kill all activity and lock the machine.
  8354. * After this the machine will need to be reset.
  8355. */
  8356. void kill(const char* lcd_msg) {
  8357. SERIAL_ERROR_START;
  8358. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  8359. #if ENABLED(ULTRA_LCD)
  8360. kill_screen(lcd_msg);
  8361. #else
  8362. UNUSED(lcd_msg);
  8363. #endif
  8364. delay(500); // Wait a short time
  8365. cli(); // Stop interrupts
  8366. thermalManager.disable_all_heaters();
  8367. disable_all_steppers();
  8368. #if HAS_POWER_SWITCH
  8369. pinMode(PS_ON_PIN, INPUT);
  8370. #endif
  8371. suicide();
  8372. while (1) {
  8373. #if ENABLED(USE_WATCHDOG)
  8374. watchdog_reset();
  8375. #endif
  8376. } // Wait for reset
  8377. }
  8378. /**
  8379. * Turn off heaters and stop the print in progress
  8380. * After a stop the machine may be resumed with M999
  8381. */
  8382. void stop() {
  8383. thermalManager.disable_all_heaters();
  8384. if (IsRunning()) {
  8385. Running = false;
  8386. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  8387. SERIAL_ERROR_START;
  8388. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  8389. LCD_MESSAGEPGM(MSG_STOPPED);
  8390. }
  8391. }
  8392. /**
  8393. * Marlin entry-point: Set up before the program loop
  8394. * - Set up the kill pin, filament runout, power hold
  8395. * - Start the serial port
  8396. * - Print startup messages and diagnostics
  8397. * - Get EEPROM or default settings
  8398. * - Initialize managers for:
  8399. * • temperature
  8400. * • planner
  8401. * • watchdog
  8402. * • stepper
  8403. * • photo pin
  8404. * • servos
  8405. * • LCD controller
  8406. * • Digipot I2C
  8407. * • Z probe sled
  8408. * • status LEDs
  8409. */
  8410. void setup() {
  8411. #ifdef DISABLE_JTAG
  8412. // Disable JTAG on AT90USB chips to free up pins for IO
  8413. MCUCR = 0x80;
  8414. MCUCR = 0x80;
  8415. #endif
  8416. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  8417. setup_filrunoutpin();
  8418. #endif
  8419. setup_killpin();
  8420. setup_powerhold();
  8421. #if HAS_STEPPER_RESET
  8422. disableStepperDrivers();
  8423. #endif
  8424. MYSERIAL.begin(BAUDRATE);
  8425. SERIAL_PROTOCOLLNPGM("start");
  8426. SERIAL_ECHO_START;
  8427. // Check startup - does nothing if bootloader sets MCUSR to 0
  8428. byte mcu = MCUSR;
  8429. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  8430. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  8431. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  8432. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  8433. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  8434. MCUSR = 0;
  8435. SERIAL_ECHOPGM(MSG_MARLIN);
  8436. SERIAL_CHAR(' ');
  8437. SERIAL_ECHOLNPGM(SHORT_BUILD_VERSION);
  8438. SERIAL_EOL;
  8439. #if defined(STRING_DISTRIBUTION_DATE) && defined(STRING_CONFIG_H_AUTHOR)
  8440. SERIAL_ECHO_START;
  8441. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  8442. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  8443. SERIAL_ECHOLNPGM(MSG_AUTHOR STRING_CONFIG_H_AUTHOR);
  8444. SERIAL_ECHOLNPGM("Compiled: " __DATE__);
  8445. #endif
  8446. SERIAL_ECHO_START;
  8447. SERIAL_ECHOPAIR(MSG_FREE_MEMORY, freeMemory());
  8448. SERIAL_ECHOLNPAIR(MSG_PLANNER_BUFFER_BYTES, (int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  8449. // Send "ok" after commands by default
  8450. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  8451. // Load data from EEPROM if available (or use defaults)
  8452. // This also updates variables in the planner, elsewhere
  8453. Config_RetrieveSettings();
  8454. // Initialize current position based on home_offset
  8455. memcpy(current_position, home_offset, sizeof(home_offset));
  8456. // Vital to init stepper/planner equivalent for current_position
  8457. SYNC_PLAN_POSITION_KINEMATIC();
  8458. thermalManager.init(); // Initialize temperature loop
  8459. #if ENABLED(USE_WATCHDOG)
  8460. watchdog_init();
  8461. #endif
  8462. stepper.init(); // Initialize stepper, this enables interrupts!
  8463. servo_init();
  8464. #if HAS_PHOTOGRAPH
  8465. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  8466. #endif
  8467. #if HAS_CASE_LIGHT
  8468. update_case_light();
  8469. #endif
  8470. #if HAS_BED_PROBE
  8471. endstops.enable_z_probe(false);
  8472. #endif
  8473. #if HAS_CONTROLLERFAN
  8474. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  8475. #endif
  8476. #if HAS_STEPPER_RESET
  8477. enableStepperDrivers();
  8478. #endif
  8479. #if ENABLED(DIGIPOT_I2C)
  8480. digipot_i2c_init();
  8481. #endif
  8482. #if ENABLED(DAC_STEPPER_CURRENT)
  8483. dac_init();
  8484. #endif
  8485. #if ENABLED(Z_PROBE_SLED) && PIN_EXISTS(SLED)
  8486. OUT_WRITE(SLED_PIN, LOW); // turn it off
  8487. #endif // Z_PROBE_SLED
  8488. setup_homepin();
  8489. #if PIN_EXISTS(STAT_LED_RED)
  8490. OUT_WRITE(STAT_LED_RED_PIN, LOW); // turn it off
  8491. #endif
  8492. #if PIN_EXISTS(STAT_LED_BLUE)
  8493. OUT_WRITE(STAT_LED_BLUE_PIN, LOW); // turn it off
  8494. #endif
  8495. lcd_init();
  8496. #if ENABLED(SHOW_BOOTSCREEN)
  8497. #if ENABLED(DOGLCD)
  8498. safe_delay(BOOTSCREEN_TIMEOUT);
  8499. #elif ENABLED(ULTRA_LCD)
  8500. bootscreen();
  8501. #if DISABLED(SDSUPPORT)
  8502. lcd_init();
  8503. #endif
  8504. #endif
  8505. #endif
  8506. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  8507. // Initialize mixing to 100% color 1
  8508. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  8509. mixing_factor[i] = (i == 0) ? 1.0 : 0.0;
  8510. for (uint8_t t = 0; t < MIXING_VIRTUAL_TOOLS; t++)
  8511. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  8512. mixing_virtual_tool_mix[t][i] = mixing_factor[i];
  8513. #endif
  8514. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  8515. i2c.onReceive(i2c_on_receive);
  8516. i2c.onRequest(i2c_on_request);
  8517. #endif
  8518. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  8519. setup_endstop_interrupts();
  8520. #endif
  8521. }
  8522. /**
  8523. * The main Marlin program loop
  8524. *
  8525. * - Save or log commands to SD
  8526. * - Process available commands (if not saving)
  8527. * - Call heater manager
  8528. * - Call inactivity manager
  8529. * - Call endstop manager
  8530. * - Call LCD update
  8531. */
  8532. void loop() {
  8533. if (commands_in_queue < BUFSIZE) get_available_commands();
  8534. #if ENABLED(SDSUPPORT)
  8535. card.checkautostart(false);
  8536. #endif
  8537. if (commands_in_queue) {
  8538. #if ENABLED(SDSUPPORT)
  8539. if (card.saving) {
  8540. char* command = command_queue[cmd_queue_index_r];
  8541. if (strstr_P(command, PSTR("M29"))) {
  8542. // M29 closes the file
  8543. card.closefile();
  8544. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  8545. ok_to_send();
  8546. }
  8547. else {
  8548. // Write the string from the read buffer to SD
  8549. card.write_command(command);
  8550. if (card.logging)
  8551. process_next_command(); // The card is saving because it's logging
  8552. else
  8553. ok_to_send();
  8554. }
  8555. }
  8556. else
  8557. process_next_command();
  8558. #else
  8559. process_next_command();
  8560. #endif // SDSUPPORT
  8561. // The queue may be reset by a command handler or by code invoked by idle() within a handler
  8562. if (commands_in_queue) {
  8563. --commands_in_queue;
  8564. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  8565. }
  8566. }
  8567. endstops.report_state();
  8568. idle();
  8569. }