My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604
  1. /*
  2. temperature.cpp - temperature control
  3. Part of Marlin
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. #include "Marlin.h"
  17. #include "ultralcd.h"
  18. #include "temperature.h"
  19. #include "watchdog.h"
  20. #include "language.h"
  21. #include "Sd2PinMap.h"
  22. //===========================================================================
  23. //================================== macros =================================
  24. //===========================================================================
  25. #ifdef K1 // Defined in Configuration.h in the PID settings
  26. #define K2 (1.0-K1)
  27. #endif
  28. #if defined(PIDTEMPBED) || defined(PIDTEMP)
  29. #define PID_dT ((OVERSAMPLENR * 12.0)/(F_CPU / 64.0 / 256.0))
  30. #endif
  31. //===========================================================================
  32. //============================= public variables ============================
  33. //===========================================================================
  34. int target_temperature[4] = { 0 };
  35. int target_temperature_bed = 0;
  36. int current_temperature_raw[4] = { 0 };
  37. float current_temperature[4] = { 0.0 };
  38. int current_temperature_bed_raw = 0;
  39. float current_temperature_bed = 0.0;
  40. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  41. int redundant_temperature_raw = 0;
  42. float redundant_temperature = 0.0;
  43. #endif
  44. #ifdef PIDTEMPBED
  45. float bedKp=DEFAULT_bedKp;
  46. float bedKi=(DEFAULT_bedKi*PID_dT);
  47. float bedKd=(DEFAULT_bedKd/PID_dT);
  48. #endif //PIDTEMPBED
  49. #ifdef FAN_SOFT_PWM
  50. unsigned char fanSpeedSoftPwm;
  51. #endif
  52. unsigned char soft_pwm_bed;
  53. #ifdef BABYSTEPPING
  54. volatile int babystepsTodo[3] = { 0 };
  55. #endif
  56. #ifdef FILAMENT_SENSOR
  57. int current_raw_filwidth = 0; //Holds measured filament diameter - one extruder only
  58. #endif
  59. #define HAS_HEATER_THERMAL_PROTECTION (defined(THERMAL_RUNAWAY_PROTECTION_PERIOD) && THERMAL_RUNAWAY_PROTECTION_PERIOD > 0)
  60. #define HAS_BED_THERMAL_PROTECTION (defined(THERMAL_RUNAWAY_PROTECTION_BED_PERIOD) && THERMAL_RUNAWAY_PROTECTION_BED_PERIOD > 0 && TEMP_SENSOR_BED != 0)
  61. #if HAS_HEATER_THERMAL_PROTECTION || HAS_BED_THERMAL_PROTECTION
  62. enum TRState { TRReset, TRInactive, TRFirstHeating, TRStable, TRRunaway };
  63. void thermal_runaway_protection(TRState *state, millis_t *timer, float temperature, float target_temperature, int heater_id, int period_seconds, int hysteresis_degc);
  64. #if HAS_HEATER_THERMAL_PROTECTION
  65. static TRState thermal_runaway_state_machine[4] = { TRReset, TRReset, TRReset, TRReset };
  66. static millis_t thermal_runaway_timer[4]; // = {0,0,0,0};
  67. #endif
  68. #if HAS_BED_THERMAL_PROTECTION
  69. static TRState thermal_runaway_bed_state_machine = TRReset;
  70. static millis_t thermal_runaway_bed_timer;
  71. #endif
  72. #endif
  73. //===========================================================================
  74. //=============================private variables============================
  75. //===========================================================================
  76. static volatile bool temp_meas_ready = false;
  77. #ifdef PIDTEMP
  78. //static cannot be external:
  79. static float temp_iState[EXTRUDERS] = { 0 };
  80. static float temp_dState[EXTRUDERS] = { 0 };
  81. static float pTerm[EXTRUDERS];
  82. static float iTerm[EXTRUDERS];
  83. static float dTerm[EXTRUDERS];
  84. //int output;
  85. static float pid_error[EXTRUDERS];
  86. static float temp_iState_min[EXTRUDERS];
  87. static float temp_iState_max[EXTRUDERS];
  88. static bool pid_reset[EXTRUDERS];
  89. #endif //PIDTEMP
  90. #ifdef PIDTEMPBED
  91. //static cannot be external:
  92. static float temp_iState_bed = { 0 };
  93. static float temp_dState_bed = { 0 };
  94. static float pTerm_bed;
  95. static float iTerm_bed;
  96. static float dTerm_bed;
  97. //int output;
  98. static float pid_error_bed;
  99. static float temp_iState_min_bed;
  100. static float temp_iState_max_bed;
  101. #else //PIDTEMPBED
  102. static millis_t previous_bed_check_ms;
  103. #endif //PIDTEMPBED
  104. static unsigned char soft_pwm[EXTRUDERS];
  105. #ifdef FAN_SOFT_PWM
  106. static unsigned char soft_pwm_fan;
  107. #endif
  108. #if HAS_AUTO_FAN
  109. static millis_t previous_auto_fan_check_ms;
  110. #endif
  111. #ifdef PIDTEMP
  112. #ifdef PID_PARAMS_PER_EXTRUDER
  113. float Kp[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Kp, DEFAULT_Kp, DEFAULT_Kp, DEFAULT_Kp);
  114. float Ki[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Ki*PID_dT, DEFAULT_Ki*PID_dT, DEFAULT_Ki*PID_dT, DEFAULT_Ki*PID_dT);
  115. float Kd[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Kd / PID_dT, DEFAULT_Kd / PID_dT, DEFAULT_Kd / PID_dT, DEFAULT_Kd / PID_dT);
  116. #ifdef PID_ADD_EXTRUSION_RATE
  117. float Kc[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Kc, DEFAULT_Kc, DEFAULT_Kc, DEFAULT_Kc);
  118. #endif // PID_ADD_EXTRUSION_RATE
  119. #else //PID_PARAMS_PER_EXTRUDER
  120. float Kp = DEFAULT_Kp;
  121. float Ki = DEFAULT_Ki * PID_dT;
  122. float Kd = DEFAULT_Kd / PID_dT;
  123. #ifdef PID_ADD_EXTRUSION_RATE
  124. float Kc = DEFAULT_Kc;
  125. #endif // PID_ADD_EXTRUSION_RATE
  126. #endif // PID_PARAMS_PER_EXTRUDER
  127. #endif //PIDTEMP
  128. // Init min and max temp with extreme values to prevent false errors during startup
  129. static int minttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP, HEATER_3_RAW_LO_TEMP);
  130. static int maxttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP, HEATER_3_RAW_HI_TEMP);
  131. static int minttemp[EXTRUDERS] = { 0 };
  132. static int maxttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 16383, 16383, 16383, 16383 );
  133. //static int bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP; /* No bed mintemp error implemented?!? */
  134. #ifdef BED_MAXTEMP
  135. static int bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
  136. #endif
  137. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  138. static void *heater_ttbl_map[2] = {(void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE };
  139. static uint8_t heater_ttbllen_map[2] = { HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN };
  140. #else
  141. static void *heater_ttbl_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( (void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE, (void *)HEATER_2_TEMPTABLE, (void *)HEATER_3_TEMPTABLE );
  142. static uint8_t heater_ttbllen_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN, HEATER_3_TEMPTABLE_LEN );
  143. #endif
  144. static float analog2temp(int raw, uint8_t e);
  145. static float analog2tempBed(int raw);
  146. static void updateTemperaturesFromRawValues();
  147. #ifdef WATCH_TEMP_PERIOD
  148. int watch_start_temp[EXTRUDERS] = { 0 };
  149. millis_t watchmillis[EXTRUDERS] = { 0 };
  150. #endif //WATCH_TEMP_PERIOD
  151. #ifndef SOFT_PWM_SCALE
  152. #define SOFT_PWM_SCALE 0
  153. #endif
  154. #ifdef FILAMENT_SENSOR
  155. static int meas_shift_index; //used to point to a delayed sample in buffer for filament width sensor
  156. #endif
  157. #ifdef HEATER_0_USES_MAX6675
  158. static int read_max6675();
  159. #endif
  160. //===========================================================================
  161. //============================= functions ============================
  162. //===========================================================================
  163. void PID_autotune(float temp, int extruder, int ncycles)
  164. {
  165. float input = 0.0;
  166. int cycles = 0;
  167. bool heating = true;
  168. millis_t temp_ms = millis(), t1 = temp_ms, t2 = temp_ms;
  169. long t_high = 0, t_low = 0;
  170. long bias, d;
  171. float Ku, Tu;
  172. float Kp, Ki, Kd;
  173. float max = 0, min = 10000;
  174. #if HAS_AUTO_FAN
  175. millis_t previous_auto_fan_check_ms = temp_ms;
  176. #endif
  177. if (extruder >= EXTRUDERS
  178. #if !HAS_TEMP_BED
  179. || extruder < 0
  180. #endif
  181. ) {
  182. SERIAL_ECHOLN(MSG_PID_BAD_EXTRUDER_NUM);
  183. return;
  184. }
  185. SERIAL_ECHOLN(MSG_PID_AUTOTUNE_START);
  186. disable_heater(); // switch off all heaters.
  187. if (extruder < 0)
  188. soft_pwm_bed = bias = d = MAX_BED_POWER / 2;
  189. else
  190. soft_pwm[extruder] = bias = d = PID_MAX / 2;
  191. // PID Tuning loop
  192. for (;;) {
  193. millis_t ms = millis();
  194. if (temp_meas_ready) { // temp sample ready
  195. updateTemperaturesFromRawValues();
  196. input = (extruder<0)?current_temperature_bed:current_temperature[extruder];
  197. max = max(max, input);
  198. min = min(min, input);
  199. #if HAS_AUTO_FAN
  200. if (ms > previous_auto_fan_check_ms + 2500) {
  201. checkExtruderAutoFans();
  202. previous_auto_fan_check_ms = ms;
  203. }
  204. #endif
  205. if (heating == true && input > temp) {
  206. if (ms - t2 > 5000) {
  207. heating = false;
  208. if (extruder < 0)
  209. soft_pwm_bed = (bias - d) >> 1;
  210. else
  211. soft_pwm[extruder] = (bias - d) >> 1;
  212. t1 = ms;
  213. t_high = t1 - t2;
  214. max = temp;
  215. }
  216. }
  217. if (heating == false && input < temp) {
  218. if (ms - t1 > 5000) {
  219. heating = true;
  220. t2 = ms;
  221. t_low = t2 - t1;
  222. if (cycles > 0) {
  223. long max_pow = extruder < 0 ? MAX_BED_POWER : PID_MAX;
  224. bias += (d*(t_high - t_low))/(t_low + t_high);
  225. bias = constrain(bias, 20, max_pow - 20);
  226. d = (bias > max_pow / 2) ? max_pow - 1 - bias : bias;
  227. SERIAL_PROTOCOLPGM(MSG_BIAS); SERIAL_PROTOCOL(bias);
  228. SERIAL_PROTOCOLPGM(MSG_D); SERIAL_PROTOCOL(d);
  229. SERIAL_PROTOCOLPGM(MSG_T_MIN); SERIAL_PROTOCOL(min);
  230. SERIAL_PROTOCOLPGM(MSG_T_MAX); SERIAL_PROTOCOLLN(max);
  231. if (cycles > 2) {
  232. Ku = (4.0 * d) / (3.14159265 * (max - min) / 2.0);
  233. Tu = ((float)(t_low + t_high) / 1000.0);
  234. SERIAL_PROTOCOLPGM(MSG_KU); SERIAL_PROTOCOL(Ku);
  235. SERIAL_PROTOCOLPGM(MSG_TU); SERIAL_PROTOCOLLN(Tu);
  236. Kp = 0.6 * Ku;
  237. Ki = 2 * Kp / Tu;
  238. Kd = Kp * Tu / 8;
  239. SERIAL_PROTOCOLLNPGM(MSG_CLASSIC_PID);
  240. SERIAL_PROTOCOLPGM(MSG_KP); SERIAL_PROTOCOLLN(Kp);
  241. SERIAL_PROTOCOLPGM(MSG_KI); SERIAL_PROTOCOLLN(Ki);
  242. SERIAL_PROTOCOLPGM(MSG_KD); SERIAL_PROTOCOLLN(Kd);
  243. /*
  244. Kp = 0.33*Ku;
  245. Ki = Kp/Tu;
  246. Kd = Kp*Tu/3;
  247. SERIAL_PROTOCOLLNPGM(" Some overshoot ");
  248. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(Kp);
  249. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(Ki);
  250. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(Kd);
  251. Kp = 0.2*Ku;
  252. Ki = 2*Kp/Tu;
  253. Kd = Kp*Tu/3;
  254. SERIAL_PROTOCOLLNPGM(" No overshoot ");
  255. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(Kp);
  256. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(Ki);
  257. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(Kd);
  258. */
  259. }
  260. }
  261. if (extruder < 0)
  262. soft_pwm_bed = (bias + d) >> 1;
  263. else
  264. soft_pwm[extruder] = (bias + d) >> 1;
  265. cycles++;
  266. min = temp;
  267. }
  268. }
  269. }
  270. if (input > temp + 20) {
  271. SERIAL_PROTOCOLLNPGM(MSG_PID_TEMP_TOO_HIGH);
  272. return;
  273. }
  274. // Every 2 seconds...
  275. if (ms > temp_ms + 2000) {
  276. int p;
  277. if (extruder < 0) {
  278. p = soft_pwm_bed;
  279. SERIAL_PROTOCOLPGM(MSG_OK_B);
  280. }
  281. else {
  282. p = soft_pwm[extruder];
  283. SERIAL_PROTOCOLPGM(MSG_OK_T);
  284. }
  285. SERIAL_PROTOCOL(input);
  286. SERIAL_PROTOCOLPGM(MSG_AT);
  287. SERIAL_PROTOCOLLN(p);
  288. temp_ms = ms;
  289. } // every 2 seconds
  290. // Over 2 minutes?
  291. if (((ms - t1) + (ms - t2)) > (10L*60L*1000L*2L)) {
  292. SERIAL_PROTOCOLLNPGM(MSG_PID_TIMEOUT);
  293. return;
  294. }
  295. if (cycles > ncycles) {
  296. SERIAL_PROTOCOLLNPGM(MSG_PID_AUTOTUNE_FINISHED);
  297. return;
  298. }
  299. lcd_update();
  300. }
  301. }
  302. void updatePID() {
  303. #ifdef PIDTEMP
  304. for (int e = 0; e < EXTRUDERS; e++) {
  305. temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / PID_PARAM(Ki,e);
  306. }
  307. #endif
  308. #ifdef PIDTEMPBED
  309. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / bedKi;
  310. #endif
  311. }
  312. int getHeaterPower(int heater) {
  313. return heater < 0 ? soft_pwm_bed : soft_pwm[heater];
  314. }
  315. #if HAS_AUTO_FAN
  316. void setExtruderAutoFanState(int pin, bool state)
  317. {
  318. unsigned char newFanSpeed = (state != 0) ? EXTRUDER_AUTO_FAN_SPEED : 0;
  319. // this idiom allows both digital and PWM fan outputs (see M42 handling).
  320. pinMode(pin, OUTPUT);
  321. digitalWrite(pin, newFanSpeed);
  322. analogWrite(pin, newFanSpeed);
  323. }
  324. void checkExtruderAutoFans()
  325. {
  326. uint8_t fanState = 0;
  327. // which fan pins need to be turned on?
  328. #if HAS_AUTO_FAN_0
  329. if (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  330. fanState |= 1;
  331. #endif
  332. #if HAS_AUTO_FAN_1
  333. if (current_temperature[1] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  334. {
  335. if (EXTRUDER_1_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  336. fanState |= 1;
  337. else
  338. fanState |= 2;
  339. }
  340. #endif
  341. #if HAS_AUTO_FAN_2
  342. if (current_temperature[2] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  343. {
  344. if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  345. fanState |= 1;
  346. else if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_1_AUTO_FAN_PIN)
  347. fanState |= 2;
  348. else
  349. fanState |= 4;
  350. }
  351. #endif
  352. #if HAS_AUTO_FAN_3
  353. if (current_temperature[3] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  354. {
  355. if (EXTRUDER_3_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  356. fanState |= 1;
  357. else if (EXTRUDER_3_AUTO_FAN_PIN == EXTRUDER_1_AUTO_FAN_PIN)
  358. fanState |= 2;
  359. else if (EXTRUDER_3_AUTO_FAN_PIN == EXTRUDER_2_AUTO_FAN_PIN)
  360. fanState |= 4;
  361. else
  362. fanState |= 8;
  363. }
  364. #endif
  365. // update extruder auto fan states
  366. #if HAS_AUTO_FAN_0
  367. setExtruderAutoFanState(EXTRUDER_0_AUTO_FAN_PIN, (fanState & 1) != 0);
  368. #endif
  369. #if HAS_AUTO_FAN_1
  370. if (EXTRUDER_1_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN)
  371. setExtruderAutoFanState(EXTRUDER_1_AUTO_FAN_PIN, (fanState & 2) != 0);
  372. #endif
  373. #if HAS_AUTO_FAN_2
  374. if (EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN
  375. && EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN)
  376. setExtruderAutoFanState(EXTRUDER_2_AUTO_FAN_PIN, (fanState & 4) != 0);
  377. #endif
  378. #if HAS_AUTO_FAN_3
  379. if (EXTRUDER_3_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN
  380. && EXTRUDER_3_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN
  381. && EXTRUDER_3_AUTO_FAN_PIN != EXTRUDER_2_AUTO_FAN_PIN)
  382. setExtruderAutoFanState(EXTRUDER_3_AUTO_FAN_PIN, (fanState & 8) != 0);
  383. #endif
  384. }
  385. #endif // any extruder auto fan pins set
  386. //
  387. // Temperature Error Handlers
  388. //
  389. inline void _temp_error(int e, const char *msg1, const char *msg2) {
  390. if (IsRunning()) {
  391. SERIAL_ERROR_START;
  392. if (e >= 0) SERIAL_ERRORLN((int)e);
  393. serialprintPGM(msg1);
  394. MYSERIAL.write('\n');
  395. #ifdef ULTRA_LCD
  396. lcd_setalertstatuspgm(msg2);
  397. #endif
  398. }
  399. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  400. Stop();
  401. #endif
  402. }
  403. void max_temp_error(uint8_t e) {
  404. disable_heater();
  405. _temp_error(e, PSTR(MSG_MAXTEMP_EXTRUDER_OFF), PSTR(MSG_ERR_MAXTEMP));
  406. }
  407. void min_temp_error(uint8_t e) {
  408. disable_heater();
  409. _temp_error(e, PSTR(MSG_MINTEMP_EXTRUDER_OFF), PSTR(MSG_ERR_MINTEMP));
  410. }
  411. void bed_max_temp_error(void) {
  412. #if HAS_HEATER_BED
  413. WRITE_HEATER_BED(0);
  414. #endif
  415. _temp_error(-1, PSTR(MSG_MAXTEMP_BED_OFF), PSTR(MSG_ERR_MAXTEMP_BED));
  416. }
  417. float get_pid_output(int e) {
  418. float pid_output;
  419. #ifdef PIDTEMP
  420. #ifndef PID_OPENLOOP
  421. pid_error[e] = target_temperature[e] - current_temperature[e];
  422. if (pid_error[e] > PID_FUNCTIONAL_RANGE) {
  423. pid_output = BANG_MAX;
  424. pid_reset[e] = true;
  425. }
  426. else if (pid_error[e] < -PID_FUNCTIONAL_RANGE || target_temperature[e] == 0) {
  427. pid_output = 0;
  428. pid_reset[e] = true;
  429. }
  430. else {
  431. if (pid_reset[e]) {
  432. temp_iState[e] = 0.0;
  433. pid_reset[e] = false;
  434. }
  435. pTerm[e] = PID_PARAM(Kp,e) * pid_error[e];
  436. temp_iState[e] += pid_error[e];
  437. temp_iState[e] = constrain(temp_iState[e], temp_iState_min[e], temp_iState_max[e]);
  438. iTerm[e] = PID_PARAM(Ki,e) * temp_iState[e];
  439. dTerm[e] = K2 * PID_PARAM(Kd,e) * (current_temperature[e] - temp_dState[e]) + K1 * dTerm[e];
  440. pid_output = pTerm[e] + iTerm[e] - dTerm[e];
  441. if (pid_output > PID_MAX) {
  442. if (pid_error[e] > 0) temp_iState[e] -= pid_error[e]; // conditional un-integration
  443. pid_output = PID_MAX;
  444. }
  445. else if (pid_output < 0) {
  446. if (pid_error[e] < 0) temp_iState[e] -= pid_error[e]; // conditional un-integration
  447. pid_output = 0;
  448. }
  449. }
  450. temp_dState[e] = current_temperature[e];
  451. #else
  452. pid_output = constrain(target_temperature[e], 0, PID_MAX);
  453. #endif //PID_OPENLOOP
  454. #ifdef PID_DEBUG
  455. SERIAL_ECHO_START;
  456. SERIAL_ECHO(MSG_PID_DEBUG);
  457. SERIAL_ECHO(e);
  458. SERIAL_ECHO(MSG_PID_DEBUG_INPUT);
  459. SERIAL_ECHO(current_temperature[e]);
  460. SERIAL_ECHO(MSG_PID_DEBUG_OUTPUT);
  461. SERIAL_ECHO(pid_output);
  462. SERIAL_ECHO(MSG_PID_DEBUG_PTERM);
  463. SERIAL_ECHO(pTerm[e]);
  464. SERIAL_ECHO(MSG_PID_DEBUG_ITERM);
  465. SERIAL_ECHO(iTerm[e]);
  466. SERIAL_ECHO(MSG_PID_DEBUG_DTERM);
  467. SERIAL_ECHOLN(dTerm[e]);
  468. #endif //PID_DEBUG
  469. #else /* PID off */
  470. pid_output = (current_temperature[e] < target_temperature[e]) ? PID_MAX : 0;
  471. #endif
  472. return pid_output;
  473. }
  474. #ifdef PIDTEMPBED
  475. float get_pid_output_bed() {
  476. float pid_output;
  477. #ifndef PID_OPENLOOP
  478. pid_error_bed = target_temperature_bed - current_temperature_bed;
  479. pTerm_bed = bedKp * pid_error_bed;
  480. temp_iState_bed += pid_error_bed;
  481. temp_iState_bed = constrain(temp_iState_bed, temp_iState_min_bed, temp_iState_max_bed);
  482. iTerm_bed = bedKi * temp_iState_bed;
  483. dTerm_bed = K2 * bedKd * (current_temperature_bed - temp_dState_bed) + K1 * dTerm_bed;
  484. temp_dState_bed = current_temperature_bed;
  485. pid_output = pTerm_bed + iTerm_bed - dTerm_bed;
  486. if (pid_output > MAX_BED_POWER) {
  487. if (pid_error_bed > 0) temp_iState_bed -= pid_error_bed; // conditional un-integration
  488. pid_output = MAX_BED_POWER;
  489. }
  490. else if (pid_output < 0) {
  491. if (pid_error_bed < 0) temp_iState_bed -= pid_error_bed; // conditional un-integration
  492. pid_output = 0;
  493. }
  494. #else
  495. pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER);
  496. #endif // PID_OPENLOOP
  497. #ifdef PID_BED_DEBUG
  498. SERIAL_ECHO_START;
  499. SERIAL_ECHO(" PID_BED_DEBUG ");
  500. SERIAL_ECHO(": Input ");
  501. SERIAL_ECHO(current_temperature_bed);
  502. SERIAL_ECHO(" Output ");
  503. SERIAL_ECHO(pid_output);
  504. SERIAL_ECHO(" pTerm ");
  505. SERIAL_ECHO(pTerm_bed);
  506. SERIAL_ECHO(" iTerm ");
  507. SERIAL_ECHO(iTerm_bed);
  508. SERIAL_ECHO(" dTerm ");
  509. SERIAL_ECHOLN(dTerm_bed);
  510. #endif //PID_BED_DEBUG
  511. return pid_output;
  512. }
  513. #endif
  514. void manage_heater() {
  515. if (!temp_meas_ready) return;
  516. updateTemperaturesFromRawValues();
  517. #ifdef HEATER_0_USES_MAX6675
  518. float ct = current_temperature[0];
  519. if (ct > min(HEATER_0_MAXTEMP, 1023)) max_temp_error(0);
  520. if (ct < max(HEATER_0_MINTEMP, 0.01)) min_temp_error(0);
  521. #endif //HEATER_0_USES_MAX6675
  522. #if defined(WATCH_TEMP_PERIOD) || !defined(PIDTEMPBED) || HAS_AUTO_FAN
  523. millis_t ms = millis();
  524. #endif
  525. // Loop through all extruders
  526. for (int e = 0; e < EXTRUDERS; e++) {
  527. #if HAS_HEATER_THERMAL_PROTECTION
  528. thermal_runaway_protection(&thermal_runaway_state_machine[e], &thermal_runaway_timer[e], current_temperature[e], target_temperature[e], e, THERMAL_RUNAWAY_PROTECTION_PERIOD, THERMAL_RUNAWAY_PROTECTION_HYSTERESIS);
  529. #endif
  530. float pid_output = get_pid_output(e);
  531. // Check if temperature is within the correct range
  532. soft_pwm[e] = current_temperature[e] > minttemp[e] && current_temperature[e] < maxttemp[e] ? (int)pid_output >> 1 : 0;
  533. #ifdef WATCH_TEMP_PERIOD
  534. if (watchmillis[e] && ms > watchmillis[e] + WATCH_TEMP_PERIOD) {
  535. if (degHotend(e) < watch_start_temp[e] + WATCH_TEMP_INCREASE) {
  536. setTargetHotend(0, e);
  537. LCD_MESSAGEPGM(MSG_HEATING_FAILED_LCD); // translatable
  538. SERIAL_ECHO_START;
  539. SERIAL_ECHOLNPGM(MSG_HEATING_FAILED);
  540. }
  541. else {
  542. watchmillis[e] = 0;
  543. }
  544. }
  545. #endif //WATCH_TEMP_PERIOD
  546. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  547. if (fabs(current_temperature[0] - redundant_temperature) > MAX_REDUNDANT_TEMP_SENSOR_DIFF) {
  548. disable_heater();
  549. _temp_error(0, PSTR(MSG_EXTRUDER_SWITCHED_OFF), PSTR(MSG_ERR_REDUNDANT_TEMP));
  550. }
  551. #endif // TEMP_SENSOR_1_AS_REDUNDANT
  552. } // Extruders Loop
  553. #if HAS_AUTO_FAN
  554. if (ms > previous_auto_fan_check_ms + 2500) { // only need to check fan state very infrequently
  555. checkExtruderAutoFans();
  556. previous_auto_fan_check_ms = ms;
  557. }
  558. #endif
  559. #ifndef PIDTEMPBED
  560. if (ms < previous_bed_check_ms + BED_CHECK_INTERVAL) return;
  561. previous_bed_check_ms = ms;
  562. #endif //PIDTEMPBED
  563. #if TEMP_SENSOR_BED != 0
  564. #if HAS_BED_THERMAL_PROTECTION
  565. thermal_runaway_protection(&thermal_runaway_bed_state_machine, &thermal_runaway_bed_timer, current_temperature_bed, target_temperature_bed, -1, THERMAL_RUNAWAY_PROTECTION_BED_PERIOD, THERMAL_RUNAWAY_PROTECTION_BED_HYSTERESIS);
  566. #endif
  567. #ifdef PIDTEMPBED
  568. float pid_output = get_pid_output_bed();
  569. soft_pwm_bed = current_temperature_bed > BED_MINTEMP && current_temperature_bed < BED_MAXTEMP ? (int)pid_output >> 1 : 0;
  570. #elif !defined(BED_LIMIT_SWITCHING)
  571. // Check if temperature is within the correct range
  572. if (current_temperature_bed > BED_MINTEMP && current_temperature_bed < BED_MAXTEMP) {
  573. soft_pwm_bed = current_temperature_bed < target_temperature_bed ? MAX_BED_POWER >> 1 : 0;
  574. }
  575. else {
  576. soft_pwm_bed = 0;
  577. WRITE_HEATER_BED(LOW);
  578. }
  579. #else //#ifdef BED_LIMIT_SWITCHING
  580. // Check if temperature is within the correct band
  581. if (current_temperature_bed > BED_MINTEMP && current_temperature_bed < BED_MAXTEMP) {
  582. if (current_temperature_bed >= target_temperature_bed + BED_HYSTERESIS)
  583. soft_pwm_bed = 0;
  584. else if (current_temperature_bed <= target_temperature_bed - BED_HYSTERESIS)
  585. soft_pwm_bed = MAX_BED_POWER >> 1;
  586. }
  587. else {
  588. soft_pwm_bed = 0;
  589. WRITE_HEATER_BED(LOW);
  590. }
  591. #endif
  592. #endif //TEMP_SENSOR_BED != 0
  593. // Control the extruder rate based on the width sensor
  594. #ifdef FILAMENT_SENSOR
  595. if (filament_sensor) {
  596. meas_shift_index = delay_index1 - meas_delay_cm;
  597. if (meas_shift_index < 0) meas_shift_index += MAX_MEASUREMENT_DELAY + 1; //loop around buffer if needed
  598. // Get the delayed info and add 100 to reconstitute to a percent of
  599. // the nominal filament diameter then square it to get an area
  600. meas_shift_index = constrain(meas_shift_index, 0, MAX_MEASUREMENT_DELAY);
  601. float vm = pow((measurement_delay[meas_shift_index] + 100.0) / 100.0, 2);
  602. if (vm < 0.01) vm = 0.01;
  603. volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM] = vm;
  604. }
  605. #endif //FILAMENT_SENSOR
  606. }
  607. #define PGM_RD_W(x) (short)pgm_read_word(&x)
  608. // Derived from RepRap FiveD extruder::getTemperature()
  609. // For hot end temperature measurement.
  610. static float analog2temp(int raw, uint8_t e) {
  611. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  612. if (e > EXTRUDERS)
  613. #else
  614. if (e >= EXTRUDERS)
  615. #endif
  616. {
  617. SERIAL_ERROR_START;
  618. SERIAL_ERROR((int)e);
  619. SERIAL_ERRORLNPGM(MSG_INVALID_EXTRUDER_NUM);
  620. kill();
  621. return 0.0;
  622. }
  623. #ifdef HEATER_0_USES_MAX6675
  624. if (e == 0)
  625. {
  626. return 0.25 * raw;
  627. }
  628. #endif
  629. if(heater_ttbl_map[e] != NULL)
  630. {
  631. float celsius = 0;
  632. uint8_t i;
  633. short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]);
  634. for (i=1; i<heater_ttbllen_map[e]; i++)
  635. {
  636. if (PGM_RD_W((*tt)[i][0]) > raw)
  637. {
  638. celsius = PGM_RD_W((*tt)[i-1][1]) +
  639. (raw - PGM_RD_W((*tt)[i-1][0])) *
  640. (float)(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i-1][1])) /
  641. (float)(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i-1][0]));
  642. break;
  643. }
  644. }
  645. // Overflow: Set to last value in the table
  646. if (i == heater_ttbllen_map[e]) celsius = PGM_RD_W((*tt)[i-1][1]);
  647. return celsius;
  648. }
  649. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  650. }
  651. // Derived from RepRap FiveD extruder::getTemperature()
  652. // For bed temperature measurement.
  653. static float analog2tempBed(int raw) {
  654. #ifdef BED_USES_THERMISTOR
  655. float celsius = 0;
  656. byte i;
  657. for (i=1; i<BEDTEMPTABLE_LEN; i++)
  658. {
  659. if (PGM_RD_W(BEDTEMPTABLE[i][0]) > raw)
  660. {
  661. celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]) +
  662. (raw - PGM_RD_W(BEDTEMPTABLE[i-1][0])) *
  663. (float)(PGM_RD_W(BEDTEMPTABLE[i][1]) - PGM_RD_W(BEDTEMPTABLE[i-1][1])) /
  664. (float)(PGM_RD_W(BEDTEMPTABLE[i][0]) - PGM_RD_W(BEDTEMPTABLE[i-1][0]));
  665. break;
  666. }
  667. }
  668. // Overflow: Set to last value in the table
  669. if (i == BEDTEMPTABLE_LEN) celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]);
  670. return celsius;
  671. #elif defined BED_USES_AD595
  672. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  673. #else
  674. return 0;
  675. #endif
  676. }
  677. /* Called to get the raw values into the the actual temperatures. The raw values are created in interrupt context,
  678. and this function is called from normal context as it is too slow to run in interrupts and will block the stepper routine otherwise */
  679. static void updateTemperaturesFromRawValues() {
  680. #ifdef HEATER_0_USES_MAX6675
  681. current_temperature_raw[0] = read_max6675();
  682. #endif
  683. for(uint8_t e = 0; e < EXTRUDERS; e++) {
  684. current_temperature[e] = analog2temp(current_temperature_raw[e], e);
  685. }
  686. current_temperature_bed = analog2tempBed(current_temperature_bed_raw);
  687. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  688. redundant_temperature = analog2temp(redundant_temperature_raw, 1);
  689. #endif
  690. #if HAS_FILAMENT_SENSOR
  691. filament_width_meas = analog2widthFil();
  692. #endif
  693. //Reset the watchdog after we know we have a temperature measurement.
  694. watchdog_reset();
  695. CRITICAL_SECTION_START;
  696. temp_meas_ready = false;
  697. CRITICAL_SECTION_END;
  698. }
  699. #ifdef FILAMENT_SENSOR
  700. // Convert raw Filament Width to millimeters
  701. float analog2widthFil() {
  702. return current_raw_filwidth / 16383.0 * 5.0;
  703. //return current_raw_filwidth;
  704. }
  705. // Convert raw Filament Width to a ratio
  706. int widthFil_to_size_ratio() {
  707. float temp = filament_width_meas;
  708. if (temp < MEASURED_LOWER_LIMIT) temp = filament_width_nominal; //assume sensor cut out
  709. else if (temp > MEASURED_UPPER_LIMIT) temp = MEASURED_UPPER_LIMIT;
  710. return filament_width_nominal / temp * 100;
  711. }
  712. #endif
  713. void tp_init()
  714. {
  715. #if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
  716. //disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
  717. MCUCR=BIT(JTD);
  718. MCUCR=BIT(JTD);
  719. #endif
  720. // Finish init of mult extruder arrays
  721. for (int e = 0; e < EXTRUDERS; e++) {
  722. // populate with the first value
  723. maxttemp[e] = maxttemp[0];
  724. #ifdef PIDTEMP
  725. temp_iState_min[e] = 0.0;
  726. temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / PID_PARAM(Ki,e);
  727. #endif //PIDTEMP
  728. #ifdef PIDTEMPBED
  729. temp_iState_min_bed = 0.0;
  730. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / bedKi;
  731. #endif //PIDTEMPBED
  732. }
  733. #if HAS_HEATER_0
  734. SET_OUTPUT(HEATER_0_PIN);
  735. #endif
  736. #if HAS_HEATER_1
  737. SET_OUTPUT(HEATER_1_PIN);
  738. #endif
  739. #if HAS_HEATER_2
  740. SET_OUTPUT(HEATER_2_PIN);
  741. #endif
  742. #if HAS_HEATER_3
  743. SET_OUTPUT(HEATER_3_PIN);
  744. #endif
  745. #if HAS_HEATER_BED
  746. SET_OUTPUT(HEATER_BED_PIN);
  747. #endif
  748. #if HAS_FAN
  749. SET_OUTPUT(FAN_PIN);
  750. #ifdef FAST_PWM_FAN
  751. setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  752. #endif
  753. #ifdef FAN_SOFT_PWM
  754. soft_pwm_fan = fanSpeedSoftPwm / 2;
  755. #endif
  756. #endif
  757. #ifdef HEATER_0_USES_MAX6675
  758. #ifndef SDSUPPORT
  759. OUT_WRITE(SCK_PIN, LOW);
  760. OUT_WRITE(MOSI_PIN, HIGH);
  761. OUT_WRITE(MISO_PIN, HIGH);
  762. #else
  763. pinMode(SS_PIN, OUTPUT);
  764. digitalWrite(SS_PIN, HIGH);
  765. #endif
  766. OUT_WRITE(MAX6675_SS,HIGH);
  767. #endif //HEATER_0_USES_MAX6675
  768. #ifdef DIDR2
  769. #define ANALOG_SELECT(pin) do{ if (pin < 8) DIDR0 |= BIT(pin); else DIDR2 |= BIT(pin - 8); }while(0)
  770. #else
  771. #define ANALOG_SELECT(pin) do{ DIDR0 |= BIT(pin); }while(0)
  772. #endif
  773. // Set analog inputs
  774. ADCSRA = BIT(ADEN) | BIT(ADSC) | BIT(ADIF) | 0x07;
  775. DIDR0 = 0;
  776. #ifdef DIDR2
  777. DIDR2 = 0;
  778. #endif
  779. #if HAS_TEMP_0
  780. ANALOG_SELECT(TEMP_0_PIN);
  781. #endif
  782. #if HAS_TEMP_1
  783. ANALOG_SELECT(TEMP_1_PIN);
  784. #endif
  785. #if HAS_TEMP_2
  786. ANALOG_SELECT(TEMP_2_PIN);
  787. #endif
  788. #if HAS_TEMP_3
  789. ANALOG_SELECT(TEMP_3_PIN);
  790. #endif
  791. #if HAS_TEMP_BED
  792. ANALOG_SELECT(TEMP_BED_PIN);
  793. #endif
  794. #if HAS_FILAMENT_SENSOR
  795. ANALOG_SELECT(FILWIDTH_PIN);
  796. #endif
  797. // Use timer0 for temperature measurement
  798. // Interleave temperature interrupt with millies interrupt
  799. OCR0B = 128;
  800. TIMSK0 |= BIT(OCIE0B);
  801. // Wait for temperature measurement to settle
  802. delay(250);
  803. #define TEMP_MIN_ROUTINE(NR) \
  804. minttemp[NR] = HEATER_ ## NR ## _MINTEMP; \
  805. while(analog2temp(minttemp_raw[NR], NR) < HEATER_ ## NR ## _MINTEMP) { \
  806. if (HEATER_ ## NR ## _RAW_LO_TEMP < HEATER_ ## NR ## _RAW_HI_TEMP) \
  807. minttemp_raw[NR] += OVERSAMPLENR; \
  808. else \
  809. minttemp_raw[NR] -= OVERSAMPLENR; \
  810. }
  811. #define TEMP_MAX_ROUTINE(NR) \
  812. maxttemp[NR] = HEATER_ ## NR ## _MAXTEMP; \
  813. while(analog2temp(maxttemp_raw[NR], NR) > HEATER_ ## NR ## _MAXTEMP) { \
  814. if (HEATER_ ## NR ## _RAW_LO_TEMP < HEATER_ ## NR ## _RAW_HI_TEMP) \
  815. maxttemp_raw[NR] -= OVERSAMPLENR; \
  816. else \
  817. maxttemp_raw[NR] += OVERSAMPLENR; \
  818. }
  819. #ifdef HEATER_0_MINTEMP
  820. TEMP_MIN_ROUTINE(0);
  821. #endif
  822. #ifdef HEATER_0_MAXTEMP
  823. TEMP_MAX_ROUTINE(0);
  824. #endif
  825. #if EXTRUDERS > 1
  826. #ifdef HEATER_1_MINTEMP
  827. TEMP_MIN_ROUTINE(1);
  828. #endif
  829. #ifdef HEATER_1_MAXTEMP
  830. TEMP_MAX_ROUTINE(1);
  831. #endif
  832. #if EXTRUDERS > 2
  833. #ifdef HEATER_2_MINTEMP
  834. TEMP_MIN_ROUTINE(2);
  835. #endif
  836. #ifdef HEATER_2_MAXTEMP
  837. TEMP_MAX_ROUTINE(2);
  838. #endif
  839. #if EXTRUDERS > 3
  840. #ifdef HEATER_3_MINTEMP
  841. TEMP_MIN_ROUTINE(3);
  842. #endif
  843. #ifdef HEATER_3_MAXTEMP
  844. TEMP_MAX_ROUTINE(3);
  845. #endif
  846. #endif // EXTRUDERS > 3
  847. #endif // EXTRUDERS > 2
  848. #endif // EXTRUDERS > 1
  849. #ifdef BED_MINTEMP
  850. /* No bed MINTEMP error implemented?!? */ /*
  851. while(analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) {
  852. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  853. bed_minttemp_raw += OVERSAMPLENR;
  854. #else
  855. bed_minttemp_raw -= OVERSAMPLENR;
  856. #endif
  857. }
  858. */
  859. #endif //BED_MINTEMP
  860. #ifdef BED_MAXTEMP
  861. while(analog2tempBed(bed_maxttemp_raw) > BED_MAXTEMP) {
  862. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  863. bed_maxttemp_raw -= OVERSAMPLENR;
  864. #else
  865. bed_maxttemp_raw += OVERSAMPLENR;
  866. #endif
  867. }
  868. #endif //BED_MAXTEMP
  869. }
  870. void setWatch() {
  871. #ifdef WATCH_TEMP_PERIOD
  872. millis_t ms = millis();
  873. for (int e = 0; e < EXTRUDERS; e++) {
  874. if (degHotend(e) < degTargetHotend(e) - (WATCH_TEMP_INCREASE * 2)) {
  875. watch_start_temp[e] = degHotend(e);
  876. watchmillis[e] = ms;
  877. }
  878. }
  879. #endif
  880. }
  881. #if HAS_HEATER_THERMAL_PROTECTION || HAS_BED_THERMAL_PROTECTION
  882. void thermal_runaway_protection(TRState *state, millis_t *timer, float temperature, float target_temperature, int heater_id, int period_seconds, int hysteresis_degc) {
  883. static float tr_target_temperature[EXTRUDERS+1] = { 0.0 };
  884. /*
  885. SERIAL_ECHO_START;
  886. SERIAL_ECHOPGM("Thermal Thermal Runaway Running. Heater ID: ");
  887. if (heater_id < 0) SERIAL_ECHOPGM("bed"); else SERIAL_ECHOPGM(heater_id);
  888. SERIAL_ECHOPGM(" ; State:");
  889. SERIAL_ECHOPGM(*state);
  890. SERIAL_ECHOPGM(" ; Timer:");
  891. SERIAL_ECHOPGM(*timer);
  892. SERIAL_ECHOPGM(" ; Temperature:");
  893. SERIAL_ECHOPGM(temperature);
  894. SERIAL_ECHOPGM(" ; Target Temp:");
  895. SERIAL_ECHOPGM(target_temperature);
  896. SERIAL_EOL;
  897. */
  898. int heater_index = heater_id >= 0 ? heater_id : EXTRUDERS;
  899. // If the target temperature changes, restart
  900. if (tr_target_temperature[heater_index] != target_temperature)
  901. *state = TRReset;
  902. switch (*state) {
  903. case TRReset:
  904. *timer = 0;
  905. *state = TRInactive;
  906. break;
  907. // Inactive state waits for a target temperature to be set
  908. case TRInactive:
  909. if (target_temperature > 0) {
  910. tr_target_temperature[heater_index] = target_temperature;
  911. *state = TRFirstHeating;
  912. }
  913. break;
  914. // When first heating, wait for the temperature to be reached then go to Stable state
  915. case TRFirstHeating:
  916. if (temperature >= tr_target_temperature[heater_index]) *state = TRStable;
  917. break;
  918. // While the temperature is stable watch for a bad temperature
  919. case TRStable:
  920. // If the temperature is over the target (-hysteresis) restart the timer
  921. if (temperature >= tr_target_temperature[heater_index] - hysteresis_degc)
  922. *timer = millis();
  923. // If the timer goes too long without a reset, trigger shutdown
  924. else if (millis() > *timer + period_seconds * 1000UL)
  925. *state = TRRunaway;
  926. break;
  927. case TRRunaway:
  928. SERIAL_ERROR_START;
  929. SERIAL_ERRORLNPGM(MSG_THERMAL_RUNAWAY_STOP);
  930. if (heater_id < 0) SERIAL_ERRORLNPGM("bed"); else SERIAL_ERRORLN(heater_id);
  931. LCD_ALERTMESSAGEPGM(MSG_THERMAL_RUNAWAY);
  932. disable_heater();
  933. disable_all_steppers();
  934. for (;;) {
  935. manage_heater();
  936. lcd_update();
  937. }
  938. }
  939. }
  940. #endif // HAS_HEATER_THERMAL_PROTECTION || HAS_BED_THERMAL_PROTECTION
  941. void disable_heater() {
  942. for (int i=0; i<EXTRUDERS; i++) setTargetHotend(0, i);
  943. setTargetBed(0);
  944. #define DISABLE_HEATER(NR) { \
  945. target_temperature[NR] = 0; \
  946. soft_pwm[NR] = 0; \
  947. WRITE_HEATER_ ## NR (LOW); \
  948. }
  949. #if HAS_TEMP_0
  950. target_temperature[0] = 0;
  951. soft_pwm[0] = 0;
  952. WRITE_HEATER_0P(LOW); // Should HEATERS_PARALLEL apply here? Then change to DISABLE_HEATER(0)
  953. #endif
  954. #if EXTRUDERS > 1 && HAS_TEMP_1
  955. DISABLE_HEATER(1);
  956. #endif
  957. #if EXTRUDERS > 2 && HAS_TEMP_2
  958. DISABLE_HEATER(2);
  959. #endif
  960. #if EXTRUDERS > 3 && HAS_TEMP_3
  961. DISABLE_HEATER(3);
  962. #endif
  963. #if HAS_TEMP_BED
  964. target_temperature_bed = 0;
  965. soft_pwm_bed = 0;
  966. #if HAS_HEATER_BED
  967. WRITE_HEATER_BED(LOW);
  968. #endif
  969. #endif
  970. }
  971. #ifdef HEATER_0_USES_MAX6675
  972. #define MAX6675_HEAT_INTERVAL 250u
  973. millis_t previous_max6675_ms = MAX6675_HEAT_INTERVAL;
  974. int max6675_temp = 2000;
  975. static int read_max6675() {
  976. millis_t ms = millis();
  977. if (ms < previous_max6675_ms + MAX6675_HEAT_INTERVAL)
  978. return max6675_temp;
  979. previous_max6675_ms = ms;
  980. max6675_temp = 0;
  981. #ifdef PRR
  982. PRR &= ~BIT(PRSPI);
  983. #elif defined(PRR0)
  984. PRR0 &= ~BIT(PRSPI);
  985. #endif
  986. SPCR = BIT(MSTR) | BIT(SPE) | BIT(SPR0);
  987. // enable TT_MAX6675
  988. WRITE(MAX6675_SS, 0);
  989. // ensure 100ns delay - a bit extra is fine
  990. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  991. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  992. // read MSB
  993. SPDR = 0;
  994. for (;(SPSR & BIT(SPIF)) == 0;);
  995. max6675_temp = SPDR;
  996. max6675_temp <<= 8;
  997. // read LSB
  998. SPDR = 0;
  999. for (;(SPSR & BIT(SPIF)) == 0;);
  1000. max6675_temp |= SPDR;
  1001. // disable TT_MAX6675
  1002. WRITE(MAX6675_SS, 1);
  1003. if (max6675_temp & 4) {
  1004. // thermocouple open
  1005. max6675_temp = 4000;
  1006. }
  1007. else {
  1008. max6675_temp = max6675_temp >> 3;
  1009. }
  1010. return max6675_temp;
  1011. }
  1012. #endif //HEATER_0_USES_MAX6675
  1013. /**
  1014. * Stages in the ISR loop
  1015. */
  1016. enum TempState {
  1017. PrepareTemp_0,
  1018. MeasureTemp_0,
  1019. PrepareTemp_BED,
  1020. MeasureTemp_BED,
  1021. PrepareTemp_1,
  1022. MeasureTemp_1,
  1023. PrepareTemp_2,
  1024. MeasureTemp_2,
  1025. PrepareTemp_3,
  1026. MeasureTemp_3,
  1027. Prepare_FILWIDTH,
  1028. Measure_FILWIDTH,
  1029. StartupDelay // Startup, delay initial temp reading a tiny bit so the hardware can settle
  1030. };
  1031. static unsigned long raw_temp_value[4] = { 0 };
  1032. static unsigned long raw_temp_bed_value = 0;
  1033. static void set_current_temp_raw() {
  1034. #if HAS_TEMP_0 && !defined(HEATER_0_USES_MAX6675)
  1035. current_temperature_raw[0] = raw_temp_value[0];
  1036. #endif
  1037. #if HAS_TEMP_1
  1038. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  1039. redundant_temperature_raw = raw_temp_value[1];
  1040. #else
  1041. current_temperature_raw[1] = raw_temp_value[1];
  1042. #endif
  1043. #if HAS_TEMP_2
  1044. current_temperature_raw[2] = raw_temp_value[2];
  1045. #if HAS_TEMP_3
  1046. current_temperature_raw[3] = raw_temp_value[3];
  1047. #endif
  1048. #endif
  1049. #endif
  1050. current_temperature_bed_raw = raw_temp_bed_value;
  1051. temp_meas_ready = true;
  1052. }
  1053. //
  1054. // Timer 0 is shared with millies
  1055. //
  1056. ISR(TIMER0_COMPB_vect) {
  1057. //these variables are only accesible from the ISR, but static, so they don't lose their value
  1058. static unsigned char temp_count = 0;
  1059. static TempState temp_state = StartupDelay;
  1060. static unsigned char pwm_count = BIT(SOFT_PWM_SCALE);
  1061. // Static members for each heater
  1062. #ifdef SLOW_PWM_HEATERS
  1063. static unsigned char slow_pwm_count = 0;
  1064. #define ISR_STATICS(n) \
  1065. static unsigned char soft_pwm_ ## n; \
  1066. static unsigned char state_heater_ ## n = 0; \
  1067. static unsigned char state_timer_heater_ ## n = 0
  1068. #else
  1069. #define ISR_STATICS(n) static unsigned char soft_pwm_ ## n
  1070. #endif
  1071. // Statics per heater
  1072. ISR_STATICS(0);
  1073. #if (EXTRUDERS > 1) || defined(HEATERS_PARALLEL)
  1074. ISR_STATICS(1);
  1075. #if EXTRUDERS > 2
  1076. ISR_STATICS(2);
  1077. #if EXTRUDERS > 3
  1078. ISR_STATICS(3);
  1079. #endif
  1080. #endif
  1081. #endif
  1082. #if HAS_HEATER_BED
  1083. ISR_STATICS(BED);
  1084. #endif
  1085. #if HAS_FILAMENT_SENSOR
  1086. static unsigned long raw_filwidth_value = 0;
  1087. #endif
  1088. #ifndef SLOW_PWM_HEATERS
  1089. /**
  1090. * standard PWM modulation
  1091. */
  1092. if (pwm_count == 0) {
  1093. soft_pwm_0 = soft_pwm[0];
  1094. if (soft_pwm_0 > 0) {
  1095. WRITE_HEATER_0(1);
  1096. }
  1097. else WRITE_HEATER_0P(0); // If HEATERS_PARALLEL should apply, change to WRITE_HEATER_0
  1098. #if EXTRUDERS > 1
  1099. soft_pwm_1 = soft_pwm[1];
  1100. WRITE_HEATER_1(soft_pwm_1 > 0 ? 1 : 0);
  1101. #if EXTRUDERS > 2
  1102. soft_pwm_2 = soft_pwm[2];
  1103. WRITE_HEATER_2(soft_pwm_2 > 0 ? 1 : 0);
  1104. #if EXTRUDERS > 3
  1105. soft_pwm_3 = soft_pwm[3];
  1106. WRITE_HEATER_3(soft_pwm_3 > 0 ? 1 : 0);
  1107. #endif
  1108. #endif
  1109. #endif
  1110. #if HAS_HEATER_BED
  1111. soft_pwm_BED = soft_pwm_bed;
  1112. WRITE_HEATER_BED(soft_pwm_BED > 0 ? 1 : 0);
  1113. #endif
  1114. #ifdef FAN_SOFT_PWM
  1115. soft_pwm_fan = fanSpeedSoftPwm / 2;
  1116. WRITE_FAN(soft_pwm_fan > 0 ? 1 : 0);
  1117. #endif
  1118. }
  1119. if (soft_pwm_0 < pwm_count) { WRITE_HEATER_0(0); }
  1120. #if EXTRUDERS > 1
  1121. if (soft_pwm_1 < pwm_count) WRITE_HEATER_1(0);
  1122. #if EXTRUDERS > 2
  1123. if (soft_pwm_2 < pwm_count) WRITE_HEATER_2(0);
  1124. #if EXTRUDERS > 3
  1125. if (soft_pwm_3 < pwm_count) WRITE_HEATER_3(0);
  1126. #endif
  1127. #endif
  1128. #endif
  1129. #if HAS_HEATER_BED
  1130. if (soft_pwm_BED < pwm_count) WRITE_HEATER_BED(0);
  1131. #endif
  1132. #ifdef FAN_SOFT_PWM
  1133. if (soft_pwm_fan < pwm_count) WRITE_FAN(0);
  1134. #endif
  1135. pwm_count += BIT(SOFT_PWM_SCALE);
  1136. pwm_count &= 0x7f;
  1137. #else // SLOW_PWM_HEATERS
  1138. /*
  1139. * SLOW PWM HEATERS
  1140. *
  1141. * for heaters drived by relay
  1142. */
  1143. #ifndef MIN_STATE_TIME
  1144. #define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
  1145. #endif
  1146. // Macros for Slow PWM timer logic - HEATERS_PARALLEL applies
  1147. #define _SLOW_PWM_ROUTINE(NR, src) \
  1148. soft_pwm_ ## NR = src; \
  1149. if (soft_pwm_ ## NR > 0) { \
  1150. if (state_timer_heater_ ## NR == 0) { \
  1151. if (state_heater_ ## NR == 0) state_timer_heater_ ## NR = MIN_STATE_TIME; \
  1152. state_heater_ ## NR = 1; \
  1153. WRITE_HEATER_ ## NR(1); \
  1154. } \
  1155. } \
  1156. else { \
  1157. if (state_timer_heater_ ## NR == 0) { \
  1158. if (state_heater_ ## NR == 1) state_timer_heater_ ## NR = MIN_STATE_TIME; \
  1159. state_heater_ ## NR = 0; \
  1160. WRITE_HEATER_ ## NR(0); \
  1161. } \
  1162. }
  1163. #define SLOW_PWM_ROUTINE(n) _SLOW_PWM_ROUTINE(n, soft_pwm[n])
  1164. #define PWM_OFF_ROUTINE(NR) \
  1165. if (soft_pwm_ ## NR < slow_pwm_count) { \
  1166. if (state_timer_heater_ ## NR == 0) { \
  1167. if (state_heater_ ## NR == 1) state_timer_heater_ ## NR = MIN_STATE_TIME; \
  1168. state_heater_ ## NR = 0; \
  1169. WRITE_HEATER_ ## NR (0); \
  1170. } \
  1171. }
  1172. if (slow_pwm_count == 0) {
  1173. SLOW_PWM_ROUTINE(0); // EXTRUDER 0
  1174. #if EXTRUDERS > 1
  1175. SLOW_PWM_ROUTINE(1); // EXTRUDER 1
  1176. #if EXTRUDERS > 2
  1177. SLOW_PWM_ROUTINE(2); // EXTRUDER 2
  1178. #if EXTRUDERS > 3
  1179. SLOW_PWM_ROUTINE(3); // EXTRUDER 3
  1180. #endif
  1181. #endif
  1182. #endif
  1183. #if HAS_HEATER_BED
  1184. _SLOW_PWM_ROUTINE(BED, soft_pwm_bed); // BED
  1185. #endif
  1186. } // slow_pwm_count == 0
  1187. PWM_OFF_ROUTINE(0); // EXTRUDER 0
  1188. #if EXTRUDERS > 1
  1189. PWM_OFF_ROUTINE(1); // EXTRUDER 1
  1190. #if EXTRUDERS > 2
  1191. PWM_OFF_ROUTINE(2); // EXTRUDER 2
  1192. #if EXTRUDERS > 3
  1193. PWM_OFF_ROUTINE(3); // EXTRUDER 3
  1194. #endif
  1195. #endif
  1196. #endif
  1197. #if HAS_HEATER_BED
  1198. PWM_OFF_ROUTINE(BED); // BED
  1199. #endif
  1200. #ifdef FAN_SOFT_PWM
  1201. if (pwm_count == 0) {
  1202. soft_pwm_fan = fanSpeedSoftPwm / 2;
  1203. WRITE_FAN(soft_pwm_fan > 0 ? 1 : 0);
  1204. }
  1205. if (soft_pwm_fan < pwm_count) WRITE_FAN(0);
  1206. #endif //FAN_SOFT_PWM
  1207. pwm_count += BIT(SOFT_PWM_SCALE);
  1208. pwm_count &= 0x7f;
  1209. // increment slow_pwm_count only every 64 pwm_count circa 65.5ms
  1210. if ((pwm_count % 64) == 0) {
  1211. slow_pwm_count++;
  1212. slow_pwm_count &= 0x7f;
  1213. // EXTRUDER 0
  1214. if (state_timer_heater_0 > 0) state_timer_heater_0--;
  1215. #if EXTRUDERS > 1 // EXTRUDER 1
  1216. if (state_timer_heater_1 > 0) state_timer_heater_1--;
  1217. #if EXTRUDERS > 2 // EXTRUDER 2
  1218. if (state_timer_heater_2 > 0) state_timer_heater_2--;
  1219. #if EXTRUDERS > 3 // EXTRUDER 3
  1220. if (state_timer_heater_3 > 0) state_timer_heater_3--;
  1221. #endif
  1222. #endif
  1223. #endif
  1224. #if HAS_HEATER_BED
  1225. if (state_timer_heater_BED > 0) state_timer_heater_BED--;
  1226. #endif
  1227. } // (pwm_count % 64) == 0
  1228. #endif // SLOW_PWM_HEATERS
  1229. #define SET_ADMUX_ADCSRA(pin) ADMUX = BIT(REFS0) | (pin & 0x07); ADCSRA |= BIT(ADSC)
  1230. #ifdef MUX5
  1231. #define START_ADC(pin) if (pin > 7) ADCSRB = BIT(MUX5); else ADCSRB = 0; SET_ADMUX_ADCSRA(pin)
  1232. #else
  1233. #define START_ADC(pin) ADCSRB = 0; SET_ADMUX_ADCSRA(pin)
  1234. #endif
  1235. switch(temp_state) {
  1236. case PrepareTemp_0:
  1237. #if HAS_TEMP_0
  1238. START_ADC(TEMP_0_PIN);
  1239. #endif
  1240. lcd_buttons_update();
  1241. temp_state = MeasureTemp_0;
  1242. break;
  1243. case MeasureTemp_0:
  1244. #if HAS_TEMP_0
  1245. raw_temp_value[0] += ADC;
  1246. #endif
  1247. temp_state = PrepareTemp_BED;
  1248. break;
  1249. case PrepareTemp_BED:
  1250. #if HAS_TEMP_BED
  1251. START_ADC(TEMP_BED_PIN);
  1252. #endif
  1253. lcd_buttons_update();
  1254. temp_state = MeasureTemp_BED;
  1255. break;
  1256. case MeasureTemp_BED:
  1257. #if HAS_TEMP_BED
  1258. raw_temp_bed_value += ADC;
  1259. #endif
  1260. temp_state = PrepareTemp_1;
  1261. break;
  1262. case PrepareTemp_1:
  1263. #if HAS_TEMP_1
  1264. START_ADC(TEMP_1_PIN);
  1265. #endif
  1266. lcd_buttons_update();
  1267. temp_state = MeasureTemp_1;
  1268. break;
  1269. case MeasureTemp_1:
  1270. #if HAS_TEMP_1
  1271. raw_temp_value[1] += ADC;
  1272. #endif
  1273. temp_state = PrepareTemp_2;
  1274. break;
  1275. case PrepareTemp_2:
  1276. #if HAS_TEMP_2
  1277. START_ADC(TEMP_2_PIN);
  1278. #endif
  1279. lcd_buttons_update();
  1280. temp_state = MeasureTemp_2;
  1281. break;
  1282. case MeasureTemp_2:
  1283. #if HAS_TEMP_2
  1284. raw_temp_value[2] += ADC;
  1285. #endif
  1286. temp_state = PrepareTemp_3;
  1287. break;
  1288. case PrepareTemp_3:
  1289. #if HAS_TEMP_3
  1290. START_ADC(TEMP_3_PIN);
  1291. #endif
  1292. lcd_buttons_update();
  1293. temp_state = MeasureTemp_3;
  1294. break;
  1295. case MeasureTemp_3:
  1296. #if HAS_TEMP_3
  1297. raw_temp_value[3] += ADC;
  1298. #endif
  1299. temp_state = Prepare_FILWIDTH;
  1300. break;
  1301. case Prepare_FILWIDTH:
  1302. #if HAS_FILAMENT_SENSOR
  1303. START_ADC(FILWIDTH_PIN);
  1304. #endif
  1305. lcd_buttons_update();
  1306. temp_state = Measure_FILWIDTH;
  1307. break;
  1308. case Measure_FILWIDTH:
  1309. #if HAS_FILAMENT_SENSOR
  1310. // raw_filwidth_value += ADC; //remove to use an IIR filter approach
  1311. if (ADC > 102) { //check that ADC is reading a voltage > 0.5 volts, otherwise don't take in the data.
  1312. raw_filwidth_value -= (raw_filwidth_value>>7); //multiply raw_filwidth_value by 127/128
  1313. raw_filwidth_value += ((unsigned long)ADC<<7); //add new ADC reading
  1314. }
  1315. #endif
  1316. temp_state = PrepareTemp_0;
  1317. temp_count++;
  1318. break;
  1319. case StartupDelay:
  1320. temp_state = PrepareTemp_0;
  1321. break;
  1322. // default:
  1323. // SERIAL_ERROR_START;
  1324. // SERIAL_ERRORLNPGM("Temp measurement error!");
  1325. // break;
  1326. } // switch(temp_state)
  1327. if (temp_count >= OVERSAMPLENR) { // 10 * 16 * 1/(16000000/64/256) = 164ms.
  1328. // Update the raw values if they've been read. Else we could be updating them during reading.
  1329. if (!temp_meas_ready) set_current_temp_raw();
  1330. // Filament Sensor - can be read any time since IIR filtering is used
  1331. #if HAS_FILAMENT_SENSOR
  1332. current_raw_filwidth = raw_filwidth_value >> 10; // Divide to get to 0-16384 range since we used 1/128 IIR filter approach
  1333. #endif
  1334. temp_count = 0;
  1335. for (int i = 0; i < 4; i++) raw_temp_value[i] = 0;
  1336. raw_temp_bed_value = 0;
  1337. #if HAS_TEMP_0 && !defined(HEATER_0_USES_MAX6675)
  1338. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1339. #define GE0 <=
  1340. #else
  1341. #define GE0 >=
  1342. #endif
  1343. if (current_temperature_raw[0] GE0 maxttemp_raw[0]) max_temp_error(0);
  1344. if (minttemp_raw[0] GE0 current_temperature_raw[0]) min_temp_error(0);
  1345. #endif
  1346. #if HAS_TEMP_1
  1347. #if HEATER_1_RAW_LO_TEMP > HEATER_1_RAW_HI_TEMP
  1348. #define GE1 <=
  1349. #else
  1350. #define GE1 >=
  1351. #endif
  1352. if (current_temperature_raw[1] GE1 maxttemp_raw[1]) max_temp_error(1);
  1353. if (minttemp_raw[1] GE1 current_temperature_raw[1]) min_temp_error(1);
  1354. #endif // TEMP_SENSOR_1
  1355. #if HAS_TEMP_2
  1356. #if HEATER_2_RAW_LO_TEMP > HEATER_2_RAW_HI_TEMP
  1357. #define GE2 <=
  1358. #else
  1359. #define GE2 >=
  1360. #endif
  1361. if (current_temperature_raw[2] GE2 maxttemp_raw[2]) max_temp_error(2);
  1362. if (minttemp_raw[2] GE2 current_temperature_raw[2]) min_temp_error(2);
  1363. #endif // TEMP_SENSOR_2
  1364. #if HAS_TEMP_3
  1365. #if HEATER_3_RAW_LO_TEMP > HEATER_3_RAW_HI_TEMP
  1366. #define GE3 <=
  1367. #else
  1368. #define GE3 >=
  1369. #endif
  1370. if (current_temperature_raw[3] GE3 maxttemp_raw[3]) max_temp_error(3);
  1371. if (minttemp_raw[3] GE3 current_temperature_raw[3]) min_temp_error(3);
  1372. #endif // TEMP_SENSOR_3
  1373. #if HAS_TEMP_BED
  1374. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1375. #define GEBED <=
  1376. #else
  1377. #define GEBED >=
  1378. #endif
  1379. if (current_temperature_bed_raw GEBED bed_maxttemp_raw) {
  1380. target_temperature_bed = 0;
  1381. bed_max_temp_error();
  1382. }
  1383. #endif
  1384. } // temp_count >= OVERSAMPLENR
  1385. #ifdef BABYSTEPPING
  1386. for (uint8_t axis=X_AXIS; axis<=Z_AXIS; axis++) {
  1387. int curTodo=babystepsTodo[axis]; //get rid of volatile for performance
  1388. if (curTodo > 0) {
  1389. babystep(axis,/*fwd*/true);
  1390. babystepsTodo[axis]--; //less to do next time
  1391. }
  1392. else if(curTodo < 0) {
  1393. babystep(axis,/*fwd*/false);
  1394. babystepsTodo[axis]++; //less to do next time
  1395. }
  1396. }
  1397. #endif //BABYSTEPPING
  1398. }
  1399. #ifdef PIDTEMP
  1400. // Apply the scale factors to the PID values
  1401. float scalePID_i(float i) { return i * PID_dT; }
  1402. float unscalePID_i(float i) { return i / PID_dT; }
  1403. float scalePID_d(float d) { return d / PID_dT; }
  1404. float unscalePID_d(float d) { return d * PID_dT; }
  1405. #endif //PIDTEMP