My Marlin configs for Fabrikator Mini and CTC i3 Pro B
您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

ubl.cpp 8.8KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. #include "Marlin.h"
  23. #include "math.h"
  24. #if ENABLED(AUTO_BED_LEVELING_UBL)
  25. #include "ubl.h"
  26. #include "hex_print_routines.h"
  27. /**
  28. * These support functions allow the use of large bit arrays of flags that take very
  29. * little RAM. Currently they are limited to being 16x16 in size. Changing the declaration
  30. * to unsigned long will allow us to go to 32x32 if higher resolution Mesh's are needed
  31. * in the future.
  32. */
  33. void bit_clear(uint16_t bits[16], uint8_t x, uint8_t y) { CBI(bits[y], x); }
  34. void bit_set(uint16_t bits[16], uint8_t x, uint8_t y) { SBI(bits[y], x); }
  35. bool is_bit_set(uint16_t bits[16], uint8_t x, uint8_t y) { return TEST(bits[y], x); }
  36. static void serial_echo_xy(const uint16_t x, const uint16_t y) {
  37. SERIAL_CHAR('(');
  38. SERIAL_ECHO(x);
  39. SERIAL_CHAR(',');
  40. SERIAL_ECHO(y);
  41. SERIAL_CHAR(')');
  42. safe_delay(10);
  43. }
  44. static void serial_echo_12x_spaces() {
  45. for (uint8_t i = GRID_MAX_POINTS_X - 1; --i;) {
  46. SERIAL_ECHOPGM(" ");
  47. #if TX_BUFFER_SIZE > 0
  48. MYSERIAL.flushTX();
  49. #endif
  50. safe_delay(10);
  51. }
  52. }
  53. ubl_state unified_bed_leveling::state, unified_bed_leveling::pre_initialized;
  54. float unified_bed_leveling::z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y],
  55. unified_bed_leveling::last_specified_z,
  56. unified_bed_leveling::mesh_index_to_xpos[GRID_MAX_POINTS_X + 1], // +1 safety margin for now, until determinism prevails
  57. unified_bed_leveling::mesh_index_to_ypos[GRID_MAX_POINTS_Y + 1];
  58. bool unified_bed_leveling::g26_debug_flag = false,
  59. unified_bed_leveling::has_control_of_lcd_panel = false;
  60. int8_t unified_bed_leveling::eeprom_start = -1;
  61. volatile int unified_bed_leveling::encoder_diff;
  62. unified_bed_leveling::unified_bed_leveling() {
  63. for (uint8_t i = 0; i < COUNT(mesh_index_to_xpos); i++)
  64. mesh_index_to_xpos[i] = UBL_MESH_MIN_X + i * (MESH_X_DIST);
  65. for (uint8_t i = 0; i < COUNT(mesh_index_to_ypos); i++)
  66. mesh_index_to_ypos[i] = UBL_MESH_MIN_Y + i * (MESH_Y_DIST);
  67. reset();
  68. }
  69. void unified_bed_leveling::store_state() {
  70. const uint16_t i = UBL_LAST_EEPROM_INDEX;
  71. eeprom_write_block((void *)&ubl.state, (void *)i, sizeof(state));
  72. }
  73. void unified_bed_leveling::load_state() {
  74. const uint16_t i = UBL_LAST_EEPROM_INDEX;
  75. eeprom_read_block((void *)&ubl.state, (void *)i, sizeof(state));
  76. if (sanity_check())
  77. SERIAL_PROTOCOLLNPGM("?In load_state() sanity_check() failed.\n");
  78. }
  79. void unified_bed_leveling::load_mesh(const int16_t m) {
  80. int16_t j = (UBL_LAST_EEPROM_INDEX - eeprom_start) / sizeof(z_values);
  81. if (m == -1) {
  82. SERIAL_PROTOCOLLNPGM("?No mesh saved in EEPROM. Zeroing mesh in memory.\n");
  83. reset();
  84. return;
  85. }
  86. if (!WITHIN(m, 0, j - 1) || eeprom_start <= 0) {
  87. SERIAL_PROTOCOLLNPGM("?EEPROM storage not available to load mesh.\n");
  88. return;
  89. }
  90. j = UBL_LAST_EEPROM_INDEX - (m + 1) * sizeof(z_values);
  91. eeprom_read_block((void *)&z_values, (void *)j, sizeof(z_values));
  92. SERIAL_PROTOCOLPAIR("Mesh loaded from slot ", m);
  93. SERIAL_PROTOCOLLNPAIR(" at offset ", hex_address((void*)j));
  94. }
  95. void unified_bed_leveling::store_mesh(const int16_t m) {
  96. int16_t j = (UBL_LAST_EEPROM_INDEX - eeprom_start) / sizeof(z_values);
  97. if (!WITHIN(m, 0, j - 1) || eeprom_start <= 0) {
  98. SERIAL_PROTOCOLLNPGM("?EEPROM storage not available to load mesh.\n");
  99. SERIAL_PROTOCOL(m);
  100. SERIAL_PROTOCOLLNPGM(" mesh slots available.\n");
  101. SERIAL_PROTOCOLLNPAIR("E2END : ", E2END);
  102. SERIAL_PROTOCOLLNPAIR("k : ", (int)UBL_LAST_EEPROM_INDEX);
  103. SERIAL_PROTOCOLLNPAIR("j : ", j);
  104. SERIAL_PROTOCOLLNPAIR("m : ", m);
  105. SERIAL_EOL;
  106. return;
  107. }
  108. j = UBL_LAST_EEPROM_INDEX - (m + 1) * sizeof(z_values);
  109. eeprom_write_block((const void *)&z_values, (void *)j, sizeof(z_values));
  110. SERIAL_PROTOCOLPAIR("Mesh saved in slot ", m);
  111. SERIAL_PROTOCOLLNPAIR(" at offset ", hex_address((void*)j));
  112. }
  113. void unified_bed_leveling::reset() {
  114. state.active = false;
  115. state.z_offset = 0;
  116. state.eeprom_storage_slot = -1;
  117. ZERO(z_values);
  118. last_specified_z = -999.9;
  119. }
  120. void unified_bed_leveling::invalidate() {
  121. state.active = false;
  122. state.z_offset = 0;
  123. for (int x = 0; x < GRID_MAX_POINTS_X; x++)
  124. for (int y = 0; y < GRID_MAX_POINTS_Y; y++)
  125. z_values[x][y] = NAN;
  126. }
  127. void unified_bed_leveling::display_map(const int map_type) {
  128. const bool map0 = map_type == 0;
  129. if (map0) {
  130. SERIAL_PROTOCOLLNPGM("\nBed Topography Report:\n");
  131. serial_echo_xy(0, GRID_MAX_POINTS_Y - 1);
  132. SERIAL_ECHOPGM(" ");
  133. }
  134. if (map0) {
  135. serial_echo_12x_spaces();
  136. serial_echo_xy(GRID_MAX_POINTS_X - 1, GRID_MAX_POINTS_Y - 1);
  137. SERIAL_EOL;
  138. serial_echo_xy(UBL_MESH_MIN_X, UBL_MESH_MIN_Y);
  139. serial_echo_12x_spaces();
  140. serial_echo_xy(UBL_MESH_MAX_X, UBL_MESH_MAX_Y);
  141. SERIAL_EOL;
  142. }
  143. const float current_xi = ubl.get_cell_index_x(current_position[X_AXIS] + (MESH_X_DIST) / 2.0),
  144. current_yi = ubl.get_cell_index_y(current_position[Y_AXIS] + (MESH_Y_DIST) / 2.0);
  145. for (int8_t j = GRID_MAX_POINTS_Y - 1; j >= 0; j--) {
  146. for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
  147. const bool is_current = i == current_xi && j == current_yi;
  148. // is the nozzle here? then mark the number
  149. if (map0) SERIAL_CHAR(is_current ? '[' : ' ');
  150. const float f = z_values[i][j];
  151. if (isnan(f)) {
  152. serialprintPGM(map0 ? PSTR(" . ") : PSTR("NAN"));
  153. }
  154. else {
  155. // if we don't do this, the columns won't line up nicely
  156. if (map0 && f >= 0.0) SERIAL_CHAR(' ');
  157. SERIAL_PROTOCOL_F(f, 3);
  158. idle();
  159. }
  160. if (!map0 && i < GRID_MAX_POINTS_X - 1) SERIAL_CHAR(',');
  161. #if TX_BUFFER_SIZE > 0
  162. MYSERIAL.flushTX();
  163. #endif
  164. safe_delay(15);
  165. if (map0) {
  166. SERIAL_CHAR(is_current ? ']' : ' ');
  167. SERIAL_CHAR(' ');
  168. }
  169. }
  170. SERIAL_EOL;
  171. if (j && map0) { // we want the (0,0) up tight against the block of numbers
  172. SERIAL_CHAR(' ');
  173. SERIAL_EOL;
  174. }
  175. }
  176. if (map0) {
  177. serial_echo_xy(UBL_MESH_MIN_X, UBL_MESH_MIN_Y);
  178. SERIAL_ECHOPGM(" ");
  179. serial_echo_12x_spaces();
  180. serial_echo_xy(UBL_MESH_MAX_X, UBL_MESH_MIN_Y);
  181. SERIAL_EOL;
  182. serial_echo_xy(0, 0);
  183. SERIAL_ECHOPGM(" ");
  184. serial_echo_12x_spaces();
  185. serial_echo_xy(GRID_MAX_POINTS_X - 1, 0);
  186. SERIAL_EOL;
  187. }
  188. }
  189. bool unified_bed_leveling::sanity_check() {
  190. uint8_t error_flag = 0;
  191. if (state.n_x != GRID_MAX_POINTS_X) {
  192. SERIAL_PROTOCOLLNPGM("?GRID_MAX_POINTS_X set wrong\n");
  193. error_flag++;
  194. }
  195. if (state.n_y != GRID_MAX_POINTS_Y) {
  196. SERIAL_PROTOCOLLNPGM("?GRID_MAX_POINTS_Y set wrong\n");
  197. error_flag++;
  198. }
  199. if (state.mesh_x_min != UBL_MESH_MIN_X) {
  200. SERIAL_PROTOCOLLNPGM("?UBL_MESH_MIN_X set wrong\n");
  201. error_flag++;
  202. }
  203. if (state.mesh_y_min != UBL_MESH_MIN_Y) {
  204. SERIAL_PROTOCOLLNPGM("?UBL_MESH_MIN_Y set wrong\n");
  205. error_flag++;
  206. }
  207. if (state.mesh_x_max != UBL_MESH_MAX_X) {
  208. SERIAL_PROTOCOLLNPGM("?UBL_MESH_MAX_X set wrong\n");
  209. error_flag++;
  210. }
  211. if (state.mesh_y_max != UBL_MESH_MAX_Y) {
  212. SERIAL_PROTOCOLLNPGM("?UBL_MESH_MAX_Y set wrong\n");
  213. error_flag++;
  214. }
  215. if (state.mesh_x_dist != MESH_X_DIST) {
  216. SERIAL_PROTOCOLLNPGM("?MESH_X_DIST set wrong\n");
  217. error_flag++;
  218. }
  219. if (state.mesh_y_dist != MESH_Y_DIST) {
  220. SERIAL_PROTOCOLLNPGM("?MESH_Y_DIST set wrong\n");
  221. error_flag++;
  222. }
  223. const int j = (UBL_LAST_EEPROM_INDEX - eeprom_start) / sizeof(z_values);
  224. if (j < 1) {
  225. SERIAL_PROTOCOLLNPGM("?No EEPROM storage available for a mesh of this size.\n");
  226. error_flag++;
  227. }
  228. // SERIAL_PROTOCOLPGM("?sanity_check() return value: ");
  229. // SERIAL_PROTOCOL(error_flag);
  230. // SERIAL_EOL;
  231. return !!error_flag;
  232. }
  233. #endif // AUTO_BED_LEVELING_UBL