My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Nevar pievienot vairāk kā 25 tēmas Tēmai ir jāsākas ar burtu vai ciparu, tā var saturēt domu zīmes ('-') un var būt līdz 35 simboliem gara.

Marlin_main.cpp 117KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef ACCURATE_BED_LEVELING
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #include "ultralcd.h"
  31. #include "planner.h"
  32. #include "stepper.h"
  33. #include "temperature.h"
  34. #include "motion_control.h"
  35. #include "cardreader.h"
  36. #include "watchdog.h"
  37. #include "ConfigurationStore.h"
  38. #include "language.h"
  39. #include "pins_arduino.h"
  40. #include "math.h"
  41. #ifdef BLINKM
  42. #include "BlinkM.h"
  43. #include "Wire.h"
  44. #endif
  45. #if NUM_SERVOS > 0
  46. #include "Servo.h"
  47. #endif
  48. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  49. #include <SPI.h>
  50. #endif
  51. #define VERSION_STRING "1.0.0"
  52. // look here for descriptions of gcodes: http://linuxcnc.org/handbook/gcode/g-code.html
  53. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  54. //Implemented Codes
  55. //-------------------
  56. // G0 -> G1
  57. // G1 - Coordinated Movement X Y Z E
  58. // G2 - CW ARC
  59. // G3 - CCW ARC
  60. // G4 - Dwell S<seconds> or P<milliseconds>
  61. // G10 - retract filament according to settings of M207
  62. // G11 - retract recover filament according to settings of M208
  63. // G28 - Home all Axis
  64. // G29 - Detailed Z-Probe, probes the bed at 3 points. You must de at the home position for this to work correctly.
  65. // G30 - Single Z Probe, probes bed at current XY location.
  66. // G90 - Use Absolute Coordinates
  67. // G91 - Use Relative Coordinates
  68. // G92 - Set current position to cordinates given
  69. // M Codes
  70. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  71. // M1 - Same as M0
  72. // M17 - Enable/Power all stepper motors
  73. // M18 - Disable all stepper motors; same as M84
  74. // M20 - List SD card
  75. // M21 - Init SD card
  76. // M22 - Release SD card
  77. // M23 - Select SD file (M23 filename.g)
  78. // M24 - Start/resume SD print
  79. // M25 - Pause SD print
  80. // M26 - Set SD position in bytes (M26 S12345)
  81. // M27 - Report SD print status
  82. // M28 - Start SD write (M28 filename.g)
  83. // M29 - Stop SD write
  84. // M30 - Delete file from SD (M30 filename.g)
  85. // M31 - Output time since last M109 or SD card start to serial
  86. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  87. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  88. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (simiarl to #include).
  89. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  90. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  91. // M80 - Turn on Power Supply
  92. // M81 - Turn off Power Supply
  93. // M82 - Set E codes absolute (default)
  94. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  95. // M84 - Disable steppers until next move,
  96. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  97. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  98. // M92 - Set axis_steps_per_unit - same syntax as G92
  99. // M104 - Set extruder target temp
  100. // M105 - Read current temp
  101. // M106 - Fan on
  102. // M107 - Fan off
  103. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  104. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  105. // M114 - Output current position to serial port
  106. // M115 - Capabilities string
  107. // M117 - display message
  108. // M119 - Output Endstop status to serial port
  109. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  110. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  111. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  112. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  113. // M140 - Set bed target temp
  114. // M150 - Set BlinkM Colour Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  115. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  116. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  117. // M200 - Set filament diameter
  118. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  119. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  120. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  121. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) im mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer underruns and M20 minimum feedrate
  122. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  123. // M206 - set additional homeing offset
  124. // M207 - set retract length S[positive mm] F[feedrate mm/sec] Z[additional zlift/hop]
  125. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  126. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  127. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  128. // M220 S<factor in percent>- set speed factor override percentage
  129. // M221 S<factor in percent>- set extrude factor override percentage
  130. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  131. // M240 - Trigger a camera to take a photograph
  132. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  133. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  134. // M300 - Play beepsound S<frequency Hz> P<duration ms>
  135. // M301 - Set PID parameters P I and D
  136. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  137. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  138. // M304 - Set bed PID parameters P I and D
  139. // M400 - Finish all moves
  140. // M401 - Lower z-probe if present
  141. // M402 - Raise z-probe if present
  142. // M500 - stores paramters in EEPROM
  143. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  144. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  145. // M503 - print the current settings (from memory not from eeprom)
  146. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  147. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  148. // M666 - set delta endstop adjustemnt
  149. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  150. // M907 - Set digital trimpot motor current using axis codes.
  151. // M908 - Control digital trimpot directly.
  152. // M350 - Set microstepping mode.
  153. // M351 - Toggle MS1 MS2 pins directly.
  154. // M928 - Start SD logging (M928 filename.g) - ended by M29
  155. // M999 - Restart after being stopped by error
  156. //Stepper Movement Variables
  157. //===========================================================================
  158. //=============================imported variables============================
  159. //===========================================================================
  160. //===========================================================================
  161. //=============================public variables=============================
  162. //===========================================================================
  163. #ifdef SDSUPPORT
  164. CardReader card;
  165. #endif
  166. float homing_feedrate[] = HOMING_FEEDRATE;
  167. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  168. int feedmultiply=100; //100->1 200->2
  169. int saved_feedmultiply;
  170. int extrudemultiply=100; //100->1 200->2
  171. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  172. float add_homeing[3]={0,0,0};
  173. #ifdef DELTA
  174. float endstop_adj[3]={0,0,0};
  175. #endif
  176. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  177. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  178. bool axis_known_position[3] = {false, false, false};
  179. // Extruder offset
  180. #if EXTRUDERS > 1
  181. #ifndef DUAL_X_CARRIAGE
  182. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  183. #else
  184. #define NUM_EXTRUDER_OFFSETS 3 // supports offsets in XYZ plane
  185. #endif
  186. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  187. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  188. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  189. #endif
  190. };
  191. #endif
  192. uint8_t active_extruder = 0;
  193. int fanSpeed=0;
  194. #ifdef SERVO_ENDSTOPS
  195. int servo_endstops[] = SERVO_ENDSTOPS;
  196. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  197. #endif
  198. #ifdef BARICUDA
  199. int ValvePressure=0;
  200. int EtoPPressure=0;
  201. #endif
  202. #ifdef FWRETRACT
  203. bool autoretract_enabled=true;
  204. bool retracted=false;
  205. float retract_length=3, retract_feedrate=17*60, retract_zlift=0.8;
  206. float retract_recover_length=0, retract_recover_feedrate=8*60;
  207. #endif
  208. #ifdef ULTIPANEL
  209. bool powersupply = true;
  210. #endif
  211. #ifdef DELTA
  212. float delta[3] = {0.0, 0.0, 0.0};
  213. #endif
  214. //===========================================================================
  215. //=============================private variables=============================
  216. //===========================================================================
  217. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  218. static float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  219. static float offset[3] = {0.0, 0.0, 0.0};
  220. static bool home_all_axis = true;
  221. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  222. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  223. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  224. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  225. static bool fromsd[BUFSIZE];
  226. static int bufindr = 0;
  227. static int bufindw = 0;
  228. static int buflen = 0;
  229. //static int i = 0;
  230. static char serial_char;
  231. static int serial_count = 0;
  232. static boolean comment_mode = false;
  233. static char *strchr_pointer; // just a pointer to find chars in the cmd string like X, Y, Z, E, etc
  234. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  235. //static float tt = 0;
  236. //static float bt = 0;
  237. //Inactivity shutdown variables
  238. static unsigned long previous_millis_cmd = 0;
  239. static unsigned long max_inactive_time = 0;
  240. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  241. unsigned long starttime=0;
  242. unsigned long stoptime=0;
  243. static uint8_t tmp_extruder;
  244. bool Stopped=false;
  245. #if NUM_SERVOS > 0
  246. Servo servos[NUM_SERVOS];
  247. #endif
  248. bool CooldownNoWait = true;
  249. bool target_direction;
  250. //===========================================================================
  251. //=============================ROUTINES=============================
  252. //===========================================================================
  253. void get_arc_coordinates();
  254. bool setTargetedHotend(int code);
  255. void serial_echopair_P(const char *s_P, float v)
  256. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  257. void serial_echopair_P(const char *s_P, double v)
  258. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  259. void serial_echopair_P(const char *s_P, unsigned long v)
  260. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  261. extern "C"{
  262. extern unsigned int __bss_end;
  263. extern unsigned int __heap_start;
  264. extern void *__brkval;
  265. int freeMemory() {
  266. int free_memory;
  267. if((int)__brkval == 0)
  268. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  269. else
  270. free_memory = ((int)&free_memory) - ((int)__brkval);
  271. return free_memory;
  272. }
  273. }
  274. //adds an command to the main command buffer
  275. //thats really done in a non-safe way.
  276. //needs overworking someday
  277. void enquecommand(const char *cmd)
  278. {
  279. if(buflen < BUFSIZE)
  280. {
  281. //this is dangerous if a mixing of serial and this happsens
  282. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  283. SERIAL_ECHO_START;
  284. SERIAL_ECHOPGM("enqueing \"");
  285. SERIAL_ECHO(cmdbuffer[bufindw]);
  286. SERIAL_ECHOLNPGM("\"");
  287. bufindw= (bufindw + 1)%BUFSIZE;
  288. buflen += 1;
  289. }
  290. }
  291. void enquecommand_P(const char *cmd)
  292. {
  293. if(buflen < BUFSIZE)
  294. {
  295. //this is dangerous if a mixing of serial and this happsens
  296. strcpy_P(&(cmdbuffer[bufindw][0]),cmd);
  297. SERIAL_ECHO_START;
  298. SERIAL_ECHOPGM("enqueing \"");
  299. SERIAL_ECHO(cmdbuffer[bufindw]);
  300. SERIAL_ECHOLNPGM("\"");
  301. bufindw= (bufindw + 1)%BUFSIZE;
  302. buflen += 1;
  303. }
  304. }
  305. void setup_killpin()
  306. {
  307. #if defined(KILL_PIN) && KILL_PIN > -1
  308. pinMode(KILL_PIN,INPUT);
  309. WRITE(KILL_PIN,HIGH);
  310. #endif
  311. }
  312. void setup_photpin()
  313. {
  314. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  315. SET_OUTPUT(PHOTOGRAPH_PIN);
  316. WRITE(PHOTOGRAPH_PIN, LOW);
  317. #endif
  318. }
  319. void setup_powerhold()
  320. {
  321. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  322. SET_OUTPUT(SUICIDE_PIN);
  323. WRITE(SUICIDE_PIN, HIGH);
  324. #endif
  325. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  326. SET_OUTPUT(PS_ON_PIN);
  327. #if defined(PS_DEFAULT_OFF)
  328. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  329. #else
  330. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  331. #endif
  332. #endif
  333. }
  334. void suicide()
  335. {
  336. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  337. SET_OUTPUT(SUICIDE_PIN);
  338. WRITE(SUICIDE_PIN, LOW);
  339. #endif
  340. }
  341. void servo_init()
  342. {
  343. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  344. servos[0].attach(SERVO0_PIN);
  345. #endif
  346. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  347. servos[1].attach(SERVO1_PIN);
  348. #endif
  349. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  350. servos[2].attach(SERVO2_PIN);
  351. #endif
  352. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  353. servos[3].attach(SERVO3_PIN);
  354. #endif
  355. #if (NUM_SERVOS >= 5)
  356. #error "TODO: enter initalisation code for more servos"
  357. #endif
  358. // Set position of Servo Endstops that are defined
  359. #ifdef SERVO_ENDSTOPS
  360. for(int8_t i = 0; i < 3; i++)
  361. {
  362. if(servo_endstops[i] > -1) {
  363. servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  364. }
  365. }
  366. #endif
  367. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  368. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  369. servos[servo_endstops[Z_AXIS]].detach();
  370. #endif
  371. }
  372. void setup()
  373. {
  374. setup_killpin();
  375. setup_powerhold();
  376. MYSERIAL.begin(BAUDRATE);
  377. SERIAL_PROTOCOLLNPGM("start");
  378. SERIAL_ECHO_START;
  379. // Check startup - does nothing if bootloader sets MCUSR to 0
  380. byte mcu = MCUSR;
  381. if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  382. if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  383. if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  384. if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  385. if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  386. MCUSR=0;
  387. SERIAL_ECHOPGM(MSG_MARLIN);
  388. SERIAL_ECHOLNPGM(VERSION_STRING);
  389. #ifdef STRING_VERSION_CONFIG_H
  390. #ifdef STRING_CONFIG_H_AUTHOR
  391. SERIAL_ECHO_START;
  392. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  393. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  394. SERIAL_ECHOPGM(MSG_AUTHOR);
  395. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  396. SERIAL_ECHOPGM("Compiled: ");
  397. SERIAL_ECHOLNPGM(__DATE__);
  398. #endif
  399. #endif
  400. SERIAL_ECHO_START;
  401. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  402. SERIAL_ECHO(freeMemory());
  403. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  404. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  405. for(int8_t i = 0; i < BUFSIZE; i++)
  406. {
  407. fromsd[i] = false;
  408. }
  409. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  410. Config_RetrieveSettings();
  411. tp_init(); // Initialize temperature loop
  412. plan_init(); // Initialize planner;
  413. watchdog_init();
  414. st_init(); // Initialize stepper, this enables interrupts!
  415. setup_photpin();
  416. servo_init();
  417. lcd_init();
  418. _delay_ms(1000); // wait 1sec to display the splash screen
  419. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  420. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  421. #endif
  422. }
  423. void loop()
  424. {
  425. if(buflen < (BUFSIZE-1))
  426. get_command();
  427. #ifdef SDSUPPORT
  428. card.checkautostart(false);
  429. #endif
  430. if(buflen)
  431. {
  432. #ifdef SDSUPPORT
  433. if(card.saving)
  434. {
  435. if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
  436. {
  437. card.write_command(cmdbuffer[bufindr]);
  438. if(card.logging)
  439. {
  440. process_commands();
  441. }
  442. else
  443. {
  444. SERIAL_PROTOCOLLNPGM(MSG_OK);
  445. }
  446. }
  447. else
  448. {
  449. card.closefile();
  450. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  451. }
  452. }
  453. else
  454. {
  455. process_commands();
  456. }
  457. #else
  458. process_commands();
  459. #endif //SDSUPPORT
  460. buflen = (buflen-1);
  461. bufindr = (bufindr + 1)%BUFSIZE;
  462. }
  463. //check heater every n milliseconds
  464. manage_heater();
  465. manage_inactivity();
  466. checkHitEndstops();
  467. lcd_update();
  468. }
  469. void get_command()
  470. {
  471. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  472. serial_char = MYSERIAL.read();
  473. if(serial_char == '\n' ||
  474. serial_char == '\r' ||
  475. (serial_char == ':' && comment_mode == false) ||
  476. serial_count >= (MAX_CMD_SIZE - 1) )
  477. {
  478. if(!serial_count) { //if empty line
  479. comment_mode = false; //for new command
  480. return;
  481. }
  482. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  483. if(!comment_mode){
  484. comment_mode = false; //for new command
  485. fromsd[bufindw] = false;
  486. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  487. {
  488. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  489. gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
  490. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  491. SERIAL_ERROR_START;
  492. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  493. SERIAL_ERRORLN(gcode_LastN);
  494. //Serial.println(gcode_N);
  495. FlushSerialRequestResend();
  496. serial_count = 0;
  497. return;
  498. }
  499. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  500. {
  501. byte checksum = 0;
  502. byte count = 0;
  503. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  504. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  505. if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
  506. SERIAL_ERROR_START;
  507. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  508. SERIAL_ERRORLN(gcode_LastN);
  509. FlushSerialRequestResend();
  510. serial_count = 0;
  511. return;
  512. }
  513. //if no errors, continue parsing
  514. }
  515. else
  516. {
  517. SERIAL_ERROR_START;
  518. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  519. SERIAL_ERRORLN(gcode_LastN);
  520. FlushSerialRequestResend();
  521. serial_count = 0;
  522. return;
  523. }
  524. gcode_LastN = gcode_N;
  525. //if no errors, continue parsing
  526. }
  527. else // if we don't receive 'N' but still see '*'
  528. {
  529. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  530. {
  531. SERIAL_ERROR_START;
  532. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  533. SERIAL_ERRORLN(gcode_LastN);
  534. serial_count = 0;
  535. return;
  536. }
  537. }
  538. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  539. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  540. switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
  541. case 0:
  542. case 1:
  543. case 2:
  544. case 3:
  545. if(Stopped == false) { // If printer is stopped by an error the G[0-3] codes are ignored.
  546. #ifdef SDSUPPORT
  547. if(card.saving)
  548. break;
  549. #endif //SDSUPPORT
  550. SERIAL_PROTOCOLLNPGM(MSG_OK);
  551. }
  552. else {
  553. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  554. LCD_MESSAGEPGM(MSG_STOPPED);
  555. }
  556. break;
  557. default:
  558. break;
  559. }
  560. }
  561. bufindw = (bufindw + 1)%BUFSIZE;
  562. buflen += 1;
  563. }
  564. serial_count = 0; //clear buffer
  565. }
  566. else
  567. {
  568. if(serial_char == ';') comment_mode = true;
  569. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  570. }
  571. }
  572. #ifdef SDSUPPORT
  573. if(!card.sdprinting || serial_count!=0){
  574. return;
  575. }
  576. //'#' stops reading from sd to the buffer prematurely, so procedural macro calls are possible
  577. // if it occures, stop_buffering is triggered and the buffer is ran dry.
  578. // this character _can_ occure in serial com, due to checksums. however, no checksums are used in sd printing
  579. static bool stop_buffering=false;
  580. if(buflen==0) stop_buffering=false;
  581. while( !card.eof() && buflen < BUFSIZE && !stop_buffering) {
  582. int16_t n=card.get();
  583. serial_char = (char)n;
  584. if(serial_char == '\n' ||
  585. serial_char == '\r' ||
  586. (serial_char == '#' && comment_mode == false) ||
  587. (serial_char == ':' && comment_mode == false) ||
  588. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  589. {
  590. if(card.eof()){
  591. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  592. stoptime=millis();
  593. char time[30];
  594. unsigned long t=(stoptime-starttime)/1000;
  595. int hours, minutes;
  596. minutes=(t/60)%60;
  597. hours=t/60/60;
  598. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  599. SERIAL_ECHO_START;
  600. SERIAL_ECHOLN(time);
  601. lcd_setstatus(time);
  602. card.printingHasFinished();
  603. card.checkautostart(true);
  604. }
  605. if(serial_char=='#')
  606. stop_buffering=true;
  607. if(!serial_count)
  608. {
  609. comment_mode = false; //for new command
  610. return; //if empty line
  611. }
  612. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  613. // if(!comment_mode){
  614. fromsd[bufindw] = true;
  615. buflen += 1;
  616. bufindw = (bufindw + 1)%BUFSIZE;
  617. // }
  618. comment_mode = false; //for new command
  619. serial_count = 0; //clear buffer
  620. }
  621. else
  622. {
  623. if(serial_char == ';') comment_mode = true;
  624. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  625. }
  626. }
  627. #endif //SDSUPPORT
  628. }
  629. float code_value()
  630. {
  631. return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL));
  632. }
  633. long code_value_long()
  634. {
  635. return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
  636. }
  637. bool code_seen(char code)
  638. {
  639. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  640. return (strchr_pointer != NULL); //Return True if a character was found
  641. }
  642. #define DEFINE_PGM_READ_ANY(type, reader) \
  643. static inline type pgm_read_any(const type *p) \
  644. { return pgm_read_##reader##_near(p); }
  645. DEFINE_PGM_READ_ANY(float, float);
  646. DEFINE_PGM_READ_ANY(signed char, byte);
  647. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  648. static const PROGMEM type array##_P[3] = \
  649. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  650. static inline type array(int axis) \
  651. { return pgm_read_any(&array##_P[axis]); }
  652. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  653. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  654. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  655. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  656. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  657. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  658. #ifdef DUAL_X_CARRIAGE
  659. #if EXTRUDERS == 1 || defined(COREXY) \
  660. || !defined(X2_ENABLE_PIN) || !defined(X2_STEP_PIN) || !defined(X2_DIR_PIN) \
  661. || !defined(X2_HOME_POS) || !defined(X2_MIN_POS) || !defined(X2_MAX_POS) \
  662. || !defined(X_MAX_PIN) || X_MAX_PIN < 0
  663. #error "Missing or invalid definitions for DUAL_X_CARRIAGE mode."
  664. #endif
  665. #if X_HOME_DIR != -1 || X2_HOME_DIR != 1
  666. #error "Please use canonical x-carriage assignment" // the x-carriages are defined by their homing directions
  667. #endif
  668. #define DXC_FULL_CONTROL_MODE 0
  669. #define DXC_AUTO_PARK_MODE 1
  670. #define DXC_DUPLICATION_MODE 2
  671. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  672. static float x_home_pos(int extruder) {
  673. if (extruder == 0)
  674. return base_home_pos(X_AXIS) + add_homeing[X_AXIS];
  675. else
  676. // In dual carriage mode the extruder offset provides an override of the
  677. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  678. // This allow soft recalibration of the second extruder offset position without firmware reflash
  679. // (through the M218 command).
  680. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  681. }
  682. static int x_home_dir(int extruder) {
  683. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  684. }
  685. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  686. static bool active_extruder_parked = false; // used in mode 1 & 2
  687. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  688. static unsigned long delayed_move_time = 0; // used in mode 1
  689. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  690. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  691. bool extruder_duplication_enabled = false; // used in mode 2
  692. #endif //DUAL_X_CARRIAGE
  693. static void axis_is_at_home(int axis) {
  694. #ifdef DUAL_X_CARRIAGE
  695. if (axis == X_AXIS) {
  696. if (active_extruder != 0) {
  697. current_position[X_AXIS] = x_home_pos(active_extruder);
  698. min_pos[X_AXIS] = X2_MIN_POS;
  699. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  700. return;
  701. }
  702. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  703. current_position[X_AXIS] = base_home_pos(X_AXIS) + add_homeing[X_AXIS];
  704. min_pos[X_AXIS] = base_min_pos(X_AXIS) + add_homeing[X_AXIS];
  705. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + add_homeing[X_AXIS],
  706. max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  707. return;
  708. }
  709. }
  710. #endif
  711. current_position[axis] = base_home_pos(axis) + add_homeing[axis];
  712. min_pos[axis] = base_min_pos(axis) + add_homeing[axis];
  713. max_pos[axis] = base_max_pos(axis) + add_homeing[axis];
  714. }
  715. #ifdef ENABLE_AUTO_BED_LEVELING
  716. #ifdef ACCURATE_BED_LEVELING
  717. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  718. {
  719. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  720. planeNormal.debug("planeNormal");
  721. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  722. //bedLevel.debug("bedLevel");
  723. plan_bed_level_matrix.debug("bed level before");
  724. //vector_3 uncorrected_position = plan_get_position_mm();
  725. //uncorrected_position.debug("position before");
  726. // and set our bed level equation to do the right thing
  727. // plan_bed_level_matrix = matrix_3x3::create_inverse(bedLevel);
  728. // plan_bed_level_matrix.debug("bed level after");
  729. vector_3 corrected_position = plan_get_position();
  730. // corrected_position.debug("position after");
  731. current_position[X_AXIS] = corrected_position.x;
  732. current_position[Y_AXIS] = corrected_position.y;
  733. current_position[Z_AXIS] = corrected_position.z;
  734. // but the bed at 0 so we don't go below it.
  735. current_position[Z_AXIS] = -Z_PROBE_OFFSET_FROM_EXTRUDER; // in the lsq we reach here after raising the extruder due to the loop structure
  736. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  737. }
  738. #else
  739. static void set_bed_level_equation(float z_at_xLeft_yFront, float z_at_xRight_yFront, float z_at_xLeft_yBack) {
  740. plan_bed_level_matrix.set_to_identity();
  741. vector_3 xLeftyFront = vector_3(LEFT_PROBE_BED_POSITION, FRONT_PROBE_BED_POSITION, z_at_xLeft_yFront);
  742. vector_3 xLeftyBack = vector_3(LEFT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION, z_at_xLeft_yBack);
  743. vector_3 xRightyFront = vector_3(RIGHT_PROBE_BED_POSITION, FRONT_PROBE_BED_POSITION, z_at_xRight_yFront);
  744. vector_3 xPositive = (xRightyFront - xLeftyFront).get_normal();
  745. vector_3 yPositive = (xLeftyBack - xLeftyFront).get_normal();
  746. vector_3 planeNormal = vector_3::cross(xPositive, yPositive).get_normal();
  747. //planeNormal.debug("planeNormal");
  748. //yPositive.debug("yPositive");
  749. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  750. //bedLevel.debug("bedLevel");
  751. //plan_bed_level_matrix.debug("bed level before");
  752. //vector_3 uncorrected_position = plan_get_position_mm();
  753. //uncorrected_position.debug("position before");
  754. // and set our bed level equation to do the right thing
  755. //plan_bed_level_matrix.debug("bed level after");
  756. vector_3 corrected_position = plan_get_position();
  757. //corrected_position.debug("position after");
  758. current_position[X_AXIS] = corrected_position.x;
  759. current_position[Y_AXIS] = corrected_position.y;
  760. current_position[Z_AXIS] = corrected_position.z;
  761. // but the bed at 0 so we don't go below it.
  762. current_position[Z_AXIS] = -Z_PROBE_OFFSET_FROM_EXTRUDER;
  763. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  764. }
  765. #endif // ACCURATE_BED_LEVELING
  766. static void run_z_probe() {
  767. plan_bed_level_matrix.set_to_identity();
  768. feedrate = homing_feedrate[Z_AXIS];
  769. // move down until you find the bed
  770. float zPosition = -10;
  771. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  772. st_synchronize();
  773. // we have to let the planner know where we are right now as it is not where we said to go.
  774. zPosition = st_get_position_mm(Z_AXIS);
  775. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  776. // move up the retract distance
  777. zPosition += home_retract_mm(Z_AXIS);
  778. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  779. st_synchronize();
  780. // move back down slowly to find bed
  781. feedrate = homing_feedrate[Z_AXIS]/4;
  782. zPosition -= home_retract_mm(Z_AXIS) * 2;
  783. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  784. st_synchronize();
  785. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  786. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  787. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  788. }
  789. static void do_blocking_move_to(float x, float y, float z) {
  790. float oldFeedRate = feedrate;
  791. feedrate = XY_TRAVEL_SPEED;
  792. current_position[X_AXIS] = x;
  793. current_position[Y_AXIS] = y;
  794. current_position[Z_AXIS] = z;
  795. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  796. st_synchronize();
  797. feedrate = oldFeedRate;
  798. }
  799. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  800. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  801. }
  802. static void setup_for_endstop_move() {
  803. saved_feedrate = feedrate;
  804. saved_feedmultiply = feedmultiply;
  805. feedmultiply = 100;
  806. previous_millis_cmd = millis();
  807. enable_endstops(true);
  808. }
  809. static void clean_up_after_endstop_move() {
  810. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  811. enable_endstops(false);
  812. #endif
  813. feedrate = saved_feedrate;
  814. feedmultiply = saved_feedmultiply;
  815. previous_millis_cmd = millis();
  816. }
  817. static void engage_z_probe() {
  818. // Engage Z Servo endstop if enabled
  819. #ifdef SERVO_ENDSTOPS
  820. if (servo_endstops[Z_AXIS] > -1) {
  821. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  822. servos[servo_endstops[Z_AXIS]].attach(0);
  823. #endif
  824. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  825. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  826. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  827. servos[servo_endstops[Z_AXIS]].detach();
  828. #endif
  829. }
  830. #endif
  831. }
  832. static void retract_z_probe() {
  833. // Retract Z Servo endstop if enabled
  834. #ifdef SERVO_ENDSTOPS
  835. if (servo_endstops[Z_AXIS] > -1) {
  836. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  837. servos[servo_endstops[Z_AXIS]].attach(0);
  838. #endif
  839. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  840. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  841. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  842. servos[servo_endstops[Z_AXIS]].detach();
  843. #endif
  844. }
  845. #endif
  846. }
  847. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  848. static void homeaxis(int axis) {
  849. #define HOMEAXIS_DO(LETTER) \
  850. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  851. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  852. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  853. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  854. 0) {
  855. int axis_home_dir = home_dir(axis);
  856. #ifdef DUAL_X_CARRIAGE
  857. if (axis == X_AXIS)
  858. axis_home_dir = x_home_dir(active_extruder);
  859. #endif
  860. current_position[axis] = 0;
  861. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  862. // Engage Servo endstop if enabled
  863. #ifdef SERVO_ENDSTOPS
  864. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  865. if (axis==Z_AXIS) {
  866. engage_z_probe();
  867. }
  868. else
  869. #endif
  870. if (servo_endstops[axis] > -1) {
  871. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  872. }
  873. #endif
  874. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  875. feedrate = homing_feedrate[axis];
  876. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  877. st_synchronize();
  878. current_position[axis] = 0;
  879. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  880. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  881. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  882. st_synchronize();
  883. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  884. #ifdef DELTA
  885. feedrate = homing_feedrate[axis]/10;
  886. #else
  887. feedrate = homing_feedrate[axis]/2 ;
  888. #endif
  889. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  890. st_synchronize();
  891. #ifdef DELTA
  892. // retrace by the amount specified in endstop_adj
  893. if (endstop_adj[axis] * axis_home_dir < 0) {
  894. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  895. destination[axis] = endstop_adj[axis];
  896. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  897. st_synchronize();
  898. }
  899. #endif
  900. axis_is_at_home(axis);
  901. destination[axis] = current_position[axis];
  902. feedrate = 0.0;
  903. endstops_hit_on_purpose();
  904. axis_known_position[axis] = true;
  905. // Retract Servo endstop if enabled
  906. #ifdef SERVO_ENDSTOPS
  907. if (servo_endstops[axis] > -1) {
  908. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  909. }
  910. #endif
  911. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  912. if (axis==Z_AXIS) retract_z_probe();
  913. #endif
  914. }
  915. }
  916. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  917. void process_commands()
  918. {
  919. unsigned long codenum; //throw away variable
  920. char *starpos = NULL;
  921. #ifdef ENABLE_AUTO_BED_LEVELING
  922. float x_tmp, y_tmp, z_tmp, real_z;
  923. #endif
  924. if(code_seen('G'))
  925. {
  926. switch((int)code_value())
  927. {
  928. case 0: // G0 -> G1
  929. case 1: // G1
  930. if(Stopped == false) {
  931. get_coordinates(); // For X Y Z E F
  932. prepare_move();
  933. //ClearToSend();
  934. return;
  935. }
  936. //break;
  937. case 2: // G2 - CW ARC
  938. if(Stopped == false) {
  939. get_arc_coordinates();
  940. prepare_arc_move(true);
  941. return;
  942. }
  943. case 3: // G3 - CCW ARC
  944. if(Stopped == false) {
  945. get_arc_coordinates();
  946. prepare_arc_move(false);
  947. return;
  948. }
  949. case 4: // G4 dwell
  950. LCD_MESSAGEPGM(MSG_DWELL);
  951. codenum = 0;
  952. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  953. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  954. st_synchronize();
  955. codenum += millis(); // keep track of when we started waiting
  956. previous_millis_cmd = millis();
  957. while(millis() < codenum ){
  958. manage_heater();
  959. manage_inactivity();
  960. lcd_update();
  961. }
  962. break;
  963. #ifdef FWRETRACT
  964. case 10: // G10 retract
  965. if(!retracted)
  966. {
  967. destination[X_AXIS]=current_position[X_AXIS];
  968. destination[Y_AXIS]=current_position[Y_AXIS];
  969. destination[Z_AXIS]=current_position[Z_AXIS];
  970. current_position[Z_AXIS]+=-retract_zlift;
  971. destination[E_AXIS]=current_position[E_AXIS]-retract_length;
  972. feedrate=retract_feedrate;
  973. retracted=true;
  974. prepare_move();
  975. }
  976. break;
  977. case 11: // G11 retract_recover
  978. if(retracted)
  979. {
  980. destination[X_AXIS]=current_position[X_AXIS];
  981. destination[Y_AXIS]=current_position[Y_AXIS];
  982. destination[Z_AXIS]=current_position[Z_AXIS];
  983. current_position[Z_AXIS]+=retract_zlift;
  984. destination[E_AXIS]=current_position[E_AXIS]+retract_length+retract_recover_length;
  985. feedrate=retract_recover_feedrate;
  986. retracted=false;
  987. prepare_move();
  988. }
  989. break;
  990. #endif //FWRETRACT
  991. case 28: //G28 Home all Axis one at a time
  992. #ifdef ENABLE_AUTO_BED_LEVELING
  993. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  994. #endif //ENABLE_AUTO_BED_LEVELING
  995. saved_feedrate = feedrate;
  996. saved_feedmultiply = feedmultiply;
  997. feedmultiply = 100;
  998. previous_millis_cmd = millis();
  999. enable_endstops(true);
  1000. for(int8_t i=0; i < NUM_AXIS; i++) {
  1001. destination[i] = current_position[i];
  1002. }
  1003. feedrate = 0.0;
  1004. #ifdef DELTA
  1005. // A delta can only safely home all axis at the same time
  1006. // all axis have to home at the same time
  1007. // Move all carriages up together until the first endstop is hit.
  1008. current_position[X_AXIS] = 0;
  1009. current_position[Y_AXIS] = 0;
  1010. current_position[Z_AXIS] = 0;
  1011. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1012. destination[X_AXIS] = 3 * Z_MAX_LENGTH;
  1013. destination[Y_AXIS] = 3 * Z_MAX_LENGTH;
  1014. destination[Z_AXIS] = 3 * Z_MAX_LENGTH;
  1015. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1016. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1017. st_synchronize();
  1018. endstops_hit_on_purpose();
  1019. current_position[X_AXIS] = destination[X_AXIS];
  1020. current_position[Y_AXIS] = destination[Y_AXIS];
  1021. current_position[Z_AXIS] = destination[Z_AXIS];
  1022. // take care of back off and rehome now we are all at the top
  1023. HOMEAXIS(X);
  1024. HOMEAXIS(Y);
  1025. HOMEAXIS(Z);
  1026. calculate_delta(current_position);
  1027. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1028. #else // NOT DELTA
  1029. home_all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2])));
  1030. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1031. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1032. HOMEAXIS(Z);
  1033. }
  1034. #endif
  1035. #ifdef QUICK_HOME
  1036. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  1037. {
  1038. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  1039. #ifndef DUAL_X_CARRIAGE
  1040. int x_axis_home_dir = home_dir(X_AXIS);
  1041. #else
  1042. int x_axis_home_dir = x_home_dir(active_extruder);
  1043. extruder_duplication_enabled = false;
  1044. #endif
  1045. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1046. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1047. feedrate = homing_feedrate[X_AXIS];
  1048. if(homing_feedrate[Y_AXIS]<feedrate)
  1049. feedrate =homing_feedrate[Y_AXIS];
  1050. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1051. st_synchronize();
  1052. axis_is_at_home(X_AXIS);
  1053. axis_is_at_home(Y_AXIS);
  1054. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1055. destination[X_AXIS] = current_position[X_AXIS];
  1056. destination[Y_AXIS] = current_position[Y_AXIS];
  1057. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1058. feedrate = 0.0;
  1059. st_synchronize();
  1060. endstops_hit_on_purpose();
  1061. current_position[X_AXIS] = destination[X_AXIS];
  1062. current_position[Y_AXIS] = destination[Y_AXIS];
  1063. current_position[Z_AXIS] = destination[Z_AXIS];
  1064. }
  1065. #endif
  1066. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  1067. {
  1068. #ifdef DUAL_X_CARRIAGE
  1069. int tmp_extruder = active_extruder;
  1070. extruder_duplication_enabled = false;
  1071. active_extruder = !active_extruder;
  1072. HOMEAXIS(X);
  1073. inactive_extruder_x_pos = current_position[X_AXIS];
  1074. active_extruder = tmp_extruder;
  1075. HOMEAXIS(X);
  1076. // reset state used by the different modes
  1077. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1078. delayed_move_time = 0;
  1079. active_extruder_parked = true;
  1080. #else
  1081. HOMEAXIS(X);
  1082. #endif
  1083. }
  1084. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
  1085. HOMEAXIS(Y);
  1086. }
  1087. if(code_seen(axis_codes[X_AXIS]))
  1088. {
  1089. if(code_value_long() != 0) {
  1090. current_position[X_AXIS]=code_value()+add_homeing[0];
  1091. }
  1092. }
  1093. if(code_seen(axis_codes[Y_AXIS])) {
  1094. if(code_value_long() != 0) {
  1095. current_position[Y_AXIS]=code_value()+add_homeing[1];
  1096. }
  1097. }
  1098. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1099. #ifndef Z_SAFE_HOMING
  1100. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1101. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1102. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1103. feedrate = max_feedrate[Z_AXIS];
  1104. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1105. st_synchronize();
  1106. #endif
  1107. HOMEAXIS(Z);
  1108. }
  1109. #else // Z Safe mode activated.
  1110. if(home_all_axis) {
  1111. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1112. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1113. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1114. feedrate = XY_TRAVEL_SPEED;
  1115. current_position[Z_AXIS] = 0;
  1116. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1117. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1118. st_synchronize();
  1119. current_position[X_AXIS] = destination[X_AXIS];
  1120. current_position[Y_AXIS] = destination[Y_AXIS];
  1121. HOMEAXIS(Z);
  1122. }
  1123. // Let's see if X and Y are homed and probe is inside bed area.
  1124. if(code_seen(axis_codes[Z_AXIS])) {
  1125. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  1126. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  1127. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  1128. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  1129. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  1130. current_position[Z_AXIS] = 0;
  1131. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1132. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1133. feedrate = max_feedrate[Z_AXIS];
  1134. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1135. st_synchronize();
  1136. HOMEAXIS(Z);
  1137. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1138. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1139. SERIAL_ECHO_START;
  1140. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1141. } else {
  1142. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1143. SERIAL_ECHO_START;
  1144. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1145. }
  1146. }
  1147. #endif
  1148. #endif
  1149. if(code_seen(axis_codes[Z_AXIS])) {
  1150. if(code_value_long() != 0) {
  1151. current_position[Z_AXIS]=code_value()+add_homeing[2];
  1152. }
  1153. }
  1154. #ifdef ENABLE_AUTO_BED_LEVELING
  1155. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1156. current_position[Z_AXIS] -= Z_PROBE_OFFSET_FROM_EXTRUDER; //Add Z_Probe offset (the distance is negative)
  1157. }
  1158. #endif
  1159. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1160. #endif // else DELTA
  1161. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1162. enable_endstops(false);
  1163. #endif
  1164. feedrate = saved_feedrate;
  1165. feedmultiply = saved_feedmultiply;
  1166. previous_millis_cmd = millis();
  1167. endstops_hit_on_purpose();
  1168. break;
  1169. #ifdef ENABLE_AUTO_BED_LEVELING
  1170. case 29: // G29 Detailed Z-Probe, probes the bed at 3 points.
  1171. {
  1172. #if Z_MIN_PIN == -1
  1173. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature!!! Z_MIN_PIN must point to a valid hardware pin."
  1174. #endif
  1175. st_synchronize();
  1176. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  1177. //vector_3 corrected_position = plan_get_position_mm();
  1178. //corrected_position.debug("position before G29");
  1179. plan_bed_level_matrix.set_to_identity();
  1180. vector_3 uncorrected_position = plan_get_position();
  1181. //uncorrected_position.debug("position durring G29");
  1182. current_position[X_AXIS] = uncorrected_position.x;
  1183. current_position[Y_AXIS] = uncorrected_position.y;
  1184. current_position[Z_AXIS] = uncorrected_position.z;
  1185. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1186. setup_for_endstop_move();
  1187. feedrate = homing_feedrate[Z_AXIS];
  1188. #ifdef ACCURATE_BED_LEVELING
  1189. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (ACCURATE_BED_LEVELING_POINTS-1);
  1190. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (ACCURATE_BED_LEVELING_POINTS-1);
  1191. // solve the plane equation ax + by + d = z
  1192. // A is the matrix with rows [x y 1] for all the probed points
  1193. // B is the vector of the Z positions
  1194. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1195. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1196. // "A" matrix of the linear system of equations
  1197. double eqnAMatrix[ACCURATE_BED_LEVELING_POINTS*ACCURATE_BED_LEVELING_POINTS*3];
  1198. // "B" vector of Z points
  1199. double eqnBVector[ACCURATE_BED_LEVELING_POINTS*ACCURATE_BED_LEVELING_POINTS];
  1200. int probePointCounter = 0;
  1201. for (int xProbe=LEFT_PROBE_BED_POSITION; xProbe <= RIGHT_PROBE_BED_POSITION; xProbe += xGridSpacing)
  1202. {
  1203. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  1204. {
  1205. if (probePointCounter == 0)
  1206. {
  1207. // raise before probing
  1208. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], Z_RAISE_BEFORE_PROBING);
  1209. } else
  1210. {
  1211. // raise extruder
  1212. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1213. }
  1214. do_blocking_move_to(xProbe - X_PROBE_OFFSET_FROM_EXTRUDER, yProbe - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1215. engage_z_probe(); // Engage Z Servo endstop if available
  1216. run_z_probe();
  1217. eqnBVector[probePointCounter] = current_position[Z_AXIS];
  1218. retract_z_probe();
  1219. SERIAL_PROTOCOLPGM("Bed x: ");
  1220. SERIAL_PROTOCOL(xProbe);
  1221. SERIAL_PROTOCOLPGM(" y: ");
  1222. SERIAL_PROTOCOL(yProbe);
  1223. SERIAL_PROTOCOLPGM(" z: ");
  1224. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1225. SERIAL_PROTOCOLPGM("\n");
  1226. eqnAMatrix[probePointCounter + 0*ACCURATE_BED_LEVELING_POINTS*ACCURATE_BED_LEVELING_POINTS] = xProbe;
  1227. eqnAMatrix[probePointCounter + 1*ACCURATE_BED_LEVELING_POINTS*ACCURATE_BED_LEVELING_POINTS] = yProbe;
  1228. eqnAMatrix[probePointCounter + 2*ACCURATE_BED_LEVELING_POINTS*ACCURATE_BED_LEVELING_POINTS] = 1;
  1229. probePointCounter++;
  1230. }
  1231. }
  1232. clean_up_after_endstop_move();
  1233. // solve lsq problem
  1234. double *plane_equation_coefficients = qr_solve(ACCURATE_BED_LEVELING_POINTS*ACCURATE_BED_LEVELING_POINTS, 3, eqnAMatrix, eqnBVector);
  1235. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  1236. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  1237. SERIAL_PROTOCOLPGM(" b: ");
  1238. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  1239. SERIAL_PROTOCOLPGM(" d: ");
  1240. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  1241. set_bed_level_equation_lsq(plane_equation_coefficients);
  1242. free(plane_equation_coefficients);
  1243. #else // ACCURATE_BED_LEVELING not defined
  1244. // prob 1
  1245. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], Z_RAISE_BEFORE_PROBING);
  1246. do_blocking_move_to(LEFT_PROBE_BED_POSITION - X_PROBE_OFFSET_FROM_EXTRUDER, BACK_PROBE_BED_POSITION - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1247. engage_z_probe(); // Engage Z Servo endstop if available
  1248. run_z_probe();
  1249. float z_at_xLeft_yBack = current_position[Z_AXIS];
  1250. retract_z_probe();
  1251. SERIAL_PROTOCOLPGM("Bed x: ");
  1252. SERIAL_PROTOCOL(LEFT_PROBE_BED_POSITION);
  1253. SERIAL_PROTOCOLPGM(" y: ");
  1254. SERIAL_PROTOCOL(BACK_PROBE_BED_POSITION);
  1255. SERIAL_PROTOCOLPGM(" z: ");
  1256. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1257. SERIAL_PROTOCOLPGM("\n");
  1258. // prob 2
  1259. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1260. do_blocking_move_to(LEFT_PROBE_BED_POSITION - X_PROBE_OFFSET_FROM_EXTRUDER, FRONT_PROBE_BED_POSITION - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1261. engage_z_probe(); // Engage Z Servo endstop if available
  1262. run_z_probe();
  1263. float z_at_xLeft_yFront = current_position[Z_AXIS];
  1264. retract_z_probe();
  1265. SERIAL_PROTOCOLPGM("Bed x: ");
  1266. SERIAL_PROTOCOL(LEFT_PROBE_BED_POSITION);
  1267. SERIAL_PROTOCOLPGM(" y: ");
  1268. SERIAL_PROTOCOL(FRONT_PROBE_BED_POSITION);
  1269. SERIAL_PROTOCOLPGM(" z: ");
  1270. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1271. SERIAL_PROTOCOLPGM("\n");
  1272. // prob 3
  1273. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1274. // the current position will be updated by the blocking move so the head will not lower on this next call.
  1275. do_blocking_move_to(RIGHT_PROBE_BED_POSITION - X_PROBE_OFFSET_FROM_EXTRUDER, FRONT_PROBE_BED_POSITION - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1276. engage_z_probe(); // Engage Z Servo endstop if available
  1277. run_z_probe();
  1278. float z_at_xRight_yFront = current_position[Z_AXIS];
  1279. retract_z_probe(); // Retract Z Servo endstop if available
  1280. SERIAL_PROTOCOLPGM("Bed x: ");
  1281. SERIAL_PROTOCOL(RIGHT_PROBE_BED_POSITION);
  1282. SERIAL_PROTOCOLPGM(" y: ");
  1283. SERIAL_PROTOCOL(FRONT_PROBE_BED_POSITION);
  1284. SERIAL_PROTOCOLPGM(" z: ");
  1285. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1286. SERIAL_PROTOCOLPGM("\n");
  1287. clean_up_after_endstop_move();
  1288. set_bed_level_equation(z_at_xLeft_yFront, z_at_xRight_yFront, z_at_xLeft_yBack);
  1289. #endif // ACCURATE_BED_LEVELING
  1290. st_synchronize();
  1291. // The following code correct the Z height difference from z-probe position and hotend tip position.
  1292. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  1293. // When the bed is uneven, this height must be corrected.
  1294. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  1295. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  1296. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  1297. z_tmp = current_position[Z_AXIS];
  1298. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  1299. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  1300. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1301. }
  1302. break;
  1303. case 30: // G30 Single Z Probe
  1304. {
  1305. engage_z_probe(); // Engage Z Servo endstop if available
  1306. st_synchronize();
  1307. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  1308. setup_for_endstop_move();
  1309. feedrate = homing_feedrate[Z_AXIS];
  1310. run_z_probe();
  1311. SERIAL_PROTOCOLPGM("Bed Position X: ");
  1312. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1313. SERIAL_PROTOCOLPGM(" Y: ");
  1314. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1315. SERIAL_PROTOCOLPGM(" Z: ");
  1316. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1317. SERIAL_PROTOCOLPGM("\n");
  1318. clean_up_after_endstop_move();
  1319. retract_z_probe(); // Retract Z Servo endstop if available
  1320. }
  1321. break;
  1322. #endif // ENABLE_AUTO_BED_LEVELING
  1323. case 90: // G90
  1324. relative_mode = false;
  1325. break;
  1326. case 91: // G91
  1327. relative_mode = true;
  1328. break;
  1329. case 92: // G92
  1330. if(!code_seen(axis_codes[E_AXIS]))
  1331. st_synchronize();
  1332. for(int8_t i=0; i < NUM_AXIS; i++) {
  1333. if(code_seen(axis_codes[i])) {
  1334. if(i == E_AXIS) {
  1335. current_position[i] = code_value();
  1336. plan_set_e_position(current_position[E_AXIS]);
  1337. }
  1338. else {
  1339. current_position[i] = code_value()+add_homeing[i];
  1340. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1341. }
  1342. }
  1343. }
  1344. break;
  1345. }
  1346. }
  1347. else if(code_seen('M'))
  1348. {
  1349. switch( (int)code_value() )
  1350. {
  1351. #ifdef ULTIPANEL
  1352. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  1353. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  1354. {
  1355. LCD_MESSAGEPGM(MSG_USERWAIT);
  1356. codenum = 0;
  1357. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1358. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1359. st_synchronize();
  1360. previous_millis_cmd = millis();
  1361. if (codenum > 0){
  1362. codenum += millis(); // keep track of when we started waiting
  1363. while(millis() < codenum && !lcd_clicked()){
  1364. manage_heater();
  1365. manage_inactivity();
  1366. lcd_update();
  1367. }
  1368. }else{
  1369. while(!lcd_clicked()){
  1370. manage_heater();
  1371. manage_inactivity();
  1372. lcd_update();
  1373. }
  1374. }
  1375. LCD_MESSAGEPGM(MSG_RESUMING);
  1376. }
  1377. break;
  1378. #endif
  1379. case 17:
  1380. LCD_MESSAGEPGM(MSG_NO_MOVE);
  1381. enable_x();
  1382. enable_y();
  1383. enable_z();
  1384. enable_e0();
  1385. enable_e1();
  1386. enable_e2();
  1387. break;
  1388. #ifdef SDSUPPORT
  1389. case 20: // M20 - list SD card
  1390. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  1391. card.ls();
  1392. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  1393. break;
  1394. case 21: // M21 - init SD card
  1395. card.initsd();
  1396. break;
  1397. case 22: //M22 - release SD card
  1398. card.release();
  1399. break;
  1400. case 23: //M23 - Select file
  1401. starpos = (strchr(strchr_pointer + 4,'*'));
  1402. if(starpos!=NULL)
  1403. *(starpos-1)='\0';
  1404. card.openFile(strchr_pointer + 4,true);
  1405. break;
  1406. case 24: //M24 - Start SD print
  1407. card.startFileprint();
  1408. starttime=millis();
  1409. break;
  1410. case 25: //M25 - Pause SD print
  1411. card.pauseSDPrint();
  1412. break;
  1413. case 26: //M26 - Set SD index
  1414. if(card.cardOK && code_seen('S')) {
  1415. card.setIndex(code_value_long());
  1416. }
  1417. break;
  1418. case 27: //M27 - Get SD status
  1419. card.getStatus();
  1420. break;
  1421. case 28: //M28 - Start SD write
  1422. starpos = (strchr(strchr_pointer + 4,'*'));
  1423. if(starpos != NULL){
  1424. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1425. strchr_pointer = strchr(npos,' ') + 1;
  1426. *(starpos-1) = '\0';
  1427. }
  1428. card.openFile(strchr_pointer+4,false);
  1429. break;
  1430. case 29: //M29 - Stop SD write
  1431. //processed in write to file routine above
  1432. //card,saving = false;
  1433. break;
  1434. case 30: //M30 <filename> Delete File
  1435. if (card.cardOK){
  1436. card.closefile();
  1437. starpos = (strchr(strchr_pointer + 4,'*'));
  1438. if(starpos != NULL){
  1439. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1440. strchr_pointer = strchr(npos,' ') + 1;
  1441. *(starpos-1) = '\0';
  1442. }
  1443. card.removeFile(strchr_pointer + 4);
  1444. }
  1445. break;
  1446. case 32: //M32 - Select file and start SD print
  1447. {
  1448. if(card.sdprinting) {
  1449. st_synchronize();
  1450. }
  1451. starpos = (strchr(strchr_pointer + 4,'*'));
  1452. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  1453. if(namestartpos==NULL)
  1454. {
  1455. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  1456. }
  1457. else
  1458. namestartpos++; //to skip the '!'
  1459. if(starpos!=NULL)
  1460. *(starpos-1)='\0';
  1461. bool call_procedure=(code_seen('P'));
  1462. if(strchr_pointer>namestartpos)
  1463. call_procedure=false; //false alert, 'P' found within filename
  1464. if( card.cardOK )
  1465. {
  1466. card.openFile(namestartpos,true,!call_procedure);
  1467. if(code_seen('S'))
  1468. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  1469. card.setIndex(code_value_long());
  1470. card.startFileprint();
  1471. if(!call_procedure)
  1472. starttime=millis(); //procedure calls count as normal print time.
  1473. }
  1474. } break;
  1475. case 928: //M928 - Start SD write
  1476. starpos = (strchr(strchr_pointer + 5,'*'));
  1477. if(starpos != NULL){
  1478. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1479. strchr_pointer = strchr(npos,' ') + 1;
  1480. *(starpos-1) = '\0';
  1481. }
  1482. card.openLogFile(strchr_pointer+5);
  1483. break;
  1484. #endif //SDSUPPORT
  1485. case 31: //M31 take time since the start of the SD print or an M109 command
  1486. {
  1487. stoptime=millis();
  1488. char time[30];
  1489. unsigned long t=(stoptime-starttime)/1000;
  1490. int sec,min;
  1491. min=t/60;
  1492. sec=t%60;
  1493. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  1494. SERIAL_ECHO_START;
  1495. SERIAL_ECHOLN(time);
  1496. lcd_setstatus(time);
  1497. autotempShutdown();
  1498. }
  1499. break;
  1500. case 42: //M42 -Change pin status via gcode
  1501. if (code_seen('S'))
  1502. {
  1503. int pin_status = code_value();
  1504. int pin_number = LED_PIN;
  1505. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  1506. pin_number = code_value();
  1507. for(int8_t i = 0; i < (int8_t)sizeof(sensitive_pins); i++)
  1508. {
  1509. if (sensitive_pins[i] == pin_number)
  1510. {
  1511. pin_number = -1;
  1512. break;
  1513. }
  1514. }
  1515. #if defined(FAN_PIN) && FAN_PIN > -1
  1516. if (pin_number == FAN_PIN)
  1517. fanSpeed = pin_status;
  1518. #endif
  1519. if (pin_number > -1)
  1520. {
  1521. pinMode(pin_number, OUTPUT);
  1522. digitalWrite(pin_number, pin_status);
  1523. analogWrite(pin_number, pin_status);
  1524. }
  1525. }
  1526. break;
  1527. case 104: // M104
  1528. if(setTargetedHotend(104)){
  1529. break;
  1530. }
  1531. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  1532. #ifdef DUAL_X_CARRIAGE
  1533. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1534. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1535. #endif
  1536. setWatch();
  1537. break;
  1538. case 140: // M140 set bed temp
  1539. if (code_seen('S')) setTargetBed(code_value());
  1540. break;
  1541. case 105 : // M105
  1542. if(setTargetedHotend(105)){
  1543. break;
  1544. }
  1545. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  1546. SERIAL_PROTOCOLPGM("ok T:");
  1547. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  1548. SERIAL_PROTOCOLPGM(" /");
  1549. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  1550. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1551. SERIAL_PROTOCOLPGM(" B:");
  1552. SERIAL_PROTOCOL_F(degBed(),1);
  1553. SERIAL_PROTOCOLPGM(" /");
  1554. SERIAL_PROTOCOL_F(degTargetBed(),1);
  1555. #endif //TEMP_BED_PIN
  1556. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  1557. SERIAL_PROTOCOLPGM(" T");
  1558. SERIAL_PROTOCOL(cur_extruder);
  1559. SERIAL_PROTOCOLPGM(":");
  1560. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  1561. SERIAL_PROTOCOLPGM(" /");
  1562. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  1563. }
  1564. #else
  1565. SERIAL_ERROR_START;
  1566. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  1567. #endif
  1568. SERIAL_PROTOCOLPGM(" @:");
  1569. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  1570. SERIAL_PROTOCOLPGM(" B@:");
  1571. SERIAL_PROTOCOL(getHeaterPower(-1));
  1572. #ifdef SHOW_TEMP_ADC_VALUES
  1573. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1574. SERIAL_PROTOCOLPGM(" ADC B:");
  1575. SERIAL_PROTOCOL_F(degBed(),1);
  1576. SERIAL_PROTOCOLPGM("C->");
  1577. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  1578. #endif
  1579. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  1580. SERIAL_PROTOCOLPGM(" T");
  1581. SERIAL_PROTOCOL(cur_extruder);
  1582. SERIAL_PROTOCOLPGM(":");
  1583. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  1584. SERIAL_PROTOCOLPGM("C->");
  1585. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  1586. }
  1587. #endif
  1588. SERIAL_PROTOCOLLN("");
  1589. return;
  1590. break;
  1591. case 109:
  1592. {// M109 - Wait for extruder heater to reach target.
  1593. if(setTargetedHotend(109)){
  1594. break;
  1595. }
  1596. LCD_MESSAGEPGM(MSG_HEATING);
  1597. #ifdef AUTOTEMP
  1598. autotemp_enabled=false;
  1599. #endif
  1600. if (code_seen('S')) {
  1601. setTargetHotend(code_value(), tmp_extruder);
  1602. #ifdef DUAL_X_CARRIAGE
  1603. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1604. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1605. #endif
  1606. CooldownNoWait = true;
  1607. } else if (code_seen('R')) {
  1608. setTargetHotend(code_value(), tmp_extruder);
  1609. #ifdef DUAL_X_CARRIAGE
  1610. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1611. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1612. #endif
  1613. CooldownNoWait = false;
  1614. }
  1615. #ifdef AUTOTEMP
  1616. if (code_seen('S')) autotemp_min=code_value();
  1617. if (code_seen('B')) autotemp_max=code_value();
  1618. if (code_seen('F'))
  1619. {
  1620. autotemp_factor=code_value();
  1621. autotemp_enabled=true;
  1622. }
  1623. #endif
  1624. setWatch();
  1625. codenum = millis();
  1626. /* See if we are heating up or cooling down */
  1627. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  1628. #ifdef TEMP_RESIDENCY_TIME
  1629. long residencyStart;
  1630. residencyStart = -1;
  1631. /* continue to loop until we have reached the target temp
  1632. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  1633. while((residencyStart == -1) ||
  1634. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))) ) {
  1635. #else
  1636. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  1637. #endif //TEMP_RESIDENCY_TIME
  1638. if( (millis() - codenum) > 1000UL )
  1639. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  1640. SERIAL_PROTOCOLPGM("T:");
  1641. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  1642. SERIAL_PROTOCOLPGM(" E:");
  1643. SERIAL_PROTOCOL((int)tmp_extruder);
  1644. #ifdef TEMP_RESIDENCY_TIME
  1645. SERIAL_PROTOCOLPGM(" W:");
  1646. if(residencyStart > -1)
  1647. {
  1648. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  1649. SERIAL_PROTOCOLLN( codenum );
  1650. }
  1651. else
  1652. {
  1653. SERIAL_PROTOCOLLN( "?" );
  1654. }
  1655. #else
  1656. SERIAL_PROTOCOLLN("");
  1657. #endif
  1658. codenum = millis();
  1659. }
  1660. manage_heater();
  1661. manage_inactivity();
  1662. lcd_update();
  1663. #ifdef TEMP_RESIDENCY_TIME
  1664. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  1665. or when current temp falls outside the hysteresis after target temp was reached */
  1666. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  1667. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  1668. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  1669. {
  1670. residencyStart = millis();
  1671. }
  1672. #endif //TEMP_RESIDENCY_TIME
  1673. }
  1674. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  1675. starttime=millis();
  1676. previous_millis_cmd = millis();
  1677. }
  1678. break;
  1679. case 190: // M190 - Wait for bed heater to reach target.
  1680. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1681. LCD_MESSAGEPGM(MSG_BED_HEATING);
  1682. if (code_seen('S')) {
  1683. setTargetBed(code_value());
  1684. CooldownNoWait = true;
  1685. } else if (code_seen('R')) {
  1686. setTargetBed(code_value());
  1687. CooldownNoWait = false;
  1688. }
  1689. codenum = millis();
  1690. target_direction = isHeatingBed(); // true if heating, false if cooling
  1691. while ( target_direction ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  1692. {
  1693. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  1694. {
  1695. float tt=degHotend(active_extruder);
  1696. SERIAL_PROTOCOLPGM("T:");
  1697. SERIAL_PROTOCOL(tt);
  1698. SERIAL_PROTOCOLPGM(" E:");
  1699. SERIAL_PROTOCOL((int)active_extruder);
  1700. SERIAL_PROTOCOLPGM(" B:");
  1701. SERIAL_PROTOCOL_F(degBed(),1);
  1702. SERIAL_PROTOCOLLN("");
  1703. codenum = millis();
  1704. }
  1705. manage_heater();
  1706. manage_inactivity();
  1707. lcd_update();
  1708. }
  1709. LCD_MESSAGEPGM(MSG_BED_DONE);
  1710. previous_millis_cmd = millis();
  1711. #endif
  1712. break;
  1713. #if defined(FAN_PIN) && FAN_PIN > -1
  1714. case 106: //M106 Fan On
  1715. if (code_seen('S')){
  1716. fanSpeed=constrain(code_value(),0,255);
  1717. }
  1718. else {
  1719. fanSpeed=255;
  1720. }
  1721. break;
  1722. case 107: //M107 Fan Off
  1723. fanSpeed = 0;
  1724. break;
  1725. #endif //FAN_PIN
  1726. #ifdef BARICUDA
  1727. // PWM for HEATER_1_PIN
  1728. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  1729. case 126: //M126 valve open
  1730. if (code_seen('S')){
  1731. ValvePressure=constrain(code_value(),0,255);
  1732. }
  1733. else {
  1734. ValvePressure=255;
  1735. }
  1736. break;
  1737. case 127: //M127 valve closed
  1738. ValvePressure = 0;
  1739. break;
  1740. #endif //HEATER_1_PIN
  1741. // PWM for HEATER_2_PIN
  1742. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  1743. case 128: //M128 valve open
  1744. if (code_seen('S')){
  1745. EtoPPressure=constrain(code_value(),0,255);
  1746. }
  1747. else {
  1748. EtoPPressure=255;
  1749. }
  1750. break;
  1751. case 129: //M129 valve closed
  1752. EtoPPressure = 0;
  1753. break;
  1754. #endif //HEATER_2_PIN
  1755. #endif
  1756. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  1757. case 80: // M80 - Turn on Power Supply
  1758. SET_OUTPUT(PS_ON_PIN); //GND
  1759. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  1760. // If you have a switch on suicide pin, this is useful
  1761. // if you want to start another print with suicide feature after
  1762. // a print without suicide...
  1763. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  1764. SET_OUTPUT(SUICIDE_PIN);
  1765. WRITE(SUICIDE_PIN, HIGH);
  1766. #endif
  1767. #ifdef ULTIPANEL
  1768. powersupply = true;
  1769. LCD_MESSAGEPGM(WELCOME_MSG);
  1770. lcd_update();
  1771. #endif
  1772. break;
  1773. #endif
  1774. case 81: // M81 - Turn off Power Supply
  1775. disable_heater();
  1776. st_synchronize();
  1777. disable_e0();
  1778. disable_e1();
  1779. disable_e2();
  1780. finishAndDisableSteppers();
  1781. fanSpeed = 0;
  1782. delay(1000); // Wait a little before to switch off
  1783. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  1784. st_synchronize();
  1785. suicide();
  1786. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  1787. SET_OUTPUT(PS_ON_PIN);
  1788. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  1789. #endif
  1790. #ifdef ULTIPANEL
  1791. powersupply = false;
  1792. LCD_MESSAGEPGM(MACHINE_NAME" "MSG_OFF".");
  1793. lcd_update();
  1794. #endif
  1795. break;
  1796. case 82:
  1797. axis_relative_modes[3] = false;
  1798. break;
  1799. case 83:
  1800. axis_relative_modes[3] = true;
  1801. break;
  1802. case 18: //compatibility
  1803. case 84: // M84
  1804. if(code_seen('S')){
  1805. stepper_inactive_time = code_value() * 1000;
  1806. }
  1807. else
  1808. {
  1809. bool all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2]))|| (code_seen(axis_codes[3])));
  1810. if(all_axis)
  1811. {
  1812. st_synchronize();
  1813. disable_e0();
  1814. disable_e1();
  1815. disable_e2();
  1816. finishAndDisableSteppers();
  1817. }
  1818. else
  1819. {
  1820. st_synchronize();
  1821. if(code_seen('X')) disable_x();
  1822. if(code_seen('Y')) disable_y();
  1823. if(code_seen('Z')) disable_z();
  1824. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  1825. if(code_seen('E')) {
  1826. disable_e0();
  1827. disable_e1();
  1828. disable_e2();
  1829. }
  1830. #endif
  1831. }
  1832. }
  1833. break;
  1834. case 85: // M85
  1835. code_seen('S');
  1836. max_inactive_time = code_value() * 1000;
  1837. break;
  1838. case 92: // M92
  1839. for(int8_t i=0; i < NUM_AXIS; i++)
  1840. {
  1841. if(code_seen(axis_codes[i]))
  1842. {
  1843. if(i == 3) { // E
  1844. float value = code_value();
  1845. if(value < 20.0) {
  1846. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  1847. max_e_jerk *= factor;
  1848. max_feedrate[i] *= factor;
  1849. axis_steps_per_sqr_second[i] *= factor;
  1850. }
  1851. axis_steps_per_unit[i] = value;
  1852. }
  1853. else {
  1854. axis_steps_per_unit[i] = code_value();
  1855. }
  1856. }
  1857. }
  1858. break;
  1859. case 115: // M115
  1860. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  1861. break;
  1862. case 117: // M117 display message
  1863. starpos = (strchr(strchr_pointer + 5,'*'));
  1864. if(starpos!=NULL)
  1865. *(starpos-1)='\0';
  1866. lcd_setstatus(strchr_pointer + 5);
  1867. break;
  1868. case 114: // M114
  1869. SERIAL_PROTOCOLPGM("X:");
  1870. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1871. SERIAL_PROTOCOLPGM("Y:");
  1872. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1873. SERIAL_PROTOCOLPGM("Z:");
  1874. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1875. SERIAL_PROTOCOLPGM("E:");
  1876. SERIAL_PROTOCOL(current_position[E_AXIS]);
  1877. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  1878. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  1879. SERIAL_PROTOCOLPGM("Y:");
  1880. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  1881. SERIAL_PROTOCOLPGM("Z:");
  1882. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  1883. SERIAL_PROTOCOLLN("");
  1884. break;
  1885. case 120: // M120
  1886. enable_endstops(false) ;
  1887. break;
  1888. case 121: // M121
  1889. enable_endstops(true) ;
  1890. break;
  1891. case 119: // M119
  1892. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  1893. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  1894. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  1895. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1896. #endif
  1897. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  1898. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  1899. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1900. #endif
  1901. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  1902. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  1903. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1904. #endif
  1905. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  1906. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  1907. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1908. #endif
  1909. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  1910. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  1911. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1912. #endif
  1913. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  1914. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  1915. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1916. #endif
  1917. break;
  1918. //TODO: update for all axis, use for loop
  1919. #ifdef BLINKM
  1920. case 150: // M150
  1921. {
  1922. byte red;
  1923. byte grn;
  1924. byte blu;
  1925. if(code_seen('R')) red = code_value();
  1926. if(code_seen('U')) grn = code_value();
  1927. if(code_seen('B')) blu = code_value();
  1928. SendColors(red,grn,blu);
  1929. }
  1930. break;
  1931. #endif //BLINKM
  1932. case 201: // M201
  1933. for(int8_t i=0; i < NUM_AXIS; i++)
  1934. {
  1935. if(code_seen(axis_codes[i]))
  1936. {
  1937. max_acceleration_units_per_sq_second[i] = code_value();
  1938. }
  1939. }
  1940. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  1941. reset_acceleration_rates();
  1942. break;
  1943. #if 0 // Not used for Sprinter/grbl gen6
  1944. case 202: // M202
  1945. for(int8_t i=0; i < NUM_AXIS; i++) {
  1946. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  1947. }
  1948. break;
  1949. #endif
  1950. case 203: // M203 max feedrate mm/sec
  1951. for(int8_t i=0; i < NUM_AXIS; i++) {
  1952. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  1953. }
  1954. break;
  1955. case 204: // M204 acclereration S normal moves T filmanent only moves
  1956. {
  1957. if(code_seen('S')) acceleration = code_value() ;
  1958. if(code_seen('T')) retract_acceleration = code_value() ;
  1959. }
  1960. break;
  1961. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  1962. {
  1963. if(code_seen('S')) minimumfeedrate = code_value();
  1964. if(code_seen('T')) mintravelfeedrate = code_value();
  1965. if(code_seen('B')) minsegmenttime = code_value() ;
  1966. if(code_seen('X')) max_xy_jerk = code_value() ;
  1967. if(code_seen('Z')) max_z_jerk = code_value() ;
  1968. if(code_seen('E')) max_e_jerk = code_value() ;
  1969. }
  1970. break;
  1971. case 206: // M206 additional homeing offset
  1972. for(int8_t i=0; i < 3; i++)
  1973. {
  1974. if(code_seen(axis_codes[i])) add_homeing[i] = code_value();
  1975. }
  1976. break;
  1977. #ifdef DELTA
  1978. case 666: // M666 set delta endstop adjustemnt
  1979. for(int8_t i=0; i < 3; i++)
  1980. {
  1981. if(code_seen(axis_codes[i])) endstop_adj[i] = code_value();
  1982. }
  1983. break;
  1984. #endif
  1985. #ifdef FWRETRACT
  1986. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/sec] Z[additional zlift/hop]
  1987. {
  1988. if(code_seen('S'))
  1989. {
  1990. retract_length = code_value() ;
  1991. }
  1992. if(code_seen('F'))
  1993. {
  1994. retract_feedrate = code_value() ;
  1995. }
  1996. if(code_seen('Z'))
  1997. {
  1998. retract_zlift = code_value() ;
  1999. }
  2000. }break;
  2001. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  2002. {
  2003. if(code_seen('S'))
  2004. {
  2005. retract_recover_length = code_value() ;
  2006. }
  2007. if(code_seen('F'))
  2008. {
  2009. retract_recover_feedrate = code_value() ;
  2010. }
  2011. }break;
  2012. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  2013. {
  2014. if(code_seen('S'))
  2015. {
  2016. int t= code_value() ;
  2017. switch(t)
  2018. {
  2019. case 0: autoretract_enabled=false;retracted=false;break;
  2020. case 1: autoretract_enabled=true;retracted=false;break;
  2021. default:
  2022. SERIAL_ECHO_START;
  2023. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2024. SERIAL_ECHO(cmdbuffer[bufindr]);
  2025. SERIAL_ECHOLNPGM("\"");
  2026. }
  2027. }
  2028. }break;
  2029. #endif // FWRETRACT
  2030. #if EXTRUDERS > 1
  2031. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  2032. {
  2033. if(setTargetedHotend(218)){
  2034. break;
  2035. }
  2036. if(code_seen('X'))
  2037. {
  2038. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  2039. }
  2040. if(code_seen('Y'))
  2041. {
  2042. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  2043. }
  2044. #ifdef DUAL_X_CARRIAGE
  2045. if(code_seen('Z'))
  2046. {
  2047. extruder_offset[Z_AXIS][tmp_extruder] = code_value();
  2048. }
  2049. #endif
  2050. SERIAL_ECHO_START;
  2051. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  2052. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  2053. {
  2054. SERIAL_ECHO(" ");
  2055. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  2056. SERIAL_ECHO(",");
  2057. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  2058. #ifdef DUAL_X_CARRIAGE
  2059. SERIAL_ECHO(",");
  2060. SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
  2061. #endif
  2062. }
  2063. SERIAL_ECHOLN("");
  2064. }break;
  2065. #endif
  2066. case 220: // M220 S<factor in percent>- set speed factor override percentage
  2067. {
  2068. if(code_seen('S'))
  2069. {
  2070. feedmultiply = code_value() ;
  2071. }
  2072. }
  2073. break;
  2074. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  2075. {
  2076. if(code_seen('S'))
  2077. {
  2078. extrudemultiply = code_value() ;
  2079. }
  2080. }
  2081. break;
  2082. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  2083. {
  2084. if(code_seen('P')){
  2085. int pin_number = code_value(); // pin number
  2086. int pin_state = -1; // required pin state - default is inverted
  2087. if(code_seen('S')) pin_state = code_value(); // required pin state
  2088. if(pin_state >= -1 && pin_state <= 1){
  2089. for(int8_t i = 0; i < (int8_t)sizeof(sensitive_pins); i++)
  2090. {
  2091. if (sensitive_pins[i] == pin_number)
  2092. {
  2093. pin_number = -1;
  2094. break;
  2095. }
  2096. }
  2097. if (pin_number > -1)
  2098. {
  2099. st_synchronize();
  2100. pinMode(pin_number, INPUT);
  2101. int target;
  2102. switch(pin_state){
  2103. case 1:
  2104. target = HIGH;
  2105. break;
  2106. case 0:
  2107. target = LOW;
  2108. break;
  2109. case -1:
  2110. target = !digitalRead(pin_number);
  2111. break;
  2112. }
  2113. while(digitalRead(pin_number) != target){
  2114. manage_heater();
  2115. manage_inactivity();
  2116. lcd_update();
  2117. }
  2118. }
  2119. }
  2120. }
  2121. }
  2122. break;
  2123. #if NUM_SERVOS > 0
  2124. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  2125. {
  2126. int servo_index = -1;
  2127. int servo_position = 0;
  2128. if (code_seen('P'))
  2129. servo_index = code_value();
  2130. if (code_seen('S')) {
  2131. servo_position = code_value();
  2132. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  2133. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2134. servos[servo_index].attach(0);
  2135. #endif
  2136. servos[servo_index].write(servo_position);
  2137. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2138. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  2139. servos[servo_index].detach();
  2140. #endif
  2141. }
  2142. else {
  2143. SERIAL_ECHO_START;
  2144. SERIAL_ECHO("Servo ");
  2145. SERIAL_ECHO(servo_index);
  2146. SERIAL_ECHOLN(" out of range");
  2147. }
  2148. }
  2149. else if (servo_index >= 0) {
  2150. SERIAL_PROTOCOL(MSG_OK);
  2151. SERIAL_PROTOCOL(" Servo ");
  2152. SERIAL_PROTOCOL(servo_index);
  2153. SERIAL_PROTOCOL(": ");
  2154. SERIAL_PROTOCOL(servos[servo_index].read());
  2155. SERIAL_PROTOCOLLN("");
  2156. }
  2157. }
  2158. break;
  2159. #endif // NUM_SERVOS > 0
  2160. #if LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) )
  2161. case 300: // M300
  2162. {
  2163. int beepS = code_seen('S') ? code_value() : 110;
  2164. int beepP = code_seen('P') ? code_value() : 1000;
  2165. if (beepS > 0)
  2166. {
  2167. #if BEEPER > 0
  2168. tone(BEEPER, beepS);
  2169. delay(beepP);
  2170. noTone(BEEPER);
  2171. #elif defined(ULTRALCD)
  2172. lcd_buzz(beepS, beepP);
  2173. #endif
  2174. }
  2175. else
  2176. {
  2177. delay(beepP);
  2178. }
  2179. }
  2180. break;
  2181. #endif // M300
  2182. #ifdef PIDTEMP
  2183. case 301: // M301
  2184. {
  2185. if(code_seen('P')) Kp = code_value();
  2186. if(code_seen('I')) Ki = scalePID_i(code_value());
  2187. if(code_seen('D')) Kd = scalePID_d(code_value());
  2188. #ifdef PID_ADD_EXTRUSION_RATE
  2189. if(code_seen('C')) Kc = code_value();
  2190. #endif
  2191. updatePID();
  2192. SERIAL_PROTOCOL(MSG_OK);
  2193. SERIAL_PROTOCOL(" p:");
  2194. SERIAL_PROTOCOL(Kp);
  2195. SERIAL_PROTOCOL(" i:");
  2196. SERIAL_PROTOCOL(unscalePID_i(Ki));
  2197. SERIAL_PROTOCOL(" d:");
  2198. SERIAL_PROTOCOL(unscalePID_d(Kd));
  2199. #ifdef PID_ADD_EXTRUSION_RATE
  2200. SERIAL_PROTOCOL(" c:");
  2201. //Kc does not have scaling applied above, or in resetting defaults
  2202. SERIAL_PROTOCOL(Kc);
  2203. #endif
  2204. SERIAL_PROTOCOLLN("");
  2205. }
  2206. break;
  2207. #endif //PIDTEMP
  2208. #ifdef PIDTEMPBED
  2209. case 304: // M304
  2210. {
  2211. if(code_seen('P')) bedKp = code_value();
  2212. if(code_seen('I')) bedKi = scalePID_i(code_value());
  2213. if(code_seen('D')) bedKd = scalePID_d(code_value());
  2214. updatePID();
  2215. SERIAL_PROTOCOL(MSG_OK);
  2216. SERIAL_PROTOCOL(" p:");
  2217. SERIAL_PROTOCOL(bedKp);
  2218. SERIAL_PROTOCOL(" i:");
  2219. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  2220. SERIAL_PROTOCOL(" d:");
  2221. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  2222. SERIAL_PROTOCOLLN("");
  2223. }
  2224. break;
  2225. #endif //PIDTEMP
  2226. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  2227. {
  2228. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  2229. const uint8_t NUM_PULSES=16;
  2230. const float PULSE_LENGTH=0.01524;
  2231. for(int i=0; i < NUM_PULSES; i++) {
  2232. WRITE(PHOTOGRAPH_PIN, HIGH);
  2233. _delay_ms(PULSE_LENGTH);
  2234. WRITE(PHOTOGRAPH_PIN, LOW);
  2235. _delay_ms(PULSE_LENGTH);
  2236. }
  2237. delay(7.33);
  2238. for(int i=0; i < NUM_PULSES; i++) {
  2239. WRITE(PHOTOGRAPH_PIN, HIGH);
  2240. _delay_ms(PULSE_LENGTH);
  2241. WRITE(PHOTOGRAPH_PIN, LOW);
  2242. _delay_ms(PULSE_LENGTH);
  2243. }
  2244. #endif
  2245. }
  2246. break;
  2247. #ifdef DOGLCD
  2248. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  2249. {
  2250. if (code_seen('C')) {
  2251. lcd_setcontrast( ((int)code_value())&63 );
  2252. }
  2253. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  2254. SERIAL_PROTOCOL(lcd_contrast);
  2255. SERIAL_PROTOCOLLN("");
  2256. }
  2257. break;
  2258. #endif
  2259. #ifdef PREVENT_DANGEROUS_EXTRUDE
  2260. case 302: // allow cold extrudes, or set the minimum extrude temperature
  2261. {
  2262. float temp = .0;
  2263. if (code_seen('S')) temp=code_value();
  2264. set_extrude_min_temp(temp);
  2265. }
  2266. break;
  2267. #endif
  2268. case 303: // M303 PID autotune
  2269. {
  2270. float temp = 150.0;
  2271. int e=0;
  2272. int c=5;
  2273. if (code_seen('E')) e=code_value();
  2274. if (e<0)
  2275. temp=70;
  2276. if (code_seen('S')) temp=code_value();
  2277. if (code_seen('C')) c=code_value();
  2278. PID_autotune(temp, e, c);
  2279. }
  2280. break;
  2281. case 400: // M400 finish all moves
  2282. {
  2283. st_synchronize();
  2284. }
  2285. break;
  2286. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(SERVO_ENDSTOPS)
  2287. case 401:
  2288. {
  2289. engage_z_probe(); // Engage Z Servo endstop if available
  2290. }
  2291. break;
  2292. case 402:
  2293. {
  2294. retract_z_probe(); // Retract Z Servo endstop if enabled
  2295. }
  2296. break;
  2297. #endif
  2298. case 500: // M500 Store settings in EEPROM
  2299. {
  2300. Config_StoreSettings();
  2301. }
  2302. break;
  2303. case 501: // M501 Read settings from EEPROM
  2304. {
  2305. Config_RetrieveSettings();
  2306. }
  2307. break;
  2308. case 502: // M502 Revert to default settings
  2309. {
  2310. Config_ResetDefault();
  2311. }
  2312. break;
  2313. case 503: // M503 print settings currently in memory
  2314. {
  2315. Config_PrintSettings();
  2316. }
  2317. break;
  2318. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  2319. case 540:
  2320. {
  2321. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  2322. }
  2323. break;
  2324. #endif
  2325. #ifdef FILAMENTCHANGEENABLE
  2326. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  2327. {
  2328. float target[4];
  2329. float lastpos[4];
  2330. target[X_AXIS]=current_position[X_AXIS];
  2331. target[Y_AXIS]=current_position[Y_AXIS];
  2332. target[Z_AXIS]=current_position[Z_AXIS];
  2333. target[E_AXIS]=current_position[E_AXIS];
  2334. lastpos[X_AXIS]=current_position[X_AXIS];
  2335. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2336. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2337. lastpos[E_AXIS]=current_position[E_AXIS];
  2338. //retract by E
  2339. if(code_seen('E'))
  2340. {
  2341. target[E_AXIS]+= code_value();
  2342. }
  2343. else
  2344. {
  2345. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  2346. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2347. #endif
  2348. }
  2349. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2350. //lift Z
  2351. if(code_seen('Z'))
  2352. {
  2353. target[Z_AXIS]+= code_value();
  2354. }
  2355. else
  2356. {
  2357. #ifdef FILAMENTCHANGE_ZADD
  2358. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2359. #endif
  2360. }
  2361. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2362. //move xy
  2363. if(code_seen('X'))
  2364. {
  2365. target[X_AXIS]+= code_value();
  2366. }
  2367. else
  2368. {
  2369. #ifdef FILAMENTCHANGE_XPOS
  2370. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2371. #endif
  2372. }
  2373. if(code_seen('Y'))
  2374. {
  2375. target[Y_AXIS]= code_value();
  2376. }
  2377. else
  2378. {
  2379. #ifdef FILAMENTCHANGE_YPOS
  2380. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2381. #endif
  2382. }
  2383. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2384. if(code_seen('L'))
  2385. {
  2386. target[E_AXIS]+= code_value();
  2387. }
  2388. else
  2389. {
  2390. #ifdef FILAMENTCHANGE_FINALRETRACT
  2391. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2392. #endif
  2393. }
  2394. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2395. //finish moves
  2396. st_synchronize();
  2397. //disable extruder steppers so filament can be removed
  2398. disable_e0();
  2399. disable_e1();
  2400. disable_e2();
  2401. delay(100);
  2402. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  2403. uint8_t cnt=0;
  2404. while(!lcd_clicked()){
  2405. cnt++;
  2406. manage_heater();
  2407. manage_inactivity();
  2408. lcd_update();
  2409. if(cnt==0)
  2410. {
  2411. #if BEEPER > 0
  2412. SET_OUTPUT(BEEPER);
  2413. WRITE(BEEPER,HIGH);
  2414. delay(3);
  2415. WRITE(BEEPER,LOW);
  2416. delay(3);
  2417. #else
  2418. lcd_buzz(1000/6,100);
  2419. #endif
  2420. }
  2421. }
  2422. //return to normal
  2423. if(code_seen('L'))
  2424. {
  2425. target[E_AXIS]+= -code_value();
  2426. }
  2427. else
  2428. {
  2429. #ifdef FILAMENTCHANGE_FINALRETRACT
  2430. target[E_AXIS]+=(-1)*FILAMENTCHANGE_FINALRETRACT ;
  2431. #endif
  2432. }
  2433. current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2434. plan_set_e_position(current_position[E_AXIS]);
  2435. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //should do nothing
  2436. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move xy back
  2437. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move z back
  2438. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], feedrate/60, active_extruder); //final untretract
  2439. }
  2440. break;
  2441. #endif //FILAMENTCHANGEENABLE
  2442. #ifdef DUAL_X_CARRIAGE
  2443. case 605: // Set dual x-carriage movement mode:
  2444. // M605 S0: Full control mode. The slicer has full control over x-carriage movement
  2445. // M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  2446. // M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  2447. // millimeters x-offset and an optional differential hotend temperature of
  2448. // mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  2449. // the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  2450. //
  2451. // Note: the X axis should be homed after changing dual x-carriage mode.
  2452. {
  2453. st_synchronize();
  2454. if (code_seen('S'))
  2455. dual_x_carriage_mode = code_value();
  2456. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  2457. {
  2458. if (code_seen('X'))
  2459. duplicate_extruder_x_offset = max(code_value(),X2_MIN_POS - x_home_pos(0));
  2460. if (code_seen('R'))
  2461. duplicate_extruder_temp_offset = code_value();
  2462. SERIAL_ECHO_START;
  2463. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  2464. SERIAL_ECHO(" ");
  2465. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  2466. SERIAL_ECHO(",");
  2467. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  2468. SERIAL_ECHO(" ");
  2469. SERIAL_ECHO(duplicate_extruder_x_offset);
  2470. SERIAL_ECHO(",");
  2471. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  2472. }
  2473. else if (dual_x_carriage_mode != DXC_FULL_CONTROL_MODE && dual_x_carriage_mode != DXC_AUTO_PARK_MODE)
  2474. {
  2475. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  2476. }
  2477. active_extruder_parked = false;
  2478. extruder_duplication_enabled = false;
  2479. delayed_move_time = 0;
  2480. }
  2481. break;
  2482. #endif //DUAL_X_CARRIAGE
  2483. case 907: // M907 Set digital trimpot motor current using axis codes.
  2484. {
  2485. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  2486. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  2487. if(code_seen('B')) digipot_current(4,code_value());
  2488. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  2489. #endif
  2490. }
  2491. break;
  2492. case 908: // M908 Control digital trimpot directly.
  2493. {
  2494. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  2495. uint8_t channel,current;
  2496. if(code_seen('P')) channel=code_value();
  2497. if(code_seen('S')) current=code_value();
  2498. digitalPotWrite(channel, current);
  2499. #endif
  2500. }
  2501. break;
  2502. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  2503. {
  2504. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  2505. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  2506. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  2507. if(code_seen('B')) microstep_mode(4,code_value());
  2508. microstep_readings();
  2509. #endif
  2510. }
  2511. break;
  2512. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  2513. {
  2514. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  2515. if(code_seen('S')) switch((int)code_value())
  2516. {
  2517. case 1:
  2518. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  2519. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  2520. break;
  2521. case 2:
  2522. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  2523. if(code_seen('B')) microstep_ms(4,-1,code_value());
  2524. break;
  2525. }
  2526. microstep_readings();
  2527. #endif
  2528. }
  2529. break;
  2530. case 999: // M999: Restart after being stopped
  2531. Stopped = false;
  2532. lcd_reset_alert_level();
  2533. gcode_LastN = Stopped_gcode_LastN;
  2534. FlushSerialRequestResend();
  2535. break;
  2536. }
  2537. }
  2538. else if(code_seen('T'))
  2539. {
  2540. tmp_extruder = code_value();
  2541. if(tmp_extruder >= EXTRUDERS) {
  2542. SERIAL_ECHO_START;
  2543. SERIAL_ECHO("T");
  2544. SERIAL_ECHO(tmp_extruder);
  2545. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  2546. }
  2547. else {
  2548. boolean make_move = false;
  2549. if(code_seen('F')) {
  2550. make_move = true;
  2551. next_feedrate = code_value();
  2552. if(next_feedrate > 0.0) {
  2553. feedrate = next_feedrate;
  2554. }
  2555. }
  2556. #if EXTRUDERS > 1
  2557. if(tmp_extruder != active_extruder) {
  2558. // Save current position to return to after applying extruder offset
  2559. memcpy(destination, current_position, sizeof(destination));
  2560. #ifdef DUAL_X_CARRIAGE
  2561. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
  2562. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder)))
  2563. {
  2564. // Park old head: 1) raise 2) move to park position 3) lower
  2565. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  2566. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2567. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  2568. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  2569. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  2570. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2571. st_synchronize();
  2572. }
  2573. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  2574. current_position[Y_AXIS] = current_position[Y_AXIS] -
  2575. extruder_offset[Y_AXIS][active_extruder] +
  2576. extruder_offset[Y_AXIS][tmp_extruder];
  2577. current_position[Z_AXIS] = current_position[Z_AXIS] -
  2578. extruder_offset[Z_AXIS][active_extruder] +
  2579. extruder_offset[Z_AXIS][tmp_extruder];
  2580. active_extruder = tmp_extruder;
  2581. // This function resets the max/min values - the current position may be overwritten below.
  2582. axis_is_at_home(X_AXIS);
  2583. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE)
  2584. {
  2585. current_position[X_AXIS] = inactive_extruder_x_pos;
  2586. inactive_extruder_x_pos = destination[X_AXIS];
  2587. }
  2588. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  2589. {
  2590. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  2591. if (active_extruder == 0 || active_extruder_parked)
  2592. current_position[X_AXIS] = inactive_extruder_x_pos;
  2593. else
  2594. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  2595. inactive_extruder_x_pos = destination[X_AXIS];
  2596. extruder_duplication_enabled = false;
  2597. }
  2598. else
  2599. {
  2600. // record raised toolhead position for use by unpark
  2601. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2602. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  2603. active_extruder_parked = true;
  2604. delayed_move_time = 0;
  2605. }
  2606. #else
  2607. // Offset extruder (only by XY)
  2608. int i;
  2609. for(i = 0; i < 2; i++) {
  2610. current_position[i] = current_position[i] -
  2611. extruder_offset[i][active_extruder] +
  2612. extruder_offset[i][tmp_extruder];
  2613. }
  2614. // Set the new active extruder and position
  2615. active_extruder = tmp_extruder;
  2616. #endif //else DUAL_X_CARRIAGE
  2617. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2618. // Move to the old position if 'F' was in the parameters
  2619. if(make_move && Stopped == false) {
  2620. prepare_move();
  2621. }
  2622. }
  2623. #endif
  2624. SERIAL_ECHO_START;
  2625. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  2626. SERIAL_PROTOCOLLN((int)active_extruder);
  2627. }
  2628. }
  2629. else
  2630. {
  2631. SERIAL_ECHO_START;
  2632. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2633. SERIAL_ECHO(cmdbuffer[bufindr]);
  2634. SERIAL_ECHOLNPGM("\"");
  2635. }
  2636. ClearToSend();
  2637. }
  2638. void FlushSerialRequestResend()
  2639. {
  2640. //char cmdbuffer[bufindr][100]="Resend:";
  2641. MYSERIAL.flush();
  2642. SERIAL_PROTOCOLPGM(MSG_RESEND);
  2643. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  2644. ClearToSend();
  2645. }
  2646. void ClearToSend()
  2647. {
  2648. previous_millis_cmd = millis();
  2649. #ifdef SDSUPPORT
  2650. if(fromsd[bufindr])
  2651. return;
  2652. #endif //SDSUPPORT
  2653. SERIAL_PROTOCOLLNPGM(MSG_OK);
  2654. }
  2655. void get_coordinates()
  2656. {
  2657. bool seen[4]={false,false,false,false};
  2658. for(int8_t i=0; i < NUM_AXIS; i++) {
  2659. if(code_seen(axis_codes[i]))
  2660. {
  2661. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  2662. seen[i]=true;
  2663. }
  2664. else destination[i] = current_position[i]; //Are these else lines really needed?
  2665. }
  2666. if(code_seen('F')) {
  2667. next_feedrate = code_value();
  2668. if(next_feedrate > 0.0) feedrate = next_feedrate;
  2669. }
  2670. #ifdef FWRETRACT
  2671. if(autoretract_enabled)
  2672. if( !(seen[X_AXIS] || seen[Y_AXIS] || seen[Z_AXIS]) && seen[E_AXIS])
  2673. {
  2674. float echange=destination[E_AXIS]-current_position[E_AXIS];
  2675. if(echange<-MIN_RETRACT) //retract
  2676. {
  2677. if(!retracted)
  2678. {
  2679. destination[Z_AXIS]+=retract_zlift; //not sure why chaninging current_position negatively does not work.
  2680. //if slicer retracted by echange=-1mm and you want to retract 3mm, corrrectede=-2mm additionally
  2681. float correctede=-echange-retract_length;
  2682. //to generate the additional steps, not the destination is changed, but inversely the current position
  2683. current_position[E_AXIS]+=-correctede;
  2684. feedrate=retract_feedrate;
  2685. retracted=true;
  2686. }
  2687. }
  2688. else
  2689. if(echange>MIN_RETRACT) //retract_recover
  2690. {
  2691. if(retracted)
  2692. {
  2693. //current_position[Z_AXIS]+=-retract_zlift;
  2694. //if slicer retracted_recovered by echange=+1mm and you want to retract_recover 3mm, corrrectede=2mm additionally
  2695. float correctede=-echange+1*retract_length+retract_recover_length; //total unretract=retract_length+retract_recover_length[surplus]
  2696. current_position[E_AXIS]+=correctede; //to generate the additional steps, not the destination is changed, but inversely the current position
  2697. feedrate=retract_recover_feedrate;
  2698. retracted=false;
  2699. }
  2700. }
  2701. }
  2702. #endif //FWRETRACT
  2703. }
  2704. void get_arc_coordinates()
  2705. {
  2706. #ifdef SF_ARC_FIX
  2707. bool relative_mode_backup = relative_mode;
  2708. relative_mode = true;
  2709. #endif
  2710. get_coordinates();
  2711. #ifdef SF_ARC_FIX
  2712. relative_mode=relative_mode_backup;
  2713. #endif
  2714. if(code_seen('I')) {
  2715. offset[0] = code_value();
  2716. }
  2717. else {
  2718. offset[0] = 0.0;
  2719. }
  2720. if(code_seen('J')) {
  2721. offset[1] = code_value();
  2722. }
  2723. else {
  2724. offset[1] = 0.0;
  2725. }
  2726. }
  2727. void clamp_to_software_endstops(float target[3])
  2728. {
  2729. if (min_software_endstops) {
  2730. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  2731. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  2732. if (target[Z_AXIS] < min_pos[Z_AXIS]) target[Z_AXIS] = min_pos[Z_AXIS];
  2733. }
  2734. if (max_software_endstops) {
  2735. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  2736. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  2737. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  2738. }
  2739. }
  2740. #ifdef DELTA
  2741. void calculate_delta(float cartesian[3])
  2742. {
  2743. delta[X_AXIS] = sqrt(DELTA_DIAGONAL_ROD_2
  2744. - sq(DELTA_TOWER1_X-cartesian[X_AXIS])
  2745. - sq(DELTA_TOWER1_Y-cartesian[Y_AXIS])
  2746. ) + cartesian[Z_AXIS];
  2747. delta[Y_AXIS] = sqrt(DELTA_DIAGONAL_ROD_2
  2748. - sq(DELTA_TOWER2_X-cartesian[X_AXIS])
  2749. - sq(DELTA_TOWER2_Y-cartesian[Y_AXIS])
  2750. ) + cartesian[Z_AXIS];
  2751. delta[Z_AXIS] = sqrt(DELTA_DIAGONAL_ROD_2
  2752. - sq(DELTA_TOWER3_X-cartesian[X_AXIS])
  2753. - sq(DELTA_TOWER3_Y-cartesian[Y_AXIS])
  2754. ) + cartesian[Z_AXIS];
  2755. /*
  2756. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  2757. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  2758. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  2759. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  2760. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  2761. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  2762. */
  2763. }
  2764. #endif
  2765. void prepare_move()
  2766. {
  2767. clamp_to_software_endstops(destination);
  2768. previous_millis_cmd = millis();
  2769. #ifdef DELTA
  2770. float difference[NUM_AXIS];
  2771. for (int8_t i=0; i < NUM_AXIS; i++) {
  2772. difference[i] = destination[i] - current_position[i];
  2773. }
  2774. float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
  2775. sq(difference[Y_AXIS]) +
  2776. sq(difference[Z_AXIS]));
  2777. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  2778. if (cartesian_mm < 0.000001) { return; }
  2779. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  2780. int steps = max(1, int(DELTA_SEGMENTS_PER_SECOND * seconds));
  2781. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  2782. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  2783. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  2784. for (int s = 1; s <= steps; s++) {
  2785. float fraction = float(s) / float(steps);
  2786. for(int8_t i=0; i < NUM_AXIS; i++) {
  2787. destination[i] = current_position[i] + difference[i] * fraction;
  2788. }
  2789. calculate_delta(destination);
  2790. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  2791. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  2792. active_extruder);
  2793. }
  2794. #else
  2795. #ifdef DUAL_X_CARRIAGE
  2796. if (active_extruder_parked)
  2797. {
  2798. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
  2799. {
  2800. // move duplicate extruder into correct duplication position.
  2801. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2802. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
  2803. current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  2804. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2805. st_synchronize();
  2806. extruder_duplication_enabled = true;
  2807. active_extruder_parked = false;
  2808. }
  2809. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
  2810. {
  2811. if (current_position[E_AXIS] == destination[E_AXIS])
  2812. {
  2813. // this is a travel move - skit it but keep track of current position (so that it can later
  2814. // be used as start of first non-travel move)
  2815. if (delayed_move_time != 0xFFFFFFFFUL)
  2816. {
  2817. memcpy(current_position, destination, sizeof(current_position));
  2818. if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
  2819. raised_parked_position[Z_AXIS] = destination[Z_AXIS];
  2820. delayed_move_time = millis();
  2821. return;
  2822. }
  2823. }
  2824. delayed_move_time = 0;
  2825. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  2826. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2827. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
  2828. current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
  2829. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2830. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2831. active_extruder_parked = false;
  2832. }
  2833. }
  2834. #endif //DUAL_X_CARRIAGE
  2835. // Do not use feedmultiply for E or Z only moves
  2836. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  2837. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2838. }
  2839. else {
  2840. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  2841. }
  2842. #endif //else DELTA
  2843. for(int8_t i=0; i < NUM_AXIS; i++) {
  2844. current_position[i] = destination[i];
  2845. }
  2846. }
  2847. void prepare_arc_move(char isclockwise) {
  2848. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  2849. // Trace the arc
  2850. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  2851. // As far as the parser is concerned, the position is now == target. In reality the
  2852. // motion control system might still be processing the action and the real tool position
  2853. // in any intermediate location.
  2854. for(int8_t i=0; i < NUM_AXIS; i++) {
  2855. current_position[i] = destination[i];
  2856. }
  2857. previous_millis_cmd = millis();
  2858. }
  2859. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  2860. #if defined(FAN_PIN)
  2861. #if CONTROLLERFAN_PIN == FAN_PIN
  2862. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  2863. #endif
  2864. #endif
  2865. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  2866. unsigned long lastMotorCheck = 0;
  2867. void controllerFan()
  2868. {
  2869. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  2870. {
  2871. lastMotorCheck = millis();
  2872. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  2873. #if EXTRUDERS > 2
  2874. || !READ(E2_ENABLE_PIN)
  2875. #endif
  2876. #if EXTRUDER > 1
  2877. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  2878. || !READ(X2_ENABLE_PIN)
  2879. #endif
  2880. || !READ(E1_ENABLE_PIN)
  2881. #endif
  2882. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  2883. {
  2884. lastMotor = millis(); //... set time to NOW so the fan will turn on
  2885. }
  2886. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  2887. {
  2888. digitalWrite(CONTROLLERFAN_PIN, 0);
  2889. analogWrite(CONTROLLERFAN_PIN, 0);
  2890. }
  2891. else
  2892. {
  2893. // allows digital or PWM fan output to be used (see M42 handling)
  2894. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  2895. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  2896. }
  2897. }
  2898. }
  2899. #endif
  2900. #ifdef TEMP_STAT_LEDS
  2901. static bool blue_led = false;
  2902. static bool red_led = false;
  2903. static uint32_t stat_update = 0;
  2904. void handle_status_leds(void) {
  2905. float max_temp = 0.0;
  2906. if(millis() > stat_update) {
  2907. stat_update += 500; // Update every 0.5s
  2908. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2909. max_temp = max(max_temp, degHotend(cur_extruder));
  2910. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  2911. }
  2912. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2913. max_temp = max(max_temp, degTargetBed());
  2914. max_temp = max(max_temp, degBed());
  2915. #endif
  2916. if((max_temp > 55.0) && (red_led == false)) {
  2917. digitalWrite(STAT_LED_RED, 1);
  2918. digitalWrite(STAT_LED_BLUE, 0);
  2919. red_led = true;
  2920. blue_led = false;
  2921. }
  2922. if((max_temp < 54.0) && (blue_led == false)) {
  2923. digitalWrite(STAT_LED_RED, 0);
  2924. digitalWrite(STAT_LED_BLUE, 1);
  2925. red_led = false;
  2926. blue_led = true;
  2927. }
  2928. }
  2929. }
  2930. #endif
  2931. void manage_inactivity()
  2932. {
  2933. if( (millis() - previous_millis_cmd) > max_inactive_time )
  2934. if(max_inactive_time)
  2935. kill();
  2936. if(stepper_inactive_time) {
  2937. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  2938. {
  2939. if(blocks_queued() == false) {
  2940. disable_x();
  2941. disable_y();
  2942. disable_z();
  2943. disable_e0();
  2944. disable_e1();
  2945. disable_e2();
  2946. }
  2947. }
  2948. }
  2949. #if defined(KILL_PIN) && KILL_PIN > -1
  2950. if( 0 == READ(KILL_PIN) )
  2951. kill();
  2952. #endif
  2953. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  2954. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  2955. #endif
  2956. #ifdef EXTRUDER_RUNOUT_PREVENT
  2957. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  2958. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  2959. {
  2960. bool oldstatus=READ(E0_ENABLE_PIN);
  2961. enable_e0();
  2962. float oldepos=current_position[E_AXIS];
  2963. float oldedes=destination[E_AXIS];
  2964. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2965. current_position[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  2966. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  2967. current_position[E_AXIS]=oldepos;
  2968. destination[E_AXIS]=oldedes;
  2969. plan_set_e_position(oldepos);
  2970. previous_millis_cmd=millis();
  2971. st_synchronize();
  2972. WRITE(E0_ENABLE_PIN,oldstatus);
  2973. }
  2974. #endif
  2975. #if defined(DUAL_X_CARRIAGE)
  2976. // handle delayed move timeout
  2977. if (delayed_move_time != 0 && (millis() - delayed_move_time) > 1000 && Stopped == false)
  2978. {
  2979. // travel moves have been received so enact them
  2980. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  2981. memcpy(destination,current_position,sizeof(destination));
  2982. prepare_move();
  2983. }
  2984. #endif
  2985. #ifdef TEMP_STAT_LEDS
  2986. handle_status_leds();
  2987. #endif
  2988. check_axes_activity();
  2989. }
  2990. void kill()
  2991. {
  2992. cli(); // Stop interrupts
  2993. disable_heater();
  2994. disable_x();
  2995. disable_y();
  2996. disable_z();
  2997. disable_e0();
  2998. disable_e1();
  2999. disable_e2();
  3000. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3001. pinMode(PS_ON_PIN,INPUT);
  3002. #endif
  3003. SERIAL_ERROR_START;
  3004. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  3005. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  3006. suicide();
  3007. while(1) { /* Intentionally left empty */ } // Wait for reset
  3008. }
  3009. void Stop()
  3010. {
  3011. disable_heater();
  3012. if(Stopped == false) {
  3013. Stopped = true;
  3014. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  3015. SERIAL_ERROR_START;
  3016. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  3017. LCD_MESSAGEPGM(MSG_STOPPED);
  3018. }
  3019. }
  3020. bool IsStopped() { return Stopped; };
  3021. #ifdef FAST_PWM_FAN
  3022. void setPwmFrequency(uint8_t pin, int val)
  3023. {
  3024. val &= 0x07;
  3025. switch(digitalPinToTimer(pin))
  3026. {
  3027. #if defined(TCCR0A)
  3028. case TIMER0A:
  3029. case TIMER0B:
  3030. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  3031. // TCCR0B |= val;
  3032. break;
  3033. #endif
  3034. #if defined(TCCR1A)
  3035. case TIMER1A:
  3036. case TIMER1B:
  3037. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  3038. // TCCR1B |= val;
  3039. break;
  3040. #endif
  3041. #if defined(TCCR2)
  3042. case TIMER2:
  3043. case TIMER2:
  3044. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  3045. TCCR2 |= val;
  3046. break;
  3047. #endif
  3048. #if defined(TCCR2A)
  3049. case TIMER2A:
  3050. case TIMER2B:
  3051. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  3052. TCCR2B |= val;
  3053. break;
  3054. #endif
  3055. #if defined(TCCR3A)
  3056. case TIMER3A:
  3057. case TIMER3B:
  3058. case TIMER3C:
  3059. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  3060. TCCR3B |= val;
  3061. break;
  3062. #endif
  3063. #if defined(TCCR4A)
  3064. case TIMER4A:
  3065. case TIMER4B:
  3066. case TIMER4C:
  3067. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  3068. TCCR4B |= val;
  3069. break;
  3070. #endif
  3071. #if defined(TCCR5A)
  3072. case TIMER5A:
  3073. case TIMER5B:
  3074. case TIMER5C:
  3075. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  3076. TCCR5B |= val;
  3077. break;
  3078. #endif
  3079. }
  3080. }
  3081. #endif //FAST_PWM_FAN
  3082. bool setTargetedHotend(int code){
  3083. tmp_extruder = active_extruder;
  3084. if(code_seen('T')) {
  3085. tmp_extruder = code_value();
  3086. if(tmp_extruder >= EXTRUDERS) {
  3087. SERIAL_ECHO_START;
  3088. switch(code){
  3089. case 104:
  3090. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  3091. break;
  3092. case 105:
  3093. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  3094. break;
  3095. case 109:
  3096. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  3097. break;
  3098. case 218:
  3099. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  3100. break;
  3101. }
  3102. SERIAL_ECHOLN(tmp_extruder);
  3103. return true;
  3104. }
  3105. }
  3106. return false;
  3107. }