My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

stepper.cpp 40KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * stepper.cpp - A singleton object to execute motion plans using stepper motors
  24. * Marlin Firmware
  25. *
  26. * Derived from Grbl
  27. * Copyright (c) 2009-2011 Simen Svale Skogsrud
  28. *
  29. * Grbl is free software: you can redistribute it and/or modify
  30. * it under the terms of the GNU General Public License as published by
  31. * the Free Software Foundation, either version 3 of the License, or
  32. * (at your option) any later version.
  33. *
  34. * Grbl is distributed in the hope that it will be useful,
  35. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  36. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  37. * GNU General Public License for more details.
  38. *
  39. * You should have received a copy of the GNU General Public License
  40. * along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  41. */
  42. /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
  43. and Philipp Tiefenbacher. */
  44. #include "Marlin.h"
  45. #include "stepper.h"
  46. #include "endstops.h"
  47. #include "planner.h"
  48. #include "temperature.h"
  49. #include "ultralcd.h"
  50. #include "language.h"
  51. #include "cardreader.h"
  52. #include "speed_lookuptable.h"
  53. #if HAS_DIGIPOTSS
  54. #include <SPI.h>
  55. #endif
  56. Stepper stepper; // Singleton
  57. // public:
  58. block_t* Stepper::current_block = NULL; // A pointer to the block currently being traced
  59. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  60. bool Stepper::abort_on_endstop_hit = false;
  61. #endif
  62. #if ENABLED(Z_DUAL_ENDSTOPS)
  63. bool Stepper::performing_homing = false;
  64. #endif
  65. // private:
  66. unsigned char Stepper::last_direction_bits = 0; // The next stepping-bits to be output
  67. unsigned int Stepper::cleaning_buffer_counter = 0;
  68. #if ENABLED(Z_DUAL_ENDSTOPS)
  69. bool Stepper::locked_z_motor = false;
  70. bool Stepper::locked_z2_motor = false;
  71. #endif
  72. long Stepper::counter_X = 0,
  73. Stepper::counter_Y = 0,
  74. Stepper::counter_Z = 0,
  75. Stepper::counter_E = 0;
  76. volatile uint32_t Stepper::step_events_completed = 0; // The number of step events executed in the current block
  77. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  78. uint8_t Stepper::old_OCR0A = 0;
  79. volatile uint8_t Stepper::eISR_Rate = 200; // Keep the ISR at a low rate until needed
  80. #if ENABLED(LIN_ADVANCE)
  81. volatile int Stepper::e_steps[E_STEPPERS];
  82. int Stepper::final_estep_rate,
  83. Stepper::current_estep_rate[E_STEPPERS],
  84. Stepper::current_adv_steps[E_STEPPERS];
  85. #else
  86. long Stepper::e_steps[E_STEPPERS],
  87. Stepper::final_advance = 0,
  88. Stepper::old_advance = 0,
  89. Stepper::advance_rate,
  90. Stepper::advance;
  91. #endif
  92. #endif
  93. long Stepper::acceleration_time, Stepper::deceleration_time;
  94. volatile long Stepper::count_position[NUM_AXIS] = { 0 };
  95. volatile signed char Stepper::count_direction[NUM_AXIS] = { 1, 1, 1, 1 };
  96. #if ENABLED(MIXING_EXTRUDER)
  97. long Stepper::counter_m[MIXING_STEPPERS];
  98. #endif
  99. unsigned short Stepper::acc_step_rate; // needed for deceleration start point
  100. uint8_t Stepper::step_loops, Stepper::step_loops_nominal;
  101. unsigned short Stepper::OCR1A_nominal;
  102. volatile long Stepper::endstops_trigsteps[XYZ];
  103. #if ENABLED(X_DUAL_STEPPER_DRIVERS)
  104. #define X_APPLY_DIR(v,Q) do{ X_DIR_WRITE(v); X2_DIR_WRITE((v) != INVERT_X2_VS_X_DIR); }while(0)
  105. #define X_APPLY_STEP(v,Q) do{ X_STEP_WRITE(v); X2_STEP_WRITE(v); }while(0)
  106. #elif ENABLED(DUAL_X_CARRIAGE)
  107. #define X_APPLY_DIR(v,ALWAYS) \
  108. if (extruder_duplication_enabled || ALWAYS) { \
  109. X_DIR_WRITE(v); \
  110. X2_DIR_WRITE(v); \
  111. } \
  112. else { \
  113. if (current_block->active_extruder) X2_DIR_WRITE(v); else X_DIR_WRITE(v); \
  114. }
  115. #define X_APPLY_STEP(v,ALWAYS) \
  116. if (extruder_duplication_enabled || ALWAYS) { \
  117. X_STEP_WRITE(v); \
  118. X2_STEP_WRITE(v); \
  119. } \
  120. else { \
  121. if (current_block->active_extruder != 0) X2_STEP_WRITE(v); else X_STEP_WRITE(v); \
  122. }
  123. #else
  124. #define X_APPLY_DIR(v,Q) X_DIR_WRITE(v)
  125. #define X_APPLY_STEP(v,Q) X_STEP_WRITE(v)
  126. #endif
  127. #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
  128. #define Y_APPLY_DIR(v,Q) do{ Y_DIR_WRITE(v); Y2_DIR_WRITE((v) != INVERT_Y2_VS_Y_DIR); }while(0)
  129. #define Y_APPLY_STEP(v,Q) do{ Y_STEP_WRITE(v); Y2_STEP_WRITE(v); }while(0)
  130. #else
  131. #define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v)
  132. #define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v)
  133. #endif
  134. #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
  135. #define Z_APPLY_DIR(v,Q) do{ Z_DIR_WRITE(v); Z2_DIR_WRITE(v); }while(0)
  136. #if ENABLED(Z_DUAL_ENDSTOPS)
  137. #define Z_APPLY_STEP(v,Q) \
  138. if (performing_homing) { \
  139. if (Z_HOME_DIR < 0) { \
  140. if (!(TEST(endstops.old_endstop_bits, Z_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
  141. if (!(TEST(endstops.old_endstop_bits, Z2_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
  142. } \
  143. else { \
  144. if (!(TEST(endstops.old_endstop_bits, Z_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
  145. if (!(TEST(endstops.old_endstop_bits, Z2_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
  146. } \
  147. } \
  148. else { \
  149. Z_STEP_WRITE(v); \
  150. Z2_STEP_WRITE(v); \
  151. }
  152. #else
  153. #define Z_APPLY_STEP(v,Q) do{ Z_STEP_WRITE(v); Z2_STEP_WRITE(v); }while(0)
  154. #endif
  155. #else
  156. #define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v)
  157. #define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v)
  158. #endif
  159. #if DISABLED(MIXING_EXTRUDER)
  160. #define E_APPLY_STEP(v,Q) E_STEP_WRITE(v)
  161. #endif
  162. // intRes = longIn1 * longIn2 >> 24
  163. // uses:
  164. // r26 to store 0
  165. // r27 to store bits 16-23 of the 48bit result. The top bit is used to round the two byte result.
  166. // note that the lower two bytes and the upper byte of the 48bit result are not calculated.
  167. // this can cause the result to be out by one as the lower bytes may cause carries into the upper ones.
  168. // B0 A0 are bits 24-39 and are the returned value
  169. // C1 B1 A1 is longIn1
  170. // D2 C2 B2 A2 is longIn2
  171. //
  172. #define MultiU24X32toH16(intRes, longIn1, longIn2) \
  173. asm volatile ( \
  174. "clr r26 \n\t" \
  175. "mul %A1, %B2 \n\t" \
  176. "mov r27, r1 \n\t" \
  177. "mul %B1, %C2 \n\t" \
  178. "movw %A0, r0 \n\t" \
  179. "mul %C1, %C2 \n\t" \
  180. "add %B0, r0 \n\t" \
  181. "mul %C1, %B2 \n\t" \
  182. "add %A0, r0 \n\t" \
  183. "adc %B0, r1 \n\t" \
  184. "mul %A1, %C2 \n\t" \
  185. "add r27, r0 \n\t" \
  186. "adc %A0, r1 \n\t" \
  187. "adc %B0, r26 \n\t" \
  188. "mul %B1, %B2 \n\t" \
  189. "add r27, r0 \n\t" \
  190. "adc %A0, r1 \n\t" \
  191. "adc %B0, r26 \n\t" \
  192. "mul %C1, %A2 \n\t" \
  193. "add r27, r0 \n\t" \
  194. "adc %A0, r1 \n\t" \
  195. "adc %B0, r26 \n\t" \
  196. "mul %B1, %A2 \n\t" \
  197. "add r27, r1 \n\t" \
  198. "adc %A0, r26 \n\t" \
  199. "adc %B0, r26 \n\t" \
  200. "lsr r27 \n\t" \
  201. "adc %A0, r26 \n\t" \
  202. "adc %B0, r26 \n\t" \
  203. "mul %D2, %A1 \n\t" \
  204. "add %A0, r0 \n\t" \
  205. "adc %B0, r1 \n\t" \
  206. "mul %D2, %B1 \n\t" \
  207. "add %B0, r0 \n\t" \
  208. "clr r1 \n\t" \
  209. : \
  210. "=&r" (intRes) \
  211. : \
  212. "d" (longIn1), \
  213. "d" (longIn2) \
  214. : \
  215. "r26" , "r27" \
  216. )
  217. // Some useful constants
  218. #define ENABLE_STEPPER_DRIVER_INTERRUPT() SBI(TIMSK1, OCIE1A)
  219. #define DISABLE_STEPPER_DRIVER_INTERRUPT() CBI(TIMSK1, OCIE1A)
  220. /**
  221. * __________________________
  222. * /| |\ _________________ ^
  223. * / | | \ /| |\ |
  224. * / | | \ / | | \ s
  225. * / | | | | | \ p
  226. * / | | | | | \ e
  227. * +-----+------------------------+---+--+---------------+----+ e
  228. * | BLOCK 1 | BLOCK 2 | d
  229. *
  230. * time ----->
  231. *
  232. * The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
  233. * first block->accelerate_until step_events_completed, then keeps going at constant speed until
  234. * step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
  235. * The slope of acceleration is calculated using v = u + at where t is the accumulated timer values of the steps so far.
  236. */
  237. void Stepper::wake_up() {
  238. // TCNT1 = 0;
  239. ENABLE_STEPPER_DRIVER_INTERRUPT();
  240. }
  241. /**
  242. * Set the stepper direction of each axis
  243. *
  244. * COREXY: X_AXIS=A_AXIS and Y_AXIS=B_AXIS
  245. * COREXZ: X_AXIS=A_AXIS and Z_AXIS=C_AXIS
  246. * COREYZ: Y_AXIS=B_AXIS and Z_AXIS=C_AXIS
  247. */
  248. void Stepper::set_directions() {
  249. #define SET_STEP_DIR(AXIS) \
  250. if (motor_direction(AXIS ##_AXIS)) { \
  251. AXIS ##_APPLY_DIR(INVERT_## AXIS ##_DIR, false); \
  252. count_direction[AXIS ##_AXIS] = -1; \
  253. } \
  254. else { \
  255. AXIS ##_APPLY_DIR(!INVERT_## AXIS ##_DIR, false); \
  256. count_direction[AXIS ##_AXIS] = 1; \
  257. }
  258. #if HAS_X_DIR
  259. SET_STEP_DIR(X); // A
  260. #endif
  261. #if HAS_Y_DIR
  262. SET_STEP_DIR(Y); // B
  263. #endif
  264. #if HAS_Z_DIR
  265. SET_STEP_DIR(Z); // C
  266. #endif
  267. #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
  268. if (motor_direction(E_AXIS)) {
  269. REV_E_DIR();
  270. count_direction[E_AXIS] = -1;
  271. }
  272. else {
  273. NORM_E_DIR();
  274. count_direction[E_AXIS] = 1;
  275. }
  276. #endif // !ADVANCE && !LIN_ADVANCE
  277. }
  278. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  279. extern volatile uint8_t e_hit;
  280. #endif
  281. /**
  282. * Stepper Driver Interrupt
  283. *
  284. * Directly pulses the stepper motors at high frequency.
  285. * Timer 1 runs at a base frequency of 2MHz, with this ISR using OCR1A compare mode.
  286. *
  287. * OCR1A Frequency
  288. * 1 2 MHz
  289. * 50 40 KHz
  290. * 100 20 KHz - capped max rate
  291. * 200 10 KHz - nominal max rate
  292. * 2000 1 KHz - sleep rate
  293. * 4000 500 Hz - init rate
  294. */
  295. ISR(TIMER1_COMPA_vect) { Stepper::isr(); }
  296. void Stepper::isr() {
  297. if (cleaning_buffer_counter) {
  298. --cleaning_buffer_counter;
  299. current_block = NULL;
  300. planner.discard_current_block();
  301. #ifdef SD_FINISHED_RELEASECOMMAND
  302. if (!cleaning_buffer_counter && (SD_FINISHED_STEPPERRELEASE)) enqueue_and_echo_commands_P(PSTR(SD_FINISHED_RELEASECOMMAND));
  303. #endif
  304. OCR1A = 200; // Run at max speed - 10 KHz
  305. return;
  306. }
  307. // If there is no current block, attempt to pop one from the buffer
  308. if (!current_block) {
  309. // Anything in the buffer?
  310. current_block = planner.get_current_block();
  311. if (current_block) {
  312. trapezoid_generator_reset();
  313. // Initialize Bresenham counters to 1/2 the ceiling
  314. counter_X = counter_Y = counter_Z = counter_E = -(current_block->step_event_count >> 1);
  315. #if ENABLED(MIXING_EXTRUDER)
  316. MIXING_STEPPERS_LOOP(i)
  317. counter_m[i] = -(current_block->mix_event_count[i] >> 1);
  318. #endif
  319. step_events_completed = 0;
  320. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  321. e_hit = 2; // Needed for the case an endstop is already triggered before the new move begins.
  322. // No 'change' can be detected.
  323. #endif
  324. #if ENABLED(Z_LATE_ENABLE)
  325. if (current_block->steps[Z_AXIS] > 0) {
  326. enable_z();
  327. OCR1A = 2000; // Run at slow speed - 1 KHz
  328. return;
  329. }
  330. #endif
  331. // #if ENABLED(ADVANCE)
  332. // e_steps[TOOL_E_INDEX] = 0;
  333. // #endif
  334. }
  335. else {
  336. OCR1A = 2000; // Run at slow speed - 1 KHz
  337. return;
  338. }
  339. }
  340. // Update endstops state, if enabled
  341. if ((endstops.enabled
  342. #if HAS_BED_PROBE
  343. || endstops.z_probe_enabled
  344. #endif
  345. )
  346. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  347. && e_hit
  348. #endif
  349. ) {
  350. endstops.update();
  351. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  352. e_hit--;
  353. #endif
  354. }
  355. // Take multiple steps per interrupt (For high speed moves)
  356. bool all_steps_done = false;
  357. for (int8_t i = 0; i < step_loops; i++) {
  358. #ifndef USBCON
  359. customizedSerial.checkRx(); // Check for serial chars.
  360. #endif
  361. #if ENABLED(LIN_ADVANCE)
  362. counter_E += current_block->steps[E_AXIS];
  363. if (counter_E > 0) {
  364. counter_E -= current_block->step_event_count;
  365. #if DISABLED(MIXING_EXTRUDER)
  366. // Don't step E here for mixing extruder
  367. count_position[E_AXIS] += count_direction[E_AXIS];
  368. motor_direction(E_AXIS) ? --e_steps[TOOL_E_INDEX] : ++e_steps[TOOL_E_INDEX];
  369. #endif
  370. }
  371. #if ENABLED(MIXING_EXTRUDER)
  372. // Step mixing steppers proportionally
  373. const bool dir = motor_direction(E_AXIS);
  374. MIXING_STEPPERS_LOOP(j) {
  375. counter_m[j] += current_block->steps[E_AXIS];
  376. if (counter_m[j] > 0) {
  377. counter_m[j] -= current_block->mix_event_count[j];
  378. dir ? --e_steps[j] : ++e_steps[j];
  379. }
  380. }
  381. #endif
  382. #elif ENABLED(ADVANCE)
  383. // Always count the unified E axis
  384. counter_E += current_block->steps[E_AXIS];
  385. if (counter_E > 0) {
  386. counter_E -= current_block->step_event_count;
  387. #if DISABLED(MIXING_EXTRUDER)
  388. // Don't step E here for mixing extruder
  389. motor_direction(E_AXIS) ? --e_steps[TOOL_E_INDEX] : ++e_steps[TOOL_E_INDEX];
  390. #endif
  391. }
  392. #if ENABLED(MIXING_EXTRUDER)
  393. // Step mixing steppers proportionally
  394. const bool dir = motor_direction(E_AXIS);
  395. MIXING_STEPPERS_LOOP(j) {
  396. counter_m[j] += current_block->steps[E_AXIS];
  397. if (counter_m[j] > 0) {
  398. counter_m[j] -= current_block->mix_event_count[j];
  399. dir ? --e_steps[j] : ++e_steps[j];
  400. }
  401. }
  402. #endif // MIXING_EXTRUDER
  403. #endif // ADVANCE or LIN_ADVANCE
  404. #define _COUNTER(AXIS) counter_## AXIS
  405. #define _APPLY_STEP(AXIS) AXIS ##_APPLY_STEP
  406. #define _INVERT_STEP_PIN(AXIS) INVERT_## AXIS ##_STEP_PIN
  407. // Advance the Bresenham counter; start a pulse if the axis needs a step
  408. #define PULSE_START(AXIS) \
  409. _COUNTER(AXIS) += current_block->steps[_AXIS(AXIS)]; \
  410. if (_COUNTER(AXIS) > 0) { _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS),0); }
  411. // Stop an active pulse, reset the Bresenham counter, update the position
  412. #define PULSE_STOP(AXIS) \
  413. if (_COUNTER(AXIS) > 0) { \
  414. _COUNTER(AXIS) -= current_block->step_event_count; \
  415. count_position[_AXIS(AXIS)] += count_direction[_AXIS(AXIS)]; \
  416. _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS),0); \
  417. }
  418. #define CYCLES_EATEN_BY_CODE 240
  419. // If a minimum pulse time was specified get the CPU clock
  420. #if STEP_PULSE_CYCLES > CYCLES_EATEN_BY_CODE
  421. static uint32_t pulse_start;
  422. pulse_start = TCNT0;
  423. #endif
  424. #if HAS_X_STEP
  425. PULSE_START(X);
  426. #endif
  427. #if HAS_Y_STEP
  428. PULSE_START(Y);
  429. #endif
  430. #if HAS_Z_STEP
  431. PULSE_START(Z);
  432. #endif
  433. // For non-advance use linear interpolation for E also
  434. #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
  435. #if ENABLED(MIXING_EXTRUDER)
  436. // Keep updating the single E axis
  437. counter_E += current_block->steps[E_AXIS];
  438. // Tick the counters used for this mix
  439. MIXING_STEPPERS_LOOP(j) {
  440. // Step mixing steppers (proportionally)
  441. counter_m[j] += current_block->steps[E_AXIS];
  442. // Step when the counter goes over zero
  443. if (counter_m[j] > 0) En_STEP_WRITE(j, !INVERT_E_STEP_PIN);
  444. }
  445. #else // !MIXING_EXTRUDER
  446. PULSE_START(E);
  447. #endif
  448. #endif // !ADVANCE && !LIN_ADVANCE
  449. // For a minimum pulse time wait before stopping pulses
  450. #if STEP_PULSE_CYCLES > CYCLES_EATEN_BY_CODE
  451. while ((uint32_t)(TCNT0 - pulse_start) < STEP_PULSE_CYCLES - CYCLES_EATEN_BY_CODE) { /* nada */ }
  452. #endif
  453. #if HAS_X_STEP
  454. PULSE_STOP(X);
  455. #endif
  456. #if HAS_Y_STEP
  457. PULSE_STOP(Y);
  458. #endif
  459. #if HAS_Z_STEP
  460. PULSE_STOP(Z);
  461. #endif
  462. #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
  463. #if ENABLED(MIXING_EXTRUDER)
  464. // Always step the single E axis
  465. if (counter_E > 0) {
  466. counter_E -= current_block->step_event_count;
  467. count_position[E_AXIS] += count_direction[E_AXIS];
  468. }
  469. MIXING_STEPPERS_LOOP(j) {
  470. if (counter_m[j] > 0) {
  471. counter_m[j] -= current_block->mix_event_count[j];
  472. En_STEP_WRITE(j, INVERT_E_STEP_PIN);
  473. }
  474. }
  475. #else // !MIXING_EXTRUDER
  476. PULSE_STOP(E);
  477. #endif
  478. #endif // !ADVANCE && !LIN_ADVANCE
  479. if (++step_events_completed >= current_block->step_event_count) {
  480. all_steps_done = true;
  481. break;
  482. }
  483. }
  484. #if ENABLED(LIN_ADVANCE)
  485. if (current_block->use_advance_lead) {
  486. int delta_adv_steps = current_estep_rate[TOOL_E_INDEX] - current_adv_steps[TOOL_E_INDEX];
  487. current_adv_steps[TOOL_E_INDEX] += delta_adv_steps;
  488. #if ENABLED(MIXING_EXTRUDER)
  489. // Mixing extruders apply advance lead proportionally
  490. MIXING_STEPPERS_LOOP(j)
  491. e_steps[j] += delta_adv_steps * current_block->step_event_count / current_block->mix_event_count[j];
  492. #else
  493. // For most extruders, advance the single E stepper
  494. e_steps[TOOL_E_INDEX] += delta_adv_steps;
  495. #endif
  496. }
  497. #endif
  498. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  499. // If we have esteps to execute, fire the next advance_isr "now"
  500. if (e_steps[TOOL_E_INDEX]) OCR0A = TCNT0 + 2;
  501. #endif
  502. // Calculate new timer value
  503. if (step_events_completed <= (uint32_t)current_block->accelerate_until) {
  504. MultiU24X32toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
  505. acc_step_rate += current_block->initial_rate;
  506. // upper limit
  507. NOMORE(acc_step_rate, current_block->nominal_rate);
  508. // step_rate to timer interval
  509. uint16_t timer = calc_timer(acc_step_rate);
  510. OCR1A = timer;
  511. acceleration_time += timer;
  512. #if ENABLED(LIN_ADVANCE)
  513. if (current_block->use_advance_lead) {
  514. #if ENABLED(MIXING_EXTRUDER)
  515. MIXING_STEPPERS_LOOP(j)
  516. current_estep_rate[j] = ((uint32_t)acc_step_rate * current_block->abs_adv_steps_multiplier8 * current_block->step_event_count / current_block->mix_event_count[j]) >> 17;
  517. #else
  518. current_estep_rate[TOOL_E_INDEX] = ((uint32_t)acc_step_rate * current_block->abs_adv_steps_multiplier8) >> 17;
  519. #endif
  520. }
  521. #elif ENABLED(ADVANCE)
  522. advance += advance_rate * step_loops;
  523. //NOLESS(advance, current_block->advance);
  524. long advance_whole = advance >> 8,
  525. advance_factor = advance_whole - old_advance;
  526. // Do E steps + advance steps
  527. #if ENABLED(MIXING_EXTRUDER)
  528. // ...for mixing steppers proportionally
  529. MIXING_STEPPERS_LOOP(j)
  530. e_steps[j] += advance_factor * current_block->step_event_count / current_block->mix_event_count[j];
  531. #else
  532. // ...for the active extruder
  533. e_steps[TOOL_E_INDEX] += advance_factor;
  534. #endif
  535. old_advance = advance_whole;
  536. #endif // ADVANCE or LIN_ADVANCE
  537. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  538. eISR_Rate = (timer >> 3) * step_loops / abs(e_steps[TOOL_E_INDEX]); //>> 3 is divide by 8. Reason: Timer 1 runs at 16/8=2MHz, Timer 0 at 16/64=0.25MHz. ==> 2/0.25=8.
  539. #endif
  540. }
  541. else if (step_events_completed > (uint32_t)current_block->decelerate_after) {
  542. uint16_t step_rate;
  543. MultiU24X32toH16(step_rate, deceleration_time, current_block->acceleration_rate);
  544. if (step_rate < acc_step_rate) { // Still decelerating?
  545. step_rate = acc_step_rate - step_rate;
  546. NOLESS(step_rate, current_block->final_rate);
  547. }
  548. else
  549. step_rate = current_block->final_rate;
  550. // step_rate to timer interval
  551. uint16_t timer = calc_timer(step_rate);
  552. OCR1A = timer;
  553. deceleration_time += timer;
  554. #if ENABLED(LIN_ADVANCE)
  555. if (current_block->use_advance_lead) {
  556. #if ENABLED(MIXING_EXTRUDER)
  557. MIXING_STEPPERS_LOOP(j)
  558. current_estep_rate[j] = ((uint32_t)step_rate * current_block->abs_adv_steps_multiplier8 * current_block->step_event_count / current_block->mix_event_count[j]) >> 17;
  559. #else
  560. current_estep_rate[TOOL_E_INDEX] = ((uint32_t)step_rate * current_block->abs_adv_steps_multiplier8) >> 17;
  561. #endif
  562. }
  563. #elif ENABLED(ADVANCE)
  564. advance -= advance_rate * step_loops;
  565. NOLESS(advance, final_advance);
  566. // Do E steps + advance steps
  567. long advance_whole = advance >> 8,
  568. advance_factor = advance_whole - old_advance;
  569. #if ENABLED(MIXING_EXTRUDER)
  570. MIXING_STEPPERS_LOOP(j)
  571. e_steps[j] += advance_factor * current_block->step_event_count / current_block->mix_event_count[j];
  572. #else
  573. e_steps[TOOL_E_INDEX] += advance_factor;
  574. #endif
  575. old_advance = advance_whole;
  576. #endif // ADVANCE or LIN_ADVANCE
  577. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  578. eISR_Rate = (timer >> 3) * step_loops / abs(e_steps[TOOL_E_INDEX]);
  579. #endif
  580. }
  581. else {
  582. #if ENABLED(LIN_ADVANCE)
  583. if (current_block->use_advance_lead)
  584. current_estep_rate[TOOL_E_INDEX] = final_estep_rate;
  585. eISR_Rate = (OCR1A_nominal >> 3) * step_loops_nominal / abs(e_steps[TOOL_E_INDEX]);
  586. #endif
  587. OCR1A = OCR1A_nominal;
  588. // ensure we're running at the correct step rate, even if we just came off an acceleration
  589. step_loops = step_loops_nominal;
  590. }
  591. NOLESS(OCR1A, TCNT1 + 16);
  592. // If current block is finished, reset pointer
  593. if (all_steps_done) {
  594. current_block = NULL;
  595. planner.discard_current_block();
  596. }
  597. }
  598. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  599. // Timer interrupt for E. e_steps is set in the main routine;
  600. // Timer 0 is shared with millies
  601. ISR(TIMER0_COMPA_vect) { Stepper::advance_isr(); }
  602. void Stepper::advance_isr() {
  603. old_OCR0A += eISR_Rate;
  604. OCR0A = old_OCR0A;
  605. #define SET_E_STEP_DIR(INDEX) \
  606. if (e_steps[INDEX]) E## INDEX ##_DIR_WRITE(e_steps[INDEX] < 0 ? INVERT_E## INDEX ##_DIR : !INVERT_E## INDEX ##_DIR)
  607. #define START_E_PULSE(INDEX) \
  608. if (e_steps[INDEX]) E## INDEX ##_STEP_WRITE(!INVERT_E_STEP_PIN)
  609. #define STOP_E_PULSE(INDEX) \
  610. if (e_steps[INDEX]) { \
  611. e_steps[INDEX] < 0 ? ++e_steps[INDEX] : --e_steps[INDEX]; \
  612. E## INDEX ##_STEP_WRITE(INVERT_E_STEP_PIN); \
  613. }
  614. SET_E_STEP_DIR(0);
  615. #if E_STEPPERS > 1
  616. SET_E_STEP_DIR(1);
  617. #if E_STEPPERS > 2
  618. SET_E_STEP_DIR(2);
  619. #if E_STEPPERS > 3
  620. SET_E_STEP_DIR(3);
  621. #endif
  622. #endif
  623. #endif
  624. #define CYCLES_EATEN_BY_E 60
  625. // Step all E steppers that have steps
  626. for (uint8_t i = 0; i < step_loops; i++) {
  627. #if STEP_PULSE_CYCLES > CYCLES_EATEN_BY_E
  628. static uint32_t pulse_start;
  629. pulse_start = TCNT0;
  630. #endif
  631. START_E_PULSE(0);
  632. #if E_STEPPERS > 1
  633. START_E_PULSE(1);
  634. #if E_STEPPERS > 2
  635. START_E_PULSE(2);
  636. #if E_STEPPERS > 3
  637. START_E_PULSE(3);
  638. #endif
  639. #endif
  640. #endif
  641. // For a minimum pulse time wait before stopping pulses
  642. #if STEP_PULSE_CYCLES > CYCLES_EATEN_BY_E
  643. while ((uint32_t)(TCNT0 - pulse_start) < STEP_PULSE_CYCLES - CYCLES_EATEN_BY_E) { /* nada */ }
  644. #endif
  645. STOP_E_PULSE(0);
  646. #if E_STEPPERS > 1
  647. STOP_E_PULSE(1);
  648. #if E_STEPPERS > 2
  649. STOP_E_PULSE(2);
  650. #if E_STEPPERS > 3
  651. STOP_E_PULSE(3);
  652. #endif
  653. #endif
  654. #endif
  655. }
  656. }
  657. #endif // ADVANCE or LIN_ADVANCE
  658. void Stepper::init() {
  659. // Init Digipot Motor Current
  660. #if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM
  661. digipot_init();
  662. #endif
  663. // Init Microstepping Pins
  664. #if HAS_MICROSTEPS
  665. microstep_init();
  666. #endif
  667. // Init TMC Steppers
  668. #if ENABLED(HAVE_TMCDRIVER)
  669. tmc_init();
  670. #endif
  671. // Init TMC2130 Steppers
  672. #if ENABLED(HAVE_TMC2130DRIVER)
  673. tmc2130_init();
  674. #endif
  675. // Init L6470 Steppers
  676. #if ENABLED(HAVE_L6470DRIVER)
  677. L6470_init();
  678. #endif
  679. // Init Dir Pins
  680. #if HAS_X_DIR
  681. X_DIR_INIT;
  682. #endif
  683. #if HAS_X2_DIR
  684. X2_DIR_INIT;
  685. #endif
  686. #if HAS_Y_DIR
  687. Y_DIR_INIT;
  688. #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_DIR
  689. Y2_DIR_INIT;
  690. #endif
  691. #endif
  692. #if HAS_Z_DIR
  693. Z_DIR_INIT;
  694. #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_DIR
  695. Z2_DIR_INIT;
  696. #endif
  697. #endif
  698. #if HAS_E0_DIR
  699. E0_DIR_INIT;
  700. #endif
  701. #if HAS_E1_DIR
  702. E1_DIR_INIT;
  703. #endif
  704. #if HAS_E2_DIR
  705. E2_DIR_INIT;
  706. #endif
  707. #if HAS_E3_DIR
  708. E3_DIR_INIT;
  709. #endif
  710. // Init Enable Pins - steppers default to disabled.
  711. #if HAS_X_ENABLE
  712. X_ENABLE_INIT;
  713. if (!X_ENABLE_ON) X_ENABLE_WRITE(HIGH);
  714. #if ENABLED(DUAL_X_CARRIAGE) && HAS_X2_ENABLE
  715. X2_ENABLE_INIT;
  716. if (!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH);
  717. #endif
  718. #endif
  719. #if HAS_Y_ENABLE
  720. Y_ENABLE_INIT;
  721. if (!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH);
  722. #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_ENABLE
  723. Y2_ENABLE_INIT;
  724. if (!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH);
  725. #endif
  726. #endif
  727. #if HAS_Z_ENABLE
  728. Z_ENABLE_INIT;
  729. if (!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH);
  730. #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_ENABLE
  731. Z2_ENABLE_INIT;
  732. if (!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH);
  733. #endif
  734. #endif
  735. #if HAS_E0_ENABLE
  736. E0_ENABLE_INIT;
  737. if (!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH);
  738. #endif
  739. #if HAS_E1_ENABLE
  740. E1_ENABLE_INIT;
  741. if (!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH);
  742. #endif
  743. #if HAS_E2_ENABLE
  744. E2_ENABLE_INIT;
  745. if (!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH);
  746. #endif
  747. #if HAS_E3_ENABLE
  748. E3_ENABLE_INIT;
  749. if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH);
  750. #endif
  751. // Init endstops and pullups
  752. endstops.init();
  753. #define _STEP_INIT(AXIS) AXIS ##_STEP_INIT
  754. #define _WRITE_STEP(AXIS, HIGHLOW) AXIS ##_STEP_WRITE(HIGHLOW)
  755. #define _DISABLE(axis) disable_## axis()
  756. #define AXIS_INIT(axis, AXIS, PIN) \
  757. _STEP_INIT(AXIS); \
  758. _WRITE_STEP(AXIS, _INVERT_STEP_PIN(PIN)); \
  759. _DISABLE(axis)
  760. #define E_AXIS_INIT(NUM) AXIS_INIT(e## NUM, E## NUM, E)
  761. // Init Step Pins
  762. #if HAS_X_STEP
  763. #if ENABLED(X_DUAL_STEPPER_DRIVERS) || ENABLED(DUAL_X_CARRIAGE)
  764. X2_STEP_INIT;
  765. X2_STEP_WRITE(INVERT_X_STEP_PIN);
  766. #endif
  767. AXIS_INIT(x, X, X);
  768. #endif
  769. #if HAS_Y_STEP
  770. #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
  771. Y2_STEP_INIT;
  772. Y2_STEP_WRITE(INVERT_Y_STEP_PIN);
  773. #endif
  774. AXIS_INIT(y, Y, Y);
  775. #endif
  776. #if HAS_Z_STEP
  777. #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
  778. Z2_STEP_INIT;
  779. Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
  780. #endif
  781. AXIS_INIT(z, Z, Z);
  782. #endif
  783. #if HAS_E0_STEP
  784. E_AXIS_INIT(0);
  785. #endif
  786. #if HAS_E1_STEP
  787. E_AXIS_INIT(1);
  788. #endif
  789. #if HAS_E2_STEP
  790. E_AXIS_INIT(2);
  791. #endif
  792. #if HAS_E3_STEP
  793. E_AXIS_INIT(3);
  794. #endif
  795. // waveform generation = 0100 = CTC
  796. CBI(TCCR1B, WGM13);
  797. SBI(TCCR1B, WGM12);
  798. CBI(TCCR1A, WGM11);
  799. CBI(TCCR1A, WGM10);
  800. // output mode = 00 (disconnected)
  801. TCCR1A &= ~(3 << COM1A0);
  802. TCCR1A &= ~(3 << COM1B0);
  803. // Set the timer pre-scaler
  804. // Generally we use a divider of 8, resulting in a 2MHz timer
  805. // frequency on a 16MHz MCU. If you are going to change this, be
  806. // sure to regenerate speed_lookuptable.h with
  807. // create_speed_lookuptable.py
  808. TCCR1B = (TCCR1B & ~(0x07 << CS10)) | (2 << CS10);
  809. // Init Stepper ISR to 122 Hz for quick starting
  810. OCR1A = 0x4000;
  811. TCNT1 = 0;
  812. ENABLE_STEPPER_DRIVER_INTERRUPT();
  813. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  814. for (int i = 0; i < E_STEPPERS; i++) {
  815. e_steps[i] = 0;
  816. #if ENABLED(LIN_ADVANCE)
  817. current_adv_steps[i] = 0;
  818. #endif
  819. }
  820. #if defined(TCCR0A) && defined(WGM01)
  821. CBI(TCCR0A, WGM01);
  822. CBI(TCCR0A, WGM00);
  823. #endif
  824. SBI(TIMSK0, OCIE0A);
  825. #endif // ADVANCE or LIN_ADVANCE
  826. endstops.enable(true); // Start with endstops active. After homing they can be disabled
  827. sei();
  828. set_directions(); // Init directions to last_direction_bits = 0
  829. }
  830. /**
  831. * Block until all buffered steps are executed
  832. */
  833. void Stepper::synchronize() { while (planner.blocks_queued()) idle(); }
  834. /**
  835. * Set the stepper positions directly in steps
  836. *
  837. * The input is based on the typical per-axis XYZ steps.
  838. * For CORE machines XYZ needs to be translated to ABC.
  839. *
  840. * This allows get_axis_position_mm to correctly
  841. * derive the current XYZ position later on.
  842. */
  843. void Stepper::set_position(const long &a, const long &b, const long &c, const long &e) {
  844. synchronize(); // Bad to set stepper counts in the middle of a move
  845. CRITICAL_SECTION_START;
  846. #if CORE_IS_XY
  847. // corexy positioning
  848. // these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
  849. count_position[A_AXIS] = a + b;
  850. count_position[B_AXIS] = CORESIGN(a - b);
  851. count_position[Z_AXIS] = c;
  852. #elif CORE_IS_XZ
  853. // corexz planning
  854. count_position[A_AXIS] = a + c;
  855. count_position[Y_AXIS] = b;
  856. count_position[C_AXIS] = CORESIGN(a - c);
  857. #elif CORE_IS_YZ
  858. // coreyz planning
  859. count_position[X_AXIS] = a;
  860. count_position[B_AXIS] = b + c;
  861. count_position[C_AXIS] = CORESIGN(b - c);
  862. #else
  863. // default non-h-bot planning
  864. count_position[X_AXIS] = a;
  865. count_position[Y_AXIS] = b;
  866. count_position[Z_AXIS] = c;
  867. #endif
  868. count_position[E_AXIS] = e;
  869. CRITICAL_SECTION_END;
  870. }
  871. void Stepper::set_position(const AxisEnum &axis, const long &v) {
  872. CRITICAL_SECTION_START;
  873. count_position[axis] = v;
  874. CRITICAL_SECTION_END;
  875. }
  876. void Stepper::set_e_position(const long &e) {
  877. CRITICAL_SECTION_START;
  878. count_position[E_AXIS] = e;
  879. CRITICAL_SECTION_END;
  880. }
  881. /**
  882. * Get a stepper's position in steps.
  883. */
  884. long Stepper::position(AxisEnum axis) {
  885. CRITICAL_SECTION_START;
  886. long count_pos = count_position[axis];
  887. CRITICAL_SECTION_END;
  888. return count_pos;
  889. }
  890. /**
  891. * Get an axis position according to stepper position(s)
  892. * For CORE machines apply translation from ABC to XYZ.
  893. */
  894. float Stepper::get_axis_position_mm(AxisEnum axis) {
  895. float axis_steps;
  896. #if IS_CORE
  897. // Requesting one of the "core" axes?
  898. if (axis == CORE_AXIS_1 || axis == CORE_AXIS_2) {
  899. CRITICAL_SECTION_START;
  900. // ((a1+a2)+(a1-a2))/2 -> (a1+a2+a1-a2)/2 -> (a1+a1)/2 -> a1
  901. // ((a1+a2)-(a1-a2))/2 -> (a1+a2-a1+a2)/2 -> (a2+a2)/2 -> a2
  902. axis_steps = 0.5f * (
  903. axis == CORE_AXIS_2 ? CORESIGN(count_position[CORE_AXIS_1] - count_position[CORE_AXIS_2])
  904. : count_position[CORE_AXIS_1] + count_position[CORE_AXIS_2]
  905. );
  906. CRITICAL_SECTION_END;
  907. }
  908. else
  909. axis_steps = position(axis);
  910. #else
  911. axis_steps = position(axis);
  912. #endif
  913. return axis_steps * planner.steps_to_mm[axis];
  914. }
  915. void Stepper::finish_and_disable() {
  916. synchronize();
  917. disable_all_steppers();
  918. }
  919. void Stepper::quick_stop() {
  920. cleaning_buffer_counter = 5000;
  921. #if ENABLED(ENSURE_SMOOTH_MOVES)
  922. planner.clear_block_buffer_runtime();
  923. #endif
  924. DISABLE_STEPPER_DRIVER_INTERRUPT();
  925. while (planner.blocks_queued()) planner.discard_current_block();
  926. current_block = NULL;
  927. ENABLE_STEPPER_DRIVER_INTERRUPT();
  928. }
  929. void Stepper::endstop_triggered(AxisEnum axis) {
  930. #if IS_CORE
  931. endstops_trigsteps[axis] = 0.5f * (
  932. axis == CORE_AXIS_2 ? CORESIGN(count_position[CORE_AXIS_1] - count_position[CORE_AXIS_2])
  933. : count_position[CORE_AXIS_1] + count_position[CORE_AXIS_2]
  934. );
  935. #else // !COREXY && !COREXZ && !COREYZ
  936. endstops_trigsteps[axis] = count_position[axis];
  937. #endif // !COREXY && !COREXZ && !COREYZ
  938. kill_current_block();
  939. }
  940. void Stepper::report_positions() {
  941. CRITICAL_SECTION_START;
  942. long xpos = count_position[X_AXIS],
  943. ypos = count_position[Y_AXIS],
  944. zpos = count_position[Z_AXIS];
  945. CRITICAL_SECTION_END;
  946. #if CORE_IS_XY || CORE_IS_XZ || IS_SCARA
  947. SERIAL_PROTOCOLPGM(MSG_COUNT_A);
  948. #else
  949. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  950. #endif
  951. SERIAL_PROTOCOL(xpos);
  952. #if CORE_IS_XY || CORE_IS_YZ || IS_SCARA
  953. SERIAL_PROTOCOLPGM(" B:");
  954. #else
  955. SERIAL_PROTOCOLPGM(" Y:");
  956. #endif
  957. SERIAL_PROTOCOL(ypos);
  958. #if CORE_IS_XZ || CORE_IS_YZ
  959. SERIAL_PROTOCOLPGM(" C:");
  960. #else
  961. SERIAL_PROTOCOLPGM(" Z:");
  962. #endif
  963. SERIAL_PROTOCOL(zpos);
  964. SERIAL_EOL;
  965. }
  966. #if ENABLED(BABYSTEPPING)
  967. #define _ENABLE(axis) enable_## axis()
  968. #define _READ_DIR(AXIS) AXIS ##_DIR_READ
  969. #define _INVERT_DIR(AXIS) INVERT_## AXIS ##_DIR
  970. #define _APPLY_DIR(AXIS, INVERT) AXIS ##_APPLY_DIR(INVERT, true)
  971. #define BABYSTEP_AXIS(axis, AXIS, INVERT) { \
  972. _ENABLE(axis); \
  973. uint8_t old_pin = _READ_DIR(AXIS); \
  974. _APPLY_DIR(AXIS, _INVERT_DIR(AXIS)^direction^INVERT); \
  975. _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS), true); \
  976. delayMicroseconds(2); \
  977. _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS), true); \
  978. _APPLY_DIR(AXIS, old_pin); \
  979. }
  980. // MUST ONLY BE CALLED BY AN ISR,
  981. // No other ISR should ever interrupt this!
  982. void Stepper::babystep(const AxisEnum axis, const bool direction) {
  983. switch (axis) {
  984. case X_AXIS:
  985. BABYSTEP_AXIS(x, X, false);
  986. break;
  987. case Y_AXIS:
  988. BABYSTEP_AXIS(y, Y, false);
  989. break;
  990. case Z_AXIS: {
  991. #if DISABLED(DELTA)
  992. BABYSTEP_AXIS(z, Z, BABYSTEP_INVERT_Z);
  993. #else // DELTA
  994. bool z_direction = direction ^ BABYSTEP_INVERT_Z;
  995. enable_x();
  996. enable_y();
  997. enable_z();
  998. uint8_t old_x_dir_pin = X_DIR_READ,
  999. old_y_dir_pin = Y_DIR_READ,
  1000. old_z_dir_pin = Z_DIR_READ;
  1001. //setup new step
  1002. X_DIR_WRITE(INVERT_X_DIR ^ z_direction);
  1003. Y_DIR_WRITE(INVERT_Y_DIR ^ z_direction);
  1004. Z_DIR_WRITE(INVERT_Z_DIR ^ z_direction);
  1005. //perform step
  1006. X_STEP_WRITE(!INVERT_X_STEP_PIN);
  1007. Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
  1008. Z_STEP_WRITE(!INVERT_Z_STEP_PIN);
  1009. delayMicroseconds(2);
  1010. X_STEP_WRITE(INVERT_X_STEP_PIN);
  1011. Y_STEP_WRITE(INVERT_Y_STEP_PIN);
  1012. Z_STEP_WRITE(INVERT_Z_STEP_PIN);
  1013. //get old pin state back.
  1014. X_DIR_WRITE(old_x_dir_pin);
  1015. Y_DIR_WRITE(old_y_dir_pin);
  1016. Z_DIR_WRITE(old_z_dir_pin);
  1017. #endif
  1018. } break;
  1019. default: break;
  1020. }
  1021. }
  1022. #endif //BABYSTEPPING
  1023. /**
  1024. * Software-controlled Stepper Motor Current
  1025. */
  1026. #if HAS_DIGIPOTSS
  1027. // From Arduino DigitalPotControl example
  1028. void Stepper::digitalPotWrite(int address, int value) {
  1029. WRITE(DIGIPOTSS_PIN, LOW); // take the SS pin low to select the chip
  1030. SPI.transfer(address); // send in the address and value via SPI:
  1031. SPI.transfer(value);
  1032. WRITE(DIGIPOTSS_PIN, HIGH); // take the SS pin high to de-select the chip:
  1033. //delay(10);
  1034. }
  1035. #endif //HAS_DIGIPOTSS
  1036. #if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM
  1037. void Stepper::digipot_init() {
  1038. #if HAS_DIGIPOTSS
  1039. static const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
  1040. SPI.begin();
  1041. SET_OUTPUT(DIGIPOTSS_PIN);
  1042. for (uint8_t i = 0; i < COUNT(digipot_motor_current); i++) {
  1043. //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
  1044. digipot_current(i, digipot_motor_current[i]);
  1045. }
  1046. #elif HAS_MOTOR_CURRENT_PWM
  1047. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  1048. SET_OUTPUT(MOTOR_CURRENT_PWM_XY_PIN);
  1049. digipot_current(0, motor_current_setting[0]);
  1050. #endif
  1051. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  1052. SET_OUTPUT(MOTOR_CURRENT_PWM_Z_PIN);
  1053. digipot_current(1, motor_current_setting[1]);
  1054. #endif
  1055. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  1056. SET_OUTPUT(MOTOR_CURRENT_PWM_E_PIN);
  1057. digipot_current(2, motor_current_setting[2]);
  1058. #endif
  1059. //Set timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
  1060. TCCR5B = (TCCR5B & ~(_BV(CS50) | _BV(CS51) | _BV(CS52))) | _BV(CS50);
  1061. #endif
  1062. }
  1063. void Stepper::digipot_current(uint8_t driver, int current) {
  1064. #if HAS_DIGIPOTSS
  1065. const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
  1066. digitalPotWrite(digipot_ch[driver], current);
  1067. #elif HAS_MOTOR_CURRENT_PWM
  1068. #define _WRITE_CURRENT_PWM(P) analogWrite(P, 255L * current / (MOTOR_CURRENT_PWM_RANGE))
  1069. switch (driver) {
  1070. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  1071. case 0: _WRITE_CURRENT_PWM(MOTOR_CURRENT_PWM_XY_PIN); break;
  1072. #endif
  1073. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  1074. case 1: _WRITE_CURRENT_PWM(MOTOR_CURRENT_PWM_Z_PIN); break;
  1075. #endif
  1076. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  1077. case 2: _WRITE_CURRENT_PWM(MOTOR_CURRENT_PWM_E_PIN); break;
  1078. #endif
  1079. }
  1080. #endif
  1081. }
  1082. #endif
  1083. #if HAS_MICROSTEPS
  1084. /**
  1085. * Software-controlled Microstepping
  1086. */
  1087. void Stepper::microstep_init() {
  1088. SET_OUTPUT(X_MS1_PIN);
  1089. SET_OUTPUT(X_MS2_PIN);
  1090. #if HAS_MICROSTEPS_Y
  1091. SET_OUTPUT(Y_MS1_PIN);
  1092. SET_OUTPUT(Y_MS2_PIN);
  1093. #endif
  1094. #if HAS_MICROSTEPS_Z
  1095. SET_OUTPUT(Z_MS1_PIN);
  1096. SET_OUTPUT(Z_MS2_PIN);
  1097. #endif
  1098. #if HAS_MICROSTEPS_E0
  1099. SET_OUTPUT(E0_MS1_PIN);
  1100. SET_OUTPUT(E0_MS2_PIN);
  1101. #endif
  1102. #if HAS_MICROSTEPS_E1
  1103. SET_OUTPUT(E1_MS1_PIN);
  1104. SET_OUTPUT(E1_MS2_PIN);
  1105. #endif
  1106. static const uint8_t microstep_modes[] = MICROSTEP_MODES;
  1107. for (uint16_t i = 0; i < COUNT(microstep_modes); i++)
  1108. microstep_mode(i, microstep_modes[i]);
  1109. }
  1110. void Stepper::microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2) {
  1111. if (ms1 >= 0) switch (driver) {
  1112. case 0: digitalWrite(X_MS1_PIN, ms1); break;
  1113. #if HAS_MICROSTEPS_Y
  1114. case 1: digitalWrite(Y_MS1_PIN, ms1); break;
  1115. #endif
  1116. #if HAS_MICROSTEPS_Z
  1117. case 2: digitalWrite(Z_MS1_PIN, ms1); break;
  1118. #endif
  1119. #if HAS_MICROSTEPS_E0
  1120. case 3: digitalWrite(E0_MS1_PIN, ms1); break;
  1121. #endif
  1122. #if HAS_MICROSTEPS_E1
  1123. case 4: digitalWrite(E1_MS1_PIN, ms1); break;
  1124. #endif
  1125. }
  1126. if (ms2 >= 0) switch (driver) {
  1127. case 0: digitalWrite(X_MS2_PIN, ms2); break;
  1128. #if HAS_MICROSTEPS_Y
  1129. case 1: digitalWrite(Y_MS2_PIN, ms2); break;
  1130. #endif
  1131. #if HAS_MICROSTEPS_Z
  1132. case 2: digitalWrite(Z_MS2_PIN, ms2); break;
  1133. #endif
  1134. #if HAS_MICROSTEPS_E0
  1135. case 3: digitalWrite(E0_MS2_PIN, ms2); break;
  1136. #endif
  1137. #if HAS_MICROSTEPS_E1
  1138. case 4: digitalWrite(E1_MS2_PIN, ms2); break;
  1139. #endif
  1140. }
  1141. }
  1142. void Stepper::microstep_mode(uint8_t driver, uint8_t stepping_mode) {
  1143. switch (stepping_mode) {
  1144. case 1: microstep_ms(driver, MICROSTEP1); break;
  1145. case 2: microstep_ms(driver, MICROSTEP2); break;
  1146. case 4: microstep_ms(driver, MICROSTEP4); break;
  1147. case 8: microstep_ms(driver, MICROSTEP8); break;
  1148. case 16: microstep_ms(driver, MICROSTEP16); break;
  1149. }
  1150. }
  1151. void Stepper::microstep_readings() {
  1152. SERIAL_PROTOCOLLNPGM("MS1,MS2 Pins");
  1153. SERIAL_PROTOCOLPGM("X: ");
  1154. SERIAL_PROTOCOL(READ(X_MS1_PIN));
  1155. SERIAL_PROTOCOLLN(READ(X_MS2_PIN));
  1156. #if HAS_MICROSTEPS_Y
  1157. SERIAL_PROTOCOLPGM("Y: ");
  1158. SERIAL_PROTOCOL(READ(Y_MS1_PIN));
  1159. SERIAL_PROTOCOLLN(READ(Y_MS2_PIN));
  1160. #endif
  1161. #if HAS_MICROSTEPS_Z
  1162. SERIAL_PROTOCOLPGM("Z: ");
  1163. SERIAL_PROTOCOL(READ(Z_MS1_PIN));
  1164. SERIAL_PROTOCOLLN(READ(Z_MS2_PIN));
  1165. #endif
  1166. #if HAS_MICROSTEPS_E0
  1167. SERIAL_PROTOCOLPGM("E0: ");
  1168. SERIAL_PROTOCOL(READ(E0_MS1_PIN));
  1169. SERIAL_PROTOCOLLN(READ(E0_MS2_PIN));
  1170. #endif
  1171. #if HAS_MICROSTEPS_E1
  1172. SERIAL_PROTOCOLPGM("E1: ");
  1173. SERIAL_PROTOCOL(READ(E1_MS1_PIN));
  1174. SERIAL_PROTOCOLLN(READ(E1_MS2_PIN));
  1175. #endif
  1176. }
  1177. #endif // HAS_MICROSTEPS