My Marlin configs for Fabrikator Mini and CTC i3 Pro B
您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

stepper.cpp 37KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275
  1. /*
  2. stepper.c - stepper motor driver: executes motion plans using stepper motors
  3. Part of Grbl
  4. Copyright (c) 2009-2011 Simen Svale Skogsrud
  5. Grbl is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. Grbl is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
  17. and Philipp Tiefenbacher. */
  18. #include "Marlin.h"
  19. #include "stepper.h"
  20. #include "planner.h"
  21. #include "temperature.h"
  22. #include "ultralcd.h"
  23. #include "language.h"
  24. #include "cardreader.h"
  25. #include "speed_lookuptable.h"
  26. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  27. #include <SPI.h>
  28. #endif
  29. //===========================================================================
  30. //=============================public variables ============================
  31. //===========================================================================
  32. block_t *current_block; // A pointer to the block currently being traced
  33. //===========================================================================
  34. //=============================private variables ============================
  35. //===========================================================================
  36. //static makes it inpossible to be called from outside of this file by extern.!
  37. // Variables used by The Stepper Driver Interrupt
  38. static unsigned char out_bits; // The next stepping-bits to be output
  39. static long counter_x, // Counter variables for the bresenham line tracer
  40. counter_y,
  41. counter_z,
  42. counter_e;
  43. volatile static unsigned long step_events_completed; // The number of step events executed in the current block
  44. #ifdef ADVANCE
  45. static long advance_rate, advance, final_advance = 0;
  46. static long old_advance = 0;
  47. static long e_steps[3];
  48. #endif
  49. static long acceleration_time, deceleration_time;
  50. //static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
  51. static unsigned short acc_step_rate; // needed for deccelaration start point
  52. static char step_loops;
  53. static unsigned short OCR1A_nominal;
  54. static unsigned short step_loops_nominal;
  55. volatile long endstops_trigsteps[3]={0,0,0};
  56. volatile long endstops_stepsTotal,endstops_stepsDone;
  57. static volatile bool endstop_x_hit=false;
  58. static volatile bool endstop_y_hit=false;
  59. static volatile bool endstop_z_hit=false;
  60. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  61. bool abort_on_endstop_hit = false;
  62. #endif
  63. static bool old_x_min_endstop=false;
  64. static bool old_x_max_endstop=false;
  65. static bool old_y_min_endstop=false;
  66. static bool old_y_max_endstop=false;
  67. static bool old_z_min_endstop=false;
  68. static bool old_z_max_endstop=false;
  69. static bool check_endstops = true;
  70. volatile long count_position[NUM_AXIS] = { 0, 0, 0, 0};
  71. volatile signed char count_direction[NUM_AXIS] = { 1, 1, 1, 1};
  72. //===========================================================================
  73. //=============================functions ============================
  74. //===========================================================================
  75. #define CHECK_ENDSTOPS if(check_endstops)
  76. // intRes = intIn1 * intIn2 >> 16
  77. // uses:
  78. // r26 to store 0
  79. // r27 to store the byte 1 of the 24 bit result
  80. #define MultiU16X8toH16(intRes, charIn1, intIn2) \
  81. asm volatile ( \
  82. "clr r26 \n\t" \
  83. "mul %A1, %B2 \n\t" \
  84. "movw %A0, r0 \n\t" \
  85. "mul %A1, %A2 \n\t" \
  86. "add %A0, r1 \n\t" \
  87. "adc %B0, r26 \n\t" \
  88. "lsr r0 \n\t" \
  89. "adc %A0, r26 \n\t" \
  90. "adc %B0, r26 \n\t" \
  91. "clr r1 \n\t" \
  92. : \
  93. "=&r" (intRes) \
  94. : \
  95. "d" (charIn1), \
  96. "d" (intIn2) \
  97. : \
  98. "r26" \
  99. )
  100. // intRes = longIn1 * longIn2 >> 24
  101. // uses:
  102. // r26 to store 0
  103. // r27 to store the byte 1 of the 48bit result
  104. #define MultiU24X24toH16(intRes, longIn1, longIn2) \
  105. asm volatile ( \
  106. "clr r26 \n\t" \
  107. "mul %A1, %B2 \n\t" \
  108. "mov r27, r1 \n\t" \
  109. "mul %B1, %C2 \n\t" \
  110. "movw %A0, r0 \n\t" \
  111. "mul %C1, %C2 \n\t" \
  112. "add %B0, r0 \n\t" \
  113. "mul %C1, %B2 \n\t" \
  114. "add %A0, r0 \n\t" \
  115. "adc %B0, r1 \n\t" \
  116. "mul %A1, %C2 \n\t" \
  117. "add r27, r0 \n\t" \
  118. "adc %A0, r1 \n\t" \
  119. "adc %B0, r26 \n\t" \
  120. "mul %B1, %B2 \n\t" \
  121. "add r27, r0 \n\t" \
  122. "adc %A0, r1 \n\t" \
  123. "adc %B0, r26 \n\t" \
  124. "mul %C1, %A2 \n\t" \
  125. "add r27, r0 \n\t" \
  126. "adc %A0, r1 \n\t" \
  127. "adc %B0, r26 \n\t" \
  128. "mul %B1, %A2 \n\t" \
  129. "add r27, r1 \n\t" \
  130. "adc %A0, r26 \n\t" \
  131. "adc %B0, r26 \n\t" \
  132. "lsr r27 \n\t" \
  133. "adc %A0, r26 \n\t" \
  134. "adc %B0, r26 \n\t" \
  135. "clr r1 \n\t" \
  136. : \
  137. "=&r" (intRes) \
  138. : \
  139. "d" (longIn1), \
  140. "d" (longIn2) \
  141. : \
  142. "r26" , "r27" \
  143. )
  144. // Some useful constants
  145. #define ENABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 |= (1<<OCIE1A)
  146. #define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~(1<<OCIE1A)
  147. void checkHitEndstops()
  148. {
  149. if( endstop_x_hit || endstop_y_hit || endstop_z_hit) {
  150. SERIAL_ECHO_START;
  151. SERIAL_ECHOPGM(MSG_ENDSTOPS_HIT);
  152. if(endstop_x_hit) {
  153. SERIAL_ECHOPAIR(" X:",(float)endstops_trigsteps[X_AXIS]/axis_steps_per_unit[X_AXIS]);
  154. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "X");
  155. }
  156. if(endstop_y_hit) {
  157. SERIAL_ECHOPAIR(" Y:",(float)endstops_trigsteps[Y_AXIS]/axis_steps_per_unit[Y_AXIS]);
  158. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Y");
  159. }
  160. if(endstop_z_hit) {
  161. SERIAL_ECHOPAIR(" Z:",(float)endstops_trigsteps[Z_AXIS]/axis_steps_per_unit[Z_AXIS]);
  162. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Z");
  163. }
  164. SERIAL_ECHOLN("");
  165. endstop_x_hit=false;
  166. endstop_y_hit=false;
  167. endstop_z_hit=false;
  168. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  169. if (abort_on_endstop_hit)
  170. {
  171. card.sdprinting = false;
  172. card.closefile();
  173. quickStop();
  174. setTargetHotend0(0);
  175. setTargetHotend1(0);
  176. setTargetHotend2(0);
  177. }
  178. #endif
  179. }
  180. }
  181. void endstops_hit_on_purpose()
  182. {
  183. endstop_x_hit=false;
  184. endstop_y_hit=false;
  185. endstop_z_hit=false;
  186. }
  187. void enable_endstops(bool check)
  188. {
  189. check_endstops = check;
  190. }
  191. // __________________________
  192. // /| |\ _________________ ^
  193. // / | | \ /| |\ |
  194. // / | | \ / | | \ s
  195. // / | | | | | \ p
  196. // / | | | | | \ e
  197. // +-----+------------------------+---+--+---------------+----+ e
  198. // | BLOCK 1 | BLOCK 2 | d
  199. //
  200. // time ----->
  201. //
  202. // The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
  203. // first block->accelerate_until step_events_completed, then keeps going at constant speed until
  204. // step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
  205. // The slope of acceleration is calculated with the leib ramp alghorithm.
  206. void st_wake_up() {
  207. // TCNT1 = 0;
  208. ENABLE_STEPPER_DRIVER_INTERRUPT();
  209. }
  210. void step_wait(){
  211. for(int8_t i=0; i < 6; i++){
  212. }
  213. }
  214. FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {
  215. unsigned short timer;
  216. if(step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY;
  217. if(step_rate > 20000) { // If steprate > 20kHz >> step 4 times
  218. step_rate = (step_rate >> 2)&0x3fff;
  219. step_loops = 4;
  220. }
  221. else if(step_rate > 10000) { // If steprate > 10kHz >> step 2 times
  222. step_rate = (step_rate >> 1)&0x7fff;
  223. step_loops = 2;
  224. }
  225. else {
  226. step_loops = 1;
  227. }
  228. if(step_rate < (F_CPU/500000)) step_rate = (F_CPU/500000);
  229. step_rate -= (F_CPU/500000); // Correct for minimal speed
  230. if(step_rate >= (8*256)){ // higher step rate
  231. unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0];
  232. unsigned char tmp_step_rate = (step_rate & 0x00ff);
  233. unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2);
  234. MultiU16X8toH16(timer, tmp_step_rate, gain);
  235. timer = (unsigned short)pgm_read_word_near(table_address) - timer;
  236. }
  237. else { // lower step rates
  238. unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
  239. table_address += ((step_rate)>>1) & 0xfffc;
  240. timer = (unsigned short)pgm_read_word_near(table_address);
  241. timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3);
  242. }
  243. if(timer < 100) { timer = 100; MYSERIAL.print(MSG_STEPPER_TOO_HIGH); MYSERIAL.println(step_rate); }//(20kHz this should never happen)
  244. return timer;
  245. }
  246. // Initializes the trapezoid generator from the current block. Called whenever a new
  247. // block begins.
  248. FORCE_INLINE void trapezoid_generator_reset() {
  249. #ifdef ADVANCE
  250. advance = current_block->initial_advance;
  251. final_advance = current_block->final_advance;
  252. // Do E steps + advance steps
  253. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  254. old_advance = advance >>8;
  255. #endif
  256. deceleration_time = 0;
  257. // step_rate to timer interval
  258. OCR1A_nominal = calc_timer(current_block->nominal_rate);
  259. // make a note of the number of step loops required at nominal speed
  260. step_loops_nominal = step_loops;
  261. acc_step_rate = current_block->initial_rate;
  262. acceleration_time = calc_timer(acc_step_rate);
  263. OCR1A = acceleration_time;
  264. // SERIAL_ECHO_START;
  265. // SERIAL_ECHOPGM("advance :");
  266. // SERIAL_ECHO(current_block->advance/256.0);
  267. // SERIAL_ECHOPGM("advance rate :");
  268. // SERIAL_ECHO(current_block->advance_rate/256.0);
  269. // SERIAL_ECHOPGM("initial advance :");
  270. // SERIAL_ECHO(current_block->initial_advance/256.0);
  271. // SERIAL_ECHOPGM("final advance :");
  272. // SERIAL_ECHOLN(current_block->final_advance/256.0);
  273. }
  274. // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
  275. // It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
  276. ISR(TIMER1_COMPA_vect)
  277. {
  278. // If there is no current block, attempt to pop one from the buffer
  279. if (current_block == NULL) {
  280. // Anything in the buffer?
  281. current_block = plan_get_current_block();
  282. if (current_block != NULL) {
  283. current_block->busy = true;
  284. trapezoid_generator_reset();
  285. counter_x = -(current_block->step_event_count >> 1);
  286. counter_y = counter_x;
  287. counter_z = counter_x;
  288. counter_e = counter_x;
  289. step_events_completed = 0;
  290. #ifdef Z_LATE_ENABLE
  291. if(current_block->steps_z > 0) {
  292. enable_z();
  293. OCR1A = 2000; //1ms wait
  294. return;
  295. }
  296. #endif
  297. // #ifdef ADVANCE
  298. // e_steps[current_block->active_extruder] = 0;
  299. // #endif
  300. }
  301. else {
  302. OCR1A=2000; // 1kHz.
  303. }
  304. }
  305. if (current_block != NULL) {
  306. // Set directions TO DO This should be done once during init of trapezoid. Endstops -> interrupt
  307. out_bits = current_block->direction_bits;
  308. // Set the direction bits (X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY)
  309. if((out_bits & (1<<X_AXIS))!=0){
  310. #ifdef DUAL_X_CARRIAGE
  311. if (extruder_duplication_enabled){
  312. WRITE(X_DIR_PIN, INVERT_X_DIR);
  313. WRITE(X2_DIR_PIN, INVERT_X_DIR);
  314. }
  315. else{
  316. if (current_block->active_extruder != 0)
  317. WRITE(X2_DIR_PIN, INVERT_X_DIR);
  318. else
  319. WRITE(X_DIR_PIN, INVERT_X_DIR);
  320. }
  321. #else
  322. WRITE(X_DIR_PIN, INVERT_X_DIR);
  323. #endif
  324. count_direction[X_AXIS]=-1;
  325. }
  326. else{
  327. #ifdef DUAL_X_CARRIAGE
  328. if (extruder_duplication_enabled){
  329. WRITE(X_DIR_PIN, !INVERT_X_DIR);
  330. WRITE(X2_DIR_PIN, !INVERT_X_DIR);
  331. }
  332. else{
  333. if (current_block->active_extruder != 0)
  334. WRITE(X2_DIR_PIN, !INVERT_X_DIR);
  335. else
  336. WRITE(X_DIR_PIN, !INVERT_X_DIR);
  337. }
  338. #else
  339. WRITE(X_DIR_PIN, !INVERT_X_DIR);
  340. #endif
  341. count_direction[X_AXIS]=1;
  342. }
  343. if((out_bits & (1<<Y_AXIS))!=0){
  344. WRITE(Y_DIR_PIN, INVERT_Y_DIR);
  345. #ifdef Y_DUAL_STEPPER_DRIVERS
  346. WRITE(Y2_DIR_PIN, !(INVERT_Y_DIR == INVERT_Y2_VS_Y_DIR));
  347. #endif
  348. count_direction[Y_AXIS]=-1;
  349. }
  350. else{
  351. WRITE(Y_DIR_PIN, !INVERT_Y_DIR);
  352. #ifdef Y_DUAL_STEPPER_DRIVERS
  353. WRITE(Y2_DIR_PIN, (INVERT_Y_DIR == INVERT_Y2_VS_Y_DIR));
  354. #endif
  355. count_direction[Y_AXIS]=1;
  356. }
  357. // Set direction en check limit switches
  358. #ifndef COREXY
  359. if ((out_bits & (1<<X_AXIS)) != 0) { // stepping along -X axis
  360. #else
  361. if ((((out_bits & (1<<X_AXIS)) != 0)&&(out_bits & (1<<Y_AXIS)) != 0)) { //-X occurs for -A and -B
  362. #endif
  363. CHECK_ENDSTOPS
  364. {
  365. #ifdef DUAL_X_CARRIAGE
  366. // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
  367. if ((current_block->active_extruder == 0 && X_HOME_DIR == -1)
  368. || (current_block->active_extruder != 0 && X2_HOME_DIR == -1))
  369. #endif
  370. {
  371. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  372. bool x_min_endstop=(READ(X_MIN_PIN) != X_MIN_ENDSTOP_INVERTING);
  373. if(x_min_endstop && old_x_min_endstop && (current_block->steps_x > 0)) {
  374. endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
  375. endstop_x_hit=true;
  376. step_events_completed = current_block->step_event_count;
  377. }
  378. old_x_min_endstop = x_min_endstop;
  379. #endif
  380. }
  381. }
  382. }
  383. else { // +direction
  384. CHECK_ENDSTOPS
  385. {
  386. #ifdef DUAL_X_CARRIAGE
  387. // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
  388. if ((current_block->active_extruder == 0 && X_HOME_DIR == 1)
  389. || (current_block->active_extruder != 0 && X2_HOME_DIR == 1))
  390. #endif
  391. {
  392. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  393. bool x_max_endstop=(READ(X_MAX_PIN) != X_MAX_ENDSTOP_INVERTING);
  394. if(x_max_endstop && old_x_max_endstop && (current_block->steps_x > 0)){
  395. endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
  396. endstop_x_hit=true;
  397. step_events_completed = current_block->step_event_count;
  398. }
  399. old_x_max_endstop = x_max_endstop;
  400. #endif
  401. }
  402. }
  403. }
  404. #ifndef COREXY
  405. if ((out_bits & (1<<Y_AXIS)) != 0) { // -direction
  406. #else
  407. if ((((out_bits & (1<<X_AXIS)) != 0)&&(out_bits & (1<<Y_AXIS)) == 0)) { // -Y occurs for -A and +B
  408. #endif
  409. CHECK_ENDSTOPS
  410. {
  411. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  412. bool y_min_endstop=(READ(Y_MIN_PIN) != Y_MIN_ENDSTOP_INVERTING);
  413. if(y_min_endstop && old_y_min_endstop && (current_block->steps_y > 0)) {
  414. endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
  415. endstop_y_hit=true;
  416. step_events_completed = current_block->step_event_count;
  417. }
  418. old_y_min_endstop = y_min_endstop;
  419. #endif
  420. }
  421. }
  422. else { // +direction
  423. CHECK_ENDSTOPS
  424. {
  425. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  426. bool y_max_endstop=(READ(Y_MAX_PIN) != Y_MAX_ENDSTOP_INVERTING);
  427. if(y_max_endstop && old_y_max_endstop && (current_block->steps_y > 0)){
  428. endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
  429. endstop_y_hit=true;
  430. step_events_completed = current_block->step_event_count;
  431. }
  432. old_y_max_endstop = y_max_endstop;
  433. #endif
  434. }
  435. }
  436. if ((out_bits & (1<<Z_AXIS)) != 0) { // -direction
  437. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  438. #ifdef Z_DUAL_STEPPER_DRIVERS
  439. WRITE(Z2_DIR_PIN,INVERT_Z_DIR);
  440. #endif
  441. count_direction[Z_AXIS]=-1;
  442. CHECK_ENDSTOPS
  443. {
  444. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  445. bool z_min_endstop=(READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  446. if(z_min_endstop && old_z_min_endstop && (current_block->steps_z > 0)) {
  447. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  448. endstop_z_hit=true;
  449. step_events_completed = current_block->step_event_count;
  450. }
  451. old_z_min_endstop = z_min_endstop;
  452. #endif
  453. }
  454. }
  455. else { // +direction
  456. WRITE(Z_DIR_PIN,!INVERT_Z_DIR);
  457. #ifdef Z_DUAL_STEPPER_DRIVERS
  458. WRITE(Z2_DIR_PIN,!INVERT_Z_DIR);
  459. #endif
  460. count_direction[Z_AXIS]=1;
  461. CHECK_ENDSTOPS
  462. {
  463. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  464. bool z_max_endstop=(READ(Z_MAX_PIN) != Z_MAX_ENDSTOP_INVERTING);
  465. if(z_max_endstop && old_z_max_endstop && (current_block->steps_z > 0)) {
  466. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  467. endstop_z_hit=true;
  468. step_events_completed = current_block->step_event_count;
  469. }
  470. old_z_max_endstop = z_max_endstop;
  471. #endif
  472. }
  473. }
  474. #ifndef ADVANCE
  475. if ((out_bits & (1<<E_AXIS)) != 0) { // -direction
  476. REV_E_DIR();
  477. count_direction[E_AXIS]=-1;
  478. }
  479. else { // +direction
  480. NORM_E_DIR();
  481. count_direction[E_AXIS]=1;
  482. }
  483. #endif //!ADVANCE
  484. for(int8_t i=0; i < step_loops; i++) { // Take multiple steps per interrupt (For high speed moves)
  485. #ifndef AT90USB
  486. MSerial.checkRx(); // Check for serial chars.
  487. #endif
  488. #ifdef ADVANCE
  489. counter_e += current_block->steps_e;
  490. if (counter_e > 0) {
  491. counter_e -= current_block->step_event_count;
  492. if ((out_bits & (1<<E_AXIS)) != 0) { // - direction
  493. e_steps[current_block->active_extruder]--;
  494. }
  495. else {
  496. e_steps[current_block->active_extruder]++;
  497. }
  498. }
  499. #endif //ADVANCE
  500. counter_x += current_block->steps_x;
  501. if (counter_x > 0) {
  502. #ifdef DUAL_X_CARRIAGE
  503. if (extruder_duplication_enabled){
  504. WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
  505. WRITE(X2_STEP_PIN, !INVERT_X_STEP_PIN);
  506. }
  507. else {
  508. if (current_block->active_extruder != 0)
  509. WRITE(X2_STEP_PIN, !INVERT_X_STEP_PIN);
  510. else
  511. WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
  512. }
  513. #else
  514. WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
  515. #endif
  516. counter_x -= current_block->step_event_count;
  517. count_position[X_AXIS]+=count_direction[X_AXIS];
  518. #ifdef DUAL_X_CARRIAGE
  519. if (extruder_duplication_enabled){
  520. WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
  521. WRITE(X2_STEP_PIN, INVERT_X_STEP_PIN);
  522. }
  523. else {
  524. if (current_block->active_extruder != 0)
  525. WRITE(X2_STEP_PIN, INVERT_X_STEP_PIN);
  526. else
  527. WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
  528. }
  529. #else
  530. WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
  531. #endif
  532. }
  533. counter_y += current_block->steps_y;
  534. if (counter_y > 0) {
  535. WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
  536. #ifdef Y_DUAL_STEPPER_DRIVERS
  537. WRITE(Y2_STEP_PIN, !INVERT_Y_STEP_PIN);
  538. #endif
  539. counter_y -= current_block->step_event_count;
  540. count_position[Y_AXIS]+=count_direction[Y_AXIS];
  541. WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN);
  542. #ifdef Y_DUAL_STEPPER_DRIVERS
  543. WRITE(Y2_STEP_PIN, INVERT_Y_STEP_PIN);
  544. #endif
  545. }
  546. counter_z += current_block->steps_z;
  547. if (counter_z > 0) {
  548. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  549. #ifdef Z_DUAL_STEPPER_DRIVERS
  550. WRITE(Z2_STEP_PIN, !INVERT_Z_STEP_PIN);
  551. #endif
  552. counter_z -= current_block->step_event_count;
  553. count_position[Z_AXIS]+=count_direction[Z_AXIS];
  554. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  555. #ifdef Z_DUAL_STEPPER_DRIVERS
  556. WRITE(Z2_STEP_PIN, INVERT_Z_STEP_PIN);
  557. #endif
  558. }
  559. #ifndef ADVANCE
  560. counter_e += current_block->steps_e;
  561. if (counter_e > 0) {
  562. WRITE_E_STEP(!INVERT_E_STEP_PIN);
  563. counter_e -= current_block->step_event_count;
  564. count_position[E_AXIS]+=count_direction[E_AXIS];
  565. WRITE_E_STEP(INVERT_E_STEP_PIN);
  566. }
  567. #endif //!ADVANCE
  568. step_events_completed += 1;
  569. if(step_events_completed >= current_block->step_event_count) break;
  570. }
  571. // Calculare new timer value
  572. unsigned short timer;
  573. unsigned short step_rate;
  574. if (step_events_completed <= (unsigned long int)current_block->accelerate_until) {
  575. MultiU24X24toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
  576. acc_step_rate += current_block->initial_rate;
  577. // upper limit
  578. if(acc_step_rate > current_block->nominal_rate)
  579. acc_step_rate = current_block->nominal_rate;
  580. // step_rate to timer interval
  581. timer = calc_timer(acc_step_rate);
  582. OCR1A = timer;
  583. acceleration_time += timer;
  584. #ifdef ADVANCE
  585. for(int8_t i=0; i < step_loops; i++) {
  586. advance += advance_rate;
  587. }
  588. //if(advance > current_block->advance) advance = current_block->advance;
  589. // Do E steps + advance steps
  590. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  591. old_advance = advance >>8;
  592. #endif
  593. }
  594. else if (step_events_completed > (unsigned long int)current_block->decelerate_after) {
  595. MultiU24X24toH16(step_rate, deceleration_time, current_block->acceleration_rate);
  596. if(step_rate > acc_step_rate) { // Check step_rate stays positive
  597. step_rate = current_block->final_rate;
  598. }
  599. else {
  600. step_rate = acc_step_rate - step_rate; // Decelerate from aceleration end point.
  601. }
  602. // lower limit
  603. if(step_rate < current_block->final_rate)
  604. step_rate = current_block->final_rate;
  605. // step_rate to timer interval
  606. timer = calc_timer(step_rate);
  607. OCR1A = timer;
  608. deceleration_time += timer;
  609. #ifdef ADVANCE
  610. for(int8_t i=0; i < step_loops; i++) {
  611. advance -= advance_rate;
  612. }
  613. if(advance < final_advance) advance = final_advance;
  614. // Do E steps + advance steps
  615. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  616. old_advance = advance >>8;
  617. #endif //ADVANCE
  618. }
  619. else {
  620. OCR1A = OCR1A_nominal;
  621. // ensure we're running at the correct step rate, even if we just came off an acceleration
  622. step_loops = step_loops_nominal;
  623. }
  624. // If current block is finished, reset pointer
  625. if (step_events_completed >= current_block->step_event_count) {
  626. current_block = NULL;
  627. plan_discard_current_block();
  628. }
  629. }
  630. }
  631. #ifdef ADVANCE
  632. unsigned char old_OCR0A;
  633. // Timer interrupt for E. e_steps is set in the main routine;
  634. // Timer 0 is shared with millies
  635. ISR(TIMER0_COMPA_vect)
  636. {
  637. old_OCR0A += 52; // ~10kHz interrupt (250000 / 26 = 9615kHz)
  638. OCR0A = old_OCR0A;
  639. // Set E direction (Depends on E direction + advance)
  640. for(unsigned char i=0; i<4;i++) {
  641. if (e_steps[0] != 0) {
  642. WRITE(E0_STEP_PIN, INVERT_E_STEP_PIN);
  643. if (e_steps[0] < 0) {
  644. WRITE(E0_DIR_PIN, INVERT_E0_DIR);
  645. e_steps[0]++;
  646. WRITE(E0_STEP_PIN, !INVERT_E_STEP_PIN);
  647. }
  648. else if (e_steps[0] > 0) {
  649. WRITE(E0_DIR_PIN, !INVERT_E0_DIR);
  650. e_steps[0]--;
  651. WRITE(E0_STEP_PIN, !INVERT_E_STEP_PIN);
  652. }
  653. }
  654. #if EXTRUDERS > 1
  655. if (e_steps[1] != 0) {
  656. WRITE(E1_STEP_PIN, INVERT_E_STEP_PIN);
  657. if (e_steps[1] < 0) {
  658. WRITE(E1_DIR_PIN, INVERT_E1_DIR);
  659. e_steps[1]++;
  660. WRITE(E1_STEP_PIN, !INVERT_E_STEP_PIN);
  661. }
  662. else if (e_steps[1] > 0) {
  663. WRITE(E1_DIR_PIN, !INVERT_E1_DIR);
  664. e_steps[1]--;
  665. WRITE(E1_STEP_PIN, !INVERT_E_STEP_PIN);
  666. }
  667. }
  668. #endif
  669. #if EXTRUDERS > 2
  670. if (e_steps[2] != 0) {
  671. WRITE(E2_STEP_PIN, INVERT_E_STEP_PIN);
  672. if (e_steps[2] < 0) {
  673. WRITE(E2_DIR_PIN, INVERT_E2_DIR);
  674. e_steps[2]++;
  675. WRITE(E2_STEP_PIN, !INVERT_E_STEP_PIN);
  676. }
  677. else if (e_steps[2] > 0) {
  678. WRITE(E2_DIR_PIN, !INVERT_E2_DIR);
  679. e_steps[2]--;
  680. WRITE(E2_STEP_PIN, !INVERT_E_STEP_PIN);
  681. }
  682. }
  683. #endif
  684. }
  685. }
  686. #endif // ADVANCE
  687. void st_init()
  688. {
  689. digipot_init(); //Initialize Digipot Motor Current
  690. microstep_init(); //Initialize Microstepping Pins
  691. //Initialize Dir Pins
  692. #if defined(X_DIR_PIN) && X_DIR_PIN > -1
  693. SET_OUTPUT(X_DIR_PIN);
  694. #endif
  695. #if defined(X2_DIR_PIN) && X2_DIR_PIN > -1
  696. SET_OUTPUT(X2_DIR_PIN);
  697. #endif
  698. #if defined(Y_DIR_PIN) && Y_DIR_PIN > -1
  699. SET_OUTPUT(Y_DIR_PIN);
  700. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_DIR_PIN) && (Y2_DIR_PIN > -1)
  701. SET_OUTPUT(Y2_DIR_PIN);
  702. #endif
  703. #endif
  704. #if defined(Z_DIR_PIN) && Z_DIR_PIN > -1
  705. SET_OUTPUT(Z_DIR_PIN);
  706. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_DIR_PIN) && (Z2_DIR_PIN > -1)
  707. SET_OUTPUT(Z2_DIR_PIN);
  708. #endif
  709. #endif
  710. #if defined(E0_DIR_PIN) && E0_DIR_PIN > -1
  711. SET_OUTPUT(E0_DIR_PIN);
  712. #endif
  713. #if defined(E1_DIR_PIN) && (E1_DIR_PIN > -1)
  714. SET_OUTPUT(E1_DIR_PIN);
  715. #endif
  716. #if defined(E2_DIR_PIN) && (E2_DIR_PIN > -1)
  717. SET_OUTPUT(E2_DIR_PIN);
  718. #endif
  719. //Initialize Enable Pins - steppers default to disabled.
  720. #if defined(X_ENABLE_PIN) && X_ENABLE_PIN > -1
  721. SET_OUTPUT(X_ENABLE_PIN);
  722. if(!X_ENABLE_ON) WRITE(X_ENABLE_PIN,HIGH);
  723. #endif
  724. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  725. SET_OUTPUT(X2_ENABLE_PIN);
  726. if(!X_ENABLE_ON) WRITE(X2_ENABLE_PIN,HIGH);
  727. #endif
  728. #if defined(Y_ENABLE_PIN) && Y_ENABLE_PIN > -1
  729. SET_OUTPUT(Y_ENABLE_PIN);
  730. if(!Y_ENABLE_ON) WRITE(Y_ENABLE_PIN,HIGH);
  731. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_ENABLE_PIN) && (Y2_ENABLE_PIN > -1)
  732. SET_OUTPUT(Y2_ENABLE_PIN);
  733. if(!Y_ENABLE_ON) WRITE(Y2_ENABLE_PIN,HIGH);
  734. #endif
  735. #endif
  736. #if defined(Z_ENABLE_PIN) && Z_ENABLE_PIN > -1
  737. SET_OUTPUT(Z_ENABLE_PIN);
  738. if(!Z_ENABLE_ON) WRITE(Z_ENABLE_PIN,HIGH);
  739. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_ENABLE_PIN) && (Z2_ENABLE_PIN > -1)
  740. SET_OUTPUT(Z2_ENABLE_PIN);
  741. if(!Z_ENABLE_ON) WRITE(Z2_ENABLE_PIN,HIGH);
  742. #endif
  743. #endif
  744. #if defined(E0_ENABLE_PIN) && (E0_ENABLE_PIN > -1)
  745. SET_OUTPUT(E0_ENABLE_PIN);
  746. if(!E_ENABLE_ON) WRITE(E0_ENABLE_PIN,HIGH);
  747. #endif
  748. #if defined(E1_ENABLE_PIN) && (E1_ENABLE_PIN > -1)
  749. SET_OUTPUT(E1_ENABLE_PIN);
  750. if(!E_ENABLE_ON) WRITE(E1_ENABLE_PIN,HIGH);
  751. #endif
  752. #if defined(E2_ENABLE_PIN) && (E2_ENABLE_PIN > -1)
  753. SET_OUTPUT(E2_ENABLE_PIN);
  754. if(!E_ENABLE_ON) WRITE(E2_ENABLE_PIN,HIGH);
  755. #endif
  756. //endstops and pullups
  757. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  758. SET_INPUT(X_MIN_PIN);
  759. #ifdef ENDSTOPPULLUP_XMIN
  760. WRITE(X_MIN_PIN,HIGH);
  761. #endif
  762. #endif
  763. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  764. SET_INPUT(Y_MIN_PIN);
  765. #ifdef ENDSTOPPULLUP_YMIN
  766. WRITE(Y_MIN_PIN,HIGH);
  767. #endif
  768. #endif
  769. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  770. SET_INPUT(Z_MIN_PIN);
  771. #ifdef ENDSTOPPULLUP_ZMIN
  772. WRITE(Z_MIN_PIN,HIGH);
  773. #endif
  774. #endif
  775. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  776. SET_INPUT(X_MAX_PIN);
  777. #ifdef ENDSTOPPULLUP_XMAX
  778. WRITE(X_MAX_PIN,HIGH);
  779. #endif
  780. #endif
  781. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  782. SET_INPUT(Y_MAX_PIN);
  783. #ifdef ENDSTOPPULLUP_YMAX
  784. WRITE(Y_MAX_PIN,HIGH);
  785. #endif
  786. #endif
  787. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  788. SET_INPUT(Z_MAX_PIN);
  789. #ifdef ENDSTOPPULLUP_ZMAX
  790. WRITE(Z_MAX_PIN,HIGH);
  791. #endif
  792. #endif
  793. //Initialize Step Pins
  794. #if defined(X_STEP_PIN) && (X_STEP_PIN > -1)
  795. SET_OUTPUT(X_STEP_PIN);
  796. WRITE(X_STEP_PIN,INVERT_X_STEP_PIN);
  797. disable_x();
  798. #endif
  799. #if defined(X2_STEP_PIN) && (X2_STEP_PIN > -1)
  800. SET_OUTPUT(X2_STEP_PIN);
  801. WRITE(X2_STEP_PIN,INVERT_X_STEP_PIN);
  802. disable_x();
  803. #endif
  804. #if defined(Y_STEP_PIN) && (Y_STEP_PIN > -1)
  805. SET_OUTPUT(Y_STEP_PIN);
  806. WRITE(Y_STEP_PIN,INVERT_Y_STEP_PIN);
  807. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_STEP_PIN) && (Y2_STEP_PIN > -1)
  808. SET_OUTPUT(Y2_STEP_PIN);
  809. WRITE(Y2_STEP_PIN,INVERT_Y_STEP_PIN);
  810. #endif
  811. disable_y();
  812. #endif
  813. #if defined(Z_STEP_PIN) && (Z_STEP_PIN > -1)
  814. SET_OUTPUT(Z_STEP_PIN);
  815. WRITE(Z_STEP_PIN,INVERT_Z_STEP_PIN);
  816. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_STEP_PIN) && (Z2_STEP_PIN > -1)
  817. SET_OUTPUT(Z2_STEP_PIN);
  818. WRITE(Z2_STEP_PIN,INVERT_Z_STEP_PIN);
  819. #endif
  820. disable_z();
  821. #endif
  822. #if defined(E0_STEP_PIN) && (E0_STEP_PIN > -1)
  823. SET_OUTPUT(E0_STEP_PIN);
  824. WRITE(E0_STEP_PIN,INVERT_E_STEP_PIN);
  825. disable_e0();
  826. #endif
  827. #if defined(E1_STEP_PIN) && (E1_STEP_PIN > -1)
  828. SET_OUTPUT(E1_STEP_PIN);
  829. WRITE(E1_STEP_PIN,INVERT_E_STEP_PIN);
  830. disable_e1();
  831. #endif
  832. #if defined(E2_STEP_PIN) && (E2_STEP_PIN > -1)
  833. SET_OUTPUT(E2_STEP_PIN);
  834. WRITE(E2_STEP_PIN,INVERT_E_STEP_PIN);
  835. disable_e2();
  836. #endif
  837. // waveform generation = 0100 = CTC
  838. TCCR1B &= ~(1<<WGM13);
  839. TCCR1B |= (1<<WGM12);
  840. TCCR1A &= ~(1<<WGM11);
  841. TCCR1A &= ~(1<<WGM10);
  842. // output mode = 00 (disconnected)
  843. TCCR1A &= ~(3<<COM1A0);
  844. TCCR1A &= ~(3<<COM1B0);
  845. // Set the timer pre-scaler
  846. // Generally we use a divider of 8, resulting in a 2MHz timer
  847. // frequency on a 16MHz MCU. If you are going to change this, be
  848. // sure to regenerate speed_lookuptable.h with
  849. // create_speed_lookuptable.py
  850. TCCR1B = (TCCR1B & ~(0x07<<CS10)) | (2<<CS10);
  851. OCR1A = 0x4000;
  852. TCNT1 = 0;
  853. ENABLE_STEPPER_DRIVER_INTERRUPT();
  854. #ifdef ADVANCE
  855. #if defined(TCCR0A) && defined(WGM01)
  856. TCCR0A &= ~(1<<WGM01);
  857. TCCR0A &= ~(1<<WGM00);
  858. #endif
  859. e_steps[0] = 0;
  860. e_steps[1] = 0;
  861. e_steps[2] = 0;
  862. TIMSK0 |= (1<<OCIE0A);
  863. #endif //ADVANCE
  864. enable_endstops(true); // Start with endstops active. After homing they can be disabled
  865. sei();
  866. }
  867. // Block until all buffered steps are executed
  868. void st_synchronize()
  869. {
  870. while( blocks_queued()) {
  871. manage_heater();
  872. manage_inactivity();
  873. lcd_update();
  874. }
  875. }
  876. void st_set_position(const long &x, const long &y, const long &z, const long &e)
  877. {
  878. CRITICAL_SECTION_START;
  879. count_position[X_AXIS] = x;
  880. count_position[Y_AXIS] = y;
  881. count_position[Z_AXIS] = z;
  882. count_position[E_AXIS] = e;
  883. CRITICAL_SECTION_END;
  884. }
  885. void st_set_e_position(const long &e)
  886. {
  887. CRITICAL_SECTION_START;
  888. count_position[E_AXIS] = e;
  889. CRITICAL_SECTION_END;
  890. }
  891. long st_get_position(uint8_t axis)
  892. {
  893. long count_pos;
  894. CRITICAL_SECTION_START;
  895. count_pos = count_position[axis];
  896. CRITICAL_SECTION_END;
  897. return count_pos;
  898. }
  899. #ifdef ENABLE_AUTO_BED_LEVELING
  900. float st_get_position_mm(uint8_t axis)
  901. {
  902. float steper_position_in_steps = st_get_position(axis);
  903. return steper_position_in_steps / axis_steps_per_unit[axis];
  904. }
  905. #endif // ENABLE_AUTO_BED_LEVELING
  906. void finishAndDisableSteppers()
  907. {
  908. st_synchronize();
  909. disable_x();
  910. disable_y();
  911. disable_z();
  912. disable_e0();
  913. disable_e1();
  914. disable_e2();
  915. }
  916. void quickStop()
  917. {
  918. DISABLE_STEPPER_DRIVER_INTERRUPT();
  919. while(blocks_queued())
  920. plan_discard_current_block();
  921. current_block = NULL;
  922. ENABLE_STEPPER_DRIVER_INTERRUPT();
  923. }
  924. #ifdef BABYSTEPPING
  925. void babystep(const uint8_t axis,const bool direction)
  926. {
  927. //MUST ONLY BE CALLED BY A ISR, it depends on that no other ISR interrupts this
  928. //store initial pin states
  929. switch(axis)
  930. {
  931. case X_AXIS:
  932. {
  933. enable_x();
  934. uint8_t old_x_dir_pin= READ(X_DIR_PIN); //if dualzstepper, both point to same direction.
  935. //setup new step
  936. WRITE(X_DIR_PIN,(INVERT_X_DIR)^direction);
  937. #ifdef DUAL_X_CARRIAGE
  938. WRITE(X2_DIR_PIN,(INVERT_X_DIR)^direction);
  939. #endif
  940. //perform step
  941. WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
  942. #ifdef DUAL_X_CARRIAGE
  943. WRITE(X2_STEP_PIN, !INVERT_X_STEP_PIN);
  944. #endif
  945. {
  946. float x=1./float(axis+1)/float(axis+2); //wait a tiny bit
  947. }
  948. WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
  949. #ifdef DUAL_X_CARRIAGE
  950. WRITE(X2_STEP_PIN, INVERT_X_STEP_PIN);
  951. #endif
  952. //get old pin state back.
  953. WRITE(X_DIR_PIN,old_x_dir_pin);
  954. #ifdef DUAL_X_CARRIAGE
  955. WRITE(X2_DIR_PIN,old_x_dir_pin);
  956. #endif
  957. }
  958. break;
  959. case Y_AXIS:
  960. {
  961. enable_y();
  962. uint8_t old_y_dir_pin= READ(Y_DIR_PIN); //if dualzstepper, both point to same direction.
  963. //setup new step
  964. WRITE(Y_DIR_PIN,(INVERT_Y_DIR)^direction);
  965. #ifdef DUAL_Y_CARRIAGE
  966. WRITE(Y2_DIR_PIN,(INVERT_Y_DIR)^direction);
  967. #endif
  968. //perform step
  969. WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
  970. #ifdef DUAL_Y_CARRIAGE
  971. WRITE(Y2_STEP_PIN, !INVERT_Y_STEP_PIN);
  972. #endif
  973. {
  974. float x=1./float(axis+1)/float(axis+2); //wait a tiny bit
  975. }
  976. WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN);
  977. #ifdef DUAL_Y_CARRIAGE
  978. WRITE(Y2_STEP_PIN, INVERT_Y_STEP_PIN);
  979. #endif
  980. //get old pin state back.
  981. WRITE(Y_DIR_PIN,old_y_dir_pin);
  982. #ifdef DUAL_Y_CARRIAGE
  983. WRITE(Y2_DIR_PIN,old_y_dir_pin);
  984. #endif
  985. }
  986. break;
  987. #ifndef DELTA
  988. case Z_AXIS:
  989. {
  990. enable_z();
  991. uint8_t old_z_dir_pin= READ(Z_DIR_PIN); //if dualzstepper, both point to same direction.
  992. //setup new step
  993. WRITE(Z_DIR_PIN,(INVERT_Z_DIR)^direction^BABYSTEP_INVERT_Z);
  994. #ifdef Z_DUAL_STEPPER_DRIVERS
  995. WRITE(Z2_DIR_PIN,(INVERT_Z_DIR)^direction^BABYSTEP_INVERT_Z);
  996. #endif
  997. //perform step
  998. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  999. #ifdef Z_DUAL_STEPPER_DRIVERS
  1000. WRITE(Z2_STEP_PIN, !INVERT_Z_STEP_PIN);
  1001. #endif
  1002. //wait a tiny bit
  1003. {
  1004. float x=1./float(axis+1); //absolutely useless
  1005. }
  1006. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1007. #ifdef Z_DUAL_STEPPER_DRIVERS
  1008. WRITE(Z2_STEP_PIN, INVERT_Z_STEP_PIN);
  1009. #endif
  1010. //get old pin state back.
  1011. WRITE(Z_DIR_PIN,old_z_dir_pin);
  1012. #ifdef Z_DUAL_STEPPER_DRIVERS
  1013. WRITE(Z2_DIR_PIN,old_z_dir_pin);
  1014. #endif
  1015. }
  1016. break;
  1017. #else //DELTA
  1018. case Z_AXIS:
  1019. {
  1020. enable_x();
  1021. enable_y();
  1022. enable_z();
  1023. uint8_t old_x_dir_pin= READ(X_DIR_PIN);
  1024. uint8_t old_y_dir_pin= READ(Y_DIR_PIN);
  1025. uint8_t old_z_dir_pin= READ(Z_DIR_PIN);
  1026. //setup new step
  1027. WRITE(X_DIR_PIN,(INVERT_X_DIR)^direction^BABYSTEP_INVERT_Z);
  1028. WRITE(Y_DIR_PIN,(INVERT_Y_DIR)^direction^BABYSTEP_INVERT_Z);
  1029. WRITE(Z_DIR_PIN,(INVERT_Z_DIR)^direction^BABYSTEP_INVERT_Z);
  1030. //perform step
  1031. WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
  1032. WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
  1033. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1034. //wait a tiny bit
  1035. {
  1036. float x=1./float(axis+1); //absolutely useless
  1037. }
  1038. WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
  1039. WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN);
  1040. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1041. //get old pin state back.
  1042. WRITE(X_DIR_PIN,old_x_dir_pin);
  1043. WRITE(Y_DIR_PIN,old_y_dir_pin);
  1044. WRITE(Z_DIR_PIN,old_z_dir_pin);
  1045. }
  1046. break;
  1047. #endif
  1048. default: break;
  1049. }
  1050. }
  1051. #endif //BABYSTEPPING
  1052. void digitalPotWrite(int address, int value) // From Arduino DigitalPotControl example
  1053. {
  1054. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  1055. digitalWrite(DIGIPOTSS_PIN,LOW); // take the SS pin low to select the chip
  1056. SPI.transfer(address); // send in the address and value via SPI:
  1057. SPI.transfer(value);
  1058. digitalWrite(DIGIPOTSS_PIN,HIGH); // take the SS pin high to de-select the chip:
  1059. //delay(10);
  1060. #endif
  1061. }
  1062. void digipot_init() //Initialize Digipot Motor Current
  1063. {
  1064. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  1065. const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
  1066. SPI.begin();
  1067. pinMode(DIGIPOTSS_PIN, OUTPUT);
  1068. for(int i=0;i<=4;i++)
  1069. //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
  1070. digipot_current(i,digipot_motor_current[i]);
  1071. #endif
  1072. }
  1073. void digipot_current(uint8_t driver, int current)
  1074. {
  1075. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  1076. const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
  1077. digitalPotWrite(digipot_ch[driver], current);
  1078. #endif
  1079. }
  1080. void microstep_init()
  1081. {
  1082. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  1083. const uint8_t microstep_modes[] = MICROSTEP_MODES;
  1084. pinMode(X_MS2_PIN,OUTPUT);
  1085. pinMode(Y_MS2_PIN,OUTPUT);
  1086. pinMode(Z_MS2_PIN,OUTPUT);
  1087. pinMode(E0_MS2_PIN,OUTPUT);
  1088. pinMode(E1_MS2_PIN,OUTPUT);
  1089. for(int i=0;i<=4;i++) microstep_mode(i,microstep_modes[i]);
  1090. #endif
  1091. }
  1092. void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2)
  1093. {
  1094. if(ms1 > -1) switch(driver)
  1095. {
  1096. case 0: digitalWrite( X_MS1_PIN,ms1); break;
  1097. case 1: digitalWrite( Y_MS1_PIN,ms1); break;
  1098. case 2: digitalWrite( Z_MS1_PIN,ms1); break;
  1099. case 3: digitalWrite(E0_MS1_PIN,ms1); break;
  1100. case 4: digitalWrite(E1_MS1_PIN,ms1); break;
  1101. }
  1102. if(ms2 > -1) switch(driver)
  1103. {
  1104. case 0: digitalWrite( X_MS2_PIN,ms2); break;
  1105. case 1: digitalWrite( Y_MS2_PIN,ms2); break;
  1106. case 2: digitalWrite( Z_MS2_PIN,ms2); break;
  1107. case 3: digitalWrite(E0_MS2_PIN,ms2); break;
  1108. case 4: digitalWrite(E1_MS2_PIN,ms2); break;
  1109. }
  1110. }
  1111. void microstep_mode(uint8_t driver, uint8_t stepping_mode)
  1112. {
  1113. switch(stepping_mode)
  1114. {
  1115. case 1: microstep_ms(driver,MICROSTEP1); break;
  1116. case 2: microstep_ms(driver,MICROSTEP2); break;
  1117. case 4: microstep_ms(driver,MICROSTEP4); break;
  1118. case 8: microstep_ms(driver,MICROSTEP8); break;
  1119. case 16: microstep_ms(driver,MICROSTEP16); break;
  1120. }
  1121. }
  1122. void microstep_readings()
  1123. {
  1124. SERIAL_PROTOCOLPGM("MS1,MS2 Pins\n");
  1125. SERIAL_PROTOCOLPGM("X: ");
  1126. SERIAL_PROTOCOL( digitalRead(X_MS1_PIN));
  1127. SERIAL_PROTOCOLLN( digitalRead(X_MS2_PIN));
  1128. SERIAL_PROTOCOLPGM("Y: ");
  1129. SERIAL_PROTOCOL( digitalRead(Y_MS1_PIN));
  1130. SERIAL_PROTOCOLLN( digitalRead(Y_MS2_PIN));
  1131. SERIAL_PROTOCOLPGM("Z: ");
  1132. SERIAL_PROTOCOL( digitalRead(Z_MS1_PIN));
  1133. SERIAL_PROTOCOLLN( digitalRead(Z_MS2_PIN));
  1134. SERIAL_PROTOCOLPGM("E0: ");
  1135. SERIAL_PROTOCOL( digitalRead(E0_MS1_PIN));
  1136. SERIAL_PROTOCOLLN( digitalRead(E0_MS2_PIN));
  1137. SERIAL_PROTOCOLPGM("E1: ");
  1138. SERIAL_PROTOCOL( digitalRead(E1_MS1_PIN));
  1139. SERIAL_PROTOCOLLN( digitalRead(E1_MS2_PIN));
  1140. }