My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

planner.cpp 39KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038
  1. /*
  2. planner.c - buffers movement commands and manages the acceleration profile plan
  3. Part of Grbl
  4. Copyright (c) 2009-2011 Simen Svale Skogsrud
  5. Grbl is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. Grbl is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /* The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis. */
  17. /*
  18. Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
  19. s == speed, a == acceleration, t == time, d == distance
  20. Basic definitions:
  21. Speed[s_, a_, t_] := s + (a*t)
  22. Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
  23. Distance to reach a specific speed with a constant acceleration:
  24. Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
  25. d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
  26. Speed after a given distance of travel with constant acceleration:
  27. Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
  28. m -> Sqrt[2 a d + s^2]
  29. DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
  30. When to start braking (di) to reach a specified destionation speed (s2) after accelerating
  31. from initial speed s1 without ever stopping at a plateau:
  32. Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
  33. di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
  34. IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
  35. */
  36. #include "Marlin.h"
  37. #include "planner.h"
  38. #include "stepper.h"
  39. #include "temperature.h"
  40. #include "ultralcd.h"
  41. #include "language.h"
  42. //===========================================================================
  43. //=============================public variables ============================
  44. //===========================================================================
  45. unsigned long minsegmenttime;
  46. float max_feedrate[4]; // set the max speeds
  47. float axis_steps_per_unit[4];
  48. unsigned long max_acceleration_units_per_sq_second[4]; // Use M201 to override by software
  49. float minimumfeedrate;
  50. float acceleration; // Normal acceleration mm/s^2 THIS IS THE DEFAULT ACCELERATION for all moves. M204 SXXXX
  51. float retract_acceleration; // mm/s^2 filament pull-pack and push-forward while standing still in the other axis M204 TXXXX
  52. float max_xy_jerk; //speed than can be stopped at once, if i understand correctly.
  53. float max_z_jerk;
  54. float max_e_jerk;
  55. float mintravelfeedrate;
  56. unsigned long axis_steps_per_sqr_second[NUM_AXIS];
  57. #ifdef ENABLE_AUTO_BED_LEVELING
  58. // this holds the required transform to compensate for bed level
  59. matrix_3x3 plan_bed_level_matrix = {
  60. 1.0, 0.0, 0.0,
  61. 0.0, 1.0, 0.0,
  62. 0.0, 0.0, 1.0,
  63. };
  64. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  65. // The current position of the tool in absolute steps
  66. long position[4]; //rescaled from extern when axis_steps_per_unit are changed by gcode
  67. static float previous_speed[4]; // Speed of previous path line segment
  68. static float previous_nominal_speed; // Nominal speed of previous path line segment
  69. #ifdef AUTOTEMP
  70. float autotemp_max=250;
  71. float autotemp_min=210;
  72. float autotemp_factor=0.1;
  73. bool autotemp_enabled=false;
  74. #endif
  75. unsigned char g_uc_extruder_last_move[3] = {0,0,0};
  76. //===========================================================================
  77. //=================semi-private variables, used in inline functions =====
  78. //===========================================================================
  79. block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instfructions
  80. volatile unsigned char block_buffer_head; // Index of the next block to be pushed
  81. volatile unsigned char block_buffer_tail; // Index of the block to process now
  82. //===========================================================================
  83. //=============================private variables ============================
  84. //===========================================================================
  85. #ifdef PREVENT_DANGEROUS_EXTRUDE
  86. float extrude_min_temp=EXTRUDE_MINTEMP;
  87. #endif
  88. #ifdef XY_FREQUENCY_LIMIT
  89. #define MAX_FREQ_TIME (1000000.0/XY_FREQUENCY_LIMIT)
  90. // Used for the frequency limit
  91. static unsigned char old_direction_bits = 0; // Old direction bits. Used for speed calculations
  92. static long x_segment_time[3]={MAX_FREQ_TIME + 1,0,0}; // Segment times (in us). Used for speed calculations
  93. static long y_segment_time[3]={MAX_FREQ_TIME + 1,0,0};
  94. #endif
  95. // Returns the index of the next block in the ring buffer
  96. // NOTE: Removed modulo (%) operator, which uses an expensive divide and multiplication.
  97. static int8_t next_block_index(int8_t block_index) {
  98. block_index++;
  99. if (block_index == BLOCK_BUFFER_SIZE) {
  100. block_index = 0;
  101. }
  102. return(block_index);
  103. }
  104. // Returns the index of the previous block in the ring buffer
  105. static int8_t prev_block_index(int8_t block_index) {
  106. if (block_index == 0) {
  107. block_index = BLOCK_BUFFER_SIZE;
  108. }
  109. block_index--;
  110. return(block_index);
  111. }
  112. //===========================================================================
  113. //=============================functions ============================
  114. //===========================================================================
  115. // Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
  116. // given acceleration:
  117. FORCE_INLINE float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration)
  118. {
  119. if (acceleration!=0) {
  120. return((target_rate*target_rate-initial_rate*initial_rate)/
  121. (2.0*acceleration));
  122. }
  123. else {
  124. return 0.0; // acceleration was 0, set acceleration distance to 0
  125. }
  126. }
  127. // This function gives you the point at which you must start braking (at the rate of -acceleration) if
  128. // you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
  129. // a total travel of distance. This can be used to compute the intersection point between acceleration and
  130. // deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
  131. FORCE_INLINE float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance)
  132. {
  133. if (acceleration!=0) {
  134. return((2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/
  135. (4.0*acceleration) );
  136. }
  137. else {
  138. return 0.0; // acceleration was 0, set intersection distance to 0
  139. }
  140. }
  141. // Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
  142. void calculate_trapezoid_for_block(block_t *block, float entry_factor, float exit_factor) {
  143. unsigned long initial_rate = ceil(block->nominal_rate*entry_factor); // (step/min)
  144. unsigned long final_rate = ceil(block->nominal_rate*exit_factor); // (step/min)
  145. // Limit minimal step rate (Otherwise the timer will overflow.)
  146. if(initial_rate <120) {
  147. initial_rate=120;
  148. }
  149. if(final_rate < 120) {
  150. final_rate=120;
  151. }
  152. long acceleration = block->acceleration_st;
  153. int32_t accelerate_steps =
  154. ceil(estimate_acceleration_distance(initial_rate, block->nominal_rate, acceleration));
  155. int32_t decelerate_steps =
  156. floor(estimate_acceleration_distance(block->nominal_rate, final_rate, -acceleration));
  157. // Calculate the size of Plateau of Nominal Rate.
  158. int32_t plateau_steps = block->step_event_count-accelerate_steps-decelerate_steps;
  159. // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
  160. // have to use intersection_distance() to calculate when to abort acceleration and start braking
  161. // in order to reach the final_rate exactly at the end of this block.
  162. if (plateau_steps < 0) {
  163. accelerate_steps = ceil(intersection_distance(initial_rate, final_rate, acceleration, block->step_event_count));
  164. accelerate_steps = max(accelerate_steps,0); // Check limits due to numerical round-off
  165. accelerate_steps = min((uint32_t)accelerate_steps,block->step_event_count);//(We can cast here to unsigned, because the above line ensures that we are above zero)
  166. plateau_steps = 0;
  167. }
  168. #ifdef ADVANCE
  169. volatile long initial_advance = block->advance*entry_factor*entry_factor;
  170. volatile long final_advance = block->advance*exit_factor*exit_factor;
  171. #endif // ADVANCE
  172. // block->accelerate_until = accelerate_steps;
  173. // block->decelerate_after = accelerate_steps+plateau_steps;
  174. CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section
  175. if(block->busy == false) { // Don't update variables if block is busy.
  176. block->accelerate_until = accelerate_steps;
  177. block->decelerate_after = accelerate_steps+plateau_steps;
  178. block->initial_rate = initial_rate;
  179. block->final_rate = final_rate;
  180. #ifdef ADVANCE
  181. block->initial_advance = initial_advance;
  182. block->final_advance = final_advance;
  183. #endif //ADVANCE
  184. }
  185. CRITICAL_SECTION_END;
  186. }
  187. // Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the
  188. // acceleration within the allotted distance.
  189. FORCE_INLINE float max_allowable_speed(float acceleration, float target_velocity, float distance) {
  190. return sqrt(target_velocity*target_velocity-2*acceleration*distance);
  191. }
  192. // "Junction jerk" in this context is the immediate change in speed at the junction of two blocks.
  193. // This method will calculate the junction jerk as the euclidean distance between the nominal
  194. // velocities of the respective blocks.
  195. //inline float junction_jerk(block_t *before, block_t *after) {
  196. // return sqrt(
  197. // pow((before->speed_x-after->speed_x), 2)+pow((before->speed_y-after->speed_y), 2));
  198. //}
  199. // The kernel called by planner_recalculate() when scanning the plan from last to first entry.
  200. void planner_reverse_pass_kernel(block_t *previous, block_t *current, block_t *next) {
  201. if(!current) {
  202. return;
  203. }
  204. if (next) {
  205. // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
  206. // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
  207. // check for maximum allowable speed reductions to ensure maximum possible planned speed.
  208. if (current->entry_speed != current->max_entry_speed) {
  209. // If nominal length true, max junction speed is guaranteed to be reached. Only compute
  210. // for max allowable speed if block is decelerating and nominal length is false.
  211. if ((!current->nominal_length_flag) && (current->max_entry_speed > next->entry_speed)) {
  212. current->entry_speed = min( current->max_entry_speed,
  213. max_allowable_speed(-current->acceleration,next->entry_speed,current->millimeters));
  214. }
  215. else {
  216. current->entry_speed = current->max_entry_speed;
  217. }
  218. current->recalculate_flag = true;
  219. }
  220. } // Skip last block. Already initialized and set for recalculation.
  221. }
  222. // planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
  223. // implements the reverse pass.
  224. void planner_reverse_pass() {
  225. uint8_t block_index = block_buffer_head;
  226. //Make a local copy of block_buffer_tail, because the interrupt can alter it
  227. CRITICAL_SECTION_START;
  228. unsigned char tail = block_buffer_tail;
  229. CRITICAL_SECTION_END
  230. if(((block_buffer_head-tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1)) > 3) {
  231. block_index = (block_buffer_head - 3) & (BLOCK_BUFFER_SIZE - 1);
  232. block_t *block[3] = {
  233. NULL, NULL, NULL };
  234. while(block_index != tail) {
  235. block_index = prev_block_index(block_index);
  236. block[2]= block[1];
  237. block[1]= block[0];
  238. block[0] = &block_buffer[block_index];
  239. planner_reverse_pass_kernel(block[0], block[1], block[2]);
  240. }
  241. }
  242. }
  243. // The kernel called by planner_recalculate() when scanning the plan from first to last entry.
  244. void planner_forward_pass_kernel(block_t *previous, block_t *current, block_t *next) {
  245. if(!previous) {
  246. return;
  247. }
  248. // If the previous block is an acceleration block, but it is not long enough to complete the
  249. // full speed change within the block, we need to adjust the entry speed accordingly. Entry
  250. // speeds have already been reset, maximized, and reverse planned by reverse planner.
  251. // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
  252. if (!previous->nominal_length_flag) {
  253. if (previous->entry_speed < current->entry_speed) {
  254. double entry_speed = min( current->entry_speed,
  255. max_allowable_speed(-previous->acceleration,previous->entry_speed,previous->millimeters) );
  256. // Check for junction speed change
  257. if (current->entry_speed != entry_speed) {
  258. current->entry_speed = entry_speed;
  259. current->recalculate_flag = true;
  260. }
  261. }
  262. }
  263. }
  264. // planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
  265. // implements the forward pass.
  266. void planner_forward_pass() {
  267. uint8_t block_index = block_buffer_tail;
  268. block_t *block[3] = {
  269. NULL, NULL, NULL };
  270. while(block_index != block_buffer_head) {
  271. block[0] = block[1];
  272. block[1] = block[2];
  273. block[2] = &block_buffer[block_index];
  274. planner_forward_pass_kernel(block[0],block[1],block[2]);
  275. block_index = next_block_index(block_index);
  276. }
  277. planner_forward_pass_kernel(block[1], block[2], NULL);
  278. }
  279. // Recalculates the trapezoid speed profiles for all blocks in the plan according to the
  280. // entry_factor for each junction. Must be called by planner_recalculate() after
  281. // updating the blocks.
  282. void planner_recalculate_trapezoids() {
  283. int8_t block_index = block_buffer_tail;
  284. block_t *current;
  285. block_t *next = NULL;
  286. while(block_index != block_buffer_head) {
  287. current = next;
  288. next = &block_buffer[block_index];
  289. if (current) {
  290. // Recalculate if current block entry or exit junction speed has changed.
  291. if (current->recalculate_flag || next->recalculate_flag) {
  292. // NOTE: Entry and exit factors always > 0 by all previous logic operations.
  293. calculate_trapezoid_for_block(current, current->entry_speed/current->nominal_speed,
  294. next->entry_speed/current->nominal_speed);
  295. current->recalculate_flag = false; // Reset current only to ensure next trapezoid is computed
  296. }
  297. }
  298. block_index = next_block_index( block_index );
  299. }
  300. // Last/newest block in buffer. Exit speed is set with MINIMUM_PLANNER_SPEED. Always recalculated.
  301. if(next != NULL) {
  302. calculate_trapezoid_for_block(next, next->entry_speed/next->nominal_speed,
  303. MINIMUM_PLANNER_SPEED/next->nominal_speed);
  304. next->recalculate_flag = false;
  305. }
  306. }
  307. // Recalculates the motion plan according to the following algorithm:
  308. //
  309. // 1. Go over every block in reverse order and calculate a junction speed reduction (i.e. block_t.entry_factor)
  310. // so that:
  311. // a. The junction jerk is within the set limit
  312. // b. No speed reduction within one block requires faster deceleration than the one, true constant
  313. // acceleration.
  314. // 2. Go over every block in chronological order and dial down junction speed reduction values if
  315. // a. The speed increase within one block would require faster accelleration than the one, true
  316. // constant acceleration.
  317. //
  318. // When these stages are complete all blocks have an entry_factor that will allow all speed changes to
  319. // be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than
  320. // the set limit. Finally it will:
  321. //
  322. // 3. Recalculate trapezoids for all blocks.
  323. void planner_recalculate() {
  324. planner_reverse_pass();
  325. planner_forward_pass();
  326. planner_recalculate_trapezoids();
  327. }
  328. void plan_init() {
  329. block_buffer_head = 0;
  330. block_buffer_tail = 0;
  331. memset(position, 0, sizeof(position)); // clear position
  332. previous_speed[0] = 0.0;
  333. previous_speed[1] = 0.0;
  334. previous_speed[2] = 0.0;
  335. previous_speed[3] = 0.0;
  336. previous_nominal_speed = 0.0;
  337. }
  338. #ifdef AUTOTEMP
  339. void getHighESpeed()
  340. {
  341. static float oldt=0;
  342. if(!autotemp_enabled){
  343. return;
  344. }
  345. if(degTargetHotend0()+2<autotemp_min) { //probably temperature set to zero.
  346. return; //do nothing
  347. }
  348. float high=0.0;
  349. uint8_t block_index = block_buffer_tail;
  350. while(block_index != block_buffer_head) {
  351. if((block_buffer[block_index].steps_x != 0) ||
  352. (block_buffer[block_index].steps_y != 0) ||
  353. (block_buffer[block_index].steps_z != 0)) {
  354. float se=(float(block_buffer[block_index].steps_e)/float(block_buffer[block_index].step_event_count))*block_buffer[block_index].nominal_speed;
  355. //se; mm/sec;
  356. if(se>high)
  357. {
  358. high=se;
  359. }
  360. }
  361. block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
  362. }
  363. float g=autotemp_min+high*autotemp_factor;
  364. float t=g;
  365. if(t<autotemp_min)
  366. t=autotemp_min;
  367. if(t>autotemp_max)
  368. t=autotemp_max;
  369. if(oldt>t)
  370. {
  371. t=AUTOTEMP_OLDWEIGHT*oldt+(1-AUTOTEMP_OLDWEIGHT)*t;
  372. }
  373. oldt=t;
  374. setTargetHotend0(t);
  375. }
  376. #endif
  377. void check_axes_activity()
  378. {
  379. unsigned char x_active = 0;
  380. unsigned char y_active = 0;
  381. unsigned char z_active = 0;
  382. unsigned char e_active = 0;
  383. unsigned char tail_fan_speed = fanSpeed;
  384. #ifdef BARICUDA
  385. unsigned char tail_valve_pressure = ValvePressure;
  386. unsigned char tail_e_to_p_pressure = EtoPPressure;
  387. #endif
  388. block_t *block;
  389. if(block_buffer_tail != block_buffer_head)
  390. {
  391. uint8_t block_index = block_buffer_tail;
  392. tail_fan_speed = block_buffer[block_index].fan_speed;
  393. #ifdef BARICUDA
  394. tail_valve_pressure = block_buffer[block_index].valve_pressure;
  395. tail_e_to_p_pressure = block_buffer[block_index].e_to_p_pressure;
  396. #endif
  397. while(block_index != block_buffer_head)
  398. {
  399. block = &block_buffer[block_index];
  400. if(block->steps_x != 0) x_active++;
  401. if(block->steps_y != 0) y_active++;
  402. if(block->steps_z != 0) z_active++;
  403. if(block->steps_e != 0) e_active++;
  404. block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
  405. }
  406. }
  407. if((DISABLE_X) && (x_active == 0)) disable_x();
  408. if((DISABLE_Y) && (y_active == 0)) disable_y();
  409. if((DISABLE_Z) && (z_active == 0)) disable_z();
  410. if((DISABLE_E) && (e_active == 0))
  411. {
  412. disable_e0();
  413. disable_e1();
  414. disable_e2();
  415. }
  416. #if defined(FAN_PIN) && FAN_PIN > -1
  417. #ifdef FAN_KICKSTART_TIME
  418. static unsigned long fan_kick_end;
  419. if (tail_fan_speed) {
  420. if (fan_kick_end == 0) {
  421. // Just starting up fan - run at full power.
  422. fan_kick_end = millis() + FAN_KICKSTART_TIME;
  423. tail_fan_speed = 255;
  424. } else if (fan_kick_end > millis())
  425. // Fan still spinning up.
  426. tail_fan_speed = 255;
  427. } else {
  428. fan_kick_end = 0;
  429. }
  430. #endif//FAN_KICKSTART_TIME
  431. #ifdef FAN_SOFT_PWM
  432. fanSpeedSoftPwm = tail_fan_speed;
  433. #else
  434. analogWrite(FAN_PIN,tail_fan_speed);
  435. #endif//!FAN_SOFT_PWM
  436. #endif//FAN_PIN > -1
  437. #ifdef AUTOTEMP
  438. getHighESpeed();
  439. #endif
  440. #ifdef BARICUDA
  441. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  442. analogWrite(HEATER_1_PIN,tail_valve_pressure);
  443. #endif
  444. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  445. analogWrite(HEATER_2_PIN,tail_e_to_p_pressure);
  446. #endif
  447. #endif
  448. }
  449. float junction_deviation = 0.1;
  450. // Add a new linear movement to the buffer. steps_x, _y and _z is the absolute position in
  451. // mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration
  452. // calculation the caller must also provide the physical length of the line in millimeters.
  453. #ifdef ENABLE_AUTO_BED_LEVELING
  454. void plan_buffer_line(float x, float y, float z, const float &e, float feed_rate, const uint8_t &extruder)
  455. #else
  456. void plan_buffer_line(const float &x, const float &y, const float &z, const float &e, float feed_rate, const uint8_t &extruder)
  457. #endif //ENABLE_AUTO_BED_LEVELING
  458. {
  459. // Calculate the buffer head after we push this byte
  460. int next_buffer_head = next_block_index(block_buffer_head);
  461. // If the buffer is full: good! That means we are well ahead of the robot.
  462. // Rest here until there is room in the buffer.
  463. while(block_buffer_tail == next_buffer_head)
  464. {
  465. manage_heater();
  466. manage_inactivity();
  467. lcd_update();
  468. }
  469. #ifdef ENABLE_AUTO_BED_LEVELING
  470. apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
  471. #endif // ENABLE_AUTO_BED_LEVELING
  472. // The target position of the tool in absolute steps
  473. // Calculate target position in absolute steps
  474. //this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
  475. long target[4];
  476. target[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]);
  477. target[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);
  478. target[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
  479. target[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
  480. #ifdef PREVENT_DANGEROUS_EXTRUDE
  481. if(target[E_AXIS]!=position[E_AXIS])
  482. {
  483. if(degHotend(active_extruder)<extrude_min_temp)
  484. {
  485. position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
  486. SERIAL_ECHO_START;
  487. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  488. }
  489. #ifdef PREVENT_LENGTHY_EXTRUDE
  490. if(labs(target[E_AXIS]-position[E_AXIS])>axis_steps_per_unit[E_AXIS]*EXTRUDE_MAXLENGTH)
  491. {
  492. position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
  493. SERIAL_ECHO_START;
  494. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  495. }
  496. #endif
  497. }
  498. #endif
  499. // Prepare to set up new block
  500. block_t *block = &block_buffer[block_buffer_head];
  501. // Mark block as not busy (Not executed by the stepper interrupt)
  502. block->busy = false;
  503. // Number of steps for each axis
  504. #ifndef COREXY
  505. // default non-h-bot planning
  506. block->steps_x = labs(target[X_AXIS]-position[X_AXIS]);
  507. block->steps_y = labs(target[Y_AXIS]-position[Y_AXIS]);
  508. #else
  509. // corexy planning
  510. // these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
  511. block->steps_x = labs((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]));
  512. block->steps_y = labs((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]));
  513. #endif
  514. block->steps_z = labs(target[Z_AXIS]-position[Z_AXIS]);
  515. block->steps_e = labs(target[E_AXIS]-position[E_AXIS]);
  516. block->steps_e *= volumetric_multiplier[active_extruder];
  517. block->steps_e *= extrudemultiply;
  518. block->steps_e /= 100;
  519. block->step_event_count = max(block->steps_x, max(block->steps_y, max(block->steps_z, block->steps_e)));
  520. // Bail if this is a zero-length block
  521. if (block->step_event_count <= dropsegments)
  522. {
  523. return;
  524. }
  525. block->fan_speed = fanSpeed;
  526. #ifdef BARICUDA
  527. block->valve_pressure = ValvePressure;
  528. block->e_to_p_pressure = EtoPPressure;
  529. #endif
  530. // Compute direction bits for this block
  531. block->direction_bits = 0;
  532. #ifndef COREXY
  533. if (target[X_AXIS] < position[X_AXIS])
  534. {
  535. block->direction_bits |= (1<<X_AXIS);
  536. }
  537. if (target[Y_AXIS] < position[Y_AXIS])
  538. {
  539. block->direction_bits |= (1<<Y_AXIS);
  540. }
  541. #else
  542. if ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]) < 0)
  543. {
  544. block->direction_bits |= (1<<X_AXIS);
  545. }
  546. if ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]) < 0)
  547. {
  548. block->direction_bits |= (1<<Y_AXIS);
  549. }
  550. #endif
  551. if (target[Z_AXIS] < position[Z_AXIS])
  552. {
  553. block->direction_bits |= (1<<Z_AXIS);
  554. }
  555. if (target[E_AXIS] < position[E_AXIS])
  556. {
  557. block->direction_bits |= (1<<E_AXIS);
  558. }
  559. block->active_extruder = extruder;
  560. //enable active axes
  561. #ifdef COREXY
  562. if((block->steps_x != 0) || (block->steps_y != 0))
  563. {
  564. enable_x();
  565. enable_y();
  566. }
  567. #else
  568. if(block->steps_x != 0) enable_x();
  569. if(block->steps_y != 0) enable_y();
  570. #endif
  571. #ifndef Z_LATE_ENABLE
  572. if(block->steps_z != 0) enable_z();
  573. #endif
  574. // Enable extruder(s)
  575. if(block->steps_e != 0)
  576. {
  577. if (DISABLE_INACTIVE_EXTRUDER) //enable only selected extruder
  578. {
  579. if(g_uc_extruder_last_move[0] > 0) g_uc_extruder_last_move[0]--;
  580. if(g_uc_extruder_last_move[1] > 0) g_uc_extruder_last_move[1]--;
  581. if(g_uc_extruder_last_move[2] > 0) g_uc_extruder_last_move[2]--;
  582. switch(extruder)
  583. {
  584. case 0:
  585. enable_e0();
  586. g_uc_extruder_last_move[0] = BLOCK_BUFFER_SIZE*2;
  587. if(g_uc_extruder_last_move[1] == 0) disable_e1();
  588. if(g_uc_extruder_last_move[2] == 0) disable_e2();
  589. break;
  590. case 1:
  591. enable_e1();
  592. g_uc_extruder_last_move[1] = BLOCK_BUFFER_SIZE*2;
  593. if(g_uc_extruder_last_move[0] == 0) disable_e0();
  594. if(g_uc_extruder_last_move[2] == 0) disable_e2();
  595. break;
  596. case 2:
  597. enable_e2();
  598. g_uc_extruder_last_move[2] = BLOCK_BUFFER_SIZE*2;
  599. if(g_uc_extruder_last_move[0] == 0) disable_e0();
  600. if(g_uc_extruder_last_move[1] == 0) disable_e1();
  601. break;
  602. }
  603. }
  604. else //enable all
  605. {
  606. enable_e0();
  607. enable_e1();
  608. enable_e2();
  609. }
  610. }
  611. if (block->steps_e == 0)
  612. {
  613. if(feed_rate<mintravelfeedrate) feed_rate=mintravelfeedrate;
  614. }
  615. else
  616. {
  617. if(feed_rate<minimumfeedrate) feed_rate=minimumfeedrate;
  618. }
  619. float delta_mm[4];
  620. #ifndef COREXY
  621. delta_mm[X_AXIS] = (target[X_AXIS]-position[X_AXIS])/axis_steps_per_unit[X_AXIS];
  622. delta_mm[Y_AXIS] = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS];
  623. #else
  624. delta_mm[X_AXIS] = ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]))/axis_steps_per_unit[X_AXIS];
  625. delta_mm[Y_AXIS] = ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]))/axis_steps_per_unit[Y_AXIS];
  626. #endif
  627. delta_mm[Z_AXIS] = (target[Z_AXIS]-position[Z_AXIS])/axis_steps_per_unit[Z_AXIS];
  628. delta_mm[E_AXIS] = ((target[E_AXIS]-position[E_AXIS])/axis_steps_per_unit[E_AXIS])*volumetric_multiplier[active_extruder]*extrudemultiply/100.0;
  629. if ( block->steps_x <=dropsegments && block->steps_y <=dropsegments && block->steps_z <=dropsegments )
  630. {
  631. block->millimeters = fabs(delta_mm[E_AXIS]);
  632. }
  633. else
  634. {
  635. block->millimeters = sqrt(square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_AXIS]));
  636. }
  637. float inverse_millimeters = 1.0/block->millimeters; // Inverse millimeters to remove multiple divides
  638. // Calculate speed in mm/second for each axis. No divide by zero due to previous checks.
  639. float inverse_second = feed_rate * inverse_millimeters;
  640. int moves_queued=(block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1);
  641. // slow down when de buffer starts to empty, rather than wait at the corner for a buffer refill
  642. #ifdef OLD_SLOWDOWN
  643. if(moves_queued < (BLOCK_BUFFER_SIZE * 0.5) && moves_queued > 1)
  644. feed_rate = feed_rate*moves_queued / (BLOCK_BUFFER_SIZE * 0.5);
  645. #endif
  646. #ifdef SLOWDOWN
  647. // segment time im micro seconds
  648. unsigned long segment_time = lround(1000000.0/inverse_second);
  649. if ((moves_queued > 1) && (moves_queued < (BLOCK_BUFFER_SIZE * 0.5)))
  650. {
  651. if (segment_time < minsegmenttime)
  652. { // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
  653. inverse_second=1000000.0/(segment_time+lround(2*(minsegmenttime-segment_time)/moves_queued));
  654. #ifdef XY_FREQUENCY_LIMIT
  655. segment_time = lround(1000000.0/inverse_second);
  656. #endif
  657. }
  658. }
  659. #endif
  660. // END OF SLOW DOWN SECTION
  661. block->nominal_speed = block->millimeters * inverse_second; // (mm/sec) Always > 0
  662. block->nominal_rate = ceil(block->step_event_count * inverse_second); // (step/sec) Always > 0
  663. // Calculate and limit speed in mm/sec for each axis
  664. float current_speed[4];
  665. float speed_factor = 1.0; //factor <=1 do decrease speed
  666. for(int i=0; i < 4; i++)
  667. {
  668. current_speed[i] = delta_mm[i] * inverse_second;
  669. if(fabs(current_speed[i]) > max_feedrate[i])
  670. speed_factor = min(speed_factor, max_feedrate[i] / fabs(current_speed[i]));
  671. }
  672. // Max segement time in us.
  673. #ifdef XY_FREQUENCY_LIMIT
  674. #define MAX_FREQ_TIME (1000000.0/XY_FREQUENCY_LIMIT)
  675. // Check and limit the xy direction change frequency
  676. unsigned char direction_change = block->direction_bits ^ old_direction_bits;
  677. old_direction_bits = block->direction_bits;
  678. segment_time = lround((float)segment_time / speed_factor);
  679. if((direction_change & (1<<X_AXIS)) == 0)
  680. {
  681. x_segment_time[0] += segment_time;
  682. }
  683. else
  684. {
  685. x_segment_time[2] = x_segment_time[1];
  686. x_segment_time[1] = x_segment_time[0];
  687. x_segment_time[0] = segment_time;
  688. }
  689. if((direction_change & (1<<Y_AXIS)) == 0)
  690. {
  691. y_segment_time[0] += segment_time;
  692. }
  693. else
  694. {
  695. y_segment_time[2] = y_segment_time[1];
  696. y_segment_time[1] = y_segment_time[0];
  697. y_segment_time[0] = segment_time;
  698. }
  699. long max_x_segment_time = max(x_segment_time[0], max(x_segment_time[1], x_segment_time[2]));
  700. long max_y_segment_time = max(y_segment_time[0], max(y_segment_time[1], y_segment_time[2]));
  701. long min_xy_segment_time =min(max_x_segment_time, max_y_segment_time);
  702. if(min_xy_segment_time < MAX_FREQ_TIME)
  703. speed_factor = min(speed_factor, speed_factor * (float)min_xy_segment_time / (float)MAX_FREQ_TIME);
  704. #endif
  705. // Correct the speed
  706. if( speed_factor < 1.0)
  707. {
  708. for(unsigned char i=0; i < 4; i++)
  709. {
  710. current_speed[i] *= speed_factor;
  711. }
  712. block->nominal_speed *= speed_factor;
  713. block->nominal_rate *= speed_factor;
  714. }
  715. // Compute and limit the acceleration rate for the trapezoid generator.
  716. float steps_per_mm = block->step_event_count/block->millimeters;
  717. if(block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0)
  718. {
  719. block->acceleration_st = ceil(retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  720. }
  721. else
  722. {
  723. block->acceleration_st = ceil(acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  724. // Limit acceleration per axis
  725. if(((float)block->acceleration_st * (float)block->steps_x / (float)block->step_event_count) > axis_steps_per_sqr_second[X_AXIS])
  726. block->acceleration_st = axis_steps_per_sqr_second[X_AXIS];
  727. if(((float)block->acceleration_st * (float)block->steps_y / (float)block->step_event_count) > axis_steps_per_sqr_second[Y_AXIS])
  728. block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS];
  729. if(((float)block->acceleration_st * (float)block->steps_e / (float)block->step_event_count) > axis_steps_per_sqr_second[E_AXIS])
  730. block->acceleration_st = axis_steps_per_sqr_second[E_AXIS];
  731. if(((float)block->acceleration_st * (float)block->steps_z / (float)block->step_event_count ) > axis_steps_per_sqr_second[Z_AXIS])
  732. block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS];
  733. }
  734. block->acceleration = block->acceleration_st / steps_per_mm;
  735. block->acceleration_rate = (long)((float)block->acceleration_st * (16777216.0 / (F_CPU / 8.0)));
  736. #if 0 // Use old jerk for now
  737. // Compute path unit vector
  738. double unit_vec[3];
  739. unit_vec[X_AXIS] = delta_mm[X_AXIS]*inverse_millimeters;
  740. unit_vec[Y_AXIS] = delta_mm[Y_AXIS]*inverse_millimeters;
  741. unit_vec[Z_AXIS] = delta_mm[Z_AXIS]*inverse_millimeters;
  742. // Compute maximum allowable entry speed at junction by centripetal acceleration approximation.
  743. // Let a circle be tangent to both previous and current path line segments, where the junction
  744. // deviation is defined as the distance from the junction to the closest edge of the circle,
  745. // colinear with the circle center. The circular segment joining the two paths represents the
  746. // path of centripetal acceleration. Solve for max velocity based on max acceleration about the
  747. // radius of the circle, defined indirectly by junction deviation. This may be also viewed as
  748. // path width or max_jerk in the previous grbl version. This approach does not actually deviate
  749. // from path, but used as a robust way to compute cornering speeds, as it takes into account the
  750. // nonlinearities of both the junction angle and junction velocity.
  751. double vmax_junction = MINIMUM_PLANNER_SPEED; // Set default max junction speed
  752. // Skip first block or when previous_nominal_speed is used as a flag for homing and offset cycles.
  753. if ((block_buffer_head != block_buffer_tail) && (previous_nominal_speed > 0.0)) {
  754. // Compute cosine of angle between previous and current path. (prev_unit_vec is negative)
  755. // NOTE: Max junction velocity is computed without sin() or acos() by trig half angle identity.
  756. double cos_theta = - previous_unit_vec[X_AXIS] * unit_vec[X_AXIS]
  757. - previous_unit_vec[Y_AXIS] * unit_vec[Y_AXIS]
  758. - previous_unit_vec[Z_AXIS] * unit_vec[Z_AXIS] ;
  759. // Skip and use default max junction speed for 0 degree acute junction.
  760. if (cos_theta < 0.95) {
  761. vmax_junction = min(previous_nominal_speed,block->nominal_speed);
  762. // Skip and avoid divide by zero for straight junctions at 180 degrees. Limit to min() of nominal speeds.
  763. if (cos_theta > -0.95) {
  764. // Compute maximum junction velocity based on maximum acceleration and junction deviation
  765. double sin_theta_d2 = sqrt(0.5*(1.0-cos_theta)); // Trig half angle identity. Always positive.
  766. vmax_junction = min(vmax_junction,
  767. sqrt(block->acceleration * junction_deviation * sin_theta_d2/(1.0-sin_theta_d2)) );
  768. }
  769. }
  770. }
  771. #endif
  772. // Start with a safe speed
  773. float vmax_junction = max_xy_jerk/2;
  774. float vmax_junction_factor = 1.0;
  775. if(fabs(current_speed[Z_AXIS]) > max_z_jerk/2)
  776. vmax_junction = min(vmax_junction, max_z_jerk/2);
  777. if(fabs(current_speed[E_AXIS]) > max_e_jerk/2)
  778. vmax_junction = min(vmax_junction, max_e_jerk/2);
  779. vmax_junction = min(vmax_junction, block->nominal_speed);
  780. float safe_speed = vmax_junction;
  781. if ((moves_queued > 1) && (previous_nominal_speed > 0.0001)) {
  782. float jerk = sqrt(pow((current_speed[X_AXIS]-previous_speed[X_AXIS]), 2)+pow((current_speed[Y_AXIS]-previous_speed[Y_AXIS]), 2));
  783. // if((fabs(previous_speed[X_AXIS]) > 0.0001) || (fabs(previous_speed[Y_AXIS]) > 0.0001)) {
  784. vmax_junction = block->nominal_speed;
  785. // }
  786. if (jerk > max_xy_jerk) {
  787. vmax_junction_factor = (max_xy_jerk/jerk);
  788. }
  789. if(fabs(current_speed[Z_AXIS] - previous_speed[Z_AXIS]) > max_z_jerk) {
  790. vmax_junction_factor= min(vmax_junction_factor, (max_z_jerk/fabs(current_speed[Z_AXIS] - previous_speed[Z_AXIS])));
  791. }
  792. if(fabs(current_speed[E_AXIS] - previous_speed[E_AXIS]) > max_e_jerk) {
  793. vmax_junction_factor = min(vmax_junction_factor, (max_e_jerk/fabs(current_speed[E_AXIS] - previous_speed[E_AXIS])));
  794. }
  795. vmax_junction = min(previous_nominal_speed, vmax_junction * vmax_junction_factor); // Limit speed to max previous speed
  796. }
  797. block->max_entry_speed = vmax_junction;
  798. // Initialize block entry speed. Compute based on deceleration to user-defined MINIMUM_PLANNER_SPEED.
  799. double v_allowable = max_allowable_speed(-block->acceleration,MINIMUM_PLANNER_SPEED,block->millimeters);
  800. block->entry_speed = min(vmax_junction, v_allowable);
  801. // Initialize planner efficiency flags
  802. // Set flag if block will always reach maximum junction speed regardless of entry/exit speeds.
  803. // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
  804. // the current block and next block junction speeds are guaranteed to always be at their maximum
  805. // junction speeds in deceleration and acceleration, respectively. This is due to how the current
  806. // block nominal speed limits both the current and next maximum junction speeds. Hence, in both
  807. // the reverse and forward planners, the corresponding block junction speed will always be at the
  808. // the maximum junction speed and may always be ignored for any speed reduction checks.
  809. if (block->nominal_speed <= v_allowable) {
  810. block->nominal_length_flag = true;
  811. }
  812. else {
  813. block->nominal_length_flag = false;
  814. }
  815. block->recalculate_flag = true; // Always calculate trapezoid for new block
  816. // Update previous path unit_vector and nominal speed
  817. memcpy(previous_speed, current_speed, sizeof(previous_speed)); // previous_speed[] = current_speed[]
  818. previous_nominal_speed = block->nominal_speed;
  819. #ifdef ADVANCE
  820. // Calculate advance rate
  821. if((block->steps_e == 0) || (block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0)) {
  822. block->advance_rate = 0;
  823. block->advance = 0;
  824. }
  825. else {
  826. long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_st);
  827. float advance = (STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K) *
  828. (current_speed[E_AXIS] * current_speed[E_AXIS] * EXTRUTION_AREA * EXTRUTION_AREA)*256;
  829. block->advance = advance;
  830. if(acc_dist == 0) {
  831. block->advance_rate = 0;
  832. }
  833. else {
  834. block->advance_rate = advance / (float)acc_dist;
  835. }
  836. }
  837. /*
  838. SERIAL_ECHO_START;
  839. SERIAL_ECHOPGM("advance :");
  840. SERIAL_ECHO(block->advance/256.0);
  841. SERIAL_ECHOPGM("advance rate :");
  842. SERIAL_ECHOLN(block->advance_rate/256.0);
  843. */
  844. #endif // ADVANCE
  845. calculate_trapezoid_for_block(block, block->entry_speed/block->nominal_speed,
  846. safe_speed/block->nominal_speed);
  847. // Move buffer head
  848. block_buffer_head = next_buffer_head;
  849. // Update position
  850. memcpy(position, target, sizeof(target)); // position[] = target[]
  851. planner_recalculate();
  852. st_wake_up();
  853. }
  854. #ifdef ENABLE_AUTO_BED_LEVELING
  855. vector_3 plan_get_position() {
  856. vector_3 position = vector_3(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  857. //position.debug("in plan_get position");
  858. //plan_bed_level_matrix.debug("in plan_get bed_level");
  859. matrix_3x3 inverse = matrix_3x3::transpose(plan_bed_level_matrix);
  860. //inverse.debug("in plan_get inverse");
  861. position.apply_rotation(inverse);
  862. //position.debug("after rotation");
  863. return position;
  864. }
  865. #endif // ENABLE_AUTO_BED_LEVELING
  866. #ifdef ENABLE_AUTO_BED_LEVELING
  867. void plan_set_position(float x, float y, float z, const float &e)
  868. {
  869. apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
  870. #else
  871. void plan_set_position(const float &x, const float &y, const float &z, const float &e)
  872. {
  873. #endif // ENABLE_AUTO_BED_LEVELING
  874. position[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]);
  875. position[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);
  876. position[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
  877. position[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
  878. st_set_position(position[X_AXIS], position[Y_AXIS], position[Z_AXIS], position[E_AXIS]);
  879. previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
  880. previous_speed[0] = 0.0;
  881. previous_speed[1] = 0.0;
  882. previous_speed[2] = 0.0;
  883. previous_speed[3] = 0.0;
  884. }
  885. void plan_set_e_position(const float &e)
  886. {
  887. position[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
  888. st_set_e_position(position[E_AXIS]);
  889. }
  890. uint8_t movesplanned()
  891. {
  892. return (block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1);
  893. }
  894. #ifdef PREVENT_DANGEROUS_EXTRUDE
  895. void set_extrude_min_temp(float temp)
  896. {
  897. extrude_min_temp=temp;
  898. }
  899. #endif
  900. // Calculate the steps/s^2 acceleration rates, based on the mm/s^s
  901. void reset_acceleration_rates()
  902. {
  903. for(int8_t i=0; i < NUM_AXIS; i++)
  904. {
  905. axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i];
  906. }
  907. }