My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016, 2017 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. #include "Marlin.h"
  23. #include "math.h"
  24. #include "vector_3.h"
  25. #ifndef UNIFIED_BED_LEVELING_H
  26. #define UNIFIED_BED_LEVELING_H
  27. #if ENABLED(AUTO_BED_LEVELING_UBL)
  28. #define UBL_VERSION "1.00"
  29. #define UBL_OK false
  30. #define UBL_ERR true
  31. typedef struct {
  32. int8_t x_index, y_index;
  33. float distance; // When populated, the distance from the search location
  34. } mesh_index_pair;
  35. enum MeshPointType { INVALID, REAL, SET_IN_BITMAP };
  36. void dump(char * const str, const float &f);
  37. bool ubl_lcd_clicked();
  38. void probe_entire_mesh(const float&, const float&, const bool, const bool, const bool);
  39. void debug_current_and_destination(char *title);
  40. void ubl_line_to_destination(const float&, uint8_t);
  41. void manually_probe_remaining_mesh(const float&, const float&, const float&, const float&, const bool);
  42. vector_3 tilt_mesh_based_on_3pts(const float&, const float&, const float&);
  43. float measure_business_card_thickness(const float&);
  44. mesh_index_pair find_closest_mesh_point_of_type(const MeshPointType, const float&, const float&, const bool, unsigned int[16], bool);
  45. void find_mean_mesh_height();
  46. void shift_mesh_height();
  47. bool g29_parameter_parsing();
  48. void g29_what_command();
  49. void g29_eeprom_dump();
  50. void g29_compare_current_mesh_to_stored_mesh();
  51. void fine_tune_mesh(const float&, const float&, const bool);
  52. void bit_clear(uint16_t bits[16], uint8_t x, uint8_t y);
  53. void bit_set(uint16_t bits[16], uint8_t x, uint8_t y);
  54. bool is_bit_set(uint16_t bits[16], uint8_t x, uint8_t y);
  55. char *ftostr43sign(const float&, char);
  56. void gcode_G26();
  57. void gcode_G28();
  58. void gcode_G29();
  59. extern char conv[9];
  60. void save_ubl_active_state_and_disable();
  61. void restore_ubl_active_state_and_leave();
  62. ///////////////////////////////////////////////////////////////////////////////////////////////////////
  63. #if ENABLED(ULTRA_LCD)
  64. extern char lcd_status_message[];
  65. void lcd_quick_feedback();
  66. #endif
  67. enum MBLStatus { MBL_STATUS_NONE = 0, MBL_STATUS_HAS_MESH_BIT = 0, MBL_STATUS_ACTIVE_BIT = 1 };
  68. #define MESH_X_DIST (float(UBL_MESH_MAX_X - (UBL_MESH_MIN_X)) / float(UBL_MESH_NUM_X_POINTS - 1))
  69. #define MESH_Y_DIST (float(UBL_MESH_MAX_Y - (UBL_MESH_MIN_Y)) / float(UBL_MESH_NUM_Y_POINTS - 1))
  70. typedef struct {
  71. bool active = false;
  72. float z_offset = 0.0;
  73. int8_t eeprom_storage_slot = -1,
  74. n_x = UBL_MESH_NUM_X_POINTS,
  75. n_y = UBL_MESH_NUM_Y_POINTS;
  76. float mesh_x_min = UBL_MESH_MIN_X,
  77. mesh_y_min = UBL_MESH_MIN_Y,
  78. mesh_x_max = UBL_MESH_MAX_X,
  79. mesh_y_max = UBL_MESH_MAX_Y,
  80. mesh_x_dist = MESH_X_DIST,
  81. mesh_y_dist = MESH_Y_DIST;
  82. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  83. float g29_correction_fade_height = 10.0,
  84. g29_fade_height_multiplier = 1.0 / 10.0; // It's cheaper to do a floating point multiply than divide,
  85. // so keep this value and its reciprocal.
  86. #endif
  87. // If you change this struct, adjust TOTAL_STRUCT_SIZE
  88. #define TOTAL_STRUCT_SIZE 40 // Total size of the above fields
  89. // padding provides space to add state variables without
  90. // changing the location of data structures in the EEPROM.
  91. // This is for compatibility with future versions to keep
  92. // users from having to regenerate their mesh data.
  93. unsigned char padding[64 - TOTAL_STRUCT_SIZE];
  94. } ubl_state;
  95. class unified_bed_leveling {
  96. private:
  97. static float last_specified_z;
  98. public:
  99. static ubl_state state, pre_initialized;
  100. static float z_values[UBL_MESH_NUM_X_POINTS][UBL_MESH_NUM_Y_POINTS],
  101. mesh_index_to_xpos[UBL_MESH_NUM_X_POINTS + 1], // +1 safety margin for now, until determinism prevails
  102. mesh_index_to_ypos[UBL_MESH_NUM_Y_POINTS + 1];
  103. static bool g26_debug_flag,
  104. has_control_of_lcd_panel;
  105. static int8_t eeprom_start;
  106. static volatile int encoder_diff; // Volatile because it's changed at interrupt time.
  107. unified_bed_leveling();
  108. static void display_map(const int);
  109. static void reset();
  110. static void invalidate();
  111. static void store_state();
  112. static void load_state();
  113. static void store_mesh(const int16_t);
  114. static void load_mesh(const int16_t);
  115. static bool sanity_check();
  116. static FORCE_INLINE void set_z(const int8_t px, const int8_t py, const float &z) { z_values[px][py] = z; }
  117. static int8_t get_cell_index_x(const float &x) {
  118. const int8_t cx = (x - (UBL_MESH_MIN_X)) * (1.0 / (MESH_X_DIST));
  119. return constrain(cx, 0, (UBL_MESH_NUM_X_POINTS) - 1); // -1 is appropriate if we want all movement to the X_MAX
  120. } // position. But with this defined this way, it is possible
  121. // to extrapolate off of this point even further out. Probably
  122. // that is OK because something else should be keeping that from
  123. // happening and should not be worried about at this level.
  124. static int8_t get_cell_index_y(const float &y) {
  125. const int8_t cy = (y - (UBL_MESH_MIN_Y)) * (1.0 / (MESH_Y_DIST));
  126. return constrain(cy, 0, (UBL_MESH_NUM_Y_POINTS) - 1); // -1 is appropriate if we want all movement to the Y_MAX
  127. } // position. But with this defined this way, it is possible
  128. // to extrapolate off of this point even further out. Probably
  129. // that is OK because something else should be keeping that from
  130. // happening and should not be worried about at this level.
  131. static int8_t find_closest_x_index(const float &x) {
  132. const int8_t px = (x - (UBL_MESH_MIN_X) + (MESH_X_DIST) * 0.5) * (1.0 / (MESH_X_DIST));
  133. return WITHIN(px, 0, UBL_MESH_NUM_X_POINTS - 1) ? px : -1;
  134. }
  135. static int8_t find_closest_y_index(const float &y) {
  136. const int8_t py = (y - (UBL_MESH_MIN_Y) + (MESH_Y_DIST) * 0.5) * (1.0 / (MESH_Y_DIST));
  137. return WITHIN(py, 0, UBL_MESH_NUM_Y_POINTS - 1) ? py : -1;
  138. }
  139. /**
  140. * z2 --|
  141. * z0 | |
  142. * | | + (z2-z1)
  143. * z1 | | |
  144. * ---+-------------+--------+-- --|
  145. * a1 a0 a2
  146. * |<---delta_a---------->|
  147. *
  148. * calc_z0 is the basis for all the Mesh Based correction. It is used to
  149. * find the expected Z Height at a position between two known Z-Height locations.
  150. *
  151. * It is fairly expensive with its 4 floating point additions and 2 floating point
  152. * multiplications.
  153. */
  154. static FORCE_INLINE float calc_z0(const float &a0, const float &a1, const float &z1, const float &a2, const float &z2) {
  155. return z1 + (z2 - z1) * (a0 - a1) / (a2 - a1);
  156. }
  157. /**
  158. * z_correction_for_x_on_horizontal_mesh_line is an optimization for
  159. * the rare occasion when a point lies exactly on a Mesh line (denoted by index yi).
  160. */
  161. static inline float z_correction_for_x_on_horizontal_mesh_line(const float &lx0, const int x1_i, const int yi) {
  162. if (!WITHIN(x1_i, 0, UBL_MESH_NUM_X_POINTS - 1) || !WITHIN(yi, 0, UBL_MESH_NUM_Y_POINTS - 1)) {
  163. SERIAL_ECHOPAIR("? in z_correction_for_x_on_horizontal_mesh_line(lx0=", lx0);
  164. SERIAL_ECHOPAIR(",x1_i=", x1_i);
  165. SERIAL_ECHOPAIR(",yi=", yi);
  166. SERIAL_CHAR(')');
  167. SERIAL_EOL;
  168. return NAN;
  169. }
  170. const float xratio = (RAW_X_POSITION(lx0) - mesh_index_to_xpos[x1_i]) * (1.0 / (MESH_X_DIST)),
  171. z1 = z_values[x1_i][yi];
  172. return z1 + xratio * (z_values[x1_i + 1][yi] - z1);
  173. }
  174. //
  175. // See comments above for z_correction_for_x_on_horizontal_mesh_line
  176. //
  177. static inline float z_correction_for_y_on_vertical_mesh_line(const float &ly0, const int xi, const int y1_i) {
  178. if (!WITHIN(xi, 0, UBL_MESH_NUM_X_POINTS - 1) || !WITHIN(y1_i, 0, UBL_MESH_NUM_Y_POINTS - 1)) {
  179. SERIAL_ECHOPAIR("? in get_z_correction_along_vertical_mesh_line_at_specific_x(ly0=", ly0);
  180. SERIAL_ECHOPAIR(", x1_i=", xi);
  181. SERIAL_ECHOPAIR(", yi=", y1_i);
  182. SERIAL_CHAR(')');
  183. SERIAL_EOL;
  184. return NAN;
  185. }
  186. const float yratio = (RAW_Y_POSITION(ly0) - mesh_index_to_ypos[y1_i]) * (1.0 / (MESH_Y_DIST)),
  187. z1 = z_values[xi][y1_i];
  188. return z1 + yratio * (z_values[xi][y1_i + 1] - z1);
  189. }
  190. /**
  191. * This is the generic Z-Correction. It works anywhere within a Mesh Cell. It first
  192. * does a linear interpolation along both of the bounding X-Mesh-Lines to find the
  193. * Z-Height at both ends. Then it does a linear interpolation of these heights based
  194. * on the Y position within the cell.
  195. */
  196. static float get_z_correction(const float &lx0, const float &ly0) {
  197. const int8_t cx = get_cell_index_x(RAW_X_POSITION(lx0)),
  198. cy = get_cell_index_y(RAW_Y_POSITION(ly0));
  199. if (!WITHIN(cx, 0, UBL_MESH_NUM_X_POINTS - 1) || !WITHIN(cy, 0, UBL_MESH_NUM_Y_POINTS - 1)) {
  200. SERIAL_ECHOPAIR("? in get_z_correction(lx0=", lx0);
  201. SERIAL_ECHOPAIR(", ly0=", ly0);
  202. SERIAL_CHAR(')');
  203. SERIAL_EOL;
  204. #if ENABLED(ULTRA_LCD)
  205. strcpy(lcd_status_message, "get_z_correction() indexes out of range.");
  206. lcd_quick_feedback();
  207. #endif
  208. return 0.0; // this used to return state.z_offset
  209. }
  210. const float z1 = calc_z0(RAW_X_POSITION(lx0),
  211. mesh_index_to_xpos[cx], z_values[cx][cy],
  212. mesh_index_to_xpos[cx + 1], z_values[cx + 1][cy]),
  213. z2 = calc_z0(RAW_X_POSITION(lx0),
  214. mesh_index_to_xpos[cx], z_values[cx][cy + 1],
  215. mesh_index_to_xpos[cx + 1], z_values[cx + 1][cy + 1]);
  216. float z0 = calc_z0(RAW_Y_POSITION(ly0),
  217. mesh_index_to_ypos[cy], z1,
  218. mesh_index_to_ypos[cy + 1], z2);
  219. #if ENABLED(DEBUG_LEVELING_FEATURE)
  220. if (DEBUGGING(MESH_ADJUST)) {
  221. SERIAL_ECHOPAIR(" raw get_z_correction(", lx0);
  222. SERIAL_CHAR(',')
  223. SERIAL_ECHO(ly0);
  224. SERIAL_ECHOPGM(") = ");
  225. SERIAL_ECHO_F(z0, 6);
  226. }
  227. #endif
  228. #if ENABLED(DEBUG_LEVELING_FEATURE)
  229. if (DEBUGGING(MESH_ADJUST)) {
  230. SERIAL_ECHOPGM(" >>>---> ");
  231. SERIAL_ECHO_F(z0, 6);
  232. SERIAL_EOL;
  233. }
  234. #endif
  235. if (isnan(z0)) { // if part of the Mesh is undefined, it will show up as NAN
  236. z0 = 0.0; // in ubl.z_values[][] and propagate through the
  237. // calculations. If our correction is NAN, we throw it out
  238. // because part of the Mesh is undefined and we don't have the
  239. // information we need to complete the height correction.
  240. #if ENABLED(DEBUG_LEVELING_FEATURE)
  241. if (DEBUGGING(MESH_ADJUST)) {
  242. SERIAL_ECHOPAIR("??? Yikes! NAN in get_z_correction(", lx0);
  243. SERIAL_CHAR(',');
  244. SERIAL_ECHO(ly0);
  245. SERIAL_CHAR(')');
  246. SERIAL_EOL;
  247. }
  248. #endif
  249. }
  250. return z0; // there used to be a +state.z_offset on this line
  251. }
  252. /**
  253. * This function sets the Z leveling fade factor based on the given Z height,
  254. * only re-calculating when necessary.
  255. *
  256. * Returns 1.0 if g29_correction_fade_height is 0.0.
  257. * Returns 0.0 if Z is past the specified 'Fade Height'.
  258. */
  259. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  260. static FORCE_INLINE float fade_scaling_factor_for_z(const float &lz) {
  261. if (state.g29_correction_fade_height == 0.0) return 1.0;
  262. static float fade_scaling_factor = 1.0;
  263. const float rz = RAW_Z_POSITION(lz);
  264. if (last_specified_z != rz) {
  265. last_specified_z = rz;
  266. fade_scaling_factor =
  267. rz < state.g29_correction_fade_height
  268. ? 1.0 - (rz * state.g29_fade_height_multiplier)
  269. : 0.0;
  270. }
  271. return fade_scaling_factor;
  272. }
  273. #endif
  274. }; // class unified_bed_leveling
  275. extern unified_bed_leveling ubl;
  276. #define UBL_LAST_EEPROM_INDEX (E2END - sizeof(unified_bed_leveling::state))
  277. #endif // AUTO_BED_LEVELING_UBL
  278. #endif // UNIFIED_BED_LEVELING_H