My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

stepper.cpp 139KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <https://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * stepper.cpp - A singleton object to execute motion plans using stepper motors
  24. * Marlin Firmware
  25. *
  26. * Derived from Grbl
  27. * Copyright (c) 2009-2011 Simen Svale Skogsrud
  28. *
  29. * Grbl is free software: you can redistribute it and/or modify
  30. * it under the terms of the GNU General Public License as published by
  31. * the Free Software Foundation, either version 3 of the License, or
  32. * (at your option) any later version.
  33. *
  34. * Grbl is distributed in the hope that it will be useful,
  35. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  36. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  37. * GNU General Public License for more details.
  38. *
  39. * You should have received a copy of the GNU General Public License
  40. * along with Grbl. If not, see <https://www.gnu.org/licenses/>.
  41. */
  42. /**
  43. * Timer calculations informed by the 'RepRap cartesian firmware' by Zack Smith
  44. * and Philipp Tiefenbacher.
  45. */
  46. /**
  47. * __________________________
  48. * /| |\ _________________ ^
  49. * / | | \ /| |\ |
  50. * / | | \ / | | \ s
  51. * / | | | | | \ p
  52. * / | | | | | \ e
  53. * +-----+------------------------+---+--+---------------+----+ e
  54. * | BLOCK 1 | BLOCK 2 | d
  55. *
  56. * time ----->
  57. *
  58. * The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
  59. * first block->accelerate_until step_events_completed, then keeps going at constant speed until
  60. * step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
  61. * The slope of acceleration is calculated using v = u + at where t is the accumulated timer values of the steps so far.
  62. */
  63. /**
  64. * Marlin uses the Bresenham algorithm. For a detailed explanation of theory and
  65. * method see https://www.cs.helsinki.fi/group/goa/mallinnus/lines/bresenh.html
  66. */
  67. /**
  68. * Jerk controlled movements planner added Apr 2018 by Eduardo José Tagle.
  69. * Equations based on Synthethos TinyG2 sources, but the fixed-point
  70. * implementation is new, as we are running the ISR with a variable period.
  71. * Also implemented the Bézier velocity curve evaluation in ARM assembler,
  72. * to avoid impacting ISR speed.
  73. */
  74. #include "stepper.h"
  75. Stepper stepper; // Singleton
  76. #define BABYSTEPPING_EXTRA_DIR_WAIT
  77. #ifdef __AVR__
  78. #include "stepper/speed_lookuptable.h"
  79. #endif
  80. #include "endstops.h"
  81. #include "planner.h"
  82. #include "motion.h"
  83. #include "../lcd/marlinui.h"
  84. #include "../gcode/queue.h"
  85. #include "../sd/cardreader.h"
  86. #include "../MarlinCore.h"
  87. #include "../HAL/shared/Delay.h"
  88. #if ENABLED(INTEGRATED_BABYSTEPPING)
  89. #include "../feature/babystep.h"
  90. #endif
  91. #if MB(ALLIGATOR)
  92. #include "../feature/dac/dac_dac084s085.h"
  93. #endif
  94. #if HAS_MOTOR_CURRENT_SPI
  95. #include <SPI.h>
  96. #endif
  97. #if ENABLED(MIXING_EXTRUDER)
  98. #include "../feature/mixing.h"
  99. #endif
  100. #if HAS_FILAMENT_RUNOUT_DISTANCE
  101. #include "../feature/runout.h"
  102. #endif
  103. #if HAS_L64XX
  104. #include "../libs/L64XX/L64XX_Marlin.h"
  105. uint8_t L6470_buf[MAX_L64XX + 1]; // chip command sequence - element 0 not used
  106. bool L64XX_OK_to_power_up = false; // flag to keep L64xx steppers powered down after a reset or power up
  107. #endif
  108. #if ENABLED(AUTO_POWER_CONTROL)
  109. #include "../feature/power.h"
  110. #endif
  111. #if ENABLED(POWER_LOSS_RECOVERY)
  112. #include "../feature/powerloss.h"
  113. #endif
  114. #if HAS_CUTTER
  115. #include "../feature/spindle_laser.h"
  116. #endif
  117. #if ENABLED(EXTENSIBLE_UI)
  118. #include "../lcd/extui/ui_api.h"
  119. #endif
  120. // public:
  121. #if EITHER(HAS_EXTRA_ENDSTOPS, Z_STEPPER_AUTO_ALIGN)
  122. bool Stepper::separate_multi_axis = false;
  123. #endif
  124. #if HAS_MOTOR_CURRENT_SPI || HAS_MOTOR_CURRENT_PWM
  125. bool Stepper::initialized; // = false
  126. uint32_t Stepper::motor_current_setting[MOTOR_CURRENT_COUNT]; // Initialized by settings.load()
  127. #if HAS_MOTOR_CURRENT_SPI
  128. constexpr uint32_t Stepper::digipot_count[];
  129. #endif
  130. #endif
  131. stepper_flags_t Stepper::axis_enabled; // {0}
  132. // private:
  133. block_t* Stepper::current_block; // (= nullptr) A pointer to the block currently being traced
  134. axis_bits_t Stepper::last_direction_bits, // = 0
  135. Stepper::axis_did_move; // = 0
  136. bool Stepper::abort_current_block;
  137. #if DISABLED(MIXING_EXTRUDER) && HAS_MULTI_EXTRUDER
  138. uint8_t Stepper::last_moved_extruder = 0xFF;
  139. #endif
  140. #if ENABLED(X_DUAL_ENDSTOPS)
  141. bool Stepper::locked_X_motor = false, Stepper::locked_X2_motor = false;
  142. #endif
  143. #if ENABLED(Y_DUAL_ENDSTOPS)
  144. bool Stepper::locked_Y_motor = false, Stepper::locked_Y2_motor = false;
  145. #endif
  146. #if EITHER(Z_MULTI_ENDSTOPS, Z_STEPPER_AUTO_ALIGN)
  147. bool Stepper::locked_Z_motor = false, Stepper::locked_Z2_motor = false
  148. #if NUM_Z_STEPPERS >= 3
  149. , Stepper::locked_Z3_motor = false
  150. #if NUM_Z_STEPPERS >= 4
  151. , Stepper::locked_Z4_motor = false
  152. #endif
  153. #endif
  154. ;
  155. #endif
  156. uint32_t Stepper::acceleration_time, Stepper::deceleration_time;
  157. uint8_t Stepper::steps_per_isr;
  158. #if ENABLED(FREEZE_FEATURE)
  159. bool Stepper::frozen; // = false
  160. #endif
  161. IF_DISABLED(ADAPTIVE_STEP_SMOOTHING, constexpr) uint8_t Stepper::oversampling_factor;
  162. xyze_long_t Stepper::delta_error{0};
  163. xyze_ulong_t Stepper::advance_dividend{0};
  164. uint32_t Stepper::advance_divisor = 0,
  165. Stepper::step_events_completed = 0, // The number of step events executed in the current block
  166. Stepper::accelerate_until, // The count at which to stop accelerating
  167. Stepper::decelerate_after, // The count at which to start decelerating
  168. Stepper::step_event_count; // The total event count for the current block
  169. #if EITHER(HAS_MULTI_EXTRUDER, MIXING_EXTRUDER)
  170. uint8_t Stepper::stepper_extruder;
  171. #else
  172. constexpr uint8_t Stepper::stepper_extruder;
  173. #endif
  174. #if ENABLED(S_CURVE_ACCELERATION)
  175. int32_t __attribute__((used)) Stepper::bezier_A __asm__("bezier_A"); // A coefficient in Bézier speed curve with alias for assembler
  176. int32_t __attribute__((used)) Stepper::bezier_B __asm__("bezier_B"); // B coefficient in Bézier speed curve with alias for assembler
  177. int32_t __attribute__((used)) Stepper::bezier_C __asm__("bezier_C"); // C coefficient in Bézier speed curve with alias for assembler
  178. uint32_t __attribute__((used)) Stepper::bezier_F __asm__("bezier_F"); // F coefficient in Bézier speed curve with alias for assembler
  179. uint32_t __attribute__((used)) Stepper::bezier_AV __asm__("bezier_AV"); // AV coefficient in Bézier speed curve with alias for assembler
  180. #ifdef __AVR__
  181. bool __attribute__((used)) Stepper::A_negative __asm__("A_negative"); // If A coefficient was negative
  182. #endif
  183. bool Stepper::bezier_2nd_half; // =false If Bézier curve has been initialized or not
  184. #endif
  185. #if ENABLED(LIN_ADVANCE)
  186. uint32_t Stepper::nextAdvanceISR = LA_ADV_NEVER,
  187. Stepper::LA_isr_rate = LA_ADV_NEVER;
  188. uint16_t Stepper::LA_current_adv_steps = 0,
  189. Stepper::LA_final_adv_steps,
  190. Stepper::LA_max_adv_steps;
  191. int8_t Stepper::LA_steps = 0;
  192. bool Stepper::LA_use_advance_lead;
  193. #endif // LIN_ADVANCE
  194. #if ENABLED(INTEGRATED_BABYSTEPPING)
  195. uint32_t Stepper::nextBabystepISR = BABYSTEP_NEVER;
  196. #endif
  197. #if ENABLED(DIRECT_STEPPING)
  198. page_step_state_t Stepper::page_step_state;
  199. #endif
  200. int32_t Stepper::ticks_nominal = -1;
  201. #if DISABLED(S_CURVE_ACCELERATION)
  202. uint32_t Stepper::acc_step_rate; // needed for deceleration start point
  203. #endif
  204. xyz_long_t Stepper::endstops_trigsteps;
  205. xyze_long_t Stepper::count_position{0};
  206. xyze_int8_t Stepper::count_direction{0};
  207. #if ENABLED(LASER_POWER_INLINE_TRAPEZOID)
  208. Stepper::stepper_laser_t Stepper::laser_trap = {
  209. .enabled = false,
  210. .cur_power = 0,
  211. .cruise_set = false,
  212. #if DISABLED(LASER_POWER_INLINE_TRAPEZOID_CONT)
  213. .last_step_count = 0,
  214. .acc_step_count = 0
  215. #else
  216. .till_update = 0
  217. #endif
  218. };
  219. #endif
  220. #define MINDIR(A) (count_direction[_AXIS(A)] < 0)
  221. #define MAXDIR(A) (count_direction[_AXIS(A)] > 0)
  222. #define STEPTEST(A,M,I) TERN0(HAS_ ##A## ##I## _ ##M, !(TEST(endstops.state(), A## ##I## _ ##M) && M## DIR(A)) && !locked_ ##A## ##I## _motor)
  223. #define DUAL_ENDSTOP_APPLY_STEP(A,V) \
  224. if (separate_multi_axis) { \
  225. if (ENABLED(A##_HOME_TO_MIN)) { \
  226. if (STEPTEST(A,MIN, )) A## _STEP_WRITE(V); \
  227. if (STEPTEST(A,MIN,2)) A##2_STEP_WRITE(V); \
  228. } \
  229. else if (ENABLED(A##_HOME_TO_MAX)) { \
  230. if (STEPTEST(A,MAX, )) A## _STEP_WRITE(V); \
  231. if (STEPTEST(A,MAX,2)) A##2_STEP_WRITE(V); \
  232. } \
  233. } \
  234. else { \
  235. A##_STEP_WRITE(V); \
  236. A##2_STEP_WRITE(V); \
  237. }
  238. #define DUAL_SEPARATE_APPLY_STEP(A,V) \
  239. if (separate_multi_axis) { \
  240. if (!locked_##A## _motor) A## _STEP_WRITE(V); \
  241. if (!locked_##A##2_motor) A##2_STEP_WRITE(V); \
  242. } \
  243. else { \
  244. A##_STEP_WRITE(V); \
  245. A##2_STEP_WRITE(V); \
  246. }
  247. #define TRIPLE_ENDSTOP_APPLY_STEP(A,V) \
  248. if (separate_multi_axis) { \
  249. if (ENABLED(A##_HOME_TO_MIN)) { \
  250. if (STEPTEST(A,MIN, )) A## _STEP_WRITE(V); \
  251. if (STEPTEST(A,MIN,2)) A##2_STEP_WRITE(V); \
  252. if (STEPTEST(A,MIN,3)) A##3_STEP_WRITE(V); \
  253. } \
  254. else if (ENABLED(A##_HOME_TO_MAX)) { \
  255. if (STEPTEST(A,MAX, )) A## _STEP_WRITE(V); \
  256. if (STEPTEST(A,MAX,2)) A##2_STEP_WRITE(V); \
  257. if (STEPTEST(A,MAX,3)) A##3_STEP_WRITE(V); \
  258. } \
  259. } \
  260. else { \
  261. A##_STEP_WRITE(V); \
  262. A##2_STEP_WRITE(V); \
  263. A##3_STEP_WRITE(V); \
  264. }
  265. #define TRIPLE_SEPARATE_APPLY_STEP(A,V) \
  266. if (separate_multi_axis) { \
  267. if (!locked_##A## _motor) A## _STEP_WRITE(V); \
  268. if (!locked_##A##2_motor) A##2_STEP_WRITE(V); \
  269. if (!locked_##A##3_motor) A##3_STEP_WRITE(V); \
  270. } \
  271. else { \
  272. A## _STEP_WRITE(V); \
  273. A##2_STEP_WRITE(V); \
  274. A##3_STEP_WRITE(V); \
  275. }
  276. #define QUAD_ENDSTOP_APPLY_STEP(A,V) \
  277. if (separate_multi_axis) { \
  278. if (ENABLED(A##_HOME_TO_MIN)) { \
  279. if (STEPTEST(A,MIN, )) A## _STEP_WRITE(V); \
  280. if (STEPTEST(A,MIN,2)) A##2_STEP_WRITE(V); \
  281. if (STEPTEST(A,MIN,3)) A##3_STEP_WRITE(V); \
  282. if (STEPTEST(A,MIN,4)) A##4_STEP_WRITE(V); \
  283. } \
  284. else if (ENABLED(A##_HOME_TO_MAX)) { \
  285. if (STEPTEST(A,MAX, )) A## _STEP_WRITE(V); \
  286. if (STEPTEST(A,MAX,2)) A##2_STEP_WRITE(V); \
  287. if (STEPTEST(A,MAX,3)) A##3_STEP_WRITE(V); \
  288. if (STEPTEST(A,MAX,4)) A##4_STEP_WRITE(V); \
  289. } \
  290. } \
  291. else { \
  292. A## _STEP_WRITE(V); \
  293. A##2_STEP_WRITE(V); \
  294. A##3_STEP_WRITE(V); \
  295. A##4_STEP_WRITE(V); \
  296. }
  297. #define QUAD_SEPARATE_APPLY_STEP(A,V) \
  298. if (separate_multi_axis) { \
  299. if (!locked_##A## _motor) A## _STEP_WRITE(V); \
  300. if (!locked_##A##2_motor) A##2_STEP_WRITE(V); \
  301. if (!locked_##A##3_motor) A##3_STEP_WRITE(V); \
  302. if (!locked_##A##4_motor) A##4_STEP_WRITE(V); \
  303. } \
  304. else { \
  305. A## _STEP_WRITE(V); \
  306. A##2_STEP_WRITE(V); \
  307. A##3_STEP_WRITE(V); \
  308. A##4_STEP_WRITE(V); \
  309. }
  310. #if HAS_DUAL_X_STEPPERS
  311. #define X_APPLY_DIR(v,Q) do{ X_DIR_WRITE(v); X2_DIR_WRITE((v) ^ ENABLED(INVERT_X2_VS_X_DIR)); }while(0)
  312. #if ENABLED(X_DUAL_ENDSTOPS)
  313. #define X_APPLY_STEP(v,Q) DUAL_ENDSTOP_APPLY_STEP(X,v)
  314. #else
  315. #define X_APPLY_STEP(v,Q) do{ X_STEP_WRITE(v); X2_STEP_WRITE(v); }while(0)
  316. #endif
  317. #elif ENABLED(DUAL_X_CARRIAGE)
  318. #define X_APPLY_DIR(v,ALWAYS) do{ \
  319. if (extruder_duplication_enabled || ALWAYS) { X_DIR_WRITE(v); X2_DIR_WRITE((v) ^ idex_mirrored_mode); } \
  320. else if (last_moved_extruder) X2_DIR_WRITE(v); else X_DIR_WRITE(v); \
  321. }while(0)
  322. #define X_APPLY_STEP(v,ALWAYS) do{ \
  323. if (extruder_duplication_enabled || ALWAYS) { X_STEP_WRITE(v); X2_STEP_WRITE(v); } \
  324. else if (last_moved_extruder) X2_STEP_WRITE(v); else X_STEP_WRITE(v); \
  325. }while(0)
  326. #else
  327. #define X_APPLY_DIR(v,Q) X_DIR_WRITE(v)
  328. #define X_APPLY_STEP(v,Q) X_STEP_WRITE(v)
  329. #endif
  330. #if HAS_DUAL_Y_STEPPERS
  331. #define Y_APPLY_DIR(v,Q) do{ Y_DIR_WRITE(v); Y2_DIR_WRITE((v) ^ ENABLED(INVERT_Y2_VS_Y_DIR)); }while(0)
  332. #if ENABLED(Y_DUAL_ENDSTOPS)
  333. #define Y_APPLY_STEP(v,Q) DUAL_ENDSTOP_APPLY_STEP(Y,v)
  334. #else
  335. #define Y_APPLY_STEP(v,Q) do{ Y_STEP_WRITE(v); Y2_STEP_WRITE(v); }while(0)
  336. #endif
  337. #elif HAS_Y_AXIS
  338. #define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v)
  339. #define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v)
  340. #endif
  341. #if NUM_Z_STEPPERS == 4
  342. #define Z_APPLY_DIR(v,Q) do{ \
  343. Z_DIR_WRITE(v); Z2_DIR_WRITE((v) ^ ENABLED(INVERT_Z2_VS_Z_DIR)); \
  344. Z3_DIR_WRITE((v) ^ ENABLED(INVERT_Z3_VS_Z_DIR)); Z4_DIR_WRITE((v) ^ ENABLED(INVERT_Z4_VS_Z_DIR)); \
  345. }while(0)
  346. #if ENABLED(Z_MULTI_ENDSTOPS)
  347. #define Z_APPLY_STEP(v,Q) QUAD_ENDSTOP_APPLY_STEP(Z,v)
  348. #elif ENABLED(Z_STEPPER_AUTO_ALIGN)
  349. #define Z_APPLY_STEP(v,Q) QUAD_SEPARATE_APPLY_STEP(Z,v)
  350. #else
  351. #define Z_APPLY_STEP(v,Q) do{ Z_STEP_WRITE(v); Z2_STEP_WRITE(v); Z3_STEP_WRITE(v); Z4_STEP_WRITE(v); }while(0)
  352. #endif
  353. #elif NUM_Z_STEPPERS == 3
  354. #define Z_APPLY_DIR(v,Q) do{ \
  355. Z_DIR_WRITE(v); Z2_DIR_WRITE((v) ^ ENABLED(INVERT_Z2_VS_Z_DIR)); Z3_DIR_WRITE((v) ^ ENABLED(INVERT_Z3_VS_Z_DIR)); \
  356. }while(0)
  357. #if ENABLED(Z_MULTI_ENDSTOPS)
  358. #define Z_APPLY_STEP(v,Q) TRIPLE_ENDSTOP_APPLY_STEP(Z,v)
  359. #elif ENABLED(Z_STEPPER_AUTO_ALIGN)
  360. #define Z_APPLY_STEP(v,Q) TRIPLE_SEPARATE_APPLY_STEP(Z,v)
  361. #else
  362. #define Z_APPLY_STEP(v,Q) do{ Z_STEP_WRITE(v); Z2_STEP_WRITE(v); Z3_STEP_WRITE(v); }while(0)
  363. #endif
  364. #elif NUM_Z_STEPPERS == 2
  365. #define Z_APPLY_DIR(v,Q) do{ Z_DIR_WRITE(v); Z2_DIR_WRITE((v) ^ ENABLED(INVERT_Z2_VS_Z_DIR)); }while(0)
  366. #if ENABLED(Z_MULTI_ENDSTOPS)
  367. #define Z_APPLY_STEP(v,Q) DUAL_ENDSTOP_APPLY_STEP(Z,v)
  368. #elif ENABLED(Z_STEPPER_AUTO_ALIGN)
  369. #define Z_APPLY_STEP(v,Q) DUAL_SEPARATE_APPLY_STEP(Z,v)
  370. #else
  371. #define Z_APPLY_STEP(v,Q) do{ Z_STEP_WRITE(v); Z2_STEP_WRITE(v); }while(0)
  372. #endif
  373. #elif HAS_Z_AXIS
  374. #define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v)
  375. #define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v)
  376. #endif
  377. #if HAS_I_AXIS
  378. #define I_APPLY_DIR(v,Q) I_DIR_WRITE(v)
  379. #define I_APPLY_STEP(v,Q) I_STEP_WRITE(v)
  380. #endif
  381. #if HAS_J_AXIS
  382. #define J_APPLY_DIR(v,Q) J_DIR_WRITE(v)
  383. #define J_APPLY_STEP(v,Q) J_STEP_WRITE(v)
  384. #endif
  385. #if HAS_K_AXIS
  386. #define K_APPLY_DIR(v,Q) K_DIR_WRITE(v)
  387. #define K_APPLY_STEP(v,Q) K_STEP_WRITE(v)
  388. #endif
  389. #if HAS_U_AXIS
  390. #define U_APPLY_DIR(v,Q) U_DIR_WRITE(v)
  391. #define U_APPLY_STEP(v,Q) U_STEP_WRITE(v)
  392. #endif
  393. #if HAS_V_AXIS
  394. #define V_APPLY_DIR(v,Q) V_DIR_WRITE(v)
  395. #define V_APPLY_STEP(v,Q) V_STEP_WRITE(v)
  396. #endif
  397. #if HAS_W_AXIS
  398. #define W_APPLY_DIR(v,Q) W_DIR_WRITE(v)
  399. #define W_APPLY_STEP(v,Q) W_STEP_WRITE(v)
  400. #endif
  401. #if DISABLED(MIXING_EXTRUDER)
  402. #define E_APPLY_STEP(v,Q) E_STEP_WRITE(stepper_extruder, v)
  403. #endif
  404. #define CYCLES_TO_NS(CYC) (1000UL * (CYC) / ((F_CPU) / 1000000))
  405. #define NS_PER_PULSE_TIMER_TICK (1000000000UL / (STEPPER_TIMER_RATE))
  406. // Round up when converting from ns to timer ticks
  407. #define NS_TO_PULSE_TIMER_TICKS(NS) (((NS) + (NS_PER_PULSE_TIMER_TICK) / 2) / (NS_PER_PULSE_TIMER_TICK))
  408. #define TIMER_SETUP_NS (CYCLES_TO_NS(TIMER_READ_ADD_AND_STORE_CYCLES))
  409. #define PULSE_HIGH_TICK_COUNT hal_timer_t(NS_TO_PULSE_TIMER_TICKS(_MIN_PULSE_HIGH_NS - _MIN(_MIN_PULSE_HIGH_NS, TIMER_SETUP_NS)))
  410. #define PULSE_LOW_TICK_COUNT hal_timer_t(NS_TO_PULSE_TIMER_TICKS(_MIN_PULSE_LOW_NS - _MIN(_MIN_PULSE_LOW_NS, TIMER_SETUP_NS)))
  411. #define USING_TIMED_PULSE() hal_timer_t start_pulse_count = 0
  412. #define START_TIMED_PULSE(DIR) (start_pulse_count = HAL_timer_get_count(MF_TIMER_PULSE))
  413. #define AWAIT_TIMED_PULSE(DIR) while (PULSE_##DIR##_TICK_COUNT > HAL_timer_get_count(MF_TIMER_PULSE) - start_pulse_count) { }
  414. #define START_HIGH_PULSE() START_TIMED_PULSE(HIGH)
  415. #define AWAIT_HIGH_PULSE() AWAIT_TIMED_PULSE(HIGH)
  416. #define START_LOW_PULSE() START_TIMED_PULSE(LOW)
  417. #define AWAIT_LOW_PULSE() AWAIT_TIMED_PULSE(LOW)
  418. #if MINIMUM_STEPPER_PRE_DIR_DELAY > 0
  419. #define DIR_WAIT_BEFORE() DELAY_NS(MINIMUM_STEPPER_PRE_DIR_DELAY)
  420. #else
  421. #define DIR_WAIT_BEFORE()
  422. #endif
  423. #if MINIMUM_STEPPER_POST_DIR_DELAY > 0
  424. #define DIR_WAIT_AFTER() DELAY_NS(MINIMUM_STEPPER_POST_DIR_DELAY)
  425. #else
  426. #define DIR_WAIT_AFTER()
  427. #endif
  428. void Stepper::enable_axis(const AxisEnum axis) {
  429. #define _CASE_ENABLE(N) case N##_AXIS: ENABLE_AXIS_##N(); break;
  430. switch (axis) {
  431. MAIN_AXIS_MAP(_CASE_ENABLE)
  432. default: break;
  433. }
  434. mark_axis_enabled(axis);
  435. }
  436. bool Stepper::disable_axis(const AxisEnum axis) {
  437. mark_axis_disabled(axis);
  438. TERN_(DWIN_LCD_PROUI, set_axis_untrusted(axis)); // MRISCOC workaround: https://github.com/MarlinFirmware/Marlin/issues/23095
  439. // If all the axes that share the enabled bit are disabled
  440. const bool can_disable = can_axis_disable(axis);
  441. if (can_disable) {
  442. #define _CASE_DISABLE(N) case N##_AXIS: DISABLE_AXIS_##N(); break;
  443. switch (axis) {
  444. MAIN_AXIS_MAP(_CASE_DISABLE)
  445. default: break;
  446. }
  447. }
  448. return can_disable;
  449. }
  450. #if HAS_EXTRUDERS
  451. void Stepper::enable_extruder(E_TERN_(const uint8_t eindex)) {
  452. IF_DISABLED(HAS_MULTI_EXTRUDER, constexpr uint8_t eindex = 0);
  453. #define _CASE_ENA_E(N) case N: ENABLE_AXIS_E##N(); mark_axis_enabled(E_AXIS E_OPTARG(eindex)); break;
  454. switch (eindex) {
  455. REPEAT(E_STEPPERS, _CASE_ENA_E)
  456. }
  457. }
  458. bool Stepper::disable_extruder(E_TERN_(const uint8_t eindex/*=0*/)) {
  459. IF_DISABLED(HAS_MULTI_EXTRUDER, constexpr uint8_t eindex = 0);
  460. mark_axis_disabled(E_AXIS E_OPTARG(eindex));
  461. const bool can_disable = can_axis_disable(E_AXIS E_OPTARG(eindex));
  462. if (can_disable) {
  463. #define _CASE_DIS_E(N) case N: DISABLE_AXIS_E##N(); break;
  464. switch (eindex) { REPEAT(E_STEPPERS, _CASE_DIS_E) }
  465. }
  466. return can_disable;
  467. }
  468. void Stepper::enable_e_steppers() {
  469. #define _ENA_E(N) ENABLE_EXTRUDER(N);
  470. REPEAT(EXTRUDERS, _ENA_E)
  471. }
  472. void Stepper::disable_e_steppers() {
  473. #define _DIS_E(N) DISABLE_EXTRUDER(N);
  474. REPEAT(EXTRUDERS, _DIS_E)
  475. }
  476. #endif
  477. void Stepper::enable_all_steppers() {
  478. TERN_(AUTO_POWER_CONTROL, powerManager.power_on());
  479. NUM_AXIS_CODE(
  480. enable_axis(X_AXIS), enable_axis(Y_AXIS), enable_axis(Z_AXIS),
  481. enable_axis(I_AXIS), enable_axis(J_AXIS), enable_axis(K_AXIS),
  482. enable_axis(U_AXIS), enable_axis(V_AXIS), enable_axis(W_AXIS)
  483. );
  484. enable_e_steppers();
  485. TERN_(EXTENSIBLE_UI, ExtUI::onSteppersEnabled());
  486. }
  487. void Stepper::disable_all_steppers() {
  488. NUM_AXIS_CODE(
  489. disable_axis(X_AXIS), disable_axis(Y_AXIS), disable_axis(Z_AXIS),
  490. disable_axis(I_AXIS), disable_axis(J_AXIS), disable_axis(K_AXIS),
  491. disable_axis(U_AXIS), disable_axis(V_AXIS), disable_axis(W_AXIS)
  492. );
  493. disable_e_steppers();
  494. TERN_(EXTENSIBLE_UI, ExtUI::onSteppersDisabled());
  495. }
  496. /**
  497. * Set the stepper direction of each axis
  498. *
  499. * COREXY: X_AXIS=A_AXIS and Y_AXIS=B_AXIS
  500. * COREXZ: X_AXIS=A_AXIS and Z_AXIS=C_AXIS
  501. * COREYZ: Y_AXIS=B_AXIS and Z_AXIS=C_AXIS
  502. */
  503. void Stepper::set_directions() {
  504. DIR_WAIT_BEFORE();
  505. #define SET_STEP_DIR(A) \
  506. if (motor_direction(_AXIS(A))) { \
  507. A##_APPLY_DIR(INVERT_##A##_DIR, false); \
  508. count_direction[_AXIS(A)] = -1; \
  509. } \
  510. else { \
  511. A##_APPLY_DIR(!INVERT_##A##_DIR, false); \
  512. count_direction[_AXIS(A)] = 1; \
  513. }
  514. TERN_(HAS_X_DIR, SET_STEP_DIR(X)); // A
  515. TERN_(HAS_Y_DIR, SET_STEP_DIR(Y)); // B
  516. TERN_(HAS_Z_DIR, SET_STEP_DIR(Z)); // C
  517. TERN_(HAS_I_DIR, SET_STEP_DIR(I));
  518. TERN_(HAS_J_DIR, SET_STEP_DIR(J));
  519. TERN_(HAS_K_DIR, SET_STEP_DIR(K));
  520. TERN_(HAS_U_DIR, SET_STEP_DIR(U));
  521. TERN_(HAS_V_DIR, SET_STEP_DIR(V));
  522. TERN_(HAS_W_DIR, SET_STEP_DIR(W));
  523. #if DISABLED(LIN_ADVANCE)
  524. #if ENABLED(MIXING_EXTRUDER)
  525. // Because this is valid for the whole block we don't know
  526. // what E steppers will step. Likely all. Set all.
  527. if (motor_direction(E_AXIS)) {
  528. MIXER_STEPPER_LOOP(j) REV_E_DIR(j);
  529. count_direction.e = -1;
  530. }
  531. else {
  532. MIXER_STEPPER_LOOP(j) NORM_E_DIR(j);
  533. count_direction.e = 1;
  534. }
  535. #elif HAS_EXTRUDERS
  536. if (motor_direction(E_AXIS)) {
  537. REV_E_DIR(stepper_extruder);
  538. count_direction.e = -1;
  539. }
  540. else {
  541. NORM_E_DIR(stepper_extruder);
  542. count_direction.e = 1;
  543. }
  544. #endif
  545. #endif // !LIN_ADVANCE
  546. #if HAS_L64XX
  547. if (L64XX_OK_to_power_up) { // OK to send the direction commands (which powers up the L64XX steppers)
  548. if (L64xxManager.spi_active) {
  549. L64xxManager.spi_abort = true; // Interrupted SPI transfer needs to shut down gracefully
  550. for (uint8_t j = 1; j <= L64XX::chain[0]; j++)
  551. L6470_buf[j] = dSPIN_NOP; // Fill buffer with NOOPs
  552. L64xxManager.transfer(L6470_buf, L64XX::chain[0]); // Send enough NOOPs to complete any command
  553. L64xxManager.transfer(L6470_buf, L64XX::chain[0]);
  554. L64xxManager.transfer(L6470_buf, L64XX::chain[0]);
  555. }
  556. // L64xxManager.dir_commands[] is an array that holds direction command for each stepper
  557. // Scan command array, copy matches into L64xxManager.transfer
  558. for (uint8_t j = 1; j <= L64XX::chain[0]; j++)
  559. L6470_buf[j] = L64xxManager.dir_commands[L64XX::chain[j]];
  560. L64xxManager.transfer(L6470_buf, L64XX::chain[0]); // send the command stream to the drivers
  561. }
  562. #endif
  563. DIR_WAIT_AFTER();
  564. }
  565. #if ENABLED(S_CURVE_ACCELERATION)
  566. /**
  567. * This uses a quintic (fifth-degree) Bézier polynomial for the velocity curve, giving
  568. * a "linear pop" velocity curve; with pop being the sixth derivative of position:
  569. * velocity - 1st, acceleration - 2nd, jerk - 3rd, snap - 4th, crackle - 5th, pop - 6th
  570. *
  571. * The Bézier curve takes the form:
  572. *
  573. * V(t) = P_0 * B_0(t) + P_1 * B_1(t) + P_2 * B_2(t) + P_3 * B_3(t) + P_4 * B_4(t) + P_5 * B_5(t)
  574. *
  575. * Where 0 <= t <= 1, and V(t) is the velocity. P_0 through P_5 are the control points, and B_0(t)
  576. * through B_5(t) are the Bernstein basis as follows:
  577. *
  578. * B_0(t) = (1-t)^5 = -t^5 + 5t^4 - 10t^3 + 10t^2 - 5t + 1
  579. * B_1(t) = 5(1-t)^4 * t = 5t^5 - 20t^4 + 30t^3 - 20t^2 + 5t
  580. * B_2(t) = 10(1-t)^3 * t^2 = -10t^5 + 30t^4 - 30t^3 + 10t^2
  581. * B_3(t) = 10(1-t)^2 * t^3 = 10t^5 - 20t^4 + 10t^3
  582. * B_4(t) = 5(1-t) * t^4 = -5t^5 + 5t^4
  583. * B_5(t) = t^5 = t^5
  584. * ^ ^ ^ ^ ^ ^
  585. * | | | | | |
  586. * A B C D E F
  587. *
  588. * Unfortunately, we cannot use forward-differencing to calculate each position through
  589. * the curve, as Marlin uses variable timer periods. So, we require a formula of the form:
  590. *
  591. * V_f(t) = A*t^5 + B*t^4 + C*t^3 + D*t^2 + E*t + F
  592. *
  593. * Looking at the above B_0(t) through B_5(t) expanded forms, if we take the coefficients of t^5
  594. * through t of the Bézier form of V(t), we can determine that:
  595. *
  596. * A = -P_0 + 5*P_1 - 10*P_2 + 10*P_3 - 5*P_4 + P_5
  597. * B = 5*P_0 - 20*P_1 + 30*P_2 - 20*P_3 + 5*P_4
  598. * C = -10*P_0 + 30*P_1 - 30*P_2 + 10*P_3
  599. * D = 10*P_0 - 20*P_1 + 10*P_2
  600. * E = - 5*P_0 + 5*P_1
  601. * F = P_0
  602. *
  603. * Now, since we will (currently) *always* want the initial acceleration and jerk values to be 0,
  604. * We set P_i = P_0 = P_1 = P_2 (initial velocity), and P_t = P_3 = P_4 = P_5 (target velocity),
  605. * which, after simplification, resolves to:
  606. *
  607. * A = - 6*P_i + 6*P_t = 6*(P_t - P_i)
  608. * B = 15*P_i - 15*P_t = 15*(P_i - P_t)
  609. * C = -10*P_i + 10*P_t = 10*(P_t - P_i)
  610. * D = 0
  611. * E = 0
  612. * F = P_i
  613. *
  614. * As the t is evaluated in non uniform steps here, there is no other way rather than evaluating
  615. * the Bézier curve at each point:
  616. *
  617. * V_f(t) = A*t^5 + B*t^4 + C*t^3 + F [0 <= t <= 1]
  618. *
  619. * Floating point arithmetic execution time cost is prohibitive, so we will transform the math to
  620. * use fixed point values to be able to evaluate it in realtime. Assuming a maximum of 250000 steps
  621. * per second (driver pulses should at least be 2µS hi/2µS lo), and allocating 2 bits to avoid
  622. * overflows on the evaluation of the Bézier curve, means we can use
  623. *
  624. * t: unsigned Q0.32 (0 <= t < 1) |range 0 to 0xFFFFFFFF unsigned
  625. * A: signed Q24.7 , |range = +/- 250000 * 6 * 128 = +/- 192000000 = 0x0B71B000 | 28 bits + sign
  626. * B: signed Q24.7 , |range = +/- 250000 *15 * 128 = +/- 480000000 = 0x1C9C3800 | 29 bits + sign
  627. * C: signed Q24.7 , |range = +/- 250000 *10 * 128 = +/- 320000000 = 0x1312D000 | 29 bits + sign
  628. * F: signed Q24.7 , |range = +/- 250000 * 128 = 32000000 = 0x01E84800 | 25 bits + sign
  629. *
  630. * The trapezoid generator state contains the following information, that we will use to create and evaluate
  631. * the Bézier curve:
  632. *
  633. * blk->step_event_count [TS] = The total count of steps for this movement. (=distance)
  634. * blk->initial_rate [VI] = The initial steps per second (=velocity)
  635. * blk->final_rate [VF] = The ending steps per second (=velocity)
  636. * and the count of events completed (step_events_completed) [CS] (=distance until now)
  637. *
  638. * Note the abbreviations we use in the following formulae are between []s
  639. *
  640. * For Any 32bit CPU:
  641. *
  642. * At the start of each trapezoid, calculate the coefficients A,B,C,F and Advance [AV], as follows:
  643. *
  644. * A = 6*128*(VF - VI) = 768*(VF - VI)
  645. * B = 15*128*(VI - VF) = 1920*(VI - VF)
  646. * C = 10*128*(VF - VI) = 1280*(VF - VI)
  647. * F = 128*VI = 128*VI
  648. * AV = (1<<32)/TS ~= 0xFFFFFFFF / TS (To use ARM UDIV, that is 32 bits) (this is computed at the planner, to offload expensive calculations from the ISR)
  649. *
  650. * And for each point, evaluate the curve with the following sequence:
  651. *
  652. * void lsrs(uint32_t& d, uint32_t s, int cnt) {
  653. * d = s >> cnt;
  654. * }
  655. * void lsls(uint32_t& d, uint32_t s, int cnt) {
  656. * d = s << cnt;
  657. * }
  658. * void lsrs(int32_t& d, uint32_t s, int cnt) {
  659. * d = uint32_t(s) >> cnt;
  660. * }
  661. * void lsls(int32_t& d, uint32_t s, int cnt) {
  662. * d = uint32_t(s) << cnt;
  663. * }
  664. * void umull(uint32_t& rlo, uint32_t& rhi, uint32_t op1, uint32_t op2) {
  665. * uint64_t res = uint64_t(op1) * op2;
  666. * rlo = uint32_t(res & 0xFFFFFFFF);
  667. * rhi = uint32_t((res >> 32) & 0xFFFFFFFF);
  668. * }
  669. * void smlal(int32_t& rlo, int32_t& rhi, int32_t op1, int32_t op2) {
  670. * int64_t mul = int64_t(op1) * op2;
  671. * int64_t s = int64_t(uint32_t(rlo) | ((uint64_t(uint32_t(rhi)) << 32U)));
  672. * mul += s;
  673. * rlo = int32_t(mul & 0xFFFFFFFF);
  674. * rhi = int32_t((mul >> 32) & 0xFFFFFFFF);
  675. * }
  676. * int32_t _eval_bezier_curve_arm(uint32_t curr_step) {
  677. * uint32_t flo = 0;
  678. * uint32_t fhi = bezier_AV * curr_step;
  679. * uint32_t t = fhi;
  680. * int32_t alo = bezier_F;
  681. * int32_t ahi = 0;
  682. * int32_t A = bezier_A;
  683. * int32_t B = bezier_B;
  684. * int32_t C = bezier_C;
  685. *
  686. * lsrs(ahi, alo, 1); // a = F << 31
  687. * lsls(alo, alo, 31); //
  688. * umull(flo, fhi, fhi, t); // f *= t
  689. * umull(flo, fhi, fhi, t); // f>>=32; f*=t
  690. * lsrs(flo, fhi, 1); //
  691. * smlal(alo, ahi, flo, C); // a+=(f>>33)*C
  692. * umull(flo, fhi, fhi, t); // f>>=32; f*=t
  693. * lsrs(flo, fhi, 1); //
  694. * smlal(alo, ahi, flo, B); // a+=(f>>33)*B
  695. * umull(flo, fhi, fhi, t); // f>>=32; f*=t
  696. * lsrs(flo, fhi, 1); // f>>=33;
  697. * smlal(alo, ahi, flo, A); // a+=(f>>33)*A;
  698. * lsrs(alo, ahi, 6); // a>>=38
  699. *
  700. * return alo;
  701. * }
  702. *
  703. * This is rewritten in ARM assembly for optimal performance (43 cycles to execute).
  704. *
  705. * For AVR, the precision of coefficients is scaled so the Bézier curve can be evaluated in real-time:
  706. * Let's reduce precision as much as possible. After some experimentation we found that:
  707. *
  708. * Assume t and AV with 24 bits is enough
  709. * A = 6*(VF - VI)
  710. * B = 15*(VI - VF)
  711. * C = 10*(VF - VI)
  712. * F = VI
  713. * AV = (1<<24)/TS (this is computed at the planner, to offload expensive calculations from the ISR)
  714. *
  715. * Instead of storing sign for each coefficient, we will store its absolute value,
  716. * and flag the sign of the A coefficient, so we can save to store the sign bit.
  717. * It always holds that sign(A) = - sign(B) = sign(C)
  718. *
  719. * So, the resulting range of the coefficients are:
  720. *
  721. * t: unsigned (0 <= t < 1) |range 0 to 0xFFFFFF unsigned
  722. * A: signed Q24 , range = 250000 * 6 = 1500000 = 0x16E360 | 21 bits
  723. * B: signed Q24 , range = 250000 *15 = 3750000 = 0x393870 | 22 bits
  724. * C: signed Q24 , range = 250000 *10 = 2500000 = 0x1312D0 | 21 bits
  725. * F: signed Q24 , range = 250000 = 250000 = 0x0ED090 | 20 bits
  726. *
  727. * And for each curve, estimate its coefficients with:
  728. *
  729. * void _calc_bezier_curve_coeffs(int32_t v0, int32_t v1, uint32_t av) {
  730. * // Calculate the Bézier coefficients
  731. * if (v1 < v0) {
  732. * A_negative = true;
  733. * bezier_A = 6 * (v0 - v1);
  734. * bezier_B = 15 * (v0 - v1);
  735. * bezier_C = 10 * (v0 - v1);
  736. * }
  737. * else {
  738. * A_negative = false;
  739. * bezier_A = 6 * (v1 - v0);
  740. * bezier_B = 15 * (v1 - v0);
  741. * bezier_C = 10 * (v1 - v0);
  742. * }
  743. * bezier_F = v0;
  744. * }
  745. *
  746. * And for each point, evaluate the curve with the following sequence:
  747. *
  748. * // unsigned multiplication of 24 bits x 24bits, return upper 16 bits
  749. * void umul24x24to16hi(uint16_t& r, uint24_t op1, uint24_t op2) {
  750. * r = (uint64_t(op1) * op2) >> 8;
  751. * }
  752. * // unsigned multiplication of 16 bits x 16bits, return upper 16 bits
  753. * void umul16x16to16hi(uint16_t& r, uint16_t op1, uint16_t op2) {
  754. * r = (uint32_t(op1) * op2) >> 16;
  755. * }
  756. * // unsigned multiplication of 16 bits x 24bits, return upper 24 bits
  757. * void umul16x24to24hi(uint24_t& r, uint16_t op1, uint24_t op2) {
  758. * r = uint24_t((uint64_t(op1) * op2) >> 16);
  759. * }
  760. *
  761. * int32_t _eval_bezier_curve(uint32_t curr_step) {
  762. * // To save computing, the first step is always the initial speed
  763. * if (!curr_step)
  764. * return bezier_F;
  765. *
  766. * uint16_t t;
  767. * umul24x24to16hi(t, bezier_AV, curr_step); // t: Range 0 - 1^16 = 16 bits
  768. * uint16_t f = t;
  769. * umul16x16to16hi(f, f, t); // Range 16 bits (unsigned)
  770. * umul16x16to16hi(f, f, t); // Range 16 bits : f = t^3 (unsigned)
  771. * uint24_t acc = bezier_F; // Range 20 bits (unsigned)
  772. * if (A_negative) {
  773. * uint24_t v;
  774. * umul16x24to24hi(v, f, bezier_C); // Range 21bits
  775. * acc -= v;
  776. * umul16x16to16hi(f, f, t); // Range 16 bits : f = t^4 (unsigned)
  777. * umul16x24to24hi(v, f, bezier_B); // Range 22bits
  778. * acc += v;
  779. * umul16x16to16hi(f, f, t); // Range 16 bits : f = t^5 (unsigned)
  780. * umul16x24to24hi(v, f, bezier_A); // Range 21bits + 15 = 36bits (plus sign)
  781. * acc -= v;
  782. * }
  783. * else {
  784. * uint24_t v;
  785. * umul16x24to24hi(v, f, bezier_C); // Range 21bits
  786. * acc += v;
  787. * umul16x16to16hi(f, f, t); // Range 16 bits : f = t^4 (unsigned)
  788. * umul16x24to24hi(v, f, bezier_B); // Range 22bits
  789. * acc -= v;
  790. * umul16x16to16hi(f, f, t); // Range 16 bits : f = t^5 (unsigned)
  791. * umul16x24to24hi(v, f, bezier_A); // Range 21bits + 15 = 36bits (plus sign)
  792. * acc += v;
  793. * }
  794. * return acc;
  795. * }
  796. * These functions are translated to assembler for optimal performance.
  797. * Coefficient calculation takes 70 cycles. Bezier point evaluation takes 150 cycles.
  798. */
  799. #ifdef __AVR__
  800. // For AVR we use assembly to maximize speed
  801. void Stepper::_calc_bezier_curve_coeffs(const int32_t v0, const int32_t v1, const uint32_t av) {
  802. // Store advance
  803. bezier_AV = av;
  804. // Calculate the rest of the coefficients
  805. uint8_t r2 = v0 & 0xFF;
  806. uint8_t r3 = (v0 >> 8) & 0xFF;
  807. uint8_t r12 = (v0 >> 16) & 0xFF;
  808. uint8_t r5 = v1 & 0xFF;
  809. uint8_t r6 = (v1 >> 8) & 0xFF;
  810. uint8_t r7 = (v1 >> 16) & 0xFF;
  811. uint8_t r4,r8,r9,r10,r11;
  812. __asm__ __volatile__(
  813. /* Calculate the Bézier coefficients */
  814. /* %10:%1:%0 = v0*/
  815. /* %5:%4:%3 = v1*/
  816. /* %7:%6:%10 = temporary*/
  817. /* %9 = val (must be high register!)*/
  818. /* %10 (must be high register!)*/
  819. /* Store initial velocity*/
  820. A("sts bezier_F, %0")
  821. A("sts bezier_F+1, %1")
  822. A("sts bezier_F+2, %10") /* bezier_F = %10:%1:%0 = v0 */
  823. /* Get delta speed */
  824. A("ldi %2,-1") /* %2 = 0xFF, means A_negative = true */
  825. A("clr %8") /* %8 = 0 */
  826. A("sub %0,%3")
  827. A("sbc %1,%4")
  828. A("sbc %10,%5") /* v0 -= v1, C=1 if result is negative */
  829. A("brcc 1f") /* branch if result is positive (C=0), that means v0 >= v1 */
  830. /* Result was negative, get the absolute value*/
  831. A("com %10")
  832. A("com %1")
  833. A("neg %0")
  834. A("sbc %1,%2")
  835. A("sbc %10,%2") /* %10:%1:%0 +1 -> %10:%1:%0 = -(v0 - v1) = (v1 - v0) */
  836. A("clr %2") /* %2 = 0, means A_negative = false */
  837. /* Store negative flag*/
  838. L("1")
  839. A("sts A_negative, %2") /* Store negative flag */
  840. /* Compute coefficients A,B and C [20 cycles worst case]*/
  841. A("ldi %9,6") /* %9 = 6 */
  842. A("mul %0,%9") /* r1:r0 = 6*LO(v0-v1) */
  843. A("sts bezier_A, r0")
  844. A("mov %6,r1")
  845. A("clr %7") /* %7:%6:r0 = 6*LO(v0-v1) */
  846. A("mul %1,%9") /* r1:r0 = 6*MI(v0-v1) */
  847. A("add %6,r0")
  848. A("adc %7,r1") /* %7:%6:?? += 6*MI(v0-v1) << 8 */
  849. A("mul %10,%9") /* r1:r0 = 6*HI(v0-v1) */
  850. A("add %7,r0") /* %7:%6:?? += 6*HI(v0-v1) << 16 */
  851. A("sts bezier_A+1, %6")
  852. A("sts bezier_A+2, %7") /* bezier_A = %7:%6:?? = 6*(v0-v1) [35 cycles worst] */
  853. A("ldi %9,15") /* %9 = 15 */
  854. A("mul %0,%9") /* r1:r0 = 5*LO(v0-v1) */
  855. A("sts bezier_B, r0")
  856. A("mov %6,r1")
  857. A("clr %7") /* %7:%6:?? = 5*LO(v0-v1) */
  858. A("mul %1,%9") /* r1:r0 = 5*MI(v0-v1) */
  859. A("add %6,r0")
  860. A("adc %7,r1") /* %7:%6:?? += 5*MI(v0-v1) << 8 */
  861. A("mul %10,%9") /* r1:r0 = 5*HI(v0-v1) */
  862. A("add %7,r0") /* %7:%6:?? += 5*HI(v0-v1) << 16 */
  863. A("sts bezier_B+1, %6")
  864. A("sts bezier_B+2, %7") /* bezier_B = %7:%6:?? = 5*(v0-v1) [50 cycles worst] */
  865. A("ldi %9,10") /* %9 = 10 */
  866. A("mul %0,%9") /* r1:r0 = 10*LO(v0-v1) */
  867. A("sts bezier_C, r0")
  868. A("mov %6,r1")
  869. A("clr %7") /* %7:%6:?? = 10*LO(v0-v1) */
  870. A("mul %1,%9") /* r1:r0 = 10*MI(v0-v1) */
  871. A("add %6,r0")
  872. A("adc %7,r1") /* %7:%6:?? += 10*MI(v0-v1) << 8 */
  873. A("mul %10,%9") /* r1:r0 = 10*HI(v0-v1) */
  874. A("add %7,r0") /* %7:%6:?? += 10*HI(v0-v1) << 16 */
  875. A("sts bezier_C+1, %6")
  876. " sts bezier_C+2, %7" /* bezier_C = %7:%6:?? = 10*(v0-v1) [65 cycles worst] */
  877. : "+r" (r2),
  878. "+d" (r3),
  879. "=r" (r4),
  880. "+r" (r5),
  881. "+r" (r6),
  882. "+r" (r7),
  883. "=r" (r8),
  884. "=r" (r9),
  885. "=r" (r10),
  886. "=d" (r11),
  887. "+r" (r12)
  888. :
  889. : "r0", "r1", "cc", "memory"
  890. );
  891. }
  892. FORCE_INLINE int32_t Stepper::_eval_bezier_curve(const uint32_t curr_step) {
  893. // If dealing with the first step, save expensive computing and return the initial speed
  894. if (!curr_step)
  895. return bezier_F;
  896. uint8_t r0 = 0; /* Zero register */
  897. uint8_t r2 = (curr_step) & 0xFF;
  898. uint8_t r3 = (curr_step >> 8) & 0xFF;
  899. uint8_t r4 = (curr_step >> 16) & 0xFF;
  900. uint8_t r1,r5,r6,r7,r8,r9,r10,r11; /* Temporary registers */
  901. __asm__ __volatile(
  902. /* umul24x24to16hi(t, bezier_AV, curr_step); t: Range 0 - 1^16 = 16 bits*/
  903. A("lds %9,bezier_AV") /* %9 = LO(AV)*/
  904. A("mul %9,%2") /* r1:r0 = LO(bezier_AV)*LO(curr_step)*/
  905. A("mov %7,r1") /* %7 = LO(bezier_AV)*LO(curr_step) >> 8*/
  906. A("clr %8") /* %8:%7 = LO(bezier_AV)*LO(curr_step) >> 8*/
  907. A("lds %10,bezier_AV+1") /* %10 = MI(AV)*/
  908. A("mul %10,%2") /* r1:r0 = MI(bezier_AV)*LO(curr_step)*/
  909. A("add %7,r0")
  910. A("adc %8,r1") /* %8:%7 += MI(bezier_AV)*LO(curr_step)*/
  911. A("lds r1,bezier_AV+2") /* r11 = HI(AV)*/
  912. A("mul r1,%2") /* r1:r0 = HI(bezier_AV)*LO(curr_step)*/
  913. A("add %8,r0") /* %8:%7 += HI(bezier_AV)*LO(curr_step) << 8*/
  914. A("mul %9,%3") /* r1:r0 = LO(bezier_AV)*MI(curr_step)*/
  915. A("add %7,r0")
  916. A("adc %8,r1") /* %8:%7 += LO(bezier_AV)*MI(curr_step)*/
  917. A("mul %10,%3") /* r1:r0 = MI(bezier_AV)*MI(curr_step)*/
  918. A("add %8,r0") /* %8:%7 += LO(bezier_AV)*MI(curr_step) << 8*/
  919. A("mul %9,%4") /* r1:r0 = LO(bezier_AV)*HI(curr_step)*/
  920. A("add %8,r0") /* %8:%7 += LO(bezier_AV)*HI(curr_step) << 8*/
  921. /* %8:%7 = t*/
  922. /* uint16_t f = t;*/
  923. A("mov %5,%7") /* %6:%5 = f*/
  924. A("mov %6,%8")
  925. /* %6:%5 = f*/
  926. /* umul16x16to16hi(f, f, t); / Range 16 bits (unsigned) [17] */
  927. A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/
  928. A("mov %9,r1") /* store MIL(LO(f) * LO(t)) in %9, we need it for rounding*/
  929. A("clr %10") /* %10 = 0*/
  930. A("clr %11") /* %11 = 0*/
  931. A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/
  932. A("add %9,r0") /* %9 += LO(LO(f) * HI(t))*/
  933. A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/
  934. A("adc %11,%0") /* %11 += carry*/
  935. A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/
  936. A("add %9,r0") /* %9 += LO(HI(f) * LO(t))*/
  937. A("adc %10,r1") /* %10 += HI(HI(f) * LO(t)) */
  938. A("adc %11,%0") /* %11 += carry*/
  939. A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/
  940. A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/
  941. A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/
  942. A("mov %5,%10") /* %6:%5 = */
  943. A("mov %6,%11") /* f = %10:%11*/
  944. /* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^3 (unsigned) [17]*/
  945. A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/
  946. A("mov %1,r1") /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/
  947. A("clr %10") /* %10 = 0*/
  948. A("clr %11") /* %11 = 0*/
  949. A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/
  950. A("add %1,r0") /* %1 += LO(LO(f) * HI(t))*/
  951. A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/
  952. A("adc %11,%0") /* %11 += carry*/
  953. A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/
  954. A("add %1,r0") /* %1 += LO(HI(f) * LO(t))*/
  955. A("adc %10,r1") /* %10 += HI(HI(f) * LO(t))*/
  956. A("adc %11,%0") /* %11 += carry*/
  957. A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/
  958. A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/
  959. A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/
  960. A("mov %5,%10") /* %6:%5 =*/
  961. A("mov %6,%11") /* f = %10:%11*/
  962. /* [15 +17*2] = [49]*/
  963. /* %4:%3:%2 will be acc from now on*/
  964. /* uint24_t acc = bezier_F; / Range 20 bits (unsigned)*/
  965. A("clr %9") /* "decimal place we get for free"*/
  966. A("lds %2,bezier_F")
  967. A("lds %3,bezier_F+1")
  968. A("lds %4,bezier_F+2") /* %4:%3:%2 = acc*/
  969. /* if (A_negative) {*/
  970. A("lds r0,A_negative")
  971. A("or r0,%0") /* Is flag signalling negative? */
  972. A("brne 3f") /* If yes, Skip next instruction if A was negative*/
  973. A("rjmp 1f") /* Otherwise, jump */
  974. /* uint24_t v; */
  975. /* umul16x24to24hi(v, f, bezier_C); / Range 21bits [29] */
  976. /* acc -= v; */
  977. L("3")
  978. A("lds %10, bezier_C") /* %10 = LO(bezier_C)*/
  979. A("mul %10,%5") /* r1:r0 = LO(bezier_C) * LO(f)*/
  980. A("sub %9,r1")
  981. A("sbc %2,%0")
  982. A("sbc %3,%0")
  983. A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(LO(bezier_C) * LO(f))*/
  984. A("lds %11, bezier_C+1") /* %11 = MI(bezier_C)*/
  985. A("mul %11,%5") /* r1:r0 = MI(bezier_C) * LO(f)*/
  986. A("sub %9,r0")
  987. A("sbc %2,r1")
  988. A("sbc %3,%0")
  989. A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_C) * LO(f)*/
  990. A("lds %1, bezier_C+2") /* %1 = HI(bezier_C)*/
  991. A("mul %1,%5") /* r1:r0 = MI(bezier_C) * LO(f)*/
  992. A("sub %2,r0")
  993. A("sbc %3,r1")
  994. A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(bezier_C) * LO(f) << 8*/
  995. A("mul %10,%6") /* r1:r0 = LO(bezier_C) * MI(f)*/
  996. A("sub %9,r0")
  997. A("sbc %2,r1")
  998. A("sbc %3,%0")
  999. A("sbc %4,%0") /* %4:%3:%2:%9 -= LO(bezier_C) * MI(f)*/
  1000. A("mul %11,%6") /* r1:r0 = MI(bezier_C) * MI(f)*/
  1001. A("sub %2,r0")
  1002. A("sbc %3,r1")
  1003. A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_C) * MI(f) << 8*/
  1004. A("mul %1,%6") /* r1:r0 = HI(bezier_C) * LO(f)*/
  1005. A("sub %3,r0")
  1006. A("sbc %4,r1") /* %4:%3:%2:%9 -= HI(bezier_C) * LO(f) << 16*/
  1007. /* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^3 (unsigned) [17]*/
  1008. A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/
  1009. A("mov %1,r1") /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/
  1010. A("clr %10") /* %10 = 0*/
  1011. A("clr %11") /* %11 = 0*/
  1012. A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/
  1013. A("add %1,r0") /* %1 += LO(LO(f) * HI(t))*/
  1014. A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/
  1015. A("adc %11,%0") /* %11 += carry*/
  1016. A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/
  1017. A("add %1,r0") /* %1 += LO(HI(f) * LO(t))*/
  1018. A("adc %10,r1") /* %10 += HI(HI(f) * LO(t))*/
  1019. A("adc %11,%0") /* %11 += carry*/
  1020. A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/
  1021. A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/
  1022. A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/
  1023. A("mov %5,%10") /* %6:%5 =*/
  1024. A("mov %6,%11") /* f = %10:%11*/
  1025. /* umul16x24to24hi(v, f, bezier_B); / Range 22bits [29]*/
  1026. /* acc += v; */
  1027. A("lds %10, bezier_B") /* %10 = LO(bezier_B)*/
  1028. A("mul %10,%5") /* r1:r0 = LO(bezier_B) * LO(f)*/
  1029. A("add %9,r1")
  1030. A("adc %2,%0")
  1031. A("adc %3,%0")
  1032. A("adc %4,%0") /* %4:%3:%2:%9 += HI(LO(bezier_B) * LO(f))*/
  1033. A("lds %11, bezier_B+1") /* %11 = MI(bezier_B)*/
  1034. A("mul %11,%5") /* r1:r0 = MI(bezier_B) * LO(f)*/
  1035. A("add %9,r0")
  1036. A("adc %2,r1")
  1037. A("adc %3,%0")
  1038. A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_B) * LO(f)*/
  1039. A("lds %1, bezier_B+2") /* %1 = HI(bezier_B)*/
  1040. A("mul %1,%5") /* r1:r0 = MI(bezier_B) * LO(f)*/
  1041. A("add %2,r0")
  1042. A("adc %3,r1")
  1043. A("adc %4,%0") /* %4:%3:%2:%9 += HI(bezier_B) * LO(f) << 8*/
  1044. A("mul %10,%6") /* r1:r0 = LO(bezier_B) * MI(f)*/
  1045. A("add %9,r0")
  1046. A("adc %2,r1")
  1047. A("adc %3,%0")
  1048. A("adc %4,%0") /* %4:%3:%2:%9 += LO(bezier_B) * MI(f)*/
  1049. A("mul %11,%6") /* r1:r0 = MI(bezier_B) * MI(f)*/
  1050. A("add %2,r0")
  1051. A("adc %3,r1")
  1052. A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_B) * MI(f) << 8*/
  1053. A("mul %1,%6") /* r1:r0 = HI(bezier_B) * LO(f)*/
  1054. A("add %3,r0")
  1055. A("adc %4,r1") /* %4:%3:%2:%9 += HI(bezier_B) * LO(f) << 16*/
  1056. /* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^5 (unsigned) [17]*/
  1057. A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/
  1058. A("mov %1,r1") /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/
  1059. A("clr %10") /* %10 = 0*/
  1060. A("clr %11") /* %11 = 0*/
  1061. A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/
  1062. A("add %1,r0") /* %1 += LO(LO(f) * HI(t))*/
  1063. A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/
  1064. A("adc %11,%0") /* %11 += carry*/
  1065. A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/
  1066. A("add %1,r0") /* %1 += LO(HI(f) * LO(t))*/
  1067. A("adc %10,r1") /* %10 += HI(HI(f) * LO(t))*/
  1068. A("adc %11,%0") /* %11 += carry*/
  1069. A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/
  1070. A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/
  1071. A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/
  1072. A("mov %5,%10") /* %6:%5 =*/
  1073. A("mov %6,%11") /* f = %10:%11*/
  1074. /* umul16x24to24hi(v, f, bezier_A); / Range 21bits [29]*/
  1075. /* acc -= v; */
  1076. A("lds %10, bezier_A") /* %10 = LO(bezier_A)*/
  1077. A("mul %10,%5") /* r1:r0 = LO(bezier_A) * LO(f)*/
  1078. A("sub %9,r1")
  1079. A("sbc %2,%0")
  1080. A("sbc %3,%0")
  1081. A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(LO(bezier_A) * LO(f))*/
  1082. A("lds %11, bezier_A+1") /* %11 = MI(bezier_A)*/
  1083. A("mul %11,%5") /* r1:r0 = MI(bezier_A) * LO(f)*/
  1084. A("sub %9,r0")
  1085. A("sbc %2,r1")
  1086. A("sbc %3,%0")
  1087. A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_A) * LO(f)*/
  1088. A("lds %1, bezier_A+2") /* %1 = HI(bezier_A)*/
  1089. A("mul %1,%5") /* r1:r0 = MI(bezier_A) * LO(f)*/
  1090. A("sub %2,r0")
  1091. A("sbc %3,r1")
  1092. A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(bezier_A) * LO(f) << 8*/
  1093. A("mul %10,%6") /* r1:r0 = LO(bezier_A) * MI(f)*/
  1094. A("sub %9,r0")
  1095. A("sbc %2,r1")
  1096. A("sbc %3,%0")
  1097. A("sbc %4,%0") /* %4:%3:%2:%9 -= LO(bezier_A) * MI(f)*/
  1098. A("mul %11,%6") /* r1:r0 = MI(bezier_A) * MI(f)*/
  1099. A("sub %2,r0")
  1100. A("sbc %3,r1")
  1101. A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_A) * MI(f) << 8*/
  1102. A("mul %1,%6") /* r1:r0 = HI(bezier_A) * LO(f)*/
  1103. A("sub %3,r0")
  1104. A("sbc %4,r1") /* %4:%3:%2:%9 -= HI(bezier_A) * LO(f) << 16*/
  1105. A("jmp 2f") /* Done!*/
  1106. L("1")
  1107. /* uint24_t v; */
  1108. /* umul16x24to24hi(v, f, bezier_C); / Range 21bits [29]*/
  1109. /* acc += v; */
  1110. A("lds %10, bezier_C") /* %10 = LO(bezier_C)*/
  1111. A("mul %10,%5") /* r1:r0 = LO(bezier_C) * LO(f)*/
  1112. A("add %9,r1")
  1113. A("adc %2,%0")
  1114. A("adc %3,%0")
  1115. A("adc %4,%0") /* %4:%3:%2:%9 += HI(LO(bezier_C) * LO(f))*/
  1116. A("lds %11, bezier_C+1") /* %11 = MI(bezier_C)*/
  1117. A("mul %11,%5") /* r1:r0 = MI(bezier_C) * LO(f)*/
  1118. A("add %9,r0")
  1119. A("adc %2,r1")
  1120. A("adc %3,%0")
  1121. A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_C) * LO(f)*/
  1122. A("lds %1, bezier_C+2") /* %1 = HI(bezier_C)*/
  1123. A("mul %1,%5") /* r1:r0 = MI(bezier_C) * LO(f)*/
  1124. A("add %2,r0")
  1125. A("adc %3,r1")
  1126. A("adc %4,%0") /* %4:%3:%2:%9 += HI(bezier_C) * LO(f) << 8*/
  1127. A("mul %10,%6") /* r1:r0 = LO(bezier_C) * MI(f)*/
  1128. A("add %9,r0")
  1129. A("adc %2,r1")
  1130. A("adc %3,%0")
  1131. A("adc %4,%0") /* %4:%3:%2:%9 += LO(bezier_C) * MI(f)*/
  1132. A("mul %11,%6") /* r1:r0 = MI(bezier_C) * MI(f)*/
  1133. A("add %2,r0")
  1134. A("adc %3,r1")
  1135. A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_C) * MI(f) << 8*/
  1136. A("mul %1,%6") /* r1:r0 = HI(bezier_C) * LO(f)*/
  1137. A("add %3,r0")
  1138. A("adc %4,r1") /* %4:%3:%2:%9 += HI(bezier_C) * LO(f) << 16*/
  1139. /* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^3 (unsigned) [17]*/
  1140. A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/
  1141. A("mov %1,r1") /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/
  1142. A("clr %10") /* %10 = 0*/
  1143. A("clr %11") /* %11 = 0*/
  1144. A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/
  1145. A("add %1,r0") /* %1 += LO(LO(f) * HI(t))*/
  1146. A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/
  1147. A("adc %11,%0") /* %11 += carry*/
  1148. A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/
  1149. A("add %1,r0") /* %1 += LO(HI(f) * LO(t))*/
  1150. A("adc %10,r1") /* %10 += HI(HI(f) * LO(t))*/
  1151. A("adc %11,%0") /* %11 += carry*/
  1152. A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/
  1153. A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/
  1154. A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/
  1155. A("mov %5,%10") /* %6:%5 =*/
  1156. A("mov %6,%11") /* f = %10:%11*/
  1157. /* umul16x24to24hi(v, f, bezier_B); / Range 22bits [29]*/
  1158. /* acc -= v;*/
  1159. A("lds %10, bezier_B") /* %10 = LO(bezier_B)*/
  1160. A("mul %10,%5") /* r1:r0 = LO(bezier_B) * LO(f)*/
  1161. A("sub %9,r1")
  1162. A("sbc %2,%0")
  1163. A("sbc %3,%0")
  1164. A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(LO(bezier_B) * LO(f))*/
  1165. A("lds %11, bezier_B+1") /* %11 = MI(bezier_B)*/
  1166. A("mul %11,%5") /* r1:r0 = MI(bezier_B) * LO(f)*/
  1167. A("sub %9,r0")
  1168. A("sbc %2,r1")
  1169. A("sbc %3,%0")
  1170. A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_B) * LO(f)*/
  1171. A("lds %1, bezier_B+2") /* %1 = HI(bezier_B)*/
  1172. A("mul %1,%5") /* r1:r0 = MI(bezier_B) * LO(f)*/
  1173. A("sub %2,r0")
  1174. A("sbc %3,r1")
  1175. A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(bezier_B) * LO(f) << 8*/
  1176. A("mul %10,%6") /* r1:r0 = LO(bezier_B) * MI(f)*/
  1177. A("sub %9,r0")
  1178. A("sbc %2,r1")
  1179. A("sbc %3,%0")
  1180. A("sbc %4,%0") /* %4:%3:%2:%9 -= LO(bezier_B) * MI(f)*/
  1181. A("mul %11,%6") /* r1:r0 = MI(bezier_B) * MI(f)*/
  1182. A("sub %2,r0")
  1183. A("sbc %3,r1")
  1184. A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_B) * MI(f) << 8*/
  1185. A("mul %1,%6") /* r1:r0 = HI(bezier_B) * LO(f)*/
  1186. A("sub %3,r0")
  1187. A("sbc %4,r1") /* %4:%3:%2:%9 -= HI(bezier_B) * LO(f) << 16*/
  1188. /* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^5 (unsigned) [17]*/
  1189. A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/
  1190. A("mov %1,r1") /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/
  1191. A("clr %10") /* %10 = 0*/
  1192. A("clr %11") /* %11 = 0*/
  1193. A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/
  1194. A("add %1,r0") /* %1 += LO(LO(f) * HI(t))*/
  1195. A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/
  1196. A("adc %11,%0") /* %11 += carry*/
  1197. A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/
  1198. A("add %1,r0") /* %1 += LO(HI(f) * LO(t))*/
  1199. A("adc %10,r1") /* %10 += HI(HI(f) * LO(t))*/
  1200. A("adc %11,%0") /* %11 += carry*/
  1201. A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/
  1202. A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/
  1203. A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/
  1204. A("mov %5,%10") /* %6:%5 =*/
  1205. A("mov %6,%11") /* f = %10:%11*/
  1206. /* umul16x24to24hi(v, f, bezier_A); / Range 21bits [29]*/
  1207. /* acc += v; */
  1208. A("lds %10, bezier_A") /* %10 = LO(bezier_A)*/
  1209. A("mul %10,%5") /* r1:r0 = LO(bezier_A) * LO(f)*/
  1210. A("add %9,r1")
  1211. A("adc %2,%0")
  1212. A("adc %3,%0")
  1213. A("adc %4,%0") /* %4:%3:%2:%9 += HI(LO(bezier_A) * LO(f))*/
  1214. A("lds %11, bezier_A+1") /* %11 = MI(bezier_A)*/
  1215. A("mul %11,%5") /* r1:r0 = MI(bezier_A) * LO(f)*/
  1216. A("add %9,r0")
  1217. A("adc %2,r1")
  1218. A("adc %3,%0")
  1219. A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_A) * LO(f)*/
  1220. A("lds %1, bezier_A+2") /* %1 = HI(bezier_A)*/
  1221. A("mul %1,%5") /* r1:r0 = MI(bezier_A) * LO(f)*/
  1222. A("add %2,r0")
  1223. A("adc %3,r1")
  1224. A("adc %4,%0") /* %4:%3:%2:%9 += HI(bezier_A) * LO(f) << 8*/
  1225. A("mul %10,%6") /* r1:r0 = LO(bezier_A) * MI(f)*/
  1226. A("add %9,r0")
  1227. A("adc %2,r1")
  1228. A("adc %3,%0")
  1229. A("adc %4,%0") /* %4:%3:%2:%9 += LO(bezier_A) * MI(f)*/
  1230. A("mul %11,%6") /* r1:r0 = MI(bezier_A) * MI(f)*/
  1231. A("add %2,r0")
  1232. A("adc %3,r1")
  1233. A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_A) * MI(f) << 8*/
  1234. A("mul %1,%6") /* r1:r0 = HI(bezier_A) * LO(f)*/
  1235. A("add %3,r0")
  1236. A("adc %4,r1") /* %4:%3:%2:%9 += HI(bezier_A) * LO(f) << 16*/
  1237. L("2")
  1238. " clr __zero_reg__" /* C runtime expects r1 = __zero_reg__ = 0 */
  1239. : "+r"(r0),
  1240. "+r"(r1),
  1241. "+r"(r2),
  1242. "+r"(r3),
  1243. "+r"(r4),
  1244. "+r"(r5),
  1245. "+r"(r6),
  1246. "+r"(r7),
  1247. "+r"(r8),
  1248. "+r"(r9),
  1249. "+r"(r10),
  1250. "+r"(r11)
  1251. :
  1252. :"cc","r0","r1"
  1253. );
  1254. return (r2 | (uint16_t(r3) << 8)) | (uint32_t(r4) << 16);
  1255. }
  1256. #else
  1257. // For all the other 32bit CPUs
  1258. FORCE_INLINE void Stepper::_calc_bezier_curve_coeffs(const int32_t v0, const int32_t v1, const uint32_t av) {
  1259. // Calculate the Bézier coefficients
  1260. bezier_A = 768 * (v1 - v0);
  1261. bezier_B = 1920 * (v0 - v1);
  1262. bezier_C = 1280 * (v1 - v0);
  1263. bezier_F = 128 * v0;
  1264. bezier_AV = av;
  1265. }
  1266. FORCE_INLINE int32_t Stepper::_eval_bezier_curve(const uint32_t curr_step) {
  1267. #if (defined(__arm__) || defined(__thumb__)) && !defined(STM32G0B1xx) // TODO: Test define STM32G0xx versus STM32G0B1xx
  1268. // For ARM Cortex M3/M4 CPUs, we have the optimized assembler version, that takes 43 cycles to execute
  1269. uint32_t flo = 0;
  1270. uint32_t fhi = bezier_AV * curr_step;
  1271. uint32_t t = fhi;
  1272. int32_t alo = bezier_F;
  1273. int32_t ahi = 0;
  1274. int32_t A = bezier_A;
  1275. int32_t B = bezier_B;
  1276. int32_t C = bezier_C;
  1277. __asm__ __volatile__(
  1278. ".syntax unified" "\n\t" // is to prevent CM0,CM1 non-unified syntax
  1279. A("lsrs %[ahi],%[alo],#1") // a = F << 31 1 cycles
  1280. A("lsls %[alo],%[alo],#31") // 1 cycles
  1281. A("umull %[flo],%[fhi],%[fhi],%[t]") // f *= t 5 cycles [fhi:flo=64bits]
  1282. A("umull %[flo],%[fhi],%[fhi],%[t]") // f>>=32; f*=t 5 cycles [fhi:flo=64bits]
  1283. A("lsrs %[flo],%[fhi],#1") // 1 cycles [31bits]
  1284. A("smlal %[alo],%[ahi],%[flo],%[C]") // a+=(f>>33)*C; 5 cycles
  1285. A("umull %[flo],%[fhi],%[fhi],%[t]") // f>>=32; f*=t 5 cycles [fhi:flo=64bits]
  1286. A("lsrs %[flo],%[fhi],#1") // 1 cycles [31bits]
  1287. A("smlal %[alo],%[ahi],%[flo],%[B]") // a+=(f>>33)*B; 5 cycles
  1288. A("umull %[flo],%[fhi],%[fhi],%[t]") // f>>=32; f*=t 5 cycles [fhi:flo=64bits]
  1289. A("lsrs %[flo],%[fhi],#1") // f>>=33; 1 cycles [31bits]
  1290. A("smlal %[alo],%[ahi],%[flo],%[A]") // a+=(f>>33)*A; 5 cycles
  1291. A("lsrs %[alo],%[ahi],#6") // a>>=38 1 cycles
  1292. : [alo]"+r"( alo ) ,
  1293. [flo]"+r"( flo ) ,
  1294. [fhi]"+r"( fhi ) ,
  1295. [ahi]"+r"( ahi ) ,
  1296. [A]"+r"( A ) , // <== Note: Even if A, B, C, and t registers are INPUT ONLY
  1297. [B]"+r"( B ) , // GCC does bad optimizations on the code if we list them as
  1298. [C]"+r"( C ) , // such, breaking this function. So, to avoid that problem,
  1299. [t]"+r"( t ) // we list all registers as input-outputs.
  1300. :
  1301. : "cc"
  1302. );
  1303. return alo;
  1304. #else
  1305. // For non ARM targets, we provide a fallback implementation. Really doubt it
  1306. // will be useful, unless the processor is fast and 32bit
  1307. uint32_t t = bezier_AV * curr_step; // t: Range 0 - 1^32 = 32 bits
  1308. uint64_t f = t;
  1309. f *= t; // Range 32*2 = 64 bits (unsigned)
  1310. f >>= 32; // Range 32 bits (unsigned)
  1311. f *= t; // Range 32*2 = 64 bits (unsigned)
  1312. f >>= 32; // Range 32 bits : f = t^3 (unsigned)
  1313. int64_t acc = (int64_t) bezier_F << 31; // Range 63 bits (signed)
  1314. acc += ((uint32_t) f >> 1) * (int64_t) bezier_C; // Range 29bits + 31 = 60bits (plus sign)
  1315. f *= t; // Range 32*2 = 64 bits
  1316. f >>= 32; // Range 32 bits : f = t^3 (unsigned)
  1317. acc += ((uint32_t) f >> 1) * (int64_t) bezier_B; // Range 29bits + 31 = 60bits (plus sign)
  1318. f *= t; // Range 32*2 = 64 bits
  1319. f >>= 32; // Range 32 bits : f = t^3 (unsigned)
  1320. acc += ((uint32_t) f >> 1) * (int64_t) bezier_A; // Range 28bits + 31 = 59bits (plus sign)
  1321. acc >>= (31 + 7); // Range 24bits (plus sign)
  1322. return (int32_t) acc;
  1323. #endif
  1324. }
  1325. #endif
  1326. #endif // S_CURVE_ACCELERATION
  1327. /**
  1328. * Stepper Driver Interrupt
  1329. *
  1330. * Directly pulses the stepper motors at high frequency.
  1331. */
  1332. HAL_STEP_TIMER_ISR() {
  1333. HAL_timer_isr_prologue(MF_TIMER_STEP);
  1334. Stepper::isr();
  1335. HAL_timer_isr_epilogue(MF_TIMER_STEP);
  1336. }
  1337. #ifdef CPU_32_BIT
  1338. #define STEP_MULTIPLY(A,B) MultiU32X24toH32(A, B)
  1339. #else
  1340. #define STEP_MULTIPLY(A,B) MultiU24X32toH16(A, B)
  1341. #endif
  1342. void Stepper::isr() {
  1343. static uint32_t nextMainISR = 0; // Interval until the next main Stepper Pulse phase (0 = Now)
  1344. #ifndef __AVR__
  1345. // Disable interrupts, to avoid ISR preemption while we reprogram the period
  1346. // (AVR enters the ISR with global interrupts disabled, so no need to do it here)
  1347. hal.isr_off();
  1348. #endif
  1349. // Program timer compare for the maximum period, so it does NOT
  1350. // flag an interrupt while this ISR is running - So changes from small
  1351. // periods to big periods are respected and the timer does not reset to 0
  1352. HAL_timer_set_compare(MF_TIMER_STEP, hal_timer_t(HAL_TIMER_TYPE_MAX));
  1353. // Count of ticks for the next ISR
  1354. hal_timer_t next_isr_ticks = 0;
  1355. // Limit the amount of iterations
  1356. uint8_t max_loops = 10;
  1357. // We need this variable here to be able to use it in the following loop
  1358. hal_timer_t min_ticks;
  1359. do {
  1360. // Enable ISRs to reduce USART processing latency
  1361. hal.isr_on();
  1362. if (!nextMainISR) pulse_phase_isr(); // 0 = Do coordinated axes Stepper pulses
  1363. #if ENABLED(LIN_ADVANCE)
  1364. if (!nextAdvanceISR) nextAdvanceISR = advance_isr(); // 0 = Do Linear Advance E Stepper pulses
  1365. #endif
  1366. #if ENABLED(INTEGRATED_BABYSTEPPING)
  1367. const bool is_babystep = (nextBabystepISR == 0); // 0 = Do Babystepping (XY)Z pulses
  1368. if (is_babystep) nextBabystepISR = babystepping_isr();
  1369. #endif
  1370. // ^== Time critical. NOTHING besides pulse generation should be above here!!!
  1371. if (!nextMainISR) nextMainISR = block_phase_isr(); // Manage acc/deceleration, get next block
  1372. #if ENABLED(INTEGRATED_BABYSTEPPING)
  1373. if (is_babystep) // Avoid ANY stepping too soon after baby-stepping
  1374. NOLESS(nextMainISR, (BABYSTEP_TICKS) / 8); // FULL STOP for 125µs after a baby-step
  1375. if (nextBabystepISR != BABYSTEP_NEVER) // Avoid baby-stepping too close to axis Stepping
  1376. NOLESS(nextBabystepISR, nextMainISR / 2); // TODO: Only look at axes enabled for baby-stepping
  1377. #endif
  1378. // Get the interval to the next ISR call
  1379. const uint32_t interval = _MIN(
  1380. uint32_t(HAL_TIMER_TYPE_MAX), // Come back in a very long time
  1381. nextMainISR // Time until the next Pulse / Block phase
  1382. OPTARG(LIN_ADVANCE, nextAdvanceISR) // Come back early for Linear Advance?
  1383. OPTARG(INTEGRATED_BABYSTEPPING, nextBabystepISR) // Come back early for Babystepping?
  1384. );
  1385. //
  1386. // Compute remaining time for each ISR phase
  1387. // NEVER : The phase is idle
  1388. // Zero : The phase will occur on the next ISR call
  1389. // Non-zero : The phase will occur on a future ISR call
  1390. //
  1391. nextMainISR -= interval;
  1392. #if ENABLED(LIN_ADVANCE)
  1393. if (nextAdvanceISR != LA_ADV_NEVER) nextAdvanceISR -= interval;
  1394. #endif
  1395. #if ENABLED(INTEGRATED_BABYSTEPPING)
  1396. if (nextBabystepISR != BABYSTEP_NEVER) nextBabystepISR -= interval;
  1397. #endif
  1398. /**
  1399. * This needs to avoid a race-condition caused by interleaving
  1400. * of interrupts required by both the LA and Stepper algorithms.
  1401. *
  1402. * Assume the following tick times for stepper pulses:
  1403. * Stepper ISR (S): 1 1000 2000 3000 4000
  1404. * Linear Adv. (E): 10 1010 2010 3010 4010
  1405. *
  1406. * The current algorithm tries to interleave them, giving:
  1407. * 1:S 10:E 1000:S 1010:E 2000:S 2010:E 3000:S 3010:E 4000:S 4010:E
  1408. *
  1409. * Ideal timing would yield these delta periods:
  1410. * 1:S 9:E 990:S 10:E 990:S 10:E 990:S 10:E 990:S 10:E
  1411. *
  1412. * But, since each event must fire an ISR with a minimum duration, the
  1413. * minimum delta might be 900, so deltas under 900 get rounded up:
  1414. * 900:S d900:E d990:S d900:E d990:S d900:E d990:S d900:E d990:S d900:E
  1415. *
  1416. * It works, but divides the speed of all motors by half, leading to a sudden
  1417. * reduction to 1/2 speed! Such jumps in speed lead to lost steps (not even
  1418. * accounting for double/quad stepping, which makes it even worse).
  1419. */
  1420. // Compute the tick count for the next ISR
  1421. next_isr_ticks += interval;
  1422. /**
  1423. * The following section must be done with global interrupts disabled.
  1424. * We want nothing to interrupt it, as that could mess the calculations
  1425. * we do for the next value to program in the period register of the
  1426. * stepper timer and lead to skipped ISRs (if the value we happen to program
  1427. * is less than the current count due to something preempting between the
  1428. * read and the write of the new period value).
  1429. */
  1430. hal.isr_off();
  1431. /**
  1432. * Get the current tick value + margin
  1433. * Assuming at least 6µs between calls to this ISR...
  1434. * On AVR the ISR epilogue+prologue is estimated at 100 instructions - Give 8µs as margin
  1435. * On ARM the ISR epilogue+prologue is estimated at 20 instructions - Give 1µs as margin
  1436. */
  1437. min_ticks = HAL_timer_get_count(MF_TIMER_STEP) + hal_timer_t(
  1438. #ifdef __AVR__
  1439. 8
  1440. #else
  1441. 1
  1442. #endif
  1443. * (STEPPER_TIMER_TICKS_PER_US)
  1444. );
  1445. /**
  1446. * NB: If for some reason the stepper monopolizes the MPU, eventually the
  1447. * timer will wrap around (and so will 'next_isr_ticks'). So, limit the
  1448. * loop to 10 iterations. Beyond that, there's no way to ensure correct pulse
  1449. * timing, since the MCU isn't fast enough.
  1450. */
  1451. if (!--max_loops) next_isr_ticks = min_ticks;
  1452. // Advance pulses if not enough time to wait for the next ISR
  1453. } while (next_isr_ticks < min_ticks);
  1454. // Now 'next_isr_ticks' contains the period to the next Stepper ISR - And we are
  1455. // sure that the time has not arrived yet - Warrantied by the scheduler
  1456. // Set the next ISR to fire at the proper time
  1457. HAL_timer_set_compare(MF_TIMER_STEP, hal_timer_t(next_isr_ticks));
  1458. // Don't forget to finally reenable interrupts
  1459. hal.isr_on();
  1460. }
  1461. #if MINIMUM_STEPPER_PULSE || MAXIMUM_STEPPER_RATE
  1462. #define ISR_PULSE_CONTROL 1
  1463. #endif
  1464. #if ISR_PULSE_CONTROL && DISABLED(I2S_STEPPER_STREAM)
  1465. #define ISR_MULTI_STEPS 1
  1466. #endif
  1467. /**
  1468. * This phase of the ISR should ONLY create the pulses for the steppers.
  1469. * This prevents jitter caused by the interval between the start of the
  1470. * interrupt and the start of the pulses. DON'T add any logic ahead of the
  1471. * call to this method that might cause variation in the timing. The aim
  1472. * is to keep pulse timing as regular as possible.
  1473. */
  1474. void Stepper::pulse_phase_isr() {
  1475. // If we must abort the current block, do so!
  1476. if (abort_current_block) {
  1477. abort_current_block = false;
  1478. if (current_block) discard_current_block();
  1479. }
  1480. // If there is no current block, do nothing
  1481. if (!current_block) return;
  1482. // Skipping step processing causes motion to freeze
  1483. if (TERN0(FREEZE_FEATURE, frozen)) return;
  1484. // Count of pending loops and events for this iteration
  1485. const uint32_t pending_events = step_event_count - step_events_completed;
  1486. uint8_t events_to_do = _MIN(pending_events, steps_per_isr);
  1487. // Just update the value we will get at the end of the loop
  1488. step_events_completed += events_to_do;
  1489. // Take multiple steps per interrupt (For high speed moves)
  1490. #if ISR_MULTI_STEPS
  1491. bool firstStep = true;
  1492. USING_TIMED_PULSE();
  1493. #endif
  1494. xyze_bool_t step_needed{0};
  1495. do {
  1496. #define _APPLY_STEP(AXIS, INV, ALWAYS) AXIS ##_APPLY_STEP(INV, ALWAYS)
  1497. #define _INVERT_STEP_PIN(AXIS) INVERT_## AXIS ##_STEP_PIN
  1498. // Determine if a pulse is needed using Bresenham
  1499. #define PULSE_PREP(AXIS) do{ \
  1500. delta_error[_AXIS(AXIS)] += advance_dividend[_AXIS(AXIS)]; \
  1501. step_needed[_AXIS(AXIS)] = (delta_error[_AXIS(AXIS)] >= 0); \
  1502. if (step_needed[_AXIS(AXIS)]) { \
  1503. count_position[_AXIS(AXIS)] += count_direction[_AXIS(AXIS)]; \
  1504. delta_error[_AXIS(AXIS)] -= advance_divisor; \
  1505. } \
  1506. }while(0)
  1507. // Start an active pulse if needed
  1508. #define PULSE_START(AXIS) do{ \
  1509. if (step_needed[_AXIS(AXIS)]) { \
  1510. _APPLY_STEP(AXIS, !_INVERT_STEP_PIN(AXIS), 0); \
  1511. } \
  1512. }while(0)
  1513. // Stop an active pulse if needed
  1514. #define PULSE_STOP(AXIS) do { \
  1515. if (step_needed[_AXIS(AXIS)]) { \
  1516. _APPLY_STEP(AXIS, _INVERT_STEP_PIN(AXIS), 0); \
  1517. } \
  1518. }while(0)
  1519. // Direct Stepping page?
  1520. const bool is_page = IS_PAGE(current_block);
  1521. #if ENABLED(DIRECT_STEPPING)
  1522. // Direct stepping is currently not ready for HAS_I_AXIS
  1523. if (is_page) {
  1524. #if STEPPER_PAGE_FORMAT == SP_4x4D_128
  1525. #define PAGE_SEGMENT_UPDATE(AXIS, VALUE) do{ \
  1526. if ((VALUE) < 7) SBI(dm, _AXIS(AXIS)); \
  1527. else if ((VALUE) > 7) CBI(dm, _AXIS(AXIS)); \
  1528. page_step_state.sd[_AXIS(AXIS)] = VALUE; \
  1529. page_step_state.bd[_AXIS(AXIS)] += VALUE; \
  1530. }while(0)
  1531. #define PAGE_PULSE_PREP(AXIS) do{ \
  1532. step_needed[_AXIS(AXIS)] = \
  1533. pgm_read_byte(&segment_table[page_step_state.sd[_AXIS(AXIS)]][page_step_state.segment_steps & 0x7]); \
  1534. }while(0)
  1535. switch (page_step_state.segment_steps) {
  1536. case DirectStepping::Config::SEGMENT_STEPS:
  1537. page_step_state.segment_idx += 2;
  1538. page_step_state.segment_steps = 0;
  1539. // fallthru
  1540. case 0: {
  1541. const uint8_t low = page_step_state.page[page_step_state.segment_idx],
  1542. high = page_step_state.page[page_step_state.segment_idx + 1];
  1543. axis_bits_t dm = last_direction_bits;
  1544. PAGE_SEGMENT_UPDATE(X, low >> 4);
  1545. PAGE_SEGMENT_UPDATE(Y, low & 0xF);
  1546. PAGE_SEGMENT_UPDATE(Z, high >> 4);
  1547. PAGE_SEGMENT_UPDATE(E, high & 0xF);
  1548. if (dm != last_direction_bits)
  1549. set_directions(dm);
  1550. } break;
  1551. default: break;
  1552. }
  1553. PAGE_PULSE_PREP(X);
  1554. PAGE_PULSE_PREP(Y);
  1555. PAGE_PULSE_PREP(Z);
  1556. TERN_(HAS_EXTRUDERS, PAGE_PULSE_PREP(E));
  1557. page_step_state.segment_steps++;
  1558. #elif STEPPER_PAGE_FORMAT == SP_4x2_256
  1559. #define PAGE_SEGMENT_UPDATE(AXIS, VALUE) \
  1560. page_step_state.sd[_AXIS(AXIS)] = VALUE; \
  1561. page_step_state.bd[_AXIS(AXIS)] += VALUE;
  1562. #define PAGE_PULSE_PREP(AXIS) do{ \
  1563. step_needed[_AXIS(AXIS)] = \
  1564. pgm_read_byte(&segment_table[page_step_state.sd[_AXIS(AXIS)]][page_step_state.segment_steps & 0x3]); \
  1565. }while(0)
  1566. switch (page_step_state.segment_steps) {
  1567. case DirectStepping::Config::SEGMENT_STEPS:
  1568. page_step_state.segment_idx++;
  1569. page_step_state.segment_steps = 0;
  1570. // fallthru
  1571. case 0: {
  1572. const uint8_t b = page_step_state.page[page_step_state.segment_idx];
  1573. PAGE_SEGMENT_UPDATE(X, (b >> 6) & 0x3);
  1574. PAGE_SEGMENT_UPDATE(Y, (b >> 4) & 0x3);
  1575. PAGE_SEGMENT_UPDATE(Z, (b >> 2) & 0x3);
  1576. PAGE_SEGMENT_UPDATE(E, (b >> 0) & 0x3);
  1577. } break;
  1578. default: break;
  1579. }
  1580. PAGE_PULSE_PREP(X);
  1581. PAGE_PULSE_PREP(Y);
  1582. PAGE_PULSE_PREP(Z);
  1583. TERN_(HAS_EXTRUDERS, PAGE_PULSE_PREP(E));
  1584. page_step_state.segment_steps++;
  1585. #elif STEPPER_PAGE_FORMAT == SP_4x1_512
  1586. #define PAGE_PULSE_PREP(AXIS, BITS) do{ \
  1587. step_needed[_AXIS(AXIS)] = (steps >> BITS) & 0x1; \
  1588. if (step_needed[_AXIS(AXIS)]) \
  1589. page_step_state.bd[_AXIS(AXIS)]++; \
  1590. }while(0)
  1591. uint8_t steps = page_step_state.page[page_step_state.segment_idx >> 1];
  1592. if (page_step_state.segment_idx & 0x1) steps >>= 4;
  1593. PAGE_PULSE_PREP(X, 3);
  1594. PAGE_PULSE_PREP(Y, 2);
  1595. PAGE_PULSE_PREP(Z, 1);
  1596. PAGE_PULSE_PREP(E, 0);
  1597. page_step_state.segment_idx++;
  1598. #else
  1599. #error "Unknown direct stepping page format!"
  1600. #endif
  1601. }
  1602. #endif // DIRECT_STEPPING
  1603. if (!is_page) {
  1604. // Determine if pulses are needed
  1605. #if HAS_X_STEP
  1606. PULSE_PREP(X);
  1607. #endif
  1608. #if HAS_Y_STEP
  1609. PULSE_PREP(Y);
  1610. #endif
  1611. #if HAS_Z_STEP
  1612. PULSE_PREP(Z);
  1613. #endif
  1614. #if HAS_I_STEP
  1615. PULSE_PREP(I);
  1616. #endif
  1617. #if HAS_J_STEP
  1618. PULSE_PREP(J);
  1619. #endif
  1620. #if HAS_K_STEP
  1621. PULSE_PREP(K);
  1622. #endif
  1623. #if HAS_U_STEP
  1624. PULSE_PREP(U);
  1625. #endif
  1626. #if HAS_V_STEP
  1627. PULSE_PREP(V);
  1628. #endif
  1629. #if HAS_W_STEP
  1630. PULSE_PREP(W);
  1631. #endif
  1632. #if EITHER(LIN_ADVANCE, MIXING_EXTRUDER)
  1633. delta_error.e += advance_dividend.e;
  1634. if (delta_error.e >= 0) {
  1635. #if ENABLED(LIN_ADVANCE)
  1636. delta_error.e -= advance_divisor;
  1637. // Don't step E here - But remember the number of steps to perform
  1638. motor_direction(E_AXIS) ? --LA_steps : ++LA_steps;
  1639. #else
  1640. count_position.e += count_direction.e;
  1641. step_needed.e = true;
  1642. #endif
  1643. }
  1644. #elif HAS_E0_STEP
  1645. PULSE_PREP(E);
  1646. #endif
  1647. }
  1648. #if ISR_MULTI_STEPS
  1649. if (firstStep)
  1650. firstStep = false;
  1651. else
  1652. AWAIT_LOW_PULSE();
  1653. #endif
  1654. // Pulse start
  1655. #if HAS_X_STEP
  1656. PULSE_START(X);
  1657. #endif
  1658. #if HAS_Y_STEP
  1659. PULSE_START(Y);
  1660. #endif
  1661. #if HAS_Z_STEP
  1662. PULSE_START(Z);
  1663. #endif
  1664. #if HAS_I_STEP
  1665. PULSE_START(I);
  1666. #endif
  1667. #if HAS_J_STEP
  1668. PULSE_START(J);
  1669. #endif
  1670. #if HAS_K_STEP
  1671. PULSE_START(K);
  1672. #endif
  1673. #if HAS_U_STEP
  1674. PULSE_START(U);
  1675. #endif
  1676. #if HAS_V_STEP
  1677. PULSE_START(V);
  1678. #endif
  1679. #if HAS_W_STEP
  1680. PULSE_START(W);
  1681. #endif
  1682. #if DISABLED(LIN_ADVANCE)
  1683. #if ENABLED(MIXING_EXTRUDER)
  1684. if (step_needed.e) E_STEP_WRITE(mixer.get_next_stepper(), !INVERT_E_STEP_PIN);
  1685. #elif HAS_E0_STEP
  1686. PULSE_START(E);
  1687. #endif
  1688. #endif
  1689. TERN_(I2S_STEPPER_STREAM, i2s_push_sample());
  1690. // TODO: need to deal with MINIMUM_STEPPER_PULSE over i2s
  1691. #if ISR_MULTI_STEPS
  1692. START_HIGH_PULSE();
  1693. AWAIT_HIGH_PULSE();
  1694. #endif
  1695. // Pulse stop
  1696. #if HAS_X_STEP
  1697. PULSE_STOP(X);
  1698. #endif
  1699. #if HAS_Y_STEP
  1700. PULSE_STOP(Y);
  1701. #endif
  1702. #if HAS_Z_STEP
  1703. PULSE_STOP(Z);
  1704. #endif
  1705. #if HAS_I_STEP
  1706. PULSE_STOP(I);
  1707. #endif
  1708. #if HAS_J_STEP
  1709. PULSE_STOP(J);
  1710. #endif
  1711. #if HAS_K_STEP
  1712. PULSE_STOP(K);
  1713. #endif
  1714. #if HAS_U_STEP
  1715. PULSE_STOP(U);
  1716. #endif
  1717. #if HAS_V_STEP
  1718. PULSE_STOP(V);
  1719. #endif
  1720. #if HAS_W_STEP
  1721. PULSE_STOP(W);
  1722. #endif
  1723. #if DISABLED(LIN_ADVANCE)
  1724. #if ENABLED(MIXING_EXTRUDER)
  1725. if (delta_error.e >= 0) {
  1726. delta_error.e -= advance_divisor;
  1727. E_STEP_WRITE(mixer.get_stepper(), INVERT_E_STEP_PIN);
  1728. }
  1729. #elif HAS_E0_STEP
  1730. PULSE_STOP(E);
  1731. #endif
  1732. #endif
  1733. #if ISR_MULTI_STEPS
  1734. if (events_to_do) START_LOW_PULSE();
  1735. #endif
  1736. } while (--events_to_do);
  1737. }
  1738. // This is the last half of the stepper interrupt: This one processes and
  1739. // properly schedules blocks from the planner. This is executed after creating
  1740. // the step pulses, so it is not time critical, as pulses are already done.
  1741. uint32_t Stepper::block_phase_isr() {
  1742. // If no queued movements, just wait 1ms for the next block
  1743. uint32_t interval = (STEPPER_TIMER_RATE) / 1000UL;
  1744. // If there is a current block
  1745. if (current_block) {
  1746. // If current block is finished, reset pointer and finalize state
  1747. if (step_events_completed >= step_event_count) {
  1748. #if ENABLED(DIRECT_STEPPING)
  1749. // Direct stepping is currently not ready for HAS_I_AXIS
  1750. #if STEPPER_PAGE_FORMAT == SP_4x4D_128
  1751. #define PAGE_SEGMENT_UPDATE_POS(AXIS) \
  1752. count_position[_AXIS(AXIS)] += page_step_state.bd[_AXIS(AXIS)] - 128 * 7;
  1753. #elif STEPPER_PAGE_FORMAT == SP_4x1_512 || STEPPER_PAGE_FORMAT == SP_4x2_256
  1754. #define PAGE_SEGMENT_UPDATE_POS(AXIS) \
  1755. count_position[_AXIS(AXIS)] += page_step_state.bd[_AXIS(AXIS)] * count_direction[_AXIS(AXIS)];
  1756. #endif
  1757. if (IS_PAGE(current_block)) {
  1758. PAGE_SEGMENT_UPDATE_POS(X);
  1759. PAGE_SEGMENT_UPDATE_POS(Y);
  1760. PAGE_SEGMENT_UPDATE_POS(Z);
  1761. PAGE_SEGMENT_UPDATE_POS(E);
  1762. }
  1763. #endif
  1764. TERN_(HAS_FILAMENT_RUNOUT_DISTANCE, runout.block_completed(current_block));
  1765. discard_current_block();
  1766. }
  1767. else {
  1768. // Step events not completed yet...
  1769. // Are we in acceleration phase ?
  1770. if (step_events_completed <= accelerate_until) { // Calculate new timer value
  1771. #if ENABLED(S_CURVE_ACCELERATION)
  1772. // Get the next speed to use (Jerk limited!)
  1773. uint32_t acc_step_rate = acceleration_time < current_block->acceleration_time
  1774. ? _eval_bezier_curve(acceleration_time)
  1775. : current_block->cruise_rate;
  1776. #else
  1777. acc_step_rate = STEP_MULTIPLY(acceleration_time, current_block->acceleration_rate) + current_block->initial_rate;
  1778. NOMORE(acc_step_rate, current_block->nominal_rate);
  1779. #endif
  1780. // acc_step_rate is in steps/second
  1781. // step_rate to timer interval and steps per stepper isr
  1782. interval = calc_timer_interval(acc_step_rate, &steps_per_isr);
  1783. acceleration_time += interval;
  1784. #if ENABLED(LIN_ADVANCE)
  1785. if (LA_use_advance_lead) {
  1786. // Fire ISR if final adv_rate is reached
  1787. if (LA_steps && LA_isr_rate != current_block->advance_speed) nextAdvanceISR = 0;
  1788. }
  1789. else if (LA_steps) nextAdvanceISR = 0;
  1790. #endif
  1791. // Update laser - Accelerating
  1792. #if ENABLED(LASER_POWER_INLINE_TRAPEZOID)
  1793. if (laser_trap.enabled) {
  1794. #if DISABLED(LASER_POWER_INLINE_TRAPEZOID_CONT)
  1795. if (current_block->laser.entry_per) {
  1796. laser_trap.acc_step_count -= step_events_completed - laser_trap.last_step_count;
  1797. laser_trap.last_step_count = step_events_completed;
  1798. // Should be faster than a divide, since this should trip just once
  1799. if (laser_trap.acc_step_count < 0) {
  1800. while (laser_trap.acc_step_count < 0) {
  1801. laser_trap.acc_step_count += current_block->laser.entry_per;
  1802. if (laser_trap.cur_power < current_block->laser.power) laser_trap.cur_power++;
  1803. }
  1804. cutter.ocr_set_power(laser_trap.cur_power);
  1805. }
  1806. }
  1807. #else
  1808. if (laser_trap.till_update)
  1809. laser_trap.till_update--;
  1810. else {
  1811. laser_trap.till_update = LASER_POWER_INLINE_TRAPEZOID_CONT_PER;
  1812. laser_trap.cur_power = (current_block->laser.power * acc_step_rate) / current_block->nominal_rate;
  1813. cutter.ocr_set_power(laser_trap.cur_power); // Cycle efficiency is irrelevant it the last line was many cycles
  1814. }
  1815. #endif
  1816. }
  1817. #endif
  1818. }
  1819. // Are we in Deceleration phase ?
  1820. else if (step_events_completed > decelerate_after) {
  1821. uint32_t step_rate;
  1822. #if ENABLED(S_CURVE_ACCELERATION)
  1823. // If this is the 1st time we process the 2nd half of the trapezoid...
  1824. if (!bezier_2nd_half) {
  1825. // Initialize the Bézier speed curve
  1826. _calc_bezier_curve_coeffs(current_block->cruise_rate, current_block->final_rate, current_block->deceleration_time_inverse);
  1827. bezier_2nd_half = true;
  1828. // The first point starts at cruise rate. Just save evaluation of the Bézier curve
  1829. step_rate = current_block->cruise_rate;
  1830. }
  1831. else {
  1832. // Calculate the next speed to use
  1833. step_rate = deceleration_time < current_block->deceleration_time
  1834. ? _eval_bezier_curve(deceleration_time)
  1835. : current_block->final_rate;
  1836. }
  1837. #else
  1838. // Using the old trapezoidal control
  1839. step_rate = STEP_MULTIPLY(deceleration_time, current_block->acceleration_rate);
  1840. if (step_rate < acc_step_rate) { // Still decelerating?
  1841. step_rate = acc_step_rate - step_rate;
  1842. NOLESS(step_rate, current_block->final_rate);
  1843. }
  1844. else
  1845. step_rate = current_block->final_rate;
  1846. #endif
  1847. // step_rate is in steps/second
  1848. // step_rate to timer interval and steps per stepper isr
  1849. interval = calc_timer_interval(step_rate, &steps_per_isr);
  1850. deceleration_time += interval;
  1851. #if ENABLED(LIN_ADVANCE)
  1852. if (LA_use_advance_lead) {
  1853. // Wake up eISR on first deceleration loop and fire ISR if final adv_rate is reached
  1854. if (step_events_completed <= decelerate_after + steps_per_isr || (LA_steps && LA_isr_rate != current_block->advance_speed)) {
  1855. initiateLA();
  1856. LA_isr_rate = current_block->advance_speed;
  1857. }
  1858. }
  1859. else if (LA_steps) nextAdvanceISR = 0;
  1860. #endif // LIN_ADVANCE
  1861. // Update laser - Decelerating
  1862. #if ENABLED(LASER_POWER_INLINE_TRAPEZOID)
  1863. if (laser_trap.enabled) {
  1864. #if DISABLED(LASER_POWER_INLINE_TRAPEZOID_CONT)
  1865. if (current_block->laser.exit_per) {
  1866. laser_trap.acc_step_count -= step_events_completed - laser_trap.last_step_count;
  1867. laser_trap.last_step_count = step_events_completed;
  1868. // Should be faster than a divide, since this should trip just once
  1869. if (laser_trap.acc_step_count < 0) {
  1870. while (laser_trap.acc_step_count < 0) {
  1871. laser_trap.acc_step_count += current_block->laser.exit_per;
  1872. if (laser_trap.cur_power > current_block->laser.power_exit) laser_trap.cur_power--;
  1873. }
  1874. cutter.ocr_set_power(laser_trap.cur_power);
  1875. }
  1876. }
  1877. #else
  1878. if (laser_trap.till_update)
  1879. laser_trap.till_update--;
  1880. else {
  1881. laser_trap.till_update = LASER_POWER_INLINE_TRAPEZOID_CONT_PER;
  1882. laser_trap.cur_power = (current_block->laser.power * step_rate) / current_block->nominal_rate;
  1883. cutter.ocr_set_power(laser_trap.cur_power); // Cycle efficiency isn't relevant when the last line was many cycles
  1884. }
  1885. #endif
  1886. }
  1887. #endif
  1888. }
  1889. // Must be in cruise phase otherwise
  1890. else {
  1891. #if ENABLED(LIN_ADVANCE)
  1892. // If there are any esteps, fire the next advance_isr "now"
  1893. if (LA_steps && LA_isr_rate != current_block->advance_speed) initiateLA();
  1894. #endif
  1895. // Calculate the ticks_nominal for this nominal speed, if not done yet
  1896. if (ticks_nominal < 0) {
  1897. // step_rate to timer interval and loops for the nominal speed
  1898. ticks_nominal = calc_timer_interval(current_block->nominal_rate, &steps_per_isr);
  1899. }
  1900. // The timer interval is just the nominal value for the nominal speed
  1901. interval = ticks_nominal;
  1902. // Update laser - Cruising
  1903. #if ENABLED(LASER_POWER_INLINE_TRAPEZOID)
  1904. if (laser_trap.enabled) {
  1905. if (!laser_trap.cruise_set) {
  1906. laser_trap.cur_power = current_block->laser.power;
  1907. cutter.ocr_set_power(laser_trap.cur_power);
  1908. laser_trap.cruise_set = true;
  1909. }
  1910. #if ENABLED(LASER_POWER_INLINE_TRAPEZOID_CONT)
  1911. laser_trap.till_update = LASER_POWER_INLINE_TRAPEZOID_CONT_PER;
  1912. #else
  1913. laser_trap.last_step_count = step_events_completed;
  1914. #endif
  1915. }
  1916. #endif
  1917. }
  1918. }
  1919. }
  1920. // If there is no current block at this point, attempt to pop one from the buffer
  1921. // and prepare its movement
  1922. if (!current_block) {
  1923. // Anything in the buffer?
  1924. if ((current_block = planner.get_current_block())) {
  1925. // Sync block? Sync the stepper counts or fan speeds and return
  1926. while (current_block->flag & BLOCK_MASK_SYNC) {
  1927. #if ENABLED(LASER_SYNCHRONOUS_M106_M107)
  1928. const bool is_sync_fans = TEST(current_block->flag, BLOCK_BIT_SYNC_FANS);
  1929. if (is_sync_fans) planner.sync_fan_speeds(current_block->fan_speed);
  1930. #else
  1931. constexpr bool is_sync_fans = false;
  1932. #endif
  1933. if (!is_sync_fans) _set_position(current_block->position);
  1934. discard_current_block();
  1935. // Try to get a new block
  1936. if (!(current_block = planner.get_current_block()))
  1937. return interval; // No more queued movements!
  1938. }
  1939. // For non-inline cutter, grossly apply power
  1940. #if ENABLED(LASER_FEATURE) && DISABLED(LASER_POWER_INLINE)
  1941. cutter.apply_power(current_block->cutter_power);
  1942. #endif
  1943. #if ENABLED(POWER_LOSS_RECOVERY)
  1944. recovery.info.sdpos = current_block->sdpos;
  1945. recovery.info.current_position = current_block->start_position;
  1946. #endif
  1947. #if ENABLED(DIRECT_STEPPING)
  1948. if (IS_PAGE(current_block)) {
  1949. page_step_state.segment_steps = 0;
  1950. page_step_state.segment_idx = 0;
  1951. page_step_state.page = page_manager.get_page(current_block->page_idx);
  1952. page_step_state.bd.reset();
  1953. if (DirectStepping::Config::DIRECTIONAL)
  1954. current_block->direction_bits = last_direction_bits;
  1955. if (!page_step_state.page) {
  1956. discard_current_block();
  1957. return interval;
  1958. }
  1959. }
  1960. #endif
  1961. // Flag all moving axes for proper endstop handling
  1962. #if IS_CORE
  1963. // Define conditions for checking endstops
  1964. #define S_(N) current_block->steps[CORE_AXIS_##N]
  1965. #define D_(N) TEST(current_block->direction_bits, CORE_AXIS_##N)
  1966. #endif
  1967. #if CORE_IS_XY || CORE_IS_XZ
  1968. /**
  1969. * Head direction in -X axis for CoreXY and CoreXZ bots.
  1970. *
  1971. * If steps differ, both axes are moving.
  1972. * If DeltaA == -DeltaB, the movement is only in the 2nd axis (Y or Z, handled below)
  1973. * If DeltaA == DeltaB, the movement is only in the 1st axis (X)
  1974. */
  1975. #if EITHER(COREXY, COREXZ)
  1976. #define X_CMP(A,B) ((A)==(B))
  1977. #else
  1978. #define X_CMP(A,B) ((A)!=(B))
  1979. #endif
  1980. #define X_MOVE_TEST ( S_(1) != S_(2) || (S_(1) > 0 && X_CMP(D_(1),D_(2))) )
  1981. #elif ENABLED(MARKFORGED_XY)
  1982. #define X_MOVE_TEST (current_block->steps.a != current_block->steps.b)
  1983. #else
  1984. #define X_MOVE_TEST !!current_block->steps.a
  1985. #endif
  1986. #if CORE_IS_XY || CORE_IS_YZ
  1987. /**
  1988. * Head direction in -Y axis for CoreXY / CoreYZ bots.
  1989. *
  1990. * If steps differ, both axes are moving
  1991. * If DeltaA == DeltaB, the movement is only in the 1st axis (X or Y)
  1992. * If DeltaA == -DeltaB, the movement is only in the 2nd axis (Y or Z)
  1993. */
  1994. #if EITHER(COREYX, COREYZ)
  1995. #define Y_CMP(A,B) ((A)==(B))
  1996. #else
  1997. #define Y_CMP(A,B) ((A)!=(B))
  1998. #endif
  1999. #define Y_MOVE_TEST ( S_(1) != S_(2) || (S_(1) > 0 && Y_CMP(D_(1),D_(2))) )
  2000. #elif ENABLED(MARKFORGED_YX)
  2001. #define Y_MOVE_TEST (current_block->steps.a != current_block->steps.b)
  2002. #else
  2003. #define Y_MOVE_TEST !!current_block->steps.b
  2004. #endif
  2005. #if CORE_IS_XZ || CORE_IS_YZ
  2006. /**
  2007. * Head direction in -Z axis for CoreXZ or CoreYZ bots.
  2008. *
  2009. * If steps differ, both axes are moving
  2010. * If DeltaA == DeltaB, the movement is only in the 1st axis (X or Y, already handled above)
  2011. * If DeltaA == -DeltaB, the movement is only in the 2nd axis (Z)
  2012. */
  2013. #if EITHER(COREZX, COREZY)
  2014. #define Z_CMP(A,B) ((A)==(B))
  2015. #else
  2016. #define Z_CMP(A,B) ((A)!=(B))
  2017. #endif
  2018. #define Z_MOVE_TEST ( S_(1) != S_(2) || (S_(1) > 0 && Z_CMP(D_(1),D_(2))) )
  2019. #else
  2020. #define Z_MOVE_TEST !!current_block->steps.c
  2021. #endif
  2022. axis_bits_t axis_bits = 0;
  2023. NUM_AXIS_CODE(
  2024. if (X_MOVE_TEST) SBI(axis_bits, A_AXIS),
  2025. if (Y_MOVE_TEST) SBI(axis_bits, B_AXIS),
  2026. if (Z_MOVE_TEST) SBI(axis_bits, C_AXIS),
  2027. if (current_block->steps.i) SBI(axis_bits, I_AXIS),
  2028. if (current_block->steps.j) SBI(axis_bits, J_AXIS),
  2029. if (current_block->steps.k) SBI(axis_bits, K_AXIS),
  2030. if (current_block->steps.u) SBI(axis_bits, U_AXIS),
  2031. if (current_block->steps.v) SBI(axis_bits, V_AXIS),
  2032. if (current_block->steps.w) SBI(axis_bits, W_AXIS)
  2033. );
  2034. //if (current_block->steps.e) SBI(axis_bits, E_AXIS);
  2035. //if (current_block->steps.a) SBI(axis_bits, X_HEAD);
  2036. //if (current_block->steps.b) SBI(axis_bits, Y_HEAD);
  2037. //if (current_block->steps.c) SBI(axis_bits, Z_HEAD);
  2038. axis_did_move = axis_bits;
  2039. // No acceleration / deceleration time elapsed so far
  2040. acceleration_time = deceleration_time = 0;
  2041. #if ENABLED(ADAPTIVE_STEP_SMOOTHING)
  2042. uint8_t oversampling = 0; // Assume no axis smoothing (via oversampling)
  2043. // Decide if axis smoothing is possible
  2044. uint32_t max_rate = current_block->nominal_rate; // Get the step event rate
  2045. while (max_rate < MIN_STEP_ISR_FREQUENCY) { // As long as more ISRs are possible...
  2046. max_rate <<= 1; // Try to double the rate
  2047. if (max_rate < MIN_STEP_ISR_FREQUENCY) // Don't exceed the estimated ISR limit
  2048. ++oversampling; // Increase the oversampling (used for left-shift)
  2049. }
  2050. oversampling_factor = oversampling; // For all timer interval calculations
  2051. #else
  2052. constexpr uint8_t oversampling = 0;
  2053. #endif
  2054. // Based on the oversampling factor, do the calculations
  2055. step_event_count = current_block->step_event_count << oversampling;
  2056. // Initialize Bresenham delta errors to 1/2
  2057. delta_error = -int32_t(step_event_count);
  2058. // Calculate Bresenham dividends and divisors
  2059. advance_dividend = current_block->steps << 1;
  2060. advance_divisor = step_event_count << 1;
  2061. // No step events completed so far
  2062. step_events_completed = 0;
  2063. // Compute the acceleration and deceleration points
  2064. accelerate_until = current_block->accelerate_until << oversampling;
  2065. decelerate_after = current_block->decelerate_after << oversampling;
  2066. TERN_(MIXING_EXTRUDER, mixer.stepper_setup(current_block->b_color));
  2067. E_TERN_(stepper_extruder = current_block->extruder);
  2068. // Initialize the trapezoid generator from the current block.
  2069. #if ENABLED(LIN_ADVANCE)
  2070. #if DISABLED(MIXING_EXTRUDER) && E_STEPPERS > 1
  2071. // If the now active extruder wasn't in use during the last move, its pressure is most likely gone.
  2072. if (stepper_extruder != last_moved_extruder) LA_current_adv_steps = 0;
  2073. #endif
  2074. if ((LA_use_advance_lead = current_block->use_advance_lead)) {
  2075. LA_final_adv_steps = current_block->final_adv_steps;
  2076. LA_max_adv_steps = current_block->max_adv_steps;
  2077. initiateLA(); // Start the ISR
  2078. LA_isr_rate = current_block->advance_speed;
  2079. }
  2080. else LA_isr_rate = LA_ADV_NEVER;
  2081. #endif
  2082. if ( ENABLED(HAS_L64XX) // Always set direction for L64xx (Also enables the chips)
  2083. || ENABLED(DUAL_X_CARRIAGE) // TODO: Find out why this fixes "jittery" small circles
  2084. || current_block->direction_bits != last_direction_bits
  2085. || TERN(MIXING_EXTRUDER, false, stepper_extruder != last_moved_extruder)
  2086. ) {
  2087. E_TERN_(last_moved_extruder = stepper_extruder);
  2088. TERN_(HAS_L64XX, L64XX_OK_to_power_up = true);
  2089. set_directions(current_block->direction_bits);
  2090. }
  2091. #if ENABLED(LASER_POWER_INLINE)
  2092. const power_status_t stat = current_block->laser.status;
  2093. #if ENABLED(LASER_POWER_INLINE_TRAPEZOID)
  2094. laser_trap.enabled = stat.isPlanned && stat.isEnabled;
  2095. laser_trap.cur_power = current_block->laser.power_entry; // RESET STATE
  2096. laser_trap.cruise_set = false;
  2097. #if DISABLED(LASER_POWER_INLINE_TRAPEZOID_CONT)
  2098. laser_trap.last_step_count = 0;
  2099. laser_trap.acc_step_count = current_block->laser.entry_per / 2;
  2100. #else
  2101. laser_trap.till_update = 0;
  2102. #endif
  2103. // Always have PWM in this case
  2104. if (stat.isPlanned) { // Planner controls the laser
  2105. cutter.ocr_set_power(
  2106. stat.isEnabled ? laser_trap.cur_power : 0 // ON with power or OFF
  2107. );
  2108. }
  2109. #else
  2110. if (stat.isPlanned) { // Planner controls the laser
  2111. #if ENABLED(SPINDLE_LASER_USE_PWM)
  2112. cutter.ocr_set_power(
  2113. stat.isEnabled ? current_block->laser.power : 0 // ON with power or OFF
  2114. );
  2115. #else
  2116. cutter.set_enabled(stat.isEnabled);
  2117. #endif
  2118. }
  2119. #endif
  2120. #endif // LASER_POWER_INLINE
  2121. // If the endstop is already pressed, endstop interrupts won't invoke
  2122. // endstop_triggered and the move will grind. So check here for a
  2123. // triggered endstop, which marks the block for discard on the next ISR.
  2124. endstops.update();
  2125. #if ENABLED(Z_LATE_ENABLE)
  2126. // If delayed Z enable, enable it now. This option will severely interfere with
  2127. // timing between pulses when chaining motion between blocks, and it could lead
  2128. // to lost steps in both X and Y axis, so avoid using it unless strictly necessary!!
  2129. if (current_block->steps.z) enable_axis(Z_AXIS);
  2130. #endif
  2131. // Mark the time_nominal as not calculated yet
  2132. ticks_nominal = -1;
  2133. #if ENABLED(S_CURVE_ACCELERATION)
  2134. // Initialize the Bézier speed curve
  2135. _calc_bezier_curve_coeffs(current_block->initial_rate, current_block->cruise_rate, current_block->acceleration_time_inverse);
  2136. // We haven't started the 2nd half of the trapezoid
  2137. bezier_2nd_half = false;
  2138. #else
  2139. // Set as deceleration point the initial rate of the block
  2140. acc_step_rate = current_block->initial_rate;
  2141. #endif
  2142. // Calculate the initial timer interval
  2143. interval = calc_timer_interval(current_block->initial_rate, &steps_per_isr);
  2144. }
  2145. #if ENABLED(LASER_POWER_INLINE_CONTINUOUS)
  2146. else { // No new block found; so apply inline laser parameters
  2147. // This should mean ending file with 'M5 I' will stop the laser; thus the inline flag isn't needed
  2148. const power_status_t stat = planner.laser_inline.status;
  2149. if (stat.isPlanned) { // Planner controls the laser
  2150. #if ENABLED(SPINDLE_LASER_USE_PWM)
  2151. cutter.ocr_set_power(
  2152. stat.isEnabled ? planner.laser_inline.power : 0 // ON with power or OFF
  2153. );
  2154. #else
  2155. cutter.set_enabled(stat.isEnabled);
  2156. #endif
  2157. }
  2158. }
  2159. #endif
  2160. }
  2161. // Return the interval to wait
  2162. return interval;
  2163. }
  2164. #if ENABLED(LIN_ADVANCE)
  2165. // Timer interrupt for E. LA_steps is set in the main routine
  2166. uint32_t Stepper::advance_isr() {
  2167. uint32_t interval;
  2168. if (LA_use_advance_lead) {
  2169. if (step_events_completed > decelerate_after && LA_current_adv_steps > LA_final_adv_steps) {
  2170. LA_steps--;
  2171. LA_current_adv_steps--;
  2172. interval = LA_isr_rate;
  2173. }
  2174. else if (step_events_completed < decelerate_after && LA_current_adv_steps < LA_max_adv_steps) {
  2175. LA_steps++;
  2176. LA_current_adv_steps++;
  2177. interval = LA_isr_rate;
  2178. }
  2179. else
  2180. interval = LA_isr_rate = LA_ADV_NEVER;
  2181. }
  2182. else
  2183. interval = LA_ADV_NEVER;
  2184. if (!LA_steps) return interval; // Leave pins alone if there are no steps!
  2185. DIR_WAIT_BEFORE();
  2186. #if ENABLED(MIXING_EXTRUDER)
  2187. // We don't know which steppers will be stepped because LA loop follows,
  2188. // with potentially multiple steps. Set all.
  2189. if (LA_steps > 0) {
  2190. MIXER_STEPPER_LOOP(j) NORM_E_DIR(j);
  2191. count_direction.e = 1;
  2192. }
  2193. else if (LA_steps < 0) {
  2194. MIXER_STEPPER_LOOP(j) REV_E_DIR(j);
  2195. count_direction.e = -1;
  2196. }
  2197. #else
  2198. if (LA_steps > 0) {
  2199. NORM_E_DIR(stepper_extruder);
  2200. count_direction.e = 1;
  2201. }
  2202. else if (LA_steps < 0) {
  2203. REV_E_DIR(stepper_extruder);
  2204. count_direction.e = -1;
  2205. }
  2206. #endif
  2207. DIR_WAIT_AFTER();
  2208. //const hal_timer_t added_step_ticks = hal_timer_t(ADDED_STEP_TICKS);
  2209. // Step E stepper if we have steps
  2210. #if ISR_MULTI_STEPS
  2211. bool firstStep = true;
  2212. USING_TIMED_PULSE();
  2213. #endif
  2214. while (LA_steps) {
  2215. #if ISR_MULTI_STEPS
  2216. if (firstStep)
  2217. firstStep = false;
  2218. else
  2219. AWAIT_LOW_PULSE();
  2220. #endif
  2221. count_position.e += count_direction.e;
  2222. // Set the STEP pulse ON
  2223. #if ENABLED(MIXING_EXTRUDER)
  2224. E_STEP_WRITE(mixer.get_next_stepper(), !INVERT_E_STEP_PIN);
  2225. #else
  2226. E_STEP_WRITE(stepper_extruder, !INVERT_E_STEP_PIN);
  2227. #endif
  2228. // Enforce a minimum duration for STEP pulse ON
  2229. #if ISR_PULSE_CONTROL
  2230. START_HIGH_PULSE();
  2231. #endif
  2232. LA_steps < 0 ? ++LA_steps : --LA_steps;
  2233. #if ISR_PULSE_CONTROL
  2234. AWAIT_HIGH_PULSE();
  2235. #endif
  2236. // Set the STEP pulse OFF
  2237. #if ENABLED(MIXING_EXTRUDER)
  2238. E_STEP_WRITE(mixer.get_stepper(), INVERT_E_STEP_PIN);
  2239. #else
  2240. E_STEP_WRITE(stepper_extruder, INVERT_E_STEP_PIN);
  2241. #endif
  2242. // For minimum pulse time wait before looping
  2243. // Just wait for the requested pulse duration
  2244. #if ISR_PULSE_CONTROL
  2245. if (LA_steps) START_LOW_PULSE();
  2246. #endif
  2247. } // LA_steps
  2248. return interval;
  2249. }
  2250. #endif // LIN_ADVANCE
  2251. #if ENABLED(INTEGRATED_BABYSTEPPING)
  2252. // Timer interrupt for baby-stepping
  2253. uint32_t Stepper::babystepping_isr() {
  2254. babystep.task();
  2255. return babystep.has_steps() ? BABYSTEP_TICKS : BABYSTEP_NEVER;
  2256. }
  2257. #endif
  2258. // Check if the given block is busy or not - Must not be called from ISR contexts
  2259. // The current_block could change in the middle of the read by an Stepper ISR, so
  2260. // we must explicitly prevent that!
  2261. bool Stepper::is_block_busy(const block_t * const block) {
  2262. #ifdef __AVR__
  2263. // A SW memory barrier, to ensure GCC does not overoptimize loops
  2264. #define sw_barrier() asm volatile("": : :"memory");
  2265. // Keep reading until 2 consecutive reads return the same value,
  2266. // meaning there was no update in-between caused by an interrupt.
  2267. // This works because stepper ISRs happen at a slower rate than
  2268. // successive reads of a variable, so 2 consecutive reads with
  2269. // the same value means no interrupt updated it.
  2270. block_t *vold, *vnew = current_block;
  2271. sw_barrier();
  2272. do {
  2273. vold = vnew;
  2274. vnew = current_block;
  2275. sw_barrier();
  2276. } while (vold != vnew);
  2277. #else
  2278. block_t *vnew = current_block;
  2279. #endif
  2280. // Return if the block is busy or not
  2281. return block == vnew;
  2282. }
  2283. void Stepper::init() {
  2284. #if MB(ALLIGATOR)
  2285. const float motor_current[] = MOTOR_CURRENT;
  2286. unsigned int digipot_motor = 0;
  2287. LOOP_L_N(i, 3 + EXTRUDERS) {
  2288. digipot_motor = 255 * (motor_current[i] / 2.5);
  2289. dac084s085::setValue(i, digipot_motor);
  2290. }
  2291. #endif
  2292. // Init Microstepping Pins
  2293. TERN_(HAS_MICROSTEPS, microstep_init());
  2294. // Init Dir Pins
  2295. TERN_(HAS_X_DIR, X_DIR_INIT());
  2296. TERN_(HAS_X2_DIR, X2_DIR_INIT());
  2297. #if HAS_Y_DIR
  2298. Y_DIR_INIT();
  2299. #if BOTH(HAS_DUAL_Y_STEPPERS, HAS_Y2_DIR)
  2300. Y2_DIR_INIT();
  2301. #endif
  2302. #endif
  2303. #if HAS_Z_DIR
  2304. Z_DIR_INIT();
  2305. #if NUM_Z_STEPPERS >= 2 && HAS_Z2_DIR
  2306. Z2_DIR_INIT();
  2307. #endif
  2308. #if NUM_Z_STEPPERS >= 3 && HAS_Z3_DIR
  2309. Z3_DIR_INIT();
  2310. #endif
  2311. #if NUM_Z_STEPPERS >= 4 && HAS_Z4_DIR
  2312. Z4_DIR_INIT();
  2313. #endif
  2314. #endif
  2315. #if HAS_I_DIR
  2316. I_DIR_INIT();
  2317. #endif
  2318. #if HAS_J_DIR
  2319. J_DIR_INIT();
  2320. #endif
  2321. #if HAS_K_DIR
  2322. K_DIR_INIT();
  2323. #endif
  2324. #if HAS_U_DIR
  2325. U_DIR_INIT();
  2326. #endif
  2327. #if HAS_V_DIR
  2328. V_DIR_INIT();
  2329. #endif
  2330. #if HAS_W_DIR
  2331. W_DIR_INIT();
  2332. #endif
  2333. #if HAS_E0_DIR
  2334. E0_DIR_INIT();
  2335. #endif
  2336. #if HAS_E1_DIR
  2337. E1_DIR_INIT();
  2338. #endif
  2339. #if HAS_E2_DIR
  2340. E2_DIR_INIT();
  2341. #endif
  2342. #if HAS_E3_DIR
  2343. E3_DIR_INIT();
  2344. #endif
  2345. #if HAS_E4_DIR
  2346. E4_DIR_INIT();
  2347. #endif
  2348. #if HAS_E5_DIR
  2349. E5_DIR_INIT();
  2350. #endif
  2351. #if HAS_E6_DIR
  2352. E6_DIR_INIT();
  2353. #endif
  2354. #if HAS_E7_DIR
  2355. E7_DIR_INIT();
  2356. #endif
  2357. // Init Enable Pins - steppers default to disabled.
  2358. #if HAS_X_ENABLE
  2359. X_ENABLE_INIT();
  2360. if (!X_ENABLE_ON) X_ENABLE_WRITE(HIGH);
  2361. #if BOTH(HAS_X2_STEPPER, HAS_X2_ENABLE)
  2362. X2_ENABLE_INIT();
  2363. if (!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH);
  2364. #endif
  2365. #endif
  2366. #if HAS_Y_ENABLE
  2367. Y_ENABLE_INIT();
  2368. if (!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH);
  2369. #if BOTH(HAS_DUAL_Y_STEPPERS, HAS_Y2_ENABLE)
  2370. Y2_ENABLE_INIT();
  2371. if (!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH);
  2372. #endif
  2373. #endif
  2374. #if HAS_Z_ENABLE
  2375. Z_ENABLE_INIT();
  2376. if (!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH);
  2377. #if NUM_Z_STEPPERS >= 2 && HAS_Z2_ENABLE
  2378. Z2_ENABLE_INIT();
  2379. if (!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH);
  2380. #endif
  2381. #if NUM_Z_STEPPERS >= 3 && HAS_Z3_ENABLE
  2382. Z3_ENABLE_INIT();
  2383. if (!Z_ENABLE_ON) Z3_ENABLE_WRITE(HIGH);
  2384. #endif
  2385. #if NUM_Z_STEPPERS >= 4 && HAS_Z4_ENABLE
  2386. Z4_ENABLE_INIT();
  2387. if (!Z_ENABLE_ON) Z4_ENABLE_WRITE(HIGH);
  2388. #endif
  2389. #endif
  2390. #if HAS_I_ENABLE
  2391. I_ENABLE_INIT();
  2392. if (!I_ENABLE_ON) I_ENABLE_WRITE(HIGH);
  2393. #endif
  2394. #if HAS_J_ENABLE
  2395. J_ENABLE_INIT();
  2396. if (!J_ENABLE_ON) J_ENABLE_WRITE(HIGH);
  2397. #endif
  2398. #if HAS_K_ENABLE
  2399. K_ENABLE_INIT();
  2400. if (!K_ENABLE_ON) K_ENABLE_WRITE(HIGH);
  2401. #endif
  2402. #if HAS_U_ENABLE
  2403. U_ENABLE_INIT();
  2404. if (!U_ENABLE_ON) U_ENABLE_WRITE(HIGH);
  2405. #endif
  2406. #if HAS_V_ENABLE
  2407. V_ENABLE_INIT();
  2408. if (!V_ENABLE_ON) V_ENABLE_WRITE(HIGH);
  2409. #endif
  2410. #if HAS_W_ENABLE
  2411. W_ENABLE_INIT();
  2412. if (!W_ENABLE_ON) W_ENABLE_WRITE(HIGH);
  2413. #endif
  2414. #if HAS_E0_ENABLE
  2415. E0_ENABLE_INIT();
  2416. if (!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH);
  2417. #endif
  2418. #if HAS_E1_ENABLE
  2419. E1_ENABLE_INIT();
  2420. if (!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH);
  2421. #endif
  2422. #if HAS_E2_ENABLE
  2423. E2_ENABLE_INIT();
  2424. if (!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH);
  2425. #endif
  2426. #if HAS_E3_ENABLE
  2427. E3_ENABLE_INIT();
  2428. if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH);
  2429. #endif
  2430. #if HAS_E4_ENABLE
  2431. E4_ENABLE_INIT();
  2432. if (!E_ENABLE_ON) E4_ENABLE_WRITE(HIGH);
  2433. #endif
  2434. #if HAS_E5_ENABLE
  2435. E5_ENABLE_INIT();
  2436. if (!E_ENABLE_ON) E5_ENABLE_WRITE(HIGH);
  2437. #endif
  2438. #if HAS_E6_ENABLE
  2439. E6_ENABLE_INIT();
  2440. if (!E_ENABLE_ON) E6_ENABLE_WRITE(HIGH);
  2441. #endif
  2442. #if HAS_E7_ENABLE
  2443. E7_ENABLE_INIT();
  2444. if (!E_ENABLE_ON) E7_ENABLE_WRITE(HIGH);
  2445. #endif
  2446. #define _STEP_INIT(AXIS) AXIS ##_STEP_INIT()
  2447. #define _WRITE_STEP(AXIS, HIGHLOW) AXIS ##_STEP_WRITE(HIGHLOW)
  2448. #define _DISABLE_AXIS(AXIS) DISABLE_AXIS_## AXIS()
  2449. #define AXIS_INIT(AXIS, PIN) \
  2450. _STEP_INIT(AXIS); \
  2451. _WRITE_STEP(AXIS, _INVERT_STEP_PIN(PIN)); \
  2452. _DISABLE_AXIS(AXIS)
  2453. #define E_AXIS_INIT(NUM) AXIS_INIT(E## NUM, E)
  2454. // Init Step Pins
  2455. #if HAS_X_STEP
  2456. #if HAS_X2_STEPPER
  2457. X2_STEP_INIT();
  2458. X2_STEP_WRITE(INVERT_X_STEP_PIN);
  2459. #endif
  2460. AXIS_INIT(X, X);
  2461. #endif
  2462. #if HAS_Y_STEP
  2463. #if HAS_DUAL_Y_STEPPERS
  2464. Y2_STEP_INIT();
  2465. Y2_STEP_WRITE(INVERT_Y_STEP_PIN);
  2466. #endif
  2467. AXIS_INIT(Y, Y);
  2468. #endif
  2469. #if HAS_Z_STEP
  2470. #if NUM_Z_STEPPERS >= 2
  2471. Z2_STEP_INIT();
  2472. Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
  2473. #endif
  2474. #if NUM_Z_STEPPERS >= 3
  2475. Z3_STEP_INIT();
  2476. Z3_STEP_WRITE(INVERT_Z_STEP_PIN);
  2477. #endif
  2478. #if NUM_Z_STEPPERS >= 4
  2479. Z4_STEP_INIT();
  2480. Z4_STEP_WRITE(INVERT_Z_STEP_PIN);
  2481. #endif
  2482. AXIS_INIT(Z, Z);
  2483. #endif
  2484. #if HAS_I_STEP
  2485. AXIS_INIT(I, I);
  2486. #endif
  2487. #if HAS_J_STEP
  2488. AXIS_INIT(J, J);
  2489. #endif
  2490. #if HAS_K_STEP
  2491. AXIS_INIT(K, K);
  2492. #endif
  2493. #if HAS_U_STEP
  2494. AXIS_INIT(U, U);
  2495. #endif
  2496. #if HAS_V_STEP
  2497. AXIS_INIT(V, V);
  2498. #endif
  2499. #if HAS_W_STEP
  2500. AXIS_INIT(W, W);
  2501. #endif
  2502. #if E_STEPPERS && HAS_E0_STEP
  2503. E_AXIS_INIT(0);
  2504. #endif
  2505. #if (E_STEPPERS > 1 || ENABLED(E_DUAL_STEPPER_DRIVERS)) && HAS_E1_STEP
  2506. E_AXIS_INIT(1);
  2507. #endif
  2508. #if E_STEPPERS > 2 && HAS_E2_STEP
  2509. E_AXIS_INIT(2);
  2510. #endif
  2511. #if E_STEPPERS > 3 && HAS_E3_STEP
  2512. E_AXIS_INIT(3);
  2513. #endif
  2514. #if E_STEPPERS > 4 && HAS_E4_STEP
  2515. E_AXIS_INIT(4);
  2516. #endif
  2517. #if E_STEPPERS > 5 && HAS_E5_STEP
  2518. E_AXIS_INIT(5);
  2519. #endif
  2520. #if E_STEPPERS > 6 && HAS_E6_STEP
  2521. E_AXIS_INIT(6);
  2522. #endif
  2523. #if E_STEPPERS > 7 && HAS_E7_STEP
  2524. E_AXIS_INIT(7);
  2525. #endif
  2526. #if DISABLED(I2S_STEPPER_STREAM)
  2527. HAL_timer_start(MF_TIMER_STEP, 122); // Init Stepper ISR to 122 Hz for quick starting
  2528. wake_up();
  2529. sei();
  2530. #endif
  2531. // Init direction bits for first moves
  2532. set_directions(0
  2533. NUM_AXIS_GANG(
  2534. | TERN0(INVERT_X_DIR, _BV(X_AXIS)),
  2535. | TERN0(INVERT_Y_DIR, _BV(Y_AXIS)),
  2536. | TERN0(INVERT_Z_DIR, _BV(Z_AXIS)),
  2537. | TERN0(INVERT_I_DIR, _BV(I_AXIS)),
  2538. | TERN0(INVERT_J_DIR, _BV(J_AXIS)),
  2539. | TERN0(INVERT_K_DIR, _BV(K_AXIS)),
  2540. | TERN0(INVERT_U_DIR, _BV(U_AXIS)),
  2541. | TERN0(INVERT_V_DIR, _BV(V_AXIS)),
  2542. | TERN0(INVERT_W_DIR, _BV(W_AXIS))
  2543. )
  2544. );
  2545. #if HAS_MOTOR_CURRENT_SPI || HAS_MOTOR_CURRENT_PWM
  2546. initialized = true;
  2547. digipot_init();
  2548. #endif
  2549. }
  2550. /**
  2551. * Set the stepper positions directly in steps
  2552. *
  2553. * The input is based on the typical per-axis XYZE steps.
  2554. * For CORE machines XYZ needs to be translated to ABC.
  2555. *
  2556. * This allows get_axis_position_mm to correctly
  2557. * derive the current XYZE position later on.
  2558. */
  2559. void Stepper::_set_position(const abce_long_t &spos) {
  2560. #if ANY(IS_CORE, MARKFORGED_XY, MARKFORGED_YX)
  2561. #if CORE_IS_XY
  2562. // corexy positioning
  2563. // these equations follow the form of the dA and dB equations on https://www.corexy.com/theory.html
  2564. count_position.set(spos.a + spos.b, CORESIGN(spos.a - spos.b), spos.c);
  2565. #elif CORE_IS_XZ
  2566. // corexz planning
  2567. count_position.set(spos.a + spos.c, spos.b, CORESIGN(spos.a - spos.c));
  2568. #elif CORE_IS_YZ
  2569. // coreyz planning
  2570. count_position.set(spos.a, spos.b + spos.c, CORESIGN(spos.b - spos.c));
  2571. #elif ENABLED(MARKFORGED_XY)
  2572. count_position.set(spos.a - spos.b, spos.b, spos.c);
  2573. #elif ENABLED(MARKFORGED_YX)
  2574. count_position.set(spos.a, spos.b - spos.a, spos.c);
  2575. #endif
  2576. SECONDARY_AXIS_CODE(
  2577. count_position.i = spos.i,
  2578. count_position.j = spos.j,
  2579. count_position.k = spos.k,
  2580. count_position.u = spos.u,
  2581. count_position.v = spos.v,
  2582. count_position.w = spos.w
  2583. );
  2584. TERN_(HAS_EXTRUDERS, count_position.e = spos.e);
  2585. #else
  2586. // default non-h-bot planning
  2587. count_position = spos;
  2588. #endif
  2589. }
  2590. /**
  2591. * Get a stepper's position in steps.
  2592. */
  2593. int32_t Stepper::position(const AxisEnum axis) {
  2594. #ifdef __AVR__
  2595. // Protect the access to the position. Only required for AVR, as
  2596. // any 32bit CPU offers atomic access to 32bit variables
  2597. const bool was_enabled = suspend();
  2598. #endif
  2599. const int32_t v = count_position[axis];
  2600. #ifdef __AVR__
  2601. // Reenable Stepper ISR
  2602. if (was_enabled) wake_up();
  2603. #endif
  2604. return v;
  2605. }
  2606. // Set the current position in steps
  2607. void Stepper::set_position(const xyze_long_t &spos) {
  2608. planner.synchronize();
  2609. const bool was_enabled = suspend();
  2610. _set_position(spos);
  2611. if (was_enabled) wake_up();
  2612. }
  2613. void Stepper::set_axis_position(const AxisEnum a, const int32_t &v) {
  2614. planner.synchronize();
  2615. #ifdef __AVR__
  2616. // Protect the access to the position. Only required for AVR, as
  2617. // any 32bit CPU offers atomic access to 32bit variables
  2618. const bool was_enabled = suspend();
  2619. #endif
  2620. count_position[a] = v;
  2621. #ifdef __AVR__
  2622. // Reenable Stepper ISR
  2623. if (was_enabled) wake_up();
  2624. #endif
  2625. }
  2626. // Signal endstops were triggered - This function can be called from
  2627. // an ISR context (Temperature, Stepper or limits ISR), so we must
  2628. // be very careful here. If the interrupt being preempted was the
  2629. // Stepper ISR (this CAN happen with the endstop limits ISR) then
  2630. // when the stepper ISR resumes, we must be very sure that the movement
  2631. // is properly canceled
  2632. void Stepper::endstop_triggered(const AxisEnum axis) {
  2633. const bool was_enabled = suspend();
  2634. endstops_trigsteps[axis] = (
  2635. #if IS_CORE
  2636. (axis == CORE_AXIS_2
  2637. ? CORESIGN(count_position[CORE_AXIS_1] - count_position[CORE_AXIS_2])
  2638. : count_position[CORE_AXIS_1] + count_position[CORE_AXIS_2]
  2639. ) * double(0.5)
  2640. #elif ENABLED(MARKFORGED_XY)
  2641. axis == CORE_AXIS_1
  2642. ? count_position[CORE_AXIS_1] - count_position[CORE_AXIS_2]
  2643. : count_position[CORE_AXIS_2]
  2644. #elif ENABLED(MARKFORGED_YX)
  2645. axis == CORE_AXIS_1
  2646. ? count_position[CORE_AXIS_1]
  2647. : count_position[CORE_AXIS_2] - count_position[CORE_AXIS_1]
  2648. #else // !IS_CORE
  2649. count_position[axis]
  2650. #endif
  2651. );
  2652. // Discard the rest of the move if there is a current block
  2653. quick_stop();
  2654. if (was_enabled) wake_up();
  2655. }
  2656. int32_t Stepper::triggered_position(const AxisEnum axis) {
  2657. #ifdef __AVR__
  2658. // Protect the access to the position. Only required for AVR, as
  2659. // any 32bit CPU offers atomic access to 32bit variables
  2660. const bool was_enabled = suspend();
  2661. #endif
  2662. const int32_t v = endstops_trigsteps[axis];
  2663. #ifdef __AVR__
  2664. // Reenable Stepper ISR
  2665. if (was_enabled) wake_up();
  2666. #endif
  2667. return v;
  2668. }
  2669. #if ANY(CORE_IS_XY, CORE_IS_XZ, MARKFORGED_XY, MARKFORGED_YX, IS_SCARA, DELTA)
  2670. #define SAYS_A 1
  2671. #endif
  2672. #if ANY(CORE_IS_XY, CORE_IS_YZ, MARKFORGED_XY, MARKFORGED_YX, IS_SCARA, DELTA)
  2673. #define SAYS_B 1
  2674. #endif
  2675. #if ANY(CORE_IS_XZ, CORE_IS_YZ, DELTA)
  2676. #define SAYS_C 1
  2677. #endif
  2678. void Stepper::report_a_position(const xyz_long_t &pos) {
  2679. SERIAL_ECHOLNPGM_P(
  2680. LIST_N(DOUBLE(NUM_AXES),
  2681. TERN(SAYS_A, PSTR(STR_COUNT_A), PSTR(STR_COUNT_X)), pos.x,
  2682. TERN(SAYS_B, PSTR("B:"), SP_Y_LBL), pos.y,
  2683. TERN(SAYS_C, PSTR("C:"), SP_Z_LBL), pos.z,
  2684. SP_I_LBL, pos.i,
  2685. SP_J_LBL, pos.j,
  2686. SP_K_LBL, pos.k,
  2687. SP_U_LBL, pos.u,
  2688. SP_V_LBL, pos.v,
  2689. SP_W_LBL, pos.w
  2690. )
  2691. );
  2692. }
  2693. void Stepper::report_positions() {
  2694. #ifdef __AVR__
  2695. // Protect the access to the position.
  2696. const bool was_enabled = suspend();
  2697. #endif
  2698. const xyz_long_t pos = count_position;
  2699. #ifdef __AVR__
  2700. if (was_enabled) wake_up();
  2701. #endif
  2702. report_a_position(pos);
  2703. }
  2704. #if ENABLED(BABYSTEPPING)
  2705. #define _ENABLE_AXIS(A) enable_axis(_AXIS(A))
  2706. #define _READ_DIR(AXIS) AXIS ##_DIR_READ()
  2707. #define _INVERT_DIR(AXIS) ENABLED(INVERT_## AXIS ##_DIR)
  2708. #define _APPLY_DIR(AXIS, INVERT) AXIS ##_APPLY_DIR(INVERT, true)
  2709. #if MINIMUM_STEPPER_PULSE
  2710. #define STEP_PULSE_CYCLES ((MINIMUM_STEPPER_PULSE) * CYCLES_PER_MICROSECOND)
  2711. #else
  2712. #define STEP_PULSE_CYCLES 0
  2713. #endif
  2714. #if ENABLED(DELTA)
  2715. #define CYCLES_EATEN_BABYSTEP (2 * 15)
  2716. #else
  2717. #define CYCLES_EATEN_BABYSTEP 0
  2718. #endif
  2719. #if CYCLES_EATEN_BABYSTEP < STEP_PULSE_CYCLES
  2720. #define EXTRA_CYCLES_BABYSTEP (STEP_PULSE_CYCLES - (CYCLES_EATEN_BABYSTEP))
  2721. #else
  2722. #define EXTRA_CYCLES_BABYSTEP 0
  2723. #endif
  2724. #if EXTRA_CYCLES_BABYSTEP > 20
  2725. #define _SAVE_START() const hal_timer_t pulse_start = HAL_timer_get_count(MF_TIMER_PULSE)
  2726. #define _PULSE_WAIT() while (EXTRA_CYCLES_BABYSTEP > (uint32_t)(HAL_timer_get_count(MF_TIMER_PULSE) - pulse_start) * (PULSE_TIMER_PRESCALE)) { /* nada */ }
  2727. #else
  2728. #define _SAVE_START() NOOP
  2729. #if EXTRA_CYCLES_BABYSTEP > 0
  2730. #define _PULSE_WAIT() DELAY_NS(EXTRA_CYCLES_BABYSTEP * NANOSECONDS_PER_CYCLE)
  2731. #elif ENABLED(DELTA)
  2732. #define _PULSE_WAIT() DELAY_US(2);
  2733. #elif STEP_PULSE_CYCLES > 0
  2734. #define _PULSE_WAIT() NOOP
  2735. #else
  2736. #define _PULSE_WAIT() DELAY_US(4);
  2737. #endif
  2738. #endif
  2739. #if ENABLED(BABYSTEPPING_EXTRA_DIR_WAIT)
  2740. #define EXTRA_DIR_WAIT_BEFORE DIR_WAIT_BEFORE
  2741. #define EXTRA_DIR_WAIT_AFTER DIR_WAIT_AFTER
  2742. #else
  2743. #define EXTRA_DIR_WAIT_BEFORE()
  2744. #define EXTRA_DIR_WAIT_AFTER()
  2745. #endif
  2746. #if DISABLED(DELTA)
  2747. #define BABYSTEP_AXIS(AXIS, INV, DIR) do{ \
  2748. const uint8_t old_dir = _READ_DIR(AXIS); \
  2749. _ENABLE_AXIS(AXIS); \
  2750. DIR_WAIT_BEFORE(); \
  2751. _APPLY_DIR(AXIS, _INVERT_DIR(AXIS)^DIR^INV); \
  2752. DIR_WAIT_AFTER(); \
  2753. _SAVE_START(); \
  2754. _APPLY_STEP(AXIS, !_INVERT_STEP_PIN(AXIS), true); \
  2755. _PULSE_WAIT(); \
  2756. _APPLY_STEP(AXIS, _INVERT_STEP_PIN(AXIS), true); \
  2757. EXTRA_DIR_WAIT_BEFORE(); \
  2758. _APPLY_DIR(AXIS, old_dir); \
  2759. EXTRA_DIR_WAIT_AFTER(); \
  2760. }while(0)
  2761. #endif
  2762. #if IS_CORE
  2763. #define BABYSTEP_CORE(A, B, INV, DIR, ALT) do{ \
  2764. const xy_byte_t old_dir = { _READ_DIR(A), _READ_DIR(B) }; \
  2765. _ENABLE_AXIS(A); _ENABLE_AXIS(B); \
  2766. DIR_WAIT_BEFORE(); \
  2767. _APPLY_DIR(A, _INVERT_DIR(A)^DIR^INV); \
  2768. _APPLY_DIR(B, _INVERT_DIR(B)^DIR^INV^ALT); \
  2769. DIR_WAIT_AFTER(); \
  2770. _SAVE_START(); \
  2771. _APPLY_STEP(A, !_INVERT_STEP_PIN(A), true); \
  2772. _APPLY_STEP(B, !_INVERT_STEP_PIN(B), true); \
  2773. _PULSE_WAIT(); \
  2774. _APPLY_STEP(A, _INVERT_STEP_PIN(A), true); \
  2775. _APPLY_STEP(B, _INVERT_STEP_PIN(B), true); \
  2776. EXTRA_DIR_WAIT_BEFORE(); \
  2777. _APPLY_DIR(A, old_dir.a); _APPLY_DIR(B, old_dir.b); \
  2778. EXTRA_DIR_WAIT_AFTER(); \
  2779. }while(0)
  2780. #endif
  2781. // MUST ONLY BE CALLED BY AN ISR,
  2782. // No other ISR should ever interrupt this!
  2783. void Stepper::do_babystep(const AxisEnum axis, const bool direction) {
  2784. IF_DISABLED(INTEGRATED_BABYSTEPPING, cli());
  2785. switch (axis) {
  2786. #if ENABLED(BABYSTEP_XY)
  2787. case X_AXIS:
  2788. #if CORE_IS_XY
  2789. BABYSTEP_CORE(X, Y, 0, direction, 0);
  2790. #elif CORE_IS_XZ
  2791. BABYSTEP_CORE(X, Z, 0, direction, 0);
  2792. #else
  2793. BABYSTEP_AXIS(X, 0, direction);
  2794. #endif
  2795. break;
  2796. case Y_AXIS:
  2797. #if CORE_IS_XY
  2798. BABYSTEP_CORE(X, Y, 1, !direction, (CORESIGN(1)>0));
  2799. #elif CORE_IS_YZ
  2800. BABYSTEP_CORE(Y, Z, 0, direction, (CORESIGN(1)<0));
  2801. #else
  2802. BABYSTEP_AXIS(Y, 0, direction);
  2803. #endif
  2804. break;
  2805. #endif
  2806. case Z_AXIS: {
  2807. #if CORE_IS_XZ
  2808. BABYSTEP_CORE(X, Z, BABYSTEP_INVERT_Z, direction, (CORESIGN(1)<0));
  2809. #elif CORE_IS_YZ
  2810. BABYSTEP_CORE(Y, Z, BABYSTEP_INVERT_Z, direction, (CORESIGN(1)<0));
  2811. #elif DISABLED(DELTA)
  2812. BABYSTEP_AXIS(Z, BABYSTEP_INVERT_Z, direction);
  2813. #else // DELTA
  2814. const bool z_direction = direction ^ BABYSTEP_INVERT_Z;
  2815. NUM_AXIS_CODE(
  2816. enable_axis(X_AXIS), enable_axis(Y_AXIS), enable_axis(Z_AXIS),
  2817. enable_axis(I_AXIS), enable_axis(J_AXIS), enable_axis(K_AXIS),
  2818. enable_axis(U_AXIS), enable_axis(V_AXIS), enable_axis(W_AXIS)
  2819. );
  2820. DIR_WAIT_BEFORE();
  2821. const xyz_byte_t old_dir = NUM_AXIS_ARRAY(
  2822. X_DIR_READ(), Y_DIR_READ(), Z_DIR_READ(),
  2823. I_DIR_READ(), J_DIR_READ(), K_DIR_READ(),
  2824. U_DIR_READ(), V_DIR_READ(), W_DIR_READ()
  2825. );
  2826. X_DIR_WRITE(ENABLED(INVERT_X_DIR) ^ z_direction);
  2827. #ifdef Y_DIR_WRITE
  2828. Y_DIR_WRITE(ENABLED(INVERT_Y_DIR) ^ z_direction);
  2829. #endif
  2830. #ifdef Z_DIR_WRITE
  2831. Z_DIR_WRITE(ENABLED(INVERT_Z_DIR) ^ z_direction);
  2832. #endif
  2833. #ifdef I_DIR_WRITE
  2834. I_DIR_WRITE(ENABLED(INVERT_I_DIR) ^ z_direction);
  2835. #endif
  2836. #ifdef J_DIR_WRITE
  2837. J_DIR_WRITE(ENABLED(INVERT_J_DIR) ^ z_direction);
  2838. #endif
  2839. #ifdef K_DIR_WRITE
  2840. K_DIR_WRITE(ENABLED(INVERT_K_DIR) ^ z_direction);
  2841. #endif
  2842. #ifdef U_DIR_WRITE
  2843. U_DIR_WRITE(ENABLED(INVERT_U_DIR) ^ z_direction);
  2844. #endif
  2845. #ifdef V_DIR_WRITE
  2846. V_DIR_WRITE(ENABLED(INVERT_V_DIR) ^ z_direction);
  2847. #endif
  2848. #ifdef W_DIR_WRITE
  2849. W_DIR_WRITE(ENABLED(INVERT_W_DIR) ^ z_direction);
  2850. #endif
  2851. DIR_WAIT_AFTER();
  2852. _SAVE_START();
  2853. X_STEP_WRITE(!INVERT_X_STEP_PIN);
  2854. #ifdef Y_STEP_WRITE
  2855. Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
  2856. #endif
  2857. #ifdef Z_STEP_WRITE
  2858. Z_STEP_WRITE(!INVERT_Z_STEP_PIN);
  2859. #endif
  2860. #ifdef I_STEP_WRITE
  2861. I_STEP_WRITE(!INVERT_I_STEP_PIN);
  2862. #endif
  2863. #ifdef J_STEP_WRITE
  2864. J_STEP_WRITE(!INVERT_J_STEP_PIN);
  2865. #endif
  2866. #ifdef K_STEP_WRITE
  2867. K_STEP_WRITE(!INVERT_K_STEP_PIN);
  2868. #endif
  2869. #ifdef U_STEP_WRITE
  2870. U_STEP_WRITE(!INVERT_U_STEP_PIN);
  2871. #endif
  2872. #ifdef V_STEP_WRITE
  2873. V_STEP_WRITE(!INVERT_V_STEP_PIN);
  2874. #endif
  2875. #ifdef W_STEP_WRITE
  2876. W_STEP_WRITE(!INVERT_W_STEP_PIN);
  2877. #endif
  2878. _PULSE_WAIT();
  2879. X_STEP_WRITE(INVERT_X_STEP_PIN);
  2880. #ifdef Y_STEP_WRITE
  2881. Y_STEP_WRITE(INVERT_Y_STEP_PIN);
  2882. #endif
  2883. #ifdef Z_STEP_WRITE
  2884. Z_STEP_WRITE(INVERT_Z_STEP_PIN);
  2885. #endif
  2886. #ifdef I_STEP_WRITE
  2887. I_STEP_WRITE(INVERT_I_STEP_PIN);
  2888. #endif
  2889. #ifdef J_STEP_WRITE
  2890. J_STEP_WRITE(INVERT_J_STEP_PIN);
  2891. #endif
  2892. #ifdef K_STEP_WRITE
  2893. K_STEP_WRITE(INVERT_K_STEP_PIN);
  2894. #endif
  2895. #ifdef U_STEP_WRITE
  2896. U_STEP_WRITE(INVERT_U_STEP_PIN);
  2897. #endif
  2898. #ifdef V_STEP_WRITE
  2899. V_STEP_WRITE(INVERT_V_STEP_PIN);
  2900. #endif
  2901. #ifdef W_STEP_WRITE
  2902. W_STEP_WRITE(INVERT_W_STEP_PIN);
  2903. #endif
  2904. // Restore direction bits
  2905. EXTRA_DIR_WAIT_BEFORE();
  2906. X_DIR_WRITE(old_dir.x);
  2907. #ifdef Y_DIR_WRITE
  2908. Y_DIR_WRITE(old_dir.y);
  2909. #endif
  2910. #ifdef Z_DIR_WRITE
  2911. Z_DIR_WRITE(old_dir.z);
  2912. #endif
  2913. #ifdef I_DIR_WRITE
  2914. I_DIR_WRITE(old_dir.i);
  2915. #endif
  2916. #ifdef J_DIR_WRITE
  2917. J_DIR_WRITE(old_dir.j);
  2918. #endif
  2919. #ifdef K_DIR_WRITE
  2920. K_DIR_WRITE(old_dir.k);
  2921. #endif
  2922. #ifdef U_DIR_WRITE
  2923. U_DIR_WRITE(old_dir.u);
  2924. #endif
  2925. #ifdef V_DIR_WRITE
  2926. V_DIR_WRITE(old_dir.v);
  2927. #endif
  2928. #ifdef W_DIR_WRITE
  2929. W_DIR_WRITE(old_dir.w);
  2930. #endif
  2931. EXTRA_DIR_WAIT_AFTER();
  2932. #endif
  2933. } break;
  2934. #if HAS_I_AXIS
  2935. case I_AXIS: BABYSTEP_AXIS(I, 0, direction); break;
  2936. #endif
  2937. #if HAS_J_AXIS
  2938. case J_AXIS: BABYSTEP_AXIS(J, 0, direction); break;
  2939. #endif
  2940. #if HAS_K_AXIS
  2941. case K_AXIS: BABYSTEP_AXIS(K, 0, direction); break;
  2942. #endif
  2943. #if HAS_U_AXIS
  2944. case U_AXIS: BABYSTEP_AXIS(U, 0, direction); break;
  2945. #endif
  2946. #if HAS_V_AXIS
  2947. case V_AXIS: BABYSTEP_AXIS(V, 0, direction); break;
  2948. #endif
  2949. #if HAS_W_AXIS
  2950. case W_AXIS: BABYSTEP_AXIS(W, 0, direction); break;
  2951. #endif
  2952. default: break;
  2953. }
  2954. IF_DISABLED(INTEGRATED_BABYSTEPPING, sei());
  2955. }
  2956. #endif // BABYSTEPPING
  2957. /**
  2958. * Software-controlled Stepper Motor Current
  2959. */
  2960. #if HAS_MOTOR_CURRENT_SPI
  2961. // From Arduino DigitalPotControl example
  2962. void Stepper::set_digipot_value_spi(const int16_t address, const int16_t value) {
  2963. WRITE(DIGIPOTSS_PIN, LOW); // Take the SS pin low to select the chip
  2964. SPI.transfer(address); // Send the address and value via SPI
  2965. SPI.transfer(value);
  2966. WRITE(DIGIPOTSS_PIN, HIGH); // Take the SS pin high to de-select the chip
  2967. //delay(10);
  2968. }
  2969. #endif // HAS_MOTOR_CURRENT_SPI
  2970. #if HAS_MOTOR_CURRENT_PWM
  2971. void Stepper::refresh_motor_power() {
  2972. if (!initialized) return;
  2973. LOOP_L_N(i, COUNT(motor_current_setting)) {
  2974. switch (i) {
  2975. #if ANY_PIN(MOTOR_CURRENT_PWM_XY, MOTOR_CURRENT_PWM_X, MOTOR_CURRENT_PWM_Y, MOTOR_CURRENT_PWM_I, MOTOR_CURRENT_PWM_J, MOTOR_CURRENT_PWM_K, MOTOR_CURRENT_PWM_U, MOTOR_CURRENT_PWM_V, MOTOR_CURRENT_PWM_W)
  2976. case 0:
  2977. #endif
  2978. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  2979. case 1:
  2980. #endif
  2981. #if ANY_PIN(MOTOR_CURRENT_PWM_E, MOTOR_CURRENT_PWM_E0, MOTOR_CURRENT_PWM_E1)
  2982. case 2:
  2983. #endif
  2984. set_digipot_current(i, motor_current_setting[i]);
  2985. default: break;
  2986. }
  2987. }
  2988. }
  2989. #endif // HAS_MOTOR_CURRENT_PWM
  2990. #if !MB(PRINTRBOARD_G2)
  2991. #if HAS_MOTOR_CURRENT_SPI || HAS_MOTOR_CURRENT_PWM
  2992. void Stepper::set_digipot_current(const uint8_t driver, const int16_t current) {
  2993. if (WITHIN(driver, 0, MOTOR_CURRENT_COUNT - 1))
  2994. motor_current_setting[driver] = current; // update motor_current_setting
  2995. if (!initialized) return;
  2996. #if HAS_MOTOR_CURRENT_SPI
  2997. //SERIAL_ECHOLNPGM("Digipotss current ", current);
  2998. const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
  2999. set_digipot_value_spi(digipot_ch[driver], current);
  3000. #elif HAS_MOTOR_CURRENT_PWM
  3001. #define _WRITE_CURRENT_PWM(P) hal.set_pwm_duty(pin_t(MOTOR_CURRENT_PWM_## P ##_PIN), 255L * current / (MOTOR_CURRENT_PWM_RANGE))
  3002. switch (driver) {
  3003. case 0:
  3004. #if PIN_EXISTS(MOTOR_CURRENT_PWM_X)
  3005. _WRITE_CURRENT_PWM(X);
  3006. #endif
  3007. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Y)
  3008. _WRITE_CURRENT_PWM(Y);
  3009. #endif
  3010. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  3011. _WRITE_CURRENT_PWM(XY);
  3012. #endif
  3013. #if PIN_EXISTS(MOTOR_CURRENT_PWM_I)
  3014. _WRITE_CURRENT_PWM(I);
  3015. #endif
  3016. #if PIN_EXISTS(MOTOR_CURRENT_PWM_J)
  3017. _WRITE_CURRENT_PWM(J);
  3018. #endif
  3019. #if PIN_EXISTS(MOTOR_CURRENT_PWM_K)
  3020. _WRITE_CURRENT_PWM(K);
  3021. #endif
  3022. #if PIN_EXISTS(MOTOR_CURRENT_PWM_U)
  3023. _WRITE_CURRENT_PWM(U);
  3024. #endif
  3025. #if PIN_EXISTS(MOTOR_CURRENT_PWM_V)
  3026. _WRITE_CURRENT_PWM(V);
  3027. #endif
  3028. #if PIN_EXISTS(MOTOR_CURRENT_PWM_W)
  3029. _WRITE_CURRENT_PWM(W);
  3030. #endif
  3031. break;
  3032. case 1:
  3033. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  3034. _WRITE_CURRENT_PWM(Z);
  3035. #endif
  3036. break;
  3037. case 2:
  3038. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  3039. _WRITE_CURRENT_PWM(E);
  3040. #endif
  3041. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E0)
  3042. _WRITE_CURRENT_PWM(E0);
  3043. #endif
  3044. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E1)
  3045. _WRITE_CURRENT_PWM(E1);
  3046. #endif
  3047. break;
  3048. }
  3049. #endif
  3050. }
  3051. void Stepper::digipot_init() {
  3052. #if HAS_MOTOR_CURRENT_SPI
  3053. SPI.begin();
  3054. SET_OUTPUT(DIGIPOTSS_PIN);
  3055. LOOP_L_N(i, COUNT(motor_current_setting))
  3056. set_digipot_current(i, motor_current_setting[i]);
  3057. #elif HAS_MOTOR_CURRENT_PWM
  3058. #ifdef __SAM3X8E__
  3059. #define _RESET_CURRENT_PWM_FREQ(P) NOOP
  3060. #else
  3061. #define _RESET_CURRENT_PWM_FREQ(P) hal.set_pwm_frequency(pin_t(P), MOTOR_CURRENT_PWM_FREQUENCY)
  3062. #endif
  3063. #define INIT_CURRENT_PWM(P) do{ SET_PWM(MOTOR_CURRENT_PWM_## P ##_PIN); _RESET_CURRENT_PWM_FREQ(MOTOR_CURRENT_PWM_## P ##_PIN); }while(0)
  3064. #if PIN_EXISTS(MOTOR_CURRENT_PWM_X)
  3065. INIT_CURRENT_PWM(X);
  3066. #endif
  3067. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Y)
  3068. INIT_CURRENT_PWM(Y);
  3069. #endif
  3070. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  3071. INIT_CURRENT_PWM(XY);
  3072. #endif
  3073. #if PIN_EXISTS(MOTOR_CURRENT_PWM_I)
  3074. INIT_CURRENT_PWM(I);
  3075. #endif
  3076. #if PIN_EXISTS(MOTOR_CURRENT_PWM_J)
  3077. INIT_CURRENT_PWM(J);
  3078. #endif
  3079. #if PIN_EXISTS(MOTOR_CURRENT_PWM_K)
  3080. INIT_CURRENT_PWM(K);
  3081. #endif
  3082. #if PIN_EXISTS(MOTOR_CURRENT_PWM_U)
  3083. INIT_CURRENT_PWM(U);
  3084. #endif
  3085. #if PIN_EXISTS(MOTOR_CURRENT_PWM_V)
  3086. INIT_CURRENT_PWM(V);
  3087. #endif
  3088. #if PIN_EXISTS(MOTOR_CURRENT_PWM_W)
  3089. INIT_CURRENT_PWM(W);
  3090. #endif
  3091. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  3092. INIT_CURRENT_PWM(Z);
  3093. #endif
  3094. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  3095. INIT_CURRENT_PWM(E);
  3096. #endif
  3097. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E0)
  3098. INIT_CURRENT_PWM(E0);
  3099. #endif
  3100. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E1)
  3101. INIT_CURRENT_PWM(E1);
  3102. #endif
  3103. refresh_motor_power();
  3104. #endif
  3105. }
  3106. #endif
  3107. #else // PRINTRBOARD_G2
  3108. #include HAL_PATH(../HAL, fastio/G2_PWM.h)
  3109. #endif
  3110. #if HAS_MICROSTEPS
  3111. /**
  3112. * Software-controlled Microstepping
  3113. */
  3114. void Stepper::microstep_init() {
  3115. #if HAS_X_MS_PINS
  3116. SET_OUTPUT(X_MS1_PIN); SET_OUTPUT(X_MS2_PIN);
  3117. #if PIN_EXISTS(X_MS3)
  3118. SET_OUTPUT(X_MS3_PIN);
  3119. #endif
  3120. #endif
  3121. #if HAS_X2_MS_PINS
  3122. SET_OUTPUT(X2_MS1_PIN); SET_OUTPUT(X2_MS2_PIN);
  3123. #if PIN_EXISTS(X2_MS3)
  3124. SET_OUTPUT(X2_MS3_PIN);
  3125. #endif
  3126. #endif
  3127. #if HAS_Y_MS_PINS
  3128. SET_OUTPUT(Y_MS1_PIN); SET_OUTPUT(Y_MS2_PIN);
  3129. #if PIN_EXISTS(Y_MS3)
  3130. SET_OUTPUT(Y_MS3_PIN);
  3131. #endif
  3132. #endif
  3133. #if HAS_Y2_MS_PINS
  3134. SET_OUTPUT(Y2_MS1_PIN); SET_OUTPUT(Y2_MS2_PIN);
  3135. #if PIN_EXISTS(Y2_MS3)
  3136. SET_OUTPUT(Y2_MS3_PIN);
  3137. #endif
  3138. #endif
  3139. #if HAS_Z_MS_PINS
  3140. SET_OUTPUT(Z_MS1_PIN); SET_OUTPUT(Z_MS2_PIN);
  3141. #if PIN_EXISTS(Z_MS3)
  3142. SET_OUTPUT(Z_MS3_PIN);
  3143. #endif
  3144. #endif
  3145. #if HAS_Z2_MS_PINS
  3146. SET_OUTPUT(Z2_MS1_PIN); SET_OUTPUT(Z2_MS2_PIN);
  3147. #if PIN_EXISTS(Z2_MS3)
  3148. SET_OUTPUT(Z2_MS3_PIN);
  3149. #endif
  3150. #endif
  3151. #if HAS_Z3_MS_PINS
  3152. SET_OUTPUT(Z3_MS1_PIN); SET_OUTPUT(Z3_MS2_PIN);
  3153. #if PIN_EXISTS(Z3_MS3)
  3154. SET_OUTPUT(Z3_MS3_PIN);
  3155. #endif
  3156. #endif
  3157. #if HAS_Z4_MS_PINS
  3158. SET_OUTPUT(Z4_MS1_PIN); SET_OUTPUT(Z4_MS2_PIN);
  3159. #if PIN_EXISTS(Z4_MS3)
  3160. SET_OUTPUT(Z4_MS3_PIN);
  3161. #endif
  3162. #endif
  3163. #if HAS_I_MS_PINS
  3164. SET_OUTPUT(I_MS1_PIN); SET_OUTPUT(I_MS2_PIN);
  3165. #if PIN_EXISTS(I_MS3)
  3166. SET_OUTPUT(I_MS3_PIN);
  3167. #endif
  3168. #endif
  3169. #if HAS_J_MS_PINS
  3170. SET_OUTPUT(J_MS1_PIN); SET_OUTPUT(J_MS2_PIN);
  3171. #if PIN_EXISTS(J_MS3)
  3172. SET_OUTPUT(J_MS3_PIN);
  3173. #endif
  3174. #endif
  3175. #if HAS_K_MS_PINS
  3176. SET_OUTPUT(K_MS1_PIN); SET_OUTPUT(K_MS2_PIN);
  3177. #if PIN_EXISTS(K_MS3)
  3178. SET_OUTPUT(K_MS3_PIN);
  3179. #endif
  3180. #endif
  3181. #if HAS_U_MS_PINS
  3182. SET_OUTPUT(U_MS1_PIN); SET_OUTPUT(U_MS2_PIN);
  3183. #if PIN_EXISTS(U_MS3)
  3184. SET_OUTPUT(U_MS3_PIN);
  3185. #endif
  3186. #endif
  3187. #if HAS_V_MS_PINS
  3188. SET_OUTPUT(V_MS1_PIN); SET_OUTPUT(V_MS2_PIN);
  3189. #if PIN_EXISTS(V_MS3)
  3190. SET_OUTPUT(V_MS3_PIN);
  3191. #endif
  3192. #endif
  3193. #if HAS_W_MS_PINS
  3194. SET_OUTPUT(W_MS1_PIN); SET_OUTPUT(W_MS2_PIN);
  3195. #if PIN_EXISTS(W_MS3)
  3196. SET_OUTPUT(W_MS3_PIN);
  3197. #endif
  3198. #endif
  3199. #if HAS_E0_MS_PINS
  3200. SET_OUTPUT(E0_MS1_PIN); SET_OUTPUT(E0_MS2_PIN);
  3201. #if PIN_EXISTS(E0_MS3)
  3202. SET_OUTPUT(E0_MS3_PIN);
  3203. #endif
  3204. #endif
  3205. #if HAS_E1_MS_PINS
  3206. SET_OUTPUT(E1_MS1_PIN); SET_OUTPUT(E1_MS2_PIN);
  3207. #if PIN_EXISTS(E1_MS3)
  3208. SET_OUTPUT(E1_MS3_PIN);
  3209. #endif
  3210. #endif
  3211. #if HAS_E2_MS_PINS
  3212. SET_OUTPUT(E2_MS1_PIN); SET_OUTPUT(E2_MS2_PIN);
  3213. #if PIN_EXISTS(E2_MS3)
  3214. SET_OUTPUT(E2_MS3_PIN);
  3215. #endif
  3216. #endif
  3217. #if HAS_E3_MS_PINS
  3218. SET_OUTPUT(E3_MS1_PIN); SET_OUTPUT(E3_MS2_PIN);
  3219. #if PIN_EXISTS(E3_MS3)
  3220. SET_OUTPUT(E3_MS3_PIN);
  3221. #endif
  3222. #endif
  3223. #if HAS_E4_MS_PINS
  3224. SET_OUTPUT(E4_MS1_PIN); SET_OUTPUT(E4_MS2_PIN);
  3225. #if PIN_EXISTS(E4_MS3)
  3226. SET_OUTPUT(E4_MS3_PIN);
  3227. #endif
  3228. #endif
  3229. #if HAS_E5_MS_PINS
  3230. SET_OUTPUT(E5_MS1_PIN); SET_OUTPUT(E5_MS2_PIN);
  3231. #if PIN_EXISTS(E5_MS3)
  3232. SET_OUTPUT(E5_MS3_PIN);
  3233. #endif
  3234. #endif
  3235. #if HAS_E6_MS_PINS
  3236. SET_OUTPUT(E6_MS1_PIN); SET_OUTPUT(E6_MS2_PIN);
  3237. #if PIN_EXISTS(E6_MS3)
  3238. SET_OUTPUT(E6_MS3_PIN);
  3239. #endif
  3240. #endif
  3241. #if HAS_E7_MS_PINS
  3242. SET_OUTPUT(E7_MS1_PIN); SET_OUTPUT(E7_MS2_PIN);
  3243. #if PIN_EXISTS(E7_MS3)
  3244. SET_OUTPUT(E7_MS3_PIN);
  3245. #endif
  3246. #endif
  3247. static const uint8_t microstep_modes[] = MICROSTEP_MODES;
  3248. for (uint16_t i = 0; i < COUNT(microstep_modes); i++)
  3249. microstep_mode(i, microstep_modes[i]);
  3250. }
  3251. void Stepper::microstep_ms(const uint8_t driver, const int8_t ms1, const int8_t ms2, const int8_t ms3) {
  3252. if (ms1 >= 0) switch (driver) {
  3253. #if HAS_X_MS_PINS || HAS_X2_MS_PINS
  3254. case X_AXIS:
  3255. #if HAS_X_MS_PINS
  3256. WRITE(X_MS1_PIN, ms1);
  3257. #endif
  3258. #if HAS_X2_MS_PINS
  3259. WRITE(X2_MS1_PIN, ms1);
  3260. #endif
  3261. break;
  3262. #endif
  3263. #if HAS_Y_MS_PINS || HAS_Y2_MS_PINS
  3264. case Y_AXIS:
  3265. #if HAS_Y_MS_PINS
  3266. WRITE(Y_MS1_PIN, ms1);
  3267. #endif
  3268. #if HAS_Y2_MS_PINS
  3269. WRITE(Y2_MS1_PIN, ms1);
  3270. #endif
  3271. break;
  3272. #endif
  3273. #if HAS_SOME_Z_MS_PINS
  3274. case Z_AXIS:
  3275. #if HAS_Z_MS_PINS
  3276. WRITE(Z_MS1_PIN, ms1);
  3277. #endif
  3278. #if HAS_Z2_MS_PINS
  3279. WRITE(Z2_MS1_PIN, ms1);
  3280. #endif
  3281. #if HAS_Z3_MS_PINS
  3282. WRITE(Z3_MS1_PIN, ms1);
  3283. #endif
  3284. #if HAS_Z4_MS_PINS
  3285. WRITE(Z4_MS1_PIN, ms1);
  3286. #endif
  3287. break;
  3288. #endif
  3289. #if HAS_I_MS_PINS
  3290. case I_AXIS: WRITE(I_MS1_PIN, ms1); break
  3291. #endif
  3292. #if HAS_J_MS_PINS
  3293. case J_AXIS: WRITE(J_MS1_PIN, ms1); break
  3294. #endif
  3295. #if HAS_K_MS_PINS
  3296. case K_AXIS: WRITE(K_MS1_PIN, ms1); break
  3297. #endif
  3298. #if HAS_U_MS_PINS
  3299. case U_AXIS: WRITE(U_MS1_PIN, ms1); break
  3300. #endif
  3301. #if HAS_V_MS_PINS
  3302. case V_AXIS: WRITE(V_MS1_PIN, ms1); break
  3303. #endif
  3304. #if HAS_W_MS_PINS
  3305. case W_AXIS: WRITE(W_MS1_PIN, ms1); break
  3306. #endif
  3307. #if HAS_E0_MS_PINS
  3308. case E_AXIS: WRITE(E0_MS1_PIN, ms1); break;
  3309. #endif
  3310. #if HAS_E1_MS_PINS
  3311. case (E_AXIS + 1): WRITE(E1_MS1_PIN, ms1); break;
  3312. #endif
  3313. #if HAS_E2_MS_PINS
  3314. case (E_AXIS + 2): WRITE(E2_MS1_PIN, ms1); break;
  3315. #endif
  3316. #if HAS_E3_MS_PINS
  3317. case (E_AXIS + 3): WRITE(E3_MS1_PIN, ms1); break;
  3318. #endif
  3319. #if HAS_E4_MS_PINS
  3320. case (E_AXIS + 4): WRITE(E4_MS1_PIN, ms1); break;
  3321. #endif
  3322. #if HAS_E5_MS_PINS
  3323. case (E_AXIS + 5): WRITE(E5_MS1_PIN, ms1); break;
  3324. #endif
  3325. #if HAS_E6_MS_PINS
  3326. case (E_AXIS + 6): WRITE(E6_MS1_PIN, ms1); break;
  3327. #endif
  3328. #if HAS_E7_MS_PINS
  3329. case (E_AXIS + 7): WRITE(E7_MS1_PIN, ms1); break;
  3330. #endif
  3331. }
  3332. if (ms2 >= 0) switch (driver) {
  3333. #if HAS_X_MS_PINS || HAS_X2_MS_PINS
  3334. case X_AXIS:
  3335. #if HAS_X_MS_PINS
  3336. WRITE(X_MS2_PIN, ms2);
  3337. #endif
  3338. #if HAS_X2_MS_PINS
  3339. WRITE(X2_MS2_PIN, ms2);
  3340. #endif
  3341. break;
  3342. #endif
  3343. #if HAS_Y_MS_PINS || HAS_Y2_MS_PINS
  3344. case Y_AXIS:
  3345. #if HAS_Y_MS_PINS
  3346. WRITE(Y_MS2_PIN, ms2);
  3347. #endif
  3348. #if HAS_Y2_MS_PINS
  3349. WRITE(Y2_MS2_PIN, ms2);
  3350. #endif
  3351. break;
  3352. #endif
  3353. #if HAS_SOME_Z_MS_PINS
  3354. case Z_AXIS:
  3355. #if HAS_Z_MS_PINS
  3356. WRITE(Z_MS2_PIN, ms2);
  3357. #endif
  3358. #if HAS_Z2_MS_PINS
  3359. WRITE(Z2_MS2_PIN, ms2);
  3360. #endif
  3361. #if HAS_Z3_MS_PINS
  3362. WRITE(Z3_MS2_PIN, ms2);
  3363. #endif
  3364. #if HAS_Z4_MS_PINS
  3365. WRITE(Z4_MS2_PIN, ms2);
  3366. #endif
  3367. break;
  3368. #endif
  3369. #if HAS_I_MS_PINS
  3370. case I_AXIS: WRITE(I_MS2_PIN, ms2); break
  3371. #endif
  3372. #if HAS_J_MS_PINS
  3373. case J_AXIS: WRITE(J_MS2_PIN, ms2); break
  3374. #endif
  3375. #if HAS_K_MS_PINS
  3376. case K_AXIS: WRITE(K_MS2_PIN, ms2); break
  3377. #endif
  3378. #if HAS_U_MS_PINS
  3379. case U_AXIS: WRITE(U_MS2_PIN, ms2); break
  3380. #endif
  3381. #if HAS_V_MS_PINS
  3382. case V_AXIS: WRITE(V_MS2_PIN, ms2); break
  3383. #endif
  3384. #if HAS_W_MS_PINS
  3385. case W_AXIS: WRITE(W_MS2_PIN, ms2); break
  3386. #endif
  3387. #if HAS_E0_MS_PINS
  3388. case E_AXIS: WRITE(E0_MS2_PIN, ms2); break;
  3389. #endif
  3390. #if HAS_E1_MS_PINS
  3391. case (E_AXIS + 1): WRITE(E1_MS2_PIN, ms2); break;
  3392. #endif
  3393. #if HAS_E2_MS_PINS
  3394. case (E_AXIS + 2): WRITE(E2_MS2_PIN, ms2); break;
  3395. #endif
  3396. #if HAS_E3_MS_PINS
  3397. case (E_AXIS + 3): WRITE(E3_MS2_PIN, ms2); break;
  3398. #endif
  3399. #if HAS_E4_MS_PINS
  3400. case (E_AXIS + 4): WRITE(E4_MS2_PIN, ms2); break;
  3401. #endif
  3402. #if HAS_E5_MS_PINS
  3403. case (E_AXIS + 5): WRITE(E5_MS2_PIN, ms2); break;
  3404. #endif
  3405. #if HAS_E6_MS_PINS
  3406. case (E_AXIS + 6): WRITE(E6_MS2_PIN, ms2); break;
  3407. #endif
  3408. #if HAS_E7_MS_PINS
  3409. case (E_AXIS + 7): WRITE(E7_MS2_PIN, ms2); break;
  3410. #endif
  3411. }
  3412. if (ms3 >= 0) switch (driver) {
  3413. #if HAS_X_MS_PINS || HAS_X2_MS_PINS
  3414. case X_AXIS:
  3415. #if HAS_X_MS_PINS && PIN_EXISTS(X_MS3)
  3416. WRITE(X_MS3_PIN, ms3);
  3417. #endif
  3418. #if HAS_X2_MS_PINS && PIN_EXISTS(X2_MS3)
  3419. WRITE(X2_MS3_PIN, ms3);
  3420. #endif
  3421. break;
  3422. #endif
  3423. #if HAS_Y_MS_PINS || HAS_Y2_MS_PINS
  3424. case Y_AXIS:
  3425. #if HAS_Y_MS_PINS && PIN_EXISTS(Y_MS3)
  3426. WRITE(Y_MS3_PIN, ms3);
  3427. #endif
  3428. #if HAS_Y2_MS_PINS && PIN_EXISTS(Y2_MS3)
  3429. WRITE(Y2_MS3_PIN, ms3);
  3430. #endif
  3431. break;
  3432. #endif
  3433. #if HAS_SOME_Z_MS_PINS
  3434. case Z_AXIS:
  3435. #if HAS_Z_MS_PINS && PIN_EXISTS(Z_MS3)
  3436. WRITE(Z_MS3_PIN, ms3);
  3437. #endif
  3438. #if HAS_Z2_MS_PINS && PIN_EXISTS(Z2_MS3)
  3439. WRITE(Z2_MS3_PIN, ms3);
  3440. #endif
  3441. #if HAS_Z3_MS_PINS && PIN_EXISTS(Z3_MS3)
  3442. WRITE(Z3_MS3_PIN, ms3);
  3443. #endif
  3444. #if HAS_Z4_MS_PINS && PIN_EXISTS(Z4_MS3)
  3445. WRITE(Z4_MS3_PIN, ms3);
  3446. #endif
  3447. break;
  3448. #endif
  3449. #if HAS_I_MS_PINS
  3450. case I_AXIS: WRITE(I_MS3_PIN, ms3); break
  3451. #endif
  3452. #if HAS_J_MS_PINS
  3453. case J_AXIS: WRITE(J_MS3_PIN, ms3); break
  3454. #endif
  3455. #if HAS_K_MS_PINS
  3456. case K_AXIS: WRITE(K_MS3_PIN, ms3); break
  3457. #endif
  3458. #if HAS_U_MS_PINS
  3459. case U_AXIS: WRITE(U_MS3_PIN, ms3); break
  3460. #endif
  3461. #if HAS_V_MS_PINS
  3462. case V_AXIS: WRITE(V_MS3_PIN, ms3); break
  3463. #endif
  3464. #if HAS_W_MS_PINS
  3465. case W_AXIS: WRITE(W_MS3_PIN, ms3); break
  3466. #endif
  3467. #if HAS_E0_MS_PINS && PIN_EXISTS(E0_MS3)
  3468. case E_AXIS: WRITE(E0_MS3_PIN, ms3); break;
  3469. #endif
  3470. #if HAS_E1_MS_PINS && PIN_EXISTS(E1_MS3)
  3471. case (E_AXIS + 1): WRITE(E1_MS3_PIN, ms3); break;
  3472. #endif
  3473. #if HAS_E2_MS_PINS && PIN_EXISTS(E2_MS3)
  3474. case (E_AXIS + 2): WRITE(E2_MS3_PIN, ms3); break;
  3475. #endif
  3476. #if HAS_E3_MS_PINS && PIN_EXISTS(E3_MS3)
  3477. case (E_AXIS + 3): WRITE(E3_MS3_PIN, ms3); break;
  3478. #endif
  3479. #if HAS_E4_MS_PINS && PIN_EXISTS(E4_MS3)
  3480. case (E_AXIS + 4): WRITE(E4_MS3_PIN, ms3); break;
  3481. #endif
  3482. #if HAS_E5_MS_PINS && PIN_EXISTS(E5_MS3)
  3483. case (E_AXIS + 5): WRITE(E5_MS3_PIN, ms3); break;
  3484. #endif
  3485. #if HAS_E6_MS_PINS && PIN_EXISTS(E6_MS3)
  3486. case (E_AXIS + 6): WRITE(E6_MS3_PIN, ms3); break;
  3487. #endif
  3488. #if HAS_E7_MS_PINS && PIN_EXISTS(E7_MS3)
  3489. case (E_AXIS + 7): WRITE(E7_MS3_PIN, ms3); break;
  3490. #endif
  3491. }
  3492. }
  3493. void Stepper::microstep_mode(const uint8_t driver, const uint8_t stepping_mode) {
  3494. switch (stepping_mode) {
  3495. #if HAS_MICROSTEP1
  3496. case 1: microstep_ms(driver, MICROSTEP1); break;
  3497. #endif
  3498. #if HAS_MICROSTEP2
  3499. case 2: microstep_ms(driver, MICROSTEP2); break;
  3500. #endif
  3501. #if HAS_MICROSTEP4
  3502. case 4: microstep_ms(driver, MICROSTEP4); break;
  3503. #endif
  3504. #if HAS_MICROSTEP8
  3505. case 8: microstep_ms(driver, MICROSTEP8); break;
  3506. #endif
  3507. #if HAS_MICROSTEP16
  3508. case 16: microstep_ms(driver, MICROSTEP16); break;
  3509. #endif
  3510. #if HAS_MICROSTEP32
  3511. case 32: microstep_ms(driver, MICROSTEP32); break;
  3512. #endif
  3513. #if HAS_MICROSTEP64
  3514. case 64: microstep_ms(driver, MICROSTEP64); break;
  3515. #endif
  3516. #if HAS_MICROSTEP128
  3517. case 128: microstep_ms(driver, MICROSTEP128); break;
  3518. #endif
  3519. default: SERIAL_ERROR_MSG("Microsteps unavailable"); break;
  3520. }
  3521. }
  3522. void Stepper::microstep_readings() {
  3523. #define PIN_CHAR(P) SERIAL_CHAR('0' + READ(P##_PIN))
  3524. #define MS_LINE(A) do{ SERIAL_ECHOPGM(" " STRINGIFY(A) ":"); PIN_CHAR(A##_MS1); PIN_CHAR(A##_MS2); }while(0)
  3525. SERIAL_ECHOPGM("MS1|2|3 Pins");
  3526. #if HAS_X_MS_PINS
  3527. MS_LINE(X);
  3528. #if PIN_EXISTS(X_MS3)
  3529. PIN_CHAR(X_MS3);
  3530. #endif
  3531. #endif
  3532. #if HAS_Y_MS_PINS
  3533. MS_LINE(Y);
  3534. #if PIN_EXISTS(Y_MS3)
  3535. PIN_CHAR(Y_MS3);
  3536. #endif
  3537. #endif
  3538. #if HAS_Z_MS_PINS
  3539. MS_LINE(Z);
  3540. #if PIN_EXISTS(Z_MS3)
  3541. PIN_CHAR(Z_MS3);
  3542. #endif
  3543. #endif
  3544. #if HAS_I_MS_PINS
  3545. MS_LINE(I);
  3546. #if PIN_EXISTS(I_MS3)
  3547. PIN_CHAR(I_MS3);
  3548. #endif
  3549. #endif
  3550. #if HAS_J_MS_PINS
  3551. MS_LINE(J);
  3552. #if PIN_EXISTS(J_MS3)
  3553. PIN_CHAR(J_MS3);
  3554. #endif
  3555. #endif
  3556. #if HAS_K_MS_PINS
  3557. MS_LINE(K);
  3558. #if PIN_EXISTS(K_MS3)
  3559. PIN_CHAR(K_MS3);
  3560. #endif
  3561. #endif
  3562. #if HAS_U_MS_PINS
  3563. MS_LINE(U);
  3564. #if PIN_EXISTS(U_MS3)
  3565. PIN_CHAR(U_MS3);
  3566. #endif
  3567. #endif
  3568. #if HAS_V_MS_PINS
  3569. MS_LINE(V);
  3570. #if PIN_EXISTS(V_MS3)
  3571. PIN_CHAR(V_MS3);
  3572. #endif
  3573. #endif
  3574. #if HAS_W_MS_PINS
  3575. MS_LINE(W);
  3576. #if PIN_EXISTS(W_MS3)
  3577. PIN_CHAR(W_MS3);
  3578. #endif
  3579. #endif
  3580. #if HAS_E0_MS_PINS
  3581. MS_LINE(E0);
  3582. #if PIN_EXISTS(E0_MS3)
  3583. PIN_CHAR(E0_MS3);
  3584. #endif
  3585. #endif
  3586. #if HAS_E1_MS_PINS
  3587. MS_LINE(E1);
  3588. #if PIN_EXISTS(E1_MS3)
  3589. PIN_CHAR(E1_MS3);
  3590. #endif
  3591. #endif
  3592. #if HAS_E2_MS_PINS
  3593. MS_LINE(E2);
  3594. #if PIN_EXISTS(E2_MS3)
  3595. PIN_CHAR(E2_MS3);
  3596. #endif
  3597. #endif
  3598. #if HAS_E3_MS_PINS
  3599. MS_LINE(E3);
  3600. #if PIN_EXISTS(E3_MS3)
  3601. PIN_CHAR(E3_MS3);
  3602. #endif
  3603. #endif
  3604. #if HAS_E4_MS_PINS
  3605. MS_LINE(E4);
  3606. #if PIN_EXISTS(E4_MS3)
  3607. PIN_CHAR(E4_MS3);
  3608. #endif
  3609. #endif
  3610. #if HAS_E5_MS_PINS
  3611. MS_LINE(E5);
  3612. #if PIN_EXISTS(E5_MS3)
  3613. PIN_CHAR(E5_MS3);
  3614. #endif
  3615. #endif
  3616. #if HAS_E6_MS_PINS
  3617. MS_LINE(E6);
  3618. #if PIN_EXISTS(E6_MS3)
  3619. PIN_CHAR(E6_MS3);
  3620. #endif
  3621. #endif
  3622. #if HAS_E7_MS_PINS
  3623. MS_LINE(E7);
  3624. #if PIN_EXISTS(E7_MS3)
  3625. PIN_CHAR(E7_MS3);
  3626. #endif
  3627. #endif
  3628. SERIAL_EOL();
  3629. }
  3630. #endif // HAS_MICROSTEPS