My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

ubl_G29.cpp 70KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. #include "MarlinConfig.h"
  23. #if ENABLED(AUTO_BED_LEVELING_UBL)
  24. //#include "vector_3.h"
  25. //#include "qr_solve.h"
  26. #include "ubl.h"
  27. #include "Marlin.h"
  28. #include "hex_print_routines.h"
  29. #include "configuration_store.h"
  30. #include "ultralcd.h"
  31. #include <math.h>
  32. void lcd_return_to_status();
  33. bool lcd_clicked();
  34. void lcd_implementation_clear();
  35. void lcd_mesh_edit_setup(float initial);
  36. void tilt_mesh_based_on_probed_grid(const bool);
  37. float lcd_mesh_edit();
  38. void lcd_z_offset_edit_setup(float);
  39. float lcd_z_offset_edit();
  40. extern float meshedit_done;
  41. extern long babysteps_done;
  42. extern float code_value_float();
  43. extern uint8_t code_value_byte();
  44. extern bool code_value_bool();
  45. extern bool code_has_value();
  46. extern float probe_pt(float x, float y, bool, int);
  47. extern bool set_probe_deployed(bool);
  48. bool ProbeStay = true;
  49. constexpr float ubl_3_point_1_X = UBL_PROBE_PT_1_X,
  50. ubl_3_point_1_Y = UBL_PROBE_PT_1_Y,
  51. ubl_3_point_2_X = UBL_PROBE_PT_2_X,
  52. ubl_3_point_2_Y = UBL_PROBE_PT_2_Y,
  53. ubl_3_point_3_X = UBL_PROBE_PT_3_X,
  54. ubl_3_point_3_Y = UBL_PROBE_PT_3_Y;
  55. #define SIZE_OF_LITTLE_RAISE 0
  56. #define BIG_RAISE_NOT_NEEDED 0
  57. extern void lcd_quick_feedback();
  58. /**
  59. * G29: Unified Bed Leveling by Roxy
  60. *
  61. * Parameters understood by this leveling system:
  62. *
  63. * A Activate Activate the Unified Bed Leveling system.
  64. *
  65. * B # Business Use the 'Business Card' mode of the Manual Probe subsystem. This is invoked as
  66. * G29 P2 B The mode of G29 P2 allows you to use a bussiness card or recipe card
  67. * as a shim that the nozzle will pinch as it is lowered. The idea is that you
  68. * can easily feel the nozzle getting to the same height by the amount of resistance
  69. * the business card exhibits to movement. You should try to achieve the same amount
  70. * of resistance on each probed point to facilitate accurate and repeatable measurements.
  71. * You should be very careful not to drive the nozzle into the bussiness card with a
  72. * lot of force as it is very possible to cause damage to your printer if your are
  73. * careless. If you use the B option with G29 P2 B you can leave the number parameter off
  74. * on its first use to enable measurement of the business card thickness. Subsequent usage
  75. * of the B parameter can have the number previously measured supplied to the command.
  76. * Incidently, you are much better off using something like a Spark Gap feeler gauge than
  77. * something that compresses like a Business Card.
  78. *
  79. * C Continue Continue, Constant, Current Location. This is not a primary command. C is used to
  80. * further refine the behaviour of several other commands. Issuing a G29 P1 C will
  81. * continue the generation of a partially constructed Mesh without invalidating what has
  82. * been done. Issuing a G29 P2 C will tell the Manual Probe subsystem to use the current
  83. * location in its search for the closest unmeasured Mesh Point. When used with a G29 Z C
  84. * it indicates to use the current location instead of defaulting to the center of the print bed.
  85. *
  86. * D Disable Disable the Unified Bed Leveling system.
  87. *
  88. * E Stow_probe Stow the probe after each sampled point.
  89. *
  90. * F # Fade * Fade the amount of Mesh Based Compensation over a specified height. At the
  91. * specified height, no correction is applied and natural printer kenimatics take over. If no
  92. * number is specified for the command, 10mm is assumed to be reasonable.
  93. *
  94. * H # Height Specify the Height to raise the nozzle after each manual probe of the bed. The
  95. * default is 5mm.
  96. *
  97. * I # Invalidate Invalidate specified number of Mesh Points. The nozzle location is used unless
  98. * the X and Y parameter are used. If no number is specified, only the closest Mesh
  99. * point to the location is invalidated. The M parameter is available as well to produce
  100. * a map after the operation. This command is useful to invalidate a portion of the
  101. * Mesh so it can be adjusted using other tools in the Unified Bed Leveling System. When
  102. * attempting to invalidate an isolated bad point in the mesh, the M option will indicate
  103. * where the nozzle is positioned in the Mesh with (#). You can move the nozzle around on
  104. * the bed and use this feature to select the center of the area (or cell) you want to
  105. * invalidate.
  106. *
  107. * J # Grid * Perform a Grid Based Leveling of the current Mesh using a grid with n points on a side.
  108. *
  109. * j EEPROM Dump This function probably goes away after debug is complete.
  110. *
  111. * K # Kompare Kompare current Mesh with stored Mesh # replacing current Mesh with the result. This
  112. * command literally performs a diff between two Meshes.
  113. *
  114. * L Load * Load Mesh from the previously activated location in the EEPROM.
  115. *
  116. * L # Load * Load Mesh from the specified location in the EEPROM. Set this location as activated
  117. * for subsequent Load and Store operations.
  118. *
  119. * O Map * Display the Mesh Map Topology.
  120. * The parameter can be specified alone (ie. G29 O) or in combination with many of the
  121. * other commands. The Mesh Map option works with all of the Phase
  122. * commands (ie. G29 P4 R 5 X 50 Y100 C -.1 O) The Map parameter can also of a Map Type
  123. * specified. A map type of 0 is the default is user readable. A map type of 1 can
  124. * be specified and is suitable to Cut & Paste into Excel to allow graphing of the user's
  125. * mesh.
  126. *
  127. * N No Home G29 normally insists that a G28 has been performed. You can over rule this with an
  128. * N option. In general, you should not do this. This can only be done safely with
  129. * commands that do not move the nozzle.
  130. *
  131. * The P or Phase commands are used for the bulk of the work to setup a Mesh. In general, your Mesh will
  132. * start off being initialized with a G29 P0 or a G29 P1. Further refinement of the Mesh happens with
  133. * each additional Phase that processes it.
  134. *
  135. * P0 Phase 0 Zero Mesh Data and turn off the Mesh Compensation System. This reverts the
  136. * 3D Printer to the same state it was in before the Unified Bed Leveling Compensation
  137. * was turned on. Setting the entire Mesh to Zero is a special case that allows
  138. * a subsequent G or T leveling operation for backward compatibility.
  139. *
  140. * P1 Phase 1 Invalidate entire Mesh and continue with automatic generation of the Mesh data using
  141. * the Z-Probe. Depending upon the values of DELTA_PROBEABLE_RADIUS and
  142. * DELTA_PRINTABLE_RADIUS some area of the bed will not have Mesh Data automatically
  143. * generated. This will be handled in Phase 2. If the Phase 1 command is given the
  144. * C (Continue) parameter it does not invalidate the Mesh prior to automatically
  145. * probing needed locations. This allows you to invalidate portions of the Mesh but still
  146. * use the automatic probing capabilities of the Unified Bed Leveling System. An X and Y
  147. * parameter can be given to prioritize where the command should be trying to measure points.
  148. * If the X and Y parameters are not specified the current probe position is used. Phase 1
  149. * allows you to specify the M (Map) parameter so you can watch the generation of the Mesh.
  150. * Phase 1 also watches for the LCD Panel's Encoder Switch being held in a depressed state.
  151. * It will suspend generation of the Mesh if it sees the user request that. (This check is
  152. * only done between probe points. You will need to press and hold the switch until the
  153. * Phase 1 command can detect it.)
  154. *
  155. * P2 Phase 2 Probe areas of the Mesh that can't be automatically handled. Phase 2 respects an H
  156. * parameter to control the height between Mesh points. The default height for movement
  157. * between Mesh points is 5mm. A smaller number can be used to make this part of the
  158. * calibration less time consuming. You will be running the nozzle down until it just barely
  159. * touches the glass. You should have the nozzle clean with no plastic obstructing your view.
  160. * Use caution and move slowly. It is possible to damage your printer if you are careless.
  161. * Note that this command will use the configuration #define SIZE_OF_LITTLE_RAISE if the
  162. * nozzle is moving a distance of less than BIG_RAISE_NOT_NEEDED.
  163. *
  164. * The H parameter can be set negative if your Mesh dips in a large area. You can press
  165. * and hold the LCD Panel's encoder wheel to terminate the current Phase 2 command. You
  166. * can then re-issue the G29 P 2 command with an H parameter that is more suitable for the
  167. * area you are manually probing. Note that the command tries to start you in a corner
  168. * of the bed where movement will be predictable. You can force the location to be used in
  169. * the distance calculations by using the X and Y parameters. You may find it is helpful to
  170. * print out a Mesh Map (G29 O) to understand where the mesh is invalidated and where
  171. * the nozzle will need to move in order to complete the command. The C parameter is
  172. * available on the Phase 2 command also and indicates the search for points to measure should
  173. * be done based on the current location of the nozzle.
  174. *
  175. * A B parameter is also available for this command and described up above. It places the
  176. * manual probe subsystem into Business Card mode where the thickness of a business care is
  177. * measured and then used to accurately set the nozzle height in all manual probing for the
  178. * duration of the command. (S for Shim mode would be a better parameter name, but S is needed
  179. * for Save or Store of the Mesh to EEPROM) A Business card can be used, but you will have
  180. * better results if you use a flexible Shim that does not compress very much. That makes it
  181. * easier for you to get the nozzle to press with similar amounts of force against the shim so you
  182. * can get accurate measurements. As you are starting to touch the nozzle against the shim try
  183. * to get it to grasp the shim with the same force as when you measured the thickness of the
  184. * shim at the start of the command.
  185. *
  186. * Phase 2 allows the O (Map) parameter to be specified. This helps the user see the progression
  187. * of the Mesh being built.
  188. *
  189. * P3 Phase 3 Fill the unpopulated regions of the Mesh with a fixed value. The C parameter is
  190. * used to specify the 'constant' value to fill all invalid areas of the Mesh. If no C parameter
  191. * is specified, a value of 0.0 is assumed. The R parameter can be given to specify the number
  192. * of points to set. If the R parameter is specified the current nozzle position is used to
  193. * find the closest points to alter unless the X and Y parameter are used to specify the fill
  194. * location.
  195. *
  196. * P4 Phase 4 Fine tune the Mesh. The Delta Mesh Compensation System assume the existance of
  197. * an LCD Panel. It is possible to fine tune the mesh without the use of an LCD Panel.
  198. * (More work and details on doing this later!)
  199. * The System will search for the closest Mesh Point to the nozzle. It will move the
  200. * nozzle to this location. The user can use the LCD Panel to carefully adjust the nozzle
  201. * so it is just barely touching the bed. When the user clicks the control, the System
  202. * will lock in that height for that point in the Mesh Compensation System.
  203. *
  204. * Phase 4 has several additional parameters that the user may find helpful. Phase 4
  205. * can be started at a specific location by specifying an X and Y parameter. Phase 4
  206. * can be requested to continue the adjustment of Mesh Points by using the R(epeat)
  207. * parameter. If the Repetition count is not specified, it is assumed the user wishes
  208. * to adjust the entire matrix. The nozzle is moved to the Mesh Point being edited.
  209. * The command can be terminated early (or after the area of interest has been edited) by
  210. * pressing and holding the encoder wheel until the system recognizes the exit request.
  211. * Phase 4's general form is G29 P4 [R # of points] [X position] [Y position]
  212. *
  213. * Phase 4 is intended to be used with the G26 Mesh Validation Command. Using the
  214. * information left on the printer's bed from the G26 command it is very straight forward
  215. * and easy to fine tune the Mesh. One concept that is important to remember and that
  216. * will make using the Phase 4 command easy to use is this: You are editing the Mesh Points.
  217. * If you have too little clearance and not much plastic was extruded in an area, you want to
  218. * LOWER the Mesh Point at the location. If you did not get good adheasion, you want to
  219. * RAISE the Mesh Point at that location.
  220. *
  221. *
  222. * P5 Phase 5 Find Mean Mesh Height and Standard Deviation. Typically, it is easier to use and
  223. * work with the Mesh if it is Mean Adjusted. You can specify a C parameter to
  224. * Correct the Mesh to a 0.00 Mean Height. Adding a C parameter will automatically
  225. * execute a G29 P6 C <mean height>.
  226. *
  227. * P6 Phase 6 Shift Mesh height. The entire Mesh's height is adjusted by the height specified
  228. * with the C parameter. Being able to adjust the height of a Mesh is useful tool. It
  229. * can be used to compensate for poorly calibrated Z-Probes and other errors. Ideally,
  230. * you should have the Mesh adjusted for a Mean Height of 0.00 and the Z-Probe measuring
  231. * 0.000 at the Z Home location.
  232. *
  233. * Q Test * Load specified Test Pattern to assist in checking correct operation of system. This
  234. * command is not anticipated to be of much value to the typical user. It is intended
  235. * for developers to help them verify correct operation of the Unified Bed Leveling System.
  236. *
  237. * S Store Store the current Mesh in the Activated area of the EEPROM. It will also store the
  238. * current state of the Unified Bed Leveling system in the EEPROM.
  239. *
  240. * S # Store Store the current Mesh at the specified location in EEPROM. Activate this location
  241. * for subsequent Load and Store operations. It will also store the current state of
  242. * the Unified Bed Leveling system in the EEPROM.
  243. *
  244. * S -1 Store Store the current Mesh as a print out that is suitable to be feed back into
  245. * the system at a later date. The text generated can be saved and later sent by PronterFace or
  246. * Repetier Host to reconstruct the current mesh on another machine.
  247. *
  248. * T 3-Point Perform a 3 Point Bed Leveling on the current Mesh
  249. *
  250. * U Unlevel Perform a probe of the outer perimeter to assist in physically leveling unlevel beds.
  251. * Only used for G29 P1 O U It will speed up the probing of the edge of the bed. This
  252. * is useful when the entire bed does not need to be probed because it will be adjusted.
  253. *
  254. * W What? Display valuable data the Unified Bed Leveling System knows.
  255. *
  256. * X # * * X Location for this line of commands
  257. *
  258. * Y # * * Y Location for this line of commands
  259. *
  260. * Z Zero * Probes to set the Z Height of the nozzle. The entire Mesh can be raised or lowered
  261. * by just doing a G29 Z
  262. *
  263. * Z # Zero * The entire Mesh can be raised or lowered to conform with the specified difference.
  264. * zprobe_zoffset is added to the calculation.
  265. *
  266. *
  267. * Release Notes:
  268. * You MUST do M502, M500 to initialize the storage. Failure to do this will cause all
  269. * kinds of problems. Enabling EEPROM Storage is highly recommended. With EEPROM Storage
  270. * of the mesh, you are limited to 3-Point and Grid Leveling. (G29 P0 T and G29 P0 G
  271. * respectively.)
  272. *
  273. * When you do a G28 and then a G29 P1 to automatically build your first mesh, you are going to notice
  274. * the Unified Bed Leveling probes points further and further away from the starting location. (The
  275. * starting location defaults to the center of the bed.) The original Grid and Mesh leveling used
  276. * a Zig Zag pattern. The new pattern is better, especially for people with Delta printers. This
  277. * allows you to get the center area of the Mesh populated (and edited) quicker. This allows you to
  278. * perform a small print and check out your settings quicker. You do not need to populate the
  279. * entire mesh to use it. (You don't want to spend a lot of time generating a mesh only to realize
  280. * you don't have the resolution or zprobe_zoffset set correctly. The Mesh generation
  281. * gathers points closest to where the nozzle is located unless you specify an (X,Y) coordinate pair.
  282. *
  283. * The Unified Bed Leveling uses a lot of EEPROM storage to hold its data. And it takes some effort
  284. * to get this Mesh data correct for a user's printer. We do not want this data destroyed as
  285. * new versions of Marlin add or subtract to the items stored in EEPROM. So, for the benefit of
  286. * the users, we store the Mesh data at the end of the EEPROM and do not keep it contiguous with the
  287. * other data stored in the EEPROM. (For sure the developers are going to complain about this, but
  288. * this is going to be helpful to the users!)
  289. *
  290. * The foundation of this Bed Leveling System is built on Epatel's Mesh Bed Leveling code. A big
  291. * 'Thanks!' to him and the creators of 3-Point and Grid Based leveling. Combining their contributions
  292. * we now have the functionality and features of all three systems combined.
  293. */
  294. // The simple parameter flags and values are 'static' so parameter parsing can be in a support routine.
  295. static int g29_verbose_level, phase_value = -1, repetition_cnt,
  296. storage_slot = 0, map_type, grid_size;
  297. static bool repeat_flag, c_flag, x_flag, y_flag;
  298. static float x_pos, y_pos, measured_z, card_thickness = 0.0, ubl_constant = 0.0;
  299. #if ENABLED(ULTRA_LCD)
  300. extern void lcd_setstatus(const char* message, const bool persist);
  301. extern void lcd_setstatuspgm(const char* message, const uint8_t level);
  302. #endif
  303. void gcode_G29() {
  304. SERIAL_PROTOCOLLNPAIR("ubl.eeprom_start=", ubl.eeprom_start);
  305. if (ubl.eeprom_start < 0) {
  306. SERIAL_PROTOCOLLNPGM("?You need to enable your EEPROM and initialize it");
  307. SERIAL_PROTOCOLLNPGM("with M502, M500, M501 in that order.\n");
  308. return;
  309. }
  310. if (!code_seen('N') && axis_unhomed_error(true, true, true)) // Don't allow auto-leveling without homing first
  311. gcode_G28();
  312. if (g29_parameter_parsing()) return; // abort if parsing the simple parameters causes a problem,
  313. // Invalidate Mesh Points. This command is a little bit asymetrical because
  314. // it directly specifies the repetition count and does not use the 'R' parameter.
  315. if (code_seen('I')) {
  316. uint8_t cnt = 0;
  317. repetition_cnt = code_has_value() ? code_value_int() : 1;
  318. while (repetition_cnt--) {
  319. if (cnt > 20) { cnt = 0; idle(); }
  320. const mesh_index_pair location = find_closest_mesh_point_of_type(REAL, x_pos, y_pos, 0, NULL, false); // The '0' says we want to use the nozzle's position
  321. if (location.x_index < 0) {
  322. SERIAL_PROTOCOLLNPGM("Entire Mesh invalidated.\n");
  323. break; // No more invalid Mesh Points to populate
  324. }
  325. ubl.z_values[location.x_index][location.y_index] = NAN;
  326. }
  327. SERIAL_PROTOCOLLNPGM("Locations invalidated.\n");
  328. }
  329. if (code_seen('Q')) {
  330. const int test_pattern = code_has_value() ? code_value_int() : -1;
  331. if (!WITHIN(test_pattern, 0, 2)) {
  332. SERIAL_PROTOCOLLNPGM("Invalid test_pattern value. (0-2)\n");
  333. return;
  334. }
  335. SERIAL_PROTOCOLLNPGM("Loading test_pattern values.\n");
  336. switch (test_pattern) {
  337. case 0:
  338. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++) { // Create a bowl shape - similar to
  339. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++) { // a poorly calibrated Delta.
  340. const float p1 = 0.5 * (GRID_MAX_POINTS_X) - x,
  341. p2 = 0.5 * (GRID_MAX_POINTS_Y) - y;
  342. ubl.z_values[x][y] += 2.0 * HYPOT(p1, p2);
  343. }
  344. }
  345. break;
  346. case 1:
  347. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++) { // Create a diagonal line several Mesh cells thick that is raised
  348. ubl.z_values[x][x] += 9.999;
  349. ubl.z_values[x][x + (x < GRID_MAX_POINTS_Y - 1) ? 1 : -1] += 9.999; // We want the altered line several mesh points thick
  350. }
  351. break;
  352. case 2:
  353. // Allow the user to specify the height because 10mm is a little extreme in some cases.
  354. for (uint8_t x = (GRID_MAX_POINTS_X) / 3; x < 2 * (GRID_MAX_POINTS_X) / 3; x++) // Create a rectangular raised area in
  355. for (uint8_t y = (GRID_MAX_POINTS_Y) / 3; y < 2 * (GRID_MAX_POINTS_Y) / 3; y++) // the center of the bed
  356. ubl.z_values[x][y] += code_seen('C') ? ubl_constant : 9.99;
  357. break;
  358. }
  359. }
  360. if (code_seen('J')) {
  361. if (!WITHIN(grid_size, 2, 5)) {
  362. SERIAL_PROTOCOLLNPGM("ERROR - grid size must be between 2 and 5");
  363. return;
  364. }
  365. tilt_mesh_based_on_probed_grid(code_seen('O') || code_seen('M'));
  366. }
  367. if (code_seen('P')) {
  368. phase_value = code_value_int();
  369. if (!WITHIN(phase_value, 0, 7)) {
  370. SERIAL_PROTOCOLLNPGM("Invalid Phase value. (0-4)\n");
  371. return;
  372. }
  373. switch (phase_value) {
  374. case 0:
  375. //
  376. // Zero Mesh Data
  377. //
  378. ubl.reset();
  379. SERIAL_PROTOCOLLNPGM("Mesh zeroed.\n");
  380. break;
  381. case 1:
  382. //
  383. // Invalidate Entire Mesh and Automatically Probe Mesh in areas that can be reached by the probe
  384. //
  385. if (!code_seen('C')) {
  386. ubl.invalidate();
  387. SERIAL_PROTOCOLLNPGM("Mesh invalidated. Probing mesh.\n");
  388. }
  389. if (g29_verbose_level > 1) {
  390. SERIAL_PROTOCOLPAIR("Probing Mesh Points Closest to (", x_pos);
  391. SERIAL_PROTOCOLCHAR(',');
  392. SERIAL_PROTOCOL(y_pos);
  393. SERIAL_PROTOCOLLNPGM(")\n");
  394. }
  395. probe_entire_mesh(x_pos + X_PROBE_OFFSET_FROM_EXTRUDER, y_pos + Y_PROBE_OFFSET_FROM_EXTRUDER,
  396. code_seen('O') || code_seen('M'), code_seen('E'), code_seen('U'));
  397. break;
  398. case 2: {
  399. //
  400. // Manually Probe Mesh in areas that can't be reached by the probe
  401. //
  402. SERIAL_PROTOCOLLNPGM("Manually probing unreachable mesh locations.\n");
  403. do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
  404. if (!x_flag && !y_flag) { // use a good default location for the path
  405. // The flipped > and < operators on these two comparisons is
  406. // intentional. It should cause the probed points to follow a
  407. // nice path on Cartesian printers. It may make sense to
  408. // have Delta printers default to the center of the bed.
  409. // For now, until that is decided, it can be forced with the X
  410. // and Y parameters.
  411. x_pos = X_PROBE_OFFSET_FROM_EXTRUDER > 0 ? X_MAX_POS : X_MIN_POS;
  412. y_pos = Y_PROBE_OFFSET_FROM_EXTRUDER < 0 ? Y_MAX_POS : Y_MIN_POS;
  413. }
  414. if (code_seen('C')) {
  415. x_pos = current_position[X_AXIS];
  416. y_pos = current_position[Y_AXIS];
  417. }
  418. const float height = code_seen('H') && code_has_value() ? code_value_float() : Z_CLEARANCE_BETWEEN_PROBES;
  419. if (code_seen('B')) {
  420. card_thickness = code_has_value() ? code_value_float() : measure_business_card_thickness(height);
  421. if (fabs(card_thickness) > 1.5) {
  422. SERIAL_PROTOCOLLNPGM("?Error in Business Card measurement.\n");
  423. return;
  424. }
  425. }
  426. manually_probe_remaining_mesh(x_pos, y_pos, height, card_thickness, code_seen('O') || code_seen('M'));
  427. } break;
  428. case 3: {
  429. //
  430. // Populate invalid Mesh areas with a constant
  431. //
  432. const float height = code_seen('C') ? ubl_constant : 0.0;
  433. // If no repetition is specified, do the whole Mesh
  434. if (!repeat_flag) repetition_cnt = 9999;
  435. while (repetition_cnt--) {
  436. const mesh_index_pair location = find_closest_mesh_point_of_type(INVALID, x_pos, y_pos, 0, NULL, false); // The '0' says we want to use the nozzle's position
  437. if (location.x_index < 0) break; // No more invalid Mesh Points to populate
  438. ubl.z_values[location.x_index][location.y_index] = height;
  439. }
  440. } break;
  441. case 4:
  442. //
  443. // Fine Tune (i.e., Edit) the Mesh
  444. //
  445. fine_tune_mesh(x_pos, y_pos, code_seen('O') || code_seen('M'));
  446. break;
  447. case 5:
  448. find_mean_mesh_height();
  449. break;
  450. case 6:
  451. shift_mesh_height();
  452. break;
  453. case 10:
  454. // [DEBUG] Pay no attention to this stuff. It can be removed soon.
  455. SERIAL_ECHO_START;
  456. SERIAL_ECHOLNPGM("Checking G29 has control of LCD Panel:");
  457. KEEPALIVE_STATE(PAUSED_FOR_USER);
  458. ubl.has_control_of_lcd_panel = true;
  459. while (!ubl_lcd_clicked()) {
  460. safe_delay(250);
  461. if (ubl.encoder_diff) {
  462. SERIAL_ECHOLN((int)ubl.encoder_diff);
  463. ubl.encoder_diff = 0;
  464. }
  465. }
  466. SERIAL_ECHOLNPGM("G29 giving back control of LCD Panel.");
  467. ubl.has_control_of_lcd_panel = false;
  468. KEEPALIVE_STATE(IN_HANDLER);
  469. break;
  470. case 11:
  471. // [DEBUG] wait_for_user code. Pay no attention to this stuff. It can be removed soon.
  472. SERIAL_ECHO_START;
  473. SERIAL_ECHOLNPGM("Checking G29 has control of LCD Panel:");
  474. KEEPALIVE_STATE(PAUSED_FOR_USER);
  475. wait_for_user = true;
  476. while (wait_for_user) {
  477. safe_delay(250);
  478. if (ubl.encoder_diff) {
  479. SERIAL_ECHOLN((int)ubl.encoder_diff);
  480. ubl.encoder_diff = 0;
  481. }
  482. }
  483. SERIAL_ECHOLNPGM("G29 giving back control of LCD Panel.");
  484. KEEPALIVE_STATE(IN_HANDLER);
  485. break;
  486. }
  487. }
  488. if (code_seen('T')) {
  489. const float lx1 = LOGICAL_X_POSITION(ubl_3_point_1_X),
  490. lx2 = LOGICAL_X_POSITION(ubl_3_point_2_X),
  491. lx3 = LOGICAL_X_POSITION(ubl_3_point_3_X),
  492. ly1 = LOGICAL_Y_POSITION(ubl_3_point_1_Y),
  493. ly2 = LOGICAL_Y_POSITION(ubl_3_point_2_Y),
  494. ly3 = LOGICAL_Y_POSITION(ubl_3_point_3_Y);
  495. float z1 = probe_pt(lx1, ly1, false /*Stow Flag*/, g29_verbose_level),
  496. z2 = probe_pt(lx2, ly2, false /*Stow Flag*/, g29_verbose_level),
  497. z3 = probe_pt(lx3, ly3, true /*Stow Flag*/, g29_verbose_level);
  498. // We need to adjust z1, z2, z3 by the Mesh Height at these points. Just because they are non-zero doesn't mean
  499. // the Mesh is tilted! (We need to compensate each probe point by what the Mesh says that location's height is)
  500. z1 -= ubl.get_z_correction(lx1, ly1);
  501. z2 -= ubl.get_z_correction(lx2, ly2);
  502. z3 -= ubl.get_z_correction(lx3, ly3);
  503. do_blocking_move_to_xy((X_MAX_POS - (X_MIN_POS)) / 2.0, (Y_MAX_POS - (Y_MIN_POS)) / 2.0);
  504. tilt_mesh_based_on_3pts(z1, z2, z3);
  505. }
  506. //
  507. // Much of the 'What?' command can be eliminated. But until we are fully debugged, it is
  508. // good to have the extra information. Soon... we prune this to just a few items
  509. //
  510. if (code_seen('W')) g29_what_command();
  511. //
  512. // When we are fully debugged, the EEPROM dump command will get deleted also. But
  513. // right now, it is good to have the extra information. Soon... we prune this.
  514. //
  515. if (code_seen('j')) g29_eeprom_dump(); // EEPROM Dump
  516. //
  517. // When we are fully debugged, this may go away. But there are some valid
  518. // use cases for the users. So we can wait and see what to do with it.
  519. //
  520. if (code_seen('K')) // Kompare Current Mesh Data to Specified Stored Mesh
  521. g29_compare_current_mesh_to_stored_mesh();
  522. //
  523. // Load a Mesh from the EEPROM
  524. //
  525. if (code_seen('L')) { // Load Current Mesh Data
  526. storage_slot = code_has_value() ? code_value_int() : ubl.state.eeprom_storage_slot;
  527. const int16_t j = (UBL_LAST_EEPROM_INDEX - ubl.eeprom_start) / sizeof(ubl.z_values);
  528. if (!WITHIN(storage_slot, 0, j - 1) || ubl.eeprom_start <= 0) {
  529. SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n");
  530. return;
  531. }
  532. ubl.load_mesh(storage_slot);
  533. ubl.state.eeprom_storage_slot = storage_slot;
  534. if (storage_slot != ubl.state.eeprom_storage_slot)
  535. ubl.store_state();
  536. SERIAL_PROTOCOLLNPGM("Done.\n");
  537. }
  538. //
  539. // Store a Mesh in the EEPROM
  540. //
  541. if (code_seen('S')) { // Store (or Save) Current Mesh Data
  542. storage_slot = code_has_value() ? code_value_int() : ubl.state.eeprom_storage_slot;
  543. if (storage_slot == -1) { // Special case, we are going to 'Export' the mesh to the
  544. SERIAL_ECHOLNPGM("G29 I 999"); // host in a form it can be reconstructed on a different machine
  545. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  546. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  547. if (!isnan(ubl.z_values[x][y])) {
  548. SERIAL_ECHOPAIR("M421 I ", x);
  549. SERIAL_ECHOPAIR(" J ", y);
  550. SERIAL_ECHOPGM(" Z ");
  551. SERIAL_ECHO_F(ubl.z_values[x][y], 6);
  552. SERIAL_EOL;
  553. }
  554. return;
  555. }
  556. const int16_t j = (UBL_LAST_EEPROM_INDEX - ubl.eeprom_start) / sizeof(ubl.z_values);
  557. if (!WITHIN(storage_slot, 0, j - 1) || ubl.eeprom_start <= 0) {
  558. SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n");
  559. SERIAL_PROTOCOLLNPAIR("?Use 0 to ", j - 1);
  560. goto LEAVE;
  561. }
  562. ubl.store_mesh(storage_slot);
  563. ubl.state.eeprom_storage_slot = storage_slot;
  564. //
  565. // if (storage_slot != ubl.state.eeprom_storage_slot)
  566. ubl.store_state(); // Always save an updated copy of the UBL State info
  567. SERIAL_PROTOCOLLNPGM("Done.\n");
  568. }
  569. if (code_seen('O') || code_seen('M'))
  570. ubl.display_map(code_has_value() ? code_value_int() : 0);
  571. if (code_seen('Z')) {
  572. if (code_has_value())
  573. ubl.state.z_offset = code_value_float(); // do the simple case. Just lock in the specified value
  574. else {
  575. save_ubl_active_state_and_disable();
  576. //measured_z = probe_pt(x_pos + X_PROBE_OFFSET_FROM_EXTRUDER, y_pos + Y_PROBE_OFFSET_FROM_EXTRUDER, ProbeDeployAndStow, g29_verbose_level);
  577. ubl.has_control_of_lcd_panel = true; // Grab the LCD Hardware
  578. measured_z = 1.5;
  579. do_blocking_move_to_z(measured_z); // Get close to the bed, but leave some space so we don't damage anything
  580. // The user is not going to be locking in a new Z-Offset very often so
  581. // it won't be that painful to spin the Encoder Wheel for 1.5mm
  582. lcd_implementation_clear();
  583. lcd_z_offset_edit_setup(measured_z);
  584. KEEPALIVE_STATE(PAUSED_FOR_USER);
  585. do {
  586. measured_z = lcd_z_offset_edit();
  587. idle();
  588. do_blocking_move_to_z(measured_z);
  589. } while (!ubl_lcd_clicked());
  590. ubl.has_control_of_lcd_panel = true; // There is a race condition for the Encoder Wheel getting clicked.
  591. // It could get detected in lcd_mesh_edit (actually _lcd_mesh_fine_tune)
  592. // or here. So, until we are done looking for a long Encoder Wheel Press,
  593. // we need to take control of the panel
  594. KEEPALIVE_STATE(IN_HANDLER);
  595. lcd_return_to_status();
  596. const millis_t nxt = millis() + 1500UL;
  597. while (ubl_lcd_clicked()) { // debounce and watch for abort
  598. idle();
  599. if (ELAPSED(millis(), nxt)) {
  600. SERIAL_PROTOCOLLNPGM("\nZ-Offset Adjustment Stopped.");
  601. do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
  602. LCD_MESSAGEPGM("Z-Offset Stopped");
  603. restore_ubl_active_state_and_leave();
  604. goto LEAVE;
  605. }
  606. }
  607. ubl.has_control_of_lcd_panel = false;
  608. safe_delay(20); // We don't want any switch noise.
  609. ubl.state.z_offset = measured_z;
  610. lcd_implementation_clear();
  611. restore_ubl_active_state_and_leave();
  612. }
  613. }
  614. LEAVE:
  615. lcd_reset_alert_level();
  616. LCD_MESSAGEPGM("");
  617. lcd_quick_feedback();
  618. ubl.has_control_of_lcd_panel = false;
  619. }
  620. void find_mean_mesh_height() {
  621. uint8_t x, y;
  622. int n;
  623. float sum, sum_of_diff_squared, sigma, difference, mean;
  624. sum = sum_of_diff_squared = 0.0;
  625. n = 0;
  626. for (x = 0; x < GRID_MAX_POINTS_X; x++)
  627. for (y = 0; y < GRID_MAX_POINTS_Y; y++)
  628. if (!isnan(ubl.z_values[x][y])) {
  629. sum += ubl.z_values[x][y];
  630. n++;
  631. }
  632. mean = sum / n;
  633. //
  634. // Now do the sumation of the squares of difference from mean
  635. //
  636. for (x = 0; x < GRID_MAX_POINTS_X; x++)
  637. for (y = 0; y < GRID_MAX_POINTS_Y; y++)
  638. if (!isnan(ubl.z_values[x][y])) {
  639. difference = (ubl.z_values[x][y] - mean);
  640. sum_of_diff_squared += difference * difference;
  641. }
  642. SERIAL_ECHOLNPAIR("# of samples: ", n);
  643. SERIAL_ECHOPGM("Mean Mesh Height: ");
  644. SERIAL_ECHO_F(mean, 6);
  645. SERIAL_EOL;
  646. sigma = sqrt(sum_of_diff_squared / (n + 1));
  647. SERIAL_ECHOPGM("Standard Deviation: ");
  648. SERIAL_ECHO_F(sigma, 6);
  649. SERIAL_EOL;
  650. if (c_flag)
  651. for (x = 0; x < GRID_MAX_POINTS_X; x++)
  652. for (y = 0; y < GRID_MAX_POINTS_Y; y++)
  653. if (!isnan(ubl.z_values[x][y]))
  654. ubl.z_values[x][y] -= mean + ubl_constant;
  655. }
  656. void shift_mesh_height() {
  657. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  658. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  659. if (!isnan(ubl.z_values[x][y]))
  660. ubl.z_values[x][y] += ubl_constant;
  661. }
  662. /**
  663. * Probe all invalidated locations of the mesh that can be reached by the probe.
  664. * This attempts to fill in locations closest to the nozzle's start location first.
  665. */
  666. void probe_entire_mesh(const float &lx, const float &ly, const bool do_ubl_mesh_map, const bool stow_probe, bool do_furthest) {
  667. mesh_index_pair location;
  668. ubl.has_control_of_lcd_panel = true;
  669. save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe
  670. DEPLOY_PROBE();
  671. do {
  672. if (ubl_lcd_clicked()) {
  673. SERIAL_PROTOCOLLNPGM("\nMesh only partially populated.\n");
  674. lcd_quick_feedback();
  675. STOW_PROBE();
  676. while (ubl_lcd_clicked()) idle();
  677. ubl.has_control_of_lcd_panel = false;
  678. restore_ubl_active_state_and_leave();
  679. safe_delay(50); // Debounce the Encoder wheel
  680. return;
  681. }
  682. location = find_closest_mesh_point_of_type(INVALID, lx, ly, 1, NULL, do_furthest); // the '1' says we want the location to be relative to the probe
  683. if (location.x_index >= 0 && location.y_index >= 0) {
  684. const float rawx = ubl.mesh_index_to_xpos[location.x_index],
  685. rawy = ubl.mesh_index_to_ypos[location.y_index];
  686. // TODO: Change to use `position_is_reachable` (for SCARA-compatibility)
  687. if (!WITHIN(rawx, MIN_PROBE_X, MAX_PROBE_X) || !WITHIN(rawy, MIN_PROBE_Y, MAX_PROBE_Y)) {
  688. SERIAL_ERROR_START;
  689. SERIAL_ERRORLNPGM("Attempt to probe off the bed.");
  690. ubl.has_control_of_lcd_panel = false;
  691. goto LEAVE;
  692. }
  693. const float measured_z = probe_pt(LOGICAL_X_POSITION(rawx), LOGICAL_Y_POSITION(rawy), stow_probe, g29_verbose_level);
  694. ubl.z_values[location.x_index][location.y_index] = measured_z;
  695. }
  696. if (do_ubl_mesh_map) ubl.display_map(map_type);
  697. } while (location.x_index >= 0 && location.y_index >= 0);
  698. LEAVE:
  699. STOW_PROBE();
  700. restore_ubl_active_state_and_leave();
  701. do_blocking_move_to_xy(
  702. constrain(lx - (X_PROBE_OFFSET_FROM_EXTRUDER), X_MIN_POS, X_MAX_POS),
  703. constrain(ly - (Y_PROBE_OFFSET_FROM_EXTRUDER), Y_MIN_POS, Y_MAX_POS)
  704. );
  705. }
  706. vector_3 tilt_mesh_based_on_3pts(const float &z1, const float &z2, const float &z3) {
  707. float c, d, t;
  708. int i, j;
  709. vector_3 v1 = vector_3( (ubl_3_point_1_X - ubl_3_point_2_X),
  710. (ubl_3_point_1_Y - ubl_3_point_2_Y),
  711. (z1 - z2) ),
  712. v2 = vector_3( (ubl_3_point_3_X - ubl_3_point_2_X),
  713. (ubl_3_point_3_Y - ubl_3_point_2_Y),
  714. (z3 - z2) ),
  715. normal = vector_3::cross(v1, v2);
  716. // printf("[%f,%f,%f] ", normal.x, normal.y, normal.z);
  717. /**
  718. * This code does two things. This vector is normal to the tilted plane.
  719. * However, we don't know its direction. We need it to point up. So if
  720. * Z is negative, we need to invert the sign of all components of the vector
  721. * We also need Z to be unity because we are going to be treating this triangle
  722. * as the sin() and cos() of the bed's tilt
  723. */
  724. const float inv_z = 1.0 / normal.z;
  725. normal.x *= inv_z;
  726. normal.y *= inv_z;
  727. normal.z = 1.0;
  728. //
  729. // All of 3 of these points should give us the same d constant
  730. //
  731. t = normal.x * ubl_3_point_1_X + normal.y * ubl_3_point_1_Y;
  732. d = t + normal.z * z1;
  733. c = d - t;
  734. SERIAL_ECHOPGM("d from 1st point: ");
  735. SERIAL_ECHO_F(d, 6);
  736. SERIAL_ECHOPGM(" c: ");
  737. SERIAL_ECHO_F(c, 6);
  738. SERIAL_EOL;
  739. t = normal.x * ubl_3_point_2_X + normal.y * ubl_3_point_2_Y;
  740. d = t + normal.z * z2;
  741. c = d - t;
  742. SERIAL_ECHOPGM("d from 2nd point: ");
  743. SERIAL_ECHO_F(d, 6);
  744. SERIAL_ECHOPGM(" c: ");
  745. SERIAL_ECHO_F(c, 6);
  746. SERIAL_EOL;
  747. t = normal.x * ubl_3_point_3_X + normal.y * ubl_3_point_3_Y;
  748. d = t + normal.z * z3;
  749. c = d - t;
  750. SERIAL_ECHOPGM("d from 3rd point: ");
  751. SERIAL_ECHO_F(d, 6);
  752. SERIAL_ECHOPGM(" c: ");
  753. SERIAL_ECHO_F(c, 6);
  754. SERIAL_EOL;
  755. for (i = 0; i < GRID_MAX_POINTS_X; i++) {
  756. for (j = 0; j < GRID_MAX_POINTS_Y; j++) {
  757. c = -((normal.x * (UBL_MESH_MIN_X + i * (MESH_X_DIST)) + normal.y * (UBL_MESH_MIN_Y + j * (MESH_Y_DIST))) - d);
  758. ubl.z_values[i][j] += c;
  759. }
  760. }
  761. return normal;
  762. }
  763. float use_encoder_wheel_to_measure_point() {
  764. KEEPALIVE_STATE(PAUSED_FOR_USER);
  765. while (!ubl_lcd_clicked()) { // we need the loop to move the nozzle based on the encoder wheel here!
  766. idle();
  767. if (ubl.encoder_diff) {
  768. do_blocking_move_to_z(current_position[Z_AXIS] + 0.01 * float(ubl.encoder_diff));
  769. ubl.encoder_diff = 0;
  770. }
  771. }
  772. KEEPALIVE_STATE(IN_HANDLER);
  773. return current_position[Z_AXIS];
  774. }
  775. float measure_business_card_thickness(const float &in_height) {
  776. ubl.has_control_of_lcd_panel = true;
  777. save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe
  778. SERIAL_PROTOCOLLNPGM("Place Shim Under Nozzle and Perform Measurement.");
  779. do_blocking_move_to_z(in_height);
  780. do_blocking_move_to_xy((float(X_MAX_POS) - float(X_MIN_POS)) / 2.0, (float(Y_MAX_POS) - float(Y_MIN_POS)) / 2.0);
  781. //, min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS])/2.0);
  782. const float z1 = use_encoder_wheel_to_measure_point();
  783. do_blocking_move_to_z(current_position[Z_AXIS] + SIZE_OF_LITTLE_RAISE);
  784. ubl.has_control_of_lcd_panel = false;
  785. SERIAL_PROTOCOLLNPGM("Remove Shim and Measure Bed Height.");
  786. const float z2 = use_encoder_wheel_to_measure_point();
  787. do_blocking_move_to_z(current_position[Z_AXIS] + SIZE_OF_LITTLE_RAISE);
  788. if (g29_verbose_level > 1) {
  789. SERIAL_PROTOCOLPGM("Business Card is: ");
  790. SERIAL_PROTOCOL_F(abs(z1 - z2), 6);
  791. SERIAL_PROTOCOLLNPGM("mm thick.");
  792. }
  793. restore_ubl_active_state_and_leave();
  794. return abs(z1 - z2);
  795. }
  796. void manually_probe_remaining_mesh(const float &lx, const float &ly, const float &z_clearance, const float &card_thickness, const bool do_ubl_mesh_map) {
  797. ubl.has_control_of_lcd_panel = true;
  798. save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe
  799. do_blocking_move_to_z(z_clearance);
  800. do_blocking_move_to_xy(lx, ly);
  801. float last_x = -9999.99, last_y = -9999.99;
  802. mesh_index_pair location;
  803. do {
  804. location = find_closest_mesh_point_of_type(INVALID, lx, ly, 0, NULL, false); // The '0' says we want to use the nozzle's position
  805. // It doesn't matter if the probe can't reach the NAN location. This is a manual probe.
  806. if (location.x_index < 0 && location.y_index < 0) continue;
  807. const float rawx = ubl.mesh_index_to_xpos[location.x_index],
  808. rawy = ubl.mesh_index_to_ypos[location.y_index];
  809. // TODO: Change to use `position_is_reachable` (for SCARA-compatibility)
  810. if (!WITHIN(rawx, X_MIN_POS, X_MAX_POS) || !WITHIN(rawy, Y_MIN_POS, Y_MAX_POS)) {
  811. SERIAL_ERROR_START;
  812. SERIAL_ERRORLNPGM("Attempt to probe off the bed.");
  813. ubl.has_control_of_lcd_panel = false;
  814. goto LEAVE;
  815. }
  816. const float xProbe = LOGICAL_X_POSITION(rawx),
  817. yProbe = LOGICAL_Y_POSITION(rawy),
  818. dx = xProbe - last_x,
  819. dy = yProbe - last_y;
  820. if (HYPOT(dx, dy) < BIG_RAISE_NOT_NEEDED)
  821. do_blocking_move_to_z(current_position[Z_AXIS] + SIZE_OF_LITTLE_RAISE);
  822. else
  823. do_blocking_move_to_z(z_clearance);
  824. do_blocking_move_to_xy(xProbe, yProbe);
  825. last_x = xProbe;
  826. last_y = yProbe;
  827. KEEPALIVE_STATE(PAUSED_FOR_USER);
  828. ubl.has_control_of_lcd_panel = true;
  829. if (do_ubl_mesh_map) ubl.display_map(map_type); // show user where we're probing
  830. while (!ubl_lcd_clicked()) { // we need the loop to move the nozzle based on the encoder wheel here!
  831. idle();
  832. if (ubl.encoder_diff) {
  833. do_blocking_move_to_z(current_position[Z_AXIS] + float(ubl.encoder_diff) / 100.0);
  834. ubl.encoder_diff = 0;
  835. }
  836. }
  837. const millis_t nxt = millis() + 1500L;
  838. while (ubl_lcd_clicked()) { // debounce and watch for abort
  839. idle();
  840. if (ELAPSED(millis(), nxt)) {
  841. SERIAL_PROTOCOLLNPGM("\nMesh only partially populated.");
  842. do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
  843. lcd_quick_feedback();
  844. while (ubl_lcd_clicked()) idle();
  845. ubl.has_control_of_lcd_panel = false;
  846. KEEPALIVE_STATE(IN_HANDLER);
  847. restore_ubl_active_state_and_leave();
  848. return;
  849. }
  850. }
  851. ubl.z_values[location.x_index][location.y_index] = current_position[Z_AXIS] - card_thickness;
  852. if (g29_verbose_level > 2) {
  853. SERIAL_PROTOCOLPGM("Mesh Point Measured at: ");
  854. SERIAL_PROTOCOL_F(ubl.z_values[location.x_index][location.y_index], 6);
  855. SERIAL_EOL;
  856. }
  857. } while (location.x_index >= 0 && location.y_index >= 0);
  858. if (do_ubl_mesh_map) ubl.display_map(map_type);
  859. LEAVE:
  860. restore_ubl_active_state_and_leave();
  861. KEEPALIVE_STATE(IN_HANDLER);
  862. do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
  863. do_blocking_move_to_xy(lx, ly);
  864. }
  865. bool g29_parameter_parsing() {
  866. bool err_flag = false;
  867. LCD_MESSAGEPGM("Doing G29 UBL!");
  868. lcd_quick_feedback();
  869. x_flag = code_seen('X') && code_has_value();
  870. x_pos = x_flag ? code_value_float() : current_position[X_AXIS];
  871. y_flag = code_seen('Y') && code_has_value();
  872. y_pos = y_flag ? code_value_float() : current_position[Y_AXIS];
  873. repetition_cnt = 0;
  874. repeat_flag = code_seen('R');
  875. if (repeat_flag) {
  876. repetition_cnt = code_has_value() ? code_value_int() : (GRID_MAX_POINTS_X) * (GRID_MAX_POINTS_Y);
  877. if (repetition_cnt < 1) {
  878. SERIAL_PROTOCOLLNPGM("Invalid Repetition count.\n");
  879. return UBL_ERR;
  880. }
  881. }
  882. g29_verbose_level = code_seen('V') ? code_value_int() : 0;
  883. if (!WITHIN(g29_verbose_level, 0, 4)) {
  884. SERIAL_PROTOCOLLNPGM("Invalid Verbose Level specified. (0-4)\n");
  885. err_flag = true;
  886. }
  887. if (code_seen('G')) {
  888. grid_size = code_has_value() ? code_value_int() : 3;
  889. if (!WITHIN(grid_size, 2, 5)) {
  890. SERIAL_PROTOCOLLNPGM("Invalid grid probe points specified.\n");
  891. err_flag = true;
  892. }
  893. }
  894. if (x_flag != y_flag) {
  895. SERIAL_PROTOCOLLNPGM("Both X & Y locations must be specified.\n");
  896. err_flag = true;
  897. }
  898. if (!WITHIN(RAW_X_POSITION(x_pos), X_MIN_POS, X_MAX_POS)) {
  899. SERIAL_PROTOCOLLNPGM("Invalid X location specified.\n");
  900. err_flag = true;
  901. SERIAL_PROTOCOLPAIR("\nx_flag = ", x_flag); // These print blocks are only useful because sometimes the
  902. SERIAL_PROTOCOLPAIR("\nx_pos = ", x_pos ); // data corruption causes x_pos and y_pos to be crazy. This gets deleted soon.
  903. SERIAL_PROTOCOLPAIR("\ncurrent[] = ", current_position[X_AXIS]);
  904. SERIAL_PROTOCOLPAIR("\nX_MIN_POS = ", X_MIN_POS);
  905. SERIAL_PROTOCOLPAIR("\nX_MAX_POS = ", X_MAX_POS);
  906. SERIAL_PROTOCOLPAIR("\nRAW_X_POSITION() = ", RAW_X_POSITION(x_pos));
  907. SERIAL_PROTOCOLPAIR("\nwithin() = ", WITHIN(RAW_X_POSITION(x_pos), X_MIN_POS, X_MAX_POS));
  908. SERIAL_PROTOCOL("\n");
  909. }
  910. if (!WITHIN(RAW_Y_POSITION(y_pos), Y_MIN_POS, Y_MAX_POS)) {
  911. SERIAL_PROTOCOLLNPGM("Invalid Y location specified.\n");
  912. err_flag = true;
  913. SERIAL_PROTOCOLPAIR("\ny_flag = ", y_flag); // These print blocks are only useful because sometimes the
  914. SERIAL_PROTOCOLPAIR("\ny_pos = ", y_pos ); // data corruption causes x_pos and y_pos to be crazy. This gets deleted soon.
  915. SERIAL_PROTOCOLPAIR("\ncurrent[] = ", current_position[Y_AXIS]);
  916. SERIAL_PROTOCOLPAIR("\nY_MIN_POS = ", Y_MIN_POS);
  917. SERIAL_PROTOCOLPAIR("\nY_MAX_POS = ", Y_MAX_POS);
  918. SERIAL_PROTOCOLPAIR("\nRAW_Y_POSITION() = ", RAW_Y_POSITION(y_pos));
  919. SERIAL_PROTOCOLPAIR("\nwithin() = ", WITHIN(RAW_Y_POSITION(y_pos), Y_MIN_POS, Y_MAX_POS));
  920. SERIAL_PROTOCOL("\n");
  921. }
  922. if (err_flag) return UBL_ERR;
  923. if (code_seen('A')) { // Activate the Unified Bed Leveling System
  924. ubl.state.active = 1;
  925. SERIAL_PROTOCOLLNPGM("Unified Bed Leveling System activated.\n");
  926. ubl.store_state();
  927. }
  928. c_flag = code_seen('C') && code_has_value();
  929. ubl_constant = c_flag ? code_value_float() : 0.0;
  930. if (code_seen('D')) { // Disable the Unified Bed Leveling System
  931. ubl.state.active = 0;
  932. SERIAL_PROTOCOLLNPGM("Unified Bed Leveling System de-activated.\n");
  933. ubl.store_state();
  934. }
  935. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  936. if (code_seen('F') && code_has_value()) {
  937. const float fh = code_value_float();
  938. if (!WITHIN(fh, 0.0, 100.0)) {
  939. SERIAL_PROTOCOLLNPGM("?Bed Level Correction Fade Height Not Plausible.\n");
  940. return UBL_ERR;
  941. }
  942. set_z_fade_height(fh);
  943. }
  944. #endif
  945. map_type = code_seen('O') && code_has_value() ? code_value_int() : 0;
  946. if (!WITHIN(map_type, 0, 1)) {
  947. SERIAL_PROTOCOLLNPGM("Invalid map type.\n");
  948. return UBL_ERR;
  949. }
  950. if (code_seen('M')) { // Check if a map type was specified
  951. map_type = code_has_value() ? code_value_int() : 0;
  952. if (!WITHIN(map_type, 0, 1)) {
  953. SERIAL_PROTOCOLLNPGM("Invalid map type.\n");
  954. return UBL_ERR;
  955. }
  956. }
  957. return UBL_OK;
  958. }
  959. /**
  960. * This function goes away after G29 debug is complete. But for right now, it is a handy
  961. * routine to dump binary data structures.
  962. */
  963. /*
  964. void dump(char * const str, const float &f) {
  965. char *ptr;
  966. SERIAL_PROTOCOL(str);
  967. SERIAL_PROTOCOL_F(f, 8);
  968. SERIAL_PROTOCOLPGM(" ");
  969. ptr = (char*)&f;
  970. for (uint8_t i = 0; i < 4; i++)
  971. SERIAL_PROTOCOLPAIR(" ", hex_byte(*ptr++));
  972. SERIAL_PROTOCOLPAIR(" isnan()=", isnan(f));
  973. SERIAL_PROTOCOLPAIR(" isinf()=", isinf(f));
  974. if (f == -INFINITY)
  975. SERIAL_PROTOCOLPGM(" Minus Infinity detected.");
  976. SERIAL_EOL;
  977. }
  978. */
  979. static int ubl_state_at_invocation = 0,
  980. ubl_state_recursion_chk = 0;
  981. void save_ubl_active_state_and_disable() {
  982. ubl_state_recursion_chk++;
  983. if (ubl_state_recursion_chk != 1) {
  984. SERIAL_ECHOLNPGM("save_ubl_active_state_and_disabled() called multiple times in a row.");
  985. LCD_MESSAGEPGM("save_UBL_active() error");
  986. lcd_quick_feedback();
  987. return;
  988. }
  989. ubl_state_at_invocation = ubl.state.active;
  990. ubl.state.active = 0;
  991. }
  992. void restore_ubl_active_state_and_leave() {
  993. if (--ubl_state_recursion_chk) {
  994. SERIAL_ECHOLNPGM("restore_ubl_active_state_and_leave() called too many times.");
  995. LCD_MESSAGEPGM("restore_UBL_active() error");
  996. lcd_quick_feedback();
  997. return;
  998. }
  999. ubl.state.active = ubl_state_at_invocation;
  1000. }
  1001. /**
  1002. * Much of the 'What?' command can be eliminated. But until we are fully debugged, it is
  1003. * good to have the extra information. Soon... we prune this to just a few items
  1004. */
  1005. void g29_what_command() {
  1006. const uint16_t k = E2END - ubl.eeprom_start;
  1007. SERIAL_PROTOCOLPGM("Unified Bed Leveling System Version " UBL_VERSION " ");
  1008. if (ubl.state.active)
  1009. SERIAL_PROTOCOLCHAR('A');
  1010. else
  1011. SERIAL_PROTOCOLPGM("Ina");
  1012. SERIAL_PROTOCOLLNPGM("ctive.\n");
  1013. safe_delay(50);
  1014. if (ubl.state.eeprom_storage_slot == -1)
  1015. SERIAL_PROTOCOLPGM("No Mesh Loaded.");
  1016. else {
  1017. SERIAL_PROTOCOLPAIR("Mesh ", ubl.state.eeprom_storage_slot);
  1018. SERIAL_PROTOCOLPGM(" Loaded.");
  1019. }
  1020. SERIAL_EOL;
  1021. safe_delay(50);
  1022. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  1023. SERIAL_PROTOCOLLNPAIR("planner.z_fade_height : ", planner.z_fade_height);
  1024. #endif
  1025. SERIAL_PROTOCOLPGM("z_offset: ");
  1026. SERIAL_PROTOCOL_F(ubl.state.z_offset, 6);
  1027. SERIAL_EOL;
  1028. safe_delay(50);
  1029. SERIAL_PROTOCOLPGM("X-Axis Mesh Points at: ");
  1030. for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
  1031. SERIAL_PROTOCOL_F(LOGICAL_X_POSITION(ubl.mesh_index_to_xpos[i]), 1);
  1032. SERIAL_PROTOCOLPGM(" ");
  1033. safe_delay(50);
  1034. }
  1035. SERIAL_EOL;
  1036. SERIAL_PROTOCOLPGM("Y-Axis Mesh Points at: ");
  1037. for (uint8_t i = 0; i < GRID_MAX_POINTS_Y; i++) {
  1038. SERIAL_PROTOCOL_F(LOGICAL_Y_POSITION(ubl.mesh_index_to_ypos[i]), 1);
  1039. SERIAL_PROTOCOLPGM(" ");
  1040. safe_delay(50);
  1041. }
  1042. SERIAL_EOL;
  1043. #if HAS_KILL
  1044. SERIAL_PROTOCOLPAIR("Kill pin on :", KILL_PIN);
  1045. SERIAL_PROTOCOLLNPAIR(" state:", READ(KILL_PIN));
  1046. #endif
  1047. SERIAL_EOL;
  1048. safe_delay(50);
  1049. SERIAL_PROTOCOLLNPAIR("ubl_state_at_invocation :", ubl_state_at_invocation);
  1050. SERIAL_EOL;
  1051. SERIAL_PROTOCOLLNPAIR("ubl_state_recursion_chk :", ubl_state_recursion_chk);
  1052. SERIAL_EOL;
  1053. safe_delay(50);
  1054. SERIAL_PROTOCOLLNPAIR("Free EEPROM space starts at: ", hex_address((void*)ubl.eeprom_start));
  1055. SERIAL_PROTOCOLLNPAIR("end of EEPROM : ", hex_address((void*)E2END));
  1056. safe_delay(50);
  1057. SERIAL_PROTOCOLLNPAIR("sizeof(ubl) : ", (int)sizeof(ubl));
  1058. SERIAL_EOL;
  1059. SERIAL_PROTOCOLLNPAIR("z_value[][] size: ", (int)sizeof(ubl.z_values));
  1060. SERIAL_EOL;
  1061. safe_delay(50);
  1062. SERIAL_PROTOCOLLNPAIR("EEPROM free for UBL: ", hex_address((void*)k));
  1063. safe_delay(50);
  1064. SERIAL_PROTOCOLPAIR("EEPROM can hold ", k / sizeof(ubl.z_values));
  1065. SERIAL_PROTOCOLLNPGM(" meshes.\n");
  1066. safe_delay(50);
  1067. SERIAL_PROTOCOLPAIR("sizeof(ubl.state) : ", (int)sizeof(ubl.state));
  1068. SERIAL_PROTOCOLPAIR("\nGRID_MAX_POINTS_X ", GRID_MAX_POINTS_X);
  1069. SERIAL_PROTOCOLPAIR("\nGRID_MAX_POINTS_Y ", GRID_MAX_POINTS_Y);
  1070. safe_delay(50);
  1071. SERIAL_PROTOCOLPAIR("\nUBL_MESH_MIN_X ", UBL_MESH_MIN_X);
  1072. SERIAL_PROTOCOLPAIR("\nUBL_MESH_MIN_Y ", UBL_MESH_MIN_Y);
  1073. safe_delay(50);
  1074. SERIAL_PROTOCOLPAIR("\nUBL_MESH_MAX_X ", UBL_MESH_MAX_X);
  1075. SERIAL_PROTOCOLPAIR("\nUBL_MESH_MAX_Y ", UBL_MESH_MAX_Y);
  1076. safe_delay(50);
  1077. SERIAL_PROTOCOLPGM("\nMESH_X_DIST ");
  1078. SERIAL_PROTOCOL_F(MESH_X_DIST, 6);
  1079. SERIAL_PROTOCOLPGM("\nMESH_Y_DIST ");
  1080. SERIAL_PROTOCOL_F(MESH_Y_DIST, 6);
  1081. SERIAL_EOL;
  1082. safe_delay(50);
  1083. if (!ubl.sanity_check())
  1084. SERIAL_PROTOCOLLNPGM("Unified Bed Leveling sanity checks passed.");
  1085. }
  1086. /**
  1087. * When we are fully debugged, the EEPROM dump command will get deleted also. But
  1088. * right now, it is good to have the extra information. Soon... we prune this.
  1089. */
  1090. void g29_eeprom_dump() {
  1091. unsigned char cccc;
  1092. uint16_t kkkk;
  1093. SERIAL_ECHO_START;
  1094. SERIAL_ECHOLNPGM("EEPROM Dump:");
  1095. for (uint16_t i = 0; i < E2END + 1; i += 16) {
  1096. if (!(i & 0x3)) idle();
  1097. print_hex_word(i);
  1098. SERIAL_ECHOPGM(": ");
  1099. for (uint16_t j = 0; j < 16; j++) {
  1100. kkkk = i + j;
  1101. eeprom_read_block(&cccc, (void *)kkkk, 1);
  1102. print_hex_byte(cccc);
  1103. SERIAL_ECHO(' ');
  1104. }
  1105. SERIAL_EOL;
  1106. }
  1107. SERIAL_EOL;
  1108. }
  1109. /**
  1110. * When we are fully debugged, this may go away. But there are some valid
  1111. * use cases for the users. So we can wait and see what to do with it.
  1112. */
  1113. void g29_compare_current_mesh_to_stored_mesh() {
  1114. float tmp_z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  1115. if (!code_has_value()) {
  1116. SERIAL_PROTOCOLLNPGM("?Mesh # required.\n");
  1117. return;
  1118. }
  1119. storage_slot = code_value_int();
  1120. int16_t j = (UBL_LAST_EEPROM_INDEX - ubl.eeprom_start) / sizeof(tmp_z_values);
  1121. if (!WITHIN(storage_slot, 0, j - 1) || ubl.eeprom_start <= 0) {
  1122. SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n");
  1123. return;
  1124. }
  1125. j = UBL_LAST_EEPROM_INDEX - (storage_slot + 1) * sizeof(tmp_z_values);
  1126. eeprom_read_block((void *)&tmp_z_values, (void *)j, sizeof(tmp_z_values));
  1127. SERIAL_ECHOPAIR("Subtracting Mesh ", storage_slot);
  1128. SERIAL_PROTOCOLLNPAIR(" loaded from EEPROM address ", hex_address((void*)j)); // Soon, we can remove the extra clutter of printing
  1129. // the address in the EEPROM where the Mesh is stored.
  1130. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  1131. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  1132. ubl.z_values[x][y] -= tmp_z_values[x][y];
  1133. }
  1134. mesh_index_pair find_closest_mesh_point_of_type(const MeshPointType type, const float &lx, const float &ly, const bool probe_as_reference, unsigned int bits[16], bool far_flag) {
  1135. float distance, closest = far_flag ? -99999.99 : 99999.99;
  1136. mesh_index_pair return_val;
  1137. return_val.x_index = return_val.y_index = -1;
  1138. const float current_x = current_position[X_AXIS],
  1139. current_y = current_position[Y_AXIS];
  1140. // Get our reference position. Either the nozzle or probe location.
  1141. const float px = lx - (probe_as_reference ? X_PROBE_OFFSET_FROM_EXTRUDER : 0),
  1142. py = ly - (probe_as_reference ? Y_PROBE_OFFSET_FROM_EXTRUDER : 0);
  1143. for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
  1144. for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
  1145. if ( (type == INVALID && isnan(ubl.z_values[i][j])) // Check to see if this location holds the right thing
  1146. || (type == REAL && !isnan(ubl.z_values[i][j]))
  1147. || (type == SET_IN_BITMAP && is_bit_set(bits, i, j))
  1148. ) {
  1149. // We only get here if we found a Mesh Point of the specified type
  1150. const float rawx = ubl.mesh_index_to_xpos[i], // Check if we can probe this mesh location
  1151. rawy = ubl.mesh_index_to_ypos[j];
  1152. // If using the probe as the reference there are some unreachable locations.
  1153. // Prune them from the list and ignore them till the next Phase (manual nozzle probing).
  1154. if (probe_as_reference &&
  1155. (!WITHIN(rawx, MIN_PROBE_X, MAX_PROBE_X) || !WITHIN(rawy, MIN_PROBE_Y, MAX_PROBE_Y))
  1156. ) continue;
  1157. // Unreachable. Check if it's the closest location to the nozzle.
  1158. // Add in a weighting factor that considers the current location of the nozzle.
  1159. const float mx = LOGICAL_X_POSITION(rawx), // Check if we can probe this mesh location
  1160. my = LOGICAL_Y_POSITION(rawy);
  1161. distance = HYPOT(px - mx, py - my) + HYPOT(current_x - mx, current_y - my) * 0.1;
  1162. if (far_flag) { // If doing the far_flag action, we want to be as far as possible
  1163. for (uint8_t k = 0; k < GRID_MAX_POINTS_X; k++) { // from the starting point and from any other probed points. We
  1164. for (uint8_t l = 0; l < GRID_MAX_POINTS_Y; l++) { // want the next point spread out and filling in any blank spaces
  1165. if (!isnan(ubl.z_values[k][l])) { // in the mesh. So we add in some of the distance to every probed
  1166. distance += sq(i - k) * (MESH_X_DIST) * .05 // point we can find.
  1167. + sq(j - l) * (MESH_Y_DIST) * .05;
  1168. }
  1169. }
  1170. }
  1171. }
  1172. if (far_flag == (distance > closest) && distance != closest) { // if far_flag, look for farthest point
  1173. closest = distance; // We found a closer/farther location with
  1174. return_val.x_index = i; // the specified type of mesh value.
  1175. return_val.y_index = j;
  1176. return_val.distance = closest;
  1177. }
  1178. }
  1179. } // for j
  1180. } // for i
  1181. return return_val;
  1182. }
  1183. void fine_tune_mesh(const float &lx, const float &ly, const bool do_ubl_mesh_map) {
  1184. if (!code_seen('R')) // fine_tune_mesh() is special. If no repetion count flag is specified
  1185. repetition_cnt = 1; // we know to do exactly one mesh location. Otherwise we use what the parser decided.
  1186. mesh_index_pair location;
  1187. uint16_t not_done[16];
  1188. int32_t round_off;
  1189. save_ubl_active_state_and_disable();
  1190. memset(not_done, 0xFF, sizeof(not_done));
  1191. LCD_MESSAGEPGM("Fine Tuning Mesh");
  1192. do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
  1193. do_blocking_move_to_xy(lx, ly);
  1194. do {
  1195. location = find_closest_mesh_point_of_type(SET_IN_BITMAP, lx, ly, 0, not_done, false); // The '0' says we want to use the nozzle's position
  1196. // It doesn't matter if the probe can not reach this
  1197. // location. This is a manual edit of the Mesh Point.
  1198. if (location.x_index < 0 && location.y_index < 0) continue; // abort if we can't find any more points.
  1199. bit_clear(not_done, location.x_index, location.y_index); // Mark this location as 'adjusted' so we will find a
  1200. // different location the next time through the loop
  1201. const float rawx = ubl.mesh_index_to_xpos[location.x_index],
  1202. rawy = ubl.mesh_index_to_ypos[location.y_index];
  1203. // TODO: Change to use `position_is_reachable` (for SCARA-compatibility)
  1204. if (!WITHIN(rawx, X_MIN_POS, X_MAX_POS) || !WITHIN(rawy, Y_MIN_POS, Y_MAX_POS)) { // In theory, we don't need this check.
  1205. SERIAL_ERROR_START;
  1206. SERIAL_ERRORLNPGM("Attempt to edit off the bed."); // This really can't happen, but do the check for now
  1207. ubl.has_control_of_lcd_panel = false;
  1208. goto FINE_TUNE_EXIT;
  1209. }
  1210. do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE); // Move the nozzle to where we are going to edit
  1211. do_blocking_move_to_xy(LOGICAL_X_POSITION(rawx), LOGICAL_Y_POSITION(rawy));
  1212. float new_z = ubl.z_values[location.x_index][location.y_index];
  1213. round_off = (int32_t)(new_z * 1000.0); // we chop off the last digits just to be clean. We are rounding to the
  1214. new_z = float(round_off) / 1000.0;
  1215. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1216. ubl.has_control_of_lcd_panel = true;
  1217. if (do_ubl_mesh_map) ubl.display_map(map_type); // show the user which point is being adjusted
  1218. lcd_implementation_clear();
  1219. lcd_mesh_edit_setup(new_z);
  1220. do {
  1221. new_z = lcd_mesh_edit();
  1222. idle();
  1223. } while (!ubl_lcd_clicked());
  1224. lcd_return_to_status();
  1225. ubl.has_control_of_lcd_panel = true; // There is a race condition for the Encoder Wheel getting clicked.
  1226. // It could get detected in lcd_mesh_edit (actually _lcd_mesh_fine_tune)
  1227. // or here.
  1228. const millis_t nxt = millis() + 1500UL;
  1229. while (ubl_lcd_clicked()) { // debounce and watch for abort
  1230. idle();
  1231. if (ELAPSED(millis(), nxt)) {
  1232. lcd_return_to_status();
  1233. //SERIAL_PROTOCOLLNPGM("\nFine Tuning of Mesh Stopped.");
  1234. do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
  1235. LCD_MESSAGEPGM("Mesh Editing Stopped");
  1236. while (ubl_lcd_clicked()) idle();
  1237. goto FINE_TUNE_EXIT;
  1238. }
  1239. }
  1240. safe_delay(20); // We don't want any switch noise.
  1241. ubl.z_values[location.x_index][location.y_index] = new_z;
  1242. lcd_implementation_clear();
  1243. } while (location.x_index >= 0 && location.y_index >= 0 && (--repetition_cnt>0));
  1244. FINE_TUNE_EXIT:
  1245. ubl.has_control_of_lcd_panel = false;
  1246. KEEPALIVE_STATE(IN_HANDLER);
  1247. if (do_ubl_mesh_map) ubl.display_map(map_type);
  1248. restore_ubl_active_state_and_leave();
  1249. do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
  1250. do_blocking_move_to_xy(lx, ly);
  1251. LCD_MESSAGEPGM("Done Editing Mesh");
  1252. SERIAL_ECHOLNPGM("Done Editing Mesh");
  1253. }
  1254. void tilt_mesh_based_on_probed_grid(const bool do_ubl_mesh_map) {
  1255. int8_t grid_G_index_to_xpos[grid_size], // UBL MESH X index to be probed
  1256. grid_G_index_to_ypos[grid_size], // UBL MESH Y index to be probed
  1257. i, j ,k, xCount, yCount, xi, yi; // counter variables
  1258. float z_values_G[grid_size][grid_size];
  1259. linear_fit *results;
  1260. for (yi = 0; yi < grid_size; yi++)
  1261. for (xi = 0; xi < grid_size; xi++)
  1262. z_values_G[xi][yi] = NAN;
  1263. uint8_t x_min = GRID_MAX_POINTS_X - 1,
  1264. x_max = 0,
  1265. y_min = GRID_MAX_POINTS_Y - 1,
  1266. y_max = 0;
  1267. //find min & max probeable points in the mesh
  1268. for (xCount = 0; xCount < GRID_MAX_POINTS_X; xCount++) {
  1269. for (yCount = 0; yCount < GRID_MAX_POINTS_Y; yCount++) {
  1270. if (WITHIN(ubl.mesh_index_to_xpos[xCount], MIN_PROBE_X, MAX_PROBE_X) && WITHIN(ubl.mesh_index_to_ypos[yCount], MIN_PROBE_Y, MAX_PROBE_Y)) {
  1271. NOMORE(x_min, xCount);
  1272. NOLESS(x_max, xCount);
  1273. NOMORE(y_min, yCount);
  1274. NOLESS(y_max, yCount);
  1275. }
  1276. }
  1277. }
  1278. if (x_max - x_min + 1 < grid_size || y_max - y_min + 1 < grid_size) {
  1279. SERIAL_ECHOPAIR("ERROR - probeable UBL MESH smaller than grid - X points: ", x_max - x_min + 1);
  1280. SERIAL_ECHOPAIR(" Y points: ", y_max - y_min + 1);
  1281. SERIAL_ECHOLNPAIR(" grid: ", grid_size);
  1282. return;
  1283. }
  1284. // populate X matrix
  1285. for (xi = 0; xi < grid_size; xi++) {
  1286. grid_G_index_to_xpos[xi] = x_min + xi * (x_max - x_min) / (grid_size - 1);
  1287. if (xi > 0 && grid_G_index_to_xpos[xi - 1] == grid_G_index_to_xpos[xi]) {
  1288. grid_G_index_to_xpos[xi] = grid_G_index_to_xpos[xi - 1] + 1;
  1289. }
  1290. }
  1291. // populate Y matrix
  1292. for (yi = 0; yi < grid_size; yi++) {
  1293. grid_G_index_to_ypos[yi] = y_min + yi * (y_max - y_min) / (grid_size - 1);
  1294. if (yi > 0 && grid_G_index_to_ypos[yi - 1] == grid_G_index_to_ypos[yi]) {
  1295. grid_G_index_to_ypos[yi] = grid_G_index_to_ypos[yi - 1] + 1;
  1296. }
  1297. }
  1298. ubl.has_control_of_lcd_panel = true;
  1299. save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe
  1300. DEPLOY_PROBE();
  1301. // this is a copy of the G29 AUTO_BED_LEVELING_BILINEAR method/code
  1302. #undef PROBE_Y_FIRST
  1303. #if ENABLED(PROBE_Y_FIRST)
  1304. #define PR_OUTER_VAR xCount
  1305. #define PR_OUTER_NUM grid_size
  1306. #define PR_INNER_VAR yCount
  1307. #define PR_INNER_NUM grid_size
  1308. #else
  1309. #define PR_OUTER_VAR yCount
  1310. #define PR_OUTER_NUM grid_size
  1311. #define PR_INNER_VAR xCount
  1312. #define PR_INNER_NUM grid_size
  1313. #endif
  1314. bool zig = PR_OUTER_NUM & 1; // Always end at RIGHT and BACK_PROBE_BED_POSITION
  1315. // Outer loop is Y with PROBE_Y_FIRST disabled
  1316. for (PR_OUTER_VAR = 0; PR_OUTER_VAR < PR_OUTER_NUM; PR_OUTER_VAR++) {
  1317. int8_t inStart, inStop, inInc;
  1318. SERIAL_ECHOPAIR("\nPR_OUTER_VAR: ", PR_OUTER_VAR);
  1319. if (zig) { // away from origin
  1320. inStart = 0;
  1321. inStop = PR_INNER_NUM;
  1322. inInc = 1;
  1323. }
  1324. else { // towards origin
  1325. inStart = PR_INNER_NUM - 1;
  1326. inStop = -1;
  1327. inInc = -1;
  1328. }
  1329. zig ^= true; // zag
  1330. // Inner loop is Y with PROBE_Y_FIRST enabled
  1331. for (PR_INNER_VAR = inStart; PR_INNER_VAR != inStop; PR_INNER_VAR += inInc) {
  1332. //SERIAL_ECHOPAIR("\nPR_INNER_VAR: ", PR_INNER_VAR);
  1333. //SERIAL_ECHOPAIR("\nCheckpoint: ", 1);
  1334. // end of G29 AUTO_BED_LEVELING_BILINEAR method/code
  1335. if (ubl_lcd_clicked()) {
  1336. //SERIAL_ECHOPAIR("\nCheckpoint: ", 2);
  1337. SERIAL_ECHOLNPGM("\nGrid only partially populated.\n");
  1338. lcd_quick_feedback();
  1339. STOW_PROBE();
  1340. //SERIAL_ECHOPAIR("\nCheckpoint: ", 3);
  1341. while (ubl_lcd_clicked()) idle();
  1342. //SERIAL_ECHOPAIR("\nCheckpoint: ", 4);
  1343. ubl.has_control_of_lcd_panel = false;
  1344. restore_ubl_active_state_and_leave();
  1345. safe_delay(50); // Debounce the Encoder wheel
  1346. return;
  1347. }
  1348. //SERIAL_ECHOPAIR("\nCheckpoint: ", 5);
  1349. const float probeX = ubl.mesh_index_to_xpos[grid_G_index_to_xpos[xCount]], //where we want the probe to be
  1350. probeY = ubl.mesh_index_to_ypos[grid_G_index_to_ypos[yCount]];
  1351. //SERIAL_ECHOPAIR("\nCheckpoint: ", 6);
  1352. const float measured_z = probe_pt(LOGICAL_X_POSITION(probeX), LOGICAL_Y_POSITION(probeY), code_seen('E'), (code_seen('V') && code_has_value()) ? code_value_int() : 0); // takes into account the offsets
  1353. //SERIAL_ECHOPAIR("\nmeasured_z: ", measured_z);
  1354. z_values_G[xCount][yCount] = measured_z;
  1355. //SERIAL_ECHOLNPGM("\nFine Tuning of Mesh Stopped.");
  1356. }
  1357. }
  1358. //SERIAL_ECHOLNPGM("\nDone probing...\n");
  1359. STOW_PROBE();
  1360. restore_ubl_active_state_and_leave();
  1361. // ?? ubl.has_control_of_lcd_panel = true;
  1362. //do_blocking_move_to_xy(ubl.mesh_index_to_xpos[grid_G_index_to_xpos[0]], ubl.mesh_index_to_ypos[grid_G_index_to_ypos[0]]);
  1363. // least squares code
  1364. double xxx5[] = { 0,50,100,150,200, 20,70,120,165,195, 0,50,100,150,200, 0,55,100,150,200, 0,65,100,150,205 },
  1365. yyy5[] = { 0, 1, 2, 3, 4, 50, 51, 52, 53, 54, 100, 101,102,103,104, 150,151,152,153,154, 200,201,202,203,204 },
  1366. zzz5[] = { 0.01,.002,-.01,-.02,0, 0.01,.002,-.01,-.02,0, 0.01,.002,-.01,-.02,0, 0.01,.002,-.01,-.02,0, 0.01,.002,-.01,-.012,0.01},
  1367. xxx0[] = { 0.0, 0.0, 1.0 }, // Expect [0,0,0.1,0]
  1368. yyy0[] = { 0.0, 1.0, 0.0 },
  1369. zzz0[] = { 0.1, 0.1, 0.1 },
  1370. xxx[] = { 0.0, 0.0, 1.0, 1.0 }, // Expect [0.1,0,0.05,0]
  1371. yyy[] = { 0.0, 1.0, 0.0, 1.0 },
  1372. zzz[] = { 0.05, 0.05, 0.15, 0.15 };
  1373. results = lsf_linear_fit(xxx5, yyy5, zzz5, COUNT(xxx5));
  1374. SERIAL_ECHOPAIR("\nxxx5->A =", results->A);
  1375. SERIAL_ECHOPAIR("\nxxx5->B =", results->B);
  1376. SERIAL_ECHOPAIR("\nxxx5->D =", results->D);
  1377. SERIAL_EOL;
  1378. results = lsf_linear_fit(xxx0, yyy0, zzz0, COUNT(xxx0));
  1379. SERIAL_ECHOPAIR("\nxxx0->A =", results->A);
  1380. SERIAL_ECHOPAIR("\nxxx0->B =", results->B);
  1381. SERIAL_ECHOPAIR("\nxxx0->D =", results->D);
  1382. SERIAL_EOL;
  1383. results = lsf_linear_fit(xxx, yyy, zzz, COUNT(xxx));
  1384. SERIAL_ECHOPAIR("\nxxx->A =", results->A);
  1385. SERIAL_ECHOPAIR("\nxxx->B =", results->B);
  1386. SERIAL_ECHOPAIR("\nxxx->D =", results->D);
  1387. SERIAL_EOL;
  1388. } // end of tilt_mesh_based_on_probed_grid()
  1389. #endif // AUTO_BED_LEVELING_UBL