My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Du kan inte välja fler än 25 ämnen Ämnen måste starta med en bokstav eller siffra, kan innehålla bindestreck ('-') och vara max 35 tecken långa.

Marlin_main.cpp 187KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #define SERVO_LEVELING (defined(ENABLE_AUTO_BED_LEVELING) && PROBE_SERVO_DEACTIVATION_DELAY > 0)
  31. #ifdef MESH_BED_LEVELING
  32. #include "mesh_bed_leveling.h"
  33. #endif
  34. #include "ultralcd.h"
  35. #include "planner.h"
  36. #include "stepper.h"
  37. #include "temperature.h"
  38. #include "motion_control.h"
  39. #include "cardreader.h"
  40. #include "watchdog.h"
  41. #include "ConfigurationStore.h"
  42. #include "language.h"
  43. #include "pins_arduino.h"
  44. #include "math.h"
  45. #ifdef BLINKM
  46. #include "BlinkM.h"
  47. #include "Wire.h"
  48. #endif
  49. #if NUM_SERVOS > 0
  50. #include "Servo.h"
  51. #endif
  52. #if HAS_DIGIPOTSS
  53. #include <SPI.h>
  54. #endif
  55. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  56. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  57. //Implemented Codes
  58. //-------------------
  59. // G0 -> G1
  60. // G1 - Coordinated Movement X Y Z E
  61. // G2 - CW ARC
  62. // G3 - CCW ARC
  63. // G4 - Dwell S<seconds> or P<milliseconds>
  64. // G10 - retract filament according to settings of M207
  65. // G11 - retract recover filament according to settings of M208
  66. // G28 - Home one or more axes
  67. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  68. // G30 - Single Z Probe, probes bed at current XY location.
  69. // G31 - Dock sled (Z_PROBE_SLED only)
  70. // G32 - Undock sled (Z_PROBE_SLED only)
  71. // G90 - Use Absolute Coordinates
  72. // G91 - Use Relative Coordinates
  73. // G92 - Set current position to coordinates given
  74. // M Codes
  75. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  76. // M1 - Same as M0
  77. // M17 - Enable/Power all stepper motors
  78. // M18 - Disable all stepper motors; same as M84
  79. // M20 - List SD card
  80. // M21 - Init SD card
  81. // M22 - Release SD card
  82. // M23 - Select SD file (M23 filename.g)
  83. // M24 - Start/resume SD print
  84. // M25 - Pause SD print
  85. // M26 - Set SD position in bytes (M26 S12345)
  86. // M27 - Report SD print status
  87. // M28 - Start SD write (M28 filename.g)
  88. // M29 - Stop SD write
  89. // M30 - Delete file from SD (M30 filename.g)
  90. // M31 - Output time since last M109 or SD card start to serial
  91. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  92. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  93. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  94. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  95. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  96. // M48 - Measure Z_Probe repeatability. M48 [n # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
  97. // M80 - Turn on Power Supply
  98. // M81 - Turn off Power Supply
  99. // M82 - Set E codes absolute (default)
  100. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  101. // M84 - Disable steppers until next move,
  102. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  103. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  104. // M92 - Set axis_steps_per_unit - same syntax as G92
  105. // M104 - Set extruder target temp
  106. // M105 - Read current temp
  107. // M106 - Fan on
  108. // M107 - Fan off
  109. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  110. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  111. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  112. // M112 - Emergency stop
  113. // M114 - Output current position to serial port
  114. // M115 - Capabilities string
  115. // M117 - display message
  116. // M119 - Output Endstop status to serial port
  117. // M120 - Enable endstop detection
  118. // M121 - Disable endstop detection
  119. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  120. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  121. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  122. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  123. // M140 - Set bed target temp
  124. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  125. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  126. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  127. // M200 - set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).:D<millimeters>-
  128. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  129. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  130. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  131. // M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in mm/sec^2
  132. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  133. // M206 - Set additional homing offset
  134. // M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  135. // M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  136. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  137. // M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  138. // M220 - Set speed factor override percentage: S<factor in percent>
  139. // M221 - Set extrude factor override percentage: S<factor in percent>
  140. // M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
  141. // M240 - Trigger a camera to take a photograph
  142. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  143. // M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  144. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  145. // M301 - Set PID parameters P I and D
  146. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  147. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  148. // M304 - Set bed PID parameters P I and D
  149. // M380 - Activate solenoid on active extruder
  150. // M381 - Disable all solenoids
  151. // M400 - Finish all moves
  152. // M401 - Lower z-probe if present
  153. // M402 - Raise z-probe if present
  154. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  155. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  156. // M406 - Turn off Filament Sensor extrusion control
  157. // M407 - Display measured filament diameter
  158. // M500 - Store parameters in EEPROM
  159. // M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  160. // M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  161. // M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  162. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  163. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  164. // M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
  165. // M666 - Set delta endstop adjustment
  166. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  167. // M907 - Set digital trimpot motor current using axis codes.
  168. // M908 - Control digital trimpot directly.
  169. // M350 - Set microstepping mode.
  170. // M351 - Toggle MS1 MS2 pins directly.
  171. // ************ SCARA Specific - This can change to suit future G-code regulations
  172. // M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  173. // M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  174. // M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  175. // M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  176. // M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  177. // M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  178. //************* SCARA End ***************
  179. // M928 - Start SD logging (M928 filename.g) - ended by M29
  180. // M999 - Restart after being stopped by error
  181. #ifdef SDSUPPORT
  182. CardReader card;
  183. #endif
  184. bool Running = true;
  185. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  186. float current_position[NUM_AXIS] = { 0.0 };
  187. static float destination[NUM_AXIS] = { 0.0 };
  188. bool axis_known_position[3] = { false };
  189. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  190. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  191. float homing_feedrate[] = HOMING_FEEDRATE;
  192. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  193. int feedmultiply = 100; //100->1 200->2
  194. int saved_feedmultiply;
  195. int extruder_multiply[EXTRUDERS] = ARRAY_BY_EXTRUDERS(100, 100, 100, 100);
  196. bool volumetric_enabled = false;
  197. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA);
  198. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS(1.0, 1.0, 1.0, 1.0);
  199. float home_offset[3] = { 0 };
  200. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  201. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  202. uint8_t active_extruder = 0;
  203. int fanSpeed = 0;
  204. bool cancel_heatup = false;
  205. const char errormagic[] PROGMEM = "Error:";
  206. const char echomagic[] PROGMEM = "echo:";
  207. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  208. static float offset[3] = { 0 };
  209. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  210. static int bufindr = 0;
  211. static int bufindw = 0;
  212. static int buflen = 0;
  213. static char serial_char;
  214. static int serial_count = 0;
  215. static boolean comment_mode = false;
  216. static char *strchr_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.)
  217. const char* queued_commands_P= NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */
  218. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  219. // Inactivity shutdown
  220. millis_t previous_cmd_ms = 0;
  221. static millis_t max_inactive_time = 0;
  222. static millis_t stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME * 1000L;
  223. millis_t starttime = 0; ///< Print job start time
  224. millis_t stoptime = 0; ///< Print job stop time
  225. static uint8_t target_extruder;
  226. bool CooldownNoWait = true;
  227. bool target_direction;
  228. #ifdef ENABLE_AUTO_BED_LEVELING
  229. int xy_travel_speed = XY_TRAVEL_SPEED;
  230. float zprobe_zoffset = -Z_PROBE_OFFSET_FROM_EXTRUDER;
  231. #endif
  232. #if defined(Z_DUAL_ENDSTOPS) && !defined(DELTA)
  233. float z_endstop_adj = 0;
  234. #endif
  235. // Extruder offsets
  236. #if EXTRUDERS > 1
  237. #ifndef EXTRUDER_OFFSET_X
  238. #define EXTRUDER_OFFSET_X { 0 }
  239. #endif
  240. #ifndef EXTRUDER_OFFSET_Y
  241. #define EXTRUDER_OFFSET_Y { 0 }
  242. #endif
  243. float extruder_offset[][EXTRUDERS] = {
  244. EXTRUDER_OFFSET_X,
  245. EXTRUDER_OFFSET_Y
  246. #ifdef DUAL_X_CARRIAGE
  247. , { 0 } // supports offsets in XYZ plane
  248. #endif
  249. };
  250. #endif
  251. #ifdef SERVO_ENDSTOPS
  252. int servo_endstops[] = SERVO_ENDSTOPS;
  253. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  254. #endif
  255. #ifdef BARICUDA
  256. int ValvePressure = 0;
  257. int EtoPPressure = 0;
  258. #endif
  259. #ifdef FWRETRACT
  260. bool autoretract_enabled = false;
  261. bool retracted[EXTRUDERS] = { false };
  262. bool retracted_swap[EXTRUDERS] = { false };
  263. float retract_length = RETRACT_LENGTH;
  264. float retract_length_swap = RETRACT_LENGTH_SWAP;
  265. float retract_feedrate = RETRACT_FEEDRATE;
  266. float retract_zlift = RETRACT_ZLIFT;
  267. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  268. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  269. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  270. #endif // FWRETRACT
  271. #if defined(ULTIPANEL) && HAS_POWER_SWITCH
  272. bool powersupply =
  273. #ifdef PS_DEFAULT_OFF
  274. false
  275. #else
  276. true
  277. #endif
  278. ;
  279. #endif
  280. #ifdef DELTA
  281. float delta[3] = { 0 };
  282. #define SIN_60 0.8660254037844386
  283. #define COS_60 0.5
  284. float endstop_adj[3] = { 0 };
  285. // these are the default values, can be overriden with M665
  286. float delta_radius = DELTA_RADIUS;
  287. float delta_tower1_x = -SIN_60 * delta_radius; // front left tower
  288. float delta_tower1_y = -COS_60 * delta_radius;
  289. float delta_tower2_x = SIN_60 * delta_radius; // front right tower
  290. float delta_tower2_y = -COS_60 * delta_radius;
  291. float delta_tower3_x = 0; // back middle tower
  292. float delta_tower3_y = delta_radius;
  293. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  294. float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  295. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  296. #ifdef ENABLE_AUTO_BED_LEVELING
  297. int delta_grid_spacing[2] = { 0, 0 };
  298. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  299. #endif
  300. #else
  301. static bool home_all_axis = true;
  302. #endif
  303. #ifdef SCARA
  304. static float delta[3] = { 0 };
  305. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  306. #endif
  307. #ifdef FILAMENT_SENSOR
  308. //Variables for Filament Sensor input
  309. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  310. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  311. float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  312. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  313. int delay_index1 = 0; //index into ring buffer
  314. int delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  315. float delay_dist = 0; //delay distance counter
  316. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  317. #endif
  318. #ifdef FILAMENT_RUNOUT_SENSOR
  319. static bool filrunoutEnqued = false;
  320. #endif
  321. #ifdef SDSUPPORT
  322. static bool fromsd[BUFSIZE];
  323. #endif
  324. #if NUM_SERVOS > 0
  325. Servo servos[NUM_SERVOS];
  326. #endif
  327. #ifdef CHDK
  328. unsigned long chdkHigh = 0;
  329. boolean chdkActive = false;
  330. #endif
  331. //===========================================================================
  332. //================================ Functions ================================
  333. //===========================================================================
  334. void get_arc_coordinates();
  335. bool setTargetedHotend(int code);
  336. void serial_echopair_P(const char *s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  337. void serial_echopair_P(const char *s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  338. void serial_echopair_P(const char *s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  339. #ifdef PREVENT_DANGEROUS_EXTRUDE
  340. float extrude_min_temp = EXTRUDE_MINTEMP;
  341. #endif
  342. #ifdef SDSUPPORT
  343. #include "SdFatUtil.h"
  344. int freeMemory() { return SdFatUtil::FreeRam(); }
  345. #else
  346. extern "C" {
  347. extern unsigned int __bss_end;
  348. extern unsigned int __heap_start;
  349. extern void *__brkval;
  350. int freeMemory() {
  351. int free_memory;
  352. if ((int)__brkval == 0)
  353. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  354. else
  355. free_memory = ((int)&free_memory) - ((int)__brkval);
  356. return free_memory;
  357. }
  358. }
  359. #endif //!SDSUPPORT
  360. //Injects the next command from the pending sequence of commands, when possible
  361. //Return false if and only if no command was pending
  362. static bool drain_queued_commands_P() {
  363. if (!queued_commands_P) return false;
  364. // Get the next 30 chars from the sequence of gcodes to run
  365. char cmd[30];
  366. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  367. cmd[sizeof(cmd) - 1] = '\0';
  368. // Look for the end of line, or the end of sequence
  369. size_t i = 0;
  370. char c;
  371. while((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  372. cmd[i] = '\0';
  373. if (enqueuecommand(cmd)) { // buffer was not full (else we will retry later)
  374. if (c)
  375. queued_commands_P += i + 1; // move to next command
  376. else
  377. queued_commands_P = NULL; // will have no more commands in the sequence
  378. }
  379. return true;
  380. }
  381. //Record one or many commands to run from program memory.
  382. //Aborts the current queue, if any.
  383. //Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  384. void enqueuecommands_P(const char* pgcode) {
  385. queued_commands_P = pgcode;
  386. drain_queued_commands_P(); // first command executed asap (when possible)
  387. }
  388. //adds a single command to the main command buffer, from RAM
  389. //that is really done in a non-safe way.
  390. //needs overworking someday
  391. //Returns false if it failed to do so
  392. bool enqueuecommand(const char *cmd)
  393. {
  394. if(*cmd==';')
  395. return false;
  396. if(buflen >= BUFSIZE)
  397. return false;
  398. //this is dangerous if a mixing of serial and this happens
  399. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  400. SERIAL_ECHO_START;
  401. SERIAL_ECHOPGM(MSG_Enqueing);
  402. SERIAL_ECHO(cmdbuffer[bufindw]);
  403. SERIAL_ECHOLNPGM("\"");
  404. bufindw= (bufindw + 1)%BUFSIZE;
  405. buflen += 1;
  406. return true;
  407. }
  408. void setup_killpin()
  409. {
  410. #if HAS_KILL
  411. SET_INPUT(KILL_PIN);
  412. WRITE(KILL_PIN, HIGH);
  413. #endif
  414. }
  415. void setup_filrunoutpin()
  416. {
  417. #if HAS_FILRUNOUT
  418. pinMode(FILRUNOUT_PIN, INPUT);
  419. #ifdef ENDSTOPPULLUP_FIL_RUNOUT
  420. WRITE(FILLRUNOUT_PIN, HIGH);
  421. #endif
  422. #endif
  423. }
  424. // Set home pin
  425. void setup_homepin(void)
  426. {
  427. #if HAS_HOME
  428. SET_INPUT(HOME_PIN);
  429. WRITE(HOME_PIN, HIGH);
  430. #endif
  431. }
  432. void setup_photpin()
  433. {
  434. #if HAS_PHOTOGRAPH
  435. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  436. #endif
  437. }
  438. void setup_powerhold()
  439. {
  440. #if HAS_SUICIDE
  441. OUT_WRITE(SUICIDE_PIN, HIGH);
  442. #endif
  443. #if HAS_POWER_SWITCH
  444. #ifdef PS_DEFAULT_OFF
  445. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  446. #else
  447. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  448. #endif
  449. #endif
  450. }
  451. void suicide()
  452. {
  453. #if HAS_SUICIDE
  454. OUT_WRITE(SUICIDE_PIN, LOW);
  455. #endif
  456. }
  457. void servo_init()
  458. {
  459. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  460. servos[0].attach(SERVO0_PIN);
  461. #endif
  462. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  463. servos[1].attach(SERVO1_PIN);
  464. #endif
  465. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  466. servos[2].attach(SERVO2_PIN);
  467. #endif
  468. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  469. servos[3].attach(SERVO3_PIN);
  470. #endif
  471. // Set position of Servo Endstops that are defined
  472. #ifdef SERVO_ENDSTOPS
  473. for (int i = 0; i < 3; i++)
  474. if (servo_endstops[i] >= 0)
  475. servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  476. #endif
  477. #if SERVO_LEVELING
  478. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  479. servos[servo_endstops[Z_AXIS]].detach();
  480. #endif
  481. }
  482. void setup() {
  483. setup_killpin();
  484. setup_filrunoutpin();
  485. setup_powerhold();
  486. MYSERIAL.begin(BAUDRATE);
  487. SERIAL_PROTOCOLLNPGM("start");
  488. SERIAL_ECHO_START;
  489. // Check startup - does nothing if bootloader sets MCUSR to 0
  490. byte mcu = MCUSR;
  491. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  492. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  493. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  494. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  495. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  496. MCUSR = 0;
  497. SERIAL_ECHOPGM(MSG_MARLIN);
  498. SERIAL_ECHOLNPGM(" " STRING_VERSION);
  499. #ifdef STRING_VERSION_CONFIG_H
  500. #ifdef STRING_CONFIG_H_AUTHOR
  501. SERIAL_ECHO_START;
  502. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  503. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  504. SERIAL_ECHOPGM(MSG_AUTHOR);
  505. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  506. SERIAL_ECHOPGM("Compiled: ");
  507. SERIAL_ECHOLNPGM(__DATE__);
  508. #endif // STRING_CONFIG_H_AUTHOR
  509. #endif // STRING_VERSION_CONFIG_H
  510. SERIAL_ECHO_START;
  511. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  512. SERIAL_ECHO(freeMemory());
  513. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  514. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  515. #ifdef SDSUPPORT
  516. for (int8_t i = 0; i < BUFSIZE; i++) fromsd[i] = false;
  517. #endif // !SDSUPPORT
  518. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  519. Config_RetrieveSettings();
  520. tp_init(); // Initialize temperature loop
  521. plan_init(); // Initialize planner;
  522. watchdog_init();
  523. st_init(); // Initialize stepper, this enables interrupts!
  524. setup_photpin();
  525. servo_init();
  526. lcd_init();
  527. _delay_ms(1000); // wait 1sec to display the splash screen
  528. #if HAS_CONTROLLERFAN
  529. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  530. #endif
  531. #ifdef DIGIPOT_I2C
  532. digipot_i2c_init();
  533. #endif
  534. #ifdef Z_PROBE_SLED
  535. pinMode(SERVO0_PIN, OUTPUT);
  536. digitalWrite(SERVO0_PIN, LOW); // turn it off
  537. #endif // Z_PROBE_SLED
  538. setup_homepin();
  539. #ifdef STAT_LED_RED
  540. pinMode(STAT_LED_RED, OUTPUT);
  541. digitalWrite(STAT_LED_RED, LOW); // turn it off
  542. #endif
  543. #ifdef STAT_LED_BLUE
  544. pinMode(STAT_LED_BLUE, OUTPUT);
  545. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  546. #endif
  547. }
  548. void loop() {
  549. if (buflen < BUFSIZE - 1) get_command();
  550. #ifdef SDSUPPORT
  551. card.checkautostart(false);
  552. #endif
  553. if (buflen) {
  554. #ifdef SDSUPPORT
  555. if (card.saving) {
  556. if (strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL) {
  557. card.write_command(cmdbuffer[bufindr]);
  558. if (card.logging)
  559. process_commands();
  560. else
  561. SERIAL_PROTOCOLLNPGM(MSG_OK);
  562. }
  563. else {
  564. card.closefile();
  565. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  566. }
  567. }
  568. else
  569. process_commands();
  570. #else
  571. process_commands();
  572. #endif // SDSUPPORT
  573. buflen--;
  574. bufindr = (bufindr + 1) % BUFSIZE;
  575. }
  576. // Check heater every n milliseconds
  577. manage_heater();
  578. manage_inactivity();
  579. checkHitEndstops();
  580. lcd_update();
  581. }
  582. void get_command() {
  583. if (drain_queued_commands_P()) return; // priority is given to non-serial commands
  584. while (MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  585. serial_char = MYSERIAL.read();
  586. if (serial_char == '\n' || serial_char == '\r' ||
  587. serial_count >= (MAX_CMD_SIZE - 1)
  588. ) {
  589. // end of line == end of comment
  590. comment_mode = false;
  591. if (!serial_count) return; // shortcut for empty lines
  592. cmdbuffer[bufindw][serial_count] = 0; // terminate string
  593. #ifdef SDSUPPORT
  594. fromsd[bufindw] = false;
  595. #endif
  596. if (strchr(cmdbuffer[bufindw], 'N') != NULL) {
  597. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  598. gcode_N = (strtol(strchr_pointer + 1, NULL, 10));
  599. if (gcode_N != gcode_LastN + 1 && strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) {
  600. SERIAL_ERROR_START;
  601. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  602. SERIAL_ERRORLN(gcode_LastN);
  603. //Serial.println(gcode_N);
  604. FlushSerialRequestResend();
  605. serial_count = 0;
  606. return;
  607. }
  608. if (strchr(cmdbuffer[bufindw], '*') != NULL) {
  609. byte checksum = 0;
  610. byte count = 0;
  611. while (cmdbuffer[bufindw][count] != '*') checksum ^= cmdbuffer[bufindw][count++];
  612. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  613. if (strtol(strchr_pointer + 1, NULL, 10) != checksum) {
  614. SERIAL_ERROR_START;
  615. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  616. SERIAL_ERRORLN(gcode_LastN);
  617. FlushSerialRequestResend();
  618. serial_count = 0;
  619. return;
  620. }
  621. //if no errors, continue parsing
  622. }
  623. else {
  624. SERIAL_ERROR_START;
  625. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  626. SERIAL_ERRORLN(gcode_LastN);
  627. FlushSerialRequestResend();
  628. serial_count = 0;
  629. return;
  630. }
  631. gcode_LastN = gcode_N;
  632. //if no errors, continue parsing
  633. }
  634. else { // if we don't receive 'N' but still see '*'
  635. if ((strchr(cmdbuffer[bufindw], '*') != NULL)) {
  636. SERIAL_ERROR_START;
  637. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  638. SERIAL_ERRORLN(gcode_LastN);
  639. serial_count = 0;
  640. return;
  641. }
  642. }
  643. if (strchr(cmdbuffer[bufindw], 'G') != NULL) {
  644. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  645. switch (strtol(strchr_pointer + 1, NULL, 10)) {
  646. case 0:
  647. case 1:
  648. case 2:
  649. case 3:
  650. if (IsStopped()) {
  651. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  652. LCD_MESSAGEPGM(MSG_STOPPED);
  653. }
  654. break;
  655. default:
  656. break;
  657. }
  658. }
  659. // If command was e-stop process now
  660. if (strcmp(cmdbuffer[bufindw], "M112") == 0) kill();
  661. bufindw = (bufindw + 1) % BUFSIZE;
  662. buflen += 1;
  663. serial_count = 0; //clear buffer
  664. }
  665. else if (serial_char == '\\') { // Handle escapes
  666. if (MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  667. // if we have one more character, copy it over
  668. serial_char = MYSERIAL.read();
  669. cmdbuffer[bufindw][serial_count++] = serial_char;
  670. }
  671. // otherwise do nothing
  672. }
  673. else { // its not a newline, carriage return or escape char
  674. if (serial_char == ';') comment_mode = true;
  675. if (!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  676. }
  677. }
  678. #ifdef SDSUPPORT
  679. if (!card.sdprinting || serial_count) return;
  680. // '#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  681. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  682. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  683. static bool stop_buffering = false;
  684. if (buflen == 0) stop_buffering = false;
  685. while (!card.eof() && buflen < BUFSIZE && !stop_buffering) {
  686. int16_t n = card.get();
  687. serial_char = (char)n;
  688. if (serial_char == '\n' || serial_char == '\r' ||
  689. ((serial_char == '#' || serial_char == ':') && !comment_mode) ||
  690. serial_count >= (MAX_CMD_SIZE - 1) || n == -1
  691. ) {
  692. if (card.eof()) {
  693. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  694. stoptime = millis();
  695. char time[30];
  696. millis_t t = (stoptime - starttime) / 1000;
  697. int hours = t / 60 / 60, minutes = (t / 60) % 60;
  698. sprintf_P(time, PSTR("%i " MSG_END_HOUR " %i " MSG_END_MINUTE), hours, minutes);
  699. SERIAL_ECHO_START;
  700. SERIAL_ECHOLN(time);
  701. lcd_setstatus(time, true);
  702. card.printingHasFinished();
  703. card.checkautostart(true);
  704. }
  705. if (serial_char == '#') stop_buffering = true;
  706. if (!serial_count) {
  707. comment_mode = false; //for new command
  708. return; //if empty line
  709. }
  710. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  711. // if (!comment_mode) {
  712. fromsd[bufindw] = true;
  713. buflen += 1;
  714. bufindw = (bufindw + 1)%BUFSIZE;
  715. // }
  716. comment_mode = false; //for new command
  717. serial_count = 0; //clear buffer
  718. }
  719. else {
  720. if (serial_char == ';') comment_mode = true;
  721. if (!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  722. }
  723. }
  724. #endif // SDSUPPORT
  725. }
  726. float code_has_value() {
  727. char c = *(strchr_pointer + 1);
  728. return (c >= '0' && c <= '9') || c == '-' || c == '+' || c == '.';
  729. }
  730. float code_value() {
  731. float ret;
  732. char *e = strchr(strchr_pointer, 'E');
  733. if (e) {
  734. *e = 0;
  735. ret = strtod(strchr_pointer+1, NULL);
  736. *e = 'E';
  737. }
  738. else
  739. ret = strtod(strchr_pointer+1, NULL);
  740. return ret;
  741. }
  742. long code_value_long() { return strtol(strchr_pointer + 1, NULL, 10); }
  743. int16_t code_value_short() { return (int16_t)strtol(strchr_pointer + 1, NULL, 10); }
  744. bool code_seen(char code) {
  745. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  746. return (strchr_pointer != NULL); //Return True if a character was found
  747. }
  748. #define DEFINE_PGM_READ_ANY(type, reader) \
  749. static inline type pgm_read_any(const type *p) \
  750. { return pgm_read_##reader##_near(p); }
  751. DEFINE_PGM_READ_ANY(float, float);
  752. DEFINE_PGM_READ_ANY(signed char, byte);
  753. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  754. static const PROGMEM type array##_P[3] = \
  755. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  756. static inline type array(int axis) \
  757. { return pgm_read_any(&array##_P[axis]); }
  758. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  759. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  760. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  761. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  762. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  763. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  764. #ifdef DUAL_X_CARRIAGE
  765. #define DXC_FULL_CONTROL_MODE 0
  766. #define DXC_AUTO_PARK_MODE 1
  767. #define DXC_DUPLICATION_MODE 2
  768. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  769. static float x_home_pos(int extruder) {
  770. if (extruder == 0)
  771. return base_home_pos(X_AXIS) + home_offset[X_AXIS];
  772. else
  773. // In dual carriage mode the extruder offset provides an override of the
  774. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  775. // This allow soft recalibration of the second extruder offset position without firmware reflash
  776. // (through the M218 command).
  777. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  778. }
  779. static int x_home_dir(int extruder) {
  780. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  781. }
  782. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  783. static bool active_extruder_parked = false; // used in mode 1 & 2
  784. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  785. static millis_t delayed_move_time = 0; // used in mode 1
  786. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  787. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  788. bool extruder_duplication_enabled = false; // used in mode 2
  789. #endif //DUAL_X_CARRIAGE
  790. static void axis_is_at_home(int axis) {
  791. #ifdef DUAL_X_CARRIAGE
  792. if (axis == X_AXIS) {
  793. if (active_extruder != 0) {
  794. current_position[X_AXIS] = x_home_pos(active_extruder);
  795. min_pos[X_AXIS] = X2_MIN_POS;
  796. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  797. return;
  798. }
  799. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  800. float xoff = home_offset[X_AXIS];
  801. current_position[X_AXIS] = base_home_pos(X_AXIS) + xoff;
  802. min_pos[X_AXIS] = base_min_pos(X_AXIS) + xoff;
  803. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + xoff, max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  804. return;
  805. }
  806. }
  807. #endif
  808. #ifdef SCARA
  809. float homeposition[3];
  810. if (axis < 2) {
  811. for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i);
  812. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  813. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  814. // Works out real Homeposition angles using inverse kinematics,
  815. // and calculates homing offset using forward kinematics
  816. calculate_delta(homeposition);
  817. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  818. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  819. for (int i = 0; i < 2; i++) delta[i] -= home_offset[i];
  820. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
  821. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
  822. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  823. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  824. calculate_SCARA_forward_Transform(delta);
  825. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  826. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  827. current_position[axis] = delta[axis];
  828. // SCARA home positions are based on configuration since the actual limits are determined by the
  829. // inverse kinematic transform.
  830. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  831. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  832. }
  833. else {
  834. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  835. min_pos[axis] = base_min_pos(axis) + home_offset[axis];
  836. max_pos[axis] = base_max_pos(axis) + home_offset[axis];
  837. }
  838. #else
  839. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  840. min_pos[axis] = base_min_pos(axis) + home_offset[axis];
  841. max_pos[axis] = base_max_pos(axis) + home_offset[axis];
  842. #endif
  843. }
  844. /**
  845. * Some planner shorthand inline functions
  846. */
  847. inline void set_homing_bump_feedrate(AxisEnum axis) {
  848. const int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  849. if (homing_bump_divisor[axis] >= 1)
  850. feedrate = homing_feedrate[axis] / homing_bump_divisor[axis];
  851. else {
  852. feedrate = homing_feedrate[axis] / 10;
  853. SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less than 1");
  854. }
  855. }
  856. inline void line_to_current_position() {
  857. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  858. }
  859. inline void line_to_z(float zPosition) {
  860. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  861. }
  862. inline void line_to_destination(float mm_m) {
  863. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], mm_m/60, active_extruder);
  864. }
  865. inline void line_to_destination() {
  866. line_to_destination(feedrate);
  867. }
  868. inline void sync_plan_position() {
  869. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  870. }
  871. #if defined(DELTA) || defined(SCARA)
  872. inline void sync_plan_position_delta() {
  873. calculate_delta(current_position);
  874. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  875. }
  876. #endif
  877. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  878. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  879. #ifdef ENABLE_AUTO_BED_LEVELING
  880. #ifdef DELTA
  881. /**
  882. * Calculate delta, start a line, and set current_position to destination
  883. */
  884. void prepare_move_raw() {
  885. refresh_cmd_timeout();
  886. calculate_delta(destination);
  887. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedmultiply/100.0), active_extruder);
  888. set_current_to_destination();
  889. }
  890. #endif
  891. #ifdef AUTO_BED_LEVELING_GRID
  892. #ifndef DELTA
  893. static void set_bed_level_equation_lsq(double *plane_equation_coefficients) {
  894. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  895. planeNormal.debug("planeNormal");
  896. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  897. //bedLevel.debug("bedLevel");
  898. //plan_bed_level_matrix.debug("bed level before");
  899. //vector_3 uncorrected_position = plan_get_position_mm();
  900. //uncorrected_position.debug("position before");
  901. vector_3 corrected_position = plan_get_position();
  902. //corrected_position.debug("position after");
  903. current_position[X_AXIS] = corrected_position.x;
  904. current_position[Y_AXIS] = corrected_position.y;
  905. current_position[Z_AXIS] = corrected_position.z;
  906. sync_plan_position();
  907. }
  908. #endif // !DELTA
  909. #else // !AUTO_BED_LEVELING_GRID
  910. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  911. plan_bed_level_matrix.set_to_identity();
  912. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  913. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  914. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  915. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  916. if (planeNormal.z < 0) {
  917. planeNormal.x = -planeNormal.x;
  918. planeNormal.y = -planeNormal.y;
  919. planeNormal.z = -planeNormal.z;
  920. }
  921. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  922. vector_3 corrected_position = plan_get_position();
  923. current_position[X_AXIS] = corrected_position.x;
  924. current_position[Y_AXIS] = corrected_position.y;
  925. current_position[Z_AXIS] = corrected_position.z;
  926. sync_plan_position();
  927. }
  928. #endif // !AUTO_BED_LEVELING_GRID
  929. static void run_z_probe() {
  930. #ifdef DELTA
  931. float start_z = current_position[Z_AXIS];
  932. long start_steps = st_get_position(Z_AXIS);
  933. // move down slowly until you find the bed
  934. feedrate = homing_feedrate[Z_AXIS] / 4;
  935. destination[Z_AXIS] = -10;
  936. prepare_move_raw(); // this will also set_current_to_destination
  937. st_synchronize();
  938. endstops_hit_on_purpose(); // clear endstop hit flags
  939. // we have to let the planner know where we are right now as it is not where we said to go.
  940. long stop_steps = st_get_position(Z_AXIS);
  941. float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS];
  942. current_position[Z_AXIS] = mm;
  943. sync_plan_position_delta();
  944. #else // !DELTA
  945. plan_bed_level_matrix.set_to_identity();
  946. feedrate = homing_feedrate[Z_AXIS];
  947. // move down until you find the bed
  948. float zPosition = -10;
  949. line_to_z(zPosition);
  950. st_synchronize();
  951. // we have to let the planner know where we are right now as it is not where we said to go.
  952. zPosition = st_get_position_mm(Z_AXIS);
  953. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  954. // move up the retract distance
  955. zPosition += home_bump_mm(Z_AXIS);
  956. line_to_z(zPosition);
  957. st_synchronize();
  958. endstops_hit_on_purpose(); // clear endstop hit flags
  959. // move back down slowly to find bed
  960. set_homing_bump_feedrate(Z_AXIS);
  961. zPosition -= home_bump_mm(Z_AXIS) * 2;
  962. line_to_z(zPosition);
  963. st_synchronize();
  964. endstops_hit_on_purpose(); // clear endstop hit flags
  965. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  966. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  967. sync_plan_position();
  968. #endif // !DELTA
  969. }
  970. /**
  971. * Plan a move to (X, Y, Z) and set the current_position
  972. * The final current_position may not be the one that was requested
  973. */
  974. static void do_blocking_move_to(float x, float y, float z) {
  975. float oldFeedRate = feedrate;
  976. #ifdef DELTA
  977. feedrate = XY_TRAVEL_SPEED;
  978. destination[X_AXIS] = x;
  979. destination[Y_AXIS] = y;
  980. destination[Z_AXIS] = z;
  981. prepare_move_raw(); // this will also set_current_to_destination
  982. st_synchronize();
  983. #else
  984. feedrate = homing_feedrate[Z_AXIS];
  985. current_position[Z_AXIS] = z;
  986. line_to_current_position();
  987. st_synchronize();
  988. feedrate = xy_travel_speed;
  989. current_position[X_AXIS] = x;
  990. current_position[Y_AXIS] = y;
  991. line_to_current_position();
  992. st_synchronize();
  993. #endif
  994. feedrate = oldFeedRate;
  995. }
  996. static void setup_for_endstop_move() {
  997. saved_feedrate = feedrate;
  998. saved_feedmultiply = feedmultiply;
  999. feedmultiply = 100;
  1000. refresh_cmd_timeout();
  1001. enable_endstops(true);
  1002. }
  1003. static void clean_up_after_endstop_move() {
  1004. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1005. enable_endstops(false);
  1006. #endif
  1007. feedrate = saved_feedrate;
  1008. feedmultiply = saved_feedmultiply;
  1009. refresh_cmd_timeout();
  1010. }
  1011. static void deploy_z_probe() {
  1012. #ifdef SERVO_ENDSTOPS
  1013. // Engage Z Servo endstop if enabled
  1014. if (servo_endstops[Z_AXIS] >= 0) {
  1015. #if SERVO_LEVELING
  1016. servos[servo_endstops[Z_AXIS]].attach(0);
  1017. #endif
  1018. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  1019. #if SERVO_LEVELING
  1020. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1021. servos[servo_endstops[Z_AXIS]].detach();
  1022. #endif
  1023. }
  1024. #elif defined(Z_PROBE_ALLEN_KEY)
  1025. feedrate = homing_feedrate[X_AXIS];
  1026. // Move to the start position to initiate deployment
  1027. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_X;
  1028. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Y;
  1029. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Z;
  1030. prepare_move_raw(); // this will also set_current_to_destination
  1031. // Home X to touch the belt
  1032. feedrate = homing_feedrate[X_AXIS]/10;
  1033. destination[X_AXIS] = 0;
  1034. prepare_move_raw(); // this will also set_current_to_destination
  1035. // Home Y for safety
  1036. feedrate = homing_feedrate[X_AXIS]/2;
  1037. destination[Y_AXIS] = 0;
  1038. prepare_move_raw(); // this will also set_current_to_destination
  1039. st_synchronize();
  1040. #ifdef Z_PROBE_ENDSTOP
  1041. bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  1042. if (z_probe_endstop)
  1043. #else
  1044. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1045. if (z_min_endstop)
  1046. #endif
  1047. {
  1048. if (IsRunning()) {
  1049. SERIAL_ERROR_START;
  1050. SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
  1051. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1052. }
  1053. Stop();
  1054. }
  1055. #endif // Z_PROBE_ALLEN_KEY
  1056. }
  1057. static void stow_z_probe() {
  1058. #ifdef SERVO_ENDSTOPS
  1059. // Retract Z Servo endstop if enabled
  1060. if (servo_endstops[Z_AXIS] >= 0) {
  1061. #if Z_RAISE_AFTER_PROBING > 0
  1062. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING); // this also updates current_position
  1063. st_synchronize();
  1064. #endif
  1065. #if SERVO_LEVELING
  1066. servos[servo_endstops[Z_AXIS]].attach(0);
  1067. #endif
  1068. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  1069. #if SERVO_LEVELING
  1070. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1071. servos[servo_endstops[Z_AXIS]].detach();
  1072. #endif
  1073. }
  1074. #elif defined(Z_PROBE_ALLEN_KEY)
  1075. // Move up for safety
  1076. feedrate = homing_feedrate[X_AXIS];
  1077. destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING;
  1078. prepare_move_raw(); // this will also set_current_to_destination
  1079. // Move to the start position to initiate retraction
  1080. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_X;
  1081. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_Y;
  1082. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_Z;
  1083. prepare_move_raw(); // this will also set_current_to_destination
  1084. // Move the nozzle down to push the probe into retracted position
  1085. feedrate = homing_feedrate[Z_AXIS]/10;
  1086. destination[Z_AXIS] = current_position[Z_AXIS] - Z_PROBE_ALLEN_KEY_STOW_DEPTH;
  1087. prepare_move_raw(); // this will also set_current_to_destination
  1088. // Move up for safety
  1089. feedrate = homing_feedrate[Z_AXIS]/2;
  1090. destination[Z_AXIS] = current_position[Z_AXIS] + Z_PROBE_ALLEN_KEY_STOW_DEPTH * 2;
  1091. prepare_move_raw(); // this will also set_current_to_destination
  1092. // Home XY for safety
  1093. feedrate = homing_feedrate[X_AXIS]/2;
  1094. destination[X_AXIS] = 0;
  1095. destination[Y_AXIS] = 0;
  1096. prepare_move_raw(); // this will also set_current_to_destination
  1097. st_synchronize();
  1098. #ifdef Z_PROBE_ENDSTOP
  1099. bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  1100. if (!z_probe_endstop)
  1101. #else
  1102. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1103. if (!z_min_endstop)
  1104. #endif
  1105. {
  1106. if (IsRunning()) {
  1107. SERIAL_ERROR_START;
  1108. SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
  1109. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1110. }
  1111. Stop();
  1112. }
  1113. #endif
  1114. }
  1115. enum ProbeAction {
  1116. ProbeStay = 0,
  1117. ProbeDeploy = BIT(0),
  1118. ProbeStow = BIT(1),
  1119. ProbeDeployAndStow = (ProbeDeploy | ProbeStow)
  1120. };
  1121. // Probe bed height at position (x,y), returns the measured z value
  1122. static float probe_pt(float x, float y, float z_before, ProbeAction retract_action=ProbeDeployAndStow, int verbose_level=1) {
  1123. // move to right place
  1124. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before); // this also updates current_position
  1125. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]); // this also updates current_position
  1126. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1127. if (retract_action & ProbeDeploy) deploy_z_probe();
  1128. #endif
  1129. run_z_probe();
  1130. float measured_z = current_position[Z_AXIS];
  1131. #if Z_RAISE_BETWEEN_PROBINGS > 0
  1132. if (retract_action == ProbeStay) {
  1133. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS); // this also updates current_position
  1134. st_synchronize();
  1135. }
  1136. #endif
  1137. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1138. if (retract_action & ProbeStow) stow_z_probe();
  1139. #endif
  1140. if (verbose_level > 2) {
  1141. SERIAL_PROTOCOLPGM("Bed");
  1142. SERIAL_PROTOCOLPGM(" X: ");
  1143. SERIAL_PROTOCOL_F(x, 3);
  1144. SERIAL_PROTOCOLPGM(" Y: ");
  1145. SERIAL_PROTOCOL_F(y, 3);
  1146. SERIAL_PROTOCOLPGM(" Z: ");
  1147. SERIAL_PROTOCOL_F(measured_z, 3);
  1148. SERIAL_EOL;
  1149. }
  1150. return measured_z;
  1151. }
  1152. #ifdef DELTA
  1153. /**
  1154. * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
  1155. */
  1156. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1157. if (bed_level[x][y] != 0.0) {
  1158. return; // Don't overwrite good values.
  1159. }
  1160. float a = 2*bed_level[x+xdir][y] - bed_level[x+xdir*2][y]; // Left to right.
  1161. float b = 2*bed_level[x][y+ydir] - bed_level[x][y+ydir*2]; // Front to back.
  1162. float c = 2*bed_level[x+xdir][y+ydir] - bed_level[x+xdir*2][y+ydir*2]; // Diagonal.
  1163. float median = c; // Median is robust (ignores outliers).
  1164. if (a < b) {
  1165. if (b < c) median = b;
  1166. if (c < a) median = a;
  1167. } else { // b <= a
  1168. if (c < b) median = b;
  1169. if (a < c) median = a;
  1170. }
  1171. bed_level[x][y] = median;
  1172. }
  1173. // Fill in the unprobed points (corners of circular print surface)
  1174. // using linear extrapolation, away from the center.
  1175. static void extrapolate_unprobed_bed_level() {
  1176. int half = (AUTO_BED_LEVELING_GRID_POINTS-1)/2;
  1177. for (int y = 0; y <= half; y++) {
  1178. for (int x = 0; x <= half; x++) {
  1179. if (x + y < 3) continue;
  1180. extrapolate_one_point(half-x, half-y, x>1?+1:0, y>1?+1:0);
  1181. extrapolate_one_point(half+x, half-y, x>1?-1:0, y>1?+1:0);
  1182. extrapolate_one_point(half-x, half+y, x>1?+1:0, y>1?-1:0);
  1183. extrapolate_one_point(half+x, half+y, x>1?-1:0, y>1?-1:0);
  1184. }
  1185. }
  1186. }
  1187. // Print calibration results for plotting or manual frame adjustment.
  1188. static void print_bed_level() {
  1189. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1190. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1191. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1192. SERIAL_PROTOCOLCHAR(' ');
  1193. }
  1194. SERIAL_EOL;
  1195. }
  1196. }
  1197. // Reset calibration results to zero.
  1198. void reset_bed_level() {
  1199. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1200. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1201. bed_level[x][y] = 0.0;
  1202. }
  1203. }
  1204. }
  1205. #endif // DELTA
  1206. #endif // ENABLE_AUTO_BED_LEVELING
  1207. /**
  1208. * Home an individual axis
  1209. */
  1210. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1211. static void homeaxis(AxisEnum axis) {
  1212. #define HOMEAXIS_DO(LETTER) \
  1213. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1214. if (axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0) {
  1215. int axis_home_dir;
  1216. #ifdef DUAL_X_CARRIAGE
  1217. if (axis == X_AXIS) axis_home_dir = x_home_dir(active_extruder);
  1218. #else
  1219. axis_home_dir = home_dir(axis);
  1220. #endif
  1221. // Set the axis position as setup for the move
  1222. current_position[axis] = 0;
  1223. sync_plan_position();
  1224. // Engage Servo endstop if enabled
  1225. #if defined(SERVO_ENDSTOPS) && !defined(Z_PROBE_SLED)
  1226. #if SERVO_LEVELING
  1227. if (axis == Z_AXIS) deploy_z_probe(); else
  1228. #endif
  1229. {
  1230. if (servo_endstops[axis] > -1)
  1231. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  1232. }
  1233. #endif // SERVO_ENDSTOPS && !Z_PROBE_SLED
  1234. #ifdef Z_DUAL_ENDSTOPS
  1235. if (axis == Z_AXIS) In_Homing_Process(true);
  1236. #endif
  1237. // Move towards the endstop until an endstop is triggered
  1238. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1239. feedrate = homing_feedrate[axis];
  1240. line_to_destination();
  1241. st_synchronize();
  1242. // Set the axis position as setup for the move
  1243. current_position[axis] = 0;
  1244. sync_plan_position();
  1245. // Move away from the endstop by the axis HOME_BUMP_MM
  1246. destination[axis] = -home_bump_mm(axis) * axis_home_dir;
  1247. line_to_destination();
  1248. st_synchronize();
  1249. // Slow down the feedrate for the next move
  1250. set_homing_bump_feedrate(axis);
  1251. // Move slowly towards the endstop until triggered
  1252. destination[axis] = 2 * home_bump_mm(axis) * axis_home_dir;
  1253. line_to_destination();
  1254. st_synchronize();
  1255. #ifdef Z_DUAL_ENDSTOPS
  1256. if (axis == Z_AXIS) {
  1257. float adj = fabs(z_endstop_adj);
  1258. bool lockZ1;
  1259. if (axis_home_dir > 0) {
  1260. adj = -adj;
  1261. lockZ1 = (z_endstop_adj > 0);
  1262. }
  1263. else
  1264. lockZ1 = (z_endstop_adj < 0);
  1265. if (lockZ1) Lock_z_motor(true); else Lock_z2_motor(true);
  1266. sync_plan_position();
  1267. // Move to the adjusted endstop height
  1268. feedrate = homing_feedrate[axis];
  1269. destination[Z_AXIS] = adj;
  1270. line_to_destination();
  1271. st_synchronize();
  1272. if (lockZ1) Lock_z_motor(false); else Lock_z2_motor(false);
  1273. In_Homing_Process(false);
  1274. } // Z_AXIS
  1275. #endif
  1276. #ifdef DELTA
  1277. // retrace by the amount specified in endstop_adj
  1278. if (endstop_adj[axis] * axis_home_dir < 0) {
  1279. sync_plan_position();
  1280. destination[axis] = endstop_adj[axis];
  1281. line_to_destination();
  1282. st_synchronize();
  1283. }
  1284. #endif
  1285. // Set the axis position to its home position (plus home offsets)
  1286. axis_is_at_home(axis);
  1287. destination[axis] = current_position[axis];
  1288. feedrate = 0.0;
  1289. endstops_hit_on_purpose(); // clear endstop hit flags
  1290. axis_known_position[axis] = true;
  1291. // Retract Servo endstop if enabled
  1292. #ifdef SERVO_ENDSTOPS
  1293. if (servo_endstops[axis] > -1)
  1294. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  1295. #endif
  1296. #if SERVO_LEVELING && !defined(Z_PROBE_SLED)
  1297. if (axis == Z_AXIS) stow_z_probe();
  1298. #endif
  1299. }
  1300. }
  1301. #ifdef FWRETRACT
  1302. void retract(bool retracting, bool swapretract = false) {
  1303. if (retracting == retracted[active_extruder]) return;
  1304. float oldFeedrate = feedrate;
  1305. set_destination_to_current();
  1306. if (retracting) {
  1307. feedrate = retract_feedrate * 60;
  1308. current_position[E_AXIS] += (swapretract ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  1309. plan_set_e_position(current_position[E_AXIS]);
  1310. prepare_move();
  1311. if (retract_zlift > 0.01) {
  1312. current_position[Z_AXIS] -= retract_zlift;
  1313. #ifdef DELTA
  1314. sync_plan_position_delta();
  1315. #else
  1316. sync_plan_position();
  1317. #endif
  1318. prepare_move();
  1319. }
  1320. }
  1321. else {
  1322. if (retract_zlift > 0.01) {
  1323. current_position[Z_AXIS] += retract_zlift;
  1324. #ifdef DELTA
  1325. sync_plan_position_delta();
  1326. #else
  1327. sync_plan_position();
  1328. #endif
  1329. //prepare_move();
  1330. }
  1331. feedrate = retract_recover_feedrate * 60;
  1332. float move_e = swapretract ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  1333. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  1334. plan_set_e_position(current_position[E_AXIS]);
  1335. prepare_move();
  1336. }
  1337. feedrate = oldFeedrate;
  1338. retracted[active_extruder] = retracting;
  1339. } // retract()
  1340. #endif // FWRETRACT
  1341. #ifdef Z_PROBE_SLED
  1342. #ifndef SLED_DOCKING_OFFSET
  1343. #define SLED_DOCKING_OFFSET 0
  1344. #endif
  1345. //
  1346. // Method to dock/undock a sled designed by Charles Bell.
  1347. //
  1348. // dock[in] If true, move to MAX_X and engage the electromagnet
  1349. // offset[in] The additional distance to move to adjust docking location
  1350. //
  1351. static void dock_sled(bool dock, int offset=0) {
  1352. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  1353. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1354. SERIAL_ECHO_START;
  1355. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1356. return;
  1357. }
  1358. if (dock) {
  1359. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, current_position[Y_AXIS], current_position[Z_AXIS]); // this also updates current_position
  1360. digitalWrite(SERVO0_PIN, LOW); // turn off magnet
  1361. } else {
  1362. float z_loc = current_position[Z_AXIS];
  1363. if (z_loc < Z_RAISE_BEFORE_PROBING + 5) z_loc = Z_RAISE_BEFORE_PROBING;
  1364. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, Y_PROBE_OFFSET_FROM_EXTRUDER, z_loc); // this also updates current_position
  1365. digitalWrite(SERVO0_PIN, HIGH); // turn on magnet
  1366. }
  1367. }
  1368. #endif // Z_PROBE_SLED
  1369. /**
  1370. *
  1371. * G-Code Handler functions
  1372. *
  1373. */
  1374. /**
  1375. * G0, G1: Coordinated movement of X Y Z E axes
  1376. */
  1377. inline void gcode_G0_G1() {
  1378. if (IsRunning()) {
  1379. get_coordinates(); // For X Y Z E F
  1380. #ifdef FWRETRACT
  1381. if (autoretract_enabled)
  1382. if (!(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1383. float echange = destination[E_AXIS] - current_position[E_AXIS];
  1384. // Is this move an attempt to retract or recover?
  1385. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  1386. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  1387. plan_set_e_position(current_position[E_AXIS]); // AND from the planner
  1388. retract(!retracted[active_extruder]);
  1389. return;
  1390. }
  1391. }
  1392. #endif //FWRETRACT
  1393. prepare_move();
  1394. //ClearToSend();
  1395. }
  1396. }
  1397. /**
  1398. * G2: Clockwise Arc
  1399. * G3: Counterclockwise Arc
  1400. */
  1401. inline void gcode_G2_G3(bool clockwise) {
  1402. if (IsRunning()) {
  1403. get_arc_coordinates();
  1404. prepare_arc_move(clockwise);
  1405. }
  1406. }
  1407. /**
  1408. * G4: Dwell S<seconds> or P<milliseconds>
  1409. */
  1410. inline void gcode_G4() {
  1411. millis_t codenum = 0;
  1412. LCD_MESSAGEPGM(MSG_DWELL);
  1413. if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
  1414. if (code_seen('S')) codenum = code_value_long() * 1000; // seconds to wait
  1415. st_synchronize();
  1416. refresh_cmd_timeout();
  1417. codenum += previous_cmd_ms; // keep track of when we started waiting
  1418. while (millis() < codenum) {
  1419. manage_heater();
  1420. manage_inactivity();
  1421. lcd_update();
  1422. }
  1423. }
  1424. #ifdef FWRETRACT
  1425. /**
  1426. * G10 - Retract filament according to settings of M207
  1427. * G11 - Recover filament according to settings of M208
  1428. */
  1429. inline void gcode_G10_G11(bool doRetract=false) {
  1430. #if EXTRUDERS > 1
  1431. if (doRetract) {
  1432. retracted_swap[active_extruder] = (code_seen('S') && code_value_short() == 1); // checks for swap retract argument
  1433. }
  1434. #endif
  1435. retract(doRetract
  1436. #if EXTRUDERS > 1
  1437. , retracted_swap[active_extruder]
  1438. #endif
  1439. );
  1440. }
  1441. #endif //FWRETRACT
  1442. /**
  1443. * G28: Home all axes according to settings
  1444. *
  1445. * Parameters
  1446. *
  1447. * None Home to all axes with no parameters.
  1448. * With QUICK_HOME enabled XY will home together, then Z.
  1449. *
  1450. * Cartesian parameters
  1451. *
  1452. * X Home to the X endstop
  1453. * Y Home to the Y endstop
  1454. * Z Home to the Z endstop
  1455. *
  1456. * If numbers are included with XYZ set the position as with G92
  1457. * Currently adds the home_offset, which may be wrong and removed soon.
  1458. *
  1459. * Xn Home X, setting X to n + home_offset[X_AXIS]
  1460. * Yn Home Y, setting Y to n + home_offset[Y_AXIS]
  1461. * Zn Home Z, setting Z to n + home_offset[Z_AXIS]
  1462. */
  1463. inline void gcode_G28() {
  1464. // For auto bed leveling, clear the level matrix
  1465. #ifdef ENABLE_AUTO_BED_LEVELING
  1466. plan_bed_level_matrix.set_to_identity();
  1467. #ifdef DELTA
  1468. reset_bed_level();
  1469. #endif
  1470. #endif
  1471. // For manual bed leveling deactivate the matrix temporarily
  1472. #ifdef MESH_BED_LEVELING
  1473. uint8_t mbl_was_active = mbl.active;
  1474. mbl.active = 0;
  1475. #endif
  1476. saved_feedrate = feedrate;
  1477. saved_feedmultiply = feedmultiply;
  1478. feedmultiply = 100;
  1479. refresh_cmd_timeout();
  1480. enable_endstops(true);
  1481. set_destination_to_current();
  1482. feedrate = 0.0;
  1483. #ifdef DELTA
  1484. // A delta can only safely home all axis at the same time
  1485. // all axis have to home at the same time
  1486. // Pretend the current position is 0,0,0
  1487. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  1488. sync_plan_position();
  1489. // Move all carriages up together until the first endstop is hit.
  1490. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * Z_MAX_LENGTH;
  1491. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1492. line_to_destination();
  1493. st_synchronize();
  1494. endstops_hit_on_purpose(); // clear endstop hit flags
  1495. // Destination reached
  1496. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  1497. // take care of back off and rehome now we are all at the top
  1498. HOMEAXIS(X);
  1499. HOMEAXIS(Y);
  1500. HOMEAXIS(Z);
  1501. sync_plan_position_delta();
  1502. #else // NOT DELTA
  1503. bool homeX = code_seen(axis_codes[X_AXIS]),
  1504. homeY = code_seen(axis_codes[Y_AXIS]),
  1505. homeZ = code_seen(axis_codes[Z_AXIS]);
  1506. home_all_axis = !(homeX || homeY || homeZ) || (homeX && homeY && homeZ);
  1507. if (home_all_axis || homeZ) {
  1508. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1509. HOMEAXIS(Z);
  1510. #elif !defined(Z_SAFE_HOMING) && defined(Z_RAISE_BEFORE_HOMING) && Z_RAISE_BEFORE_HOMING > 0
  1511. // Raise Z before homing any other axes
  1512. // (Does this need to be "negative home direction?" Why not just use Z_RAISE_BEFORE_HOMING?)
  1513. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS);
  1514. feedrate = max_feedrate[Z_AXIS] * 60;
  1515. line_to_destination();
  1516. st_synchronize();
  1517. #endif
  1518. } // home_all_axis || homeZ
  1519. #ifdef QUICK_HOME
  1520. if (home_all_axis || (homeX && homeY)) { // First diagonal move
  1521. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  1522. #ifdef DUAL_X_CARRIAGE
  1523. int x_axis_home_dir = x_home_dir(active_extruder);
  1524. extruder_duplication_enabled = false;
  1525. #else
  1526. int x_axis_home_dir = home_dir(X_AXIS);
  1527. #endif
  1528. sync_plan_position();
  1529. float mlx = max_length(X_AXIS), mly = max_length(Y_AXIS),
  1530. mlratio = mlx>mly ? mly/mlx : mlx/mly;
  1531. destination[X_AXIS] = 1.5 * mlx * x_axis_home_dir;
  1532. destination[Y_AXIS] = 1.5 * mly * home_dir(Y_AXIS);
  1533. feedrate = min(homing_feedrate[X_AXIS], homing_feedrate[Y_AXIS]) * sqrt(mlratio * mlratio + 1);
  1534. line_to_destination();
  1535. st_synchronize();
  1536. axis_is_at_home(X_AXIS);
  1537. axis_is_at_home(Y_AXIS);
  1538. sync_plan_position();
  1539. destination[X_AXIS] = current_position[X_AXIS];
  1540. destination[Y_AXIS] = current_position[Y_AXIS];
  1541. line_to_destination();
  1542. feedrate = 0.0;
  1543. st_synchronize();
  1544. endstops_hit_on_purpose(); // clear endstop hit flags
  1545. current_position[X_AXIS] = destination[X_AXIS];
  1546. current_position[Y_AXIS] = destination[Y_AXIS];
  1547. #ifndef SCARA
  1548. current_position[Z_AXIS] = destination[Z_AXIS];
  1549. #endif
  1550. }
  1551. #endif // QUICK_HOME
  1552. // Home X
  1553. if (home_all_axis || homeX) {
  1554. #ifdef DUAL_X_CARRIAGE
  1555. int tmp_extruder = active_extruder;
  1556. extruder_duplication_enabled = false;
  1557. active_extruder = !active_extruder;
  1558. HOMEAXIS(X);
  1559. inactive_extruder_x_pos = current_position[X_AXIS];
  1560. active_extruder = tmp_extruder;
  1561. HOMEAXIS(X);
  1562. // reset state used by the different modes
  1563. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1564. delayed_move_time = 0;
  1565. active_extruder_parked = true;
  1566. #else
  1567. HOMEAXIS(X);
  1568. #endif
  1569. }
  1570. // Home Y
  1571. if (home_all_axis || homeY) HOMEAXIS(Y);
  1572. // Set the X position, if included
  1573. if (code_seen(axis_codes[X_AXIS]) && code_has_value())
  1574. current_position[X_AXIS] = code_value();
  1575. // Set the Y position, if included
  1576. if (code_seen(axis_codes[Y_AXIS]) && code_has_value())
  1577. current_position[Y_AXIS] = code_value();
  1578. // Home Z last if homing towards the bed
  1579. #if Z_HOME_DIR < 0
  1580. if (home_all_axis || homeZ) {
  1581. #ifdef Z_SAFE_HOMING
  1582. if (home_all_axis) {
  1583. current_position[Z_AXIS] = 0;
  1584. sync_plan_position();
  1585. //
  1586. // Set the probe (or just the nozzle) destination to the safe homing point
  1587. //
  1588. // NOTE: If current_position[X_AXIS] or current_position[Y_AXIS] were set above
  1589. // then this may not work as expected.
  1590. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1591. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1592. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1593. feedrate = XY_TRAVEL_SPEED;
  1594. // This could potentially move X, Y, Z all together
  1595. line_to_destination();
  1596. st_synchronize();
  1597. // Set current X, Y is the Z_SAFE_HOMING_POINT minus PROBE_OFFSET_FROM_EXTRUDER
  1598. current_position[X_AXIS] = destination[X_AXIS];
  1599. current_position[Y_AXIS] = destination[Y_AXIS];
  1600. // Home the Z axis
  1601. HOMEAXIS(Z);
  1602. }
  1603. else if (homeZ) { // Don't need to Home Z twice
  1604. // Let's see if X and Y are homed
  1605. if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) {
  1606. // Make sure the probe is within the physical limits
  1607. // NOTE: This doesn't necessarily ensure the probe is also within the bed!
  1608. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  1609. if ( cpx >= X_MIN_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1610. && cpx <= X_MAX_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1611. && cpy >= Y_MIN_POS - Y_PROBE_OFFSET_FROM_EXTRUDER
  1612. && cpy <= Y_MAX_POS - Y_PROBE_OFFSET_FROM_EXTRUDER) {
  1613. // Set the plan current position to X, Y, 0
  1614. current_position[Z_AXIS] = 0;
  1615. plan_set_position(cpx, cpy, 0, current_position[E_AXIS]); // = sync_plan_position
  1616. // Set Z destination away from bed and raise the axis
  1617. // NOTE: This should always just be Z_RAISE_BEFORE_HOMING unless...???
  1618. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS);
  1619. feedrate = max_feedrate[Z_AXIS] * 60; // feedrate (mm/m) = max_feedrate (mm/s)
  1620. line_to_destination();
  1621. st_synchronize();
  1622. // Home the Z axis
  1623. HOMEAXIS(Z);
  1624. }
  1625. else {
  1626. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1627. SERIAL_ECHO_START;
  1628. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1629. }
  1630. }
  1631. else {
  1632. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1633. SERIAL_ECHO_START;
  1634. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1635. }
  1636. } // !home_all_axes && homeZ
  1637. #else // !Z_SAFE_HOMING
  1638. HOMEAXIS(Z);
  1639. #endif // !Z_SAFE_HOMING
  1640. } // home_all_axis || homeZ
  1641. #endif // Z_HOME_DIR < 0
  1642. // Set the Z position, if included
  1643. if (code_seen(axis_codes[Z_AXIS]) && code_has_value())
  1644. current_position[Z_AXIS] = code_value();
  1645. #if defined(ENABLE_AUTO_BED_LEVELING) && (Z_HOME_DIR < 0)
  1646. if (home_all_axis || homeZ) current_position[Z_AXIS] += zprobe_zoffset; // Add Z_Probe offset (the distance is negative)
  1647. #endif
  1648. sync_plan_position();
  1649. #endif // else DELTA
  1650. #ifdef SCARA
  1651. sync_plan_position_delta();
  1652. #endif
  1653. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1654. enable_endstops(false);
  1655. #endif
  1656. // For manual leveling move back to 0,0
  1657. #ifdef MESH_BED_LEVELING
  1658. if (mbl_was_active) {
  1659. current_position[X_AXIS] = mbl.get_x(0);
  1660. current_position[Y_AXIS] = mbl.get_y(0);
  1661. set_destination_to_current();
  1662. feedrate = homing_feedrate[X_AXIS];
  1663. line_to_destination();
  1664. st_synchronize();
  1665. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1666. sync_plan_position();
  1667. mbl.active = 1;
  1668. }
  1669. #endif
  1670. feedrate = saved_feedrate;
  1671. feedmultiply = saved_feedmultiply;
  1672. refresh_cmd_timeout();
  1673. endstops_hit_on_purpose(); // clear endstop hit flags
  1674. }
  1675. #ifdef MESH_BED_LEVELING
  1676. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  1677. /**
  1678. * G29: Mesh-based Z-Probe, probes a grid and produces a
  1679. * mesh to compensate for variable bed height
  1680. *
  1681. * Parameters With MESH_BED_LEVELING:
  1682. *
  1683. * S0 Produce a mesh report
  1684. * S1 Start probing mesh points
  1685. * S2 Probe the next mesh point
  1686. * S3 Xn Yn Zn.nn Manually modify a single point
  1687. *
  1688. * The S0 report the points as below
  1689. *
  1690. * +----> X-axis
  1691. * |
  1692. * |
  1693. * v Y-axis
  1694. *
  1695. */
  1696. inline void gcode_G29() {
  1697. static int probe_point = -1;
  1698. MeshLevelingState state = code_seen('S') || code_seen('s') ? (MeshLevelingState)code_value_short() : MeshReport;
  1699. if (state < 0 || state > 3) {
  1700. SERIAL_PROTOCOLLNPGM("S out of range (0-3).");
  1701. return;
  1702. }
  1703. int ix, iy;
  1704. float z;
  1705. switch(state) {
  1706. case MeshReport:
  1707. if (mbl.active) {
  1708. SERIAL_PROTOCOLPGM("Num X,Y: ");
  1709. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  1710. SERIAL_PROTOCOLCHAR(',');
  1711. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  1712. SERIAL_PROTOCOLPGM("\nZ search height: ");
  1713. SERIAL_PROTOCOL(MESH_HOME_SEARCH_Z);
  1714. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  1715. for (int y = 0; y < MESH_NUM_Y_POINTS; y++) {
  1716. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  1717. SERIAL_PROTOCOLPGM(" ");
  1718. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  1719. }
  1720. SERIAL_EOL;
  1721. }
  1722. }
  1723. else
  1724. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  1725. break;
  1726. case MeshStart:
  1727. mbl.reset();
  1728. probe_point = 0;
  1729. enqueuecommands_P(PSTR("G28\nG29 S2"));
  1730. break;
  1731. case MeshNext:
  1732. if (probe_point < 0) {
  1733. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  1734. return;
  1735. }
  1736. if (probe_point == 0) {
  1737. // Set Z to a positive value before recording the first Z.
  1738. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1739. sync_plan_position();
  1740. }
  1741. else {
  1742. // For others, save the Z of the previous point, then raise Z again.
  1743. ix = (probe_point - 1) % MESH_NUM_X_POINTS;
  1744. iy = (probe_point - 1) / MESH_NUM_X_POINTS;
  1745. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  1746. mbl.set_z(ix, iy, current_position[Z_AXIS]);
  1747. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1748. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  1749. st_synchronize();
  1750. }
  1751. // Is there another point to sample? Move there.
  1752. if (probe_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS) {
  1753. ix = probe_point % MESH_NUM_X_POINTS;
  1754. iy = probe_point / MESH_NUM_X_POINTS;
  1755. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  1756. current_position[X_AXIS] = mbl.get_x(ix);
  1757. current_position[Y_AXIS] = mbl.get_y(iy);
  1758. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  1759. st_synchronize();
  1760. probe_point++;
  1761. }
  1762. else {
  1763. // After recording the last point, activate the mbl and home
  1764. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  1765. probe_point = -1;
  1766. mbl.active = 1;
  1767. enqueuecommands_P(PSTR("G28"));
  1768. }
  1769. break;
  1770. case MeshSet:
  1771. if (code_seen('X') || code_seen('x')) {
  1772. ix = code_value_long()-1;
  1773. if (ix < 0 || ix >= MESH_NUM_X_POINTS) {
  1774. SERIAL_PROTOCOLPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").\n");
  1775. return;
  1776. }
  1777. } else {
  1778. SERIAL_PROTOCOLPGM("X not entered.\n");
  1779. return;
  1780. }
  1781. if (code_seen('Y') || code_seen('y')) {
  1782. iy = code_value_long()-1;
  1783. if (iy < 0 || iy >= MESH_NUM_Y_POINTS) {
  1784. SERIAL_PROTOCOLPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").\n");
  1785. return;
  1786. }
  1787. } else {
  1788. SERIAL_PROTOCOLPGM("Y not entered.\n");
  1789. return;
  1790. }
  1791. if (code_seen('Z') || code_seen('z')) {
  1792. z = code_value();
  1793. } else {
  1794. SERIAL_PROTOCOLPGM("Z not entered.\n");
  1795. return;
  1796. }
  1797. mbl.z_values[iy][ix] = z;
  1798. } // switch(state)
  1799. }
  1800. #elif defined(ENABLE_AUTO_BED_LEVELING)
  1801. /**
  1802. * G29: Detailed Z-Probe, probes the bed at 3 or more points.
  1803. * Will fail if the printer has not been homed with G28.
  1804. *
  1805. * Enhanced G29 Auto Bed Leveling Probe Routine
  1806. *
  1807. * Parameters With AUTO_BED_LEVELING_GRID:
  1808. *
  1809. * P Set the size of the grid that will be probed (P x P points).
  1810. * Not supported by non-linear delta printer bed leveling.
  1811. * Example: "G29 P4"
  1812. *
  1813. * S Set the XY travel speed between probe points (in mm/min)
  1814. *
  1815. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  1816. * or clean the rotation Matrix. Useful to check the topology
  1817. * after a first run of G29.
  1818. *
  1819. * V Set the verbose level (0-4). Example: "G29 V3"
  1820. *
  1821. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  1822. * This is useful for manual bed leveling and finding flaws in the bed (to
  1823. * assist with part placement).
  1824. * Not supported by non-linear delta printer bed leveling.
  1825. *
  1826. * F Set the Front limit of the probing grid
  1827. * B Set the Back limit of the probing grid
  1828. * L Set the Left limit of the probing grid
  1829. * R Set the Right limit of the probing grid
  1830. *
  1831. * Global Parameters:
  1832. *
  1833. * E/e By default G29 will engage the probe, test the bed, then disengage.
  1834. * Include "E" to engage/disengage the probe for each sample.
  1835. * There's no extra effect if you have a fixed probe.
  1836. * Usage: "G29 E" or "G29 e"
  1837. *
  1838. */
  1839. inline void gcode_G29() {
  1840. // Don't allow auto-leveling without homing first
  1841. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  1842. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1843. SERIAL_ECHO_START;
  1844. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1845. return;
  1846. }
  1847. int verbose_level = code_seen('V') || code_seen('v') ? code_value_short() : 1;
  1848. if (verbose_level < 0 || verbose_level > 4) {
  1849. SERIAL_ECHOLNPGM("?(V)erbose Level is implausible (0-4).");
  1850. return;
  1851. }
  1852. bool dryrun = code_seen('D') || code_seen('d'),
  1853. deploy_probe_for_each_reading = code_seen('E') || code_seen('e');
  1854. #ifdef AUTO_BED_LEVELING_GRID
  1855. #ifndef DELTA
  1856. bool do_topography_map = verbose_level > 2 || code_seen('T') || code_seen('t');
  1857. #endif
  1858. if (verbose_level > 0) {
  1859. SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
  1860. if (dryrun) SERIAL_ECHOLNPGM("Running in DRY-RUN mode");
  1861. }
  1862. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  1863. #ifndef DELTA
  1864. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_short();
  1865. if (auto_bed_leveling_grid_points < 2) {
  1866. SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
  1867. return;
  1868. }
  1869. #endif
  1870. xy_travel_speed = code_seen('S') ? code_value_short() : XY_TRAVEL_SPEED;
  1871. int left_probe_bed_position = code_seen('L') ? code_value_short() : LEFT_PROBE_BED_POSITION,
  1872. right_probe_bed_position = code_seen('R') ? code_value_short() : RIGHT_PROBE_BED_POSITION,
  1873. front_probe_bed_position = code_seen('F') ? code_value_short() : FRONT_PROBE_BED_POSITION,
  1874. back_probe_bed_position = code_seen('B') ? code_value_short() : BACK_PROBE_BED_POSITION;
  1875. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  1876. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - MIN_PROBE_EDGE,
  1877. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  1878. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  1879. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  1880. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - MIN_PROBE_EDGE,
  1881. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  1882. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  1883. if (left_out || right_out || front_out || back_out) {
  1884. if (left_out) {
  1885. SERIAL_PROTOCOLPGM("?Probe (L)eft position out of range.\n");
  1886. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - MIN_PROBE_EDGE;
  1887. }
  1888. if (right_out) {
  1889. SERIAL_PROTOCOLPGM("?Probe (R)ight position out of range.\n");
  1890. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  1891. }
  1892. if (front_out) {
  1893. SERIAL_PROTOCOLPGM("?Probe (F)ront position out of range.\n");
  1894. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - MIN_PROBE_EDGE;
  1895. }
  1896. if (back_out) {
  1897. SERIAL_PROTOCOLPGM("?Probe (B)ack position out of range.\n");
  1898. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  1899. }
  1900. return;
  1901. }
  1902. #endif // AUTO_BED_LEVELING_GRID
  1903. #ifdef Z_PROBE_SLED
  1904. dock_sled(false); // engage (un-dock) the probe
  1905. #elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
  1906. deploy_z_probe();
  1907. #endif
  1908. st_synchronize();
  1909. if (!dryrun) {
  1910. // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
  1911. plan_bed_level_matrix.set_to_identity();
  1912. #ifdef DELTA
  1913. reset_bed_level();
  1914. #else //!DELTA
  1915. //vector_3 corrected_position = plan_get_position_mm();
  1916. //corrected_position.debug("position before G29");
  1917. vector_3 uncorrected_position = plan_get_position();
  1918. //uncorrected_position.debug("position during G29");
  1919. current_position[X_AXIS] = uncorrected_position.x;
  1920. current_position[Y_AXIS] = uncorrected_position.y;
  1921. current_position[Z_AXIS] = uncorrected_position.z;
  1922. sync_plan_position();
  1923. #endif // !DELTA
  1924. }
  1925. setup_for_endstop_move();
  1926. feedrate = homing_feedrate[Z_AXIS];
  1927. #ifdef AUTO_BED_LEVELING_GRID
  1928. // probe at the points of a lattice grid
  1929. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
  1930. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  1931. #ifdef DELTA
  1932. delta_grid_spacing[0] = xGridSpacing;
  1933. delta_grid_spacing[1] = yGridSpacing;
  1934. float z_offset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  1935. if (code_seen(axis_codes[Z_AXIS])) z_offset += code_value();
  1936. #else // !DELTA
  1937. // solve the plane equation ax + by + d = z
  1938. // A is the matrix with rows [x y 1] for all the probed points
  1939. // B is the vector of the Z positions
  1940. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1941. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1942. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  1943. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  1944. eqnBVector[abl2], // "B" vector of Z points
  1945. mean = 0.0;
  1946. #endif // !DELTA
  1947. int probePointCounter = 0;
  1948. bool zig = true;
  1949. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  1950. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  1951. int xStart, xStop, xInc;
  1952. if (zig) {
  1953. xStart = 0;
  1954. xStop = auto_bed_leveling_grid_points;
  1955. xInc = 1;
  1956. }
  1957. else {
  1958. xStart = auto_bed_leveling_grid_points - 1;
  1959. xStop = -1;
  1960. xInc = -1;
  1961. }
  1962. #ifndef DELTA
  1963. // If do_topography_map is set then don't zig-zag. Just scan in one direction.
  1964. // This gets the probe points in more readable order.
  1965. if (!do_topography_map) zig = !zig;
  1966. #endif
  1967. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  1968. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  1969. // raise extruder
  1970. float measured_z,
  1971. z_before = probePointCounter ? Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS] : Z_RAISE_BEFORE_PROBING;
  1972. #ifdef DELTA
  1973. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  1974. float distance_from_center = sqrt(xProbe*xProbe + yProbe*yProbe);
  1975. if (distance_from_center > DELTA_PROBABLE_RADIUS) continue;
  1976. #endif //DELTA
  1977. ProbeAction act;
  1978. if (deploy_probe_for_each_reading) // G29 E - Stow between probes
  1979. act = ProbeDeployAndStow;
  1980. else if (yCount == 0 && xCount == xStart)
  1981. act = ProbeDeploy;
  1982. else if (yCount == auto_bed_leveling_grid_points - 1 && xCount == xStop - xInc)
  1983. act = ProbeStow;
  1984. else
  1985. act = ProbeStay;
  1986. measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
  1987. #ifndef DELTA
  1988. mean += measured_z;
  1989. eqnBVector[probePointCounter] = measured_z;
  1990. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  1991. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  1992. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  1993. #else
  1994. bed_level[xCount][yCount] = measured_z + z_offset;
  1995. #endif
  1996. probePointCounter++;
  1997. manage_heater();
  1998. manage_inactivity();
  1999. lcd_update();
  2000. } //xProbe
  2001. } //yProbe
  2002. clean_up_after_endstop_move();
  2003. #ifdef DELTA
  2004. if (!dryrun) extrapolate_unprobed_bed_level();
  2005. print_bed_level();
  2006. #else // !DELTA
  2007. // solve lsq problem
  2008. double *plane_equation_coefficients = qr_solve(abl2, 3, eqnAMatrix, eqnBVector);
  2009. mean /= abl2;
  2010. if (verbose_level) {
  2011. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2012. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  2013. SERIAL_PROTOCOLPGM(" b: ");
  2014. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  2015. SERIAL_PROTOCOLPGM(" d: ");
  2016. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  2017. SERIAL_EOL;
  2018. if (verbose_level > 2) {
  2019. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  2020. SERIAL_PROTOCOL_F(mean, 8);
  2021. SERIAL_EOL;
  2022. }
  2023. }
  2024. // Show the Topography map if enabled
  2025. if (do_topography_map) {
  2026. SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
  2027. SERIAL_PROTOCOLPGM("+-----------+\n");
  2028. SERIAL_PROTOCOLPGM("|...Back....|\n");
  2029. SERIAL_PROTOCOLPGM("|Left..Right|\n");
  2030. SERIAL_PROTOCOLPGM("|...Front...|\n");
  2031. SERIAL_PROTOCOLPGM("+-----------+\n");
  2032. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2033. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2034. int ind = yy * auto_bed_leveling_grid_points + xx;
  2035. float diff = eqnBVector[ind] - mean;
  2036. if (diff >= 0.0)
  2037. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  2038. else
  2039. SERIAL_PROTOCOLCHAR(' ');
  2040. SERIAL_PROTOCOL_F(diff, 5);
  2041. } // xx
  2042. SERIAL_EOL;
  2043. } // yy
  2044. SERIAL_EOL;
  2045. } //do_topography_map
  2046. if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
  2047. free(plane_equation_coefficients);
  2048. #endif //!DELTA
  2049. #else // !AUTO_BED_LEVELING_GRID
  2050. // Actions for each probe
  2051. ProbeAction p1, p2, p3;
  2052. if (deploy_probe_for_each_reading)
  2053. p1 = p2 = p3 = ProbeDeployAndStow;
  2054. else
  2055. p1 = ProbeDeploy, p2 = ProbeStay, p3 = ProbeStow;
  2056. // Probe at 3 arbitrary points
  2057. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, p1, verbose_level),
  2058. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p2, verbose_level),
  2059. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p3, verbose_level);
  2060. clean_up_after_endstop_move();
  2061. if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2062. #endif // !AUTO_BED_LEVELING_GRID
  2063. #ifndef DELTA
  2064. if (verbose_level > 0)
  2065. plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
  2066. if (!dryrun) {
  2067. // Correct the Z height difference from z-probe position and hotend tip position.
  2068. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2069. // When the bed is uneven, this height must be corrected.
  2070. float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  2071. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  2072. z_tmp = current_position[Z_AXIS],
  2073. real_z = (float)st_get_position(Z_AXIS) / axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2074. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2075. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2076. sync_plan_position();
  2077. }
  2078. #endif // !DELTA
  2079. #ifdef Z_PROBE_SLED
  2080. dock_sled(true, -SLED_DOCKING_OFFSET); // dock the probe, correcting for over-travel
  2081. #elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
  2082. stow_z_probe();
  2083. #endif
  2084. #ifdef Z_PROBE_END_SCRIPT
  2085. enqueuecommands_P(PSTR(Z_PROBE_END_SCRIPT));
  2086. st_synchronize();
  2087. #endif
  2088. }
  2089. #ifndef Z_PROBE_SLED
  2090. inline void gcode_G30() {
  2091. deploy_z_probe(); // Engage Z Servo endstop if available
  2092. st_synchronize();
  2093. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2094. setup_for_endstop_move();
  2095. feedrate = homing_feedrate[Z_AXIS];
  2096. run_z_probe();
  2097. SERIAL_PROTOCOLPGM("Bed");
  2098. SERIAL_PROTOCOLPGM(" X: ");
  2099. SERIAL_PROTOCOL(current_position[X_AXIS] + 0.0001);
  2100. SERIAL_PROTOCOLPGM(" Y: ");
  2101. SERIAL_PROTOCOL(current_position[Y_AXIS] + 0.0001);
  2102. SERIAL_PROTOCOLPGM(" Z: ");
  2103. SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
  2104. SERIAL_EOL;
  2105. clean_up_after_endstop_move();
  2106. stow_z_probe(); // Retract Z Servo endstop if available
  2107. }
  2108. #endif //!Z_PROBE_SLED
  2109. #endif //ENABLE_AUTO_BED_LEVELING
  2110. /**
  2111. * G92: Set current position to given X Y Z E
  2112. */
  2113. inline void gcode_G92() {
  2114. if (!code_seen(axis_codes[E_AXIS]))
  2115. st_synchronize();
  2116. bool didXYZ = false;
  2117. for (int i = 0; i < NUM_AXIS; i++) {
  2118. if (code_seen(axis_codes[i])) {
  2119. float v = current_position[i] = code_value();
  2120. if (i == E_AXIS)
  2121. plan_set_e_position(v);
  2122. else
  2123. didXYZ = true;
  2124. }
  2125. }
  2126. if (didXYZ) sync_plan_position();
  2127. }
  2128. #ifdef ULTIPANEL
  2129. /**
  2130. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  2131. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  2132. */
  2133. inline void gcode_M0_M1() {
  2134. char *src = strchr_pointer + 2;
  2135. millis_t codenum = 0;
  2136. bool hasP = false, hasS = false;
  2137. if (code_seen('P')) {
  2138. codenum = code_value_short(); // milliseconds to wait
  2139. hasP = codenum > 0;
  2140. }
  2141. if (code_seen('S')) {
  2142. codenum = code_value_short() * 1000UL; // seconds to wait
  2143. hasS = codenum > 0;
  2144. }
  2145. char* starpos = strchr(src, '*');
  2146. if (starpos != NULL) *(starpos) = '\0';
  2147. while (*src == ' ') ++src;
  2148. if (!hasP && !hasS && *src != '\0')
  2149. lcd_setstatus(src, true);
  2150. else {
  2151. LCD_MESSAGEPGM(MSG_USERWAIT);
  2152. #if defined(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  2153. dontExpireStatus();
  2154. #endif
  2155. }
  2156. lcd_ignore_click();
  2157. st_synchronize();
  2158. refresh_cmd_timeout();
  2159. if (codenum > 0) {
  2160. codenum += previous_cmd_ms; // keep track of when we started waiting
  2161. while(millis() < codenum && !lcd_clicked()) {
  2162. manage_heater();
  2163. manage_inactivity();
  2164. lcd_update();
  2165. }
  2166. lcd_ignore_click(false);
  2167. }
  2168. else {
  2169. if (!lcd_detected()) return;
  2170. while (!lcd_clicked()) {
  2171. manage_heater();
  2172. manage_inactivity();
  2173. lcd_update();
  2174. }
  2175. }
  2176. if (IS_SD_PRINTING)
  2177. LCD_MESSAGEPGM(MSG_RESUMING);
  2178. else
  2179. LCD_MESSAGEPGM(WELCOME_MSG);
  2180. }
  2181. #endif // ULTIPANEL
  2182. /**
  2183. * M17: Enable power on all stepper motors
  2184. */
  2185. inline void gcode_M17() {
  2186. LCD_MESSAGEPGM(MSG_NO_MOVE);
  2187. enable_all_steppers();
  2188. }
  2189. #ifdef SDSUPPORT
  2190. /**
  2191. * M20: List SD card to serial output
  2192. */
  2193. inline void gcode_M20() {
  2194. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  2195. card.ls();
  2196. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  2197. }
  2198. /**
  2199. * M21: Init SD Card
  2200. */
  2201. inline void gcode_M21() {
  2202. card.initsd();
  2203. }
  2204. /**
  2205. * M22: Release SD Card
  2206. */
  2207. inline void gcode_M22() {
  2208. card.release();
  2209. }
  2210. /**
  2211. * M23: Select a file
  2212. */
  2213. inline void gcode_M23() {
  2214. char* codepos = strchr_pointer + 4;
  2215. char* starpos = strchr(codepos, '*');
  2216. if (starpos) *starpos = '\0';
  2217. card.openFile(codepos, true);
  2218. }
  2219. /**
  2220. * M24: Start SD Print
  2221. */
  2222. inline void gcode_M24() {
  2223. card.startFileprint();
  2224. starttime = millis();
  2225. }
  2226. /**
  2227. * M25: Pause SD Print
  2228. */
  2229. inline void gcode_M25() {
  2230. card.pauseSDPrint();
  2231. }
  2232. /**
  2233. * M26: Set SD Card file index
  2234. */
  2235. inline void gcode_M26() {
  2236. if (card.cardOK && code_seen('S'))
  2237. card.setIndex(code_value_short());
  2238. }
  2239. /**
  2240. * M27: Get SD Card status
  2241. */
  2242. inline void gcode_M27() {
  2243. card.getStatus();
  2244. }
  2245. /**
  2246. * M28: Start SD Write
  2247. */
  2248. inline void gcode_M28() {
  2249. char* codepos = strchr_pointer + 4;
  2250. char* starpos = strchr(codepos, '*');
  2251. if (starpos) {
  2252. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2253. strchr_pointer = strchr(npos, ' ') + 1;
  2254. *(starpos) = '\0';
  2255. }
  2256. card.openFile(codepos, false);
  2257. }
  2258. /**
  2259. * M29: Stop SD Write
  2260. * Processed in write to file routine above
  2261. */
  2262. inline void gcode_M29() {
  2263. // card.saving = false;
  2264. }
  2265. /**
  2266. * M30 <filename>: Delete SD Card file
  2267. */
  2268. inline void gcode_M30() {
  2269. if (card.cardOK) {
  2270. card.closefile();
  2271. char* starpos = strchr(strchr_pointer + 4, '*');
  2272. if (starpos) {
  2273. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2274. strchr_pointer = strchr(npos, ' ') + 1;
  2275. *(starpos) = '\0';
  2276. }
  2277. card.removeFile(strchr_pointer + 4);
  2278. }
  2279. }
  2280. #endif
  2281. /**
  2282. * M31: Get the time since the start of SD Print (or last M109)
  2283. */
  2284. inline void gcode_M31() {
  2285. stoptime = millis();
  2286. millis_t t = (stoptime - starttime) / 1000;
  2287. int min = t / 60, sec = t % 60;
  2288. char time[30];
  2289. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  2290. SERIAL_ECHO_START;
  2291. SERIAL_ECHOLN(time);
  2292. lcd_setstatus(time);
  2293. autotempShutdown();
  2294. }
  2295. #ifdef SDSUPPORT
  2296. /**
  2297. * M32: Select file and start SD Print
  2298. */
  2299. inline void gcode_M32() {
  2300. if (card.sdprinting)
  2301. st_synchronize();
  2302. char* codepos = strchr_pointer + 4;
  2303. char* namestartpos = strchr(codepos, '!'); //find ! to indicate filename string start.
  2304. if (! namestartpos)
  2305. namestartpos = codepos; //default name position, 4 letters after the M
  2306. else
  2307. namestartpos++; //to skip the '!'
  2308. char* starpos = strchr(codepos, '*');
  2309. if (starpos) *(starpos) = '\0';
  2310. bool call_procedure = code_seen('P') && (strchr_pointer < namestartpos);
  2311. if (card.cardOK) {
  2312. card.openFile(namestartpos, true, !call_procedure);
  2313. if (code_seen('S') && strchr_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  2314. card.setIndex(code_value_short());
  2315. card.startFileprint();
  2316. if (!call_procedure)
  2317. starttime = millis(); //procedure calls count as normal print time.
  2318. }
  2319. }
  2320. /**
  2321. * M928: Start SD Write
  2322. */
  2323. inline void gcode_M928() {
  2324. char* starpos = strchr(strchr_pointer + 5, '*');
  2325. if (starpos) {
  2326. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2327. strchr_pointer = strchr(npos, ' ') + 1;
  2328. *(starpos) = '\0';
  2329. }
  2330. card.openLogFile(strchr_pointer + 5);
  2331. }
  2332. #endif // SDSUPPORT
  2333. /**
  2334. * M42: Change pin status via GCode
  2335. */
  2336. inline void gcode_M42() {
  2337. if (code_seen('S')) {
  2338. int pin_status = code_value_short(),
  2339. pin_number = LED_PIN;
  2340. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  2341. pin_number = code_value_short();
  2342. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins) / sizeof(*sensitive_pins)); i++) {
  2343. if (sensitive_pins[i] == pin_number) {
  2344. pin_number = -1;
  2345. break;
  2346. }
  2347. }
  2348. #if HAS_FAN
  2349. if (pin_number == FAN_PIN) fanSpeed = pin_status;
  2350. #endif
  2351. if (pin_number > -1) {
  2352. pinMode(pin_number, OUTPUT);
  2353. digitalWrite(pin_number, pin_status);
  2354. analogWrite(pin_number, pin_status);
  2355. }
  2356. } // code_seen('S')
  2357. }
  2358. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  2359. // This is redundant since the SanityCheck.h already checks for a valid Z_PROBE_PIN, but here for clarity.
  2360. #ifdef Z_PROBE_ENDSTOP
  2361. #if !HAS_Z_PROBE
  2362. #error You must define Z_PROBE_PIN to enable Z-Probe repeatability calculation.
  2363. #endif
  2364. #elif !HAS_Z_MIN
  2365. #error You must define Z_MIN_PIN to enable Z-Probe repeatability calculation.
  2366. #endif
  2367. /**
  2368. * M48: Z-Probe repeatability measurement function.
  2369. *
  2370. * Usage:
  2371. * M48 <n#> <X#> <Y#> <V#> <E> <L#>
  2372. * P = Number of sampled points (4-50, default 10)
  2373. * X = Sample X position
  2374. * Y = Sample Y position
  2375. * V = Verbose level (0-4, default=1)
  2376. * E = Engage probe for each reading
  2377. * L = Number of legs of movement before probe
  2378. *
  2379. * This function assumes the bed has been homed. Specifically, that a G28 command
  2380. * as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  2381. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  2382. * regenerated.
  2383. *
  2384. * The number of samples will default to 10 if not specified. You can use upper or lower case
  2385. * letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  2386. * N for its communication protocol and will get horribly confused if you send it a capital N.
  2387. */
  2388. inline void gcode_M48() {
  2389. double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
  2390. uint8_t verbose_level = 1, n_samples = 10, n_legs = 0;
  2391. if (code_seen('V') || code_seen('v')) {
  2392. verbose_level = code_value_short();
  2393. if (verbose_level < 0 || verbose_level > 4 ) {
  2394. SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
  2395. return;
  2396. }
  2397. }
  2398. if (verbose_level > 0)
  2399. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
  2400. if (code_seen('P') || code_seen('p') || code_seen('n')) { // `n` for legacy support only - please use `P`!
  2401. n_samples = code_value_short();
  2402. if (n_samples < 4 || n_samples > 50) {
  2403. SERIAL_PROTOCOLPGM("?Sample size not plausible (4-50).\n");
  2404. return;
  2405. }
  2406. }
  2407. double X_probe_location, Y_probe_location,
  2408. X_current = X_probe_location = st_get_position_mm(X_AXIS),
  2409. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS),
  2410. Z_current = st_get_position_mm(Z_AXIS),
  2411. Z_start_location = Z_current + Z_RAISE_BEFORE_PROBING,
  2412. ext_position = st_get_position_mm(E_AXIS);
  2413. bool deploy_probe_for_each_reading = code_seen('E') || code_seen('e');
  2414. if (code_seen('X') || code_seen('x')) {
  2415. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  2416. if (X_probe_location < X_MIN_POS || X_probe_location > X_MAX_POS) {
  2417. SERIAL_PROTOCOLPGM("?X position out of range.\n");
  2418. return;
  2419. }
  2420. }
  2421. if (code_seen('Y') || code_seen('y')) {
  2422. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  2423. if (Y_probe_location < Y_MIN_POS || Y_probe_location > Y_MAX_POS) {
  2424. SERIAL_PROTOCOLPGM("?Y position out of range.\n");
  2425. return;
  2426. }
  2427. }
  2428. if (code_seen('L') || code_seen('l')) {
  2429. n_legs = code_value_short();
  2430. if (n_legs == 1) n_legs = 2;
  2431. if (n_legs < 0 || n_legs > 15) {
  2432. SERIAL_PROTOCOLPGM("?Number of legs in movement not plausible (0-15).\n");
  2433. return;
  2434. }
  2435. }
  2436. //
  2437. // Do all the preliminary setup work. First raise the probe.
  2438. //
  2439. st_synchronize();
  2440. plan_bed_level_matrix.set_to_identity();
  2441. plan_buffer_line(X_current, Y_current, Z_start_location,
  2442. ext_position,
  2443. homing_feedrate[Z_AXIS] / 60,
  2444. active_extruder);
  2445. st_synchronize();
  2446. //
  2447. // Now get everything to the specified probe point So we can safely do a probe to
  2448. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  2449. // use that as a starting point for each probe.
  2450. //
  2451. if (verbose_level > 2)
  2452. SERIAL_PROTOCOLPGM("Positioning the probe...\n");
  2453. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2454. ext_position,
  2455. homing_feedrate[X_AXIS]/60,
  2456. active_extruder);
  2457. st_synchronize();
  2458. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  2459. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  2460. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2461. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  2462. //
  2463. // OK, do the inital probe to get us close to the bed.
  2464. // Then retrace the right amount and use that in subsequent probes
  2465. //
  2466. deploy_z_probe();
  2467. setup_for_endstop_move();
  2468. run_z_probe();
  2469. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2470. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2471. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2472. ext_position,
  2473. homing_feedrate[X_AXIS]/60,
  2474. active_extruder);
  2475. st_synchronize();
  2476. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2477. if (deploy_probe_for_each_reading) stow_z_probe();
  2478. for (uint8_t n=0; n < n_samples; n++) {
  2479. // Make sure we are at the probe location
  2480. do_blocking_move_to(X_probe_location, Y_probe_location, Z_start_location); // this also updates current_position
  2481. if (n_legs) {
  2482. millis_t ms = millis();
  2483. double radius = ms % (X_MAX_LENGTH / 4), // limit how far out to go
  2484. theta = RADIANS(ms % 360L);
  2485. float dir = (ms & 0x0001) ? 1 : -1; // clockwise or counter clockwise
  2486. //SERIAL_ECHOPAIR("starting radius: ",radius);
  2487. //SERIAL_ECHOPAIR(" theta: ",theta);
  2488. //SERIAL_ECHOPAIR(" direction: ",dir);
  2489. //SERIAL_EOL;
  2490. for (uint8_t l = 0; l < n_legs - 1; l++) {
  2491. ms = millis();
  2492. theta += RADIANS(dir * (ms % 20L));
  2493. radius += (ms % 10L) - 5L;
  2494. if (radius < 0.0) radius = -radius;
  2495. X_current = X_probe_location + cos(theta) * radius;
  2496. Y_current = Y_probe_location + sin(theta) * radius;
  2497. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  2498. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  2499. if (verbose_level > 3) {
  2500. SERIAL_ECHOPAIR("x: ", X_current);
  2501. SERIAL_ECHOPAIR("y: ", Y_current);
  2502. SERIAL_EOL;
  2503. }
  2504. do_blocking_move_to(X_current, Y_current, Z_current); // this also updates current_position
  2505. } // n_legs loop
  2506. // Go back to the probe location
  2507. do_blocking_move_to(X_probe_location, Y_probe_location, Z_start_location); // this also updates current_position
  2508. } // n_legs
  2509. if (deploy_probe_for_each_reading) {
  2510. deploy_z_probe();
  2511. delay(1000);
  2512. }
  2513. setup_for_endstop_move();
  2514. run_z_probe();
  2515. sample_set[n] = current_position[Z_AXIS];
  2516. //
  2517. // Get the current mean for the data points we have so far
  2518. //
  2519. sum = 0.0;
  2520. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  2521. mean = sum / (n + 1);
  2522. //
  2523. // Now, use that mean to calculate the standard deviation for the
  2524. // data points we have so far
  2525. //
  2526. sum = 0.0;
  2527. for (uint8_t j = 0; j <= n; j++) {
  2528. float ss = sample_set[j] - mean;
  2529. sum += ss * ss;
  2530. }
  2531. sigma = sqrt(sum / (n + 1));
  2532. if (verbose_level > 1) {
  2533. SERIAL_PROTOCOL(n+1);
  2534. SERIAL_PROTOCOLPGM(" of ");
  2535. SERIAL_PROTOCOL(n_samples);
  2536. SERIAL_PROTOCOLPGM(" z: ");
  2537. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  2538. if (verbose_level > 2) {
  2539. SERIAL_PROTOCOLPGM(" mean: ");
  2540. SERIAL_PROTOCOL_F(mean,6);
  2541. SERIAL_PROTOCOLPGM(" sigma: ");
  2542. SERIAL_PROTOCOL_F(sigma,6);
  2543. }
  2544. }
  2545. if (verbose_level > 0) SERIAL_EOL;
  2546. plan_buffer_line(X_probe_location, Y_probe_location, Z_start_location, current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2547. st_synchronize();
  2548. if (deploy_probe_for_each_reading) {
  2549. stow_z_probe();
  2550. delay(1000);
  2551. }
  2552. }
  2553. if (!deploy_probe_for_each_reading) {
  2554. stow_z_probe();
  2555. delay(1000);
  2556. }
  2557. clean_up_after_endstop_move();
  2558. // enable_endstops(true);
  2559. if (verbose_level > 0) {
  2560. SERIAL_PROTOCOLPGM("Mean: ");
  2561. SERIAL_PROTOCOL_F(mean, 6);
  2562. SERIAL_EOL;
  2563. }
  2564. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2565. SERIAL_PROTOCOL_F(sigma, 6);
  2566. SERIAL_EOL; SERIAL_EOL;
  2567. }
  2568. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  2569. /**
  2570. * M104: Set hot end temperature
  2571. */
  2572. inline void gcode_M104() {
  2573. if (setTargetedHotend(104)) return;
  2574. if (code_seen('S')) {
  2575. float temp = code_value();
  2576. setTargetHotend(temp, target_extruder);
  2577. #ifdef DUAL_X_CARRIAGE
  2578. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  2579. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  2580. #endif
  2581. setWatch();
  2582. }
  2583. }
  2584. /**
  2585. * M105: Read hot end and bed temperature
  2586. */
  2587. inline void gcode_M105() {
  2588. if (setTargetedHotend(105)) return;
  2589. #if HAS_TEMP_0 || HAS_TEMP_BED
  2590. SERIAL_PROTOCOLPGM("ok");
  2591. #if HAS_TEMP_0
  2592. SERIAL_PROTOCOLPGM(" T:");
  2593. SERIAL_PROTOCOL_F(degHotend(target_extruder), 1);
  2594. SERIAL_PROTOCOLPGM(" /");
  2595. SERIAL_PROTOCOL_F(degTargetHotend(target_extruder), 1);
  2596. #endif
  2597. #if HAS_TEMP_BED
  2598. SERIAL_PROTOCOLPGM(" B:");
  2599. SERIAL_PROTOCOL_F(degBed(), 1);
  2600. SERIAL_PROTOCOLPGM(" /");
  2601. SERIAL_PROTOCOL_F(degTargetBed(), 1);
  2602. #endif
  2603. for (int8_t e = 0; e < EXTRUDERS; ++e) {
  2604. SERIAL_PROTOCOLPGM(" T");
  2605. SERIAL_PROTOCOL(e);
  2606. SERIAL_PROTOCOLCHAR(':');
  2607. SERIAL_PROTOCOL_F(degHotend(e), 1);
  2608. SERIAL_PROTOCOLPGM(" /");
  2609. SERIAL_PROTOCOL_F(degTargetHotend(e), 1);
  2610. }
  2611. #else // !HAS_TEMP_0 && !HAS_TEMP_BED
  2612. SERIAL_ERROR_START;
  2613. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  2614. #endif
  2615. SERIAL_PROTOCOLPGM(" @:");
  2616. #ifdef EXTRUDER_WATTS
  2617. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(target_extruder))/127);
  2618. SERIAL_PROTOCOLCHAR('W');
  2619. #else
  2620. SERIAL_PROTOCOL(getHeaterPower(target_extruder));
  2621. #endif
  2622. SERIAL_PROTOCOLPGM(" B@:");
  2623. #ifdef BED_WATTS
  2624. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2625. SERIAL_PROTOCOLCHAR('W');
  2626. #else
  2627. SERIAL_PROTOCOL(getHeaterPower(-1));
  2628. #endif
  2629. #ifdef SHOW_TEMP_ADC_VALUES
  2630. #if HAS_TEMP_BED
  2631. SERIAL_PROTOCOLPGM(" ADC B:");
  2632. SERIAL_PROTOCOL_F(degBed(),1);
  2633. SERIAL_PROTOCOLPGM("C->");
  2634. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  2635. #endif
  2636. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2637. SERIAL_PROTOCOLPGM(" T");
  2638. SERIAL_PROTOCOL(cur_extruder);
  2639. SERIAL_PROTOCOLCHAR(':');
  2640. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2641. SERIAL_PROTOCOLPGM("C->");
  2642. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  2643. }
  2644. #endif
  2645. SERIAL_EOL;
  2646. }
  2647. #if HAS_FAN
  2648. /**
  2649. * M106: Set Fan Speed
  2650. */
  2651. inline void gcode_M106() { fanSpeed = code_seen('S') ? constrain(code_value_short(), 0, 255) : 255; }
  2652. /**
  2653. * M107: Fan Off
  2654. */
  2655. inline void gcode_M107() { fanSpeed = 0; }
  2656. #endif // HAS_FAN
  2657. /**
  2658. * M109: Wait for extruder(s) to reach temperature
  2659. */
  2660. inline void gcode_M109() {
  2661. if (setTargetedHotend(109)) return;
  2662. LCD_MESSAGEPGM(MSG_HEATING);
  2663. CooldownNoWait = code_seen('S');
  2664. if (CooldownNoWait || code_seen('R')) {
  2665. float temp = code_value();
  2666. setTargetHotend(temp, target_extruder);
  2667. #ifdef DUAL_X_CARRIAGE
  2668. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  2669. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  2670. #endif
  2671. }
  2672. #ifdef AUTOTEMP
  2673. autotemp_enabled = code_seen('F');
  2674. if (autotemp_enabled) autotemp_factor = code_value();
  2675. if (code_seen('S')) autotemp_min = code_value();
  2676. if (code_seen('B')) autotemp_max = code_value();
  2677. #endif
  2678. setWatch();
  2679. millis_t temp_ms = millis();
  2680. /* See if we are heating up or cooling down */
  2681. target_direction = isHeatingHotend(target_extruder); // true if heating, false if cooling
  2682. cancel_heatup = false;
  2683. #ifdef TEMP_RESIDENCY_TIME
  2684. long residency_start_ms = -1;
  2685. /* continue to loop until we have reached the target temp
  2686. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  2687. while((!cancel_heatup)&&((residency_start_ms == -1) ||
  2688. (residency_start_ms >= 0 && (((unsigned int) (millis() - residency_start_ms)) < (TEMP_RESIDENCY_TIME * 1000UL)))) )
  2689. #else
  2690. while ( target_direction ? (isHeatingHotend(target_extruder)) : (isCoolingHotend(target_extruder)&&(CooldownNoWait==false)) )
  2691. #endif //TEMP_RESIDENCY_TIME
  2692. { // while loop
  2693. if (millis() > temp_ms + 1000UL) { //Print temp & remaining time every 1s while waiting
  2694. SERIAL_PROTOCOLPGM("T:");
  2695. SERIAL_PROTOCOL_F(degHotend(target_extruder),1);
  2696. SERIAL_PROTOCOLPGM(" E:");
  2697. SERIAL_PROTOCOL((int)target_extruder);
  2698. #ifdef TEMP_RESIDENCY_TIME
  2699. SERIAL_PROTOCOLPGM(" W:");
  2700. if (residency_start_ms > -1) {
  2701. temp_ms = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residency_start_ms)) / 1000UL;
  2702. SERIAL_PROTOCOLLN(temp_ms);
  2703. }
  2704. else {
  2705. SERIAL_PROTOCOLLNPGM("?");
  2706. }
  2707. #else
  2708. SERIAL_EOL;
  2709. #endif
  2710. temp_ms = millis();
  2711. }
  2712. manage_heater();
  2713. manage_inactivity();
  2714. lcd_update();
  2715. #ifdef TEMP_RESIDENCY_TIME
  2716. // start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  2717. // or when current temp falls outside the hysteresis after target temp was reached
  2718. if ((residency_start_ms == -1 && target_direction && (degHotend(target_extruder) >= (degTargetHotend(target_extruder)-TEMP_WINDOW))) ||
  2719. (residency_start_ms == -1 && !target_direction && (degHotend(target_extruder) <= (degTargetHotend(target_extruder)+TEMP_WINDOW))) ||
  2720. (residency_start_ms > -1 && labs(degHotend(target_extruder) - degTargetHotend(target_extruder)) > TEMP_HYSTERESIS) )
  2721. {
  2722. residency_start_ms = millis();
  2723. }
  2724. #endif //TEMP_RESIDENCY_TIME
  2725. }
  2726. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  2727. refresh_cmd_timeout();
  2728. starttime = previous_cmd_ms;
  2729. }
  2730. #if HAS_TEMP_BED
  2731. /**
  2732. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  2733. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  2734. */
  2735. inline void gcode_M190() {
  2736. LCD_MESSAGEPGM(MSG_BED_HEATING);
  2737. CooldownNoWait = code_seen('S');
  2738. if (CooldownNoWait || code_seen('R'))
  2739. setTargetBed(code_value());
  2740. millis_t temp_ms = millis();
  2741. cancel_heatup = false;
  2742. target_direction = isHeatingBed(); // true if heating, false if cooling
  2743. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) ) {
  2744. millis_t ms = millis();
  2745. if (ms > temp_ms + 1000UL) { //Print Temp Reading every 1 second while heating up.
  2746. temp_ms = ms;
  2747. float tt = degHotend(active_extruder);
  2748. SERIAL_PROTOCOLPGM("T:");
  2749. SERIAL_PROTOCOL(tt);
  2750. SERIAL_PROTOCOLPGM(" E:");
  2751. SERIAL_PROTOCOL((int)active_extruder);
  2752. SERIAL_PROTOCOLPGM(" B:");
  2753. SERIAL_PROTOCOL_F(degBed(), 1);
  2754. SERIAL_EOL;
  2755. }
  2756. manage_heater();
  2757. manage_inactivity();
  2758. lcd_update();
  2759. }
  2760. LCD_MESSAGEPGM(MSG_BED_DONE);
  2761. refresh_cmd_timeout();
  2762. }
  2763. #endif // HAS_TEMP_BED
  2764. /**
  2765. * M112: Emergency Stop
  2766. */
  2767. inline void gcode_M112() {
  2768. kill();
  2769. }
  2770. #ifdef BARICUDA
  2771. #if HAS_HEATER_1
  2772. /**
  2773. * M126: Heater 1 valve open
  2774. */
  2775. inline void gcode_M126() { ValvePressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2776. /**
  2777. * M127: Heater 1 valve close
  2778. */
  2779. inline void gcode_M127() { ValvePressure = 0; }
  2780. #endif
  2781. #if HAS_HEATER_2
  2782. /**
  2783. * M128: Heater 2 valve open
  2784. */
  2785. inline void gcode_M128() { EtoPPressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2786. /**
  2787. * M129: Heater 2 valve close
  2788. */
  2789. inline void gcode_M129() { EtoPPressure = 0; }
  2790. #endif
  2791. #endif //BARICUDA
  2792. /**
  2793. * M140: Set bed temperature
  2794. */
  2795. inline void gcode_M140() {
  2796. if (code_seen('S')) setTargetBed(code_value());
  2797. }
  2798. #if HAS_POWER_SWITCH
  2799. /**
  2800. * M80: Turn on Power Supply
  2801. */
  2802. inline void gcode_M80() {
  2803. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  2804. // If you have a switch on suicide pin, this is useful
  2805. // if you want to start another print with suicide feature after
  2806. // a print without suicide...
  2807. #if HAS_SUICIDE
  2808. OUT_WRITE(SUICIDE_PIN, HIGH);
  2809. #endif
  2810. #ifdef ULTIPANEL
  2811. powersupply = true;
  2812. LCD_MESSAGEPGM(WELCOME_MSG);
  2813. lcd_update();
  2814. #endif
  2815. }
  2816. #endif // HAS_POWER_SWITCH
  2817. /**
  2818. * M81: Turn off Power, including Power Supply, if there is one.
  2819. *
  2820. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  2821. */
  2822. inline void gcode_M81() {
  2823. disable_heater();
  2824. st_synchronize();
  2825. disable_e0();
  2826. disable_e1();
  2827. disable_e2();
  2828. disable_e3();
  2829. finishAndDisableSteppers();
  2830. fanSpeed = 0;
  2831. delay(1000); // Wait 1 second before switching off
  2832. #if HAS_SUICIDE
  2833. st_synchronize();
  2834. suicide();
  2835. #elif HAS_POWER_SWITCH
  2836. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  2837. #endif
  2838. #ifdef ULTIPANEL
  2839. #if HAS_POWER_SWITCH
  2840. powersupply = false;
  2841. #endif
  2842. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  2843. lcd_update();
  2844. #endif
  2845. }
  2846. /**
  2847. * M82: Set E codes absolute (default)
  2848. */
  2849. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  2850. /**
  2851. * M82: Set E codes relative while in Absolute Coordinates (G90) mode
  2852. */
  2853. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  2854. /**
  2855. * M18, M84: Disable all stepper motors
  2856. */
  2857. inline void gcode_M18_M84() {
  2858. if (code_seen('S')) {
  2859. stepper_inactive_time = code_value() * 1000;
  2860. }
  2861. else {
  2862. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  2863. if (all_axis) {
  2864. st_synchronize();
  2865. disable_e0();
  2866. disable_e1();
  2867. disable_e2();
  2868. disable_e3();
  2869. finishAndDisableSteppers();
  2870. }
  2871. else {
  2872. st_synchronize();
  2873. if (code_seen('X')) disable_x();
  2874. if (code_seen('Y')) disable_y();
  2875. if (code_seen('Z')) disable_z();
  2876. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  2877. if (code_seen('E')) {
  2878. disable_e0();
  2879. disable_e1();
  2880. disable_e2();
  2881. disable_e3();
  2882. }
  2883. #endif
  2884. }
  2885. }
  2886. }
  2887. /**
  2888. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2889. */
  2890. inline void gcode_M85() {
  2891. if (code_seen('S')) max_inactive_time = code_value() * 1000;
  2892. }
  2893. /**
  2894. * M92: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2895. */
  2896. inline void gcode_M92() {
  2897. for(int8_t i=0; i < NUM_AXIS; i++) {
  2898. if (code_seen(axis_codes[i])) {
  2899. if (i == E_AXIS) {
  2900. float value = code_value();
  2901. if (value < 20.0) {
  2902. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  2903. max_e_jerk *= factor;
  2904. max_feedrate[i] *= factor;
  2905. axis_steps_per_sqr_second[i] *= factor;
  2906. }
  2907. axis_steps_per_unit[i] = value;
  2908. }
  2909. else {
  2910. axis_steps_per_unit[i] = code_value();
  2911. }
  2912. }
  2913. }
  2914. }
  2915. /**
  2916. * M114: Output current position to serial port
  2917. */
  2918. inline void gcode_M114() {
  2919. SERIAL_PROTOCOLPGM("X:");
  2920. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2921. SERIAL_PROTOCOLPGM(" Y:");
  2922. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2923. SERIAL_PROTOCOLPGM(" Z:");
  2924. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2925. SERIAL_PROTOCOLPGM(" E:");
  2926. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2927. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  2928. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  2929. SERIAL_PROTOCOLPGM(" Y:");
  2930. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  2931. SERIAL_PROTOCOLPGM(" Z:");
  2932. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  2933. SERIAL_EOL;
  2934. #ifdef SCARA
  2935. SERIAL_PROTOCOLPGM("SCARA Theta:");
  2936. SERIAL_PROTOCOL(delta[X_AXIS]);
  2937. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2938. SERIAL_PROTOCOL(delta[Y_AXIS]);
  2939. SERIAL_EOL;
  2940. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  2941. SERIAL_PROTOCOL(delta[X_AXIS]+home_offset[X_AXIS]);
  2942. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  2943. SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+home_offset[Y_AXIS]);
  2944. SERIAL_EOL;
  2945. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  2946. SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
  2947. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2948. SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
  2949. SERIAL_EOL; SERIAL_EOL;
  2950. #endif
  2951. }
  2952. /**
  2953. * M115: Capabilities string
  2954. */
  2955. inline void gcode_M115() {
  2956. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  2957. }
  2958. /**
  2959. * M117: Set LCD Status Message
  2960. */
  2961. inline void gcode_M117() {
  2962. char* codepos = strchr_pointer + 5;
  2963. char* starpos = strchr(codepos, '*');
  2964. if (starpos) *starpos = '\0';
  2965. lcd_setstatus(codepos);
  2966. }
  2967. /**
  2968. * M119: Output endstop states to serial output
  2969. */
  2970. inline void gcode_M119() {
  2971. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  2972. #if HAS_X_MIN
  2973. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  2974. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2975. #endif
  2976. #if HAS_X_MAX
  2977. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  2978. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2979. #endif
  2980. #if HAS_Y_MIN
  2981. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  2982. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2983. #endif
  2984. #if HAS_Y_MAX
  2985. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  2986. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2987. #endif
  2988. #if HAS_Z_MIN
  2989. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  2990. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2991. #endif
  2992. #if HAS_Z_MAX
  2993. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  2994. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2995. #endif
  2996. #if HAS_Z2_MAX
  2997. SERIAL_PROTOCOLPGM(MSG_Z2_MAX);
  2998. SERIAL_PROTOCOLLN(((READ(Z2_MAX_PIN)^Z2_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2999. #endif
  3000. #if HAS_Z_PROBE
  3001. SERIAL_PROTOCOLPGM(MSG_Z_PROBE);
  3002. SERIAL_PROTOCOLLN(((READ(Z_PROBE_PIN)^Z_PROBE_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3003. #endif
  3004. }
  3005. /**
  3006. * M120: Enable endstops
  3007. */
  3008. inline void gcode_M120() { enable_endstops(false); }
  3009. /**
  3010. * M121: Disable endstops
  3011. */
  3012. inline void gcode_M121() { enable_endstops(true); }
  3013. #ifdef BLINKM
  3014. /**
  3015. * M150: Set Status LED Color - Use R-U-B for R-G-B
  3016. */
  3017. inline void gcode_M150() {
  3018. SendColors(
  3019. code_seen('R') ? (byte)code_value_short() : 0,
  3020. code_seen('U') ? (byte)code_value_short() : 0,
  3021. code_seen('B') ? (byte)code_value_short() : 0
  3022. );
  3023. }
  3024. #endif // BLINKM
  3025. /**
  3026. * M200: Set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3027. * T<extruder>
  3028. * D<millimeters>
  3029. */
  3030. inline void gcode_M200() {
  3031. int tmp_extruder = active_extruder;
  3032. if (code_seen('T')) {
  3033. tmp_extruder = code_value_short();
  3034. if (tmp_extruder >= EXTRUDERS) {
  3035. SERIAL_ECHO_START;
  3036. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  3037. return;
  3038. }
  3039. }
  3040. if (code_seen('D')) {
  3041. float diameter = code_value();
  3042. // setting any extruder filament size disables volumetric on the assumption that
  3043. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3044. // for all extruders
  3045. volumetric_enabled = (diameter != 0.0);
  3046. if (volumetric_enabled) {
  3047. filament_size[tmp_extruder] = diameter;
  3048. // make sure all extruders have some sane value for the filament size
  3049. for (int i=0; i<EXTRUDERS; i++)
  3050. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  3051. }
  3052. }
  3053. else {
  3054. //reserved for setting filament diameter via UFID or filament measuring device
  3055. return;
  3056. }
  3057. calculate_volumetric_multipliers();
  3058. }
  3059. /**
  3060. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  3061. */
  3062. inline void gcode_M201() {
  3063. for (int8_t i=0; i < NUM_AXIS; i++) {
  3064. if (code_seen(axis_codes[i])) {
  3065. max_acceleration_units_per_sq_second[i] = code_value();
  3066. }
  3067. }
  3068. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3069. reset_acceleration_rates();
  3070. }
  3071. #if 0 // Not used for Sprinter/grbl gen6
  3072. inline void gcode_M202() {
  3073. for(int8_t i=0; i < NUM_AXIS; i++) {
  3074. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3075. }
  3076. }
  3077. #endif
  3078. /**
  3079. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  3080. */
  3081. inline void gcode_M203() {
  3082. for (int8_t i=0; i < NUM_AXIS; i++) {
  3083. if (code_seen(axis_codes[i])) {
  3084. max_feedrate[i] = code_value();
  3085. }
  3086. }
  3087. }
  3088. /**
  3089. * M204: Set Accelerations in mm/sec^2 (M204 P1200 R3000 T3000)
  3090. *
  3091. * P = Printing moves
  3092. * R = Retract only (no X, Y, Z) moves
  3093. * T = Travel (non printing) moves
  3094. *
  3095. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  3096. */
  3097. inline void gcode_M204() {
  3098. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  3099. acceleration = code_value();
  3100. travel_acceleration = acceleration;
  3101. SERIAL_ECHOPAIR("Setting Print and Travel Acceleration: ", acceleration );
  3102. SERIAL_EOL;
  3103. }
  3104. if (code_seen('P')) {
  3105. acceleration = code_value();
  3106. SERIAL_ECHOPAIR("Setting Print Acceleration: ", acceleration );
  3107. SERIAL_EOL;
  3108. }
  3109. if (code_seen('R')) {
  3110. retract_acceleration = code_value();
  3111. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", retract_acceleration );
  3112. SERIAL_EOL;
  3113. }
  3114. if (code_seen('T')) {
  3115. travel_acceleration = code_value();
  3116. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", travel_acceleration );
  3117. SERIAL_EOL;
  3118. }
  3119. }
  3120. /**
  3121. * M205: Set Advanced Settings
  3122. *
  3123. * S = Min Feed Rate (mm/s)
  3124. * T = Min Travel Feed Rate (mm/s)
  3125. * B = Min Segment Time (µs)
  3126. * X = Max XY Jerk (mm/s/s)
  3127. * Z = Max Z Jerk (mm/s/s)
  3128. * E = Max E Jerk (mm/s/s)
  3129. */
  3130. inline void gcode_M205() {
  3131. if (code_seen('S')) minimumfeedrate = code_value();
  3132. if (code_seen('T')) mintravelfeedrate = code_value();
  3133. if (code_seen('B')) minsegmenttime = code_value();
  3134. if (code_seen('X')) max_xy_jerk = code_value();
  3135. if (code_seen('Z')) max_z_jerk = code_value();
  3136. if (code_seen('E')) max_e_jerk = code_value();
  3137. }
  3138. /**
  3139. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  3140. */
  3141. inline void gcode_M206() {
  3142. for (int8_t i=X_AXIS; i <= Z_AXIS; i++) {
  3143. if (code_seen(axis_codes[i])) {
  3144. home_offset[i] = code_value();
  3145. }
  3146. }
  3147. #ifdef SCARA
  3148. if (code_seen('T')) home_offset[X_AXIS] = code_value(); // Theta
  3149. if (code_seen('P')) home_offset[Y_AXIS] = code_value(); // Psi
  3150. #endif
  3151. }
  3152. #ifdef DELTA
  3153. /**
  3154. * M665: Set delta configurations
  3155. *
  3156. * L = diagonal rod
  3157. * R = delta radius
  3158. * S = segments per second
  3159. */
  3160. inline void gcode_M665() {
  3161. if (code_seen('L')) delta_diagonal_rod = code_value();
  3162. if (code_seen('R')) delta_radius = code_value();
  3163. if (code_seen('S')) delta_segments_per_second = code_value();
  3164. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  3165. }
  3166. /**
  3167. * M666: Set delta endstop adjustment
  3168. */
  3169. inline void gcode_M666() {
  3170. for (int8_t i = 0; i < 3; i++) {
  3171. if (code_seen(axis_codes[i])) {
  3172. endstop_adj[i] = code_value();
  3173. }
  3174. }
  3175. }
  3176. #elif defined(Z_DUAL_ENDSTOPS)
  3177. /**
  3178. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  3179. */
  3180. inline void gcode_M666() {
  3181. if (code_seen('Z')) z_endstop_adj = code_value();
  3182. SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj );
  3183. SERIAL_EOL;
  3184. }
  3185. #endif // DELTA
  3186. #ifdef FWRETRACT
  3187. /**
  3188. * M207: Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  3189. */
  3190. inline void gcode_M207() {
  3191. if (code_seen('S')) retract_length = code_value();
  3192. if (code_seen('F')) retract_feedrate = code_value() / 60;
  3193. if (code_seen('Z')) retract_zlift = code_value();
  3194. }
  3195. /**
  3196. * M208: Set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  3197. */
  3198. inline void gcode_M208() {
  3199. if (code_seen('S')) retract_recover_length = code_value();
  3200. if (code_seen('F')) retract_recover_feedrate = code_value() / 60;
  3201. }
  3202. /**
  3203. * M209: Enable automatic retract (M209 S1)
  3204. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3205. */
  3206. inline void gcode_M209() {
  3207. if (code_seen('S')) {
  3208. int t = code_value_short();
  3209. switch(t) {
  3210. case 0:
  3211. autoretract_enabled = false;
  3212. break;
  3213. case 1:
  3214. autoretract_enabled = true;
  3215. break;
  3216. default:
  3217. SERIAL_ECHO_START;
  3218. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  3219. SERIAL_ECHO(cmdbuffer[bufindr]);
  3220. SERIAL_ECHOLNPGM("\"");
  3221. return;
  3222. }
  3223. for (int i=0; i<EXTRUDERS; i++) retracted[i] = false;
  3224. }
  3225. }
  3226. #endif // FWRETRACT
  3227. #if EXTRUDERS > 1
  3228. /**
  3229. * M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3230. */
  3231. inline void gcode_M218() {
  3232. if (setTargetedHotend(218)) return;
  3233. if (code_seen('X')) extruder_offset[X_AXIS][target_extruder] = code_value();
  3234. if (code_seen('Y')) extruder_offset[Y_AXIS][target_extruder] = code_value();
  3235. #ifdef DUAL_X_CARRIAGE
  3236. if (code_seen('Z')) extruder_offset[Z_AXIS][target_extruder] = code_value();
  3237. #endif
  3238. SERIAL_ECHO_START;
  3239. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3240. for (int e = 0; e < EXTRUDERS; e++) {
  3241. SERIAL_CHAR(' ');
  3242. SERIAL_ECHO(extruder_offset[X_AXIS][e]);
  3243. SERIAL_CHAR(',');
  3244. SERIAL_ECHO(extruder_offset[Y_AXIS][e]);
  3245. #ifdef DUAL_X_CARRIAGE
  3246. SERIAL_CHAR(',');
  3247. SERIAL_ECHO(extruder_offset[Z_AXIS][e]);
  3248. #endif
  3249. }
  3250. SERIAL_EOL;
  3251. }
  3252. #endif // EXTRUDERS > 1
  3253. /**
  3254. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  3255. */
  3256. inline void gcode_M220() {
  3257. if (code_seen('S')) feedmultiply = code_value();
  3258. }
  3259. /**
  3260. * M221: Set extrusion percentage (M221 T0 S95)
  3261. */
  3262. inline void gcode_M221() {
  3263. if (code_seen('S')) {
  3264. int sval = code_value();
  3265. if (code_seen('T')) {
  3266. if (setTargetedHotend(221)) return;
  3267. extruder_multiply[target_extruder] = sval;
  3268. }
  3269. else {
  3270. extruder_multiply[active_extruder] = sval;
  3271. }
  3272. }
  3273. }
  3274. /**
  3275. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  3276. */
  3277. inline void gcode_M226() {
  3278. if (code_seen('P')) {
  3279. int pin_number = code_value();
  3280. int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted
  3281. if (pin_state >= -1 && pin_state <= 1) {
  3282. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(*sensitive_pins)); i++) {
  3283. if (sensitive_pins[i] == pin_number) {
  3284. pin_number = -1;
  3285. break;
  3286. }
  3287. }
  3288. if (pin_number > -1) {
  3289. int target = LOW;
  3290. st_synchronize();
  3291. pinMode(pin_number, INPUT);
  3292. switch(pin_state){
  3293. case 1:
  3294. target = HIGH;
  3295. break;
  3296. case 0:
  3297. target = LOW;
  3298. break;
  3299. case -1:
  3300. target = !digitalRead(pin_number);
  3301. break;
  3302. }
  3303. while(digitalRead(pin_number) != target) {
  3304. manage_heater();
  3305. manage_inactivity();
  3306. lcd_update();
  3307. }
  3308. } // pin_number > -1
  3309. } // pin_state -1 0 1
  3310. } // code_seen('P')
  3311. }
  3312. #if NUM_SERVOS > 0
  3313. /**
  3314. * M280: Set servo position absolute. P: servo index, S: angle or microseconds
  3315. */
  3316. inline void gcode_M280() {
  3317. int servo_index = code_seen('P') ? code_value() : -1;
  3318. int servo_position = 0;
  3319. if (code_seen('S')) {
  3320. servo_position = code_value();
  3321. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  3322. #if SERVO_LEVELING
  3323. servos[servo_index].attach(0);
  3324. #endif
  3325. servos[servo_index].write(servo_position);
  3326. #if SERVO_LEVELING
  3327. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  3328. servos[servo_index].detach();
  3329. #endif
  3330. }
  3331. else {
  3332. SERIAL_ECHO_START;
  3333. SERIAL_ECHO("Servo ");
  3334. SERIAL_ECHO(servo_index);
  3335. SERIAL_ECHOLN(" out of range");
  3336. }
  3337. }
  3338. else if (servo_index >= 0) {
  3339. SERIAL_PROTOCOL(MSG_OK);
  3340. SERIAL_PROTOCOL(" Servo ");
  3341. SERIAL_PROTOCOL(servo_index);
  3342. SERIAL_PROTOCOL(": ");
  3343. SERIAL_PROTOCOL(servos[servo_index].read());
  3344. SERIAL_EOL;
  3345. }
  3346. }
  3347. #endif // NUM_SERVOS > 0
  3348. #if BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)
  3349. /**
  3350. * M300: Play beep sound S<frequency Hz> P<duration ms>
  3351. */
  3352. inline void gcode_M300() {
  3353. uint16_t beepS = code_seen('S') ? code_value_short() : 110;
  3354. uint32_t beepP = code_seen('P') ? code_value_long() : 1000;
  3355. if (beepS > 0) {
  3356. #if BEEPER > 0
  3357. tone(BEEPER, beepS);
  3358. delay(beepP);
  3359. noTone(BEEPER);
  3360. #elif defined(ULTRALCD)
  3361. lcd_buzz(beepS, beepP);
  3362. #elif defined(LCD_USE_I2C_BUZZER)
  3363. lcd_buzz(beepP, beepS);
  3364. #endif
  3365. }
  3366. else {
  3367. delay(beepP);
  3368. }
  3369. }
  3370. #endif // BEEPER>0 || ULTRALCD || LCD_USE_I2C_BUZZER
  3371. #ifdef PIDTEMP
  3372. /**
  3373. * M301: Set PID parameters P I D (and optionally C)
  3374. */
  3375. inline void gcode_M301() {
  3376. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  3377. // default behaviour (omitting E parameter) is to update for extruder 0 only
  3378. int e = code_seen('E') ? code_value() : 0; // extruder being updated
  3379. if (e < EXTRUDERS) { // catch bad input value
  3380. if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
  3381. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
  3382. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
  3383. #ifdef PID_ADD_EXTRUSION_RATE
  3384. if (code_seen('C')) PID_PARAM(Kc, e) = code_value();
  3385. #endif
  3386. updatePID();
  3387. SERIAL_PROTOCOL(MSG_OK);
  3388. #ifdef PID_PARAMS_PER_EXTRUDER
  3389. SERIAL_PROTOCOL(" e:"); // specify extruder in serial output
  3390. SERIAL_PROTOCOL(e);
  3391. #endif // PID_PARAMS_PER_EXTRUDER
  3392. SERIAL_PROTOCOL(" p:");
  3393. SERIAL_PROTOCOL(PID_PARAM(Kp, e));
  3394. SERIAL_PROTOCOL(" i:");
  3395. SERIAL_PROTOCOL(unscalePID_i(PID_PARAM(Ki, e)));
  3396. SERIAL_PROTOCOL(" d:");
  3397. SERIAL_PROTOCOL(unscalePID_d(PID_PARAM(Kd, e)));
  3398. #ifdef PID_ADD_EXTRUSION_RATE
  3399. SERIAL_PROTOCOL(" c:");
  3400. //Kc does not have scaling applied above, or in resetting defaults
  3401. SERIAL_PROTOCOL(PID_PARAM(Kc, e));
  3402. #endif
  3403. SERIAL_EOL;
  3404. }
  3405. else {
  3406. SERIAL_ECHO_START;
  3407. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3408. }
  3409. }
  3410. #endif // PIDTEMP
  3411. #ifdef PIDTEMPBED
  3412. inline void gcode_M304() {
  3413. if (code_seen('P')) bedKp = code_value();
  3414. if (code_seen('I')) bedKi = scalePID_i(code_value());
  3415. if (code_seen('D')) bedKd = scalePID_d(code_value());
  3416. updatePID();
  3417. SERIAL_PROTOCOL(MSG_OK);
  3418. SERIAL_PROTOCOL(" p:");
  3419. SERIAL_PROTOCOL(bedKp);
  3420. SERIAL_PROTOCOL(" i:");
  3421. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  3422. SERIAL_PROTOCOL(" d:");
  3423. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  3424. SERIAL_EOL;
  3425. }
  3426. #endif // PIDTEMPBED
  3427. #if defined(CHDK) || HAS_PHOTOGRAPH
  3428. /**
  3429. * M240: Trigger a camera by emulating a Canon RC-1
  3430. * See http://www.doc-diy.net/photo/rc-1_hacked/
  3431. */
  3432. inline void gcode_M240() {
  3433. #ifdef CHDK
  3434. OUT_WRITE(CHDK, HIGH);
  3435. chdkHigh = millis();
  3436. chdkActive = true;
  3437. #elif HAS_PHOTOGRAPH
  3438. const uint8_t NUM_PULSES = 16;
  3439. const float PULSE_LENGTH = 0.01524;
  3440. for (int i = 0; i < NUM_PULSES; i++) {
  3441. WRITE(PHOTOGRAPH_PIN, HIGH);
  3442. _delay_ms(PULSE_LENGTH);
  3443. WRITE(PHOTOGRAPH_PIN, LOW);
  3444. _delay_ms(PULSE_LENGTH);
  3445. }
  3446. delay(7.33);
  3447. for (int i = 0; i < NUM_PULSES; i++) {
  3448. WRITE(PHOTOGRAPH_PIN, HIGH);
  3449. _delay_ms(PULSE_LENGTH);
  3450. WRITE(PHOTOGRAPH_PIN, LOW);
  3451. _delay_ms(PULSE_LENGTH);
  3452. }
  3453. #endif // !CHDK && HAS_PHOTOGRAPH
  3454. }
  3455. #endif // CHDK || PHOTOGRAPH_PIN
  3456. #ifdef HAS_LCD_CONTRAST
  3457. /**
  3458. * M250: Read and optionally set the LCD contrast
  3459. */
  3460. inline void gcode_M250() {
  3461. if (code_seen('C')) lcd_setcontrast(code_value_short() & 0x3F);
  3462. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  3463. SERIAL_PROTOCOL(lcd_contrast);
  3464. SERIAL_EOL;
  3465. }
  3466. #endif // HAS_LCD_CONTRAST
  3467. #ifdef PREVENT_DANGEROUS_EXTRUDE
  3468. void set_extrude_min_temp(float temp) { extrude_min_temp = temp; }
  3469. /**
  3470. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  3471. */
  3472. inline void gcode_M302() {
  3473. set_extrude_min_temp(code_seen('S') ? code_value() : 0);
  3474. }
  3475. #endif // PREVENT_DANGEROUS_EXTRUDE
  3476. /**
  3477. * M303: PID relay autotune
  3478. * S<temperature> sets the target temperature. (default target temperature = 150C)
  3479. * E<extruder> (-1 for the bed)
  3480. * C<cycles>
  3481. */
  3482. inline void gcode_M303() {
  3483. int e = code_seen('E') ? code_value_short() : 0;
  3484. int c = code_seen('C') ? code_value_short() : 5;
  3485. float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
  3486. PID_autotune(temp, e, c);
  3487. }
  3488. #ifdef SCARA
  3489. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  3490. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3491. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3492. if (IsRunning()) {
  3493. //get_coordinates(); // For X Y Z E F
  3494. delta[X_AXIS] = delta_x;
  3495. delta[Y_AXIS] = delta_y;
  3496. calculate_SCARA_forward_Transform(delta);
  3497. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3498. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3499. prepare_move();
  3500. //ClearToSend();
  3501. return true;
  3502. }
  3503. return false;
  3504. }
  3505. /**
  3506. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  3507. */
  3508. inline bool gcode_M360() {
  3509. SERIAL_ECHOLN(" Cal: Theta 0 ");
  3510. return SCARA_move_to_cal(0, 120);
  3511. }
  3512. /**
  3513. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  3514. */
  3515. inline bool gcode_M361() {
  3516. SERIAL_ECHOLN(" Cal: Theta 90 ");
  3517. return SCARA_move_to_cal(90, 130);
  3518. }
  3519. /**
  3520. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  3521. */
  3522. inline bool gcode_M362() {
  3523. SERIAL_ECHOLN(" Cal: Psi 0 ");
  3524. return SCARA_move_to_cal(60, 180);
  3525. }
  3526. /**
  3527. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  3528. */
  3529. inline bool gcode_M363() {
  3530. SERIAL_ECHOLN(" Cal: Psi 90 ");
  3531. return SCARA_move_to_cal(50, 90);
  3532. }
  3533. /**
  3534. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  3535. */
  3536. inline bool gcode_M364() {
  3537. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  3538. return SCARA_move_to_cal(45, 135);
  3539. }
  3540. /**
  3541. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  3542. */
  3543. inline void gcode_M365() {
  3544. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3545. if (code_seen(axis_codes[i])) {
  3546. axis_scaling[i] = code_value();
  3547. }
  3548. }
  3549. }
  3550. #endif // SCARA
  3551. #ifdef EXT_SOLENOID
  3552. void enable_solenoid(uint8_t num) {
  3553. switch(num) {
  3554. case 0:
  3555. OUT_WRITE(SOL0_PIN, HIGH);
  3556. break;
  3557. #if HAS_SOLENOID_1
  3558. case 1:
  3559. OUT_WRITE(SOL1_PIN, HIGH);
  3560. break;
  3561. #endif
  3562. #if HAS_SOLENOID_2
  3563. case 2:
  3564. OUT_WRITE(SOL2_PIN, HIGH);
  3565. break;
  3566. #endif
  3567. #if HAS_SOLENOID_3
  3568. case 3:
  3569. OUT_WRITE(SOL3_PIN, HIGH);
  3570. break;
  3571. #endif
  3572. default:
  3573. SERIAL_ECHO_START;
  3574. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  3575. break;
  3576. }
  3577. }
  3578. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  3579. void disable_all_solenoids() {
  3580. OUT_WRITE(SOL0_PIN, LOW);
  3581. OUT_WRITE(SOL1_PIN, LOW);
  3582. OUT_WRITE(SOL2_PIN, LOW);
  3583. OUT_WRITE(SOL3_PIN, LOW);
  3584. }
  3585. /**
  3586. * M380: Enable solenoid on the active extruder
  3587. */
  3588. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  3589. /**
  3590. * M381: Disable all solenoids
  3591. */
  3592. inline void gcode_M381() { disable_all_solenoids(); }
  3593. #endif // EXT_SOLENOID
  3594. /**
  3595. * M400: Finish all moves
  3596. */
  3597. inline void gcode_M400() { st_synchronize(); }
  3598. #if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && not defined(Z_PROBE_SLED)
  3599. /**
  3600. * M401: Engage Z Servo endstop if available
  3601. */
  3602. inline void gcode_M401() { deploy_z_probe(); }
  3603. /**
  3604. * M402: Retract Z Servo endstop if enabled
  3605. */
  3606. inline void gcode_M402() { stow_z_probe(); }
  3607. #endif
  3608. #ifdef FILAMENT_SENSOR
  3609. /**
  3610. * M404: Display or set the nominal filament width (3mm, 1.75mm ) W<3.0>
  3611. */
  3612. inline void gcode_M404() {
  3613. #if HAS_FILWIDTH
  3614. if (code_seen('W')) {
  3615. filament_width_nominal = code_value();
  3616. }
  3617. else {
  3618. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  3619. SERIAL_PROTOCOLLN(filament_width_nominal);
  3620. }
  3621. #endif
  3622. }
  3623. /**
  3624. * M405: Turn on filament sensor for control
  3625. */
  3626. inline void gcode_M405() {
  3627. if (code_seen('D')) meas_delay_cm = code_value();
  3628. if (meas_delay_cm > MAX_MEASUREMENT_DELAY) meas_delay_cm = MAX_MEASUREMENT_DELAY;
  3629. if (delay_index2 == -1) { //initialize the ring buffer if it has not been done since startup
  3630. int temp_ratio = widthFil_to_size_ratio();
  3631. for (delay_index1 = 0; delay_index1 < MAX_MEASUREMENT_DELAY + 1; ++delay_index1)
  3632. measurement_delay[delay_index1] = temp_ratio - 100; //subtract 100 to scale within a signed byte
  3633. delay_index1 = delay_index2 = 0;
  3634. }
  3635. filament_sensor = true;
  3636. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3637. //SERIAL_PROTOCOL(filament_width_meas);
  3638. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  3639. //SERIAL_PROTOCOL(extruder_multiply[active_extruder]);
  3640. }
  3641. /**
  3642. * M406: Turn off filament sensor for control
  3643. */
  3644. inline void gcode_M406() { filament_sensor = false; }
  3645. /**
  3646. * M407: Get measured filament diameter on serial output
  3647. */
  3648. inline void gcode_M407() {
  3649. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3650. SERIAL_PROTOCOLLN(filament_width_meas);
  3651. }
  3652. #endif // FILAMENT_SENSOR
  3653. /**
  3654. * M500: Store settings in EEPROM
  3655. */
  3656. inline void gcode_M500() {
  3657. Config_StoreSettings();
  3658. }
  3659. /**
  3660. * M501: Read settings from EEPROM
  3661. */
  3662. inline void gcode_M501() {
  3663. Config_RetrieveSettings();
  3664. }
  3665. /**
  3666. * M502: Revert to default settings
  3667. */
  3668. inline void gcode_M502() {
  3669. Config_ResetDefault();
  3670. }
  3671. /**
  3672. * M503: print settings currently in memory
  3673. */
  3674. inline void gcode_M503() {
  3675. Config_PrintSettings(code_seen('S') && code_value() == 0);
  3676. }
  3677. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3678. /**
  3679. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  3680. */
  3681. inline void gcode_M540() {
  3682. if (code_seen('S')) abort_on_endstop_hit = (code_value() > 0);
  3683. }
  3684. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3685. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3686. inline void gcode_SET_Z_PROBE_OFFSET() {
  3687. float value;
  3688. if (code_seen('Z')) {
  3689. value = code_value();
  3690. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  3691. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  3692. SERIAL_ECHO_START;
  3693. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
  3694. SERIAL_EOL;
  3695. }
  3696. else {
  3697. SERIAL_ECHO_START;
  3698. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  3699. SERIAL_ECHOPGM(MSG_Z_MIN);
  3700. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  3701. SERIAL_ECHOPGM(MSG_Z_MAX);
  3702. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  3703. SERIAL_EOL;
  3704. }
  3705. }
  3706. else {
  3707. SERIAL_ECHO_START;
  3708. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " : ");
  3709. SERIAL_ECHO(-zprobe_zoffset);
  3710. SERIAL_EOL;
  3711. }
  3712. }
  3713. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3714. #ifdef FILAMENTCHANGEENABLE
  3715. /**
  3716. * M600: Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3717. */
  3718. inline void gcode_M600() {
  3719. float target[NUM_AXIS], lastpos[NUM_AXIS], fr60 = feedrate / 60;
  3720. for (int i=0; i<NUM_AXIS; i++)
  3721. target[i] = lastpos[i] = current_position[i];
  3722. #define BASICPLAN plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder);
  3723. #ifdef DELTA
  3724. #define RUNPLAN calculate_delta(target); BASICPLAN
  3725. #else
  3726. #define RUNPLAN BASICPLAN
  3727. #endif
  3728. //retract by E
  3729. if (code_seen('E')) target[E_AXIS] += code_value();
  3730. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  3731. else target[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
  3732. #endif
  3733. RUNPLAN;
  3734. //lift Z
  3735. if (code_seen('Z')) target[Z_AXIS] += code_value();
  3736. #ifdef FILAMENTCHANGE_ZADD
  3737. else target[Z_AXIS] += FILAMENTCHANGE_ZADD;
  3738. #endif
  3739. RUNPLAN;
  3740. //move xy
  3741. if (code_seen('X')) target[X_AXIS] = code_value();
  3742. #ifdef FILAMENTCHANGE_XPOS
  3743. else target[X_AXIS] = FILAMENTCHANGE_XPOS;
  3744. #endif
  3745. if (code_seen('Y')) target[Y_AXIS] = code_value();
  3746. #ifdef FILAMENTCHANGE_YPOS
  3747. else target[Y_AXIS] = FILAMENTCHANGE_YPOS;
  3748. #endif
  3749. RUNPLAN;
  3750. if (code_seen('L')) target[E_AXIS] += code_value();
  3751. #ifdef FILAMENTCHANGE_FINALRETRACT
  3752. else target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  3753. #endif
  3754. RUNPLAN;
  3755. //finish moves
  3756. st_synchronize();
  3757. //disable extruder steppers so filament can be removed
  3758. disable_e0();
  3759. disable_e1();
  3760. disable_e2();
  3761. disable_e3();
  3762. delay(100);
  3763. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  3764. uint8_t cnt = 0;
  3765. while (!lcd_clicked()) {
  3766. if (++cnt == 0) lcd_quick_feedback(); // every 256th frame till the lcd is clicked
  3767. manage_heater();
  3768. manage_inactivity(true);
  3769. lcd_update();
  3770. } // while(!lcd_clicked)
  3771. //return to normal
  3772. if (code_seen('L')) target[E_AXIS] -= code_value();
  3773. #ifdef FILAMENTCHANGE_FINALRETRACT
  3774. else target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  3775. #endif
  3776. current_position[E_AXIS] = target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3777. plan_set_e_position(current_position[E_AXIS]);
  3778. RUNPLAN; //should do nothing
  3779. lcd_reset_alert_level();
  3780. #ifdef DELTA
  3781. calculate_delta(lastpos);
  3782. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xyz back
  3783. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  3784. #else
  3785. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xy back
  3786. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move z back
  3787. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  3788. #endif
  3789. #ifdef FILAMENT_RUNOUT_SENSOR
  3790. filrunoutEnqued = false;
  3791. #endif
  3792. }
  3793. #endif // FILAMENTCHANGEENABLE
  3794. #ifdef DUAL_X_CARRIAGE
  3795. /**
  3796. * M605: Set dual x-carriage movement mode
  3797. *
  3798. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  3799. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  3800. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  3801. * millimeters x-offset and an optional differential hotend temperature of
  3802. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  3803. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  3804. *
  3805. * Note: the X axis should be homed after changing dual x-carriage mode.
  3806. */
  3807. inline void gcode_M605() {
  3808. st_synchronize();
  3809. if (code_seen('S')) dual_x_carriage_mode = code_value();
  3810. switch(dual_x_carriage_mode) {
  3811. case DXC_DUPLICATION_MODE:
  3812. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0));
  3813. if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
  3814. SERIAL_ECHO_START;
  3815. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3816. SERIAL_CHAR(' ');
  3817. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  3818. SERIAL_CHAR(',');
  3819. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  3820. SERIAL_CHAR(' ');
  3821. SERIAL_ECHO(duplicate_extruder_x_offset);
  3822. SERIAL_CHAR(',');
  3823. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  3824. break;
  3825. case DXC_FULL_CONTROL_MODE:
  3826. case DXC_AUTO_PARK_MODE:
  3827. break;
  3828. default:
  3829. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  3830. break;
  3831. }
  3832. active_extruder_parked = false;
  3833. extruder_duplication_enabled = false;
  3834. delayed_move_time = 0;
  3835. }
  3836. #endif // DUAL_X_CARRIAGE
  3837. /**
  3838. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  3839. */
  3840. inline void gcode_M907() {
  3841. #if HAS_DIGIPOTSS
  3842. for (int i=0;i<NUM_AXIS;i++)
  3843. if (code_seen(axis_codes[i])) digipot_current(i, code_value());
  3844. if (code_seen('B')) digipot_current(4, code_value());
  3845. if (code_seen('S')) for (int i=0; i<=4; i++) digipot_current(i, code_value());
  3846. #endif
  3847. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  3848. if (code_seen('X')) digipot_current(0, code_value());
  3849. #endif
  3850. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  3851. if (code_seen('Z')) digipot_current(1, code_value());
  3852. #endif
  3853. #ifdef MOTOR_CURRENT_PWM_E_PIN
  3854. if (code_seen('E')) digipot_current(2, code_value());
  3855. #endif
  3856. #ifdef DIGIPOT_I2C
  3857. // this one uses actual amps in floating point
  3858. for (int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  3859. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  3860. for (int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  3861. #endif
  3862. }
  3863. #if HAS_DIGIPOTSS
  3864. /**
  3865. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  3866. */
  3867. inline void gcode_M908() {
  3868. digitalPotWrite(
  3869. code_seen('P') ? code_value() : 0,
  3870. code_seen('S') ? code_value() : 0
  3871. );
  3872. }
  3873. #endif // HAS_DIGIPOTSS
  3874. #if HAS_MICROSTEPS
  3875. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  3876. inline void gcode_M350() {
  3877. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  3878. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  3879. if(code_seen('B')) microstep_mode(4,code_value());
  3880. microstep_readings();
  3881. }
  3882. /**
  3883. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  3884. * S# determines MS1 or MS2, X# sets the pin high/low.
  3885. */
  3886. inline void gcode_M351() {
  3887. if (code_seen('S')) switch(code_value_short()) {
  3888. case 1:
  3889. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, code_value(), -1);
  3890. if (code_seen('B')) microstep_ms(4, code_value(), -1);
  3891. break;
  3892. case 2:
  3893. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, -1, code_value());
  3894. if (code_seen('B')) microstep_ms(4, -1, code_value());
  3895. break;
  3896. }
  3897. microstep_readings();
  3898. }
  3899. #endif // HAS_MICROSTEPS
  3900. /**
  3901. * M999: Restart after being stopped
  3902. */
  3903. inline void gcode_M999() {
  3904. Running = true;
  3905. lcd_reset_alert_level();
  3906. gcode_LastN = Stopped_gcode_LastN;
  3907. FlushSerialRequestResend();
  3908. }
  3909. inline void gcode_T() {
  3910. int tmp_extruder = code_value();
  3911. if (tmp_extruder >= EXTRUDERS) {
  3912. SERIAL_ECHO_START;
  3913. SERIAL_CHAR('T');
  3914. SERIAL_ECHO(tmp_extruder);
  3915. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3916. }
  3917. else {
  3918. target_extruder = tmp_extruder;
  3919. #if EXTRUDERS > 1
  3920. bool make_move = false;
  3921. #endif
  3922. if (code_seen('F')) {
  3923. #if EXTRUDERS > 1
  3924. make_move = true;
  3925. #endif
  3926. next_feedrate = code_value();
  3927. if (next_feedrate > 0.0) feedrate = next_feedrate;
  3928. }
  3929. #if EXTRUDERS > 1
  3930. if (tmp_extruder != active_extruder) {
  3931. // Save current position to return to after applying extruder offset
  3932. set_destination_to_current();
  3933. #ifdef DUAL_X_CARRIAGE
  3934. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  3935. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  3936. // Park old head: 1) raise 2) move to park position 3) lower
  3937. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3938. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3939. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3940. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  3941. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  3942. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3943. st_synchronize();
  3944. }
  3945. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  3946. current_position[Y_AXIS] = current_position[Y_AXIS] -
  3947. extruder_offset[Y_AXIS][active_extruder] +
  3948. extruder_offset[Y_AXIS][tmp_extruder];
  3949. current_position[Z_AXIS] = current_position[Z_AXIS] -
  3950. extruder_offset[Z_AXIS][active_extruder] +
  3951. extruder_offset[Z_AXIS][tmp_extruder];
  3952. active_extruder = tmp_extruder;
  3953. // This function resets the max/min values - the current position may be overwritten below.
  3954. axis_is_at_home(X_AXIS);
  3955. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  3956. current_position[X_AXIS] = inactive_extruder_x_pos;
  3957. inactive_extruder_x_pos = destination[X_AXIS];
  3958. }
  3959. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  3960. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  3961. if (active_extruder == 0 || active_extruder_parked)
  3962. current_position[X_AXIS] = inactive_extruder_x_pos;
  3963. else
  3964. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  3965. inactive_extruder_x_pos = destination[X_AXIS];
  3966. extruder_duplication_enabled = false;
  3967. }
  3968. else {
  3969. // record raised toolhead position for use by unpark
  3970. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  3971. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  3972. active_extruder_parked = true;
  3973. delayed_move_time = 0;
  3974. }
  3975. #else // !DUAL_X_CARRIAGE
  3976. // Offset extruder (only by XY)
  3977. for (int i=X_AXIS; i<=Y_AXIS; i++)
  3978. current_position[i] += extruder_offset[i][tmp_extruder] - extruder_offset[i][active_extruder];
  3979. // Set the new active extruder and position
  3980. active_extruder = tmp_extruder;
  3981. #endif // !DUAL_X_CARRIAGE
  3982. #ifdef DELTA
  3983. sync_plan_position_delta();
  3984. #else
  3985. sync_plan_position();
  3986. #endif
  3987. // Move to the old position if 'F' was in the parameters
  3988. if (make_move && IsRunning()) prepare_move();
  3989. }
  3990. #ifdef EXT_SOLENOID
  3991. st_synchronize();
  3992. disable_all_solenoids();
  3993. enable_solenoid_on_active_extruder();
  3994. #endif // EXT_SOLENOID
  3995. #endif // EXTRUDERS > 1
  3996. SERIAL_ECHO_START;
  3997. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  3998. SERIAL_PROTOCOLLN((int)active_extruder);
  3999. }
  4000. }
  4001. /**
  4002. * Process Commands and dispatch them to handlers
  4003. * This is called from the main loop()
  4004. */
  4005. void process_commands() {
  4006. if (code_seen('G')) {
  4007. int gCode = code_value_short();
  4008. switch(gCode) {
  4009. // G0, G1
  4010. case 0:
  4011. case 1:
  4012. gcode_G0_G1();
  4013. break;
  4014. // G2, G3
  4015. #ifndef SCARA
  4016. case 2: // G2 - CW ARC
  4017. case 3: // G3 - CCW ARC
  4018. gcode_G2_G3(gCode == 2);
  4019. break;
  4020. #endif
  4021. // G4 Dwell
  4022. case 4:
  4023. gcode_G4();
  4024. break;
  4025. #ifdef FWRETRACT
  4026. case 10: // G10: retract
  4027. case 11: // G11: retract_recover
  4028. gcode_G10_G11(gCode == 10);
  4029. break;
  4030. #endif //FWRETRACT
  4031. case 28: // G28: Home all axes, one at a time
  4032. gcode_G28();
  4033. break;
  4034. #if defined(ENABLE_AUTO_BED_LEVELING) || defined(MESH_BED_LEVELING)
  4035. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  4036. gcode_G29();
  4037. break;
  4038. #endif
  4039. #ifdef ENABLE_AUTO_BED_LEVELING
  4040. #ifndef Z_PROBE_SLED
  4041. case 30: // G30 Single Z Probe
  4042. gcode_G30();
  4043. break;
  4044. #else // Z_PROBE_SLED
  4045. case 31: // G31: dock the sled
  4046. case 32: // G32: undock the sled
  4047. dock_sled(gCode == 31);
  4048. break;
  4049. #endif // Z_PROBE_SLED
  4050. #endif // ENABLE_AUTO_BED_LEVELING
  4051. case 90: // G90
  4052. relative_mode = false;
  4053. break;
  4054. case 91: // G91
  4055. relative_mode = true;
  4056. break;
  4057. case 92: // G92
  4058. gcode_G92();
  4059. break;
  4060. }
  4061. }
  4062. else if (code_seen('M')) {
  4063. switch(code_value_short()) {
  4064. #ifdef ULTIPANEL
  4065. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4066. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4067. gcode_M0_M1();
  4068. break;
  4069. #endif // ULTIPANEL
  4070. case 17:
  4071. gcode_M17();
  4072. break;
  4073. #ifdef SDSUPPORT
  4074. case 20: // M20 - list SD card
  4075. gcode_M20(); break;
  4076. case 21: // M21 - init SD card
  4077. gcode_M21(); break;
  4078. case 22: //M22 - release SD card
  4079. gcode_M22(); break;
  4080. case 23: //M23 - Select file
  4081. gcode_M23(); break;
  4082. case 24: //M24 - Start SD print
  4083. gcode_M24(); break;
  4084. case 25: //M25 - Pause SD print
  4085. gcode_M25(); break;
  4086. case 26: //M26 - Set SD index
  4087. gcode_M26(); break;
  4088. case 27: //M27 - Get SD status
  4089. gcode_M27(); break;
  4090. case 28: //M28 - Start SD write
  4091. gcode_M28(); break;
  4092. case 29: //M29 - Stop SD write
  4093. gcode_M29(); break;
  4094. case 30: //M30 <filename> Delete File
  4095. gcode_M30(); break;
  4096. case 32: //M32 - Select file and start SD print
  4097. gcode_M32(); break;
  4098. case 928: //M928 - Start SD write
  4099. gcode_M928(); break;
  4100. #endif //SDSUPPORT
  4101. case 31: //M31 take time since the start of the SD print or an M109 command
  4102. gcode_M31();
  4103. break;
  4104. case 42: //M42 -Change pin status via gcode
  4105. gcode_M42();
  4106. break;
  4107. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  4108. case 48: // M48 Z-Probe repeatability
  4109. gcode_M48();
  4110. break;
  4111. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  4112. case 104: // M104
  4113. gcode_M104();
  4114. break;
  4115. case 112: // M112 Emergency Stop
  4116. gcode_M112();
  4117. break;
  4118. case 140: // M140 Set bed temp
  4119. gcode_M140();
  4120. break;
  4121. case 105: // M105 Read current temperature
  4122. gcode_M105();
  4123. return;
  4124. break;
  4125. case 109: // M109 Wait for temperature
  4126. gcode_M109();
  4127. break;
  4128. #if HAS_TEMP_BED
  4129. case 190: // M190 - Wait for bed heater to reach target.
  4130. gcode_M190();
  4131. break;
  4132. #endif // HAS_TEMP_BED
  4133. #if HAS_FAN
  4134. case 106: //M106 Fan On
  4135. gcode_M106();
  4136. break;
  4137. case 107: //M107 Fan Off
  4138. gcode_M107();
  4139. break;
  4140. #endif // HAS_FAN
  4141. #ifdef BARICUDA
  4142. // PWM for HEATER_1_PIN
  4143. #if HAS_HEATER_1
  4144. case 126: // M126 valve open
  4145. gcode_M126();
  4146. break;
  4147. case 127: // M127 valve closed
  4148. gcode_M127();
  4149. break;
  4150. #endif // HAS_HEATER_1
  4151. // PWM for HEATER_2_PIN
  4152. #if HAS_HEATER_2
  4153. case 128: // M128 valve open
  4154. gcode_M128();
  4155. break;
  4156. case 129: // M129 valve closed
  4157. gcode_M129();
  4158. break;
  4159. #endif // HAS_HEATER_2
  4160. #endif // BARICUDA
  4161. #if HAS_POWER_SWITCH
  4162. case 80: // M80 - Turn on Power Supply
  4163. gcode_M80();
  4164. break;
  4165. #endif // HAS_POWER_SWITCH
  4166. case 81: // M81 - Turn off Power, including Power Supply, if possible
  4167. gcode_M81();
  4168. break;
  4169. case 82:
  4170. gcode_M82();
  4171. break;
  4172. case 83:
  4173. gcode_M83();
  4174. break;
  4175. case 18: //compatibility
  4176. case 84: // M84
  4177. gcode_M18_M84();
  4178. break;
  4179. case 85: // M85
  4180. gcode_M85();
  4181. break;
  4182. case 92: // M92
  4183. gcode_M92();
  4184. break;
  4185. case 115: // M115
  4186. gcode_M115();
  4187. break;
  4188. case 117: // M117 display message
  4189. gcode_M117();
  4190. break;
  4191. case 114: // M114
  4192. gcode_M114();
  4193. break;
  4194. case 120: // M120
  4195. gcode_M120();
  4196. break;
  4197. case 121: // M121
  4198. gcode_M121();
  4199. break;
  4200. case 119: // M119
  4201. gcode_M119();
  4202. break;
  4203. //TODO: update for all axis, use for loop
  4204. #ifdef BLINKM
  4205. case 150: // M150
  4206. gcode_M150();
  4207. break;
  4208. #endif //BLINKM
  4209. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4210. gcode_M200();
  4211. break;
  4212. case 201: // M201
  4213. gcode_M201();
  4214. break;
  4215. #if 0 // Not used for Sprinter/grbl gen6
  4216. case 202: // M202
  4217. gcode_M202();
  4218. break;
  4219. #endif
  4220. case 203: // M203 max feedrate mm/sec
  4221. gcode_M203();
  4222. break;
  4223. case 204: // M204 acclereration S normal moves T filmanent only moves
  4224. gcode_M204();
  4225. break;
  4226. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4227. gcode_M205();
  4228. break;
  4229. case 206: // M206 additional homing offset
  4230. gcode_M206();
  4231. break;
  4232. #ifdef DELTA
  4233. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  4234. gcode_M665();
  4235. break;
  4236. #endif
  4237. #if defined(DELTA) || defined(Z_DUAL_ENDSTOPS)
  4238. case 666: // M666 set delta / dual endstop adjustment
  4239. gcode_M666();
  4240. break;
  4241. #endif
  4242. #ifdef FWRETRACT
  4243. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4244. gcode_M207();
  4245. break;
  4246. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4247. gcode_M208();
  4248. break;
  4249. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4250. gcode_M209();
  4251. break;
  4252. #endif // FWRETRACT
  4253. #if EXTRUDERS > 1
  4254. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4255. gcode_M218();
  4256. break;
  4257. #endif
  4258. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4259. gcode_M220();
  4260. break;
  4261. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4262. gcode_M221();
  4263. break;
  4264. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4265. gcode_M226();
  4266. break;
  4267. #if NUM_SERVOS > 0
  4268. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4269. gcode_M280();
  4270. break;
  4271. #endif // NUM_SERVOS > 0
  4272. #if BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)
  4273. case 300: // M300 - Play beep tone
  4274. gcode_M300();
  4275. break;
  4276. #endif // BEEPER > 0 || ULTRALCD || LCD_USE_I2C_BUZZER
  4277. #ifdef PIDTEMP
  4278. case 301: // M301
  4279. gcode_M301();
  4280. break;
  4281. #endif // PIDTEMP
  4282. #ifdef PIDTEMPBED
  4283. case 304: // M304
  4284. gcode_M304();
  4285. break;
  4286. #endif // PIDTEMPBED
  4287. #if defined(CHDK) || HAS_PHOTOGRAPH
  4288. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4289. gcode_M240();
  4290. break;
  4291. #endif // CHDK || PHOTOGRAPH_PIN
  4292. #ifdef HAS_LCD_CONTRAST
  4293. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4294. gcode_M250();
  4295. break;
  4296. #endif // HAS_LCD_CONTRAST
  4297. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4298. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4299. gcode_M302();
  4300. break;
  4301. #endif // PREVENT_DANGEROUS_EXTRUDE
  4302. case 303: // M303 PID autotune
  4303. gcode_M303();
  4304. break;
  4305. #ifdef SCARA
  4306. case 360: // M360 SCARA Theta pos1
  4307. if (gcode_M360()) return;
  4308. break;
  4309. case 361: // M361 SCARA Theta pos2
  4310. if (gcode_M361()) return;
  4311. break;
  4312. case 362: // M362 SCARA Psi pos1
  4313. if (gcode_M362()) return;
  4314. break;
  4315. case 363: // M363 SCARA Psi pos2
  4316. if (gcode_M363()) return;
  4317. break;
  4318. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  4319. if (gcode_M364()) return;
  4320. break;
  4321. case 365: // M365 Set SCARA scaling for X Y Z
  4322. gcode_M365();
  4323. break;
  4324. #endif // SCARA
  4325. case 400: // M400 finish all moves
  4326. gcode_M400();
  4327. break;
  4328. #if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && not defined(Z_PROBE_SLED)
  4329. case 401:
  4330. gcode_M401();
  4331. break;
  4332. case 402:
  4333. gcode_M402();
  4334. break;
  4335. #endif
  4336. #ifdef FILAMENT_SENSOR
  4337. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4338. gcode_M404();
  4339. break;
  4340. case 405: //M405 Turn on filament sensor for control
  4341. gcode_M405();
  4342. break;
  4343. case 406: //M406 Turn off filament sensor for control
  4344. gcode_M406();
  4345. break;
  4346. case 407: //M407 Display measured filament diameter
  4347. gcode_M407();
  4348. break;
  4349. #endif // FILAMENT_SENSOR
  4350. case 500: // M500 Store settings in EEPROM
  4351. gcode_M500();
  4352. break;
  4353. case 501: // M501 Read settings from EEPROM
  4354. gcode_M501();
  4355. break;
  4356. case 502: // M502 Revert to default settings
  4357. gcode_M502();
  4358. break;
  4359. case 503: // M503 print settings currently in memory
  4360. gcode_M503();
  4361. break;
  4362. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4363. case 540:
  4364. gcode_M540();
  4365. break;
  4366. #endif
  4367. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4368. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4369. gcode_SET_Z_PROBE_OFFSET();
  4370. break;
  4371. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4372. #ifdef FILAMENTCHANGEENABLE
  4373. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4374. gcode_M600();
  4375. break;
  4376. #endif // FILAMENTCHANGEENABLE
  4377. #ifdef DUAL_X_CARRIAGE
  4378. case 605:
  4379. gcode_M605();
  4380. break;
  4381. #endif // DUAL_X_CARRIAGE
  4382. case 907: // M907 Set digital trimpot motor current using axis codes.
  4383. gcode_M907();
  4384. break;
  4385. #if HAS_DIGIPOTSS
  4386. case 908: // M908 Control digital trimpot directly.
  4387. gcode_M908();
  4388. break;
  4389. #endif // HAS_DIGIPOTSS
  4390. #if HAS_MICROSTEPS
  4391. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4392. gcode_M350();
  4393. break;
  4394. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4395. gcode_M351();
  4396. break;
  4397. #endif // HAS_MICROSTEPS
  4398. case 999: // M999: Restart after being Stopped
  4399. gcode_M999();
  4400. break;
  4401. }
  4402. }
  4403. else if (code_seen('T')) {
  4404. gcode_T();
  4405. }
  4406. else {
  4407. SERIAL_ECHO_START;
  4408. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  4409. SERIAL_ECHO(cmdbuffer[bufindr]);
  4410. SERIAL_ECHOLNPGM("\"");
  4411. }
  4412. ClearToSend();
  4413. }
  4414. void FlushSerialRequestResend() {
  4415. //char cmdbuffer[bufindr][100]="Resend:";
  4416. MYSERIAL.flush();
  4417. SERIAL_PROTOCOLPGM(MSG_RESEND);
  4418. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  4419. ClearToSend();
  4420. }
  4421. void ClearToSend() {
  4422. refresh_cmd_timeout();
  4423. #ifdef SDSUPPORT
  4424. if (fromsd[bufindr]) return;
  4425. #endif
  4426. SERIAL_PROTOCOLLNPGM(MSG_OK);
  4427. }
  4428. void get_coordinates() {
  4429. for (int i = 0; i < NUM_AXIS; i++) {
  4430. if (code_seen(axis_codes[i]))
  4431. destination[i] = code_value() + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  4432. else
  4433. destination[i] = current_position[i];
  4434. }
  4435. if (code_seen('F')) {
  4436. next_feedrate = code_value();
  4437. if (next_feedrate > 0.0) feedrate = next_feedrate;
  4438. }
  4439. }
  4440. void get_arc_coordinates() {
  4441. #ifdef SF_ARC_FIX
  4442. bool relative_mode_backup = relative_mode;
  4443. relative_mode = true;
  4444. #endif
  4445. get_coordinates();
  4446. #ifdef SF_ARC_FIX
  4447. relative_mode = relative_mode_backup;
  4448. #endif
  4449. offset[0] = code_seen('I') ? code_value() : 0;
  4450. offset[1] = code_seen('J') ? code_value() : 0;
  4451. }
  4452. void clamp_to_software_endstops(float target[3]) {
  4453. if (min_software_endstops) {
  4454. NOLESS(target[X_AXIS], min_pos[X_AXIS]);
  4455. NOLESS(target[Y_AXIS], min_pos[Y_AXIS]);
  4456. float negative_z_offset = 0;
  4457. #ifdef ENABLE_AUTO_BED_LEVELING
  4458. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset += Z_PROBE_OFFSET_FROM_EXTRUDER;
  4459. if (home_offset[Z_AXIS] < 0) negative_z_offset += home_offset[Z_AXIS];
  4460. #endif
  4461. NOLESS(target[Z_AXIS], min_pos[Z_AXIS] + negative_z_offset);
  4462. }
  4463. if (max_software_endstops) {
  4464. NOMORE(target[X_AXIS], max_pos[X_AXIS]);
  4465. NOMORE(target[Y_AXIS], max_pos[Y_AXIS]);
  4466. NOMORE(target[Z_AXIS], max_pos[Z_AXIS]);
  4467. }
  4468. }
  4469. #ifdef DELTA
  4470. void recalc_delta_settings(float radius, float diagonal_rod) {
  4471. delta_tower1_x = -SIN_60 * radius; // front left tower
  4472. delta_tower1_y = -COS_60 * radius;
  4473. delta_tower2_x = SIN_60 * radius; // front right tower
  4474. delta_tower2_y = -COS_60 * radius;
  4475. delta_tower3_x = 0.0; // back middle tower
  4476. delta_tower3_y = radius;
  4477. delta_diagonal_rod_2 = sq(diagonal_rod);
  4478. }
  4479. void calculate_delta(float cartesian[3]) {
  4480. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  4481. - sq(delta_tower1_x-cartesian[X_AXIS])
  4482. - sq(delta_tower1_y-cartesian[Y_AXIS])
  4483. ) + cartesian[Z_AXIS];
  4484. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  4485. - sq(delta_tower2_x-cartesian[X_AXIS])
  4486. - sq(delta_tower2_y-cartesian[Y_AXIS])
  4487. ) + cartesian[Z_AXIS];
  4488. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  4489. - sq(delta_tower3_x-cartesian[X_AXIS])
  4490. - sq(delta_tower3_y-cartesian[Y_AXIS])
  4491. ) + cartesian[Z_AXIS];
  4492. /*
  4493. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4494. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4495. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4496. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4497. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4498. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4499. */
  4500. }
  4501. #ifdef ENABLE_AUTO_BED_LEVELING
  4502. // Adjust print surface height by linear interpolation over the bed_level array.
  4503. void adjust_delta(float cartesian[3]) {
  4504. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0) return; // G29 not done!
  4505. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  4506. float h1 = 0.001 - half, h2 = half - 0.001,
  4507. grid_x = max(h1, min(h2, cartesian[X_AXIS] / delta_grid_spacing[0])),
  4508. grid_y = max(h1, min(h2, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  4509. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  4510. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  4511. z1 = bed_level[floor_x + half][floor_y + half],
  4512. z2 = bed_level[floor_x + half][floor_y + half + 1],
  4513. z3 = bed_level[floor_x + half + 1][floor_y + half],
  4514. z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
  4515. left = (1 - ratio_y) * z1 + ratio_y * z2,
  4516. right = (1 - ratio_y) * z3 + ratio_y * z4,
  4517. offset = (1 - ratio_x) * left + ratio_x * right;
  4518. delta[X_AXIS] += offset;
  4519. delta[Y_AXIS] += offset;
  4520. delta[Z_AXIS] += offset;
  4521. /*
  4522. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  4523. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  4524. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  4525. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  4526. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  4527. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  4528. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  4529. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  4530. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  4531. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  4532. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  4533. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  4534. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  4535. */
  4536. }
  4537. #endif // ENABLE_AUTO_BED_LEVELING
  4538. #endif // DELTA
  4539. #ifdef MESH_BED_LEVELING
  4540. #if !defined(MIN)
  4541. #define MIN(_v1, _v2) (((_v1) < (_v2)) ? (_v1) : (_v2))
  4542. #endif // ! MIN
  4543. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  4544. void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t &extruder, uint8_t x_splits=0xff, uint8_t y_splits=0xff)
  4545. {
  4546. if (!mbl.active) {
  4547. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4548. set_current_to_destination();
  4549. return;
  4550. }
  4551. int pix = mbl.select_x_index(current_position[X_AXIS]);
  4552. int piy = mbl.select_y_index(current_position[Y_AXIS]);
  4553. int ix = mbl.select_x_index(x);
  4554. int iy = mbl.select_y_index(y);
  4555. pix = MIN(pix, MESH_NUM_X_POINTS-2);
  4556. piy = MIN(piy, MESH_NUM_Y_POINTS-2);
  4557. ix = MIN(ix, MESH_NUM_X_POINTS-2);
  4558. iy = MIN(iy, MESH_NUM_Y_POINTS-2);
  4559. if (pix == ix && piy == iy) {
  4560. // Start and end on same mesh square
  4561. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4562. set_current_to_destination();
  4563. return;
  4564. }
  4565. float nx, ny, ne, normalized_dist;
  4566. if (ix > pix && (x_splits) & BIT(ix)) {
  4567. nx = mbl.get_x(ix);
  4568. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  4569. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  4570. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4571. x_splits ^= BIT(ix);
  4572. } else if (ix < pix && (x_splits) & BIT(pix)) {
  4573. nx = mbl.get_x(pix);
  4574. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  4575. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  4576. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4577. x_splits ^= BIT(pix);
  4578. } else if (iy > piy && (y_splits) & BIT(iy)) {
  4579. ny = mbl.get_y(iy);
  4580. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  4581. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  4582. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4583. y_splits ^= BIT(iy);
  4584. } else if (iy < piy && (y_splits) & BIT(piy)) {
  4585. ny = mbl.get_y(piy);
  4586. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  4587. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  4588. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4589. y_splits ^= BIT(piy);
  4590. } else {
  4591. // Already split on a border
  4592. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4593. set_current_to_destination();
  4594. return;
  4595. }
  4596. // Do the split and look for more borders
  4597. destination[X_AXIS] = nx;
  4598. destination[Y_AXIS] = ny;
  4599. destination[E_AXIS] = ne;
  4600. mesh_plan_buffer_line(nx, ny, z, ne, feed_rate, extruder, x_splits, y_splits);
  4601. destination[X_AXIS] = x;
  4602. destination[Y_AXIS] = y;
  4603. destination[E_AXIS] = e;
  4604. mesh_plan_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
  4605. }
  4606. #endif // MESH_BED_LEVELING
  4607. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4608. inline float prevent_dangerous_extrude(float &curr_e, float &dest_e) {
  4609. float de = dest_e - curr_e;
  4610. if (de) {
  4611. if (degHotend(active_extruder) < extrude_min_temp) {
  4612. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  4613. SERIAL_ECHO_START;
  4614. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  4615. return 0;
  4616. }
  4617. #ifdef PREVENT_LENGTHY_EXTRUDE
  4618. if (labs(de) > EXTRUDE_MAXLENGTH) {
  4619. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  4620. SERIAL_ECHO_START;
  4621. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  4622. return 0;
  4623. }
  4624. #endif
  4625. }
  4626. return de;
  4627. }
  4628. #endif // PREVENT_DANGEROUS_EXTRUDE
  4629. void prepare_move() {
  4630. clamp_to_software_endstops(destination);
  4631. refresh_cmd_timeout();
  4632. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4633. (void)prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]);
  4634. #endif
  4635. #ifdef SCARA //for now same as delta-code
  4636. float difference[NUM_AXIS];
  4637. for (int8_t i = 0; i < NUM_AXIS; i++) difference[i] = destination[i] - current_position[i];
  4638. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  4639. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  4640. if (cartesian_mm < 0.000001) { return; }
  4641. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  4642. int steps = max(1, int(scara_segments_per_second * seconds));
  4643. //SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  4644. //SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  4645. //SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  4646. for (int s = 1; s <= steps; s++) {
  4647. float fraction = float(s) / float(steps);
  4648. for (int8_t i = 0; i < NUM_AXIS; i++) destination[i] = current_position[i] + difference[i] * fraction;
  4649. calculate_delta(destination);
  4650. //SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]);
  4651. //SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]);
  4652. //SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]);
  4653. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  4654. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  4655. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4656. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], feedrate/60*feedmultiply/100.0, active_extruder);
  4657. }
  4658. #endif // SCARA
  4659. #ifdef DELTA
  4660. float difference[NUM_AXIS];
  4661. for (int8_t i=0; i < NUM_AXIS; i++) difference[i] = destination[i] - current_position[i];
  4662. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  4663. if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
  4664. if (cartesian_mm < 0.000001) return;
  4665. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  4666. int steps = max(1, int(delta_segments_per_second * seconds));
  4667. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  4668. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  4669. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  4670. for (int s = 1; s <= steps; s++) {
  4671. float fraction = float(s) / float(steps);
  4672. for (int8_t i = 0; i < NUM_AXIS; i++) destination[i] = current_position[i] + difference[i] * fraction;
  4673. calculate_delta(destination);
  4674. #ifdef ENABLE_AUTO_BED_LEVELING
  4675. adjust_delta(destination);
  4676. #endif
  4677. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], feedrate/60*feedmultiply/100.0, active_extruder);
  4678. }
  4679. #endif // DELTA
  4680. #ifdef DUAL_X_CARRIAGE
  4681. if (active_extruder_parked) {
  4682. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  4683. // move duplicate extruder into correct duplication position.
  4684. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4685. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  4686. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  4687. sync_plan_position();
  4688. st_synchronize();
  4689. extruder_duplication_enabled = true;
  4690. active_extruder_parked = false;
  4691. }
  4692. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  4693. if (current_position[E_AXIS] == destination[E_AXIS]) {
  4694. // This is a travel move (with no extrusion)
  4695. // Skip it, but keep track of the current position
  4696. // (so it can be used as the start of the next non-travel move)
  4697. if (delayed_move_time != 0xFFFFFFFFUL) {
  4698. set_current_to_destination();
  4699. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  4700. delayed_move_time = millis();
  4701. return;
  4702. }
  4703. }
  4704. delayed_move_time = 0;
  4705. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  4706. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4707. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], min(max_feedrate[X_AXIS], max_feedrate[Y_AXIS]), active_extruder);
  4708. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4709. active_extruder_parked = false;
  4710. }
  4711. }
  4712. #endif // DUAL_X_CARRIAGE
  4713. #if !defined(DELTA) && !defined(SCARA)
  4714. // Do not use feedmultiply for E or Z only moves
  4715. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  4716. line_to_destination();
  4717. }
  4718. else {
  4719. #ifdef MESH_BED_LEVELING
  4720. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedmultiply/100.0), active_extruder);
  4721. return;
  4722. #else
  4723. line_to_destination(feedrate * feedmultiply / 100.0);
  4724. #endif // MESH_BED_LEVELING
  4725. }
  4726. #endif // !(DELTA || SCARA)
  4727. set_current_to_destination();
  4728. }
  4729. void prepare_arc_move(char isclockwise) {
  4730. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  4731. // Trace the arc
  4732. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  4733. // As far as the parser is concerned, the position is now == target. In reality the
  4734. // motion control system might still be processing the action and the real tool position
  4735. // in any intermediate location.
  4736. set_current_to_destination();
  4737. refresh_cmd_timeout();
  4738. }
  4739. #if HAS_CONTROLLERFAN
  4740. millis_t lastMotor = 0; // Last time a motor was turned on
  4741. millis_t lastMotorCheck = 0; // Last time the state was checked
  4742. void controllerFan() {
  4743. millis_t ms = millis();
  4744. if (ms >= lastMotorCheck + 2500) { // Not a time critical function, so we only check every 2500ms
  4745. lastMotorCheck = ms;
  4746. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || soft_pwm_bed > 0
  4747. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  4748. #if EXTRUDERS > 1
  4749. || E1_ENABLE_READ == E_ENABLE_ON
  4750. #if HAS_X2_ENABLE
  4751. || X2_ENABLE_READ == X_ENABLE_ON
  4752. #endif
  4753. #if EXTRUDERS > 2
  4754. || E2_ENABLE_READ == E_ENABLE_ON
  4755. #if EXTRUDERS > 3
  4756. || E3_ENABLE_READ == E_ENABLE_ON
  4757. #endif
  4758. #endif
  4759. #endif
  4760. ) {
  4761. lastMotor = ms; //... set time to NOW so the fan will turn on
  4762. }
  4763. uint8_t speed = (lastMotor == 0 || ms >= lastMotor + (CONTROLLERFAN_SECS * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  4764. // allows digital or PWM fan output to be used (see M42 handling)
  4765. digitalWrite(CONTROLLERFAN_PIN, speed);
  4766. analogWrite(CONTROLLERFAN_PIN, speed);
  4767. }
  4768. }
  4769. #endif
  4770. #ifdef SCARA
  4771. void calculate_SCARA_forward_Transform(float f_scara[3])
  4772. {
  4773. // Perform forward kinematics, and place results in delta[3]
  4774. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  4775. float x_sin, x_cos, y_sin, y_cos;
  4776. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  4777. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  4778. x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  4779. x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  4780. y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  4781. y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  4782. // SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  4783. // SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  4784. // SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  4785. // SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  4786. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  4787. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  4788. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  4789. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  4790. }
  4791. void calculate_delta(float cartesian[3]){
  4792. //reverse kinematics.
  4793. // Perform reversed kinematics, and place results in delta[3]
  4794. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  4795. float SCARA_pos[2];
  4796. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  4797. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  4798. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  4799. #if (Linkage_1 == Linkage_2)
  4800. SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
  4801. #else
  4802. SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000;
  4803. #endif
  4804. SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
  4805. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  4806. SCARA_K2 = Linkage_2 * SCARA_S2;
  4807. SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
  4808. SCARA_psi = atan2(SCARA_S2,SCARA_C2);
  4809. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  4810. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  4811. delta[Z_AXIS] = cartesian[Z_AXIS];
  4812. /*
  4813. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4814. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4815. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4816. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  4817. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  4818. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4819. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4820. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4821. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  4822. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  4823. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  4824. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  4825. SERIAL_ECHOLN(" ");*/
  4826. }
  4827. #endif
  4828. #ifdef TEMP_STAT_LEDS
  4829. static bool red_led = false;
  4830. static millis_t next_status_led_update_ms = 0;
  4831. void handle_status_leds(void) {
  4832. float max_temp = 0.0;
  4833. if (millis() > next_status_led_update_ms) {
  4834. next_status_led_update_ms += 500; // Update every 0.5s
  4835. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder)
  4836. max_temp = max(max(max_temp, degHotend(cur_extruder)), degTargetHotend(cur_extruder));
  4837. #if HAS_TEMP_BED
  4838. max_temp = max(max(max_temp, degTargetBed()), degBed());
  4839. #endif
  4840. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  4841. if (new_led != red_led) {
  4842. red_led = new_led;
  4843. digitalWrite(STAT_LED_RED, new_led ? HIGH : LOW);
  4844. digitalWrite(STAT_LED_BLUE, new_led ? LOW : HIGH);
  4845. }
  4846. }
  4847. }
  4848. #endif
  4849. void enable_all_steppers() {
  4850. enable_x();
  4851. enable_y();
  4852. enable_z();
  4853. enable_e0();
  4854. enable_e1();
  4855. enable_e2();
  4856. enable_e3();
  4857. }
  4858. void disable_all_steppers() {
  4859. disable_x();
  4860. disable_y();
  4861. disable_z();
  4862. disable_e0();
  4863. disable_e1();
  4864. disable_e2();
  4865. disable_e3();
  4866. }
  4867. /**
  4868. * Manage several activities:
  4869. * - Check for Filament Runout
  4870. * - Keep the command buffer full
  4871. * - Check for maximum inactive time between commands
  4872. * - Check for maximum inactive time between stepper commands
  4873. * - Check if pin CHDK needs to go LOW
  4874. * - Check for KILL button held down
  4875. * - Check for HOME button held down
  4876. * - Check if cooling fan needs to be switched on
  4877. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  4878. */
  4879. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  4880. #if HAS_FILRUNOUT
  4881. if (card.sdprinting && !(READ(FILRUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  4882. filrunout();
  4883. #endif
  4884. if (buflen < BUFSIZE - 1) get_command();
  4885. millis_t ms = millis();
  4886. if (max_inactive_time && ms > previous_cmd_ms + max_inactive_time) kill();
  4887. if (stepper_inactive_time && ms > previous_cmd_ms + stepper_inactive_time
  4888. && !ignore_stepper_queue && !blocks_queued())
  4889. disable_all_steppers();
  4890. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  4891. if (chdkActive && ms > chdkHigh + CHDK_DELAY) {
  4892. chdkActive = false;
  4893. WRITE(CHDK, LOW);
  4894. }
  4895. #endif
  4896. #if HAS_KILL
  4897. // Check if the kill button was pressed and wait just in case it was an accidental
  4898. // key kill key press
  4899. // -------------------------------------------------------------------------------
  4900. static int killCount = 0; // make the inactivity button a bit less responsive
  4901. const int KILL_DELAY = 750;
  4902. if (!READ(KILL_PIN))
  4903. killCount++;
  4904. else if (killCount > 0)
  4905. killCount--;
  4906. // Exceeded threshold and we can confirm that it was not accidental
  4907. // KILL the machine
  4908. // ----------------------------------------------------------------
  4909. if (killCount >= KILL_DELAY) kill();
  4910. #endif
  4911. #if HAS_HOME
  4912. // Check to see if we have to home, use poor man's debouncer
  4913. // ---------------------------------------------------------
  4914. static int homeDebounceCount = 0; // poor man's debouncing count
  4915. const int HOME_DEBOUNCE_DELAY = 750;
  4916. if (!READ(HOME_PIN)) {
  4917. if (!homeDebounceCount) {
  4918. enqueuecommands_P(PSTR("G28"));
  4919. LCD_ALERTMESSAGEPGM(MSG_AUTO_HOME);
  4920. }
  4921. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  4922. homeDebounceCount++;
  4923. else
  4924. homeDebounceCount = 0;
  4925. }
  4926. #endif
  4927. #if HAS_CONTROLLERFAN
  4928. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  4929. #endif
  4930. #ifdef EXTRUDER_RUNOUT_PREVENT
  4931. if (ms > previous_cmd_ms + EXTRUDER_RUNOUT_SECONDS * 1000)
  4932. if (degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  4933. bool oldstatus;
  4934. switch(active_extruder) {
  4935. case 0:
  4936. oldstatus = E0_ENABLE_READ;
  4937. enable_e0();
  4938. break;
  4939. #if EXTRUDERS > 1
  4940. case 1:
  4941. oldstatus = E1_ENABLE_READ;
  4942. enable_e1();
  4943. break;
  4944. #if EXTRUDERS > 2
  4945. case 2:
  4946. oldstatus = E2_ENABLE_READ;
  4947. enable_e2();
  4948. break;
  4949. #if EXTRUDERS > 3
  4950. case 3:
  4951. oldstatus = E3_ENABLE_READ;
  4952. enable_e3();
  4953. break;
  4954. #endif
  4955. #endif
  4956. #endif
  4957. }
  4958. float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
  4959. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  4960. destination[E_AXIS] + EXTRUDER_RUNOUT_EXTRUDE * EXTRUDER_RUNOUT_ESTEPS / axis_steps_per_unit[E_AXIS],
  4961. EXTRUDER_RUNOUT_SPEED / 60. * EXTRUDER_RUNOUT_ESTEPS / axis_steps_per_unit[E_AXIS], active_extruder);
  4962. current_position[E_AXIS] = oldepos;
  4963. destination[E_AXIS] = oldedes;
  4964. plan_set_e_position(oldepos);
  4965. previous_cmd_ms = ms; // refresh_cmd_timeout()
  4966. st_synchronize();
  4967. switch(active_extruder) {
  4968. case 0:
  4969. E0_ENABLE_WRITE(oldstatus);
  4970. break;
  4971. #if EXTRUDERS > 1
  4972. case 1:
  4973. E1_ENABLE_WRITE(oldstatus);
  4974. break;
  4975. #if EXTRUDERS > 2
  4976. case 2:
  4977. E2_ENABLE_WRITE(oldstatus);
  4978. break;
  4979. #if EXTRUDERS > 3
  4980. case 3:
  4981. E3_ENABLE_WRITE(oldstatus);
  4982. break;
  4983. #endif
  4984. #endif
  4985. #endif
  4986. }
  4987. }
  4988. #endif
  4989. #ifdef DUAL_X_CARRIAGE
  4990. // handle delayed move timeout
  4991. if (delayed_move_time && ms > delayed_move_time + 1000 && IsRunning()) {
  4992. // travel moves have been received so enact them
  4993. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  4994. set_destination_to_current();
  4995. prepare_move();
  4996. }
  4997. #endif
  4998. #ifdef TEMP_STAT_LEDS
  4999. handle_status_leds();
  5000. #endif
  5001. check_axes_activity();
  5002. }
  5003. void kill()
  5004. {
  5005. cli(); // Stop interrupts
  5006. disable_heater();
  5007. disable_all_steppers();
  5008. #if HAS_POWER_SWITCH
  5009. pinMode(PS_ON_PIN, INPUT);
  5010. #endif
  5011. SERIAL_ERROR_START;
  5012. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  5013. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  5014. // FMC small patch to update the LCD before ending
  5015. sei(); // enable interrupts
  5016. for (int i = 5; i--; lcd_update()) delay(200); // Wait a short time
  5017. cli(); // disable interrupts
  5018. suicide();
  5019. while(1) { /* Intentionally left empty */ } // Wait for reset
  5020. }
  5021. #ifdef FILAMENT_RUNOUT_SENSOR
  5022. void filrunout()
  5023. {
  5024. if filrunoutEnqued == false {
  5025. filrunoutEnqued = true;
  5026. enqueuecommand("M600");
  5027. }
  5028. }
  5029. #endif
  5030. void Stop()
  5031. {
  5032. disable_heater();
  5033. if (IsRunning()) {
  5034. Running = false;
  5035. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5036. SERIAL_ERROR_START;
  5037. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  5038. LCD_MESSAGEPGM(MSG_STOPPED);
  5039. }
  5040. }
  5041. #ifdef FAST_PWM_FAN
  5042. void setPwmFrequency(uint8_t pin, int val)
  5043. {
  5044. val &= 0x07;
  5045. switch(digitalPinToTimer(pin))
  5046. {
  5047. #if defined(TCCR0A)
  5048. case TIMER0A:
  5049. case TIMER0B:
  5050. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5051. // TCCR0B |= val;
  5052. break;
  5053. #endif
  5054. #if defined(TCCR1A)
  5055. case TIMER1A:
  5056. case TIMER1B:
  5057. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5058. // TCCR1B |= val;
  5059. break;
  5060. #endif
  5061. #if defined(TCCR2)
  5062. case TIMER2:
  5063. case TIMER2:
  5064. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5065. TCCR2 |= val;
  5066. break;
  5067. #endif
  5068. #if defined(TCCR2A)
  5069. case TIMER2A:
  5070. case TIMER2B:
  5071. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5072. TCCR2B |= val;
  5073. break;
  5074. #endif
  5075. #if defined(TCCR3A)
  5076. case TIMER3A:
  5077. case TIMER3B:
  5078. case TIMER3C:
  5079. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5080. TCCR3B |= val;
  5081. break;
  5082. #endif
  5083. #if defined(TCCR4A)
  5084. case TIMER4A:
  5085. case TIMER4B:
  5086. case TIMER4C:
  5087. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5088. TCCR4B |= val;
  5089. break;
  5090. #endif
  5091. #if defined(TCCR5A)
  5092. case TIMER5A:
  5093. case TIMER5B:
  5094. case TIMER5C:
  5095. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5096. TCCR5B |= val;
  5097. break;
  5098. #endif
  5099. }
  5100. }
  5101. #endif //FAST_PWM_FAN
  5102. bool setTargetedHotend(int code){
  5103. target_extruder = active_extruder;
  5104. if (code_seen('T')) {
  5105. target_extruder = code_value_short();
  5106. if (target_extruder >= EXTRUDERS) {
  5107. SERIAL_ECHO_START;
  5108. switch(code){
  5109. case 104:
  5110. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  5111. break;
  5112. case 105:
  5113. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5114. break;
  5115. case 109:
  5116. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5117. break;
  5118. case 218:
  5119. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5120. break;
  5121. case 221:
  5122. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5123. break;
  5124. }
  5125. SERIAL_ECHOLN(target_extruder);
  5126. return true;
  5127. }
  5128. }
  5129. return false;
  5130. }
  5131. float calculate_volumetric_multiplier(float diameter) {
  5132. if (!volumetric_enabled || diameter == 0) return 1.0;
  5133. float d2 = diameter * 0.5;
  5134. return 1.0 / (M_PI * d2 * d2);
  5135. }
  5136. void calculate_volumetric_multipliers() {
  5137. for (int i=0; i<EXTRUDERS; i++)
  5138. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  5139. }