My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 339KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016, 2017 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * About Marlin
  24. *
  25. * This firmware is a mashup between Sprinter and grbl.
  26. * - https://github.com/kliment/Sprinter
  27. * - https://github.com/simen/grbl/tree
  28. */
  29. /**
  30. * -----------------
  31. * G-Codes in Marlin
  32. * -----------------
  33. *
  34. * Helpful G-code references:
  35. * - http://linuxcnc.org/handbook/gcode/g-code.html
  36. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  37. *
  38. * Help to document Marlin's G-codes online:
  39. * - http://reprap.org/wiki/G-code
  40. * - https://github.com/MarlinFirmware/MarlinDocumentation
  41. *
  42. * -----------------
  43. *
  44. * "G" Codes
  45. *
  46. * G0 -> G1
  47. * G1 - Coordinated Movement X Y Z E
  48. * G2 - CW ARC
  49. * G3 - CCW ARC
  50. * G4 - Dwell S<seconds> or P<milliseconds>
  51. * G5 - Cubic B-spline with XYZE destination and IJPQ offsets
  52. * G10 - Retract filament according to settings of M207
  53. * G11 - Retract recover filament according to settings of M208
  54. * G12 - Clean tool
  55. * G20 - Set input units to inches
  56. * G21 - Set input units to millimeters
  57. * G28 - Home one or more axes
  58. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  59. * G30 - Single Z probe, probes bed at X Y location (defaults to current XY location)
  60. * G31 - Dock sled (Z_PROBE_SLED only)
  61. * G32 - Undock sled (Z_PROBE_SLED only)
  62. * G38 - Probe target - similar to G28 except it uses the Z_MIN endstop for all three axes
  63. * G90 - Use Absolute Coordinates
  64. * G91 - Use Relative Coordinates
  65. * G92 - Set current position to coordinates given
  66. *
  67. * "M" Codes
  68. *
  69. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  70. * M1 - Same as M0
  71. * M17 - Enable/Power all stepper motors
  72. * M18 - Disable all stepper motors; same as M84
  73. * M20 - List SD card. (Requires SDSUPPORT)
  74. * M21 - Init SD card. (Requires SDSUPPORT)
  75. * M22 - Release SD card. (Requires SDSUPPORT)
  76. * M23 - Select SD file: "M23 /path/file.gco". (Requires SDSUPPORT)
  77. * M24 - Start/resume SD print. (Requires SDSUPPORT)
  78. * M25 - Pause SD print. (Requires SDSUPPORT)
  79. * M26 - Set SD position in bytes: "M26 S12345". (Requires SDSUPPORT)
  80. * M27 - Report SD print status. (Requires SDSUPPORT)
  81. * M28 - Start SD write: "M28 /path/file.gco". (Requires SDSUPPORT)
  82. * M29 - Stop SD write. (Requires SDSUPPORT)
  83. * M30 - Delete file from SD: "M30 /path/file.gco"
  84. * M31 - Report time since last M109 or SD card start to serial.
  85. * M32 - Select file and start SD print: "M32 [S<bytepos>] !/path/file.gco#". (Requires SDSUPPORT)
  86. * Use P to run other files as sub-programs: "M32 P !filename#"
  87. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  88. * M33 - Get the longname version of a path. (Requires LONG_FILENAME_HOST_SUPPORT)
  89. * M34 - Set SD Card sorting options. (Requires SDCARD_SORT_ALPHA)
  90. * M42 - Change pin status via gcode: M42 P<pin> S<value>. LED pin assumed if P is omitted.
  91. * M43 - Monitor pins & report changes - report active pins
  92. * M48 - Measure Z Probe repeatability: M48 P<points> X<pos> Y<pos> V<level> E<engage> L<legs>. (Requires Z_MIN_PROBE_REPEATABILITY_TEST)
  93. * M75 - Start the print job timer.
  94. * M76 - Pause the print job timer.
  95. * M77 - Stop the print job timer.
  96. * M78 - Show statistical information about the print jobs. (Requires PRINTCOUNTER)
  97. * M80 - Turn on Power Supply. (Requires POWER_SUPPLY)
  98. * M81 - Turn off Power Supply. (Requires POWER_SUPPLY)
  99. * M82 - Set E codes absolute (default).
  100. * M83 - Set E codes relative while in Absolute (G90) mode.
  101. * M84 - Disable steppers until next move, or use S<seconds> to specify an idle
  102. * duration after which steppers should turn off. S0 disables the timeout.
  103. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  104. * M92 - Set planner.axis_steps_per_mm for one or more axes.
  105. * M104 - Set extruder target temp.
  106. * M105 - Report current temperatures.
  107. * M106 - Fan on.
  108. * M107 - Fan off.
  109. * M108 - Break out of heating loops (M109, M190, M303). With no controller, breaks out of M0/M1. (Requires EMERGENCY_PARSER)
  110. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  111. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  112. * If AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  113. * M110 - Set the current line number. (Used by host printing)
  114. * M111 - Set debug flags: "M111 S<flagbits>". See flag bits defined in enum.h.
  115. * M112 - Emergency stop.
  116. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages. (Requires HOST_KEEPALIVE_FEATURE)
  117. * M114 - Report current position.
  118. * M115 - Report capabilities. (Extended capabilities requires EXTENDED_CAPABILITIES_REPORT)
  119. * M117 - Display a message on the controller screen. (Requires an LCD)
  120. * M119 - Report endstops status.
  121. * M120 - Enable endstops detection.
  122. * M121 - Disable endstops detection.
  123. * M125 - Save current position and move to filament change position. (Requires PARK_HEAD_ON_PAUSE)
  124. * M126 - Solenoid Air Valve Open. (Requires BARICUDA)
  125. * M127 - Solenoid Air Valve Closed. (Requires BARICUDA)
  126. * M128 - EtoP Open. (Requires BARICUDA)
  127. * M129 - EtoP Closed. (Requires BARICUDA)
  128. * M140 - Set bed target temp. S<temp>
  129. * M145 - Set heatup values for materials on the LCD. H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  130. * M149 - Set temperature units. (Requires TEMPERATURE_UNITS_SUPPORT)
  131. * M150 - Set Status LED Color as R<red> U<green> B<blue>. Values 0-255. (Requires BLINKM or RGB_LED)
  132. * M155 - Auto-report temperatures with interval of S<seconds>. (Requires AUTO_REPORT_TEMPERATURES)
  133. * M163 - Set a single proportion for a mixing extruder. (Requires MIXING_EXTRUDER)
  134. * M164 - Save the mix as a virtual extruder. (Requires MIXING_EXTRUDER and MIXING_VIRTUAL_TOOLS)
  135. * M165 - Set the proportions for a mixing extruder. Use parameters ABCDHI to set the mixing factors. (Requires MIXING_EXTRUDER)
  136. * M190 - Sxxx Wait for bed current temp to reach target temp. ** Waits only when heating! **
  137. * Rxxx Wait for bed current temp to reach target temp. ** Waits for heating or cooling. **
  138. * M200 - Set filament diameter, D<diameter>, setting E axis units to cubic. (Use S0 to revert to linear units.)
  139. * M201 - Set max acceleration in units/s^2 for print moves: "M201 X<accel> Y<accel> Z<accel> E<accel>"
  140. * M202 - Set max acceleration in units/s^2 for travel moves: "M202 X<accel> Y<accel> Z<accel> E<accel>" ** UNUSED IN MARLIN! **
  141. * M203 - Set maximum feedrate: "M203 X<fr> Y<fr> Z<fr> E<fr>" in units/sec.
  142. * M204 - Set default acceleration in units/sec^2: P<printing> R<extruder_only> T<travel>
  143. * M205 - Set advanced settings. Current units apply:
  144. S<print> T<travel> minimum speeds
  145. B<minimum segment time>
  146. X<max X jerk>, Y<max Y jerk>, Z<max Z jerk>, E<max E jerk>
  147. * M206 - Set additional homing offset.
  148. * M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>. (Requires FWRETRACT)
  149. * M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>. (Requires FWRETRACT)
  150. * M209 - Turn Automatic Retract Detection on/off: S<0|1> (For slicers that don't support G10/11). (Requires FWRETRACT)
  151. Every normal extrude-only move will be classified as retract depending on the direction.
  152. * M211 - Enable, Disable, and/or Report software endstops: S<0|1> (Requires MIN_SOFTWARE_ENDSTOPS or MAX_SOFTWARE_ENDSTOPS)
  153. * M218 - Set a tool offset: "M218 T<index> X<offset> Y<offset>". (Requires 2 or more extruders)
  154. * M220 - Set Feedrate Percentage: "M220 S<percent>" (i.e., "FR" on the LCD)
  155. * M221 - Set Flow Percentage: "M221 S<percent>"
  156. * M226 - Wait until a pin is in a given state: "M226 P<pin> S<state>"
  157. * M240 - Trigger a camera to take a photograph. (Requires CHDK or PHOTOGRAPH_PIN)
  158. * M250 - Set LCD contrast: "M250 C<contrast>" (0-63). (Requires LCD support)
  159. * M260 - i2c Send Data (Requires EXPERIMENTAL_I2CBUS)
  160. * M261 - i2c Request Data (Requires EXPERIMENTAL_I2CBUS)
  161. * M280 - Set servo position absolute: "M280 P<index> S<angle|µs>". (Requires servos)
  162. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  163. * M301 - Set PID parameters P I and D. (Requires PIDTEMP)
  164. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>. (Requires PREVENT_COLD_EXTRUSION)
  165. * M303 - PID relay autotune S<temperature> sets the target temperature. Default 150C. (Requires PIDTEMP)
  166. * M304 - Set bed PID parameters P I and D. (Requires PIDTEMPBED)
  167. * M355 - Turn the Case Light on/off and set its brightness. (Requires CASE_LIGHT_PIN)
  168. * M380 - Activate solenoid on active extruder. (Requires EXT_SOLENOID)
  169. * M381 - Disable all solenoids. (Requires EXT_SOLENOID)
  170. * M400 - Finish all moves.
  171. * M401 - Lower Z probe. (Requires a probe)
  172. * M402 - Raise Z probe. (Requires a probe)
  173. * M404 - Display or set the Nominal Filament Width: "W<diameter>". (Requires FILAMENT_WIDTH_SENSOR)
  174. * M405 - Enable Filament Sensor flow control. "M405 D<delay_cm>". (Requires FILAMENT_WIDTH_SENSOR)
  175. * M406 - Disable Filament Sensor flow control. (Requires FILAMENT_WIDTH_SENSOR)
  176. * M407 - Display measured filament diameter in millimeters. (Requires FILAMENT_WIDTH_SENSOR)
  177. * M410 - Quickstop. Abort all planned moves.
  178. * M420 - Enable/Disable Leveling (with current values) S1=enable S0=disable (Requires MESH_BED_LEVELING or ABL)
  179. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<units> Y<units> Z<units> (Requires MESH_BED_LEVELING)
  180. * M428 - Set the home_offset based on the current_position. Nearest edge applies.
  181. * M500 - Store parameters in EEPROM. (Requires EEPROM_SETTINGS)
  182. * M501 - Restore parameters from EEPROM. (Requires EEPROM_SETTINGS)
  183. * M502 - Revert to the default "factory settings". ** Does not write them to EEPROM! **
  184. * M503 - Print the current settings (in memory): "M503 S<verbose>". S0 specifies compact output.
  185. * M540 - Enable/disable SD card abort on endstop hit: "M540 S<state>". (Requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  186. * M600 - Pause for filament change: "M600 X<pos> Y<pos> Z<raise> E<first_retract> L<later_retract>". (Requires FILAMENT_CHANGE_FEATURE)
  187. * M665 - Set delta configurations: "M665 L<diagonal rod> R<delta radius> S<segments/s> A<rod A trim mm> B<rod B trim mm> C<rod C trim mm> I<tower A trim angle> J<tower B trim angle> K<tower C trim angle>" (Requires DELTA)
  188. * M666 - Set delta endstop adjustment. (Requires DELTA)
  189. * M605 - Set dual x-carriage movement mode: "M605 S<mode> [X<x_offset>] [R<temp_offset>]". (Requires DUAL_X_CARRIAGE)
  190. * M851 - Set Z probe's Z offset in current units. (Negative = below the nozzle.)
  191. * M906 - Set or get motor current in milliamps using axis codes X, Y, Z, E. Report values if no axis codes given. (Requires HAVE_TMC2130)
  192. * M907 - Set digital trimpot motor current using axis codes. (Requires a board with digital trimpots)
  193. * M908 - Control digital trimpot directly. (Requires DAC_STEPPER_CURRENT or DIGIPOTSS_PIN)
  194. * M909 - Print digipot/DAC current value. (Requires DAC_STEPPER_CURRENT)
  195. * M910 - Commit digipot/DAC value to external EEPROM via I2C. (Requires DAC_STEPPER_CURRENT)
  196. * M911 - Report stepper driver overtemperature pre-warn condition. (Requires HAVE_TMC2130)
  197. * M912 - Clear stepper driver overtemperature pre-warn condition flag. (Requires HAVE_TMC2130)
  198. * M350 - Set microstepping mode. (Requires digital microstepping pins.)
  199. * M351 - Toggle MS1 MS2 pins directly. (Requires digital microstepping pins.)
  200. *
  201. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  202. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  203. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  204. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  205. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  206. *
  207. * ************ Custom codes - This can change to suit future G-code regulations
  208. * M100 - Watch Free Memory (For Debugging). (Requires M100_FREE_MEMORY_WATCHER)
  209. * M928 - Start SD logging: "M928 filename.gco". Stop with M29. (Requires SDSUPPORT)
  210. * M999 - Restart after being stopped by error
  211. *
  212. * "T" Codes
  213. *
  214. * T0-T3 - Select an extruder (tool) by index: "T<n> F<units/min>"
  215. *
  216. */
  217. #include "Marlin.h"
  218. #include "ultralcd.h"
  219. #include "planner.h"
  220. #include "stepper.h"
  221. #include "endstops.h"
  222. #include "temperature.h"
  223. #include "cardreader.h"
  224. #include "configuration_store.h"
  225. #include "language.h"
  226. #include "pins_arduino.h"
  227. #include "math.h"
  228. #include "nozzle.h"
  229. #include "duration_t.h"
  230. #include "types.h"
  231. #if ENABLED(AUTO_BED_LEVELING_UBL)
  232. #include "UBL.h"
  233. #endif
  234. #if HAS_ABL
  235. #include "vector_3.h"
  236. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  237. #include "qr_solve.h"
  238. #endif
  239. #elif ENABLED(MESH_BED_LEVELING)
  240. #include "mesh_bed_leveling.h"
  241. #endif
  242. #if ENABLED(BEZIER_CURVE_SUPPORT)
  243. #include "planner_bezier.h"
  244. #endif
  245. #if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
  246. #include "buzzer.h"
  247. #endif
  248. #if ENABLED(USE_WATCHDOG)
  249. #include "watchdog.h"
  250. #endif
  251. #if ENABLED(BLINKM)
  252. #include "blinkm.h"
  253. #include "Wire.h"
  254. #endif
  255. #if HAS_SERVOS
  256. #include "servo.h"
  257. #endif
  258. #if HAS_DIGIPOTSS
  259. #include <SPI.h>
  260. #endif
  261. #if ENABLED(DAC_STEPPER_CURRENT)
  262. #include "stepper_dac.h"
  263. #endif
  264. #if ENABLED(EXPERIMENTAL_I2CBUS)
  265. #include "twibus.h"
  266. #endif
  267. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  268. #include "endstop_interrupts.h"
  269. #endif
  270. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  271. void gcode_M100();
  272. #endif
  273. #if ENABLED(SDSUPPORT)
  274. CardReader card;
  275. #endif
  276. #if ENABLED(EXPERIMENTAL_I2CBUS)
  277. TWIBus i2c;
  278. #endif
  279. #if ENABLED(G38_PROBE_TARGET)
  280. bool G38_move = false,
  281. G38_endstop_hit = false;
  282. #endif
  283. #if ENABLED(AUTO_BED_LEVELING_UBL)
  284. unified_bed_leveling ubl;
  285. #endif
  286. bool Running = true;
  287. uint8_t marlin_debug_flags = DEBUG_NONE;
  288. /**
  289. * Cartesian Current Position
  290. * Used to track the logical position as moves are queued.
  291. * Used by 'line_to_current_position' to do a move after changing it.
  292. * Used by 'SYNC_PLAN_POSITION_KINEMATIC' to update 'planner.position'.
  293. */
  294. float current_position[XYZE] = { 0.0 };
  295. /**
  296. * Cartesian Destination
  297. * A temporary position, usually applied to 'current_position'.
  298. * Set with 'gcode_get_destination' or 'set_destination_to_current'.
  299. * 'line_to_destination' sets 'current_position' to 'destination'.
  300. */
  301. float destination[XYZE] = { 0.0 };
  302. /**
  303. * axis_homed
  304. * Flags that each linear axis was homed.
  305. * XYZ on cartesian, ABC on delta, ABZ on SCARA.
  306. *
  307. * axis_known_position
  308. * Flags that the position is known in each linear axis. Set when homed.
  309. * Cleared whenever a stepper powers off, potentially losing its position.
  310. */
  311. bool axis_homed[XYZ] = { false }, axis_known_position[XYZ] = { false };
  312. /**
  313. * GCode line number handling. Hosts may opt to include line numbers when
  314. * sending commands to Marlin, and lines will be checked for sequentiality.
  315. * M110 N<int> sets the current line number.
  316. */
  317. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  318. /**
  319. * GCode Command Queue
  320. * A simple ring buffer of BUFSIZE command strings.
  321. *
  322. * Commands are copied into this buffer by the command injectors
  323. * (immediate, serial, sd card) and they are processed sequentially by
  324. * the main loop. The process_next_command function parses the next
  325. * command and hands off execution to individual handler functions.
  326. */
  327. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  328. static uint8_t cmd_queue_index_r = 0, // Ring buffer read position
  329. cmd_queue_index_w = 0, // Ring buffer write position
  330. commands_in_queue = 0; // Count of commands in the queue
  331. /**
  332. * Current GCode Command
  333. * When a GCode handler is running, these will be set
  334. */
  335. static char *current_command, // The command currently being executed
  336. *current_command_args, // The address where arguments begin
  337. *seen_pointer; // Set by code_seen(), used by the code_value functions
  338. /**
  339. * Next Injected Command pointer. NULL if no commands are being injected.
  340. * Used by Marlin internally to ensure that commands initiated from within
  341. * are enqueued ahead of any pending serial or sd card commands.
  342. */
  343. static const char *injected_commands_P = NULL;
  344. #if ENABLED(INCH_MODE_SUPPORT)
  345. float linear_unit_factor = 1.0, volumetric_unit_factor = 1.0;
  346. #endif
  347. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  348. TempUnit input_temp_units = TEMPUNIT_C;
  349. #endif
  350. /**
  351. * Feed rates are often configured with mm/m
  352. * but the planner and stepper like mm/s units.
  353. */
  354. float constexpr homing_feedrate_mm_s[] = {
  355. #if ENABLED(DELTA)
  356. MMM_TO_MMS(HOMING_FEEDRATE_Z), MMM_TO_MMS(HOMING_FEEDRATE_Z),
  357. #else
  358. MMM_TO_MMS(HOMING_FEEDRATE_XY), MMM_TO_MMS(HOMING_FEEDRATE_XY),
  359. #endif
  360. MMM_TO_MMS(HOMING_FEEDRATE_Z), 0
  361. };
  362. static float feedrate_mm_s = MMM_TO_MMS(1500.0), saved_feedrate_mm_s;
  363. int feedrate_percentage = 100, saved_feedrate_percentage,
  364. flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  365. bool axis_relative_modes[] = AXIS_RELATIVE_MODES,
  366. volumetric_enabled =
  367. #if ENABLED(VOLUMETRIC_DEFAULT_ON)
  368. true
  369. #else
  370. false
  371. #endif
  372. ;
  373. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA),
  374. volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  375. #if DISABLED(NO_WORKSPACE_OFFSETS)
  376. // The distance that XYZ has been offset by G92. Reset by G28.
  377. float position_shift[XYZ] = { 0 };
  378. // This offset is added to the configured home position.
  379. // Set by M206, M428, or menu item. Saved to EEPROM.
  380. float home_offset[XYZ] = { 0 };
  381. // The above two are combined to save on computes
  382. float workspace_offset[XYZ] = { 0 };
  383. #endif
  384. // Software Endstops are based on the configured limits.
  385. #if HAS_SOFTWARE_ENDSTOPS
  386. bool soft_endstops_enabled = true;
  387. #endif
  388. float soft_endstop_min[XYZ] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS },
  389. soft_endstop_max[XYZ] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  390. #if FAN_COUNT > 0
  391. int fanSpeeds[FAN_COUNT] = { 0 };
  392. #endif
  393. // The active extruder (tool). Set with T<extruder> command.
  394. uint8_t active_extruder = 0;
  395. // Relative Mode. Enable with G91, disable with G90.
  396. static bool relative_mode = false;
  397. // For M109 and M190, this flag may be cleared (by M108) to exit the wait loop
  398. volatile bool wait_for_heatup = true;
  399. // For M0/M1, this flag may be cleared (by M108) to exit the wait-for-user loop
  400. #if ENABLED(EMERGENCY_PARSER) || ENABLED(ULTIPANEL)
  401. volatile bool wait_for_user = false;
  402. #endif
  403. const char errormagic[] PROGMEM = "Error:";
  404. const char echomagic[] PROGMEM = "echo:";
  405. const char axis_codes[XYZE] = {'X', 'Y', 'Z', 'E'};
  406. // Number of characters read in the current line of serial input
  407. static int serial_count = 0;
  408. // Inactivity shutdown
  409. millis_t previous_cmd_ms = 0;
  410. static millis_t max_inactive_time = 0;
  411. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
  412. // Print Job Timer
  413. #if ENABLED(PRINTCOUNTER)
  414. PrintCounter print_job_timer = PrintCounter();
  415. #else
  416. Stopwatch print_job_timer = Stopwatch();
  417. #endif
  418. // Buzzer - I2C on the LCD or a BEEPER_PIN
  419. #if ENABLED(LCD_USE_I2C_BUZZER)
  420. #define BUZZ(d,f) lcd_buzz(d, f)
  421. #elif PIN_EXISTS(BEEPER)
  422. Buzzer buzzer;
  423. #define BUZZ(d,f) buzzer.tone(d, f)
  424. #else
  425. #define BUZZ(d,f) NOOP
  426. #endif
  427. static uint8_t target_extruder;
  428. #if HAS_BED_PROBE
  429. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  430. #endif
  431. #define PLANNER_XY_FEEDRATE() (min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS]))
  432. #if HAS_ABL
  433. float xy_probe_feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  434. #define XY_PROBE_FEEDRATE_MM_S xy_probe_feedrate_mm_s
  435. #elif defined(XY_PROBE_SPEED)
  436. #define XY_PROBE_FEEDRATE_MM_S MMM_TO_MMS(XY_PROBE_SPEED)
  437. #else
  438. #define XY_PROBE_FEEDRATE_MM_S PLANNER_XY_FEEDRATE()
  439. #endif
  440. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  441. #if ENABLED(DELTA)
  442. #define ADJUST_DELTA(V) \
  443. if (planner.abl_enabled) { \
  444. const float zadj = bilinear_z_offset(V); \
  445. delta[A_AXIS] += zadj; \
  446. delta[B_AXIS] += zadj; \
  447. delta[C_AXIS] += zadj; \
  448. }
  449. #else
  450. #define ADJUST_DELTA(V) if (planner.abl_enabled) { delta[Z_AXIS] += bilinear_z_offset(V); }
  451. #endif
  452. #elif IS_KINEMATIC
  453. #define ADJUST_DELTA(V) NOOP
  454. #endif
  455. #if ENABLED(Z_DUAL_ENDSTOPS)
  456. float z_endstop_adj =
  457. #ifdef Z_DUAL_ENDSTOPS_ADJUSTMENT
  458. Z_DUAL_ENDSTOPS_ADJUSTMENT
  459. #else
  460. 0
  461. #endif
  462. ;
  463. #endif
  464. // Extruder offsets
  465. #if HOTENDS > 1
  466. float hotend_offset[XYZ][HOTENDS];
  467. #endif
  468. #if HAS_Z_SERVO_ENDSTOP
  469. const int z_servo_angle[2] = Z_SERVO_ANGLES;
  470. #endif
  471. #if ENABLED(BARICUDA)
  472. int baricuda_valve_pressure = 0;
  473. int baricuda_e_to_p_pressure = 0;
  474. #endif
  475. #if ENABLED(FWRETRACT)
  476. bool autoretract_enabled = false;
  477. bool retracted[EXTRUDERS] = { false };
  478. bool retracted_swap[EXTRUDERS] = { false };
  479. float retract_length = RETRACT_LENGTH;
  480. float retract_length_swap = RETRACT_LENGTH_SWAP;
  481. float retract_feedrate_mm_s = RETRACT_FEEDRATE;
  482. float retract_zlift = RETRACT_ZLIFT;
  483. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  484. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  485. float retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE;
  486. #endif // FWRETRACT
  487. #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
  488. bool powersupply =
  489. #if ENABLED(PS_DEFAULT_OFF)
  490. false
  491. #else
  492. true
  493. #endif
  494. ;
  495. #endif
  496. #if HAS_CASE_LIGHT
  497. bool case_light_on =
  498. #if ENABLED(CASE_LIGHT_DEFAULT_ON)
  499. true
  500. #else
  501. false
  502. #endif
  503. ;
  504. #endif
  505. #if ENABLED(DELTA)
  506. float delta[ABC],
  507. endstop_adj[ABC] = { 0 };
  508. // These values are loaded or reset at boot time when setup() calls
  509. // Config_RetrieveSettings(), which calls recalc_delta_settings().
  510. float delta_radius,
  511. delta_tower_angle_trim[ABC],
  512. delta_tower[ABC][2],
  513. delta_diagonal_rod,
  514. delta_diagonal_rod_trim[ABC],
  515. delta_diagonal_rod_2_tower[ABC],
  516. delta_segments_per_second,
  517. delta_clip_start_height = Z_MAX_POS;
  518. float delta_safe_distance_from_top();
  519. #endif
  520. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  521. #define UNPROBED 9999.0f
  522. int bilinear_grid_spacing[2], bilinear_start[2];
  523. float bed_level_grid[ABL_GRID_MAX_POINTS_X][ABL_GRID_MAX_POINTS_Y];
  524. #endif
  525. #if IS_SCARA
  526. // Float constants for SCARA calculations
  527. const float L1 = SCARA_LINKAGE_1, L2 = SCARA_LINKAGE_2,
  528. L1_2 = sq(float(L1)), L1_2_2 = 2.0 * L1_2,
  529. L2_2 = sq(float(L2));
  530. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND,
  531. delta[ABC];
  532. #endif
  533. float cartes[XYZ] = { 0 };
  534. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  535. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  536. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA, // Nominal filament width. Change with M404
  537. filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; // Measured filament diameter
  538. int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; // Ring buffer to delayed measurement. Store extruder factor after subtracting 100
  539. int filwidth_delay_index[2] = { 0, -1 }; // Indexes into ring buffer
  540. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  541. #endif
  542. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  543. static bool filament_ran_out = false;
  544. #endif
  545. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  546. FilamentChangeMenuResponse filament_change_menu_response;
  547. #endif
  548. #if ENABLED(MIXING_EXTRUDER)
  549. float mixing_factor[MIXING_STEPPERS]; // Reciprocal of mix proportion. 0.0 = off, otherwise >= 1.0.
  550. #if MIXING_VIRTUAL_TOOLS > 1
  551. float mixing_virtual_tool_mix[MIXING_VIRTUAL_TOOLS][MIXING_STEPPERS];
  552. #endif
  553. #endif
  554. static bool send_ok[BUFSIZE];
  555. #if HAS_SERVOS
  556. Servo servo[NUM_SERVOS];
  557. #define MOVE_SERVO(I, P) servo[I].move(P)
  558. #if HAS_Z_SERVO_ENDSTOP
  559. #define DEPLOY_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[0])
  560. #define STOW_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[1])
  561. #endif
  562. #endif
  563. #ifdef CHDK
  564. millis_t chdkHigh = 0;
  565. bool chdkActive = false;
  566. #endif
  567. #if ENABLED(PID_EXTRUSION_SCALING)
  568. int lpq_len = 20;
  569. #endif
  570. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  571. static MarlinBusyState busy_state = NOT_BUSY;
  572. static millis_t next_busy_signal_ms = 0;
  573. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  574. #define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0)
  575. #else
  576. #define host_keepalive() ;
  577. #define KEEPALIVE_STATE(n) ;
  578. #endif // HOST_KEEPALIVE_FEATURE
  579. #define DEFINE_PGM_READ_ANY(type, reader) \
  580. static inline type pgm_read_any(const type *p) \
  581. { return pgm_read_##reader##_near(p); }
  582. DEFINE_PGM_READ_ANY(float, float)
  583. DEFINE_PGM_READ_ANY(signed char, byte)
  584. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  585. static const PROGMEM type array##_P[XYZ] = \
  586. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  587. static inline type array(int axis) \
  588. { return pgm_read_any(&array##_P[axis]); }
  589. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS)
  590. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS)
  591. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS)
  592. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH)
  593. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM)
  594. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR)
  595. /**
  596. * ***************************************************************************
  597. * ******************************** FUNCTIONS ********************************
  598. * ***************************************************************************
  599. */
  600. void stop();
  601. void get_available_commands();
  602. void process_next_command();
  603. void prepare_move_to_destination();
  604. void get_cartesian_from_steppers();
  605. void set_current_from_steppers_for_axis(const AxisEnum axis);
  606. #if ENABLED(ARC_SUPPORT)
  607. void plan_arc(float target[XYZE], float* offset, uint8_t clockwise);
  608. #endif
  609. #if ENABLED(BEZIER_CURVE_SUPPORT)
  610. void plan_cubic_move(const float offset[4]);
  611. #endif
  612. void serial_echopair_P(const char* s_P, const char *v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  613. void serial_echopair_P(const char* s_P, char v) { serialprintPGM(s_P); SERIAL_CHAR(v); }
  614. void serial_echopair_P(const char* s_P, int v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  615. void serial_echopair_P(const char* s_P, long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  616. void serial_echopair_P(const char* s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  617. void serial_echopair_P(const char* s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  618. void serial_echopair_P(const char* s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  619. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s=0.0, bool no_move=false);
  620. static void report_current_position();
  621. #if ENABLED(DEBUG_LEVELING_FEATURE)
  622. void print_xyz(const char* prefix, const char* suffix, const float x, const float y, const float z) {
  623. serialprintPGM(prefix);
  624. SERIAL_ECHOPAIR("(", x);
  625. SERIAL_ECHOPAIR(", ", y);
  626. SERIAL_ECHOPAIR(", ", z);
  627. SERIAL_CHAR(')');
  628. if (suffix) serialprintPGM(suffix);
  629. else SERIAL_EOL;
  630. }
  631. void print_xyz(const char* prefix, const char* suffix, const float xyz[]) {
  632. print_xyz(prefix, suffix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  633. }
  634. #if HAS_ABL
  635. void print_xyz(const char* prefix, const char* suffix, const vector_3 &xyz) {
  636. print_xyz(prefix, suffix, xyz.x, xyz.y, xyz.z);
  637. }
  638. #endif
  639. #define DEBUG_POS(SUFFIX,VAR) do { \
  640. print_xyz(PSTR(" " STRINGIFY(VAR) "="), PSTR(" : " SUFFIX "\n"), VAR); } while(0)
  641. #endif
  642. /**
  643. * sync_plan_position
  644. *
  645. * Set the planner/stepper positions directly from current_position with
  646. * no kinematic translation. Used for homing axes and cartesian/core syncing.
  647. */
  648. inline void sync_plan_position() {
  649. #if ENABLED(DEBUG_LEVELING_FEATURE)
  650. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  651. #endif
  652. planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  653. }
  654. inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
  655. #if IS_KINEMATIC
  656. inline void sync_plan_position_kinematic() {
  657. #if ENABLED(DEBUG_LEVELING_FEATURE)
  658. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_kinematic", current_position);
  659. #endif
  660. planner.set_position_mm_kinematic(current_position);
  661. }
  662. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_kinematic()
  663. #else
  664. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position()
  665. #endif
  666. #if ENABLED(SDSUPPORT)
  667. #include "SdFatUtil.h"
  668. int freeMemory() { return SdFatUtil::FreeRam(); }
  669. #else
  670. extern "C" {
  671. extern char __bss_end;
  672. extern char __heap_start;
  673. extern void* __brkval;
  674. int freeMemory() {
  675. int free_memory;
  676. if ((int)__brkval == 0)
  677. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  678. else
  679. free_memory = ((int)&free_memory) - ((int)__brkval);
  680. return free_memory;
  681. }
  682. }
  683. #endif //!SDSUPPORT
  684. #if ENABLED(DIGIPOT_I2C)
  685. extern void digipot_i2c_set_current(int channel, float current);
  686. extern void digipot_i2c_init();
  687. #endif
  688. /**
  689. * Inject the next "immediate" command, when possible.
  690. * Return true if any immediate commands remain to inject.
  691. */
  692. static bool drain_injected_commands_P() {
  693. if (injected_commands_P != NULL) {
  694. size_t i = 0;
  695. char c, cmd[30];
  696. strncpy_P(cmd, injected_commands_P, sizeof(cmd) - 1);
  697. cmd[sizeof(cmd) - 1] = '\0';
  698. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  699. cmd[i] = '\0';
  700. if (enqueue_and_echo_command(cmd)) { // success?
  701. if (c) // newline char?
  702. injected_commands_P += i + 1; // advance to the next command
  703. else
  704. injected_commands_P = NULL; // nul char? no more commands
  705. }
  706. }
  707. return (injected_commands_P != NULL); // return whether any more remain
  708. }
  709. /**
  710. * Record one or many commands to run from program memory.
  711. * Aborts the current queue, if any.
  712. * Note: drain_injected_commands_P() must be called repeatedly to drain the commands afterwards
  713. */
  714. void enqueue_and_echo_commands_P(const char* pgcode) {
  715. injected_commands_P = pgcode;
  716. drain_injected_commands_P(); // first command executed asap (when possible)
  717. }
  718. void clear_command_queue() {
  719. cmd_queue_index_r = cmd_queue_index_w;
  720. commands_in_queue = 0;
  721. }
  722. /**
  723. * Once a new command is in the ring buffer, call this to commit it
  724. */
  725. inline void _commit_command(bool say_ok) {
  726. send_ok[cmd_queue_index_w] = say_ok;
  727. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  728. commands_in_queue++;
  729. }
  730. /**
  731. * Copy a command directly into the main command buffer, from RAM.
  732. * Returns true if successfully adds the command
  733. */
  734. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  735. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  736. strcpy(command_queue[cmd_queue_index_w], cmd);
  737. _commit_command(say_ok);
  738. return true;
  739. }
  740. void enqueue_and_echo_command_now(const char* cmd) {
  741. while (!enqueue_and_echo_command(cmd)) idle();
  742. }
  743. /**
  744. * Enqueue with Serial Echo
  745. */
  746. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  747. if (_enqueuecommand(cmd, say_ok)) {
  748. SERIAL_ECHO_START;
  749. SERIAL_ECHOPAIR(MSG_Enqueueing, cmd);
  750. SERIAL_CHAR('"');
  751. SERIAL_EOL;
  752. return true;
  753. }
  754. return false;
  755. }
  756. void setup_killpin() {
  757. #if HAS_KILL
  758. SET_INPUT_PULLUP(KILL_PIN);
  759. #endif
  760. }
  761. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  762. void setup_filrunoutpin() {
  763. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  764. SET_INPUT_PULLUP(FIL_RUNOUT_PIN);
  765. #else
  766. SET_INPUT(FIL_RUNOUT_PIN);
  767. #endif
  768. }
  769. #endif
  770. // Set home pin
  771. void setup_homepin(void) {
  772. #if HAS_HOME
  773. SET_INPUT_PULLUP(HOME_PIN);
  774. #endif
  775. }
  776. void setup_powerhold() {
  777. #if HAS_SUICIDE
  778. OUT_WRITE(SUICIDE_PIN, HIGH);
  779. #endif
  780. #if HAS_POWER_SWITCH
  781. #if ENABLED(PS_DEFAULT_OFF)
  782. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  783. #else
  784. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  785. #endif
  786. #endif
  787. }
  788. void suicide() {
  789. #if HAS_SUICIDE
  790. OUT_WRITE(SUICIDE_PIN, LOW);
  791. #endif
  792. }
  793. void servo_init() {
  794. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  795. servo[0].attach(SERVO0_PIN);
  796. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  797. #endif
  798. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  799. servo[1].attach(SERVO1_PIN);
  800. servo[1].detach();
  801. #endif
  802. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  803. servo[2].attach(SERVO2_PIN);
  804. servo[2].detach();
  805. #endif
  806. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  807. servo[3].attach(SERVO3_PIN);
  808. servo[3].detach();
  809. #endif
  810. #if HAS_Z_SERVO_ENDSTOP
  811. /**
  812. * Set position of Z Servo Endstop
  813. *
  814. * The servo might be deployed and positioned too low to stow
  815. * when starting up the machine or rebooting the board.
  816. * There's no way to know where the nozzle is positioned until
  817. * homing has been done - no homing with z-probe without init!
  818. *
  819. */
  820. STOW_Z_SERVO();
  821. #endif
  822. }
  823. /**
  824. * Stepper Reset (RigidBoard, et.al.)
  825. */
  826. #if HAS_STEPPER_RESET
  827. void disableStepperDrivers() {
  828. OUT_WRITE(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  829. }
  830. void enableStepperDrivers() { SET_INPUT(STEPPER_RESET_PIN); } // set to input, which allows it to be pulled high by pullups
  831. #endif
  832. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  833. void i2c_on_receive(int bytes) { // just echo all bytes received to serial
  834. i2c.receive(bytes);
  835. }
  836. void i2c_on_request() { // just send dummy data for now
  837. i2c.reply("Hello World!\n");
  838. }
  839. #endif
  840. void gcode_line_error(const char* err, bool doFlush = true) {
  841. SERIAL_ERROR_START;
  842. serialprintPGM(err);
  843. SERIAL_ERRORLN(gcode_LastN);
  844. //Serial.println(gcode_N);
  845. if (doFlush) FlushSerialRequestResend();
  846. serial_count = 0;
  847. }
  848. inline void get_serial_commands() {
  849. static char serial_line_buffer[MAX_CMD_SIZE];
  850. static bool serial_comment_mode = false;
  851. // If the command buffer is empty for too long,
  852. // send "wait" to indicate Marlin is still waiting.
  853. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  854. static millis_t last_command_time = 0;
  855. millis_t ms = millis();
  856. if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
  857. SERIAL_ECHOLNPGM(MSG_WAIT);
  858. last_command_time = ms;
  859. }
  860. #endif
  861. /**
  862. * Loop while serial characters are incoming and the queue is not full
  863. */
  864. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  865. char serial_char = MYSERIAL.read();
  866. /**
  867. * If the character ends the line
  868. */
  869. if (serial_char == '\n' || serial_char == '\r') {
  870. serial_comment_mode = false; // end of line == end of comment
  871. if (!serial_count) continue; // skip empty lines
  872. serial_line_buffer[serial_count] = 0; // terminate string
  873. serial_count = 0; //reset buffer
  874. char* command = serial_line_buffer;
  875. while (*command == ' ') command++; // skip any leading spaces
  876. char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  877. char* apos = strchr(command, '*');
  878. if (npos) {
  879. bool M110 = strstr_P(command, PSTR("M110")) != NULL;
  880. if (M110) {
  881. char* n2pos = strchr(command + 4, 'N');
  882. if (n2pos) npos = n2pos;
  883. }
  884. gcode_N = strtol(npos + 1, NULL, 10);
  885. if (gcode_N != gcode_LastN + 1 && !M110) {
  886. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  887. return;
  888. }
  889. if (apos) {
  890. byte checksum = 0, count = 0;
  891. while (command[count] != '*') checksum ^= command[count++];
  892. if (strtol(apos + 1, NULL, 10) != checksum) {
  893. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  894. return;
  895. }
  896. // if no errors, continue parsing
  897. }
  898. else {
  899. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  900. return;
  901. }
  902. gcode_LastN = gcode_N;
  903. // if no errors, continue parsing
  904. }
  905. else if (apos) { // No '*' without 'N'
  906. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  907. return;
  908. }
  909. // Movement commands alert when stopped
  910. if (IsStopped()) {
  911. char* gpos = strchr(command, 'G');
  912. if (gpos) {
  913. int codenum = strtol(gpos + 1, NULL, 10);
  914. switch (codenum) {
  915. case 0:
  916. case 1:
  917. case 2:
  918. case 3:
  919. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  920. LCD_MESSAGEPGM(MSG_STOPPED);
  921. break;
  922. }
  923. }
  924. }
  925. #if DISABLED(EMERGENCY_PARSER)
  926. // If command was e-stop process now
  927. if (strcmp(command, "M108") == 0) {
  928. wait_for_heatup = false;
  929. #if ENABLED(ULTIPANEL)
  930. wait_for_user = false;
  931. #endif
  932. }
  933. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  934. if (strcmp(command, "M410") == 0) { quickstop_stepper(); }
  935. #endif
  936. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  937. last_command_time = ms;
  938. #endif
  939. // Add the command to the queue
  940. _enqueuecommand(serial_line_buffer, true);
  941. }
  942. else if (serial_count >= MAX_CMD_SIZE - 1) {
  943. // Keep fetching, but ignore normal characters beyond the max length
  944. // The command will be injected when EOL is reached
  945. }
  946. else if (serial_char == '\\') { // Handle escapes
  947. if (MYSERIAL.available() > 0) {
  948. // if we have one more character, copy it over
  949. serial_char = MYSERIAL.read();
  950. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  951. }
  952. // otherwise do nothing
  953. }
  954. else { // it's not a newline, carriage return or escape char
  955. if (serial_char == ';') serial_comment_mode = true;
  956. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  957. }
  958. } // queue has space, serial has data
  959. }
  960. #if ENABLED(SDSUPPORT)
  961. inline void get_sdcard_commands() {
  962. static bool stop_buffering = false,
  963. sd_comment_mode = false;
  964. if (!card.sdprinting) return;
  965. /**
  966. * '#' stops reading from SD to the buffer prematurely, so procedural
  967. * macro calls are possible. If it occurs, stop_buffering is triggered
  968. * and the buffer is run dry; this character _can_ occur in serial com
  969. * due to checksums, however, no checksums are used in SD printing.
  970. */
  971. if (commands_in_queue == 0) stop_buffering = false;
  972. uint16_t sd_count = 0;
  973. bool card_eof = card.eof();
  974. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  975. int16_t n = card.get();
  976. char sd_char = (char)n;
  977. card_eof = card.eof();
  978. if (card_eof || n == -1
  979. || sd_char == '\n' || sd_char == '\r'
  980. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  981. ) {
  982. if (card_eof) {
  983. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  984. card.printingHasFinished();
  985. card.checkautostart(true);
  986. }
  987. else if (n == -1) {
  988. SERIAL_ERROR_START;
  989. SERIAL_ECHOLNPGM(MSG_SD_ERR_READ);
  990. }
  991. if (sd_char == '#') stop_buffering = true;
  992. sd_comment_mode = false; //for new command
  993. if (!sd_count) continue; //skip empty lines
  994. command_queue[cmd_queue_index_w][sd_count] = '\0'; //terminate string
  995. sd_count = 0; //clear buffer
  996. _commit_command(false);
  997. }
  998. else if (sd_count >= MAX_CMD_SIZE - 1) {
  999. /**
  1000. * Keep fetching, but ignore normal characters beyond the max length
  1001. * The command will be injected when EOL is reached
  1002. */
  1003. }
  1004. else {
  1005. if (sd_char == ';') sd_comment_mode = true;
  1006. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  1007. }
  1008. }
  1009. }
  1010. #endif // SDSUPPORT
  1011. /**
  1012. * Add to the circular command queue the next command from:
  1013. * - The command-injection queue (injected_commands_P)
  1014. * - The active serial input (usually USB)
  1015. * - The SD card file being actively printed
  1016. */
  1017. void get_available_commands() {
  1018. // if any immediate commands remain, don't get other commands yet
  1019. if (drain_injected_commands_P()) return;
  1020. get_serial_commands();
  1021. #if ENABLED(SDSUPPORT)
  1022. get_sdcard_commands();
  1023. #endif
  1024. }
  1025. inline bool code_has_value() {
  1026. int i = 1;
  1027. char c = seen_pointer[i];
  1028. while (c == ' ') c = seen_pointer[++i];
  1029. if (c == '-' || c == '+') c = seen_pointer[++i];
  1030. if (c == '.') c = seen_pointer[++i];
  1031. return NUMERIC(c);
  1032. }
  1033. inline float code_value_float() {
  1034. char* e = strchr(seen_pointer, 'E');
  1035. if (!e) return strtod(seen_pointer + 1, NULL);
  1036. *e = 0;
  1037. float ret = strtod(seen_pointer + 1, NULL);
  1038. *e = 'E';
  1039. return ret;
  1040. }
  1041. inline unsigned long code_value_ulong() { return strtoul(seen_pointer + 1, NULL, 10); }
  1042. inline long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  1043. inline int code_value_int() { return (int)strtol(seen_pointer + 1, NULL, 10); }
  1044. inline uint16_t code_value_ushort() { return (uint16_t)strtoul(seen_pointer + 1, NULL, 10); }
  1045. inline uint8_t code_value_byte() { return (uint8_t)(constrain(strtol(seen_pointer + 1, NULL, 10), 0, 255)); }
  1046. inline bool code_value_bool() { return !code_has_value() || code_value_byte() > 0; }
  1047. #if ENABLED(INCH_MODE_SUPPORT)
  1048. inline void set_input_linear_units(LinearUnit units) {
  1049. switch (units) {
  1050. case LINEARUNIT_INCH:
  1051. linear_unit_factor = 25.4;
  1052. break;
  1053. case LINEARUNIT_MM:
  1054. default:
  1055. linear_unit_factor = 1.0;
  1056. break;
  1057. }
  1058. volumetric_unit_factor = pow(linear_unit_factor, 3.0);
  1059. }
  1060. inline float axis_unit_factor(int axis) {
  1061. return (axis >= E_AXIS && volumetric_enabled ? volumetric_unit_factor : linear_unit_factor);
  1062. }
  1063. inline float code_value_linear_units() { return code_value_float() * linear_unit_factor; }
  1064. inline float code_value_axis_units(int axis) { return code_value_float() * axis_unit_factor(axis); }
  1065. inline float code_value_per_axis_unit(int axis) { return code_value_float() / axis_unit_factor(axis); }
  1066. #else
  1067. inline float code_value_linear_units() { return code_value_float(); }
  1068. inline float code_value_axis_units(int axis) { UNUSED(axis); return code_value_float(); }
  1069. inline float code_value_per_axis_unit(int axis) { UNUSED(axis); return code_value_float(); }
  1070. #endif
  1071. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  1072. inline void set_input_temp_units(TempUnit units) { input_temp_units = units; }
  1073. float code_value_temp_abs() {
  1074. switch (input_temp_units) {
  1075. case TEMPUNIT_C:
  1076. return code_value_float();
  1077. case TEMPUNIT_F:
  1078. return (code_value_float() - 32) * 0.5555555556;
  1079. case TEMPUNIT_K:
  1080. return code_value_float() - 273.15;
  1081. default:
  1082. return code_value_float();
  1083. }
  1084. }
  1085. float code_value_temp_diff() {
  1086. switch (input_temp_units) {
  1087. case TEMPUNIT_C:
  1088. case TEMPUNIT_K:
  1089. return code_value_float();
  1090. case TEMPUNIT_F:
  1091. return code_value_float() * 0.5555555556;
  1092. default:
  1093. return code_value_float();
  1094. }
  1095. }
  1096. #else
  1097. float code_value_temp_abs() { return code_value_float(); }
  1098. float code_value_temp_diff() { return code_value_float(); }
  1099. #endif
  1100. FORCE_INLINE millis_t code_value_millis() { return code_value_ulong(); }
  1101. inline millis_t code_value_millis_from_seconds() { return code_value_float() * 1000; }
  1102. bool code_seen(char code) {
  1103. seen_pointer = strchr(current_command_args, code);
  1104. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  1105. }
  1106. /**
  1107. * Set target_extruder from the T parameter or the active_extruder
  1108. *
  1109. * Returns TRUE if the target is invalid
  1110. */
  1111. bool get_target_extruder_from_command(int code) {
  1112. if (code_seen('T')) {
  1113. if (code_value_byte() >= EXTRUDERS) {
  1114. SERIAL_ECHO_START;
  1115. SERIAL_CHAR('M');
  1116. SERIAL_ECHO(code);
  1117. SERIAL_ECHOLNPAIR(" " MSG_INVALID_EXTRUDER " ", code_value_byte());
  1118. return true;
  1119. }
  1120. target_extruder = code_value_byte();
  1121. }
  1122. else
  1123. target_extruder = active_extruder;
  1124. return false;
  1125. }
  1126. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  1127. bool extruder_duplication_enabled = false; // Used in Dual X mode 2
  1128. #endif
  1129. #if ENABLED(DUAL_X_CARRIAGE)
  1130. static DualXMode dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1131. static float x_home_pos(const int extruder) {
  1132. if (extruder == 0)
  1133. return LOGICAL_X_POSITION(base_home_pos(X_AXIS));
  1134. else
  1135. /**
  1136. * In dual carriage mode the extruder offset provides an override of the
  1137. * second X-carriage position when homed - otherwise X2_HOME_POS is used.
  1138. * This allows soft recalibration of the second extruder home position
  1139. * without firmware reflash (through the M218 command).
  1140. */
  1141. return LOGICAL_X_POSITION(hotend_offset[X_AXIS][1] > 0 ? hotend_offset[X_AXIS][1] : X2_HOME_POS);
  1142. }
  1143. static int x_home_dir(const int extruder) { return extruder ? X2_HOME_DIR : X_HOME_DIR; }
  1144. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1145. static bool active_extruder_parked = false; // used in mode 1 & 2
  1146. static float raised_parked_position[XYZE]; // used in mode 1
  1147. static millis_t delayed_move_time = 0; // used in mode 1
  1148. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1149. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  1150. #endif // DUAL_X_CARRIAGE
  1151. #if DISABLED(NO_WORKSPACE_OFFSETS) || ENABLED(DUAL_X_CARRIAGE) || ENABLED(DELTA)
  1152. /**
  1153. * Software endstops can be used to monitor the open end of
  1154. * an axis that has a hardware endstop on the other end. Or
  1155. * they can prevent axes from moving past endstops and grinding.
  1156. *
  1157. * To keep doing their job as the coordinate system changes,
  1158. * the software endstop positions must be refreshed to remain
  1159. * at the same positions relative to the machine.
  1160. */
  1161. void update_software_endstops(const AxisEnum axis) {
  1162. const float offs = workspace_offset[axis] = LOGICAL_POSITION(0, axis);
  1163. #if ENABLED(DUAL_X_CARRIAGE)
  1164. if (axis == X_AXIS) {
  1165. // In Dual X mode hotend_offset[X] is T1's home position
  1166. float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS);
  1167. if (active_extruder != 0) {
  1168. // T1 can move from X2_MIN_POS to X2_MAX_POS or X2 home position (whichever is larger)
  1169. soft_endstop_min[X_AXIS] = X2_MIN_POS + offs;
  1170. soft_endstop_max[X_AXIS] = dual_max_x + offs;
  1171. }
  1172. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1173. // In Duplication Mode, T0 can move as far left as X_MIN_POS
  1174. // but not so far to the right that T1 would move past the end
  1175. soft_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
  1176. soft_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
  1177. }
  1178. else {
  1179. // In other modes, T0 can move from X_MIN_POS to X_MAX_POS
  1180. soft_endstop_min[axis] = base_min_pos(axis) + offs;
  1181. soft_endstop_max[axis] = base_max_pos(axis) + offs;
  1182. }
  1183. }
  1184. #else
  1185. soft_endstop_min[axis] = base_min_pos(axis) + offs;
  1186. soft_endstop_max[axis] = base_max_pos(axis) + offs;
  1187. #endif
  1188. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1189. if (DEBUGGING(LEVELING)) {
  1190. SERIAL_ECHOPAIR("For ", axis_codes[axis]);
  1191. #if DISABLED(NO_WORKSPACE_OFFSETS)
  1192. SERIAL_ECHOPAIR(" axis:\n home_offset = ", home_offset[axis]);
  1193. SERIAL_ECHOPAIR("\n position_shift = ", position_shift[axis]);
  1194. #endif
  1195. SERIAL_ECHOPAIR("\n soft_endstop_min = ", soft_endstop_min[axis]);
  1196. SERIAL_ECHOLNPAIR("\n soft_endstop_max = ", soft_endstop_max[axis]);
  1197. }
  1198. #endif
  1199. #if ENABLED(DELTA)
  1200. if (axis == Z_AXIS)
  1201. delta_clip_start_height = soft_endstop_max[axis] - delta_safe_distance_from_top();
  1202. #endif
  1203. }
  1204. #endif // NO_WORKSPACE_OFFSETS
  1205. #if DISABLED(NO_WORKSPACE_OFFSETS)
  1206. /**
  1207. * Change the home offset for an axis, update the current
  1208. * position and the software endstops to retain the same
  1209. * relative distance to the new home.
  1210. *
  1211. * Since this changes the current_position, code should
  1212. * call sync_plan_position soon after this.
  1213. */
  1214. static void set_home_offset(const AxisEnum axis, const float v) {
  1215. current_position[axis] += v - home_offset[axis];
  1216. home_offset[axis] = v;
  1217. update_software_endstops(axis);
  1218. }
  1219. #endif // NO_WORKSPACE_OFFSETS
  1220. /**
  1221. * Set an axis' current position to its home position (after homing).
  1222. *
  1223. * For Core and Cartesian robots this applies one-to-one when an
  1224. * individual axis has been homed.
  1225. *
  1226. * DELTA should wait until all homing is done before setting the XYZ
  1227. * current_position to home, because homing is a single operation.
  1228. * In the case where the axis positions are already known and previously
  1229. * homed, DELTA could home to X or Y individually by moving either one
  1230. * to the center. However, homing Z always homes XY and Z.
  1231. *
  1232. * SCARA should wait until all XY homing is done before setting the XY
  1233. * current_position to home, because neither X nor Y is at home until
  1234. * both are at home. Z can however be homed individually.
  1235. *
  1236. * Callers must sync the planner position after calling this!
  1237. */
  1238. static void set_axis_is_at_home(AxisEnum axis) {
  1239. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1240. if (DEBUGGING(LEVELING)) {
  1241. SERIAL_ECHOPAIR(">>> set_axis_is_at_home(", axis_codes[axis]);
  1242. SERIAL_CHAR(')');
  1243. SERIAL_EOL;
  1244. }
  1245. #endif
  1246. axis_known_position[axis] = axis_homed[axis] = true;
  1247. #if DISABLED(NO_WORKSPACE_OFFSETS)
  1248. position_shift[axis] = 0;
  1249. update_software_endstops(axis);
  1250. #endif
  1251. #if ENABLED(DUAL_X_CARRIAGE)
  1252. if (axis == X_AXIS && (active_extruder == 1 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
  1253. current_position[X_AXIS] = x_home_pos(active_extruder);
  1254. return;
  1255. }
  1256. #endif
  1257. #if ENABLED(MORGAN_SCARA)
  1258. /**
  1259. * Morgan SCARA homes XY at the same time
  1260. */
  1261. if (axis == X_AXIS || axis == Y_AXIS) {
  1262. float homeposition[XYZ];
  1263. LOOP_XYZ(i) homeposition[i] = LOGICAL_POSITION(base_home_pos((AxisEnum)i), i);
  1264. // SERIAL_ECHOPAIR("homeposition X:", homeposition[X_AXIS]);
  1265. // SERIAL_ECHOLNPAIR(" Y:", homeposition[Y_AXIS]);
  1266. /**
  1267. * Get Home position SCARA arm angles using inverse kinematics,
  1268. * and calculate homing offset using forward kinematics
  1269. */
  1270. inverse_kinematics(homeposition);
  1271. forward_kinematics_SCARA(delta[A_AXIS], delta[B_AXIS]);
  1272. // SERIAL_ECHOPAIR("Cartesian X:", cartes[X_AXIS]);
  1273. // SERIAL_ECHOLNPAIR(" Y:", cartes[Y_AXIS]);
  1274. current_position[axis] = LOGICAL_POSITION(cartes[axis], axis);
  1275. /**
  1276. * SCARA home positions are based on configuration since the actual
  1277. * limits are determined by the inverse kinematic transform.
  1278. */
  1279. soft_endstop_min[axis] = base_min_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1280. soft_endstop_max[axis] = base_max_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1281. }
  1282. else
  1283. #endif
  1284. {
  1285. current_position[axis] = LOGICAL_POSITION(base_home_pos(axis), axis);
  1286. }
  1287. /**
  1288. * Z Probe Z Homing? Account for the probe's Z offset.
  1289. */
  1290. #if HAS_BED_PROBE && Z_HOME_DIR < 0
  1291. if (axis == Z_AXIS) {
  1292. #if HOMING_Z_WITH_PROBE
  1293. current_position[Z_AXIS] -= zprobe_zoffset;
  1294. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1295. if (DEBUGGING(LEVELING)) {
  1296. SERIAL_ECHOLNPGM("*** Z HOMED WITH PROBE (Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) ***");
  1297. SERIAL_ECHOLNPAIR("> zprobe_zoffset = ", zprobe_zoffset);
  1298. }
  1299. #endif
  1300. #elif ENABLED(DEBUG_LEVELING_FEATURE)
  1301. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("*** Z HOMED TO ENDSTOP (Z_MIN_PROBE_ENDSTOP) ***");
  1302. #endif
  1303. }
  1304. #endif
  1305. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1306. if (DEBUGGING(LEVELING)) {
  1307. #if DISABLED(NO_WORKSPACE_OFFSETS)
  1308. SERIAL_ECHOPAIR("> home_offset[", axis_codes[axis]);
  1309. SERIAL_ECHOLNPAIR("] = ", home_offset[axis]);
  1310. #endif
  1311. DEBUG_POS("", current_position);
  1312. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis_codes[axis]);
  1313. SERIAL_CHAR(')');
  1314. SERIAL_EOL;
  1315. }
  1316. #endif
  1317. }
  1318. /**
  1319. * Some planner shorthand inline functions
  1320. */
  1321. inline float get_homing_bump_feedrate(AxisEnum axis) {
  1322. int constexpr homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  1323. int hbd = homing_bump_divisor[axis];
  1324. if (hbd < 1) {
  1325. hbd = 10;
  1326. SERIAL_ECHO_START;
  1327. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1328. }
  1329. return homing_feedrate_mm_s[axis] / hbd;
  1330. }
  1331. //
  1332. // line_to_current_position
  1333. // Move the planner to the current position from wherever it last moved
  1334. // (or from wherever it has been told it is located).
  1335. //
  1336. inline void line_to_current_position() {
  1337. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate_mm_s, active_extruder);
  1338. }
  1339. //
  1340. // line_to_destination
  1341. // Move the planner, not necessarily synced with current_position
  1342. //
  1343. inline void line_to_destination(float fr_mm_s) {
  1344. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], fr_mm_s, active_extruder);
  1345. }
  1346. inline void line_to_destination() { line_to_destination(feedrate_mm_s); }
  1347. inline void set_current_to_destination() { COPY(current_position, destination); }
  1348. inline void set_destination_to_current() { COPY(destination, current_position); }
  1349. #if IS_KINEMATIC
  1350. /**
  1351. * Calculate delta, start a line, and set current_position to destination
  1352. */
  1353. void prepare_uninterpolated_move_to_destination(const float fr_mm_s=0.0) {
  1354. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1355. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_uninterpolated_move_to_destination", destination);
  1356. #endif
  1357. if ( current_position[X_AXIS] == destination[X_AXIS]
  1358. && current_position[Y_AXIS] == destination[Y_AXIS]
  1359. && current_position[Z_AXIS] == destination[Z_AXIS]
  1360. && current_position[E_AXIS] == destination[E_AXIS]
  1361. ) return;
  1362. refresh_cmd_timeout();
  1363. planner.buffer_line_kinematic(destination, MMS_SCALED(fr_mm_s ? fr_mm_s : feedrate_mm_s), active_extruder);
  1364. set_current_to_destination();
  1365. }
  1366. #endif // IS_KINEMATIC
  1367. /**
  1368. * Plan a move to (X, Y, Z) and set the current_position
  1369. * The final current_position may not be the one that was requested
  1370. */
  1371. void do_blocking_move_to(const float &x, const float &y, const float &z, const float &fr_mm_s /*=0.0*/) {
  1372. const float old_feedrate_mm_s = feedrate_mm_s;
  1373. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1374. if (DEBUGGING(LEVELING)) print_xyz(PSTR(">>> do_blocking_move_to"), NULL, x, y, z);
  1375. #endif
  1376. #if ENABLED(DELTA)
  1377. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1378. set_destination_to_current(); // sync destination at the start
  1379. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1380. if (DEBUGGING(LEVELING)) DEBUG_POS("set_destination_to_current", destination);
  1381. #endif
  1382. // when in the danger zone
  1383. if (current_position[Z_AXIS] > delta_clip_start_height) {
  1384. if (z > delta_clip_start_height) { // staying in the danger zone
  1385. destination[X_AXIS] = x; // move directly (uninterpolated)
  1386. destination[Y_AXIS] = y;
  1387. destination[Z_AXIS] = z;
  1388. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1389. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1390. if (DEBUGGING(LEVELING)) DEBUG_POS("danger zone move", current_position);
  1391. #endif
  1392. return;
  1393. }
  1394. else {
  1395. destination[Z_AXIS] = delta_clip_start_height;
  1396. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1397. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1398. if (DEBUGGING(LEVELING)) DEBUG_POS("zone border move", current_position);
  1399. #endif
  1400. }
  1401. }
  1402. if (z > current_position[Z_AXIS]) { // raising?
  1403. destination[Z_AXIS] = z;
  1404. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1405. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1406. if (DEBUGGING(LEVELING)) DEBUG_POS("z raise move", current_position);
  1407. #endif
  1408. }
  1409. destination[X_AXIS] = x;
  1410. destination[Y_AXIS] = y;
  1411. prepare_move_to_destination(); // set_current_to_destination
  1412. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1413. if (DEBUGGING(LEVELING)) DEBUG_POS("xy move", current_position);
  1414. #endif
  1415. if (z < current_position[Z_AXIS]) { // lowering?
  1416. destination[Z_AXIS] = z;
  1417. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1418. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1419. if (DEBUGGING(LEVELING)) DEBUG_POS("z lower move", current_position);
  1420. #endif
  1421. }
  1422. #elif IS_SCARA
  1423. set_destination_to_current();
  1424. // If Z needs to raise, do it before moving XY
  1425. if (destination[Z_AXIS] < z) {
  1426. destination[Z_AXIS] = z;
  1427. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS]);
  1428. }
  1429. destination[X_AXIS] = x;
  1430. destination[Y_AXIS] = y;
  1431. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S);
  1432. // If Z needs to lower, do it after moving XY
  1433. if (destination[Z_AXIS] > z) {
  1434. destination[Z_AXIS] = z;
  1435. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS]);
  1436. }
  1437. #else
  1438. // If Z needs to raise, do it before moving XY
  1439. if (current_position[Z_AXIS] < z) {
  1440. feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1441. current_position[Z_AXIS] = z;
  1442. line_to_current_position();
  1443. }
  1444. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1445. current_position[X_AXIS] = x;
  1446. current_position[Y_AXIS] = y;
  1447. line_to_current_position();
  1448. // If Z needs to lower, do it after moving XY
  1449. if (current_position[Z_AXIS] > z) {
  1450. feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1451. current_position[Z_AXIS] = z;
  1452. line_to_current_position();
  1453. }
  1454. #endif
  1455. stepper.synchronize();
  1456. feedrate_mm_s = old_feedrate_mm_s;
  1457. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1458. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< do_blocking_move_to");
  1459. #endif
  1460. }
  1461. void do_blocking_move_to_x(const float &x, const float &fr_mm_s/*=0.0*/) {
  1462. do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS], fr_mm_s);
  1463. }
  1464. void do_blocking_move_to_z(const float &z, const float &fr_mm_s/*=0.0*/) {
  1465. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z, fr_mm_s);
  1466. }
  1467. void do_blocking_move_to_xy(const float &x, const float &y, const float &fr_mm_s/*=0.0*/) {
  1468. do_blocking_move_to(x, y, current_position[Z_AXIS], fr_mm_s);
  1469. }
  1470. //
  1471. // Prepare to do endstop or probe moves
  1472. // with custom feedrates.
  1473. //
  1474. // - Save current feedrates
  1475. // - Reset the rate multiplier
  1476. // - Reset the command timeout
  1477. // - Enable the endstops (for endstop moves)
  1478. //
  1479. static void setup_for_endstop_or_probe_move() {
  1480. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1481. if (DEBUGGING(LEVELING)) DEBUG_POS("setup_for_endstop_or_probe_move", current_position);
  1482. #endif
  1483. saved_feedrate_mm_s = feedrate_mm_s;
  1484. saved_feedrate_percentage = feedrate_percentage;
  1485. feedrate_percentage = 100;
  1486. refresh_cmd_timeout();
  1487. }
  1488. static void clean_up_after_endstop_or_probe_move() {
  1489. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1490. if (DEBUGGING(LEVELING)) DEBUG_POS("clean_up_after_endstop_or_probe_move", current_position);
  1491. #endif
  1492. feedrate_mm_s = saved_feedrate_mm_s;
  1493. feedrate_percentage = saved_feedrate_percentage;
  1494. refresh_cmd_timeout();
  1495. }
  1496. #if HAS_BED_PROBE
  1497. /**
  1498. * Raise Z to a minimum height to make room for a probe to move
  1499. */
  1500. inline void do_probe_raise(float z_raise) {
  1501. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1502. if (DEBUGGING(LEVELING)) {
  1503. SERIAL_ECHOPAIR("do_probe_raise(", z_raise);
  1504. SERIAL_CHAR(')');
  1505. SERIAL_EOL;
  1506. }
  1507. #endif
  1508. float z_dest = LOGICAL_Z_POSITION(z_raise);
  1509. if (zprobe_zoffset < 0) z_dest -= zprobe_zoffset;
  1510. if (z_dest > current_position[Z_AXIS])
  1511. do_blocking_move_to_z(z_dest);
  1512. }
  1513. #endif //HAS_BED_PROBE
  1514. #if ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED) || HAS_PROBING_PROCEDURE || HOTENDS > 1 || ENABLED(NOZZLE_CLEAN_FEATURE) || ENABLED(NOZZLE_PARK_FEATURE)
  1515. bool axis_unhomed_error(const bool x, const bool y, const bool z) {
  1516. const bool xx = x && !axis_homed[X_AXIS],
  1517. yy = y && !axis_homed[Y_AXIS],
  1518. zz = z && !axis_homed[Z_AXIS];
  1519. if (xx || yy || zz) {
  1520. SERIAL_ECHO_START;
  1521. SERIAL_ECHOPGM(MSG_HOME " ");
  1522. if (xx) SERIAL_ECHOPGM(MSG_X);
  1523. if (yy) SERIAL_ECHOPGM(MSG_Y);
  1524. if (zz) SERIAL_ECHOPGM(MSG_Z);
  1525. SERIAL_ECHOLNPGM(" " MSG_FIRST);
  1526. #if ENABLED(ULTRA_LCD)
  1527. char message[3 * (LCD_WIDTH) + 1] = ""; // worst case is kana.utf with up to 3*LCD_WIDTH+1
  1528. strcat_P(message, PSTR(MSG_HOME " "));
  1529. if (xx) strcat_P(message, PSTR(MSG_X));
  1530. if (yy) strcat_P(message, PSTR(MSG_Y));
  1531. if (zz) strcat_P(message, PSTR(MSG_Z));
  1532. strcat_P(message, PSTR(" " MSG_FIRST));
  1533. lcd_setstatus(message);
  1534. #endif
  1535. return true;
  1536. }
  1537. return false;
  1538. }
  1539. #endif
  1540. #if ENABLED(Z_PROBE_SLED)
  1541. #ifndef SLED_DOCKING_OFFSET
  1542. #define SLED_DOCKING_OFFSET 0
  1543. #endif
  1544. /**
  1545. * Method to dock/undock a sled designed by Charles Bell.
  1546. *
  1547. * stow[in] If false, move to MAX_X and engage the solenoid
  1548. * If true, move to MAX_X and release the solenoid
  1549. */
  1550. static void dock_sled(bool stow) {
  1551. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1552. if (DEBUGGING(LEVELING)) {
  1553. SERIAL_ECHOPAIR("dock_sled(", stow);
  1554. SERIAL_CHAR(')');
  1555. SERIAL_EOL;
  1556. }
  1557. #endif
  1558. // Dock sled a bit closer to ensure proper capturing
  1559. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET - ((stow) ? 1 : 0));
  1560. #if PIN_EXISTS(SLED)
  1561. digitalWrite(SLED_PIN, !stow); // switch solenoid
  1562. #endif
  1563. }
  1564. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1565. void run_deploy_moves_script() {
  1566. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1567. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_X
  1568. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_X current_position[X_AXIS]
  1569. #endif
  1570. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Y
  1571. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Y current_position[Y_AXIS]
  1572. #endif
  1573. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Z
  1574. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Z current_position[Z_AXIS]
  1575. #endif
  1576. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE
  1577. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE 0.0
  1578. #endif
  1579. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_1_X, Z_PROBE_ALLEN_KEY_DEPLOY_1_Y, Z_PROBE_ALLEN_KEY_DEPLOY_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE));
  1580. #endif
  1581. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1582. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_X
  1583. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_X current_position[X_AXIS]
  1584. #endif
  1585. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Y
  1586. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Y current_position[Y_AXIS]
  1587. #endif
  1588. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Z
  1589. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Z current_position[Z_AXIS]
  1590. #endif
  1591. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE
  1592. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE 0.0
  1593. #endif
  1594. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_2_X, Z_PROBE_ALLEN_KEY_DEPLOY_2_Y, Z_PROBE_ALLEN_KEY_DEPLOY_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE));
  1595. #endif
  1596. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Z)
  1597. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1598. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_X current_position[X_AXIS]
  1599. #endif
  1600. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Y
  1601. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Y current_position[Y_AXIS]
  1602. #endif
  1603. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Z
  1604. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Z current_position[Z_AXIS]
  1605. #endif
  1606. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE
  1607. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE 0.0
  1608. #endif
  1609. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_3_X, Z_PROBE_ALLEN_KEY_DEPLOY_3_Y, Z_PROBE_ALLEN_KEY_DEPLOY_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE));
  1610. #endif
  1611. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Z)
  1612. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_X
  1613. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_X current_position[X_AXIS]
  1614. #endif
  1615. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Y
  1616. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Y current_position[Y_AXIS]
  1617. #endif
  1618. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Z
  1619. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Z current_position[Z_AXIS]
  1620. #endif
  1621. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE
  1622. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE 0.0
  1623. #endif
  1624. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_4_X, Z_PROBE_ALLEN_KEY_DEPLOY_4_Y, Z_PROBE_ALLEN_KEY_DEPLOY_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE));
  1625. #endif
  1626. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Z)
  1627. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_X
  1628. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_X current_position[X_AXIS]
  1629. #endif
  1630. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Y
  1631. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Y current_position[Y_AXIS]
  1632. #endif
  1633. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Z
  1634. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Z current_position[Z_AXIS]
  1635. #endif
  1636. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE
  1637. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE 0.0
  1638. #endif
  1639. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_5_X, Z_PROBE_ALLEN_KEY_DEPLOY_5_Y, Z_PROBE_ALLEN_KEY_DEPLOY_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE));
  1640. #endif
  1641. }
  1642. void run_stow_moves_script() {
  1643. #if defined(Z_PROBE_ALLEN_KEY_STOW_1_X) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Z)
  1644. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_X
  1645. #define Z_PROBE_ALLEN_KEY_STOW_1_X current_position[X_AXIS]
  1646. #endif
  1647. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Y
  1648. #define Z_PROBE_ALLEN_KEY_STOW_1_Y current_position[Y_AXIS]
  1649. #endif
  1650. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Z
  1651. #define Z_PROBE_ALLEN_KEY_STOW_1_Z current_position[Z_AXIS]
  1652. #endif
  1653. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE
  1654. #define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE 0.0
  1655. #endif
  1656. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_1_X, Z_PROBE_ALLEN_KEY_STOW_1_Y, Z_PROBE_ALLEN_KEY_STOW_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE));
  1657. #endif
  1658. #if defined(Z_PROBE_ALLEN_KEY_STOW_2_X) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Z)
  1659. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_X
  1660. #define Z_PROBE_ALLEN_KEY_STOW_2_X current_position[X_AXIS]
  1661. #endif
  1662. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Y
  1663. #define Z_PROBE_ALLEN_KEY_STOW_2_Y current_position[Y_AXIS]
  1664. #endif
  1665. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Z
  1666. #define Z_PROBE_ALLEN_KEY_STOW_2_Z current_position[Z_AXIS]
  1667. #endif
  1668. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE
  1669. #define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE 0.0
  1670. #endif
  1671. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_2_X, Z_PROBE_ALLEN_KEY_STOW_2_Y, Z_PROBE_ALLEN_KEY_STOW_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE));
  1672. #endif
  1673. #if defined(Z_PROBE_ALLEN_KEY_STOW_3_X) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Z)
  1674. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_X
  1675. #define Z_PROBE_ALLEN_KEY_STOW_3_X current_position[X_AXIS]
  1676. #endif
  1677. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Y
  1678. #define Z_PROBE_ALLEN_KEY_STOW_3_Y current_position[Y_AXIS]
  1679. #endif
  1680. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Z
  1681. #define Z_PROBE_ALLEN_KEY_STOW_3_Z current_position[Z_AXIS]
  1682. #endif
  1683. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE
  1684. #define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE 0.0
  1685. #endif
  1686. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_3_X, Z_PROBE_ALLEN_KEY_STOW_3_Y, Z_PROBE_ALLEN_KEY_STOW_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE));
  1687. #endif
  1688. #if defined(Z_PROBE_ALLEN_KEY_STOW_4_X) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Z)
  1689. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_X
  1690. #define Z_PROBE_ALLEN_KEY_STOW_4_X current_position[X_AXIS]
  1691. #endif
  1692. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Y
  1693. #define Z_PROBE_ALLEN_KEY_STOW_4_Y current_position[Y_AXIS]
  1694. #endif
  1695. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Z
  1696. #define Z_PROBE_ALLEN_KEY_STOW_4_Z current_position[Z_AXIS]
  1697. #endif
  1698. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE
  1699. #define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE 0.0
  1700. #endif
  1701. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_4_X, Z_PROBE_ALLEN_KEY_STOW_4_Y, Z_PROBE_ALLEN_KEY_STOW_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE));
  1702. #endif
  1703. #if defined(Z_PROBE_ALLEN_KEY_STOW_5_X) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Z)
  1704. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_X
  1705. #define Z_PROBE_ALLEN_KEY_STOW_5_X current_position[X_AXIS]
  1706. #endif
  1707. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Y
  1708. #define Z_PROBE_ALLEN_KEY_STOW_5_Y current_position[Y_AXIS]
  1709. #endif
  1710. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Z
  1711. #define Z_PROBE_ALLEN_KEY_STOW_5_Z current_position[Z_AXIS]
  1712. #endif
  1713. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE
  1714. #define Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE 0.0
  1715. #endif
  1716. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_5_X, Z_PROBE_ALLEN_KEY_STOW_5_Y, Z_PROBE_ALLEN_KEY_STOW_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE));
  1717. #endif
  1718. }
  1719. #endif
  1720. #if HAS_BED_PROBE
  1721. // TRIGGERED_WHEN_STOWED_TEST can easily be extended to servo probes, ... if needed.
  1722. #if ENABLED(PROBE_IS_TRIGGERED_WHEN_STOWED_TEST)
  1723. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1724. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING)
  1725. #else
  1726. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)
  1727. #endif
  1728. #endif
  1729. #define DEPLOY_PROBE() set_probe_deployed(true)
  1730. #define STOW_PROBE() set_probe_deployed(false)
  1731. #if ENABLED(BLTOUCH)
  1732. void bltouch_command(int angle) {
  1733. servo[Z_ENDSTOP_SERVO_NR].move(angle); // Give the BL-Touch the command and wait
  1734. safe_delay(375);
  1735. }
  1736. FORCE_INLINE void set_bltouch_deployed(const bool &deploy) {
  1737. bltouch_command(deploy ? BLTOUCH_DEPLOY : BLTOUCH_STOW);
  1738. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1739. if (DEBUGGING(LEVELING)) {
  1740. SERIAL_ECHOPAIR("set_bltouch_deployed(", deploy);
  1741. SERIAL_CHAR(')');
  1742. SERIAL_EOL;
  1743. }
  1744. #endif
  1745. }
  1746. #endif
  1747. // returns false for ok and true for failure
  1748. bool set_probe_deployed(bool deploy) {
  1749. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1750. if (DEBUGGING(LEVELING)) {
  1751. DEBUG_POS("set_probe_deployed", current_position);
  1752. SERIAL_ECHOLNPAIR("deploy: ", deploy);
  1753. }
  1754. #endif
  1755. if (endstops.z_probe_enabled == deploy) return false;
  1756. // Make room for probe
  1757. do_probe_raise(_Z_CLEARANCE_DEPLOY_PROBE);
  1758. // When deploying make sure BLTOUCH is not already triggered
  1759. #if ENABLED(BLTOUCH)
  1760. if (deploy && TEST_BLTOUCH()) { // If BL-Touch says it's triggered
  1761. bltouch_command(BLTOUCH_RESET); // try to reset it.
  1762. set_bltouch_deployed(true); // Also needs to deploy and stow to
  1763. set_bltouch_deployed(false); // clear the triggered condition.
  1764. if (TEST_BLTOUCH()) { // If it still claims to be triggered...
  1765. SERIAL_ERROR_START;
  1766. SERIAL_ERRORLNPGM(MSG_STOP_BLTOUCH);
  1767. stop(); // punt!
  1768. return true;
  1769. }
  1770. }
  1771. #elif ENABLED(Z_PROBE_SLED)
  1772. if (axis_unhomed_error(true, false, false)) {
  1773. SERIAL_ERROR_START;
  1774. SERIAL_ERRORLNPGM(MSG_STOP_UNHOMED);
  1775. stop();
  1776. return true;
  1777. }
  1778. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1779. if (axis_unhomed_error(true, true, true )) {
  1780. SERIAL_ERROR_START;
  1781. SERIAL_ERRORLNPGM(MSG_STOP_UNHOMED);
  1782. stop();
  1783. return true;
  1784. }
  1785. #endif
  1786. const float oldXpos = current_position[X_AXIS],
  1787. oldYpos = current_position[Y_AXIS];
  1788. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1789. // If endstop is already false, the Z probe is deployed
  1790. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // closed after the probe specific actions.
  1791. // Would a goto be less ugly?
  1792. //while (!_TRIGGERED_WHEN_STOWED_TEST) idle(); // would offer the opportunity
  1793. // for a triggered when stowed manual probe.
  1794. if (!deploy) endstops.enable_z_probe(false); // Switch off triggered when stowed probes early
  1795. // otherwise an Allen-Key probe can't be stowed.
  1796. #endif
  1797. #if ENABLED(Z_PROBE_SLED)
  1798. dock_sled(!deploy);
  1799. #elif HAS_Z_SERVO_ENDSTOP && DISABLED(BLTOUCH)
  1800. servo[Z_ENDSTOP_SERVO_NR].move(z_servo_angle[deploy ? 0 : 1]);
  1801. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1802. deploy ? run_deploy_moves_script() : run_stow_moves_script();
  1803. #endif
  1804. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1805. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1806. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // State hasn't changed?
  1807. if (IsRunning()) {
  1808. SERIAL_ERROR_START;
  1809. SERIAL_ERRORLNPGM("Z-Probe failed");
  1810. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1811. }
  1812. stop();
  1813. return true;
  1814. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1815. #endif
  1816. do_blocking_move_to(oldXpos, oldYpos, current_position[Z_AXIS]); // return to position before deploy
  1817. endstops.enable_z_probe(deploy);
  1818. return false;
  1819. }
  1820. static void do_probe_move(float z, float fr_mm_m) {
  1821. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1822. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> do_probe_move", current_position);
  1823. #endif
  1824. // Deploy BLTouch at the start of any probe
  1825. #if ENABLED(BLTOUCH)
  1826. set_bltouch_deployed(true);
  1827. #endif
  1828. // Move down until probe triggered
  1829. do_blocking_move_to_z(LOGICAL_Z_POSITION(z), MMM_TO_MMS(fr_mm_m));
  1830. // Retract BLTouch immediately after a probe
  1831. #if ENABLED(BLTOUCH)
  1832. set_bltouch_deployed(false);
  1833. #endif
  1834. // Clear endstop flags
  1835. endstops.hit_on_purpose();
  1836. // Get Z where the steppers were interrupted
  1837. set_current_from_steppers_for_axis(Z_AXIS);
  1838. // Tell the planner where we actually are
  1839. SYNC_PLAN_POSITION_KINEMATIC();
  1840. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1841. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< do_probe_move", current_position);
  1842. #endif
  1843. }
  1844. // Do a single Z probe and return with current_position[Z_AXIS]
  1845. // at the height where the probe triggered.
  1846. static float run_z_probe() {
  1847. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1848. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> run_z_probe", current_position);
  1849. #endif
  1850. // Prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
  1851. refresh_cmd_timeout();
  1852. #if ENABLED(PROBE_DOUBLE_TOUCH)
  1853. // Do a first probe at the fast speed
  1854. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_FAST);
  1855. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1856. float first_probe_z = current_position[Z_AXIS];
  1857. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("1st Probe Z:", first_probe_z);
  1858. #endif
  1859. // move up by the bump distance
  1860. do_blocking_move_to_z(current_position[Z_AXIS] + home_bump_mm(Z_AXIS), MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1861. #else
  1862. // If the nozzle is above the travel height then
  1863. // move down quickly before doing the slow probe
  1864. float z = LOGICAL_Z_POSITION(Z_CLEARANCE_BETWEEN_PROBES);
  1865. if (zprobe_zoffset < 0) z -= zprobe_zoffset;
  1866. if (z < current_position[Z_AXIS])
  1867. do_blocking_move_to_z(z, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1868. #endif
  1869. // move down slowly to find bed
  1870. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_SLOW);
  1871. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1872. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< run_z_probe", current_position);
  1873. #endif
  1874. // Debug: compare probe heights
  1875. #if ENABLED(PROBE_DOUBLE_TOUCH) && ENABLED(DEBUG_LEVELING_FEATURE)
  1876. if (DEBUGGING(LEVELING)) {
  1877. SERIAL_ECHOPAIR("2nd Probe Z:", current_position[Z_AXIS]);
  1878. SERIAL_ECHOLNPAIR(" Discrepancy:", first_probe_z - current_position[Z_AXIS]);
  1879. }
  1880. #endif
  1881. return current_position[Z_AXIS];
  1882. }
  1883. //
  1884. // - Move to the given XY
  1885. // - Deploy the probe, if not already deployed
  1886. // - Probe the bed, get the Z position
  1887. // - Depending on the 'stow' flag
  1888. // - Stow the probe, or
  1889. // - Raise to the BETWEEN height
  1890. // - Return the probed Z position
  1891. //
  1892. //float probe_pt(const float &x, const float &y, const bool stow = true, const int verbose_level = 1) {
  1893. float probe_pt(const float x, const float y, const bool stow, const int verbose_level) {
  1894. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1895. if (DEBUGGING(LEVELING)) {
  1896. SERIAL_ECHOPAIR(">>> probe_pt(", x);
  1897. SERIAL_ECHOPAIR(", ", y);
  1898. SERIAL_ECHOPAIR(", ", stow ? "" : "no ");
  1899. SERIAL_ECHOLNPGM("stow)");
  1900. DEBUG_POS("", current_position);
  1901. }
  1902. #endif
  1903. const float old_feedrate_mm_s = feedrate_mm_s;
  1904. #if ENABLED(DELTA)
  1905. if (current_position[Z_AXIS] > delta_clip_start_height)
  1906. do_blocking_move_to_z(delta_clip_start_height);
  1907. #endif
  1908. // Ensure a minimum height before moving the probe
  1909. do_probe_raise(Z_CLEARANCE_BETWEEN_PROBES);
  1910. feedrate_mm_s = XY_PROBE_FEEDRATE_MM_S;
  1911. // Move the probe to the given XY
  1912. do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1913. if (DEPLOY_PROBE()) return NAN;
  1914. const float measured_z = run_z_probe();
  1915. if (!stow)
  1916. do_probe_raise(Z_CLEARANCE_BETWEEN_PROBES);
  1917. else
  1918. if (STOW_PROBE()) return NAN;
  1919. if (verbose_level > 2) {
  1920. SERIAL_PROTOCOLPGM("Bed X: ");
  1921. SERIAL_PROTOCOL_F(x, 3);
  1922. SERIAL_PROTOCOLPGM(" Y: ");
  1923. SERIAL_PROTOCOL_F(y, 3);
  1924. SERIAL_PROTOCOLPGM(" Z: ");
  1925. SERIAL_PROTOCOL_F(measured_z - -zprobe_zoffset + 0.0001, 3);
  1926. SERIAL_EOL;
  1927. }
  1928. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1929. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  1930. #endif
  1931. feedrate_mm_s = old_feedrate_mm_s;
  1932. return measured_z;
  1933. }
  1934. #endif // HAS_BED_PROBE
  1935. #if PLANNER_LEVELING
  1936. /**
  1937. * Turn bed leveling on or off, fixing the current
  1938. * position as-needed.
  1939. *
  1940. * Disable: Current position = physical position
  1941. * Enable: Current position = "unleveled" physical position
  1942. */
  1943. void set_bed_leveling_enabled(bool enable/*=true*/) {
  1944. #if ENABLED(MESH_BED_LEVELING)
  1945. if (enable != mbl.active()) {
  1946. if (!enable)
  1947. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  1948. mbl.set_active(enable && mbl.has_mesh());
  1949. if (enable) planner.unapply_leveling(current_position);
  1950. }
  1951. #elif HAS_ABL && !ENABLED(AUTO_BED_LEVELING_UBL)
  1952. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  1953. const bool can_change = (!enable || (bilinear_grid_spacing[0] && bilinear_grid_spacing[1]));
  1954. #else
  1955. constexpr bool can_change = true;
  1956. #endif
  1957. if (can_change && enable != planner.abl_enabled) {
  1958. planner.abl_enabled = enable;
  1959. if (!enable)
  1960. set_current_from_steppers_for_axis(
  1961. #if ABL_PLANAR
  1962. ALL_AXES
  1963. #else
  1964. Z_AXIS
  1965. #endif
  1966. );
  1967. else
  1968. planner.unapply_leveling(current_position);
  1969. }
  1970. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  1971. if (ubl.state.eeprom_storage_slot == 0) {
  1972. ubl.state.active = enable;
  1973. ubl.store_state();
  1974. }
  1975. #endif
  1976. }
  1977. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  1978. void set_z_fade_height(const float zfh) {
  1979. planner.z_fade_height = zfh;
  1980. planner.inverse_z_fade_height = RECIPROCAL(zfh);
  1981. if (
  1982. #if ENABLED(MESH_BED_LEVELING)
  1983. mbl.active()
  1984. #else
  1985. planner.abl_enabled
  1986. #endif
  1987. ) {
  1988. set_current_from_steppers_for_axis(
  1989. #if ABL_PLANAR
  1990. ALL_AXES
  1991. #else
  1992. Z_AXIS
  1993. #endif
  1994. );
  1995. }
  1996. }
  1997. #endif // LEVELING_FADE_HEIGHT
  1998. /**
  1999. * Reset calibration results to zero.
  2000. */
  2001. void reset_bed_level() {
  2002. set_bed_leveling_enabled(false);
  2003. #if ENABLED(MESH_BED_LEVELING)
  2004. if (mbl.has_mesh()) {
  2005. mbl.reset();
  2006. mbl.set_has_mesh(false);
  2007. }
  2008. #else
  2009. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2010. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  2011. #endif
  2012. #if ABL_PLANAR
  2013. planner.bed_level_matrix.set_to_identity();
  2014. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2015. bilinear_start[X_AXIS] = bilinear_start[Y_AXIS] =
  2016. bilinear_grid_spacing[X_AXIS] = bilinear_grid_spacing[Y_AXIS] = 0;
  2017. for (uint8_t x = 0; x < ABL_GRID_MAX_POINTS_X; x++)
  2018. for (uint8_t y = 0; y < ABL_GRID_MAX_POINTS_Y; y++)
  2019. bed_level_grid[x][y] = UNPROBED;
  2020. #endif
  2021. #endif
  2022. }
  2023. #endif // PLANNER_LEVELING
  2024. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2025. /**
  2026. * Extrapolate a single point from its neighbors
  2027. */
  2028. static void extrapolate_one_point(uint8_t x, uint8_t y, int8_t xdir, int8_t ydir) {
  2029. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2030. if (DEBUGGING(LEVELING)) {
  2031. SERIAL_ECHOPGM("Extrapolate [");
  2032. if (x < 10) SERIAL_CHAR(' ');
  2033. SERIAL_ECHO((int)x);
  2034. SERIAL_CHAR(xdir ? (xdir > 0 ? '+' : '-') : ' ');
  2035. SERIAL_CHAR(' ');
  2036. if (y < 10) SERIAL_CHAR(' ');
  2037. SERIAL_ECHO((int)y);
  2038. SERIAL_CHAR(ydir ? (ydir > 0 ? '+' : '-') : ' ');
  2039. SERIAL_CHAR(']');
  2040. }
  2041. #endif
  2042. if (bed_level_grid[x][y] != UNPROBED) {
  2043. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2044. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM(" (done)");
  2045. #endif
  2046. return; // Don't overwrite good values.
  2047. }
  2048. SERIAL_EOL;
  2049. // Get X neighbors, Y neighbors, and XY neighbors
  2050. float a1 = bed_level_grid[x + xdir][y], a2 = bed_level_grid[x + xdir * 2][y],
  2051. b1 = bed_level_grid[x][y + ydir], b2 = bed_level_grid[x][y + ydir * 2],
  2052. c1 = bed_level_grid[x + xdir][y + ydir], c2 = bed_level_grid[x + xdir * 2][y + ydir * 2];
  2053. // Treat far unprobed points as zero, near as equal to far
  2054. if (a2 == UNPROBED) a2 = 0.0; if (a1 == UNPROBED) a1 = a2;
  2055. if (b2 == UNPROBED) b2 = 0.0; if (b1 == UNPROBED) b1 = b2;
  2056. if (c2 == UNPROBED) c2 = 0.0; if (c1 == UNPROBED) c1 = c2;
  2057. const float a = 2 * a1 - a2, b = 2 * b1 - b2, c = 2 * c1 - c2;
  2058. // Take the average instead of the median
  2059. bed_level_grid[x][y] = (a + b + c) / 3.0;
  2060. // Median is robust (ignores outliers).
  2061. // bed_level_grid[x][y] = (a < b) ? ((b < c) ? b : (c < a) ? a : c)
  2062. // : ((c < b) ? b : (a < c) ? a : c);
  2063. }
  2064. //Enable this if your SCARA uses 180° of total area
  2065. //#define EXTRAPOLATE_FROM_EDGE
  2066. #if ENABLED(EXTRAPOLATE_FROM_EDGE)
  2067. #if ABL_GRID_MAX_POINTS_X < ABL_GRID_MAX_POINTS_Y
  2068. #define HALF_IN_X
  2069. #elif ABL_GRID_MAX_POINTS_Y < ABL_GRID_MAX_POINTS_X
  2070. #define HALF_IN_Y
  2071. #endif
  2072. #endif
  2073. /**
  2074. * Fill in the unprobed points (corners of circular print surface)
  2075. * using linear extrapolation, away from the center.
  2076. */
  2077. static void extrapolate_unprobed_bed_level() {
  2078. #ifdef HALF_IN_X
  2079. const uint8_t ctrx2 = 0, xlen = ABL_GRID_MAX_POINTS_X - 1;
  2080. #else
  2081. const uint8_t ctrx1 = (ABL_GRID_MAX_POINTS_X - 1) / 2, // left-of-center
  2082. ctrx2 = ABL_GRID_MAX_POINTS_X / 2, // right-of-center
  2083. xlen = ctrx1;
  2084. #endif
  2085. #ifdef HALF_IN_Y
  2086. const uint8_t ctry2 = 0, ylen = ABL_GRID_MAX_POINTS_Y - 1;
  2087. #else
  2088. const uint8_t ctry1 = (ABL_GRID_MAX_POINTS_Y - 1) / 2, // top-of-center
  2089. ctry2 = ABL_GRID_MAX_POINTS_Y / 2, // bottom-of-center
  2090. ylen = ctry1;
  2091. #endif
  2092. for (uint8_t xo = 0; xo <= xlen; xo++)
  2093. for (uint8_t yo = 0; yo <= ylen; yo++) {
  2094. uint8_t x2 = ctrx2 + xo, y2 = ctry2 + yo;
  2095. #ifndef HALF_IN_X
  2096. const uint8_t x1 = ctrx1 - xo;
  2097. #endif
  2098. #ifndef HALF_IN_Y
  2099. const uint8_t y1 = ctry1 - yo;
  2100. #ifndef HALF_IN_X
  2101. extrapolate_one_point(x1, y1, +1, +1); // left-below + +
  2102. #endif
  2103. extrapolate_one_point(x2, y1, -1, +1); // right-below - +
  2104. #endif
  2105. #ifndef HALF_IN_X
  2106. extrapolate_one_point(x1, y2, +1, -1); // left-above + -
  2107. #endif
  2108. extrapolate_one_point(x2, y2, -1, -1); // right-above - -
  2109. }
  2110. }
  2111. /**
  2112. * Print calibration results for plotting or manual frame adjustment.
  2113. */
  2114. static void print_2d_array(const uint8_t sx, const uint8_t sy, const uint8_t precision, float (*fn)(const uint8_t, const uint8_t)) {
  2115. for (uint8_t x = 0; x < sx; x++) {
  2116. for (uint8_t i = 0; i < precision + 2 + (x < 10 ? 1 : 0); i++)
  2117. SERIAL_PROTOCOLCHAR(' ');
  2118. SERIAL_PROTOCOL((int)x);
  2119. }
  2120. SERIAL_EOL;
  2121. for (uint8_t y = 0; y < sy; y++) {
  2122. if (y < 10) SERIAL_PROTOCOLCHAR(' ');
  2123. SERIAL_PROTOCOL((int)y);
  2124. for (uint8_t x = 0; x < sx; x++) {
  2125. SERIAL_PROTOCOLCHAR(' ');
  2126. float offset = fn(x, y);
  2127. if (offset != UNPROBED) {
  2128. if (offset >= 0) SERIAL_PROTOCOLCHAR('+');
  2129. SERIAL_PROTOCOL_F(offset, precision);
  2130. }
  2131. else
  2132. for (uint8_t i = 0; i < precision + 3; i++)
  2133. SERIAL_PROTOCOLCHAR(i ? '=' : ' ');
  2134. }
  2135. SERIAL_EOL;
  2136. }
  2137. SERIAL_EOL;
  2138. }
  2139. static void print_bilinear_leveling_grid() {
  2140. SERIAL_ECHOLNPGM("Bilinear Leveling Grid:");
  2141. print_2d_array(ABL_GRID_MAX_POINTS_X, ABL_GRID_MAX_POINTS_Y, 2,
  2142. [](const uint8_t x, const uint8_t y) { return bed_level_grid[x][y]; }
  2143. );
  2144. }
  2145. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  2146. #define ABL_GRID_POINTS_VIRT_X (ABL_GRID_MAX_POINTS_X - 1) * (BILINEAR_SUBDIVISIONS) + 1
  2147. #define ABL_GRID_POINTS_VIRT_Y (ABL_GRID_MAX_POINTS_Y - 1) * (BILINEAR_SUBDIVISIONS) + 1
  2148. #define ABL_TEMP_POINTS_X (ABL_GRID_MAX_POINTS_X + 2)
  2149. #define ABL_TEMP_POINTS_Y (ABL_GRID_MAX_POINTS_Y + 2)
  2150. float bed_level_grid_virt[ABL_GRID_POINTS_VIRT_X][ABL_GRID_POINTS_VIRT_Y];
  2151. int bilinear_grid_spacing_virt[2] = { 0 };
  2152. static void bed_level_virt_print() {
  2153. SERIAL_ECHOLNPGM("Subdivided with CATMULL ROM Leveling Grid:");
  2154. print_2d_array(ABL_GRID_POINTS_VIRT_X, ABL_GRID_POINTS_VIRT_Y, 5,
  2155. [](const uint8_t x, const uint8_t y) { return bed_level_grid_virt[x][y]; }
  2156. );
  2157. }
  2158. #define LINEAR_EXTRAPOLATION(E, I) ((E) * 2 - (I))
  2159. float bed_level_virt_coord(const uint8_t x, const uint8_t y) {
  2160. uint8_t ep = 0, ip = 1;
  2161. if (!x || x == ABL_TEMP_POINTS_X - 1) {
  2162. if (x) {
  2163. ep = ABL_GRID_MAX_POINTS_X - 1;
  2164. ip = ABL_GRID_MAX_POINTS_X - 2;
  2165. }
  2166. if (y > 0 && y < ABL_TEMP_POINTS_Y - 1)
  2167. return LINEAR_EXTRAPOLATION(
  2168. bed_level_grid[ep][y - 1],
  2169. bed_level_grid[ip][y - 1]
  2170. );
  2171. else
  2172. return LINEAR_EXTRAPOLATION(
  2173. bed_level_virt_coord(ep + 1, y),
  2174. bed_level_virt_coord(ip + 1, y)
  2175. );
  2176. }
  2177. if (!y || y == ABL_TEMP_POINTS_Y - 1) {
  2178. if (y) {
  2179. ep = ABL_GRID_MAX_POINTS_Y - 1;
  2180. ip = ABL_GRID_MAX_POINTS_Y - 2;
  2181. }
  2182. if (x > 0 && x < ABL_TEMP_POINTS_X - 1)
  2183. return LINEAR_EXTRAPOLATION(
  2184. bed_level_grid[x - 1][ep],
  2185. bed_level_grid[x - 1][ip]
  2186. );
  2187. else
  2188. return LINEAR_EXTRAPOLATION(
  2189. bed_level_virt_coord(x, ep + 1),
  2190. bed_level_virt_coord(x, ip + 1)
  2191. );
  2192. }
  2193. return bed_level_grid[x - 1][y - 1];
  2194. }
  2195. static float bed_level_virt_cmr(const float p[4], const uint8_t i, const float t) {
  2196. return (
  2197. p[i-1] * -t * sq(1 - t)
  2198. + p[i] * (2 - 5 * sq(t) + 3 * t * sq(t))
  2199. + p[i+1] * t * (1 + 4 * t - 3 * sq(t))
  2200. - p[i+2] * sq(t) * (1 - t)
  2201. ) * 0.5;
  2202. }
  2203. static float bed_level_virt_2cmr(const uint8_t x, const uint8_t y, const float &tx, const float &ty) {
  2204. float row[4], column[4];
  2205. for (uint8_t i = 0; i < 4; i++) {
  2206. for (uint8_t j = 0; j < 4; j++) {
  2207. column[j] = bed_level_virt_coord(i + x - 1, j + y - 1);
  2208. }
  2209. row[i] = bed_level_virt_cmr(column, 1, ty);
  2210. }
  2211. return bed_level_virt_cmr(row, 1, tx);
  2212. }
  2213. void bed_level_virt_interpolate() {
  2214. for (uint8_t y = 0; y < ABL_GRID_MAX_POINTS_Y; y++)
  2215. for (uint8_t x = 0; x < ABL_GRID_MAX_POINTS_X; x++)
  2216. for (uint8_t ty = 0; ty < BILINEAR_SUBDIVISIONS; ty++)
  2217. for (uint8_t tx = 0; tx < BILINEAR_SUBDIVISIONS; tx++) {
  2218. if ((ty && y == ABL_GRID_MAX_POINTS_Y - 1) || (tx && x == ABL_GRID_MAX_POINTS_X - 1))
  2219. continue;
  2220. bed_level_grid_virt[x * (BILINEAR_SUBDIVISIONS) + tx][y * (BILINEAR_SUBDIVISIONS) + ty] =
  2221. bed_level_virt_2cmr(
  2222. x + 1,
  2223. y + 1,
  2224. (float)tx / (BILINEAR_SUBDIVISIONS),
  2225. (float)ty / (BILINEAR_SUBDIVISIONS)
  2226. );
  2227. }
  2228. }
  2229. #endif // ABL_BILINEAR_SUBDIVISION
  2230. #endif // AUTO_BED_LEVELING_BILINEAR
  2231. /**
  2232. * Home an individual linear axis
  2233. */
  2234. static void do_homing_move(const AxisEnum axis, float distance, float fr_mm_s=0.0) {
  2235. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2236. if (DEBUGGING(LEVELING)) {
  2237. SERIAL_ECHOPAIR(">>> do_homing_move(", axis_codes[axis]);
  2238. SERIAL_ECHOPAIR(", ", distance);
  2239. SERIAL_ECHOPAIR(", ", fr_mm_s);
  2240. SERIAL_CHAR(')');
  2241. SERIAL_EOL;
  2242. }
  2243. #endif
  2244. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  2245. const bool deploy_bltouch = (axis == Z_AXIS && distance < 0);
  2246. if (deploy_bltouch) set_bltouch_deployed(true);
  2247. #endif
  2248. // Tell the planner we're at Z=0
  2249. current_position[axis] = 0;
  2250. #if IS_SCARA
  2251. SYNC_PLAN_POSITION_KINEMATIC();
  2252. current_position[axis] = distance;
  2253. inverse_kinematics(current_position);
  2254. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[axis], active_extruder);
  2255. #else
  2256. sync_plan_position();
  2257. current_position[axis] = distance;
  2258. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[axis], active_extruder);
  2259. #endif
  2260. stepper.synchronize();
  2261. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  2262. if (deploy_bltouch) set_bltouch_deployed(false);
  2263. #endif
  2264. endstops.hit_on_purpose();
  2265. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2266. if (DEBUGGING(LEVELING)) {
  2267. SERIAL_ECHOPAIR("<<< do_homing_move(", axis_codes[axis]);
  2268. SERIAL_CHAR(')');
  2269. SERIAL_EOL;
  2270. }
  2271. #endif
  2272. }
  2273. /**
  2274. * Home an individual "raw axis" to its endstop.
  2275. * This applies to XYZ on Cartesian and Core robots, and
  2276. * to the individual ABC steppers on DELTA and SCARA.
  2277. *
  2278. * At the end of the procedure the axis is marked as
  2279. * homed and the current position of that axis is updated.
  2280. * Kinematic robots should wait till all axes are homed
  2281. * before updating the current position.
  2282. */
  2283. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  2284. static void homeaxis(const AxisEnum axis) {
  2285. #if IS_SCARA
  2286. // Only Z homing (with probe) is permitted
  2287. if (axis != Z_AXIS) { BUZZ(100, 880); return; }
  2288. #else
  2289. #define CAN_HOME(A) \
  2290. (axis == A##_AXIS && ((A##_MIN_PIN > -1 && A##_HOME_DIR < 0) || (A##_MAX_PIN > -1 && A##_HOME_DIR > 0)))
  2291. if (!CAN_HOME(X) && !CAN_HOME(Y) && !CAN_HOME(Z)) return;
  2292. #endif
  2293. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2294. if (DEBUGGING(LEVELING)) {
  2295. SERIAL_ECHOPAIR(">>> homeaxis(", axis_codes[axis]);
  2296. SERIAL_CHAR(')');
  2297. SERIAL_EOL;
  2298. }
  2299. #endif
  2300. const int axis_home_dir =
  2301. #if ENABLED(DUAL_X_CARRIAGE)
  2302. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  2303. #endif
  2304. home_dir(axis);
  2305. // Homing Z towards the bed? Deploy the Z probe or endstop.
  2306. #if HOMING_Z_WITH_PROBE
  2307. if (axis == Z_AXIS && DEPLOY_PROBE()) return;
  2308. #endif
  2309. // Set a flag for Z motor locking
  2310. #if ENABLED(Z_DUAL_ENDSTOPS)
  2311. if (axis == Z_AXIS) stepper.set_homing_flag(true);
  2312. #endif
  2313. // Fast move towards endstop until triggered
  2314. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2315. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 1 Fast:");
  2316. #endif
  2317. do_homing_move(axis, 1.5 * max_length(axis) * axis_home_dir);
  2318. // When homing Z with probe respect probe clearance
  2319. const float bump = axis_home_dir * (
  2320. #if HOMING_Z_WITH_PROBE
  2321. (axis == Z_AXIS) ? max(Z_CLEARANCE_BETWEEN_PROBES, home_bump_mm(Z_AXIS)) :
  2322. #endif
  2323. home_bump_mm(axis)
  2324. );
  2325. // If a second homing move is configured...
  2326. if (bump) {
  2327. // Move away from the endstop by the axis HOME_BUMP_MM
  2328. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2329. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Move Away:");
  2330. #endif
  2331. do_homing_move(axis, -bump);
  2332. // Slow move towards endstop until triggered
  2333. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2334. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 2 Slow:");
  2335. #endif
  2336. do_homing_move(axis, 2 * bump, get_homing_bump_feedrate(axis));
  2337. }
  2338. #if ENABLED(Z_DUAL_ENDSTOPS)
  2339. if (axis == Z_AXIS) {
  2340. float adj = fabs(z_endstop_adj);
  2341. bool lockZ1;
  2342. if (axis_home_dir > 0) {
  2343. adj = -adj;
  2344. lockZ1 = (z_endstop_adj > 0);
  2345. }
  2346. else
  2347. lockZ1 = (z_endstop_adj < 0);
  2348. if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
  2349. // Move to the adjusted endstop height
  2350. do_homing_move(axis, adj);
  2351. if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
  2352. stepper.set_homing_flag(false);
  2353. } // Z_AXIS
  2354. #endif
  2355. #if IS_SCARA
  2356. set_axis_is_at_home(axis);
  2357. SYNC_PLAN_POSITION_KINEMATIC();
  2358. #elif ENABLED(DELTA)
  2359. // Delta has already moved all three towers up in G28
  2360. // so here it re-homes each tower in turn.
  2361. // Delta homing treats the axes as normal linear axes.
  2362. // retrace by the amount specified in endstop_adj
  2363. if (endstop_adj[axis] * Z_HOME_DIR < 0) {
  2364. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2365. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("endstop_adj:");
  2366. #endif
  2367. do_homing_move(axis, endstop_adj[axis]);
  2368. }
  2369. #else
  2370. // For cartesian/core machines,
  2371. // set the axis to its home position
  2372. set_axis_is_at_home(axis);
  2373. sync_plan_position();
  2374. destination[axis] = current_position[axis];
  2375. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2376. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  2377. #endif
  2378. #endif
  2379. // Put away the Z probe
  2380. #if HOMING_Z_WITH_PROBE
  2381. if (axis == Z_AXIS && STOW_PROBE()) return;
  2382. #endif
  2383. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2384. if (DEBUGGING(LEVELING)) {
  2385. SERIAL_ECHOPAIR("<<< homeaxis(", axis_codes[axis]);
  2386. SERIAL_CHAR(')');
  2387. SERIAL_EOL;
  2388. }
  2389. #endif
  2390. } // homeaxis()
  2391. #if ENABLED(FWRETRACT)
  2392. void retract(const bool retracting, const bool swapping = false) {
  2393. static float hop_height;
  2394. if (retracting == retracted[active_extruder]) return;
  2395. const float old_feedrate_mm_s = feedrate_mm_s;
  2396. set_destination_to_current();
  2397. if (retracting) {
  2398. feedrate_mm_s = retract_feedrate_mm_s;
  2399. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  2400. sync_plan_position_e();
  2401. prepare_move_to_destination();
  2402. if (retract_zlift > 0.01) {
  2403. hop_height = current_position[Z_AXIS];
  2404. // Pretend current position is lower
  2405. current_position[Z_AXIS] -= retract_zlift;
  2406. SYNC_PLAN_POSITION_KINEMATIC();
  2407. // Raise up to the old current_position
  2408. prepare_move_to_destination();
  2409. }
  2410. }
  2411. else {
  2412. // If the height hasn't been altered, undo the Z hop
  2413. if (retract_zlift > 0.01 && hop_height == current_position[Z_AXIS]) {
  2414. // Pretend current position is higher. Z will lower on the next move
  2415. current_position[Z_AXIS] += retract_zlift;
  2416. SYNC_PLAN_POSITION_KINEMATIC();
  2417. }
  2418. feedrate_mm_s = retract_recover_feedrate_mm_s;
  2419. const float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  2420. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  2421. sync_plan_position_e();
  2422. // Lower Z and recover E
  2423. prepare_move_to_destination();
  2424. }
  2425. feedrate_mm_s = old_feedrate_mm_s;
  2426. retracted[active_extruder] = retracting;
  2427. } // retract()
  2428. #endif // FWRETRACT
  2429. #if ENABLED(MIXING_EXTRUDER)
  2430. void normalize_mix() {
  2431. float mix_total = 0.0;
  2432. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) mix_total += RECIPROCAL(mixing_factor[i]);
  2433. // Scale all values if they don't add up to ~1.0
  2434. if (!NEAR(mix_total, 1.0)) {
  2435. SERIAL_PROTOCOLLNPGM("Warning: Mix factors must add up to 1.0. Scaling.");
  2436. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) mixing_factor[i] *= mix_total;
  2437. }
  2438. }
  2439. #if ENABLED(DIRECT_MIXING_IN_G1)
  2440. // Get mixing parameters from the GCode
  2441. // The total "must" be 1.0 (but it will be normalized)
  2442. // If no mix factors are given, the old mix is preserved
  2443. void gcode_get_mix() {
  2444. const char* mixing_codes = "ABCDHI";
  2445. byte mix_bits = 0;
  2446. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) {
  2447. if (code_seen(mixing_codes[i])) {
  2448. SBI(mix_bits, i);
  2449. float v = code_value_float();
  2450. NOLESS(v, 0.0);
  2451. mixing_factor[i] = RECIPROCAL(v);
  2452. }
  2453. }
  2454. // If any mixing factors were included, clear the rest
  2455. // If none were included, preserve the last mix
  2456. if (mix_bits) {
  2457. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  2458. if (!TEST(mix_bits, i)) mixing_factor[i] = 0.0;
  2459. normalize_mix();
  2460. }
  2461. }
  2462. #endif
  2463. #endif
  2464. /**
  2465. * ***************************************************************************
  2466. * ***************************** G-CODE HANDLING *****************************
  2467. * ***************************************************************************
  2468. */
  2469. /**
  2470. * Set XYZE destination and feedrate from the current GCode command
  2471. *
  2472. * - Set destination from included axis codes
  2473. * - Set to current for missing axis codes
  2474. * - Set the feedrate, if included
  2475. */
  2476. void gcode_get_destination() {
  2477. LOOP_XYZE(i) {
  2478. if (code_seen(axis_codes[i]))
  2479. destination[i] = code_value_axis_units(i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  2480. else
  2481. destination[i] = current_position[i];
  2482. }
  2483. if (code_seen('F') && code_value_linear_units() > 0.0)
  2484. feedrate_mm_s = MMM_TO_MMS(code_value_linear_units());
  2485. #if ENABLED(PRINTCOUNTER)
  2486. if (!DEBUGGING(DRYRUN))
  2487. print_job_timer.incFilamentUsed(destination[E_AXIS] - current_position[E_AXIS]);
  2488. #endif
  2489. // Get ABCDHI mixing factors
  2490. #if ENABLED(MIXING_EXTRUDER) && ENABLED(DIRECT_MIXING_IN_G1)
  2491. gcode_get_mix();
  2492. #endif
  2493. }
  2494. void unknown_command_error() {
  2495. SERIAL_ECHO_START;
  2496. SERIAL_ECHOPAIR(MSG_UNKNOWN_COMMAND, current_command);
  2497. SERIAL_CHAR('"');
  2498. SERIAL_EOL;
  2499. }
  2500. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  2501. /**
  2502. * Output a "busy" message at regular intervals
  2503. * while the machine is not accepting commands.
  2504. */
  2505. void host_keepalive() {
  2506. const millis_t ms = millis();
  2507. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  2508. if (PENDING(ms, next_busy_signal_ms)) return;
  2509. switch (busy_state) {
  2510. case IN_HANDLER:
  2511. case IN_PROCESS:
  2512. SERIAL_ECHO_START;
  2513. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  2514. break;
  2515. case PAUSED_FOR_USER:
  2516. SERIAL_ECHO_START;
  2517. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  2518. break;
  2519. case PAUSED_FOR_INPUT:
  2520. SERIAL_ECHO_START;
  2521. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  2522. break;
  2523. default:
  2524. break;
  2525. }
  2526. }
  2527. next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
  2528. }
  2529. #endif //HOST_KEEPALIVE_FEATURE
  2530. bool position_is_reachable(float target[XYZ]
  2531. #if HAS_BED_PROBE
  2532. , bool by_probe=false
  2533. #endif
  2534. ) {
  2535. float dx = RAW_X_POSITION(target[X_AXIS]),
  2536. dy = RAW_Y_POSITION(target[Y_AXIS]);
  2537. #if HAS_BED_PROBE
  2538. if (by_probe) {
  2539. dx -= X_PROBE_OFFSET_FROM_EXTRUDER;
  2540. dy -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  2541. }
  2542. #endif
  2543. #if IS_SCARA
  2544. #if MIDDLE_DEAD_ZONE_R > 0
  2545. const float R2 = HYPOT2(dx - SCARA_OFFSET_X, dy - SCARA_OFFSET_Y);
  2546. return R2 >= sq(float(MIDDLE_DEAD_ZONE_R)) && R2 <= sq(L1 + L2);
  2547. #else
  2548. return HYPOT2(dx - SCARA_OFFSET_X, dy - SCARA_OFFSET_Y) <= sq(L1 + L2);
  2549. #endif
  2550. #elif ENABLED(DELTA)
  2551. return HYPOT2(dx, dy) <= sq((float)(DELTA_PRINTABLE_RADIUS));
  2552. #else
  2553. const float dz = RAW_Z_POSITION(target[Z_AXIS]);
  2554. return dx >= X_MIN_POS - 0.0001 && dx <= X_MAX_POS + 0.0001
  2555. && dy >= Y_MIN_POS - 0.0001 && dy <= Y_MAX_POS + 0.0001
  2556. && dz >= Z_MIN_POS - 0.0001 && dz <= Z_MAX_POS + 0.0001;
  2557. #endif
  2558. }
  2559. /**************************************************
  2560. ***************** GCode Handlers *****************
  2561. **************************************************/
  2562. /**
  2563. * G0, G1: Coordinated movement of X Y Z E axes
  2564. */
  2565. inline void gcode_G0_G1(
  2566. #if IS_SCARA
  2567. bool fast_move=false
  2568. #endif
  2569. ) {
  2570. if (IsRunning()) {
  2571. gcode_get_destination(); // For X Y Z E F
  2572. #if ENABLED(FWRETRACT)
  2573. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2574. const float echange = destination[E_AXIS] - current_position[E_AXIS];
  2575. // Is this move an attempt to retract or recover?
  2576. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  2577. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  2578. sync_plan_position_e(); // AND from the planner
  2579. retract(!retracted[active_extruder]);
  2580. return;
  2581. }
  2582. }
  2583. #endif //FWRETRACT
  2584. #if IS_SCARA
  2585. fast_move ? prepare_uninterpolated_move_to_destination() : prepare_move_to_destination();
  2586. #else
  2587. prepare_move_to_destination();
  2588. #endif
  2589. }
  2590. }
  2591. /**
  2592. * G2: Clockwise Arc
  2593. * G3: Counterclockwise Arc
  2594. *
  2595. * This command has two forms: IJ-form and R-form.
  2596. *
  2597. * - I specifies an X offset. J specifies a Y offset.
  2598. * At least one of the IJ parameters is required.
  2599. * X and Y can be omitted to do a complete circle.
  2600. * The given XY is not error-checked. The arc ends
  2601. * based on the angle of the destination.
  2602. * Mixing I or J with R will throw an error.
  2603. *
  2604. * - R specifies the radius. X or Y is required.
  2605. * Omitting both X and Y will throw an error.
  2606. * X or Y must differ from the current XY.
  2607. * Mixing R with I or J will throw an error.
  2608. *
  2609. * Examples:
  2610. *
  2611. * G2 I10 ; CW circle centered at X+10
  2612. * G3 X20 Y12 R14 ; CCW circle with r=14 ending at X20 Y12
  2613. */
  2614. #if ENABLED(ARC_SUPPORT)
  2615. inline void gcode_G2_G3(bool clockwise) {
  2616. if (IsRunning()) {
  2617. #if ENABLED(SF_ARC_FIX)
  2618. const bool relative_mode_backup = relative_mode;
  2619. relative_mode = true;
  2620. #endif
  2621. gcode_get_destination();
  2622. #if ENABLED(SF_ARC_FIX)
  2623. relative_mode = relative_mode_backup;
  2624. #endif
  2625. float arc_offset[2] = { 0.0, 0.0 };
  2626. if (code_seen('R')) {
  2627. const float r = code_value_axis_units(X_AXIS),
  2628. x1 = current_position[X_AXIS], y1 = current_position[Y_AXIS],
  2629. x2 = destination[X_AXIS], y2 = destination[Y_AXIS];
  2630. if (r && (x2 != x1 || y2 != y1)) {
  2631. const float e = clockwise ^ (r < 0) ? -1 : 1, // clockwise -1/1, counterclockwise 1/-1
  2632. dx = x2 - x1, dy = y2 - y1, // X and Y differences
  2633. d = HYPOT(dx, dy), // Linear distance between the points
  2634. h = sqrt(sq(r) - sq(d * 0.5)), // Distance to the arc pivot-point
  2635. mx = (x1 + x2) * 0.5, my = (y1 + y2) * 0.5, // Point between the two points
  2636. sx = -dy / d, sy = dx / d, // Slope of the perpendicular bisector
  2637. cx = mx + e * h * sx, cy = my + e * h * sy; // Pivot-point of the arc
  2638. arc_offset[X_AXIS] = cx - x1;
  2639. arc_offset[Y_AXIS] = cy - y1;
  2640. }
  2641. }
  2642. else {
  2643. if (code_seen('I')) arc_offset[X_AXIS] = code_value_axis_units(X_AXIS);
  2644. if (code_seen('J')) arc_offset[Y_AXIS] = code_value_axis_units(Y_AXIS);
  2645. }
  2646. if (arc_offset[0] || arc_offset[1]) {
  2647. // Send an arc to the planner
  2648. plan_arc(destination, arc_offset, clockwise);
  2649. refresh_cmd_timeout();
  2650. }
  2651. else {
  2652. // Bad arguments
  2653. SERIAL_ERROR_START;
  2654. SERIAL_ERRORLNPGM(MSG_ERR_ARC_ARGS);
  2655. }
  2656. }
  2657. }
  2658. #endif
  2659. /**
  2660. * G4: Dwell S<seconds> or P<milliseconds>
  2661. */
  2662. inline void gcode_G4() {
  2663. millis_t dwell_ms = 0;
  2664. if (code_seen('P')) dwell_ms = code_value_millis(); // milliseconds to wait
  2665. if (code_seen('S')) dwell_ms = code_value_millis_from_seconds(); // seconds to wait
  2666. stepper.synchronize();
  2667. refresh_cmd_timeout();
  2668. dwell_ms += previous_cmd_ms; // keep track of when we started waiting
  2669. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  2670. while (PENDING(millis(), dwell_ms)) idle();
  2671. }
  2672. #if ENABLED(BEZIER_CURVE_SUPPORT)
  2673. /**
  2674. * Parameters interpreted according to:
  2675. * http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline
  2676. * However I, J omission is not supported at this point; all
  2677. * parameters can be omitted and default to zero.
  2678. */
  2679. /**
  2680. * G5: Cubic B-spline
  2681. */
  2682. inline void gcode_G5() {
  2683. if (IsRunning()) {
  2684. gcode_get_destination();
  2685. const float offset[] = {
  2686. code_seen('I') ? code_value_axis_units(X_AXIS) : 0.0,
  2687. code_seen('J') ? code_value_axis_units(Y_AXIS) : 0.0,
  2688. code_seen('P') ? code_value_axis_units(X_AXIS) : 0.0,
  2689. code_seen('Q') ? code_value_axis_units(Y_AXIS) : 0.0
  2690. };
  2691. plan_cubic_move(offset);
  2692. }
  2693. }
  2694. #endif // BEZIER_CURVE_SUPPORT
  2695. #if ENABLED(FWRETRACT)
  2696. /**
  2697. * G10 - Retract filament according to settings of M207
  2698. * G11 - Recover filament according to settings of M208
  2699. */
  2700. inline void gcode_G10_G11(bool doRetract=false) {
  2701. #if EXTRUDERS > 1
  2702. if (doRetract) {
  2703. retracted_swap[active_extruder] = (code_seen('S') && code_value_bool()); // checks for swap retract argument
  2704. }
  2705. #endif
  2706. retract(doRetract
  2707. #if EXTRUDERS > 1
  2708. , retracted_swap[active_extruder]
  2709. #endif
  2710. );
  2711. }
  2712. #endif //FWRETRACT
  2713. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  2714. /**
  2715. * G12: Clean the nozzle
  2716. */
  2717. inline void gcode_G12() {
  2718. // Don't allow nozzle cleaning without homing first
  2719. if (axis_unhomed_error(true, true, true)) { return; }
  2720. const uint8_t pattern = code_seen('P') ? code_value_ushort() : 0,
  2721. strokes = code_seen('S') ? code_value_ushort() : NOZZLE_CLEAN_STROKES,
  2722. objects = code_seen('T') ? code_value_ushort() : NOZZLE_CLEAN_TRIANGLES;
  2723. const float radius = code_seen('R') ? code_value_float() : NOZZLE_CLEAN_CIRCLE_RADIUS;
  2724. Nozzle::clean(pattern, strokes, radius, objects);
  2725. }
  2726. #endif
  2727. #if ENABLED(INCH_MODE_SUPPORT)
  2728. /**
  2729. * G20: Set input mode to inches
  2730. */
  2731. inline void gcode_G20() { set_input_linear_units(LINEARUNIT_INCH); }
  2732. /**
  2733. * G21: Set input mode to millimeters
  2734. */
  2735. inline void gcode_G21() { set_input_linear_units(LINEARUNIT_MM); }
  2736. #endif
  2737. #if ENABLED(NOZZLE_PARK_FEATURE)
  2738. /**
  2739. * G27: Park the nozzle
  2740. */
  2741. inline void gcode_G27() {
  2742. // Don't allow nozzle parking without homing first
  2743. if (axis_unhomed_error(true, true, true)) return;
  2744. Nozzle::park(code_seen('P') ? code_value_ushort() : 0);
  2745. }
  2746. #endif // NOZZLE_PARK_FEATURE
  2747. #if ENABLED(QUICK_HOME)
  2748. static void quick_home_xy() {
  2749. // Pretend the current position is 0,0
  2750. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2751. sync_plan_position();
  2752. const int x_axis_home_dir =
  2753. #if ENABLED(DUAL_X_CARRIAGE)
  2754. x_home_dir(active_extruder)
  2755. #else
  2756. home_dir(X_AXIS)
  2757. #endif
  2758. ;
  2759. const float mlx = max_length(X_AXIS),
  2760. mly = max_length(Y_AXIS),
  2761. mlratio = mlx > mly ? mly / mlx : mlx / mly,
  2762. fr_mm_s = min(homing_feedrate_mm_s[X_AXIS], homing_feedrate_mm_s[Y_AXIS]) * sqrt(sq(mlratio) + 1.0);
  2763. do_blocking_move_to_xy(1.5 * mlx * x_axis_home_dir, 1.5 * mly * home_dir(Y_AXIS), fr_mm_s);
  2764. endstops.hit_on_purpose(); // clear endstop hit flags
  2765. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2766. }
  2767. #endif // QUICK_HOME
  2768. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2769. void log_machine_info() {
  2770. SERIAL_ECHOPGM("Machine Type: ");
  2771. #if ENABLED(DELTA)
  2772. SERIAL_ECHOLNPGM("Delta");
  2773. #elif IS_SCARA
  2774. SERIAL_ECHOLNPGM("SCARA");
  2775. #elif IS_CORE
  2776. SERIAL_ECHOLNPGM("Core");
  2777. #else
  2778. SERIAL_ECHOLNPGM("Cartesian");
  2779. #endif
  2780. SERIAL_ECHOPGM("Probe: ");
  2781. #if ENABLED(PROBE_MANUALLY)
  2782. SERIAL_ECHOLNPGM("PROBE_MANUALLY");
  2783. #elif ENABLED(FIX_MOUNTED_PROBE)
  2784. SERIAL_ECHOLNPGM("FIX_MOUNTED_PROBE");
  2785. #elif ENABLED(BLTOUCH)
  2786. SERIAL_ECHOLNPGM("BLTOUCH");
  2787. #elif HAS_Z_SERVO_ENDSTOP
  2788. SERIAL_ECHOLNPGM("SERVO PROBE");
  2789. #elif ENABLED(Z_PROBE_SLED)
  2790. SERIAL_ECHOLNPGM("Z_PROBE_SLED");
  2791. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  2792. SERIAL_ECHOLNPGM("Z_PROBE_ALLEN_KEY");
  2793. #else
  2794. SERIAL_ECHOLNPGM("NONE");
  2795. #endif
  2796. #if HAS_BED_PROBE
  2797. SERIAL_ECHOPAIR("Probe Offset X:", X_PROBE_OFFSET_FROM_EXTRUDER);
  2798. SERIAL_ECHOPAIR(" Y:", Y_PROBE_OFFSET_FROM_EXTRUDER);
  2799. SERIAL_ECHOPAIR(" Z:", zprobe_zoffset);
  2800. #if (X_PROBE_OFFSET_FROM_EXTRUDER > 0)
  2801. SERIAL_ECHOPGM(" (Right");
  2802. #elif (X_PROBE_OFFSET_FROM_EXTRUDER < 0)
  2803. SERIAL_ECHOPGM(" (Left");
  2804. #elif (Y_PROBE_OFFSET_FROM_EXTRUDER != 0)
  2805. SERIAL_ECHOPGM(" (Middle");
  2806. #else
  2807. SERIAL_ECHOPGM(" (Aligned With");
  2808. #endif
  2809. #if (Y_PROBE_OFFSET_FROM_EXTRUDER > 0)
  2810. SERIAL_ECHOPGM("-Back");
  2811. #elif (Y_PROBE_OFFSET_FROM_EXTRUDER < 0)
  2812. SERIAL_ECHOPGM("-Front");
  2813. #elif (X_PROBE_OFFSET_FROM_EXTRUDER != 0)
  2814. SERIAL_ECHOPGM("-Center");
  2815. #endif
  2816. if (zprobe_zoffset < 0)
  2817. SERIAL_ECHOPGM(" & Below");
  2818. else if (zprobe_zoffset > 0)
  2819. SERIAL_ECHOPGM(" & Above");
  2820. else
  2821. SERIAL_ECHOPGM(" & Same Z as");
  2822. SERIAL_ECHOLNPGM(" Nozzle)");
  2823. #endif
  2824. #if HAS_ABL
  2825. SERIAL_ECHOPGM("Auto Bed Leveling: ");
  2826. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  2827. SERIAL_ECHOPGM("LINEAR");
  2828. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2829. SERIAL_ECHOPGM("BILINEAR");
  2830. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  2831. SERIAL_ECHOPGM("3POINT");
  2832. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2833. SERIAL_ECHOPGM("UBL");
  2834. #endif
  2835. if (planner.abl_enabled) {
  2836. SERIAL_ECHOLNPGM(" (enabled)");
  2837. #if ABL_PLANAR
  2838. float diff[XYZ] = {
  2839. stepper.get_axis_position_mm(X_AXIS) - current_position[X_AXIS],
  2840. stepper.get_axis_position_mm(Y_AXIS) - current_position[Y_AXIS],
  2841. stepper.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS]
  2842. };
  2843. SERIAL_ECHOPGM("ABL Adjustment X");
  2844. if (diff[X_AXIS] > 0) SERIAL_CHAR('+');
  2845. SERIAL_ECHO(diff[X_AXIS]);
  2846. SERIAL_ECHOPGM(" Y");
  2847. if (diff[Y_AXIS] > 0) SERIAL_CHAR('+');
  2848. SERIAL_ECHO(diff[Y_AXIS]);
  2849. SERIAL_ECHOPGM(" Z");
  2850. if (diff[Z_AXIS] > 0) SERIAL_CHAR('+');
  2851. SERIAL_ECHO(diff[Z_AXIS]);
  2852. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2853. SERIAL_ECHOPAIR("UBL Adjustment Z", stepper.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS]);
  2854. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2855. SERIAL_ECHOPAIR("ABL Adjustment Z", bilinear_z_offset(current_position));
  2856. #endif
  2857. }
  2858. else
  2859. SERIAL_ECHOLNPGM(" (disabled)");
  2860. SERIAL_EOL;
  2861. #elif ENABLED(MESH_BED_LEVELING)
  2862. SERIAL_ECHOPGM("Mesh Bed Leveling");
  2863. if (mbl.active()) {
  2864. float lz = current_position[Z_AXIS];
  2865. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], lz);
  2866. SERIAL_ECHOLNPGM(" (enabled)");
  2867. SERIAL_ECHOPAIR("MBL Adjustment Z", lz);
  2868. }
  2869. else
  2870. SERIAL_ECHOPGM(" (disabled)");
  2871. SERIAL_EOL;
  2872. #endif // MESH_BED_LEVELING
  2873. }
  2874. #endif // DEBUG_LEVELING_FEATURE
  2875. #if ENABLED(DELTA)
  2876. /**
  2877. * A delta can only safely home all axes at the same time
  2878. * This is like quick_home_xy() but for 3 towers.
  2879. */
  2880. inline void home_delta() {
  2881. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2882. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> home_delta", current_position);
  2883. #endif
  2884. // Init the current position of all carriages to 0,0,0
  2885. ZERO(current_position);
  2886. sync_plan_position();
  2887. // Move all carriages together linearly until an endstop is hit.
  2888. current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = (Z_MAX_LENGTH + 10);
  2889. feedrate_mm_s = homing_feedrate_mm_s[X_AXIS];
  2890. line_to_current_position();
  2891. stepper.synchronize();
  2892. endstops.hit_on_purpose(); // clear endstop hit flags
  2893. // At least one carriage has reached the top.
  2894. // Now re-home each carriage separately.
  2895. HOMEAXIS(A);
  2896. HOMEAXIS(B);
  2897. HOMEAXIS(C);
  2898. // Set all carriages to their home positions
  2899. // Do this here all at once for Delta, because
  2900. // XYZ isn't ABC. Applying this per-tower would
  2901. // give the impression that they are the same.
  2902. LOOP_XYZ(i) set_axis_is_at_home((AxisEnum)i);
  2903. SYNC_PLAN_POSITION_KINEMATIC();
  2904. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2905. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< home_delta", current_position);
  2906. #endif
  2907. }
  2908. #endif // DELTA
  2909. #if ENABLED(Z_SAFE_HOMING)
  2910. inline void home_z_safely() {
  2911. // Disallow Z homing if X or Y are unknown
  2912. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  2913. LCD_MESSAGEPGM(MSG_ERR_Z_HOMING);
  2914. SERIAL_ECHO_START;
  2915. SERIAL_ECHOLNPGM(MSG_ERR_Z_HOMING);
  2916. return;
  2917. }
  2918. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2919. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Z_SAFE_HOMING >>>");
  2920. #endif
  2921. SYNC_PLAN_POSITION_KINEMATIC();
  2922. /**
  2923. * Move the Z probe (or just the nozzle) to the safe homing point
  2924. */
  2925. destination[X_AXIS] = LOGICAL_X_POSITION(Z_SAFE_HOMING_X_POINT);
  2926. destination[Y_AXIS] = LOGICAL_Y_POSITION(Z_SAFE_HOMING_Y_POINT);
  2927. destination[Z_AXIS] = current_position[Z_AXIS]; // Z is already at the right height
  2928. if (position_is_reachable(
  2929. destination
  2930. #if HOMING_Z_WITH_PROBE
  2931. , true
  2932. #endif
  2933. )
  2934. ) {
  2935. #if HOMING_Z_WITH_PROBE
  2936. destination[X_AXIS] -= X_PROBE_OFFSET_FROM_EXTRUDER;
  2937. destination[Y_AXIS] -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  2938. #endif
  2939. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2940. if (DEBUGGING(LEVELING)) DEBUG_POS("Z_SAFE_HOMING", destination);
  2941. #endif
  2942. // This causes the carriage on Dual X to unpark
  2943. #if ENABLED(DUAL_X_CARRIAGE)
  2944. active_extruder_parked = false;
  2945. #endif
  2946. do_blocking_move_to_xy(destination[X_AXIS], destination[Y_AXIS]);
  2947. HOMEAXIS(Z);
  2948. }
  2949. else {
  2950. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  2951. SERIAL_ECHO_START;
  2952. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  2953. }
  2954. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2955. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  2956. #endif
  2957. }
  2958. #endif // Z_SAFE_HOMING
  2959. /**
  2960. * G28: Home all axes according to settings
  2961. *
  2962. * Parameters
  2963. *
  2964. * None Home to all axes with no parameters.
  2965. * With QUICK_HOME enabled XY will home together, then Z.
  2966. *
  2967. * Cartesian parameters
  2968. *
  2969. * X Home to the X endstop
  2970. * Y Home to the Y endstop
  2971. * Z Home to the Z endstop
  2972. *
  2973. */
  2974. inline void gcode_G28() {
  2975. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2976. if (DEBUGGING(LEVELING)) {
  2977. SERIAL_ECHOLNPGM(">>> gcode_G28");
  2978. log_machine_info();
  2979. }
  2980. #endif
  2981. // Wait for planner moves to finish!
  2982. stepper.synchronize();
  2983. // Disable the leveling matrix before homing
  2984. #if PLANNER_LEVELING || ENABLED(MESH_BED_LEVELING)
  2985. set_bed_leveling_enabled(false);
  2986. #endif
  2987. // Always home with tool 0 active
  2988. #if HOTENDS > 1
  2989. const uint8_t old_tool_index = active_extruder;
  2990. tool_change(0, 0, true);
  2991. #endif
  2992. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  2993. extruder_duplication_enabled = false;
  2994. #endif
  2995. setup_for_endstop_or_probe_move();
  2996. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2997. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  2998. #endif
  2999. endstops.enable(true); // Enable endstops for next homing move
  3000. #if ENABLED(DELTA)
  3001. home_delta();
  3002. #else // NOT DELTA
  3003. const bool homeX = code_seen('X'), homeY = code_seen('Y'), homeZ = code_seen('Z'),
  3004. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  3005. set_destination_to_current();
  3006. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  3007. if (home_all_axis || homeZ) {
  3008. HOMEAXIS(Z);
  3009. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3010. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  3011. #endif
  3012. }
  3013. #else
  3014. if (home_all_axis || homeX || homeY) {
  3015. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  3016. destination[Z_AXIS] = LOGICAL_Z_POSITION(Z_HOMING_HEIGHT);
  3017. if (destination[Z_AXIS] > current_position[Z_AXIS]) {
  3018. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3019. if (DEBUGGING(LEVELING))
  3020. SERIAL_ECHOLNPAIR("Raise Z (before homing) to ", destination[Z_AXIS]);
  3021. #endif
  3022. do_blocking_move_to_z(destination[Z_AXIS]);
  3023. }
  3024. }
  3025. #endif
  3026. #if ENABLED(QUICK_HOME)
  3027. if (home_all_axis || (homeX && homeY)) quick_home_xy();
  3028. #endif
  3029. #if ENABLED(HOME_Y_BEFORE_X)
  3030. // Home Y
  3031. if (home_all_axis || homeY) {
  3032. HOMEAXIS(Y);
  3033. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3034. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  3035. #endif
  3036. }
  3037. #endif
  3038. // Home X
  3039. if (home_all_axis || homeX) {
  3040. #if ENABLED(DUAL_X_CARRIAGE)
  3041. // Always home the 2nd (right) extruder first
  3042. active_extruder = 1;
  3043. HOMEAXIS(X);
  3044. // Remember this extruder's position for later tool change
  3045. inactive_extruder_x_pos = RAW_X_POSITION(current_position[X_AXIS]);
  3046. // Home the 1st (left) extruder
  3047. active_extruder = 0;
  3048. HOMEAXIS(X);
  3049. // Consider the active extruder to be parked
  3050. COPY(raised_parked_position, current_position);
  3051. delayed_move_time = 0;
  3052. active_extruder_parked = true;
  3053. #else
  3054. HOMEAXIS(X);
  3055. #endif
  3056. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3057. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  3058. #endif
  3059. }
  3060. #if DISABLED(HOME_Y_BEFORE_X)
  3061. // Home Y
  3062. if (home_all_axis || homeY) {
  3063. HOMEAXIS(Y);
  3064. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3065. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  3066. #endif
  3067. }
  3068. #endif
  3069. // Home Z last if homing towards the bed
  3070. #if Z_HOME_DIR < 0
  3071. if (home_all_axis || homeZ) {
  3072. #if ENABLED(Z_SAFE_HOMING)
  3073. home_z_safely();
  3074. #else
  3075. HOMEAXIS(Z);
  3076. #endif
  3077. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3078. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all_axis || homeZ) > final", current_position);
  3079. #endif
  3080. } // home_all_axis || homeZ
  3081. #endif // Z_HOME_DIR < 0
  3082. SYNC_PLAN_POSITION_KINEMATIC();
  3083. #endif // !DELTA (gcode_G28)
  3084. endstops.not_homing();
  3085. #if ENABLED(DELTA) && ENABLED(DELTA_HOME_TO_SAFE_ZONE)
  3086. // move to a height where we can use the full xy-area
  3087. do_blocking_move_to_z(delta_clip_start_height);
  3088. #endif
  3089. // Enable mesh leveling again
  3090. #if ENABLED(MESH_BED_LEVELING)
  3091. if (mbl.reactivate()) {
  3092. set_bed_leveling_enabled(true);
  3093. if (home_all_axis || (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && homeZ)) {
  3094. #if ENABLED(MESH_G28_REST_ORIGIN)
  3095. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS);
  3096. set_destination_to_current();
  3097. line_to_destination(homing_feedrate_mm_s[Z_AXIS]);
  3098. stepper.synchronize();
  3099. #endif
  3100. }
  3101. }
  3102. #endif
  3103. clean_up_after_endstop_or_probe_move();
  3104. // Restore the active tool after homing
  3105. #if HOTENDS > 1
  3106. tool_change(old_tool_index, 0, true);
  3107. #endif
  3108. report_current_position();
  3109. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3110. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G28");
  3111. #endif
  3112. }
  3113. #if HAS_PROBING_PROCEDURE
  3114. void out_of_range_error(const char* p_edge) {
  3115. SERIAL_PROTOCOLPGM("?Probe ");
  3116. serialprintPGM(p_edge);
  3117. SERIAL_PROTOCOLLNPGM(" position out of range.");
  3118. }
  3119. #endif
  3120. #if ENABLED(MESH_BED_LEVELING)
  3121. inline void _mbl_goto_xy(const float &x, const float &y) {
  3122. const float old_feedrate_mm_s = feedrate_mm_s;
  3123. #if MANUAL_PROBE_HEIGHT > 0
  3124. feedrate_mm_s = homing_feedrate_mm_s[Z_AXIS];
  3125. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS) + MANUAL_PROBE_HEIGHT;
  3126. line_to_current_position();
  3127. #endif
  3128. feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  3129. current_position[X_AXIS] = LOGICAL_X_POSITION(x);
  3130. current_position[Y_AXIS] = LOGICAL_Y_POSITION(y);
  3131. line_to_current_position();
  3132. #if MANUAL_PROBE_HEIGHT > 0
  3133. feedrate_mm_s = homing_feedrate_mm_s[Z_AXIS];
  3134. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS) + 0.2; // just slightly over the bed
  3135. line_to_current_position();
  3136. #endif
  3137. feedrate_mm_s = old_feedrate_mm_s;
  3138. stepper.synchronize();
  3139. }
  3140. // Save 130 bytes with non-duplication of PSTR
  3141. void say_not_entered() { SERIAL_PROTOCOLLNPGM(" not entered."); }
  3142. void mbl_mesh_report() {
  3143. SERIAL_PROTOCOLLNPGM("Num X,Y: " STRINGIFY(MESH_NUM_X_POINTS) "," STRINGIFY(MESH_NUM_Y_POINTS));
  3144. SERIAL_PROTOCOLPGM("Z offset: "); SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  3145. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3146. for (uint8_t py = 0; py < MESH_NUM_Y_POINTS; py++) {
  3147. for (uint8_t px = 0; px < MESH_NUM_X_POINTS; px++) {
  3148. SERIAL_PROTOCOLPGM(" ");
  3149. SERIAL_PROTOCOL_F(mbl.z_values[py][px], 5);
  3150. }
  3151. SERIAL_EOL;
  3152. }
  3153. }
  3154. /**
  3155. * G29: Mesh-based Z probe, probes a grid and produces a
  3156. * mesh to compensate for variable bed height
  3157. *
  3158. * Parameters With MESH_BED_LEVELING:
  3159. *
  3160. * S0 Produce a mesh report
  3161. * S1 Start probing mesh points
  3162. * S2 Probe the next mesh point
  3163. * S3 Xn Yn Zn.nn Manually modify a single point
  3164. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  3165. * S5 Reset and disable mesh
  3166. *
  3167. * The S0 report the points as below
  3168. *
  3169. * +----> X-axis 1-n
  3170. * |
  3171. * |
  3172. * v Y-axis 1-n
  3173. *
  3174. */
  3175. inline void gcode_G29() {
  3176. static int probe_index = -1;
  3177. #if HAS_SOFTWARE_ENDSTOPS
  3178. static bool enable_soft_endstops;
  3179. #endif
  3180. const MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_byte() : MeshReport;
  3181. if (state < 0 || state > 5) {
  3182. SERIAL_PROTOCOLLNPGM("S out of range (0-5).");
  3183. return;
  3184. }
  3185. int8_t px, py;
  3186. switch (state) {
  3187. case MeshReport:
  3188. if (mbl.has_mesh()) {
  3189. SERIAL_PROTOCOLLNPAIR("State: ", mbl.active() ? MSG_ON : MSG_OFF);
  3190. mbl_mesh_report();
  3191. }
  3192. else
  3193. SERIAL_PROTOCOLLNPGM("Mesh bed leveling has no data.");
  3194. break;
  3195. case MeshStart:
  3196. mbl.reset();
  3197. probe_index = 0;
  3198. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  3199. break;
  3200. case MeshNext:
  3201. if (probe_index < 0) {
  3202. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  3203. return;
  3204. }
  3205. // For each G29 S2...
  3206. if (probe_index == 0) {
  3207. #if HAS_SOFTWARE_ENDSTOPS
  3208. // For the initial G29 S2 save software endstop state
  3209. enable_soft_endstops = soft_endstops_enabled;
  3210. #endif
  3211. }
  3212. else {
  3213. // For G29 S2 after adjusting Z.
  3214. mbl.set_zigzag_z(probe_index - 1, current_position[Z_AXIS]);
  3215. #if HAS_SOFTWARE_ENDSTOPS
  3216. soft_endstops_enabled = enable_soft_endstops;
  3217. #endif
  3218. }
  3219. // If there's another point to sample, move there with optional lift.
  3220. if (probe_index < (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)) {
  3221. mbl.zigzag(probe_index, px, py);
  3222. _mbl_goto_xy(mbl.get_probe_x(px), mbl.get_probe_y(py));
  3223. #if HAS_SOFTWARE_ENDSTOPS
  3224. // Disable software endstops to allow manual adjustment
  3225. // If G29 is not completed, they will not be re-enabled
  3226. soft_endstops_enabled = false;
  3227. #endif
  3228. probe_index++;
  3229. }
  3230. else {
  3231. // One last "return to the bed" (as originally coded) at completion
  3232. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS) + MANUAL_PROBE_HEIGHT;
  3233. line_to_current_position();
  3234. stepper.synchronize();
  3235. // After recording the last point, activate the mbl and home
  3236. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  3237. probe_index = -1;
  3238. mbl.set_has_mesh(true);
  3239. mbl.set_reactivate(true);
  3240. enqueue_and_echo_commands_P(PSTR("G28"));
  3241. BUZZ(100, 659);
  3242. BUZZ(100, 698);
  3243. }
  3244. break;
  3245. case MeshSet:
  3246. if (code_seen('X')) {
  3247. px = code_value_int() - 1;
  3248. if (px < 0 || px >= MESH_NUM_X_POINTS) {
  3249. SERIAL_PROTOCOLLNPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").");
  3250. return;
  3251. }
  3252. }
  3253. else {
  3254. SERIAL_CHAR('X'); say_not_entered();
  3255. return;
  3256. }
  3257. if (code_seen('Y')) {
  3258. py = code_value_int() - 1;
  3259. if (py < 0 || py >= MESH_NUM_Y_POINTS) {
  3260. SERIAL_PROTOCOLLNPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").");
  3261. return;
  3262. }
  3263. }
  3264. else {
  3265. SERIAL_CHAR('Y'); say_not_entered();
  3266. return;
  3267. }
  3268. if (code_seen('Z')) {
  3269. mbl.z_values[py][px] = code_value_axis_units(Z_AXIS);
  3270. }
  3271. else {
  3272. SERIAL_CHAR('Z'); say_not_entered();
  3273. return;
  3274. }
  3275. break;
  3276. case MeshSetZOffset:
  3277. if (code_seen('Z')) {
  3278. mbl.z_offset = code_value_axis_units(Z_AXIS);
  3279. }
  3280. else {
  3281. SERIAL_CHAR('Z'); say_not_entered();
  3282. return;
  3283. }
  3284. break;
  3285. case MeshReset:
  3286. reset_bed_level();
  3287. break;
  3288. } // switch(state)
  3289. report_current_position();
  3290. }
  3291. #elif HAS_ABL && DISABLED(AUTO_BED_LEVELING_UBL)
  3292. /**
  3293. * G29: Detailed Z probe, probes the bed at 3 or more points.
  3294. * Will fail if the printer has not been homed with G28.
  3295. *
  3296. * Enhanced G29 Auto Bed Leveling Probe Routine
  3297. *
  3298. * Parameters With LINEAR and BILINEAR:
  3299. *
  3300. * P Set the size of the grid that will be probed (P x P points).
  3301. * Not supported by non-linear delta printer bed leveling.
  3302. * Example: "G29 P4"
  3303. *
  3304. * S Set the XY travel speed between probe points (in units/min)
  3305. *
  3306. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  3307. * or clean the rotation Matrix. Useful to check the topology
  3308. * after a first run of G29.
  3309. *
  3310. * V Set the verbose level (0-4). Example: "G29 V3"
  3311. *
  3312. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  3313. * This is useful for manual bed leveling and finding flaws in the bed (to
  3314. * assist with part placement).
  3315. * Not supported by non-linear delta printer bed leveling.
  3316. *
  3317. * F Set the Front limit of the probing grid
  3318. * B Set the Back limit of the probing grid
  3319. * L Set the Left limit of the probing grid
  3320. * R Set the Right limit of the probing grid
  3321. *
  3322. * Parameters with BILINEAR only:
  3323. *
  3324. * Z Supply an additional Z probe offset
  3325. *
  3326. * Global Parameters:
  3327. *
  3328. * E/e By default G29 will engage the Z probe, test the bed, then disengage.
  3329. * Include "E" to engage/disengage the Z probe for each sample.
  3330. * There's no extra effect if you have a fixed Z probe.
  3331. * Usage: "G29 E" or "G29 e"
  3332. *
  3333. */
  3334. inline void gcode_G29() {
  3335. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3336. const bool query = code_seen('Q');
  3337. const uint8_t old_debug_flags = marlin_debug_flags;
  3338. if (query) marlin_debug_flags |= DEBUG_LEVELING;
  3339. if (DEBUGGING(LEVELING)) {
  3340. DEBUG_POS(">>> gcode_G29", current_position);
  3341. log_machine_info();
  3342. }
  3343. marlin_debug_flags = old_debug_flags;
  3344. if (query) return;
  3345. #endif
  3346. // Don't allow auto-leveling without homing first
  3347. if (axis_unhomed_error(true, true, true)) return;
  3348. const int verbose_level = code_seen('V') ? code_value_int() : 1;
  3349. if (verbose_level < 0 || verbose_level > 4) {
  3350. SERIAL_PROTOCOLLNPGM("?(V)erbose Level is implausible (0-4).");
  3351. return;
  3352. }
  3353. bool dryrun = code_seen('D'),
  3354. stow_probe_after_each = code_seen('E');
  3355. #if ABL_GRID
  3356. if (verbose_level > 0) {
  3357. SERIAL_PROTOCOLLNPGM("G29 Auto Bed Leveling");
  3358. if (dryrun) SERIAL_PROTOCOLLNPGM("Running in DRY-RUN mode");
  3359. }
  3360. #if ABL_PLANAR
  3361. bool do_topography_map = verbose_level > 2 || code_seen('T');
  3362. // X and Y specify points in each direction, overriding the default
  3363. // These values may be saved with the completed mesh
  3364. int abl_grid_points_x = code_seen('X') ? code_value_int() : ABL_GRID_MAX_POINTS_X,
  3365. abl_grid_points_y = code_seen('Y') ? code_value_int() : ABL_GRID_MAX_POINTS_Y;
  3366. if (code_seen('P')) abl_grid_points_x = abl_grid_points_y = code_value_int();
  3367. if (abl_grid_points_x < 2 || abl_grid_points_y < 2) {
  3368. SERIAL_PROTOCOLLNPGM("?Number of probe points is implausible (2 minimum).");
  3369. return;
  3370. }
  3371. #else
  3372. const uint8_t abl_grid_points_x = ABL_GRID_MAX_POINTS_X, abl_grid_points_y = ABL_GRID_MAX_POINTS_Y;
  3373. #endif
  3374. xy_probe_feedrate_mm_s = MMM_TO_MMS(code_seen('S') ? code_value_linear_units() : XY_PROBE_SPEED);
  3375. int left_probe_bed_position = code_seen('L') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(LEFT_PROBE_BED_POSITION),
  3376. right_probe_bed_position = code_seen('R') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(RIGHT_PROBE_BED_POSITION),
  3377. front_probe_bed_position = code_seen('F') ? (int)code_value_axis_units(Y_AXIS) : LOGICAL_Y_POSITION(FRONT_PROBE_BED_POSITION),
  3378. back_probe_bed_position = code_seen('B') ? (int)code_value_axis_units(Y_AXIS) : LOGICAL_Y_POSITION(BACK_PROBE_BED_POSITION);
  3379. const bool left_out_l = left_probe_bed_position < LOGICAL_X_POSITION(MIN_PROBE_X),
  3380. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  3381. right_out_r = right_probe_bed_position > LOGICAL_X_POSITION(MAX_PROBE_X),
  3382. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  3383. front_out_f = front_probe_bed_position < LOGICAL_Y_POSITION(MIN_PROBE_Y),
  3384. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  3385. back_out_b = back_probe_bed_position > LOGICAL_Y_POSITION(MAX_PROBE_Y),
  3386. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  3387. if (left_out || right_out || front_out || back_out) {
  3388. if (left_out) {
  3389. out_of_range_error(PSTR("(L)eft"));
  3390. left_probe_bed_position = left_out_l ? LOGICAL_X_POSITION(MIN_PROBE_X) : right_probe_bed_position - (MIN_PROBE_EDGE);
  3391. }
  3392. if (right_out) {
  3393. out_of_range_error(PSTR("(R)ight"));
  3394. right_probe_bed_position = right_out_r ? LOGICAL_Y_POSITION(MAX_PROBE_X) : left_probe_bed_position + MIN_PROBE_EDGE;
  3395. }
  3396. if (front_out) {
  3397. out_of_range_error(PSTR("(F)ront"));
  3398. front_probe_bed_position = front_out_f ? LOGICAL_Y_POSITION(MIN_PROBE_Y) : back_probe_bed_position - (MIN_PROBE_EDGE);
  3399. }
  3400. if (back_out) {
  3401. out_of_range_error(PSTR("(B)ack"));
  3402. back_probe_bed_position = back_out_b ? LOGICAL_Y_POSITION(MAX_PROBE_Y) : front_probe_bed_position + MIN_PROBE_EDGE;
  3403. }
  3404. return;
  3405. }
  3406. #endif // ABL_GRID
  3407. stepper.synchronize();
  3408. // Disable auto bed leveling during G29
  3409. bool abl_should_enable = planner.abl_enabled;
  3410. planner.abl_enabled = false;
  3411. if (!dryrun) {
  3412. // Re-orient the current position without leveling
  3413. // based on where the steppers are positioned.
  3414. set_current_from_steppers_for_axis(ALL_AXES);
  3415. // Sync the planner to where the steppers stopped
  3416. SYNC_PLAN_POSITION_KINEMATIC();
  3417. }
  3418. setup_for_endstop_or_probe_move();
  3419. // Deploy the probe. Probe will raise if needed.
  3420. if (DEPLOY_PROBE()) {
  3421. planner.abl_enabled = abl_should_enable;
  3422. return;
  3423. }
  3424. float xProbe = 0, yProbe = 0, measured_z = 0;
  3425. #if ABL_GRID
  3426. // probe at the points of a lattice grid
  3427. const float xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (abl_grid_points_x - 1),
  3428. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (abl_grid_points_y - 1);
  3429. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3430. float zoffset = zprobe_zoffset;
  3431. if (code_seen('Z')) zoffset += code_value_axis_units(Z_AXIS);
  3432. if ( xGridSpacing != bilinear_grid_spacing[X_AXIS]
  3433. || yGridSpacing != bilinear_grid_spacing[Y_AXIS]
  3434. || left_probe_bed_position != bilinear_start[X_AXIS]
  3435. || front_probe_bed_position != bilinear_start[Y_AXIS]
  3436. ) {
  3437. if (dryrun) {
  3438. // Before reset bed level, re-enable to correct the position
  3439. planner.abl_enabled = abl_should_enable;
  3440. }
  3441. // Reset grid to 0.0 or "not probed". (Also disables ABL)
  3442. reset_bed_level();
  3443. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  3444. bilinear_grid_spacing_virt[X_AXIS] = xGridSpacing / (BILINEAR_SUBDIVISIONS);
  3445. bilinear_grid_spacing_virt[Y_AXIS] = yGridSpacing / (BILINEAR_SUBDIVISIONS);
  3446. #endif
  3447. bilinear_grid_spacing[X_AXIS] = xGridSpacing;
  3448. bilinear_grid_spacing[Y_AXIS] = yGridSpacing;
  3449. bilinear_start[X_AXIS] = RAW_X_POSITION(left_probe_bed_position);
  3450. bilinear_start[Y_AXIS] = RAW_Y_POSITION(front_probe_bed_position);
  3451. // Can't re-enable (on error) until the new grid is written
  3452. abl_should_enable = false;
  3453. }
  3454. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3455. /**
  3456. * solve the plane equation ax + by + d = z
  3457. * A is the matrix with rows [x y 1] for all the probed points
  3458. * B is the vector of the Z positions
  3459. * the normal vector to the plane is formed by the coefficients of the
  3460. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3461. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3462. */
  3463. const int abl2 = abl_grid_points_x * abl_grid_points_y;
  3464. int indexIntoAB[abl_grid_points_x][abl_grid_points_y],
  3465. probe_index = -1;
  3466. float eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  3467. eqnBVector[abl2], // "B" vector of Z points
  3468. mean = 0.0;
  3469. #endif // AUTO_BED_LEVELING_LINEAR
  3470. #if ENABLED(PROBE_Y_FIRST)
  3471. #define PR_OUTER_VAR xCount
  3472. #define PR_OUTER_NUM abl_grid_points_x
  3473. #define PR_INNER_VAR yCount
  3474. #define PR_INNER_NUM abl_grid_points_y
  3475. #else
  3476. #define PR_OUTER_VAR yCount
  3477. #define PR_OUTER_NUM abl_grid_points_y
  3478. #define PR_INNER_VAR xCount
  3479. #define PR_INNER_NUM abl_grid_points_x
  3480. #endif
  3481. bool zig = PR_OUTER_NUM & 1; // Always end at RIGHT and BACK_PROBE_BED_POSITION
  3482. // Outer loop is Y with PROBE_Y_FIRST disabled
  3483. for (uint8_t PR_OUTER_VAR = 0; PR_OUTER_VAR < PR_OUTER_NUM; PR_OUTER_VAR++) {
  3484. int8_t inStart, inStop, inInc;
  3485. if (zig) { // away from origin
  3486. inStart = 0;
  3487. inStop = PR_INNER_NUM;
  3488. inInc = 1;
  3489. }
  3490. else { // towards origin
  3491. inStart = PR_INNER_NUM - 1;
  3492. inStop = -1;
  3493. inInc = -1;
  3494. }
  3495. zig = !zig; // zag
  3496. // Inner loop is Y with PROBE_Y_FIRST enabled
  3497. for (int8_t PR_INNER_VAR = inStart; PR_INNER_VAR != inStop; PR_INNER_VAR += inInc) {
  3498. float xBase = left_probe_bed_position + xGridSpacing * xCount,
  3499. yBase = front_probe_bed_position + yGridSpacing * yCount;
  3500. xProbe = floor(xBase + (xBase < 0 ? 0 : 0.5));
  3501. yProbe = floor(yBase + (yBase < 0 ? 0 : 0.5));
  3502. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3503. indexIntoAB[xCount][yCount] = ++probe_index;
  3504. #endif
  3505. #if IS_KINEMATIC
  3506. // Avoid probing outside the round or hexagonal area
  3507. float pos[XYZ] = { xProbe, yProbe, 0 };
  3508. if (!position_is_reachable(pos, true)) continue;
  3509. #endif
  3510. measured_z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  3511. if (measured_z == NAN) {
  3512. planner.abl_enabled = abl_should_enable;
  3513. return;
  3514. }
  3515. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3516. mean += measured_z;
  3517. eqnBVector[probe_index] = measured_z;
  3518. eqnAMatrix[probe_index + 0 * abl2] = xProbe;
  3519. eqnAMatrix[probe_index + 1 * abl2] = yProbe;
  3520. eqnAMatrix[probe_index + 2 * abl2] = 1;
  3521. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3522. bed_level_grid[xCount][yCount] = measured_z + zoffset;
  3523. #endif
  3524. idle();
  3525. } // inner
  3526. } // outer
  3527. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3528. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3529. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> 3-point Leveling");
  3530. #endif
  3531. // Probe at 3 arbitrary points
  3532. vector_3 points[3] = {
  3533. vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, 0),
  3534. vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, 0),
  3535. vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, 0)
  3536. };
  3537. for (uint8_t i = 0; i < 3; ++i) {
  3538. // Retain the last probe position
  3539. xProbe = LOGICAL_X_POSITION(points[i].x);
  3540. yProbe = LOGICAL_Y_POSITION(points[i].y);
  3541. measured_z = points[i].z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  3542. }
  3543. if (measured_z == NAN) {
  3544. planner.abl_enabled = abl_should_enable;
  3545. return;
  3546. }
  3547. if (!dryrun) {
  3548. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  3549. if (planeNormal.z < 0) {
  3550. planeNormal.x *= -1;
  3551. planeNormal.y *= -1;
  3552. planeNormal.z *= -1;
  3553. }
  3554. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  3555. // Can't re-enable (on error) until the new grid is written
  3556. abl_should_enable = false;
  3557. }
  3558. #endif // AUTO_BED_LEVELING_3POINT
  3559. // Raise to _Z_CLEARANCE_DEPLOY_PROBE. Stow the probe.
  3560. if (STOW_PROBE()) {
  3561. planner.abl_enabled = abl_should_enable;
  3562. return;
  3563. }
  3564. //
  3565. // Unless this is a dry run, auto bed leveling will
  3566. // definitely be enabled after this point
  3567. //
  3568. // Restore state after probing
  3569. clean_up_after_endstop_or_probe_move();
  3570. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3571. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  3572. #endif
  3573. // Calculate leveling, print reports, correct the position
  3574. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3575. if (!dryrun) extrapolate_unprobed_bed_level();
  3576. print_bilinear_leveling_grid();
  3577. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  3578. bed_level_virt_interpolate();
  3579. bed_level_virt_print();
  3580. #endif
  3581. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3582. // For LINEAR leveling calculate matrix, print reports, correct the position
  3583. // solve lsq problem
  3584. float plane_equation_coefficients[3];
  3585. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  3586. mean /= abl2;
  3587. if (verbose_level) {
  3588. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3589. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  3590. SERIAL_PROTOCOLPGM(" b: ");
  3591. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  3592. SERIAL_PROTOCOLPGM(" d: ");
  3593. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  3594. SERIAL_EOL;
  3595. if (verbose_level > 2) {
  3596. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  3597. SERIAL_PROTOCOL_F(mean, 8);
  3598. SERIAL_EOL;
  3599. }
  3600. }
  3601. // Create the matrix but don't correct the position yet
  3602. if (!dryrun) {
  3603. planner.bed_level_matrix = matrix_3x3::create_look_at(
  3604. vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1)
  3605. );
  3606. }
  3607. // Show the Topography map if enabled
  3608. if (do_topography_map) {
  3609. SERIAL_PROTOCOLLNPGM("\nBed Height Topography:\n"
  3610. " +--- BACK --+\n"
  3611. " | |\n"
  3612. " L | (+) | R\n"
  3613. " E | | I\n"
  3614. " F | (-) N (+) | G\n"
  3615. " T | | H\n"
  3616. " | (-) | T\n"
  3617. " | |\n"
  3618. " O-- FRONT --+\n"
  3619. " (0,0)");
  3620. float min_diff = 999;
  3621. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  3622. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  3623. int ind = indexIntoAB[xx][yy];
  3624. float diff = eqnBVector[ind] - mean,
  3625. x_tmp = eqnAMatrix[ind + 0 * abl2],
  3626. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3627. z_tmp = 0;
  3628. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3629. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  3630. if (diff >= 0.0)
  3631. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  3632. else
  3633. SERIAL_PROTOCOLCHAR(' ');
  3634. SERIAL_PROTOCOL_F(diff, 5);
  3635. } // xx
  3636. SERIAL_EOL;
  3637. } // yy
  3638. SERIAL_EOL;
  3639. if (verbose_level > 3) {
  3640. SERIAL_PROTOCOLLNPGM("\nCorrected Bed Height vs. Bed Topology:");
  3641. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  3642. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  3643. int ind = indexIntoAB[xx][yy];
  3644. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  3645. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3646. z_tmp = 0;
  3647. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3648. float diff = eqnBVector[ind] - z_tmp - min_diff;
  3649. if (diff >= 0.0)
  3650. SERIAL_PROTOCOLPGM(" +");
  3651. // Include + for column alignment
  3652. else
  3653. SERIAL_PROTOCOLCHAR(' ');
  3654. SERIAL_PROTOCOL_F(diff, 5);
  3655. } // xx
  3656. SERIAL_EOL;
  3657. } // yy
  3658. SERIAL_EOL;
  3659. }
  3660. } //do_topography_map
  3661. #endif // AUTO_BED_LEVELING_LINEAR
  3662. #if ABL_PLANAR
  3663. // For LINEAR and 3POINT leveling correct the current position
  3664. if (verbose_level > 0)
  3665. planner.bed_level_matrix.debug("\n\nBed Level Correction Matrix:");
  3666. if (!dryrun) {
  3667. //
  3668. // Correct the current XYZ position based on the tilted plane.
  3669. //
  3670. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3671. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 uncorrected XYZ", current_position);
  3672. #endif
  3673. float converted[XYZ];
  3674. COPY(converted, current_position);
  3675. planner.abl_enabled = true;
  3676. planner.unapply_leveling(converted); // use conversion machinery
  3677. planner.abl_enabled = false;
  3678. // Use the last measured distance to the bed, if possible
  3679. if ( NEAR(current_position[X_AXIS], xProbe - (X_PROBE_OFFSET_FROM_EXTRUDER))
  3680. && NEAR(current_position[Y_AXIS], yProbe - (Y_PROBE_OFFSET_FROM_EXTRUDER))
  3681. ) {
  3682. float simple_z = current_position[Z_AXIS] - (measured_z - (-zprobe_zoffset));
  3683. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3684. if (DEBUGGING(LEVELING)) {
  3685. SERIAL_ECHOPAIR("Z from Probe:", simple_z);
  3686. SERIAL_ECHOPAIR(" Matrix:", converted[Z_AXIS]);
  3687. SERIAL_ECHOLNPAIR(" Discrepancy:", simple_z - converted[Z_AXIS]);
  3688. }
  3689. #endif
  3690. converted[Z_AXIS] = simple_z;
  3691. }
  3692. // The rotated XY and corrected Z are now current_position
  3693. COPY(current_position, converted);
  3694. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3695. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 corrected XYZ", current_position);
  3696. #endif
  3697. }
  3698. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3699. if (!dryrun) {
  3700. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3701. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("G29 uncorrected Z:", current_position[Z_AXIS]);
  3702. #endif
  3703. // Unapply the offset because it is going to be immediately applied
  3704. // and cause compensation movement in Z
  3705. current_position[Z_AXIS] -= bilinear_z_offset(current_position);
  3706. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3707. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR(" corrected Z:", current_position[Z_AXIS]);
  3708. #endif
  3709. }
  3710. #endif // ABL_PLANAR
  3711. #ifdef Z_PROBE_END_SCRIPT
  3712. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3713. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("Z Probe End Script: ", Z_PROBE_END_SCRIPT);
  3714. #endif
  3715. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  3716. stepper.synchronize();
  3717. #endif
  3718. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3719. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G29");
  3720. #endif
  3721. report_current_position();
  3722. KEEPALIVE_STATE(IN_HANDLER);
  3723. // Auto Bed Leveling is complete! Enable if possible.
  3724. planner.abl_enabled = dryrun ? abl_should_enable : true;
  3725. if (planner.abl_enabled)
  3726. SYNC_PLAN_POSITION_KINEMATIC();
  3727. }
  3728. #endif // HAS_ABL && DISABLED(AUTO_BED_LEVELING_UBL)
  3729. #if HAS_BED_PROBE
  3730. /**
  3731. * G30: Do a single Z probe at the current XY
  3732. * Usage:
  3733. * G30 <X#> <Y#> <S#>
  3734. * X = Probe X position (default=current probe position)
  3735. * Y = Probe Y position (default=current probe position)
  3736. * S = Stows the probe if 1 (default=1)
  3737. */
  3738. inline void gcode_G30() {
  3739. float X_probe_location = code_seen('X') ? code_value_axis_units(X_AXIS) : current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  3740. Y_probe_location = code_seen('Y') ? code_value_axis_units(Y_AXIS) : current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3741. float pos[XYZ] = { X_probe_location, Y_probe_location, LOGICAL_Z_POSITION(0) };
  3742. if (!position_is_reachable(pos, true)) return;
  3743. bool stow = code_seen('S') ? code_value_bool() : true;
  3744. // Disable leveling so the planner won't mess with us
  3745. #if PLANNER_LEVELING
  3746. set_bed_leveling_enabled(false);
  3747. #endif
  3748. setup_for_endstop_or_probe_move();
  3749. float measured_z = probe_pt(X_probe_location, Y_probe_location, stow, 1);
  3750. SERIAL_PROTOCOLPGM("Bed X: ");
  3751. SERIAL_PROTOCOL(X_probe_location + 0.0001);
  3752. SERIAL_PROTOCOLPGM(" Y: ");
  3753. SERIAL_PROTOCOL(Y_probe_location + 0.0001);
  3754. SERIAL_PROTOCOLPGM(" Z: ");
  3755. SERIAL_PROTOCOLLN(measured_z - -zprobe_zoffset + 0.0001);
  3756. clean_up_after_endstop_or_probe_move();
  3757. report_current_position();
  3758. }
  3759. #if ENABLED(Z_PROBE_SLED)
  3760. /**
  3761. * G31: Deploy the Z probe
  3762. */
  3763. inline void gcode_G31() { DEPLOY_PROBE(); }
  3764. /**
  3765. * G32: Stow the Z probe
  3766. */
  3767. inline void gcode_G32() { STOW_PROBE(); }
  3768. #endif // Z_PROBE_SLED
  3769. #endif // HAS_BED_PROBE
  3770. #if ENABLED(G38_PROBE_TARGET)
  3771. static bool G38_run_probe() {
  3772. bool G38_pass_fail = false;
  3773. // Get direction of move and retract
  3774. float retract_mm[XYZ];
  3775. LOOP_XYZ(i) {
  3776. float dist = destination[i] - current_position[i];
  3777. retract_mm[i] = fabs(dist) < G38_MINIMUM_MOVE ? 0 : home_bump_mm((AxisEnum)i) * (dist > 0 ? -1 : 1);
  3778. }
  3779. stepper.synchronize(); // wait until the machine is idle
  3780. // Move until destination reached or target hit
  3781. endstops.enable(true);
  3782. G38_move = true;
  3783. G38_endstop_hit = false;
  3784. prepare_move_to_destination();
  3785. stepper.synchronize();
  3786. G38_move = false;
  3787. endstops.hit_on_purpose();
  3788. set_current_from_steppers_for_axis(ALL_AXES);
  3789. SYNC_PLAN_POSITION_KINEMATIC();
  3790. // Only do remaining moves if target was hit
  3791. if (G38_endstop_hit) {
  3792. G38_pass_fail = true;
  3793. // Move away by the retract distance
  3794. set_destination_to_current();
  3795. LOOP_XYZ(i) destination[i] += retract_mm[i];
  3796. endstops.enable(false);
  3797. prepare_move_to_destination();
  3798. stepper.synchronize();
  3799. feedrate_mm_s /= 4;
  3800. // Bump the target more slowly
  3801. LOOP_XYZ(i) destination[i] -= retract_mm[i] * 2;
  3802. endstops.enable(true);
  3803. G38_move = true;
  3804. prepare_move_to_destination();
  3805. stepper.synchronize();
  3806. G38_move = false;
  3807. set_current_from_steppers_for_axis(ALL_AXES);
  3808. SYNC_PLAN_POSITION_KINEMATIC();
  3809. }
  3810. endstops.hit_on_purpose();
  3811. endstops.not_homing();
  3812. return G38_pass_fail;
  3813. }
  3814. /**
  3815. * G38.2 - probe toward workpiece, stop on contact, signal error if failure
  3816. * G38.3 - probe toward workpiece, stop on contact
  3817. *
  3818. * Like G28 except uses Z min endstop for all axes
  3819. */
  3820. inline void gcode_G38(bool is_38_2) {
  3821. // Get X Y Z E F
  3822. gcode_get_destination();
  3823. setup_for_endstop_or_probe_move();
  3824. // If any axis has enough movement, do the move
  3825. LOOP_XYZ(i)
  3826. if (fabs(destination[i] - current_position[i]) >= G38_MINIMUM_MOVE) {
  3827. if (!code_seen('F')) feedrate_mm_s = homing_feedrate_mm_s[i];
  3828. // If G38.2 fails throw an error
  3829. if (!G38_run_probe() && is_38_2) {
  3830. SERIAL_ERROR_START;
  3831. SERIAL_ERRORLNPGM("Failed to reach target");
  3832. }
  3833. break;
  3834. }
  3835. clean_up_after_endstop_or_probe_move();
  3836. }
  3837. #endif // G38_PROBE_TARGET
  3838. /**
  3839. * G92: Set current position to given X Y Z E
  3840. */
  3841. inline void gcode_G92() {
  3842. bool didXYZ = false,
  3843. didE = code_seen('E');
  3844. if (!didE) stepper.synchronize();
  3845. LOOP_XYZE(i) {
  3846. if (code_seen(axis_codes[i])) {
  3847. #if IS_SCARA
  3848. current_position[i] = code_value_axis_units(i);
  3849. if (i != E_AXIS) didXYZ = true;
  3850. #else
  3851. #if DISABLED(NO_WORKSPACE_OFFSETS)
  3852. float p = current_position[i];
  3853. #endif
  3854. float v = code_value_axis_units(i);
  3855. current_position[i] = v;
  3856. if (i != E_AXIS) {
  3857. didXYZ = true;
  3858. #if DISABLED(NO_WORKSPACE_OFFSETS)
  3859. position_shift[i] += v - p; // Offset the coordinate space
  3860. update_software_endstops((AxisEnum)i);
  3861. #endif
  3862. }
  3863. #endif
  3864. }
  3865. }
  3866. if (didXYZ)
  3867. SYNC_PLAN_POSITION_KINEMATIC();
  3868. else if (didE)
  3869. sync_plan_position_e();
  3870. report_current_position();
  3871. }
  3872. #if ENABLED(EMERGENCY_PARSER) || ENABLED(ULTIPANEL)
  3873. /**
  3874. * M0: Unconditional stop - Wait for user button press on LCD
  3875. * M1: Conditional stop - Wait for user button press on LCD
  3876. */
  3877. inline void gcode_M0_M1() {
  3878. char* args = current_command_args;
  3879. millis_t codenum = 0;
  3880. bool hasP = false, hasS = false;
  3881. if (code_seen('P')) {
  3882. codenum = code_value_millis(); // milliseconds to wait
  3883. hasP = codenum > 0;
  3884. }
  3885. if (code_seen('S')) {
  3886. codenum = code_value_millis_from_seconds(); // seconds to wait
  3887. hasS = codenum > 0;
  3888. }
  3889. #if ENABLED(ULTIPANEL)
  3890. if (!hasP && !hasS && *args != '\0')
  3891. lcd_setstatus(args, true);
  3892. else {
  3893. LCD_MESSAGEPGM(MSG_USERWAIT);
  3894. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  3895. dontExpireStatus();
  3896. #endif
  3897. }
  3898. #else
  3899. if (!hasP && !hasS && *args != '\0') {
  3900. SERIAL_ECHO_START;
  3901. SERIAL_ECHOLN(args);
  3902. }
  3903. #endif
  3904. wait_for_user = true;
  3905. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3906. stepper.synchronize();
  3907. refresh_cmd_timeout();
  3908. if (codenum > 0) {
  3909. codenum += previous_cmd_ms; // wait until this time for a click
  3910. while (PENDING(millis(), codenum) && wait_for_user) idle();
  3911. }
  3912. else {
  3913. #if ENABLED(ULTIPANEL)
  3914. if (lcd_detected()) {
  3915. while (wait_for_user) idle();
  3916. IS_SD_PRINTING ? LCD_MESSAGEPGM(MSG_RESUMING) : LCD_MESSAGEPGM(WELCOME_MSG);
  3917. }
  3918. #else
  3919. while (wait_for_user) idle();
  3920. #endif
  3921. }
  3922. wait_for_user = false;
  3923. KEEPALIVE_STATE(IN_HANDLER);
  3924. }
  3925. #endif // EMERGENCY_PARSER || ULTIPANEL
  3926. /**
  3927. * M17: Enable power on all stepper motors
  3928. */
  3929. inline void gcode_M17() {
  3930. LCD_MESSAGEPGM(MSG_NO_MOVE);
  3931. enable_all_steppers();
  3932. }
  3933. #if IS_KINEMATIC
  3934. #define RUNPLAN(RATE_MM_S) planner.buffer_line_kinematic(destination, RATE_MM_S, active_extruder)
  3935. #else
  3936. #define RUNPLAN(RATE_MM_S) line_to_destination(RATE_MM_S)
  3937. #endif
  3938. #if ENABLED(PARK_HEAD_ON_PAUSE)
  3939. float resume_position[XYZE];
  3940. bool move_away_flag = false;
  3941. inline void move_back_on_resume() {
  3942. if (!move_away_flag) return;
  3943. move_away_flag = false;
  3944. // Set extruder to saved position
  3945. destination[E_AXIS] = current_position[E_AXIS] = resume_position[E_AXIS];
  3946. planner.set_e_position_mm(current_position[E_AXIS]);
  3947. #if IS_KINEMATIC
  3948. // Move XYZ to starting position
  3949. planner.buffer_line_kinematic(lastpos, FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  3950. #else
  3951. // Move XY to starting position, then Z
  3952. destination[X_AXIS] = resume_position[X_AXIS];
  3953. destination[Y_AXIS] = resume_position[Y_AXIS];
  3954. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  3955. destination[Z_AXIS] = resume_position[Z_AXIS];
  3956. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  3957. #endif
  3958. stepper.synchronize();
  3959. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  3960. filament_ran_out = false;
  3961. #endif
  3962. set_current_to_destination();
  3963. }
  3964. #endif // PARK_HEAD_ON_PAUSE
  3965. #if ENABLED(SDSUPPORT)
  3966. /**
  3967. * M20: List SD card to serial output
  3968. */
  3969. inline void gcode_M20() {
  3970. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  3971. card.ls();
  3972. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  3973. }
  3974. /**
  3975. * M21: Init SD Card
  3976. */
  3977. inline void gcode_M21() { card.initsd(); }
  3978. /**
  3979. * M22: Release SD Card
  3980. */
  3981. inline void gcode_M22() { card.release(); }
  3982. /**
  3983. * M23: Open a file
  3984. */
  3985. inline void gcode_M23() { card.openFile(current_command_args, true); }
  3986. /**
  3987. * M24: Start or Resume SD Print
  3988. */
  3989. inline void gcode_M24() {
  3990. #if ENABLED(PARK_HEAD_ON_PAUSE)
  3991. move_back_on_resume();
  3992. #endif
  3993. card.startFileprint();
  3994. print_job_timer.start();
  3995. }
  3996. /**
  3997. * M25: Pause SD Print
  3998. */
  3999. inline void gcode_M25() {
  4000. card.pauseSDPrint();
  4001. print_job_timer.pause();
  4002. #if ENABLED(PARK_HEAD_ON_PAUSE)
  4003. enqueue_and_echo_commands_P(PSTR("M125")); // Must be enqueued with pauseSDPrint set to be last in the buffer
  4004. #endif
  4005. }
  4006. /**
  4007. * M26: Set SD Card file index
  4008. */
  4009. inline void gcode_M26() {
  4010. if (card.cardOK && code_seen('S'))
  4011. card.setIndex(code_value_long());
  4012. }
  4013. /**
  4014. * M27: Get SD Card status
  4015. */
  4016. inline void gcode_M27() { card.getStatus(); }
  4017. /**
  4018. * M28: Start SD Write
  4019. */
  4020. inline void gcode_M28() { card.openFile(current_command_args, false); }
  4021. /**
  4022. * M29: Stop SD Write
  4023. * Processed in write to file routine above
  4024. */
  4025. inline void gcode_M29() {
  4026. // card.saving = false;
  4027. }
  4028. /**
  4029. * M30 <filename>: Delete SD Card file
  4030. */
  4031. inline void gcode_M30() {
  4032. if (card.cardOK) {
  4033. card.closefile();
  4034. card.removeFile(current_command_args);
  4035. }
  4036. }
  4037. #endif // SDSUPPORT
  4038. /**
  4039. * M31: Get the time since the start of SD Print (or last M109)
  4040. */
  4041. inline void gcode_M31() {
  4042. char buffer[21];
  4043. duration_t elapsed = print_job_timer.duration();
  4044. elapsed.toString(buffer);
  4045. lcd_setstatus(buffer);
  4046. SERIAL_ECHO_START;
  4047. SERIAL_ECHOLNPAIR("Print time: ", buffer);
  4048. #if ENABLED(AUTOTEMP)
  4049. thermalManager.autotempShutdown();
  4050. #endif
  4051. }
  4052. #if ENABLED(SDSUPPORT)
  4053. /**
  4054. * M32: Select file and start SD Print
  4055. */
  4056. inline void gcode_M32() {
  4057. if (card.sdprinting)
  4058. stepper.synchronize();
  4059. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  4060. if (!namestartpos)
  4061. namestartpos = current_command_args; // Default name position, 4 letters after the M
  4062. else
  4063. namestartpos++; //to skip the '!'
  4064. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  4065. if (card.cardOK) {
  4066. card.openFile(namestartpos, true, call_procedure);
  4067. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  4068. card.setIndex(code_value_long());
  4069. card.startFileprint();
  4070. // Procedure calls count as normal print time.
  4071. if (!call_procedure) print_job_timer.start();
  4072. }
  4073. }
  4074. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  4075. /**
  4076. * M33: Get the long full path of a file or folder
  4077. *
  4078. * Parameters:
  4079. * <dospath> Case-insensitive DOS-style path to a file or folder
  4080. *
  4081. * Example:
  4082. * M33 miscel~1/armchair/armcha~1.gco
  4083. *
  4084. * Output:
  4085. * /Miscellaneous/Armchair/Armchair.gcode
  4086. */
  4087. inline void gcode_M33() {
  4088. card.printLongPath(current_command_args);
  4089. }
  4090. #endif
  4091. #if ENABLED(SDCARD_SORT_ALPHA) && ENABLED(SDSORT_GCODE)
  4092. /**
  4093. * M34: Set SD Card Sorting Options
  4094. */
  4095. inline void gcode_M34() {
  4096. if (code_seen('S')) card.setSortOn(code_value_bool());
  4097. if (code_seen('F')) {
  4098. int v = code_value_long();
  4099. card.setSortFolders(v < 0 ? -1 : v > 0 ? 1 : 0);
  4100. }
  4101. //if (code_seen('R')) card.setSortReverse(code_value_bool());
  4102. }
  4103. #endif // SDCARD_SORT_ALPHA && SDSORT_GCODE
  4104. /**
  4105. * M928: Start SD Write
  4106. */
  4107. inline void gcode_M928() {
  4108. card.openLogFile(current_command_args);
  4109. }
  4110. #endif // SDSUPPORT
  4111. /**
  4112. * Sensitive pin test for M42, M226
  4113. */
  4114. static bool pin_is_protected(uint8_t pin) {
  4115. static const int sensitive_pins[] = SENSITIVE_PINS;
  4116. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  4117. if (sensitive_pins[i] == pin) return true;
  4118. return false;
  4119. }
  4120. /**
  4121. * M42: Change pin status via GCode
  4122. *
  4123. * P<pin> Pin number (LED if omitted)
  4124. * S<byte> Pin status from 0 - 255
  4125. */
  4126. inline void gcode_M42() {
  4127. if (!code_seen('S')) return;
  4128. int pin_status = code_value_int();
  4129. if (pin_status < 0 || pin_status > 255) return;
  4130. int pin_number = code_seen('P') ? code_value_int() : LED_PIN;
  4131. if (pin_number < 0) return;
  4132. if (pin_is_protected(pin_number)) {
  4133. SERIAL_ERROR_START;
  4134. SERIAL_ERRORLNPGM(MSG_ERR_PROTECTED_PIN);
  4135. return;
  4136. }
  4137. pinMode(pin_number, OUTPUT);
  4138. digitalWrite(pin_number, pin_status);
  4139. analogWrite(pin_number, pin_status);
  4140. #if FAN_COUNT > 0
  4141. switch (pin_number) {
  4142. #if HAS_FAN0
  4143. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  4144. #endif
  4145. #if HAS_FAN1
  4146. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  4147. #endif
  4148. #if HAS_FAN2
  4149. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  4150. #endif
  4151. }
  4152. #endif
  4153. }
  4154. #if ENABLED(PINS_DEBUGGING)
  4155. #include "pinsDebug.h"
  4156. /**
  4157. * M43: Pin report and debug
  4158. *
  4159. * E<bool> Enable / disable background endstop monitoring
  4160. * - Machine continues to operate
  4161. * - Reports changes to endstops
  4162. * - Toggles LED when an endstop changes
  4163. *
  4164. * or
  4165. *
  4166. * P<pin> Pin to read or watch. If omitted, read/watch all pins.
  4167. * W<bool> Watch pins -reporting changes- until reset, click, or M108.
  4168. * I<bool> Flag to ignore Marlin's pin protection.
  4169. *
  4170. */
  4171. inline void gcode_M43() {
  4172. // Enable or disable endstop monitoring
  4173. if (code_seen('E')) {
  4174. endstop_monitor_flag = code_value_bool();
  4175. SERIAL_PROTOCOLPGM("endstop monitor ");
  4176. SERIAL_PROTOCOL(endstop_monitor_flag ? "en" : "dis");
  4177. SERIAL_PROTOCOLLNPGM("abled");
  4178. return;
  4179. }
  4180. // Get the range of pins to test or watch
  4181. int first_pin = 0, last_pin = NUM_DIGITAL_PINS - 1;
  4182. if (code_seen('P')) {
  4183. first_pin = last_pin = code_value_byte();
  4184. if (first_pin > NUM_DIGITAL_PINS - 1) return;
  4185. }
  4186. bool ignore_protection = code_seen('I') ? code_value_bool() : false;
  4187. // Watch until click, M108, or reset
  4188. if (code_seen('W') && code_value_bool()) { // watch digital pins
  4189. byte pin_state[last_pin - first_pin + 1];
  4190. for (int8_t pin = first_pin; pin <= last_pin; pin++) {
  4191. if (pin_is_protected(pin) && !ignore_protection) continue;
  4192. pinMode(pin, INPUT_PULLUP);
  4193. // if (IS_ANALOG(pin))
  4194. // pin_state[pin - first_pin] = analogRead(pin - analogInputToDigitalPin(0)); // int16_t pin_state[...]
  4195. // else
  4196. pin_state[pin - first_pin] = digitalRead(pin);
  4197. }
  4198. #if ENABLED(EMERGENCY_PARSER) || ENABLED(ULTIPANEL)
  4199. wait_for_user = true;
  4200. #endif
  4201. for(;;) {
  4202. for (int8_t pin = first_pin; pin <= last_pin; pin++) {
  4203. if (pin_is_protected(pin)) continue;
  4204. byte val;
  4205. // if (IS_ANALOG(pin))
  4206. // val = analogRead(pin - analogInputToDigitalPin(0)); // int16_t val
  4207. // else
  4208. val = digitalRead(pin);
  4209. if (val != pin_state[pin - first_pin]) {
  4210. report_pin_state(pin);
  4211. pin_state[pin - first_pin] = val;
  4212. }
  4213. }
  4214. #if ENABLED(EMERGENCY_PARSER) || ENABLED(ULTIPANEL)
  4215. if (!wait_for_user) break;
  4216. #endif
  4217. safe_delay(500);
  4218. }
  4219. return;
  4220. }
  4221. // Report current state of selected pin(s)
  4222. for (uint8_t pin = first_pin; pin <= last_pin; pin++)
  4223. report_pin_state_extended(pin, ignore_protection);
  4224. }
  4225. #endif // PINS_DEBUGGING
  4226. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  4227. /**
  4228. * M48: Z probe repeatability measurement function.
  4229. *
  4230. * Usage:
  4231. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  4232. * P = Number of sampled points (4-50, default 10)
  4233. * X = Sample X position
  4234. * Y = Sample Y position
  4235. * V = Verbose level (0-4, default=1)
  4236. * E = Engage Z probe for each reading
  4237. * L = Number of legs of movement before probe
  4238. * S = Schizoid (Or Star if you prefer)
  4239. *
  4240. * This function assumes the bed has been homed. Specifically, that a G28 command
  4241. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  4242. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4243. * regenerated.
  4244. */
  4245. inline void gcode_M48() {
  4246. if (axis_unhomed_error(true, true, true)) return;
  4247. int8_t verbose_level = code_seen('V') ? code_value_byte() : 1;
  4248. if (verbose_level < 0 || verbose_level > 4) {
  4249. SERIAL_PROTOCOLLNPGM("?Verbose Level not plausible (0-4).");
  4250. return;
  4251. }
  4252. if (verbose_level > 0)
  4253. SERIAL_PROTOCOLLNPGM("M48 Z-Probe Repeatability Test");
  4254. int8_t n_samples = code_seen('P') ? code_value_byte() : 10;
  4255. if (n_samples < 4 || n_samples > 50) {
  4256. SERIAL_PROTOCOLLNPGM("?Sample size not plausible (4-50).");
  4257. return;
  4258. }
  4259. float X_current = current_position[X_AXIS],
  4260. Y_current = current_position[Y_AXIS];
  4261. bool stow_probe_after_each = code_seen('E');
  4262. float X_probe_location = code_seen('X') ? code_value_axis_units(X_AXIS) : X_current + X_PROBE_OFFSET_FROM_EXTRUDER;
  4263. #if DISABLED(DELTA)
  4264. if (X_probe_location < LOGICAL_X_POSITION(MIN_PROBE_X) || X_probe_location > LOGICAL_X_POSITION(MAX_PROBE_X)) {
  4265. out_of_range_error(PSTR("X"));
  4266. return;
  4267. }
  4268. #endif
  4269. float Y_probe_location = code_seen('Y') ? code_value_axis_units(Y_AXIS) : Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER;
  4270. #if DISABLED(DELTA)
  4271. if (Y_probe_location < LOGICAL_Y_POSITION(MIN_PROBE_Y) || Y_probe_location > LOGICAL_Y_POSITION(MAX_PROBE_Y)) {
  4272. out_of_range_error(PSTR("Y"));
  4273. return;
  4274. }
  4275. #else
  4276. float pos[XYZ] = { X_probe_location, Y_probe_location, 0 };
  4277. if (!position_is_reachable(pos, true)) {
  4278. SERIAL_PROTOCOLLNPGM("? (X,Y) location outside of probeable radius.");
  4279. return;
  4280. }
  4281. #endif
  4282. bool seen_L = code_seen('L');
  4283. uint8_t n_legs = seen_L ? code_value_byte() : 0;
  4284. if (n_legs > 15) {
  4285. SERIAL_PROTOCOLLNPGM("?Number of legs in movement not plausible (0-15).");
  4286. return;
  4287. }
  4288. if (n_legs == 1) n_legs = 2;
  4289. bool schizoid_flag = code_seen('S');
  4290. if (schizoid_flag && !seen_L) n_legs = 7;
  4291. /**
  4292. * Now get everything to the specified probe point So we can safely do a
  4293. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  4294. * we don't want to use that as a starting point for each probe.
  4295. */
  4296. if (verbose_level > 2)
  4297. SERIAL_PROTOCOLLNPGM("Positioning the probe...");
  4298. // Disable bed level correction in M48 because we want the raw data when we probe
  4299. #if HAS_ABL
  4300. const bool abl_was_enabled = planner.abl_enabled;
  4301. set_bed_leveling_enabled(false);
  4302. #endif
  4303. setup_for_endstop_or_probe_move();
  4304. // Move to the first point, deploy, and probe
  4305. probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  4306. randomSeed(millis());
  4307. double mean = 0.0, sigma = 0.0, min = 99999.9, max = -99999.9, sample_set[n_samples];
  4308. for (uint8_t n = 0; n < n_samples; n++) {
  4309. if (n_legs) {
  4310. int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  4311. float angle = random(0.0, 360.0),
  4312. radius = random(
  4313. #if ENABLED(DELTA)
  4314. DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
  4315. #else
  4316. 5, X_MAX_LENGTH / 8
  4317. #endif
  4318. );
  4319. if (verbose_level > 3) {
  4320. SERIAL_ECHOPAIR("Starting radius: ", radius);
  4321. SERIAL_ECHOPAIR(" angle: ", angle);
  4322. SERIAL_ECHOPGM(" Direction: ");
  4323. if (dir > 0) SERIAL_ECHOPGM("Counter-");
  4324. SERIAL_ECHOLNPGM("Clockwise");
  4325. }
  4326. for (uint8_t l = 0; l < n_legs - 1; l++) {
  4327. double delta_angle;
  4328. if (schizoid_flag)
  4329. // The points of a 5 point star are 72 degrees apart. We need to
  4330. // skip a point and go to the next one on the star.
  4331. delta_angle = dir * 2.0 * 72.0;
  4332. else
  4333. // If we do this line, we are just trying to move further
  4334. // around the circle.
  4335. delta_angle = dir * (float) random(25, 45);
  4336. angle += delta_angle;
  4337. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  4338. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  4339. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  4340. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  4341. X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
  4342. Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
  4343. #if DISABLED(DELTA)
  4344. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  4345. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  4346. #else
  4347. // If we have gone out too far, we can do a simple fix and scale the numbers
  4348. // back in closer to the origin.
  4349. while (HYPOT(X_current, Y_current) > DELTA_PROBEABLE_RADIUS) {
  4350. X_current /= 1.25;
  4351. Y_current /= 1.25;
  4352. if (verbose_level > 3) {
  4353. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  4354. SERIAL_ECHOLNPAIR(", ", Y_current);
  4355. }
  4356. }
  4357. #endif
  4358. if (verbose_level > 3) {
  4359. SERIAL_PROTOCOLPGM("Going to:");
  4360. SERIAL_ECHOPAIR(" X", X_current);
  4361. SERIAL_ECHOPAIR(" Y", Y_current);
  4362. SERIAL_ECHOLNPAIR(" Z", current_position[Z_AXIS]);
  4363. }
  4364. do_blocking_move_to_xy(X_current, Y_current);
  4365. } // n_legs loop
  4366. } // n_legs
  4367. // Probe a single point
  4368. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, 0);
  4369. /**
  4370. * Get the current mean for the data points we have so far
  4371. */
  4372. double sum = 0.0;
  4373. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  4374. mean = sum / (n + 1);
  4375. NOMORE(min, sample_set[n]);
  4376. NOLESS(max, sample_set[n]);
  4377. /**
  4378. * Now, use that mean to calculate the standard deviation for the
  4379. * data points we have so far
  4380. */
  4381. sum = 0.0;
  4382. for (uint8_t j = 0; j <= n; j++)
  4383. sum += sq(sample_set[j] - mean);
  4384. sigma = sqrt(sum / (n + 1));
  4385. if (verbose_level > 0) {
  4386. if (verbose_level > 1) {
  4387. SERIAL_PROTOCOL(n + 1);
  4388. SERIAL_PROTOCOLPGM(" of ");
  4389. SERIAL_PROTOCOL((int)n_samples);
  4390. SERIAL_PROTOCOLPGM(": z: ");
  4391. SERIAL_PROTOCOL_F(sample_set[n], 3);
  4392. if (verbose_level > 2) {
  4393. SERIAL_PROTOCOLPGM(" mean: ");
  4394. SERIAL_PROTOCOL_F(mean, 4);
  4395. SERIAL_PROTOCOLPGM(" sigma: ");
  4396. SERIAL_PROTOCOL_F(sigma, 6);
  4397. SERIAL_PROTOCOLPGM(" min: ");
  4398. SERIAL_PROTOCOL_F(min, 3);
  4399. SERIAL_PROTOCOLPGM(" max: ");
  4400. SERIAL_PROTOCOL_F(max, 3);
  4401. SERIAL_PROTOCOLPGM(" range: ");
  4402. SERIAL_PROTOCOL_F(max-min, 3);
  4403. }
  4404. SERIAL_EOL;
  4405. }
  4406. }
  4407. } // End of probe loop
  4408. if (STOW_PROBE()) return;
  4409. SERIAL_PROTOCOLPGM("Finished!");
  4410. SERIAL_EOL;
  4411. if (verbose_level > 0) {
  4412. SERIAL_PROTOCOLPGM("Mean: ");
  4413. SERIAL_PROTOCOL_F(mean, 6);
  4414. SERIAL_PROTOCOLPGM(" Min: ");
  4415. SERIAL_PROTOCOL_F(min, 3);
  4416. SERIAL_PROTOCOLPGM(" Max: ");
  4417. SERIAL_PROTOCOL_F(max, 3);
  4418. SERIAL_PROTOCOLPGM(" Range: ");
  4419. SERIAL_PROTOCOL_F(max-min, 3);
  4420. SERIAL_EOL;
  4421. }
  4422. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4423. SERIAL_PROTOCOL_F(sigma, 6);
  4424. SERIAL_EOL;
  4425. SERIAL_EOL;
  4426. clean_up_after_endstop_or_probe_move();
  4427. // Re-enable bed level correction if it has been on
  4428. #if HAS_ABL
  4429. set_bed_leveling_enabled(abl_was_enabled);
  4430. #endif
  4431. report_current_position();
  4432. }
  4433. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  4434. /**
  4435. * M75: Start print timer
  4436. */
  4437. inline void gcode_M75() { print_job_timer.start(); }
  4438. /**
  4439. * M76: Pause print timer
  4440. */
  4441. inline void gcode_M76() { print_job_timer.pause(); }
  4442. /**
  4443. * M77: Stop print timer
  4444. */
  4445. inline void gcode_M77() { print_job_timer.stop(); }
  4446. #if ENABLED(PRINTCOUNTER)
  4447. /**
  4448. * M78: Show print statistics
  4449. */
  4450. inline void gcode_M78() {
  4451. // "M78 S78" will reset the statistics
  4452. if (code_seen('S') && code_value_int() == 78)
  4453. print_job_timer.initStats();
  4454. else
  4455. print_job_timer.showStats();
  4456. }
  4457. #endif
  4458. /**
  4459. * M104: Set hot end temperature
  4460. */
  4461. inline void gcode_M104() {
  4462. if (get_target_extruder_from_command(104)) return;
  4463. if (DEBUGGING(DRYRUN)) return;
  4464. #if ENABLED(SINGLENOZZLE)
  4465. if (target_extruder != active_extruder) return;
  4466. #endif
  4467. if (code_seen('S')) {
  4468. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  4469. #if ENABLED(DUAL_X_CARRIAGE)
  4470. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  4471. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  4472. #endif
  4473. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  4474. /**
  4475. * Stop the timer at the end of print, starting is managed by
  4476. * 'heat and wait' M109.
  4477. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  4478. * stand by mode, for instance in a dual extruder setup, without affecting
  4479. * the running print timer.
  4480. */
  4481. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  4482. print_job_timer.stop();
  4483. LCD_MESSAGEPGM(WELCOME_MSG);
  4484. }
  4485. #endif
  4486. if (code_value_temp_abs() > thermalManager.degHotend(target_extruder)) status_printf(0, PSTR("E%i %s"), target_extruder + 1, MSG_HEATING);
  4487. }
  4488. #if ENABLED(AUTOTEMP)
  4489. planner.autotemp_M104_M109();
  4490. #endif
  4491. }
  4492. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  4493. void print_heaterstates() {
  4494. #if HAS_TEMP_HOTEND
  4495. SERIAL_PROTOCOLPGM(" T:");
  4496. SERIAL_PROTOCOL_F(thermalManager.degHotend(target_extruder), 1);
  4497. SERIAL_PROTOCOLPGM(" /");
  4498. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(target_extruder), 1);
  4499. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  4500. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[target_extruder] / OVERSAMPLENR);
  4501. SERIAL_PROTOCOLCHAR(')');
  4502. #endif
  4503. #endif
  4504. #if HAS_TEMP_BED
  4505. SERIAL_PROTOCOLPGM(" B:");
  4506. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  4507. SERIAL_PROTOCOLPGM(" /");
  4508. SERIAL_PROTOCOL_F(thermalManager.degTargetBed(), 1);
  4509. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  4510. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_bed_raw / OVERSAMPLENR);
  4511. SERIAL_PROTOCOLCHAR(')');
  4512. #endif
  4513. #endif
  4514. #if HOTENDS > 1
  4515. HOTEND_LOOP() {
  4516. SERIAL_PROTOCOLPAIR(" T", e);
  4517. SERIAL_PROTOCOLCHAR(':');
  4518. SERIAL_PROTOCOL_F(thermalManager.degHotend(e), 1);
  4519. SERIAL_PROTOCOLPGM(" /");
  4520. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(e), 1);
  4521. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  4522. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[e] / OVERSAMPLENR);
  4523. SERIAL_PROTOCOLCHAR(')');
  4524. #endif
  4525. }
  4526. #endif
  4527. SERIAL_PROTOCOLPGM(" @:");
  4528. SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder));
  4529. #if HAS_TEMP_BED
  4530. SERIAL_PROTOCOLPGM(" B@:");
  4531. SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1));
  4532. #endif
  4533. #if HOTENDS > 1
  4534. HOTEND_LOOP() {
  4535. SERIAL_PROTOCOLPAIR(" @", e);
  4536. SERIAL_PROTOCOLCHAR(':');
  4537. SERIAL_PROTOCOL(thermalManager.getHeaterPower(e));
  4538. }
  4539. #endif
  4540. }
  4541. #endif
  4542. /**
  4543. * M105: Read hot end and bed temperature
  4544. */
  4545. inline void gcode_M105() {
  4546. if (get_target_extruder_from_command(105)) return;
  4547. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  4548. SERIAL_PROTOCOLPGM(MSG_OK);
  4549. print_heaterstates();
  4550. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  4551. SERIAL_ERROR_START;
  4552. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  4553. #endif
  4554. SERIAL_EOL;
  4555. }
  4556. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  4557. static uint8_t auto_report_temp_interval;
  4558. static millis_t next_temp_report_ms;
  4559. /**
  4560. * M155: Set temperature auto-report interval. M155 S<seconds>
  4561. */
  4562. inline void gcode_M155() {
  4563. if (code_seen('S')) {
  4564. auto_report_temp_interval = code_value_byte();
  4565. NOMORE(auto_report_temp_interval, 60);
  4566. next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval;
  4567. }
  4568. }
  4569. inline void auto_report_temperatures() {
  4570. if (auto_report_temp_interval && ELAPSED(millis(), next_temp_report_ms)) {
  4571. next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval;
  4572. print_heaterstates();
  4573. SERIAL_EOL;
  4574. }
  4575. }
  4576. #endif // AUTO_REPORT_TEMPERATURES
  4577. #if FAN_COUNT > 0
  4578. /**
  4579. * M106: Set Fan Speed
  4580. *
  4581. * S<int> Speed between 0-255
  4582. * P<index> Fan index, if more than one fan
  4583. */
  4584. inline void gcode_M106() {
  4585. uint16_t s = code_seen('S') ? code_value_ushort() : 255,
  4586. p = code_seen('P') ? code_value_ushort() : 0;
  4587. NOMORE(s, 255);
  4588. if (p < FAN_COUNT) fanSpeeds[p] = s;
  4589. }
  4590. /**
  4591. * M107: Fan Off
  4592. */
  4593. inline void gcode_M107() {
  4594. uint16_t p = code_seen('P') ? code_value_ushort() : 0;
  4595. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  4596. }
  4597. #endif // FAN_COUNT > 0
  4598. #if DISABLED(EMERGENCY_PARSER)
  4599. /**
  4600. * M108: Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  4601. */
  4602. inline void gcode_M108() { wait_for_heatup = false; }
  4603. /**
  4604. * M112: Emergency Stop
  4605. */
  4606. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  4607. /**
  4608. * M410: Quickstop - Abort all planned moves
  4609. *
  4610. * This will stop the carriages mid-move, so most likely they
  4611. * will be out of sync with the stepper position after this.
  4612. */
  4613. inline void gcode_M410() { quickstop_stepper(); }
  4614. #endif
  4615. #ifndef MIN_COOLING_SLOPE_DEG
  4616. #define MIN_COOLING_SLOPE_DEG 1.50
  4617. #endif
  4618. #ifndef MIN_COOLING_SLOPE_TIME
  4619. #define MIN_COOLING_SLOPE_TIME 60
  4620. #endif
  4621. /**
  4622. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  4623. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  4624. */
  4625. inline void gcode_M109() {
  4626. if (get_target_extruder_from_command(109)) return;
  4627. if (DEBUGGING(DRYRUN)) return;
  4628. #if ENABLED(SINGLENOZZLE)
  4629. if (target_extruder != active_extruder) return;
  4630. #endif
  4631. bool no_wait_for_cooling = code_seen('S');
  4632. if (no_wait_for_cooling || code_seen('R')) {
  4633. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  4634. #if ENABLED(DUAL_X_CARRIAGE)
  4635. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  4636. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  4637. #endif
  4638. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  4639. /**
  4640. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  4641. * stand by mode, for instance in a dual extruder setup, without affecting
  4642. * the running print timer.
  4643. */
  4644. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  4645. print_job_timer.stop();
  4646. LCD_MESSAGEPGM(WELCOME_MSG);
  4647. }
  4648. /**
  4649. * We do not check if the timer is already running because this check will
  4650. * be done for us inside the Stopwatch::start() method thus a running timer
  4651. * will not restart.
  4652. */
  4653. else print_job_timer.start();
  4654. #endif
  4655. if (thermalManager.isHeatingHotend(target_extruder)) status_printf(0, PSTR("E%i %s"), target_extruder + 1, MSG_HEATING);
  4656. }
  4657. #if ENABLED(AUTOTEMP)
  4658. planner.autotemp_M104_M109();
  4659. #endif
  4660. #if TEMP_RESIDENCY_TIME > 0
  4661. millis_t residency_start_ms = 0;
  4662. // Loop until the temperature has stabilized
  4663. #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  4664. #else
  4665. // Loop until the temperature is very close target
  4666. #define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
  4667. #endif //TEMP_RESIDENCY_TIME > 0
  4668. float theTarget = -1.0, old_temp = 9999.0;
  4669. bool wants_to_cool = false;
  4670. wait_for_heatup = true;
  4671. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  4672. KEEPALIVE_STATE(NOT_BUSY);
  4673. do {
  4674. // Target temperature might be changed during the loop
  4675. if (theTarget != thermalManager.degTargetHotend(target_extruder)) {
  4676. wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
  4677. theTarget = thermalManager.degTargetHotend(target_extruder);
  4678. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  4679. if (no_wait_for_cooling && wants_to_cool) break;
  4680. }
  4681. now = millis();
  4682. if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
  4683. next_temp_ms = now + 1000UL;
  4684. print_heaterstates();
  4685. #if TEMP_RESIDENCY_TIME > 0
  4686. SERIAL_PROTOCOLPGM(" W:");
  4687. if (residency_start_ms) {
  4688. long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  4689. SERIAL_PROTOCOLLN(rem);
  4690. }
  4691. else {
  4692. SERIAL_PROTOCOLLNPGM("?");
  4693. }
  4694. #else
  4695. SERIAL_EOL;
  4696. #endif
  4697. }
  4698. idle();
  4699. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  4700. float temp = thermalManager.degHotend(target_extruder);
  4701. #if TEMP_RESIDENCY_TIME > 0
  4702. float temp_diff = fabs(theTarget - temp);
  4703. if (!residency_start_ms) {
  4704. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  4705. if (temp_diff < TEMP_WINDOW) residency_start_ms = now;
  4706. }
  4707. else if (temp_diff > TEMP_HYSTERESIS) {
  4708. // Restart the timer whenever the temperature falls outside the hysteresis.
  4709. residency_start_ms = now;
  4710. }
  4711. #endif //TEMP_RESIDENCY_TIME > 0
  4712. // Prevent a wait-forever situation if R is misused i.e. M109 R0
  4713. if (wants_to_cool) {
  4714. // break after MIN_COOLING_SLOPE_TIME seconds
  4715. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG
  4716. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  4717. if (old_temp - temp < MIN_COOLING_SLOPE_DEG) break;
  4718. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME;
  4719. old_temp = temp;
  4720. }
  4721. }
  4722. } while (wait_for_heatup && TEMP_CONDITIONS);
  4723. if (wait_for_heatup) LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  4724. KEEPALIVE_STATE(IN_HANDLER);
  4725. }
  4726. #if HAS_TEMP_BED
  4727. #ifndef MIN_COOLING_SLOPE_DEG_BED
  4728. #define MIN_COOLING_SLOPE_DEG_BED 1.50
  4729. #endif
  4730. #ifndef MIN_COOLING_SLOPE_TIME_BED
  4731. #define MIN_COOLING_SLOPE_TIME_BED 60
  4732. #endif
  4733. /**
  4734. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  4735. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  4736. */
  4737. inline void gcode_M190() {
  4738. if (DEBUGGING(DRYRUN)) return;
  4739. LCD_MESSAGEPGM(MSG_BED_HEATING);
  4740. bool no_wait_for_cooling = code_seen('S');
  4741. if (no_wait_for_cooling || code_seen('R')) {
  4742. thermalManager.setTargetBed(code_value_temp_abs());
  4743. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  4744. if (code_value_temp_abs() > BED_MINTEMP) {
  4745. /**
  4746. * We start the timer when 'heating and waiting' command arrives, LCD
  4747. * functions never wait. Cooling down managed by extruders.
  4748. *
  4749. * We do not check if the timer is already running because this check will
  4750. * be done for us inside the Stopwatch::start() method thus a running timer
  4751. * will not restart.
  4752. */
  4753. print_job_timer.start();
  4754. }
  4755. #endif
  4756. }
  4757. #if TEMP_BED_RESIDENCY_TIME > 0
  4758. millis_t residency_start_ms = 0;
  4759. // Loop until the temperature has stabilized
  4760. #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
  4761. #else
  4762. // Loop until the temperature is very close target
  4763. #define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
  4764. #endif //TEMP_BED_RESIDENCY_TIME > 0
  4765. float theTarget = -1.0, old_temp = 9999.0;
  4766. bool wants_to_cool = false;
  4767. wait_for_heatup = true;
  4768. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  4769. KEEPALIVE_STATE(NOT_BUSY);
  4770. target_extruder = active_extruder; // for print_heaterstates
  4771. do {
  4772. // Target temperature might be changed during the loop
  4773. if (theTarget != thermalManager.degTargetBed()) {
  4774. wants_to_cool = thermalManager.isCoolingBed();
  4775. theTarget = thermalManager.degTargetBed();
  4776. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  4777. if (no_wait_for_cooling && wants_to_cool) break;
  4778. }
  4779. now = millis();
  4780. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
  4781. next_temp_ms = now + 1000UL;
  4782. print_heaterstates();
  4783. #if TEMP_BED_RESIDENCY_TIME > 0
  4784. SERIAL_PROTOCOLPGM(" W:");
  4785. if (residency_start_ms) {
  4786. long rem = (((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  4787. SERIAL_PROTOCOLLN(rem);
  4788. }
  4789. else {
  4790. SERIAL_PROTOCOLLNPGM("?");
  4791. }
  4792. #else
  4793. SERIAL_EOL;
  4794. #endif
  4795. }
  4796. idle();
  4797. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  4798. float temp = thermalManager.degBed();
  4799. #if TEMP_BED_RESIDENCY_TIME > 0
  4800. float temp_diff = fabs(theTarget - temp);
  4801. if (!residency_start_ms) {
  4802. // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
  4803. if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = now;
  4804. }
  4805. else if (temp_diff > TEMP_BED_HYSTERESIS) {
  4806. // Restart the timer whenever the temperature falls outside the hysteresis.
  4807. residency_start_ms = now;
  4808. }
  4809. #endif //TEMP_BED_RESIDENCY_TIME > 0
  4810. // Prevent a wait-forever situation if R is misused i.e. M190 R0
  4811. if (wants_to_cool) {
  4812. // break after MIN_COOLING_SLOPE_TIME_BED seconds
  4813. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_BED
  4814. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  4815. if (old_temp - temp < MIN_COOLING_SLOPE_DEG_BED) break;
  4816. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_BED;
  4817. old_temp = temp;
  4818. }
  4819. }
  4820. } while (wait_for_heatup && TEMP_BED_CONDITIONS);
  4821. if (wait_for_heatup) LCD_MESSAGEPGM(MSG_BED_DONE);
  4822. KEEPALIVE_STATE(IN_HANDLER);
  4823. }
  4824. #endif // HAS_TEMP_BED
  4825. /**
  4826. * M110: Set Current Line Number
  4827. */
  4828. inline void gcode_M110() {
  4829. if (code_seen('N')) gcode_LastN = code_value_long();
  4830. }
  4831. /**
  4832. * M111: Set the debug level
  4833. */
  4834. inline void gcode_M111() {
  4835. marlin_debug_flags = code_seen('S') ? code_value_byte() : (uint8_t) DEBUG_NONE;
  4836. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
  4837. const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
  4838. const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
  4839. const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
  4840. const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
  4841. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4842. const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
  4843. #endif
  4844. const static char* const debug_strings[] PROGMEM = {
  4845. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16,
  4846. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4847. str_debug_32
  4848. #endif
  4849. };
  4850. SERIAL_ECHO_START;
  4851. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  4852. if (marlin_debug_flags) {
  4853. uint8_t comma = 0;
  4854. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  4855. if (TEST(marlin_debug_flags, i)) {
  4856. if (comma++) SERIAL_CHAR(',');
  4857. serialprintPGM((char*)pgm_read_word(&(debug_strings[i])));
  4858. }
  4859. }
  4860. }
  4861. else {
  4862. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  4863. }
  4864. SERIAL_EOL;
  4865. }
  4866. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  4867. /**
  4868. * M113: Get or set Host Keepalive interval (0 to disable)
  4869. *
  4870. * S<seconds> Optional. Set the keepalive interval.
  4871. */
  4872. inline void gcode_M113() {
  4873. if (code_seen('S')) {
  4874. host_keepalive_interval = code_value_byte();
  4875. NOMORE(host_keepalive_interval, 60);
  4876. }
  4877. else {
  4878. SERIAL_ECHO_START;
  4879. SERIAL_ECHOLNPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4880. }
  4881. }
  4882. #endif
  4883. #if ENABLED(BARICUDA)
  4884. #if HAS_HEATER_1
  4885. /**
  4886. * M126: Heater 1 valve open
  4887. */
  4888. inline void gcode_M126() { baricuda_valve_pressure = code_seen('S') ? code_value_byte() : 255; }
  4889. /**
  4890. * M127: Heater 1 valve close
  4891. */
  4892. inline void gcode_M127() { baricuda_valve_pressure = 0; }
  4893. #endif
  4894. #if HAS_HEATER_2
  4895. /**
  4896. * M128: Heater 2 valve open
  4897. */
  4898. inline void gcode_M128() { baricuda_e_to_p_pressure = code_seen('S') ? code_value_byte() : 255; }
  4899. /**
  4900. * M129: Heater 2 valve close
  4901. */
  4902. inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
  4903. #endif
  4904. #endif //BARICUDA
  4905. /**
  4906. * M140: Set bed temperature
  4907. */
  4908. inline void gcode_M140() {
  4909. if (DEBUGGING(DRYRUN)) return;
  4910. if (code_seen('S')) thermalManager.setTargetBed(code_value_temp_abs());
  4911. }
  4912. #if ENABLED(ULTIPANEL)
  4913. /**
  4914. * M145: Set the heatup state for a material in the LCD menu
  4915. * S<material> (0=PLA, 1=ABS)
  4916. * H<hotend temp>
  4917. * B<bed temp>
  4918. * F<fan speed>
  4919. */
  4920. inline void gcode_M145() {
  4921. uint8_t material = code_seen('S') ? (uint8_t)code_value_int() : 0;
  4922. if (material >= COUNT(lcd_preheat_hotend_temp)) {
  4923. SERIAL_ERROR_START;
  4924. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  4925. }
  4926. else {
  4927. int v;
  4928. if (code_seen('H')) {
  4929. v = code_value_int();
  4930. lcd_preheat_hotend_temp[material] = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4931. }
  4932. if (code_seen('F')) {
  4933. v = code_value_int();
  4934. lcd_preheat_fan_speed[material] = constrain(v, 0, 255);
  4935. }
  4936. #if TEMP_SENSOR_BED != 0
  4937. if (code_seen('B')) {
  4938. v = code_value_int();
  4939. lcd_preheat_bed_temp[material] = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4940. }
  4941. #endif
  4942. }
  4943. }
  4944. #endif // ULTIPANEL
  4945. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  4946. /**
  4947. * M149: Set temperature units
  4948. */
  4949. inline void gcode_M149() {
  4950. if (code_seen('C')) set_input_temp_units(TEMPUNIT_C);
  4951. else if (code_seen('K')) set_input_temp_units(TEMPUNIT_K);
  4952. else if (code_seen('F')) set_input_temp_units(TEMPUNIT_F);
  4953. }
  4954. #endif
  4955. #if HAS_POWER_SWITCH
  4956. /**
  4957. * M80: Turn on Power Supply
  4958. */
  4959. inline void gcode_M80() {
  4960. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  4961. /**
  4962. * If you have a switch on suicide pin, this is useful
  4963. * if you want to start another print with suicide feature after
  4964. * a print without suicide...
  4965. */
  4966. #if HAS_SUICIDE
  4967. OUT_WRITE(SUICIDE_PIN, HIGH);
  4968. #endif
  4969. #if ENABLED(ULTIPANEL)
  4970. powersupply = true;
  4971. LCD_MESSAGEPGM(WELCOME_MSG);
  4972. lcd_update();
  4973. #endif
  4974. }
  4975. #endif // HAS_POWER_SWITCH
  4976. /**
  4977. * M81: Turn off Power, including Power Supply, if there is one.
  4978. *
  4979. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  4980. */
  4981. inline void gcode_M81() {
  4982. thermalManager.disable_all_heaters();
  4983. stepper.finish_and_disable();
  4984. #if FAN_COUNT > 0
  4985. #if FAN_COUNT > 1
  4986. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  4987. #else
  4988. fanSpeeds[0] = 0;
  4989. #endif
  4990. #endif
  4991. delay(1000); // Wait 1 second before switching off
  4992. #if HAS_SUICIDE
  4993. stepper.synchronize();
  4994. suicide();
  4995. #elif HAS_POWER_SWITCH
  4996. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4997. #endif
  4998. #if ENABLED(ULTIPANEL)
  4999. #if HAS_POWER_SWITCH
  5000. powersupply = false;
  5001. #endif
  5002. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  5003. lcd_update();
  5004. #endif
  5005. }
  5006. /**
  5007. * M82: Set E codes absolute (default)
  5008. */
  5009. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  5010. /**
  5011. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  5012. */
  5013. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  5014. /**
  5015. * M18, M84: Disable all stepper motors
  5016. */
  5017. inline void gcode_M18_M84() {
  5018. if (code_seen('S')) {
  5019. stepper_inactive_time = code_value_millis_from_seconds();
  5020. }
  5021. else {
  5022. bool all_axis = !((code_seen('X')) || (code_seen('Y')) || (code_seen('Z')) || (code_seen('E')));
  5023. if (all_axis) {
  5024. stepper.finish_and_disable();
  5025. }
  5026. else {
  5027. stepper.synchronize();
  5028. if (code_seen('X')) disable_x();
  5029. if (code_seen('Y')) disable_y();
  5030. if (code_seen('Z')) disable_z();
  5031. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  5032. if (code_seen('E')) disable_e_steppers();
  5033. #endif
  5034. }
  5035. }
  5036. }
  5037. /**
  5038. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  5039. */
  5040. inline void gcode_M85() {
  5041. if (code_seen('S')) max_inactive_time = code_value_millis_from_seconds();
  5042. }
  5043. /**
  5044. * Multi-stepper support for M92, M201, M203
  5045. */
  5046. #if ENABLED(DISTINCT_E_FACTORS)
  5047. #define GET_TARGET_EXTRUDER(CMD) if (get_target_extruder_from_command(CMD)) return
  5048. #define TARGET_EXTRUDER target_extruder
  5049. #else
  5050. #define GET_TARGET_EXTRUDER(CMD) NOOP
  5051. #define TARGET_EXTRUDER 0
  5052. #endif
  5053. /**
  5054. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  5055. * (Follows the same syntax as G92)
  5056. *
  5057. * With multiple extruders use T to specify which one.
  5058. */
  5059. inline void gcode_M92() {
  5060. GET_TARGET_EXTRUDER(92);
  5061. LOOP_XYZE(i) {
  5062. if (code_seen(axis_codes[i])) {
  5063. if (i == E_AXIS) {
  5064. float value = code_value_per_axis_unit(E_AXIS + TARGET_EXTRUDER);
  5065. if (value < 20.0) {
  5066. float factor = planner.axis_steps_per_mm[E_AXIS + TARGET_EXTRUDER] / value; // increase e constants if M92 E14 is given for netfab.
  5067. planner.max_jerk[E_AXIS] *= factor;
  5068. planner.max_feedrate_mm_s[E_AXIS + TARGET_EXTRUDER] *= factor;
  5069. planner.max_acceleration_steps_per_s2[E_AXIS + TARGET_EXTRUDER] *= factor;
  5070. }
  5071. planner.axis_steps_per_mm[E_AXIS + TARGET_EXTRUDER] = value;
  5072. }
  5073. else {
  5074. planner.axis_steps_per_mm[i] = code_value_per_axis_unit(i);
  5075. }
  5076. }
  5077. }
  5078. planner.refresh_positioning();
  5079. }
  5080. /**
  5081. * Output the current position to serial
  5082. */
  5083. static void report_current_position() {
  5084. SERIAL_PROTOCOLPGM("X:");
  5085. SERIAL_PROTOCOL(current_position[X_AXIS]);
  5086. SERIAL_PROTOCOLPGM(" Y:");
  5087. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  5088. SERIAL_PROTOCOLPGM(" Z:");
  5089. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  5090. SERIAL_PROTOCOLPGM(" E:");
  5091. SERIAL_PROTOCOL(current_position[E_AXIS]);
  5092. stepper.report_positions();
  5093. #if IS_SCARA
  5094. SERIAL_PROTOCOLPAIR("SCARA Theta:", stepper.get_axis_position_degrees(A_AXIS));
  5095. SERIAL_PROTOCOLLNPAIR(" Psi+Theta:", stepper.get_axis_position_degrees(B_AXIS));
  5096. SERIAL_EOL;
  5097. #endif
  5098. }
  5099. /**
  5100. * M114: Output current position to serial port
  5101. */
  5102. inline void gcode_M114() { stepper.synchronize(); report_current_position(); }
  5103. /**
  5104. * M115: Capabilities string
  5105. */
  5106. inline void gcode_M115() {
  5107. SERIAL_PROTOCOLLNPGM(MSG_M115_REPORT);
  5108. #if ENABLED(EXTENDED_CAPABILITIES_REPORT)
  5109. // EEPROM (M500, M501)
  5110. #if ENABLED(EEPROM_SETTINGS)
  5111. SERIAL_PROTOCOLLNPGM("Cap:EEPROM:1");
  5112. #else
  5113. SERIAL_PROTOCOLLNPGM("Cap:EEPROM:0");
  5114. #endif
  5115. // AUTOREPORT_TEMP (M155)
  5116. #if ENABLED(AUTO_REPORT_TEMPERATURES)
  5117. SERIAL_PROTOCOLLNPGM("Cap:AUTOREPORT_TEMP:1");
  5118. #else
  5119. SERIAL_PROTOCOLLNPGM("Cap:AUTOREPORT_TEMP:0");
  5120. #endif
  5121. // PROGRESS (M530 S L, M531 <file>, M532 X L)
  5122. SERIAL_PROTOCOLLNPGM("Cap:PROGRESS:0");
  5123. // AUTOLEVEL (G29)
  5124. #if HAS_ABL
  5125. SERIAL_PROTOCOLLNPGM("Cap:AUTOLEVEL:1");
  5126. #else
  5127. SERIAL_PROTOCOLLNPGM("Cap:AUTOLEVEL:0");
  5128. #endif
  5129. // Z_PROBE (G30)
  5130. #if HAS_BED_PROBE
  5131. SERIAL_PROTOCOLLNPGM("Cap:Z_PROBE:1");
  5132. #else
  5133. SERIAL_PROTOCOLLNPGM("Cap:Z_PROBE:0");
  5134. #endif
  5135. // SOFTWARE_POWER (G30)
  5136. #if HAS_POWER_SWITCH
  5137. SERIAL_PROTOCOLLNPGM("Cap:SOFTWARE_POWER:1");
  5138. #else
  5139. SERIAL_PROTOCOLLNPGM("Cap:SOFTWARE_POWER:0");
  5140. #endif
  5141. // TOGGLE_LIGHTS (M355)
  5142. #if HAS_CASE_LIGHT
  5143. SERIAL_PROTOCOLLNPGM("Cap:TOGGLE_LIGHTS:1");
  5144. #else
  5145. SERIAL_PROTOCOLLNPGM("Cap:TOGGLE_LIGHTS:0");
  5146. #endif
  5147. // EMERGENCY_PARSER (M108, M112, M410)
  5148. #if ENABLED(EMERGENCY_PARSER)
  5149. SERIAL_PROTOCOLLNPGM("Cap:EMERGENCY_PARSER:1");
  5150. #else
  5151. SERIAL_PROTOCOLLNPGM("Cap:EMERGENCY_PARSER:0");
  5152. #endif
  5153. #endif // EXTENDED_CAPABILITIES_REPORT
  5154. }
  5155. /**
  5156. * M117: Set LCD Status Message
  5157. */
  5158. inline void gcode_M117() {
  5159. lcd_setstatus(current_command_args);
  5160. }
  5161. /**
  5162. * M119: Output endstop states to serial output
  5163. */
  5164. inline void gcode_M119() { endstops.M119(); }
  5165. /**
  5166. * M120: Enable endstops and set non-homing endstop state to "enabled"
  5167. */
  5168. inline void gcode_M120() { endstops.enable_globally(true); }
  5169. /**
  5170. * M121: Disable endstops and set non-homing endstop state to "disabled"
  5171. */
  5172. inline void gcode_M121() { endstops.enable_globally(false); }
  5173. #if ENABLED(PARK_HEAD_ON_PAUSE)
  5174. /**
  5175. * M125: Store current position and move to filament change position.
  5176. * Called on pause (by M25) to prevent material leaking onto the
  5177. * object. On resume (M24) the head will be moved back and the
  5178. * print will resume.
  5179. *
  5180. * If Marlin is compiled without SD Card support, M125 can be
  5181. * used directly to pause the print and move to park position,
  5182. * resuming with a button click or M108.
  5183. *
  5184. * L = override retract length
  5185. * X = override X
  5186. * Y = override Y
  5187. * Z = override Z raise
  5188. */
  5189. inline void gcode_M125() {
  5190. if (move_away_flag) return; // already paused
  5191. const bool job_running = print_job_timer.isRunning();
  5192. // there are blocks after this one, or sd printing
  5193. move_away_flag = job_running || planner.blocks_queued()
  5194. #if ENABLED(SDSUPPORT)
  5195. || card.sdprinting
  5196. #endif
  5197. ;
  5198. if (!move_away_flag) return; // nothing to pause
  5199. // M125 can be used to pause a print too
  5200. #if ENABLED(SDSUPPORT)
  5201. card.pauseSDPrint();
  5202. #endif
  5203. print_job_timer.pause();
  5204. // Save current position
  5205. COPY(resume_position, current_position);
  5206. set_destination_to_current();
  5207. // Initial retract before move to filament change position
  5208. destination[E_AXIS] += code_seen('L') ? code_value_axis_units(E_AXIS) : 0
  5209. #if defined(FILAMENT_CHANGE_RETRACT_LENGTH) && FILAMENT_CHANGE_RETRACT_LENGTH > 0
  5210. - (FILAMENT_CHANGE_RETRACT_LENGTH)
  5211. #endif
  5212. ;
  5213. RUNPLAN(FILAMENT_CHANGE_RETRACT_FEEDRATE);
  5214. // Lift Z axis
  5215. const float z_lift = code_seen('Z') ? code_value_axis_units(Z_AXIS) :
  5216. #if defined(FILAMENT_CHANGE_Z_ADD) && FILAMENT_CHANGE_Z_ADD > 0
  5217. FILAMENT_CHANGE_Z_ADD
  5218. #else
  5219. 0
  5220. #endif
  5221. ;
  5222. if (z_lift > 0) {
  5223. destination[Z_AXIS] += z_lift;
  5224. NOMORE(destination[Z_AXIS], Z_MAX_POS);
  5225. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  5226. }
  5227. // Move XY axes to filament change position or given position
  5228. destination[X_AXIS] = code_seen('X') ? code_value_axis_units(X_AXIS) : 0
  5229. #ifdef FILAMENT_CHANGE_X_POS
  5230. + FILAMENT_CHANGE_X_POS
  5231. #endif
  5232. ;
  5233. destination[Y_AXIS] = code_seen('Y') ? code_value_axis_units(Y_AXIS) : 0
  5234. #ifdef FILAMENT_CHANGE_Y_POS
  5235. + FILAMENT_CHANGE_Y_POS
  5236. #endif
  5237. ;
  5238. #if HOTENDS > 1 && DISABLED(DUAL_X_CARRIAGE)
  5239. if (active_extruder > 0) {
  5240. if (!code_seen('X')) destination[X_AXIS] += hotend_offset[X_AXIS][active_extruder];
  5241. if (!code_seen('Y')) destination[Y_AXIS] += hotend_offset[Y_AXIS][active_extruder];
  5242. }
  5243. #endif
  5244. clamp_to_software_endstops(destination);
  5245. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  5246. set_current_to_destination();
  5247. stepper.synchronize();
  5248. disable_e_steppers();
  5249. #if DISABLED(SDSUPPORT)
  5250. // Wait for lcd click or M108
  5251. wait_for_user = true;
  5252. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5253. while (wait_for_user) idle();
  5254. KEEPALIVE_STATE(IN_HANDLER);
  5255. // Return to print position and continue
  5256. move_back_on_resume();
  5257. if (job_running) print_job_timer.start();
  5258. move_away_flag = false;
  5259. #endif
  5260. }
  5261. #endif // PARK_HEAD_ON_PAUSE
  5262. #if ENABLED(BLINKM) || ENABLED(RGB_LED)
  5263. void set_led_color(const uint8_t r, const uint8_t g, const uint8_t b) {
  5264. #if ENABLED(BLINKM)
  5265. // This variant uses i2c to send the RGB components to the device.
  5266. SendColors(r, g, b);
  5267. #else
  5268. // This variant uses 3 separate pins for the RGB components.
  5269. // If the pins can do PWM then their intensity will be set.
  5270. digitalWrite(RGB_LED_R_PIN, r ? HIGH : LOW);
  5271. digitalWrite(RGB_LED_G_PIN, g ? HIGH : LOW);
  5272. digitalWrite(RGB_LED_B_PIN, b ? HIGH : LOW);
  5273. analogWrite(RGB_LED_R_PIN, r);
  5274. analogWrite(RGB_LED_G_PIN, g);
  5275. analogWrite(RGB_LED_B_PIN, b);
  5276. #endif
  5277. }
  5278. /**
  5279. * M150: Set Status LED Color - Use R-U-B for R-G-B
  5280. *
  5281. * Always sets all 3 components. If a component is left out, set to 0.
  5282. *
  5283. * Examples:
  5284. *
  5285. * M150 R255 ; Turn LED red
  5286. * M150 R255 U127 ; Turn LED orange (PWM only)
  5287. * M150 ; Turn LED off
  5288. * M150 R U B ; Turn LED white
  5289. *
  5290. */
  5291. inline void gcode_M150() {
  5292. set_led_color(
  5293. code_seen('R') ? (code_has_value() ? code_value_byte() : 255) : 0,
  5294. code_seen('U') ? (code_has_value() ? code_value_byte() : 255) : 0,
  5295. code_seen('B') ? (code_has_value() ? code_value_byte() : 255) : 0
  5296. );
  5297. }
  5298. #endif // BLINKM || RGB_LED
  5299. /**
  5300. * M200: Set filament diameter and set E axis units to cubic units
  5301. *
  5302. * T<extruder> - Optional extruder number. Current extruder if omitted.
  5303. * D<linear> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.
  5304. */
  5305. inline void gcode_M200() {
  5306. if (get_target_extruder_from_command(200)) return;
  5307. if (code_seen('D')) {
  5308. // setting any extruder filament size disables volumetric on the assumption that
  5309. // slicers either generate in extruder values as cubic mm or as as filament feeds
  5310. // for all extruders
  5311. volumetric_enabled = (code_value_linear_units() != 0.0);
  5312. if (volumetric_enabled) {
  5313. filament_size[target_extruder] = code_value_linear_units();
  5314. // make sure all extruders have some sane value for the filament size
  5315. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  5316. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  5317. }
  5318. }
  5319. else {
  5320. //reserved for setting filament diameter via UFID or filament measuring device
  5321. return;
  5322. }
  5323. calculate_volumetric_multipliers();
  5324. }
  5325. /**
  5326. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  5327. *
  5328. * With multiple extruders use T to specify which one.
  5329. */
  5330. inline void gcode_M201() {
  5331. GET_TARGET_EXTRUDER(201);
  5332. LOOP_XYZE(i) {
  5333. if (code_seen(axis_codes[i])) {
  5334. const uint8_t a = i + (i == E_AXIS ? TARGET_EXTRUDER : 0);
  5335. planner.max_acceleration_mm_per_s2[a] = code_value_axis_units(a);
  5336. }
  5337. }
  5338. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  5339. planner.reset_acceleration_rates();
  5340. }
  5341. #if 0 // Not used for Sprinter/grbl gen6
  5342. inline void gcode_M202() {
  5343. LOOP_XYZE(i) {
  5344. if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value_axis_units(i) * planner.axis_steps_per_mm[i];
  5345. }
  5346. }
  5347. #endif
  5348. /**
  5349. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  5350. *
  5351. * With multiple extruders use T to specify which one.
  5352. */
  5353. inline void gcode_M203() {
  5354. GET_TARGET_EXTRUDER(203);
  5355. LOOP_XYZE(i)
  5356. if (code_seen(axis_codes[i])) {
  5357. const uint8_t a = i + (i == E_AXIS ? TARGET_EXTRUDER : 0);
  5358. planner.max_feedrate_mm_s[a] = code_value_axis_units(a);
  5359. }
  5360. }
  5361. /**
  5362. * M204: Set Accelerations in units/sec^2 (M204 P1200 R3000 T3000)
  5363. *
  5364. * P = Printing moves
  5365. * R = Retract only (no X, Y, Z) moves
  5366. * T = Travel (non printing) moves
  5367. *
  5368. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  5369. */
  5370. inline void gcode_M204() {
  5371. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  5372. planner.travel_acceleration = planner.acceleration = code_value_linear_units();
  5373. SERIAL_ECHOLNPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
  5374. }
  5375. if (code_seen('P')) {
  5376. planner.acceleration = code_value_linear_units();
  5377. SERIAL_ECHOLNPAIR("Setting Print Acceleration: ", planner.acceleration);
  5378. }
  5379. if (code_seen('R')) {
  5380. planner.retract_acceleration = code_value_linear_units();
  5381. SERIAL_ECHOLNPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
  5382. }
  5383. if (code_seen('T')) {
  5384. planner.travel_acceleration = code_value_linear_units();
  5385. SERIAL_ECHOLNPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
  5386. }
  5387. }
  5388. /**
  5389. * M205: Set Advanced Settings
  5390. *
  5391. * S = Min Feed Rate (units/s)
  5392. * T = Min Travel Feed Rate (units/s)
  5393. * B = Min Segment Time (µs)
  5394. * X = Max X Jerk (units/sec^2)
  5395. * Y = Max Y Jerk (units/sec^2)
  5396. * Z = Max Z Jerk (units/sec^2)
  5397. * E = Max E Jerk (units/sec^2)
  5398. */
  5399. inline void gcode_M205() {
  5400. if (code_seen('S')) planner.min_feedrate_mm_s = code_value_linear_units();
  5401. if (code_seen('T')) planner.min_travel_feedrate_mm_s = code_value_linear_units();
  5402. if (code_seen('B')) planner.min_segment_time = code_value_millis();
  5403. if (code_seen('X')) planner.max_jerk[X_AXIS] = code_value_axis_units(X_AXIS);
  5404. if (code_seen('Y')) planner.max_jerk[Y_AXIS] = code_value_axis_units(Y_AXIS);
  5405. if (code_seen('Z')) planner.max_jerk[Z_AXIS] = code_value_axis_units(Z_AXIS);
  5406. if (code_seen('E')) planner.max_jerk[E_AXIS] = code_value_axis_units(E_AXIS);
  5407. }
  5408. #if DISABLED(NO_WORKSPACE_OFFSETS)
  5409. /**
  5410. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  5411. */
  5412. inline void gcode_M206() {
  5413. LOOP_XYZ(i)
  5414. if (code_seen(axis_codes[i]))
  5415. set_home_offset((AxisEnum)i, code_value_axis_units(i));
  5416. #if ENABLED(MORGAN_SCARA)
  5417. if (code_seen('T')) set_home_offset(A_AXIS, code_value_axis_units(A_AXIS)); // Theta
  5418. if (code_seen('P')) set_home_offset(B_AXIS, code_value_axis_units(B_AXIS)); // Psi
  5419. #endif
  5420. SYNC_PLAN_POSITION_KINEMATIC();
  5421. report_current_position();
  5422. }
  5423. #endif // NO_WORKSPACE_OFFSETS
  5424. #if ENABLED(DELTA)
  5425. /**
  5426. * M665: Set delta configurations
  5427. *
  5428. * L = diagonal rod
  5429. * R = delta radius
  5430. * S = segments per second
  5431. * A = Alpha (Tower 1) diagonal rod trim
  5432. * B = Beta (Tower 2) diagonal rod trim
  5433. * C = Gamma (Tower 3) diagonal rod trim
  5434. */
  5435. inline void gcode_M665() {
  5436. if (code_seen('L')) delta_diagonal_rod = code_value_linear_units();
  5437. if (code_seen('R')) delta_radius = code_value_linear_units();
  5438. if (code_seen('S')) delta_segments_per_second = code_value_float();
  5439. if (code_seen('A')) delta_diagonal_rod_trim[A_AXIS] = code_value_linear_units();
  5440. if (code_seen('B')) delta_diagonal_rod_trim[B_AXIS] = code_value_linear_units();
  5441. if (code_seen('C')) delta_diagonal_rod_trim[C_AXIS] = code_value_linear_units();
  5442. if (code_seen('I')) delta_tower_angle_trim[A_AXIS] = code_value_linear_units();
  5443. if (code_seen('J')) delta_tower_angle_trim[B_AXIS] = code_value_linear_units();
  5444. if (code_seen('K')) delta_tower_angle_trim[C_AXIS] = code_value_linear_units();
  5445. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  5446. }
  5447. /**
  5448. * M666: Set delta endstop adjustment
  5449. */
  5450. inline void gcode_M666() {
  5451. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5452. if (DEBUGGING(LEVELING)) {
  5453. SERIAL_ECHOLNPGM(">>> gcode_M666");
  5454. }
  5455. #endif
  5456. LOOP_XYZ(i) {
  5457. if (code_seen(axis_codes[i])) {
  5458. endstop_adj[i] = code_value_axis_units(i);
  5459. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5460. if (DEBUGGING(LEVELING)) {
  5461. SERIAL_ECHOPAIR("endstop_adj[", axis_codes[i]);
  5462. SERIAL_ECHOLNPAIR("] = ", endstop_adj[i]);
  5463. }
  5464. #endif
  5465. }
  5466. }
  5467. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5468. if (DEBUGGING(LEVELING)) {
  5469. SERIAL_ECHOLNPGM("<<< gcode_M666");
  5470. }
  5471. #endif
  5472. }
  5473. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  5474. /**
  5475. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  5476. */
  5477. inline void gcode_M666() {
  5478. if (code_seen('Z')) z_endstop_adj = code_value_axis_units(Z_AXIS);
  5479. SERIAL_ECHOLNPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  5480. }
  5481. #endif // !DELTA && Z_DUAL_ENDSTOPS
  5482. #if ENABLED(FWRETRACT)
  5483. /**
  5484. * M207: Set firmware retraction values
  5485. *
  5486. * S[+units] retract_length
  5487. * W[+units] retract_length_swap (multi-extruder)
  5488. * F[units/min] retract_feedrate_mm_s
  5489. * Z[units] retract_zlift
  5490. */
  5491. inline void gcode_M207() {
  5492. if (code_seen('S')) retract_length = code_value_axis_units(E_AXIS);
  5493. if (code_seen('F')) retract_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  5494. if (code_seen('Z')) retract_zlift = code_value_axis_units(Z_AXIS);
  5495. #if EXTRUDERS > 1
  5496. if (code_seen('W')) retract_length_swap = code_value_axis_units(E_AXIS);
  5497. #endif
  5498. }
  5499. /**
  5500. * M208: Set firmware un-retraction values
  5501. *
  5502. * S[+units] retract_recover_length (in addition to M207 S*)
  5503. * W[+units] retract_recover_length_swap (multi-extruder)
  5504. * F[units/min] retract_recover_feedrate_mm_s
  5505. */
  5506. inline void gcode_M208() {
  5507. if (code_seen('S')) retract_recover_length = code_value_axis_units(E_AXIS);
  5508. if (code_seen('F')) retract_recover_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  5509. #if EXTRUDERS > 1
  5510. if (code_seen('W')) retract_recover_length_swap = code_value_axis_units(E_AXIS);
  5511. #endif
  5512. }
  5513. /**
  5514. * M209: Enable automatic retract (M209 S1)
  5515. * For slicers that don't support G10/11, reversed extrude-only
  5516. * moves will be classified as retraction.
  5517. */
  5518. inline void gcode_M209() {
  5519. if (code_seen('S')) {
  5520. autoretract_enabled = code_value_bool();
  5521. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  5522. }
  5523. }
  5524. #endif // FWRETRACT
  5525. /**
  5526. * M211: Enable, Disable, and/or Report software endstops
  5527. *
  5528. * Usage: M211 S1 to enable, M211 S0 to disable, M211 alone for report
  5529. */
  5530. inline void gcode_M211() {
  5531. SERIAL_ECHO_START;
  5532. #if HAS_SOFTWARE_ENDSTOPS
  5533. if (code_seen('S')) soft_endstops_enabled = code_value_bool();
  5534. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  5535. serialprintPGM(soft_endstops_enabled ? PSTR(MSG_ON) : PSTR(MSG_OFF));
  5536. #else
  5537. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  5538. SERIAL_ECHOPGM(MSG_OFF);
  5539. #endif
  5540. SERIAL_ECHOPGM(MSG_SOFT_MIN);
  5541. SERIAL_ECHOPAIR( MSG_X, soft_endstop_min[X_AXIS]);
  5542. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_min[Y_AXIS]);
  5543. SERIAL_ECHOPAIR(" " MSG_Z, soft_endstop_min[Z_AXIS]);
  5544. SERIAL_ECHOPGM(MSG_SOFT_MAX);
  5545. SERIAL_ECHOPAIR( MSG_X, soft_endstop_max[X_AXIS]);
  5546. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_max[Y_AXIS]);
  5547. SERIAL_ECHOLNPAIR(" " MSG_Z, soft_endstop_max[Z_AXIS]);
  5548. }
  5549. #if HOTENDS > 1
  5550. /**
  5551. * M218 - set hotend offset (in linear units)
  5552. *
  5553. * T<tool>
  5554. * X<xoffset>
  5555. * Y<yoffset>
  5556. * Z<zoffset> - Available with DUAL_X_CARRIAGE and SWITCHING_EXTRUDER
  5557. */
  5558. inline void gcode_M218() {
  5559. if (get_target_extruder_from_command(218) || target_extruder == 0) return;
  5560. if (code_seen('X')) hotend_offset[X_AXIS][target_extruder] = code_value_axis_units(X_AXIS);
  5561. if (code_seen('Y')) hotend_offset[Y_AXIS][target_extruder] = code_value_axis_units(Y_AXIS);
  5562. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  5563. if (code_seen('Z')) hotend_offset[Z_AXIS][target_extruder] = code_value_axis_units(Z_AXIS);
  5564. #endif
  5565. SERIAL_ECHO_START;
  5566. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  5567. HOTEND_LOOP() {
  5568. SERIAL_CHAR(' ');
  5569. SERIAL_ECHO(hotend_offset[X_AXIS][e]);
  5570. SERIAL_CHAR(',');
  5571. SERIAL_ECHO(hotend_offset[Y_AXIS][e]);
  5572. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  5573. SERIAL_CHAR(',');
  5574. SERIAL_ECHO(hotend_offset[Z_AXIS][e]);
  5575. #endif
  5576. }
  5577. SERIAL_EOL;
  5578. }
  5579. #endif // HOTENDS > 1
  5580. /**
  5581. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  5582. */
  5583. inline void gcode_M220() {
  5584. if (code_seen('S')) feedrate_percentage = code_value_int();
  5585. }
  5586. /**
  5587. * M221: Set extrusion percentage (M221 T0 S95)
  5588. */
  5589. inline void gcode_M221() {
  5590. if (get_target_extruder_from_command(221)) return;
  5591. if (code_seen('S'))
  5592. flow_percentage[target_extruder] = code_value_int();
  5593. }
  5594. /**
  5595. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  5596. */
  5597. inline void gcode_M226() {
  5598. if (code_seen('P')) {
  5599. int pin_number = code_value_int(),
  5600. pin_state = code_seen('S') ? code_value_int() : -1; // required pin state - default is inverted
  5601. if (pin_state >= -1 && pin_state <= 1 && pin_number > -1 && !pin_is_protected(pin_number)) {
  5602. int target = LOW;
  5603. stepper.synchronize();
  5604. pinMode(pin_number, INPUT);
  5605. switch (pin_state) {
  5606. case 1:
  5607. target = HIGH;
  5608. break;
  5609. case 0:
  5610. target = LOW;
  5611. break;
  5612. case -1:
  5613. target = !digitalRead(pin_number);
  5614. break;
  5615. }
  5616. while (digitalRead(pin_number) != target) idle();
  5617. } // pin_state -1 0 1 && pin_number > -1
  5618. } // code_seen('P')
  5619. }
  5620. #if ENABLED(EXPERIMENTAL_I2CBUS)
  5621. /**
  5622. * M260: Send data to a I2C slave device
  5623. *
  5624. * This is a PoC, the formating and arguments for the GCODE will
  5625. * change to be more compatible, the current proposal is:
  5626. *
  5627. * M260 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  5628. *
  5629. * M260 B<byte-1 value in base 10>
  5630. * M260 B<byte-2 value in base 10>
  5631. * M260 B<byte-3 value in base 10>
  5632. *
  5633. * M260 S1 ; Send the buffered data and reset the buffer
  5634. * M260 R1 ; Reset the buffer without sending data
  5635. *
  5636. */
  5637. inline void gcode_M260() {
  5638. // Set the target address
  5639. if (code_seen('A')) i2c.address(code_value_byte());
  5640. // Add a new byte to the buffer
  5641. if (code_seen('B')) i2c.addbyte(code_value_byte());
  5642. // Flush the buffer to the bus
  5643. if (code_seen('S')) i2c.send();
  5644. // Reset and rewind the buffer
  5645. else if (code_seen('R')) i2c.reset();
  5646. }
  5647. /**
  5648. * M261: Request X bytes from I2C slave device
  5649. *
  5650. * Usage: M261 A<slave device address base 10> B<number of bytes>
  5651. */
  5652. inline void gcode_M261() {
  5653. if (code_seen('A')) i2c.address(code_value_byte());
  5654. uint8_t bytes = code_seen('B') ? code_value_byte() : 1;
  5655. if (i2c.addr && bytes && bytes <= TWIBUS_BUFFER_SIZE) {
  5656. i2c.relay(bytes);
  5657. }
  5658. else {
  5659. SERIAL_ERROR_START;
  5660. SERIAL_ERRORLN("Bad i2c request");
  5661. }
  5662. }
  5663. #endif // EXPERIMENTAL_I2CBUS
  5664. #if HAS_SERVOS
  5665. /**
  5666. * M280: Get or set servo position. P<index> [S<angle>]
  5667. */
  5668. inline void gcode_M280() {
  5669. if (!code_seen('P')) return;
  5670. int servo_index = code_value_int();
  5671. if (servo_index >= 0 && servo_index < NUM_SERVOS) {
  5672. if (code_seen('S'))
  5673. MOVE_SERVO(servo_index, code_value_int());
  5674. else {
  5675. SERIAL_ECHO_START;
  5676. SERIAL_ECHOPAIR(" Servo ", servo_index);
  5677. SERIAL_ECHOLNPAIR(": ", servo[servo_index].read());
  5678. }
  5679. }
  5680. else {
  5681. SERIAL_ERROR_START;
  5682. SERIAL_ECHOPAIR("Servo ", servo_index);
  5683. SERIAL_ECHOLNPGM(" out of range");
  5684. }
  5685. }
  5686. #endif // HAS_SERVOS
  5687. #if HAS_BUZZER
  5688. /**
  5689. * M300: Play beep sound S<frequency Hz> P<duration ms>
  5690. */
  5691. inline void gcode_M300() {
  5692. uint16_t const frequency = code_seen('S') ? code_value_ushort() : 260;
  5693. uint16_t duration = code_seen('P') ? code_value_ushort() : 1000;
  5694. // Limits the tone duration to 0-5 seconds.
  5695. NOMORE(duration, 5000);
  5696. BUZZ(duration, frequency);
  5697. }
  5698. #endif // HAS_BUZZER
  5699. #if ENABLED(PIDTEMP)
  5700. /**
  5701. * M301: Set PID parameters P I D (and optionally C, L)
  5702. *
  5703. * P[float] Kp term
  5704. * I[float] Ki term (unscaled)
  5705. * D[float] Kd term (unscaled)
  5706. *
  5707. * With PID_EXTRUSION_SCALING:
  5708. *
  5709. * C[float] Kc term
  5710. * L[float] LPQ length
  5711. */
  5712. inline void gcode_M301() {
  5713. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  5714. // default behaviour (omitting E parameter) is to update for extruder 0 only
  5715. int e = code_seen('E') ? code_value_int() : 0; // extruder being updated
  5716. if (e < HOTENDS) { // catch bad input value
  5717. if (code_seen('P')) PID_PARAM(Kp, e) = code_value_float();
  5718. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value_float());
  5719. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value_float());
  5720. #if ENABLED(PID_EXTRUSION_SCALING)
  5721. if (code_seen('C')) PID_PARAM(Kc, e) = code_value_float();
  5722. if (code_seen('L')) lpq_len = code_value_float();
  5723. NOMORE(lpq_len, LPQ_MAX_LEN);
  5724. #endif
  5725. thermalManager.updatePID();
  5726. SERIAL_ECHO_START;
  5727. #if ENABLED(PID_PARAMS_PER_HOTEND)
  5728. SERIAL_ECHOPAIR(" e:", e); // specify extruder in serial output
  5729. #endif // PID_PARAMS_PER_HOTEND
  5730. SERIAL_ECHOPAIR(" p:", PID_PARAM(Kp, e));
  5731. SERIAL_ECHOPAIR(" i:", unscalePID_i(PID_PARAM(Ki, e)));
  5732. SERIAL_ECHOPAIR(" d:", unscalePID_d(PID_PARAM(Kd, e)));
  5733. #if ENABLED(PID_EXTRUSION_SCALING)
  5734. //Kc does not have scaling applied above, or in resetting defaults
  5735. SERIAL_ECHOPAIR(" c:", PID_PARAM(Kc, e));
  5736. #endif
  5737. SERIAL_EOL;
  5738. }
  5739. else {
  5740. SERIAL_ERROR_START;
  5741. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  5742. }
  5743. }
  5744. #endif // PIDTEMP
  5745. #if ENABLED(PIDTEMPBED)
  5746. inline void gcode_M304() {
  5747. if (code_seen('P')) thermalManager.bedKp = code_value_float();
  5748. if (code_seen('I')) thermalManager.bedKi = scalePID_i(code_value_float());
  5749. if (code_seen('D')) thermalManager.bedKd = scalePID_d(code_value_float());
  5750. thermalManager.updatePID();
  5751. SERIAL_ECHO_START;
  5752. SERIAL_ECHOPAIR(" p:", thermalManager.bedKp);
  5753. SERIAL_ECHOPAIR(" i:", unscalePID_i(thermalManager.bedKi));
  5754. SERIAL_ECHOLNPAIR(" d:", unscalePID_d(thermalManager.bedKd));
  5755. }
  5756. #endif // PIDTEMPBED
  5757. #if defined(CHDK) || HAS_PHOTOGRAPH
  5758. /**
  5759. * M240: Trigger a camera by emulating a Canon RC-1
  5760. * See http://www.doc-diy.net/photo/rc-1_hacked/
  5761. */
  5762. inline void gcode_M240() {
  5763. #ifdef CHDK
  5764. OUT_WRITE(CHDK, HIGH);
  5765. chdkHigh = millis();
  5766. chdkActive = true;
  5767. #elif HAS_PHOTOGRAPH
  5768. const uint8_t NUM_PULSES = 16;
  5769. const float PULSE_LENGTH = 0.01524;
  5770. for (int i = 0; i < NUM_PULSES; i++) {
  5771. WRITE(PHOTOGRAPH_PIN, HIGH);
  5772. _delay_ms(PULSE_LENGTH);
  5773. WRITE(PHOTOGRAPH_PIN, LOW);
  5774. _delay_ms(PULSE_LENGTH);
  5775. }
  5776. delay(7.33);
  5777. for (int i = 0; i < NUM_PULSES; i++) {
  5778. WRITE(PHOTOGRAPH_PIN, HIGH);
  5779. _delay_ms(PULSE_LENGTH);
  5780. WRITE(PHOTOGRAPH_PIN, LOW);
  5781. _delay_ms(PULSE_LENGTH);
  5782. }
  5783. #endif // !CHDK && HAS_PHOTOGRAPH
  5784. }
  5785. #endif // CHDK || PHOTOGRAPH_PIN
  5786. #if HAS_LCD_CONTRAST
  5787. /**
  5788. * M250: Read and optionally set the LCD contrast
  5789. */
  5790. inline void gcode_M250() {
  5791. if (code_seen('C')) set_lcd_contrast(code_value_int());
  5792. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  5793. SERIAL_PROTOCOL(lcd_contrast);
  5794. SERIAL_EOL;
  5795. }
  5796. #endif // HAS_LCD_CONTRAST
  5797. #if ENABLED(PREVENT_COLD_EXTRUSION)
  5798. /**
  5799. * M302: Allow cold extrudes, or set the minimum extrude temperature
  5800. *
  5801. * S<temperature> sets the minimum extrude temperature
  5802. * P<bool> enables (1) or disables (0) cold extrusion
  5803. *
  5804. * Examples:
  5805. *
  5806. * M302 ; report current cold extrusion state
  5807. * M302 P0 ; enable cold extrusion checking
  5808. * M302 P1 ; disables cold extrusion checking
  5809. * M302 S0 ; always allow extrusion (disables checking)
  5810. * M302 S170 ; only allow extrusion above 170
  5811. * M302 S170 P1 ; set min extrude temp to 170 but leave disabled
  5812. */
  5813. inline void gcode_M302() {
  5814. bool seen_S = code_seen('S');
  5815. if (seen_S) {
  5816. thermalManager.extrude_min_temp = code_value_temp_abs();
  5817. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0);
  5818. }
  5819. if (code_seen('P'))
  5820. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0) || code_value_bool();
  5821. else if (!seen_S) {
  5822. // Report current state
  5823. SERIAL_ECHO_START;
  5824. SERIAL_ECHOPAIR("Cold extrudes are ", (thermalManager.allow_cold_extrude ? "en" : "dis"));
  5825. SERIAL_ECHOPAIR("abled (min temp ", int(thermalManager.extrude_min_temp + 0.5));
  5826. SERIAL_ECHOLNPGM("C)");
  5827. }
  5828. }
  5829. #endif // PREVENT_COLD_EXTRUSION
  5830. /**
  5831. * M303: PID relay autotune
  5832. *
  5833. * S<temperature> sets the target temperature. (default 150C)
  5834. * E<extruder> (-1 for the bed) (default 0)
  5835. * C<cycles>
  5836. * U<bool> with a non-zero value will apply the result to current settings
  5837. */
  5838. inline void gcode_M303() {
  5839. #if HAS_PID_HEATING
  5840. int e = code_seen('E') ? code_value_int() : 0;
  5841. int c = code_seen('C') ? code_value_int() : 5;
  5842. bool u = code_seen('U') && code_value_bool();
  5843. float temp = code_seen('S') ? code_value_temp_abs() : (e < 0 ? 70.0 : 150.0);
  5844. if (e >= 0 && e < HOTENDS)
  5845. target_extruder = e;
  5846. KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
  5847. thermalManager.PID_autotune(temp, e, c, u);
  5848. KEEPALIVE_STATE(IN_HANDLER);
  5849. #else
  5850. SERIAL_ERROR_START;
  5851. SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
  5852. #endif
  5853. }
  5854. #if ENABLED(MORGAN_SCARA)
  5855. bool SCARA_move_to_cal(uint8_t delta_a, uint8_t delta_b) {
  5856. if (IsRunning()) {
  5857. forward_kinematics_SCARA(delta_a, delta_b);
  5858. destination[X_AXIS] = LOGICAL_X_POSITION(cartes[X_AXIS]);
  5859. destination[Y_AXIS] = LOGICAL_Y_POSITION(cartes[Y_AXIS]);
  5860. destination[Z_AXIS] = current_position[Z_AXIS];
  5861. prepare_move_to_destination();
  5862. return true;
  5863. }
  5864. return false;
  5865. }
  5866. /**
  5867. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  5868. */
  5869. inline bool gcode_M360() {
  5870. SERIAL_ECHOLNPGM(" Cal: Theta 0");
  5871. return SCARA_move_to_cal(0, 120);
  5872. }
  5873. /**
  5874. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  5875. */
  5876. inline bool gcode_M361() {
  5877. SERIAL_ECHOLNPGM(" Cal: Theta 90");
  5878. return SCARA_move_to_cal(90, 130);
  5879. }
  5880. /**
  5881. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  5882. */
  5883. inline bool gcode_M362() {
  5884. SERIAL_ECHOLNPGM(" Cal: Psi 0");
  5885. return SCARA_move_to_cal(60, 180);
  5886. }
  5887. /**
  5888. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  5889. */
  5890. inline bool gcode_M363() {
  5891. SERIAL_ECHOLNPGM(" Cal: Psi 90");
  5892. return SCARA_move_to_cal(50, 90);
  5893. }
  5894. /**
  5895. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  5896. */
  5897. inline bool gcode_M364() {
  5898. SERIAL_ECHOLNPGM(" Cal: Theta-Psi 90");
  5899. return SCARA_move_to_cal(45, 135);
  5900. }
  5901. #endif // SCARA
  5902. #if ENABLED(EXT_SOLENOID)
  5903. void enable_solenoid(uint8_t num) {
  5904. switch (num) {
  5905. case 0:
  5906. OUT_WRITE(SOL0_PIN, HIGH);
  5907. break;
  5908. #if HAS_SOLENOID_1
  5909. case 1:
  5910. OUT_WRITE(SOL1_PIN, HIGH);
  5911. break;
  5912. #endif
  5913. #if HAS_SOLENOID_2
  5914. case 2:
  5915. OUT_WRITE(SOL2_PIN, HIGH);
  5916. break;
  5917. #endif
  5918. #if HAS_SOLENOID_3
  5919. case 3:
  5920. OUT_WRITE(SOL3_PIN, HIGH);
  5921. break;
  5922. #endif
  5923. default:
  5924. SERIAL_ECHO_START;
  5925. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  5926. break;
  5927. }
  5928. }
  5929. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  5930. void disable_all_solenoids() {
  5931. OUT_WRITE(SOL0_PIN, LOW);
  5932. OUT_WRITE(SOL1_PIN, LOW);
  5933. OUT_WRITE(SOL2_PIN, LOW);
  5934. OUT_WRITE(SOL3_PIN, LOW);
  5935. }
  5936. /**
  5937. * M380: Enable solenoid on the active extruder
  5938. */
  5939. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  5940. /**
  5941. * M381: Disable all solenoids
  5942. */
  5943. inline void gcode_M381() { disable_all_solenoids(); }
  5944. #endif // EXT_SOLENOID
  5945. /**
  5946. * M400: Finish all moves
  5947. */
  5948. inline void gcode_M400() { stepper.synchronize(); }
  5949. #if HAS_BED_PROBE
  5950. /**
  5951. * M401: Engage Z Servo endstop if available
  5952. */
  5953. inline void gcode_M401() { DEPLOY_PROBE(); }
  5954. /**
  5955. * M402: Retract Z Servo endstop if enabled
  5956. */
  5957. inline void gcode_M402() { STOW_PROBE(); }
  5958. #endif // HAS_BED_PROBE
  5959. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  5960. /**
  5961. * M404: Display or set (in current units) the nominal filament width (3mm, 1.75mm ) W<3.0>
  5962. */
  5963. inline void gcode_M404() {
  5964. if (code_seen('W')) {
  5965. filament_width_nominal = code_value_linear_units();
  5966. }
  5967. else {
  5968. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  5969. SERIAL_PROTOCOLLN(filament_width_nominal);
  5970. }
  5971. }
  5972. /**
  5973. * M405: Turn on filament sensor for control
  5974. */
  5975. inline void gcode_M405() {
  5976. // This is technically a linear measurement, but since it's quantized to centimeters and is a different unit than
  5977. // everything else, it uses code_value_int() instead of code_value_linear_units().
  5978. if (code_seen('D')) meas_delay_cm = code_value_int();
  5979. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  5980. if (filwidth_delay_index[1] == -1) { // Initialize the ring buffer if not done since startup
  5981. int temp_ratio = thermalManager.widthFil_to_size_ratio();
  5982. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  5983. measurement_delay[i] = temp_ratio - 100; // Subtract 100 to scale within a signed byte
  5984. filwidth_delay_index[0] = filwidth_delay_index[1] = 0;
  5985. }
  5986. filament_sensor = true;
  5987. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5988. //SERIAL_PROTOCOL(filament_width_meas);
  5989. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  5990. //SERIAL_PROTOCOL(flow_percentage[active_extruder]);
  5991. }
  5992. /**
  5993. * M406: Turn off filament sensor for control
  5994. */
  5995. inline void gcode_M406() { filament_sensor = false; }
  5996. /**
  5997. * M407: Get measured filament diameter on serial output
  5998. */
  5999. inline void gcode_M407() {
  6000. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  6001. SERIAL_PROTOCOLLN(filament_width_meas);
  6002. }
  6003. #endif // FILAMENT_WIDTH_SENSOR
  6004. void quickstop_stepper() {
  6005. stepper.quick_stop();
  6006. stepper.synchronize();
  6007. set_current_from_steppers_for_axis(ALL_AXES);
  6008. SYNC_PLAN_POSITION_KINEMATIC();
  6009. }
  6010. #if PLANNER_LEVELING
  6011. /**
  6012. * M420: Enable/Disable Bed Leveling and/or set the Z fade height.
  6013. *
  6014. * S[bool] Turns leveling on or off
  6015. * Z[height] Sets the Z fade height (0 or none to disable)
  6016. * V[bool] Verbose - Print the leveling grid
  6017. */
  6018. inline void gcode_M420() {
  6019. bool to_enable = false;
  6020. if (code_seen('S')) {
  6021. to_enable = code_value_bool();
  6022. set_bed_leveling_enabled(to_enable);
  6023. }
  6024. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  6025. if (code_seen('Z')) set_z_fade_height(code_value_linear_units());
  6026. #endif
  6027. const bool new_status =
  6028. #if ENABLED(MESH_BED_LEVELING)
  6029. mbl.active()
  6030. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  6031. ubl.state.active
  6032. #else
  6033. planner.abl_enabled
  6034. #endif
  6035. ;
  6036. if (to_enable && !new_status) {
  6037. SERIAL_ERROR_START;
  6038. SERIAL_ERRORLNPGM(MSG_ERR_M420_FAILED);
  6039. }
  6040. SERIAL_ECHO_START;
  6041. SERIAL_ECHOLNPAIR("Bed Leveling ", new_status ? MSG_ON : MSG_OFF);
  6042. // V to print the matrix or mesh
  6043. if (code_seen('V')) {
  6044. #if ABL_PLANAR
  6045. planner.bed_level_matrix.debug("Bed Level Correction Matrix:");
  6046. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  6047. if (bilinear_grid_spacing[X_AXIS]) {
  6048. print_bilinear_leveling_grid();
  6049. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  6050. bed_level_virt_print();
  6051. #endif
  6052. }
  6053. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  6054. ubl.display_map(0); // Right now, we only support one type of map
  6055. #elif ENABLED(MESH_BED_LEVELING)
  6056. if (mbl.has_mesh()) {
  6057. SERIAL_ECHOLNPGM("Mesh Bed Level data:");
  6058. mbl_mesh_report();
  6059. }
  6060. #endif
  6061. }
  6062. }
  6063. #endif
  6064. #if ENABLED(MESH_BED_LEVELING)
  6065. /**
  6066. * M421: Set a single Mesh Bed Leveling Z coordinate
  6067. * Use either 'M421 X<linear> Y<linear> Z<linear>' or 'M421 I<xindex> J<yindex> Z<linear>'
  6068. */
  6069. inline void gcode_M421() {
  6070. int8_t px = 0, py = 0;
  6071. float z = 0;
  6072. bool hasX, hasY, hasZ, hasI, hasJ;
  6073. if ((hasX = code_seen('X'))) px = mbl.probe_index_x(code_value_axis_units(X_AXIS));
  6074. if ((hasY = code_seen('Y'))) py = mbl.probe_index_y(code_value_axis_units(Y_AXIS));
  6075. if ((hasI = code_seen('I'))) px = code_value_axis_units(X_AXIS);
  6076. if ((hasJ = code_seen('J'))) py = code_value_axis_units(Y_AXIS);
  6077. if ((hasZ = code_seen('Z'))) z = code_value_axis_units(Z_AXIS);
  6078. if (hasX && hasY && hasZ) {
  6079. if (px >= 0 && py >= 0)
  6080. mbl.set_z(px, py, z);
  6081. else {
  6082. SERIAL_ERROR_START;
  6083. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  6084. }
  6085. }
  6086. else if (hasI && hasJ && hasZ) {
  6087. if (px >= 0 && px < MESH_NUM_X_POINTS && py >= 0 && py < MESH_NUM_Y_POINTS)
  6088. mbl.set_z(px, py, z);
  6089. else {
  6090. SERIAL_ERROR_START;
  6091. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  6092. }
  6093. }
  6094. else {
  6095. SERIAL_ERROR_START;
  6096. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  6097. }
  6098. }
  6099. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  6100. /**
  6101. * M421: Set a single Mesh Bed Leveling Z coordinate
  6102. *
  6103. * M421 I<xindex> J<yindex> Z<linear>
  6104. */
  6105. inline void gcode_M421() {
  6106. int8_t px = 0, py = 0;
  6107. float z = 0;
  6108. bool hasI, hasJ, hasZ;
  6109. if ((hasI = code_seen('I'))) px = code_value_axis_units(X_AXIS);
  6110. if ((hasJ = code_seen('J'))) py = code_value_axis_units(Y_AXIS);
  6111. if ((hasZ = code_seen('Z'))) z = code_value_axis_units(Z_AXIS);
  6112. if (hasI && hasJ && hasZ) {
  6113. if (px >= 0 && px < ABL_GRID_MAX_POINTS_X && py >= 0 && py < ABL_GRID_MAX_POINTS_X) {
  6114. bed_level_grid[px][py] = z;
  6115. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  6116. bed_level_virt_interpolate();
  6117. #endif
  6118. }
  6119. else {
  6120. SERIAL_ERROR_START;
  6121. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  6122. }
  6123. }
  6124. else {
  6125. SERIAL_ERROR_START;
  6126. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  6127. }
  6128. }
  6129. #endif
  6130. #if DISABLED(NO_WORKSPACE_OFFSETS)
  6131. /**
  6132. * M428: Set home_offset based on the distance between the
  6133. * current_position and the nearest "reference point."
  6134. * If an axis is past center its endstop position
  6135. * is the reference-point. Otherwise it uses 0. This allows
  6136. * the Z offset to be set near the bed when using a max endstop.
  6137. *
  6138. * M428 can't be used more than 2cm away from 0 or an endstop.
  6139. *
  6140. * Use M206 to set these values directly.
  6141. */
  6142. inline void gcode_M428() {
  6143. bool err = false;
  6144. LOOP_XYZ(i) {
  6145. if (axis_homed[i]) {
  6146. float base = (current_position[i] > (soft_endstop_min[i] + soft_endstop_max[i]) * 0.5) ? base_home_pos((AxisEnum)i) : 0,
  6147. diff = current_position[i] - LOGICAL_POSITION(base, i);
  6148. if (diff > -20 && diff < 20) {
  6149. set_home_offset((AxisEnum)i, home_offset[i] - diff);
  6150. }
  6151. else {
  6152. SERIAL_ERROR_START;
  6153. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  6154. LCD_ALERTMESSAGEPGM("Err: Too far!");
  6155. BUZZ(200, 40);
  6156. err = true;
  6157. break;
  6158. }
  6159. }
  6160. }
  6161. if (!err) {
  6162. SYNC_PLAN_POSITION_KINEMATIC();
  6163. report_current_position();
  6164. LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  6165. BUZZ(100, 659);
  6166. BUZZ(100, 698);
  6167. }
  6168. }
  6169. #endif // NO_WORKSPACE_OFFSETS
  6170. /**
  6171. * M500: Store settings in EEPROM
  6172. */
  6173. inline void gcode_M500() {
  6174. (void)Config_StoreSettings();
  6175. }
  6176. /**
  6177. * M501: Read settings from EEPROM
  6178. */
  6179. inline void gcode_M501() {
  6180. (void)Config_RetrieveSettings();
  6181. }
  6182. /**
  6183. * M502: Revert to default settings
  6184. */
  6185. inline void gcode_M502() {
  6186. (void)Config_ResetDefault();
  6187. }
  6188. /**
  6189. * M503: print settings currently in memory
  6190. */
  6191. inline void gcode_M503() {
  6192. (void)Config_PrintSettings(code_seen('S') && !code_value_bool());
  6193. }
  6194. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  6195. /**
  6196. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  6197. */
  6198. inline void gcode_M540() {
  6199. if (code_seen('S')) stepper.abort_on_endstop_hit = code_value_bool();
  6200. }
  6201. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  6202. #if HAS_BED_PROBE
  6203. inline void gcode_M851() {
  6204. SERIAL_ECHO_START;
  6205. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  6206. SERIAL_CHAR(' ');
  6207. if (code_seen('Z')) {
  6208. float value = code_value_axis_units(Z_AXIS);
  6209. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  6210. zprobe_zoffset = value;
  6211. SERIAL_ECHO(zprobe_zoffset);
  6212. }
  6213. else {
  6214. SERIAL_ECHOPAIR(MSG_Z_MIN, Z_PROBE_OFFSET_RANGE_MIN);
  6215. SERIAL_CHAR(' ');
  6216. SERIAL_ECHOPAIR(MSG_Z_MAX, Z_PROBE_OFFSET_RANGE_MAX);
  6217. }
  6218. }
  6219. else {
  6220. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  6221. }
  6222. SERIAL_EOL;
  6223. }
  6224. #endif // HAS_BED_PROBE
  6225. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  6226. void filament_change_beep(const bool init=false) {
  6227. static millis_t next_buzz = 0;
  6228. static uint16_t runout_beep = 0;
  6229. if (init) next_buzz = runout_beep = 0;
  6230. const millis_t ms = millis();
  6231. if (ELAPSED(ms, next_buzz)) {
  6232. if (runout_beep <= FILAMENT_CHANGE_NUMBER_OF_ALERT_BEEPS + 5) { // Only beep as long as we're supposed to
  6233. next_buzz = ms + (runout_beep <= FILAMENT_CHANGE_NUMBER_OF_ALERT_BEEPS ? 2500 : 400);
  6234. BUZZ(300, 2000);
  6235. runout_beep++;
  6236. }
  6237. }
  6238. }
  6239. static bool busy_doing_M600 = false;
  6240. /**
  6241. * M600: Pause for filament change
  6242. *
  6243. * E[distance] - Retract the filament this far (negative value)
  6244. * Z[distance] - Move the Z axis by this distance
  6245. * X[position] - Move to this X position, with Y
  6246. * Y[position] - Move to this Y position, with X
  6247. * L[distance] - Retract distance for removal (manual reload)
  6248. *
  6249. * Default values are used for omitted arguments.
  6250. *
  6251. */
  6252. inline void gcode_M600() {
  6253. if (!DEBUGGING(DRYRUN) && thermalManager.tooColdToExtrude(active_extruder)) {
  6254. SERIAL_ERROR_START;
  6255. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  6256. return;
  6257. }
  6258. busy_doing_M600 = true; // Stepper Motors can't timeout when this is set
  6259. // Pause the print job timer
  6260. const bool job_running = print_job_timer.isRunning();
  6261. print_job_timer.pause();
  6262. // Show initial message and wait for synchronize steppers
  6263. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INIT);
  6264. stepper.synchronize();
  6265. // Save current position of all axes
  6266. float lastpos[XYZE];
  6267. COPY(lastpos, current_position);
  6268. set_destination_to_current();
  6269. // Initial retract before move to filament change position
  6270. destination[E_AXIS] += code_seen('E') ? code_value_axis_units(E_AXIS) : 0
  6271. #if defined(FILAMENT_CHANGE_RETRACT_LENGTH) && FILAMENT_CHANGE_RETRACT_LENGTH > 0
  6272. - (FILAMENT_CHANGE_RETRACT_LENGTH)
  6273. #endif
  6274. ;
  6275. RUNPLAN(FILAMENT_CHANGE_RETRACT_FEEDRATE);
  6276. // Lift Z axis
  6277. float z_lift = code_seen('Z') ? code_value_axis_units(Z_AXIS) :
  6278. #if defined(FILAMENT_CHANGE_Z_ADD) && FILAMENT_CHANGE_Z_ADD > 0
  6279. FILAMENT_CHANGE_Z_ADD
  6280. #else
  6281. 0
  6282. #endif
  6283. ;
  6284. if (z_lift > 0) {
  6285. destination[Z_AXIS] += z_lift;
  6286. NOMORE(destination[Z_AXIS], Z_MAX_POS);
  6287. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  6288. }
  6289. // Move XY axes to filament exchange position
  6290. if (code_seen('X')) destination[X_AXIS] = code_value_axis_units(X_AXIS);
  6291. #ifdef FILAMENT_CHANGE_X_POS
  6292. else destination[X_AXIS] = FILAMENT_CHANGE_X_POS;
  6293. #endif
  6294. if (code_seen('Y')) destination[Y_AXIS] = code_value_axis_units(Y_AXIS);
  6295. #ifdef FILAMENT_CHANGE_Y_POS
  6296. else destination[Y_AXIS] = FILAMENT_CHANGE_Y_POS;
  6297. #endif
  6298. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  6299. stepper.synchronize();
  6300. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_UNLOAD);
  6301. idle();
  6302. // Unload filament
  6303. destination[E_AXIS] += code_seen('L') ? code_value_axis_units(E_AXIS) : 0
  6304. #if FILAMENT_CHANGE_UNLOAD_LENGTH > 0
  6305. - (FILAMENT_CHANGE_UNLOAD_LENGTH)
  6306. #endif
  6307. ;
  6308. RUNPLAN(FILAMENT_CHANGE_UNLOAD_FEEDRATE);
  6309. // Synchronize steppers and then disable extruders steppers for manual filament changing
  6310. stepper.synchronize();
  6311. disable_e_steppers();
  6312. delay(100);
  6313. millis_t nozzle_timeout = millis() + (millis_t)(FILAMENT_CHANGE_NOZZLE_TIMEOUT) * 1000L;
  6314. bool nozzle_timed_out = false;
  6315. float temps[4];
  6316. // Wait for filament insert by user and press button
  6317. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INSERT);
  6318. #if HAS_BUZZER
  6319. filament_change_beep(true);
  6320. #endif
  6321. idle();
  6322. HOTEND_LOOP() temps[e] = thermalManager.target_temperature[e]; // Save nozzle temps
  6323. wait_for_user = true; // LCD click or M108 will clear this
  6324. while (wait_for_user) {
  6325. millis_t current_ms = millis();
  6326. if (nozzle_timed_out)
  6327. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_CLICK_TO_HEAT_NOZZLE);
  6328. #if HAS_BUZZER
  6329. filament_change_beep();
  6330. #endif
  6331. if (current_ms >= nozzle_timeout) {
  6332. if (!nozzle_timed_out) {
  6333. nozzle_timed_out = true; // on nozzle timeout remember the nozzles need to be reheated
  6334. HOTEND_LOOP() thermalManager.setTargetHotend(0, e); // Turn off all the nozzles
  6335. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_CLICK_TO_HEAT_NOZZLE);
  6336. }
  6337. }
  6338. idle(true);
  6339. }
  6340. if (nozzle_timed_out) // Turn nozzles back on if they were turned off
  6341. HOTEND_LOOP() thermalManager.setTargetHotend(temps[e], e);
  6342. // Show "wait for heating"
  6343. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_WAIT_FOR_NOZZLES_TO_HEAT);
  6344. wait_for_heatup = true;
  6345. while (wait_for_heatup) {
  6346. idle();
  6347. wait_for_heatup = false;
  6348. HOTEND_LOOP() {
  6349. if (abs(thermalManager.degHotend(e) - temps[e]) > 3) {
  6350. wait_for_heatup = true;
  6351. break;
  6352. }
  6353. }
  6354. }
  6355. // Show "insert filament"
  6356. if (nozzle_timed_out)
  6357. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INSERT);
  6358. #if HAS_BUZZER
  6359. filament_change_beep(true);
  6360. #endif
  6361. wait_for_user = true; // LCD click or M108 will clear this
  6362. while (wait_for_user && nozzle_timed_out) {
  6363. #if HAS_BUZZER
  6364. filament_change_beep();
  6365. #endif
  6366. idle(true);
  6367. }
  6368. // Show "load" message
  6369. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_LOAD);
  6370. // Load filament
  6371. destination[E_AXIS] += code_seen('L') ? -code_value_axis_units(E_AXIS) : 0
  6372. #if FILAMENT_CHANGE_LOAD_LENGTH > 0
  6373. + FILAMENT_CHANGE_LOAD_LENGTH
  6374. #endif
  6375. ;
  6376. RUNPLAN(FILAMENT_CHANGE_LOAD_FEEDRATE);
  6377. stepper.synchronize();
  6378. #if defined(FILAMENT_CHANGE_EXTRUDE_LENGTH) && FILAMENT_CHANGE_EXTRUDE_LENGTH > 0
  6379. do {
  6380. // "Wait for filament extrude"
  6381. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_EXTRUDE);
  6382. // Extrude filament to get into hotend
  6383. destination[E_AXIS] += FILAMENT_CHANGE_EXTRUDE_LENGTH;
  6384. RUNPLAN(FILAMENT_CHANGE_EXTRUDE_FEEDRATE);
  6385. stepper.synchronize();
  6386. // Show "Extrude More" / "Resume" menu and wait for reply
  6387. KEEPALIVE_STATE(PAUSED_FOR_USER);
  6388. wait_for_user = false;
  6389. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_OPTION);
  6390. while (filament_change_menu_response == FILAMENT_CHANGE_RESPONSE_WAIT_FOR) idle(true);
  6391. KEEPALIVE_STATE(IN_HANDLER);
  6392. // Keep looping if "Extrude More" was selected
  6393. } while (filament_change_menu_response == FILAMENT_CHANGE_RESPONSE_EXTRUDE_MORE);
  6394. #endif
  6395. // "Wait for print to resume"
  6396. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_RESUME);
  6397. // Set extruder to saved position
  6398. destination[E_AXIS] = current_position[E_AXIS] = lastpos[E_AXIS];
  6399. planner.set_e_position_mm(current_position[E_AXIS]);
  6400. #if IS_KINEMATIC
  6401. // Move XYZ to starting position
  6402. planner.buffer_line_kinematic(lastpos, FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  6403. #else
  6404. // Move XY to starting position, then Z
  6405. destination[X_AXIS] = lastpos[X_AXIS];
  6406. destination[Y_AXIS] = lastpos[Y_AXIS];
  6407. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  6408. destination[Z_AXIS] = lastpos[Z_AXIS];
  6409. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  6410. #endif
  6411. stepper.synchronize();
  6412. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  6413. filament_ran_out = false;
  6414. #endif
  6415. // Show status screen
  6416. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_STATUS);
  6417. // Resume the print job timer if it was running
  6418. if (job_running) print_job_timer.start();
  6419. busy_doing_M600 = false; // Allow Stepper Motors to be turned off during inactivity
  6420. }
  6421. #endif // FILAMENT_CHANGE_FEATURE
  6422. #if ENABLED(DUAL_X_CARRIAGE)
  6423. /**
  6424. * M605: Set dual x-carriage movement mode
  6425. *
  6426. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  6427. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  6428. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  6429. * units x-offset and an optional differential hotend temperature of
  6430. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  6431. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  6432. *
  6433. * Note: the X axis should be homed after changing dual x-carriage mode.
  6434. */
  6435. inline void gcode_M605() {
  6436. stepper.synchronize();
  6437. if (code_seen('S')) dual_x_carriage_mode = (DualXMode)code_value_byte();
  6438. switch (dual_x_carriage_mode) {
  6439. case DXC_FULL_CONTROL_MODE:
  6440. case DXC_AUTO_PARK_MODE:
  6441. break;
  6442. case DXC_DUPLICATION_MODE:
  6443. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value_axis_units(X_AXIS), X2_MIN_POS - x_home_pos(0));
  6444. if (code_seen('R')) duplicate_extruder_temp_offset = code_value_temp_diff();
  6445. SERIAL_ECHO_START;
  6446. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  6447. SERIAL_CHAR(' ');
  6448. SERIAL_ECHO(hotend_offset[X_AXIS][0]);
  6449. SERIAL_CHAR(',');
  6450. SERIAL_ECHO(hotend_offset[Y_AXIS][0]);
  6451. SERIAL_CHAR(' ');
  6452. SERIAL_ECHO(duplicate_extruder_x_offset);
  6453. SERIAL_CHAR(',');
  6454. SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]);
  6455. break;
  6456. default:
  6457. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  6458. break;
  6459. }
  6460. active_extruder_parked = false;
  6461. extruder_duplication_enabled = false;
  6462. delayed_move_time = 0;
  6463. }
  6464. #elif ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  6465. inline void gcode_M605() {
  6466. stepper.synchronize();
  6467. extruder_duplication_enabled = code_seen('S') && code_value_int() == 2;
  6468. SERIAL_ECHO_START;
  6469. SERIAL_ECHOLNPAIR(MSG_DUPLICATION_MODE, extruder_duplication_enabled ? MSG_ON : MSG_OFF);
  6470. }
  6471. #endif // DUAL_NOZZLE_DUPLICATION_MODE
  6472. #if ENABLED(LIN_ADVANCE)
  6473. /**
  6474. * M905: Set advance factor
  6475. */
  6476. inline void gcode_M905() {
  6477. stepper.synchronize();
  6478. const float newK = code_seen('K') ? code_value_float() : -1,
  6479. newD = code_seen('D') ? code_value_float() : -1,
  6480. newW = code_seen('W') ? code_value_float() : -1,
  6481. newH = code_seen('H') ? code_value_float() : -1;
  6482. if (newK >= 0.0) planner.set_extruder_advance_k(newK);
  6483. SERIAL_ECHO_START;
  6484. SERIAL_ECHOLNPAIR("Advance factor: ", planner.get_extruder_advance_k());
  6485. if (newD >= 0 || newW >= 0 || newH >= 0) {
  6486. const float ratio = (!newD || !newW || !newH) ? 0 : (newW * newH) / (sq(newD * 0.5) * M_PI);
  6487. planner.set_advance_ed_ratio(ratio);
  6488. SERIAL_ECHO_START;
  6489. SERIAL_ECHOPGM("E/D ratio: ");
  6490. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Automatic");
  6491. }
  6492. }
  6493. #endif // LIN_ADVANCE
  6494. #if ENABLED(HAVE_TMC2130)
  6495. static void tmc2130_print_current(const int mA, const char name) {
  6496. SERIAL_CHAR(name);
  6497. SERIAL_ECHOPGM(" axis driver current: ");
  6498. SERIAL_ECHOLN(mA);
  6499. }
  6500. static void tmc2130_set_current(const int mA, TMC2130Stepper &st, const char name) {
  6501. tmc2130_print_current(mA, name);
  6502. st.setCurrent(mA, 0.11, 0.5);
  6503. }
  6504. static void tmc2130_get_current(TMC2130Stepper &st, const char name) {
  6505. tmc2130_print_current(st.getCurrent(), name);
  6506. }
  6507. static void tmc2130_report_otpw(TMC2130Stepper &st, const char name) {
  6508. SERIAL_CHAR(name);
  6509. SERIAL_ECHOPGM(" axis temperature prewarn triggered: ");
  6510. serialprintPGM(st.getOTPW() ? PSTR("true") : PSTR("false"));
  6511. }
  6512. static void tmc2130_clear_otpw(TMC2130Stepper &st, const char name) {
  6513. st.clear_otpw();
  6514. SERIAL_CHAR(name);
  6515. SERIAL_ECHOLNPGM(" prewarn flag cleared");
  6516. }
  6517. /**
  6518. * M906: Set motor current in milliamps using axis codes X, Y, Z, E
  6519. *
  6520. * Report driver currents when no axis specified
  6521. */
  6522. inline void gcode_M906() {
  6523. uint16_t values[XYZE];
  6524. LOOP_XYZE(i)
  6525. values[i] = code_seen(axis_codes[i]) ? code_value_int() : 0;
  6526. #if ENABLED(X_IS_TMC2130)
  6527. if (values[X_AXIS]) tmc2130_set_current(values[X_AXIS], stepperX, 'X');
  6528. else tmc2130_get_current(stepperX, 'X');
  6529. #endif
  6530. #if ENABLED(Y_IS_TMC2130)
  6531. if (values[Y_AXIS]) tmc2130_set_current(values[Y_AXIS], stepperY, 'Y');
  6532. else tmc2130_get_current(stepperY, 'Y');
  6533. #endif
  6534. #if ENABLED(Z_IS_TMC2130)
  6535. if (values[Z_AXIS]) tmc2130_set_current(values[Z_AXIS], stepperZ, 'Z');
  6536. else tmc2130_get_current(stepperZ, 'Z');
  6537. #endif
  6538. #if ENABLED(E0_IS_TMC2130)
  6539. if (values[E_AXIS]) tmc2130_set_current(values[E_AXIS], stepperE0, 'E');
  6540. else tmc2130_get_current(stepperE0, 'E');
  6541. #endif
  6542. }
  6543. /**
  6544. * M911: Report TMC2130 stepper driver overtemperature pre-warn flag
  6545. * The flag is held by the library and persist until manually cleared by M912
  6546. */
  6547. inline void gcode_M911() {
  6548. #if ENABLED(X_IS_TMC2130)
  6549. tmc2130_report_otpw(stepperX, 'X');
  6550. #endif
  6551. #if ENABLED(Y_IS_TMC2130)
  6552. tmc2130_report_otpw(stepperY, 'Y');
  6553. #endif
  6554. #if ENABLED(Z_IS_TMC2130)
  6555. tmc2130_report_otpw(stepperZ, 'Z');
  6556. #endif
  6557. #if ENABLED(E0_IS_TMC2130)
  6558. tmc2130_report_otpw(stepperE0, 'E');
  6559. #endif
  6560. }
  6561. /**
  6562. * M912: Clear TMC2130 stepper driver overtemperature pre-warn flag held by the library
  6563. */
  6564. inline void gcode_M912() {
  6565. #if ENABLED(X_IS_TMC2130)
  6566. if (code_seen('X')) tmc2130_clear_otpw(stepperX, 'X');
  6567. #endif
  6568. #if ENABLED(Y_IS_TMC2130)
  6569. if (code_seen('Y')) tmc2130_clear_otpw(stepperY, 'Y');
  6570. #endif
  6571. #if ENABLED(Z_IS_TMC2130)
  6572. if (code_seen('Z')) tmc2130_clear_otpw(stepperZ, 'Z');
  6573. #endif
  6574. #if ENABLED(E0_IS_TMC2130)
  6575. if (code_seen('E')) tmc2130_clear_otpw(stepperE0, 'E');
  6576. #endif
  6577. }
  6578. #endif // HAVE_TMC2130
  6579. /**
  6580. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  6581. */
  6582. inline void gcode_M907() {
  6583. #if HAS_DIGIPOTSS
  6584. LOOP_XYZE(i)
  6585. if (code_seen(axis_codes[i])) stepper.digipot_current(i, code_value_int());
  6586. if (code_seen('B')) stepper.digipot_current(4, code_value_int());
  6587. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.digipot_current(i, code_value_int());
  6588. #elif HAS_MOTOR_CURRENT_PWM
  6589. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  6590. if (code_seen('X')) stepper.digipot_current(0, code_value_int());
  6591. #endif
  6592. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  6593. if (code_seen('Z')) stepper.digipot_current(1, code_value_int());
  6594. #endif
  6595. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  6596. if (code_seen('E')) stepper.digipot_current(2, code_value_int());
  6597. #endif
  6598. #endif
  6599. #if ENABLED(DIGIPOT_I2C)
  6600. // this one uses actual amps in floating point
  6601. LOOP_XYZE(i) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value_float());
  6602. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  6603. for (int i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value_float());
  6604. #endif
  6605. #if ENABLED(DAC_STEPPER_CURRENT)
  6606. if (code_seen('S')) {
  6607. float dac_percent = code_value_float();
  6608. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  6609. }
  6610. LOOP_XYZE(i) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value_float());
  6611. #endif
  6612. }
  6613. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  6614. /**
  6615. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  6616. */
  6617. inline void gcode_M908() {
  6618. #if HAS_DIGIPOTSS
  6619. stepper.digitalPotWrite(
  6620. code_seen('P') ? code_value_int() : 0,
  6621. code_seen('S') ? code_value_int() : 0
  6622. );
  6623. #endif
  6624. #ifdef DAC_STEPPER_CURRENT
  6625. dac_current_raw(
  6626. code_seen('P') ? code_value_byte() : -1,
  6627. code_seen('S') ? code_value_ushort() : 0
  6628. );
  6629. #endif
  6630. }
  6631. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  6632. inline void gcode_M909() { dac_print_values(); }
  6633. inline void gcode_M910() { dac_commit_eeprom(); }
  6634. #endif
  6635. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  6636. #if HAS_MICROSTEPS
  6637. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  6638. inline void gcode_M350() {
  6639. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, code_value_byte());
  6640. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_mode(i, code_value_byte());
  6641. if (code_seen('B')) stepper.microstep_mode(4, code_value_byte());
  6642. stepper.microstep_readings();
  6643. }
  6644. /**
  6645. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  6646. * S# determines MS1 or MS2, X# sets the pin high/low.
  6647. */
  6648. inline void gcode_M351() {
  6649. if (code_seen('S')) switch (code_value_byte()) {
  6650. case 1:
  6651. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, code_value_byte(), -1);
  6652. if (code_seen('B')) stepper.microstep_ms(4, code_value_byte(), -1);
  6653. break;
  6654. case 2:
  6655. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, -1, code_value_byte());
  6656. if (code_seen('B')) stepper.microstep_ms(4, -1, code_value_byte());
  6657. break;
  6658. }
  6659. stepper.microstep_readings();
  6660. }
  6661. #endif // HAS_MICROSTEPS
  6662. #if HAS_CASE_LIGHT
  6663. uint8_t case_light_brightness = 255;
  6664. void update_case_light() {
  6665. digitalWrite(CASE_LIGHT_PIN, case_light_on != INVERT_CASE_LIGHT ? HIGH : LOW);
  6666. analogWrite(CASE_LIGHT_PIN, case_light_on != INVERT_CASE_LIGHT ? case_light_brightness : 0);
  6667. }
  6668. #endif // HAS_CASE_LIGHT
  6669. /**
  6670. * M355: Turn case lights on/off and set brightness
  6671. *
  6672. * S<bool> Turn case light on or off
  6673. * P<byte> Set case light brightness (PWM pin required)
  6674. */
  6675. inline void gcode_M355() {
  6676. #if HAS_CASE_LIGHT
  6677. if (code_seen('P')) case_light_brightness = code_value_byte();
  6678. if (code_seen('S')) case_light_on = code_value_bool();
  6679. update_case_light();
  6680. SERIAL_ECHO_START;
  6681. SERIAL_ECHOPGM("Case lights ");
  6682. case_light_on ? SERIAL_ECHOLNPGM("on") : SERIAL_ECHOLNPGM("off");
  6683. #else
  6684. SERIAL_ERROR_START;
  6685. SERIAL_ERRORLNPGM(MSG_ERR_M355_NONE);
  6686. #endif // HAS_CASE_LIGHT
  6687. }
  6688. #if ENABLED(MIXING_EXTRUDER)
  6689. /**
  6690. * M163: Set a single mix factor for a mixing extruder
  6691. * This is called "weight" by some systems.
  6692. *
  6693. * S[index] The channel index to set
  6694. * P[float] The mix value
  6695. *
  6696. */
  6697. inline void gcode_M163() {
  6698. int mix_index = code_seen('S') ? code_value_int() : 0;
  6699. if (mix_index < MIXING_STEPPERS) {
  6700. float mix_value = code_seen('P') ? code_value_float() : 0.0;
  6701. NOLESS(mix_value, 0.0);
  6702. mixing_factor[mix_index] = RECIPROCAL(mix_value);
  6703. }
  6704. }
  6705. #if MIXING_VIRTUAL_TOOLS > 1
  6706. /**
  6707. * M164: Store the current mix factors as a virtual tool.
  6708. *
  6709. * S[index] The virtual tool to store
  6710. *
  6711. */
  6712. inline void gcode_M164() {
  6713. int tool_index = code_seen('S') ? code_value_int() : 0;
  6714. if (tool_index < MIXING_VIRTUAL_TOOLS) {
  6715. normalize_mix();
  6716. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  6717. mixing_virtual_tool_mix[tool_index][i] = mixing_factor[i];
  6718. }
  6719. }
  6720. #endif
  6721. #if ENABLED(DIRECT_MIXING_IN_G1)
  6722. /**
  6723. * M165: Set multiple mix factors for a mixing extruder.
  6724. * Factors that are left out will be set to 0.
  6725. * All factors together must add up to 1.0.
  6726. *
  6727. * A[factor] Mix factor for extruder stepper 1
  6728. * B[factor] Mix factor for extruder stepper 2
  6729. * C[factor] Mix factor for extruder stepper 3
  6730. * D[factor] Mix factor for extruder stepper 4
  6731. * H[factor] Mix factor for extruder stepper 5
  6732. * I[factor] Mix factor for extruder stepper 6
  6733. *
  6734. */
  6735. inline void gcode_M165() { gcode_get_mix(); }
  6736. #endif
  6737. #endif // MIXING_EXTRUDER
  6738. /**
  6739. * M999: Restart after being stopped
  6740. *
  6741. * Default behaviour is to flush the serial buffer and request
  6742. * a resend to the host starting on the last N line received.
  6743. *
  6744. * Sending "M999 S1" will resume printing without flushing the
  6745. * existing command buffer.
  6746. *
  6747. */
  6748. inline void gcode_M999() {
  6749. Running = true;
  6750. lcd_reset_alert_level();
  6751. if (code_seen('S') && code_value_bool()) return;
  6752. // gcode_LastN = Stopped_gcode_LastN;
  6753. FlushSerialRequestResend();
  6754. }
  6755. #if ENABLED(SWITCHING_EXTRUDER)
  6756. inline void move_extruder_servo(uint8_t e) {
  6757. const int angles[2] = SWITCHING_EXTRUDER_SERVO_ANGLES;
  6758. MOVE_SERVO(SWITCHING_EXTRUDER_SERVO_NR, angles[e]);
  6759. delay(500);
  6760. }
  6761. #endif
  6762. inline void invalid_extruder_error(const uint8_t &e) {
  6763. SERIAL_ECHO_START;
  6764. SERIAL_CHAR('T');
  6765. SERIAL_ECHO_F(e, DEC);
  6766. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  6767. }
  6768. /**
  6769. * Perform a tool-change, which may result in moving the
  6770. * previous tool out of the way and the new tool into place.
  6771. */
  6772. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s/*=0.0*/, bool no_move/*=false*/) {
  6773. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  6774. if (tmp_extruder >= MIXING_VIRTUAL_TOOLS)
  6775. return invalid_extruder_error(tmp_extruder);
  6776. // T0-Tnnn: Switch virtual tool by changing the mix
  6777. for (uint8_t j = 0; j < MIXING_STEPPERS; j++)
  6778. mixing_factor[j] = mixing_virtual_tool_mix[tmp_extruder][j];
  6779. #else //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  6780. #if HOTENDS > 1
  6781. if (tmp_extruder >= EXTRUDERS)
  6782. return invalid_extruder_error(tmp_extruder);
  6783. const float old_feedrate_mm_s = fr_mm_s > 0.0 ? fr_mm_s : feedrate_mm_s;
  6784. feedrate_mm_s = fr_mm_s > 0.0 ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  6785. if (tmp_extruder != active_extruder) {
  6786. if (!no_move && axis_unhomed_error(true, true, true)) {
  6787. SERIAL_ECHOLNPGM("No move on toolchange");
  6788. no_move = true;
  6789. }
  6790. // Save current position to destination, for use later
  6791. set_destination_to_current();
  6792. #if ENABLED(DUAL_X_CARRIAGE)
  6793. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6794. if (DEBUGGING(LEVELING)) {
  6795. SERIAL_ECHOPGM("Dual X Carriage Mode ");
  6796. switch (dual_x_carriage_mode) {
  6797. case DXC_FULL_CONTROL_MODE: SERIAL_ECHOLNPGM("DXC_FULL_CONTROL_MODE"); break;
  6798. case DXC_AUTO_PARK_MODE: SERIAL_ECHOLNPGM("DXC_AUTO_PARK_MODE"); break;
  6799. case DXC_DUPLICATION_MODE: SERIAL_ECHOLNPGM("DXC_DUPLICATION_MODE"); break;
  6800. }
  6801. }
  6802. #endif
  6803. const float xhome = x_home_pos(active_extruder);
  6804. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE
  6805. && IsRunning()
  6806. && (delayed_move_time || current_position[X_AXIS] != xhome)
  6807. ) {
  6808. float raised_z = current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT;
  6809. #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
  6810. NOMORE(raised_z, soft_endstop_max[Z_AXIS]);
  6811. #endif
  6812. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6813. if (DEBUGGING(LEVELING)) {
  6814. SERIAL_ECHOLNPAIR("Raise to ", raised_z);
  6815. SERIAL_ECHOLNPAIR("MoveX to ", xhome);
  6816. SERIAL_ECHOLNPAIR("Lower to ", current_position[Z_AXIS]);
  6817. }
  6818. #endif
  6819. // Park old head: 1) raise 2) move to park position 3) lower
  6820. for (uint8_t i = 0; i < 3; i++)
  6821. planner.buffer_line(
  6822. i == 0 ? current_position[X_AXIS] : xhome,
  6823. current_position[Y_AXIS],
  6824. i == 2 ? current_position[Z_AXIS] : raised_z,
  6825. current_position[E_AXIS],
  6826. planner.max_feedrate_mm_s[i == 1 ? X_AXIS : Z_AXIS],
  6827. active_extruder
  6828. );
  6829. stepper.synchronize();
  6830. }
  6831. // Apply Y & Z extruder offset (X offset is used as home pos with Dual X)
  6832. current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
  6833. current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
  6834. // Activate the new extruder
  6835. active_extruder = tmp_extruder;
  6836. // This function resets the max/min values - the current position may be overwritten below.
  6837. set_axis_is_at_home(X_AXIS);
  6838. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6839. if (DEBUGGING(LEVELING)) DEBUG_POS("New Extruder", current_position);
  6840. #endif
  6841. // Only when auto-parking are carriages safe to move
  6842. if (dual_x_carriage_mode != DXC_AUTO_PARK_MODE) no_move = true;
  6843. switch (dual_x_carriage_mode) {
  6844. case DXC_FULL_CONTROL_MODE:
  6845. // New current position is the position of the activated extruder
  6846. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  6847. // Save the inactive extruder's position (from the old current_position)
  6848. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  6849. break;
  6850. case DXC_AUTO_PARK_MODE:
  6851. // record raised toolhead position for use by unpark
  6852. COPY(raised_parked_position, current_position);
  6853. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  6854. #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
  6855. NOMORE(raised_parked_position[Z_AXIS], soft_endstop_max[Z_AXIS]);
  6856. #endif
  6857. active_extruder_parked = true;
  6858. delayed_move_time = 0;
  6859. break;
  6860. case DXC_DUPLICATION_MODE:
  6861. // If the new extruder is the left one, set it "parked"
  6862. // This triggers the second extruder to move into the duplication position
  6863. active_extruder_parked = (active_extruder == 0);
  6864. if (active_extruder_parked)
  6865. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  6866. else
  6867. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  6868. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  6869. extruder_duplication_enabled = false;
  6870. break;
  6871. }
  6872. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6873. if (DEBUGGING(LEVELING)) {
  6874. SERIAL_ECHOLNPAIR("Active extruder parked: ", active_extruder_parked ? "yes" : "no");
  6875. DEBUG_POS("New extruder (parked)", current_position);
  6876. }
  6877. #endif
  6878. // No extra case for HAS_ABL in DUAL_X_CARRIAGE. Does that mean they don't work together?
  6879. #else // !DUAL_X_CARRIAGE
  6880. #if ENABLED(SWITCHING_EXTRUDER)
  6881. // <0 if the new nozzle is higher, >0 if lower. A bigger raise when lower.
  6882. const float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder],
  6883. z_raise = 0.3 + (z_diff > 0.0 ? z_diff : 0.0);
  6884. // Always raise by some amount (destination copied from current_position earlier)
  6885. current_position[Z_AXIS] += z_raise;
  6886. planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  6887. stepper.synchronize();
  6888. move_extruder_servo(active_extruder);
  6889. #endif
  6890. /**
  6891. * Set current_position to the position of the new nozzle.
  6892. * Offsets are based on linear distance, so we need to get
  6893. * the resulting position in coordinate space.
  6894. *
  6895. * - With grid or 3-point leveling, offset XYZ by a tilted vector
  6896. * - With mesh leveling, update Z for the new position
  6897. * - Otherwise, just use the raw linear distance
  6898. *
  6899. * Software endstops are altered here too. Consider a case where:
  6900. * E0 at X=0 ... E1 at X=10
  6901. * When we switch to E1 now X=10, but E1 can't move left.
  6902. * To express this we apply the change in XY to the software endstops.
  6903. * E1 can move farther right than E0, so the right limit is extended.
  6904. *
  6905. * Note that we don't adjust the Z software endstops. Why not?
  6906. * Consider a case where Z=0 (here) and switching to E1 makes Z=1
  6907. * because the bed is 1mm lower at the new position. As long as
  6908. * the first nozzle is out of the way, the carriage should be
  6909. * allowed to move 1mm lower. This technically "breaks" the
  6910. * Z software endstop. But this is technically correct (and
  6911. * there is no viable alternative).
  6912. */
  6913. #if ABL_PLANAR
  6914. // Offset extruder, make sure to apply the bed level rotation matrix
  6915. vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder],
  6916. hotend_offset[Y_AXIS][tmp_extruder],
  6917. 0),
  6918. act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder],
  6919. hotend_offset[Y_AXIS][active_extruder],
  6920. 0),
  6921. offset_vec = tmp_offset_vec - act_offset_vec;
  6922. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6923. if (DEBUGGING(LEVELING)) {
  6924. tmp_offset_vec.debug("tmp_offset_vec");
  6925. act_offset_vec.debug("act_offset_vec");
  6926. offset_vec.debug("offset_vec (BEFORE)");
  6927. }
  6928. #endif
  6929. offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
  6930. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6931. if (DEBUGGING(LEVELING)) offset_vec.debug("offset_vec (AFTER)");
  6932. #endif
  6933. // Adjustments to the current position
  6934. const float xydiff[2] = { offset_vec.x, offset_vec.y };
  6935. current_position[Z_AXIS] += offset_vec.z;
  6936. #else // !ABL_PLANAR
  6937. const float xydiff[2] = {
  6938. hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder],
  6939. hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder]
  6940. };
  6941. #if ENABLED(MESH_BED_LEVELING)
  6942. if (mbl.active()) {
  6943. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6944. if (DEBUGGING(LEVELING)) SERIAL_ECHOPAIR("Z before MBL: ", current_position[Z_AXIS]);
  6945. #endif
  6946. float x2 = current_position[X_AXIS] + xydiff[X_AXIS],
  6947. y2 = current_position[Y_AXIS] + xydiff[Y_AXIS],
  6948. z1 = current_position[Z_AXIS], z2 = z1;
  6949. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], z1);
  6950. planner.apply_leveling(x2, y2, z2);
  6951. current_position[Z_AXIS] += z2 - z1;
  6952. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6953. if (DEBUGGING(LEVELING))
  6954. SERIAL_ECHOLNPAIR(" after: ", current_position[Z_AXIS]);
  6955. #endif
  6956. }
  6957. #endif // MESH_BED_LEVELING
  6958. #endif // !HAS_ABL
  6959. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6960. if (DEBUGGING(LEVELING)) {
  6961. SERIAL_ECHOPAIR("Offset Tool XY by { ", xydiff[X_AXIS]);
  6962. SERIAL_ECHOPAIR(", ", xydiff[Y_AXIS]);
  6963. SERIAL_ECHOLNPGM(" }");
  6964. }
  6965. #endif
  6966. // The newly-selected extruder XY is actually at...
  6967. current_position[X_AXIS] += xydiff[X_AXIS];
  6968. current_position[Y_AXIS] += xydiff[Y_AXIS];
  6969. #if DISABLED(NO_WORKSPACE_OFFSETS) || ENABLED(DUAL_X_CARRIAGE)
  6970. for (uint8_t i = X_AXIS; i <= Y_AXIS; i++) {
  6971. #if DISABLED(NO_WORKSPACE_OFFSETS)
  6972. position_shift[i] += xydiff[i];
  6973. #endif
  6974. update_software_endstops((AxisEnum)i);
  6975. }
  6976. #endif
  6977. // Set the new active extruder
  6978. active_extruder = tmp_extruder;
  6979. #endif // !DUAL_X_CARRIAGE
  6980. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6981. if (DEBUGGING(LEVELING)) DEBUG_POS("Sync After Toolchange", current_position);
  6982. #endif
  6983. // Tell the planner the new "current position"
  6984. SYNC_PLAN_POSITION_KINEMATIC();
  6985. // Move to the "old position" (move the extruder into place)
  6986. if (!no_move && IsRunning()) {
  6987. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6988. if (DEBUGGING(LEVELING)) DEBUG_POS("Move back", destination);
  6989. #endif
  6990. prepare_move_to_destination();
  6991. }
  6992. #if ENABLED(SWITCHING_EXTRUDER)
  6993. // Move back down, if needed. (Including when the new tool is higher.)
  6994. if (z_raise != z_diff) {
  6995. destination[Z_AXIS] += z_diff;
  6996. feedrate_mm_s = planner.max_feedrate_mm_s[Z_AXIS];
  6997. prepare_move_to_destination();
  6998. }
  6999. #endif
  7000. } // (tmp_extruder != active_extruder)
  7001. stepper.synchronize();
  7002. #if ENABLED(EXT_SOLENOID)
  7003. disable_all_solenoids();
  7004. enable_solenoid_on_active_extruder();
  7005. #endif // EXT_SOLENOID
  7006. feedrate_mm_s = old_feedrate_mm_s;
  7007. #else // HOTENDS <= 1
  7008. // Set the new active extruder
  7009. active_extruder = tmp_extruder;
  7010. UNUSED(fr_mm_s);
  7011. UNUSED(no_move);
  7012. #endif // HOTENDS <= 1
  7013. SERIAL_ECHO_START;
  7014. SERIAL_ECHOLNPAIR(MSG_ACTIVE_EXTRUDER, (int)active_extruder);
  7015. #endif //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  7016. }
  7017. /**
  7018. * T0-T3: Switch tool, usually switching extruders
  7019. *
  7020. * F[units/min] Set the movement feedrate
  7021. * S1 Don't move the tool in XY after change
  7022. */
  7023. inline void gcode_T(uint8_t tmp_extruder) {
  7024. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7025. if (DEBUGGING(LEVELING)) {
  7026. SERIAL_ECHOPAIR(">>> gcode_T(", tmp_extruder);
  7027. SERIAL_CHAR(')');
  7028. SERIAL_EOL;
  7029. DEBUG_POS("BEFORE", current_position);
  7030. }
  7031. #endif
  7032. #if HOTENDS == 1 || (ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1)
  7033. tool_change(tmp_extruder);
  7034. #elif HOTENDS > 1
  7035. tool_change(
  7036. tmp_extruder,
  7037. code_seen('F') ? MMM_TO_MMS(code_value_axis_units(X_AXIS)) : 0.0,
  7038. (tmp_extruder == active_extruder) || (code_seen('S') && code_value_bool())
  7039. );
  7040. #endif
  7041. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7042. if (DEBUGGING(LEVELING)) {
  7043. DEBUG_POS("AFTER", current_position);
  7044. SERIAL_ECHOLNPGM("<<< gcode_T");
  7045. }
  7046. #endif
  7047. }
  7048. /**
  7049. * Process a single command and dispatch it to its handler
  7050. * This is called from the main loop()
  7051. */
  7052. void process_next_command() {
  7053. current_command = command_queue[cmd_queue_index_r];
  7054. if (DEBUGGING(ECHO)) {
  7055. SERIAL_ECHO_START;
  7056. SERIAL_ECHOLN(current_command);
  7057. }
  7058. // Sanitize the current command:
  7059. // - Skip leading spaces
  7060. // - Bypass N[-0-9][0-9]*[ ]*
  7061. // - Overwrite * with nul to mark the end
  7062. while (*current_command == ' ') ++current_command;
  7063. if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) {
  7064. current_command += 2; // skip N[-0-9]
  7065. while (NUMERIC(*current_command)) ++current_command; // skip [0-9]*
  7066. while (*current_command == ' ') ++current_command; // skip [ ]*
  7067. }
  7068. char* starpos = strchr(current_command, '*'); // * should always be the last parameter
  7069. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  7070. char *cmd_ptr = current_command;
  7071. // Get the command code, which must be G, M, or T
  7072. char command_code = *cmd_ptr++;
  7073. // Skip spaces to get the numeric part
  7074. while (*cmd_ptr == ' ') cmd_ptr++;
  7075. // Allow for decimal point in command
  7076. #if ENABLED(G38_PROBE_TARGET)
  7077. uint8_t subcode = 0;
  7078. #endif
  7079. uint16_t codenum = 0; // define ahead of goto
  7080. // Bail early if there's no code
  7081. bool code_is_good = NUMERIC(*cmd_ptr);
  7082. if (!code_is_good) goto ExitUnknownCommand;
  7083. // Get and skip the code number
  7084. do {
  7085. codenum = (codenum * 10) + (*cmd_ptr - '0');
  7086. cmd_ptr++;
  7087. } while (NUMERIC(*cmd_ptr));
  7088. // Allow for decimal point in command
  7089. #if ENABLED(G38_PROBE_TARGET)
  7090. if (*cmd_ptr == '.') {
  7091. cmd_ptr++;
  7092. while (NUMERIC(*cmd_ptr))
  7093. subcode = (subcode * 10) + (*cmd_ptr++ - '0');
  7094. }
  7095. #endif
  7096. // Skip all spaces to get to the first argument, or nul
  7097. while (*cmd_ptr == ' ') cmd_ptr++;
  7098. // The command's arguments (if any) start here, for sure!
  7099. current_command_args = cmd_ptr;
  7100. KEEPALIVE_STATE(IN_HANDLER);
  7101. // Handle a known G, M, or T
  7102. switch (command_code) {
  7103. case 'G': switch (codenum) {
  7104. // G0, G1
  7105. case 0:
  7106. case 1:
  7107. #if IS_SCARA
  7108. gcode_G0_G1(codenum == 0);
  7109. #else
  7110. gcode_G0_G1();
  7111. #endif
  7112. break;
  7113. // G2, G3
  7114. #if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
  7115. case 2: // G2 - CW ARC
  7116. case 3: // G3 - CCW ARC
  7117. gcode_G2_G3(codenum == 2);
  7118. break;
  7119. #endif
  7120. // G4 Dwell
  7121. case 4:
  7122. gcode_G4();
  7123. break;
  7124. #if ENABLED(BEZIER_CURVE_SUPPORT)
  7125. // G5
  7126. case 5: // G5 - Cubic B_spline
  7127. gcode_G5();
  7128. break;
  7129. #endif // BEZIER_CURVE_SUPPORT
  7130. #if ENABLED(FWRETRACT)
  7131. case 10: // G10: retract
  7132. case 11: // G11: retract_recover
  7133. gcode_G10_G11(codenum == 10);
  7134. break;
  7135. #endif // FWRETRACT
  7136. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  7137. case 12:
  7138. gcode_G12(); // G12: Nozzle Clean
  7139. break;
  7140. #endif // NOZZLE_CLEAN_FEATURE
  7141. #if ENABLED(INCH_MODE_SUPPORT)
  7142. case 20: //G20: Inch Mode
  7143. gcode_G20();
  7144. break;
  7145. case 21: //G21: MM Mode
  7146. gcode_G21();
  7147. break;
  7148. #endif // INCH_MODE_SUPPORT
  7149. #if ENABLED(AUTO_BED_LEVELING_UBL)
  7150. case 26: // G26: Mesh Validation Pattern generation
  7151. gcode_G26();
  7152. break;
  7153. #endif // AUTO_BED_LEVELING_UBL
  7154. #if ENABLED(NOZZLE_PARK_FEATURE)
  7155. case 27: // G27: Nozzle Park
  7156. gcode_G27();
  7157. break;
  7158. #endif // NOZZLE_PARK_FEATURE
  7159. case 28: // G28: Home all axes, one at a time
  7160. gcode_G28();
  7161. break;
  7162. #if PLANNER_LEVELING
  7163. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points,
  7164. // or provides access to the UBL System if enabled.
  7165. gcode_G29();
  7166. break;
  7167. #endif // PLANNER_LEVELING
  7168. #if HAS_BED_PROBE
  7169. case 30: // G30 Single Z probe
  7170. gcode_G30();
  7171. break;
  7172. #if ENABLED(Z_PROBE_SLED)
  7173. case 31: // G31: dock the sled
  7174. gcode_G31();
  7175. break;
  7176. case 32: // G32: undock the sled
  7177. gcode_G32();
  7178. break;
  7179. #endif // Z_PROBE_SLED
  7180. #endif // HAS_BED_PROBE
  7181. #if ENABLED(G38_PROBE_TARGET)
  7182. case 38: // G38.2 & G38.3
  7183. if (subcode == 2 || subcode == 3)
  7184. gcode_G38(subcode == 2);
  7185. break;
  7186. #endif
  7187. case 90: // G90
  7188. relative_mode = false;
  7189. break;
  7190. case 91: // G91
  7191. relative_mode = true;
  7192. break;
  7193. case 92: // G92
  7194. gcode_G92();
  7195. break;
  7196. }
  7197. break;
  7198. case 'M': switch (codenum) {
  7199. #if ENABLED(ULTIPANEL) || ENABLED(EMERGENCY_PARSER)
  7200. case 0: // M0: Unconditional stop - Wait for user button press on LCD
  7201. case 1: // M1: Conditional stop - Wait for user button press on LCD
  7202. gcode_M0_M1();
  7203. break;
  7204. #endif // ULTIPANEL
  7205. case 17: // M17: Enable all stepper motors
  7206. gcode_M17();
  7207. break;
  7208. #if ENABLED(SDSUPPORT)
  7209. case 20: // M20: list SD card
  7210. gcode_M20(); break;
  7211. case 21: // M21: init SD card
  7212. gcode_M21(); break;
  7213. case 22: // M22: release SD card
  7214. gcode_M22(); break;
  7215. case 23: // M23: Select file
  7216. gcode_M23(); break;
  7217. case 24: // M24: Start SD print
  7218. gcode_M24(); break;
  7219. case 25: // M25: Pause SD print
  7220. gcode_M25(); break;
  7221. case 26: // M26: Set SD index
  7222. gcode_M26(); break;
  7223. case 27: // M27: Get SD status
  7224. gcode_M27(); break;
  7225. case 28: // M28: Start SD write
  7226. gcode_M28(); break;
  7227. case 29: // M29: Stop SD write
  7228. gcode_M29(); break;
  7229. case 30: // M30 <filename> Delete File
  7230. gcode_M30(); break;
  7231. case 32: // M32: Select file and start SD print
  7232. gcode_M32(); break;
  7233. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  7234. case 33: // M33: Get the long full path to a file or folder
  7235. gcode_M33(); break;
  7236. #endif
  7237. #if ENABLED(SDCARD_SORT_ALPHA) && ENABLED(SDSORT_GCODE)
  7238. case 34: //M34 - Set SD card sorting options
  7239. gcode_M34(); break;
  7240. #endif // SDCARD_SORT_ALPHA && SDSORT_GCODE
  7241. case 928: // M928: Start SD write
  7242. gcode_M928(); break;
  7243. #endif //SDSUPPORT
  7244. case 31: // M31: Report time since the start of SD print or last M109
  7245. gcode_M31(); break;
  7246. case 42: // M42: Change pin state
  7247. gcode_M42(); break;
  7248. #if ENABLED(PINS_DEBUGGING)
  7249. case 43: // M43: Read pin state
  7250. gcode_M43(); break;
  7251. #endif
  7252. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  7253. case 48: // M48: Z probe repeatability test
  7254. gcode_M48();
  7255. break;
  7256. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  7257. #if ENABLED(AUTO_BED_LEVELING_UBL)
  7258. case 49: // M49: Turn on or off g26_debug_flag for verbose output
  7259. if (g26_debug_flag) {
  7260. SERIAL_PROTOCOLPGM("UBL Debug Flag turned off.\n");
  7261. g26_debug_flag = 0; }
  7262. else {
  7263. SERIAL_PROTOCOLPGM("UBL Debug Flag turned on.\n");
  7264. g26_debug_flag++; }
  7265. break;
  7266. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  7267. case 75: // M75: Start print timer
  7268. gcode_M75(); break;
  7269. case 76: // M76: Pause print timer
  7270. gcode_M76(); break;
  7271. case 77: // M77: Stop print timer
  7272. gcode_M77(); break;
  7273. #if ENABLED(PRINTCOUNTER)
  7274. case 78: // M78: Show print statistics
  7275. gcode_M78(); break;
  7276. #endif
  7277. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  7278. case 100: // M100: Free Memory Report
  7279. gcode_M100();
  7280. break;
  7281. #endif
  7282. case 104: // M104: Set hot end temperature
  7283. gcode_M104();
  7284. break;
  7285. case 110: // M110: Set Current Line Number
  7286. gcode_M110();
  7287. break;
  7288. case 111: // M111: Set debug level
  7289. gcode_M111();
  7290. break;
  7291. #if DISABLED(EMERGENCY_PARSER)
  7292. case 108: // M108: Cancel Waiting
  7293. gcode_M108();
  7294. break;
  7295. case 112: // M112: Emergency Stop
  7296. gcode_M112();
  7297. break;
  7298. case 410: // M410 quickstop - Abort all the planned moves.
  7299. gcode_M410();
  7300. break;
  7301. #endif
  7302. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  7303. case 113: // M113: Set Host Keepalive interval
  7304. gcode_M113();
  7305. break;
  7306. #endif
  7307. case 140: // M140: Set bed temperature
  7308. gcode_M140();
  7309. break;
  7310. case 105: // M105: Report current temperature
  7311. gcode_M105();
  7312. KEEPALIVE_STATE(NOT_BUSY);
  7313. return; // "ok" already printed
  7314. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  7315. case 155: // M155: Set temperature auto-report interval
  7316. gcode_M155();
  7317. break;
  7318. #endif
  7319. case 109: // M109: Wait for hotend temperature to reach target
  7320. gcode_M109();
  7321. break;
  7322. #if HAS_TEMP_BED
  7323. case 190: // M190: Wait for bed temperature to reach target
  7324. gcode_M190();
  7325. break;
  7326. #endif // HAS_TEMP_BED
  7327. #if FAN_COUNT > 0
  7328. case 106: // M106: Fan On
  7329. gcode_M106();
  7330. break;
  7331. case 107: // M107: Fan Off
  7332. gcode_M107();
  7333. break;
  7334. #endif // FAN_COUNT > 0
  7335. #if ENABLED(PARK_HEAD_ON_PAUSE)
  7336. case 125: // M125: Store current position and move to filament change position
  7337. gcode_M125(); break;
  7338. #endif
  7339. #if ENABLED(BARICUDA)
  7340. // PWM for HEATER_1_PIN
  7341. #if HAS_HEATER_1
  7342. case 126: // M126: valve open
  7343. gcode_M126();
  7344. break;
  7345. case 127: // M127: valve closed
  7346. gcode_M127();
  7347. break;
  7348. #endif // HAS_HEATER_1
  7349. // PWM for HEATER_2_PIN
  7350. #if HAS_HEATER_2
  7351. case 128: // M128: valve open
  7352. gcode_M128();
  7353. break;
  7354. case 129: // M129: valve closed
  7355. gcode_M129();
  7356. break;
  7357. #endif // HAS_HEATER_2
  7358. #endif // BARICUDA
  7359. #if HAS_POWER_SWITCH
  7360. case 80: // M80: Turn on Power Supply
  7361. gcode_M80();
  7362. break;
  7363. #endif // HAS_POWER_SWITCH
  7364. case 81: // M81: Turn off Power, including Power Supply, if possible
  7365. gcode_M81();
  7366. break;
  7367. case 82: // M83: Set E axis normal mode (same as other axes)
  7368. gcode_M82();
  7369. break;
  7370. case 83: // M83: Set E axis relative mode
  7371. gcode_M83();
  7372. break;
  7373. case 18: // M18 => M84
  7374. case 84: // M84: Disable all steppers or set timeout
  7375. gcode_M18_M84();
  7376. break;
  7377. case 85: // M85: Set inactivity stepper shutdown timeout
  7378. gcode_M85();
  7379. break;
  7380. case 92: // M92: Set the steps-per-unit for one or more axes
  7381. gcode_M92();
  7382. break;
  7383. case 114: // M114: Report current position
  7384. gcode_M114();
  7385. break;
  7386. case 115: // M115: Report capabilities
  7387. gcode_M115();
  7388. break;
  7389. case 117: // M117: Set LCD message text, if possible
  7390. gcode_M117();
  7391. break;
  7392. case 119: // M119: Report endstop states
  7393. gcode_M119();
  7394. break;
  7395. case 120: // M120: Enable endstops
  7396. gcode_M120();
  7397. break;
  7398. case 121: // M121: Disable endstops
  7399. gcode_M121();
  7400. break;
  7401. #if ENABLED(ULTIPANEL)
  7402. case 145: // M145: Set material heatup parameters
  7403. gcode_M145();
  7404. break;
  7405. #endif
  7406. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  7407. case 149: // M149: Set temperature units
  7408. gcode_M149();
  7409. break;
  7410. #endif
  7411. #if ENABLED(BLINKM) || ENABLED(RGB_LED)
  7412. case 150: // M150: Set Status LED Color
  7413. gcode_M150();
  7414. break;
  7415. #endif // BLINKM
  7416. #if ENABLED(MIXING_EXTRUDER)
  7417. case 163: // M163: Set a component weight for mixing extruder
  7418. gcode_M163();
  7419. break;
  7420. #if MIXING_VIRTUAL_TOOLS > 1
  7421. case 164: // M164: Save current mix as a virtual extruder
  7422. gcode_M164();
  7423. break;
  7424. #endif
  7425. #if ENABLED(DIRECT_MIXING_IN_G1)
  7426. case 165: // M165: Set multiple mix weights
  7427. gcode_M165();
  7428. break;
  7429. #endif
  7430. #endif
  7431. case 200: // M200: Set filament diameter, E to cubic units
  7432. gcode_M200();
  7433. break;
  7434. case 201: // M201: Set max acceleration for print moves (units/s^2)
  7435. gcode_M201();
  7436. break;
  7437. #if 0 // Not used for Sprinter/grbl gen6
  7438. case 202: // M202
  7439. gcode_M202();
  7440. break;
  7441. #endif
  7442. case 203: // M203: Set max feedrate (units/sec)
  7443. gcode_M203();
  7444. break;
  7445. case 204: // M204: Set acceleration
  7446. gcode_M204();
  7447. break;
  7448. case 205: //M205: Set advanced settings
  7449. gcode_M205();
  7450. break;
  7451. #if DISABLED(NO_WORKSPACE_OFFSETS)
  7452. case 206: // M206: Set home offsets
  7453. gcode_M206();
  7454. break;
  7455. #endif
  7456. #if ENABLED(DELTA)
  7457. case 665: // M665: Set delta configurations
  7458. gcode_M665();
  7459. break;
  7460. #endif
  7461. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  7462. case 666: // M666: Set delta or dual endstop adjustment
  7463. gcode_M666();
  7464. break;
  7465. #endif
  7466. #if ENABLED(FWRETRACT)
  7467. case 207: // M207: Set Retract Length, Feedrate, and Z lift
  7468. gcode_M207();
  7469. break;
  7470. case 208: // M208: Set Recover (unretract) Additional Length and Feedrate
  7471. gcode_M208();
  7472. break;
  7473. case 209: // M209: Turn Automatic Retract Detection on/off
  7474. gcode_M209();
  7475. break;
  7476. #endif // FWRETRACT
  7477. case 211: // M211: Enable, Disable, and/or Report software endstops
  7478. gcode_M211();
  7479. break;
  7480. #if HOTENDS > 1
  7481. case 218: // M218: Set a tool offset
  7482. gcode_M218();
  7483. break;
  7484. #endif
  7485. case 220: // M220: Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  7486. gcode_M220();
  7487. break;
  7488. case 221: // M221: Set Flow Percentage
  7489. gcode_M221();
  7490. break;
  7491. case 226: // M226: Wait until a pin reaches a state
  7492. gcode_M226();
  7493. break;
  7494. #if HAS_SERVOS
  7495. case 280: // M280: Set servo position absolute
  7496. gcode_M280();
  7497. break;
  7498. #endif // HAS_SERVOS
  7499. #if HAS_BUZZER
  7500. case 300: // M300: Play beep tone
  7501. gcode_M300();
  7502. break;
  7503. #endif // HAS_BUZZER
  7504. #if ENABLED(PIDTEMP)
  7505. case 301: // M301: Set hotend PID parameters
  7506. gcode_M301();
  7507. break;
  7508. #endif // PIDTEMP
  7509. #if ENABLED(PIDTEMPBED)
  7510. case 304: // M304: Set bed PID parameters
  7511. gcode_M304();
  7512. break;
  7513. #endif // PIDTEMPBED
  7514. #if defined(CHDK) || HAS_PHOTOGRAPH
  7515. case 240: // M240: Trigger a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  7516. gcode_M240();
  7517. break;
  7518. #endif // CHDK || PHOTOGRAPH_PIN
  7519. #if HAS_LCD_CONTRAST
  7520. case 250: // M250: Set LCD contrast
  7521. gcode_M250();
  7522. break;
  7523. #endif // HAS_LCD_CONTRAST
  7524. #if ENABLED(EXPERIMENTAL_I2CBUS)
  7525. case 260: // M260: Send data to an i2c slave
  7526. gcode_M260();
  7527. break;
  7528. case 261: // M261: Request data from an i2c slave
  7529. gcode_M261();
  7530. break;
  7531. #endif // EXPERIMENTAL_I2CBUS
  7532. #if ENABLED(PREVENT_COLD_EXTRUSION)
  7533. case 302: // M302: Allow cold extrudes (set the minimum extrude temperature)
  7534. gcode_M302();
  7535. break;
  7536. #endif // PREVENT_COLD_EXTRUSION
  7537. case 303: // M303: PID autotune
  7538. gcode_M303();
  7539. break;
  7540. #if ENABLED(MORGAN_SCARA)
  7541. case 360: // M360: SCARA Theta pos1
  7542. if (gcode_M360()) return;
  7543. break;
  7544. case 361: // M361: SCARA Theta pos2
  7545. if (gcode_M361()) return;
  7546. break;
  7547. case 362: // M362: SCARA Psi pos1
  7548. if (gcode_M362()) return;
  7549. break;
  7550. case 363: // M363: SCARA Psi pos2
  7551. if (gcode_M363()) return;
  7552. break;
  7553. case 364: // M364: SCARA Psi pos3 (90 deg to Theta)
  7554. if (gcode_M364()) return;
  7555. break;
  7556. #endif // SCARA
  7557. case 400: // M400: Finish all moves
  7558. gcode_M400();
  7559. break;
  7560. #if HAS_BED_PROBE
  7561. case 401: // M401: Deploy probe
  7562. gcode_M401();
  7563. break;
  7564. case 402: // M402: Stow probe
  7565. gcode_M402();
  7566. break;
  7567. #endif // HAS_BED_PROBE
  7568. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  7569. case 404: // M404: Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  7570. gcode_M404();
  7571. break;
  7572. case 405: // M405: Turn on filament sensor for control
  7573. gcode_M405();
  7574. break;
  7575. case 406: // M406: Turn off filament sensor for control
  7576. gcode_M406();
  7577. break;
  7578. case 407: // M407: Display measured filament diameter
  7579. gcode_M407();
  7580. break;
  7581. #endif // ENABLED(FILAMENT_WIDTH_SENSOR)
  7582. #if PLANNER_LEVELING
  7583. case 420: // M420: Enable/Disable Bed Leveling
  7584. gcode_M420();
  7585. break;
  7586. #endif
  7587. #if ENABLED(MESH_BED_LEVELING)
  7588. case 421: // M421: Set a Mesh Bed Leveling Z coordinate
  7589. gcode_M421();
  7590. break;
  7591. #endif
  7592. #if DISABLED(NO_WORKSPACE_OFFSETS)
  7593. case 428: // M428: Apply current_position to home_offset
  7594. gcode_M428();
  7595. break;
  7596. #endif
  7597. case 500: // M500: Store settings in EEPROM
  7598. gcode_M500();
  7599. break;
  7600. case 501: // M501: Read settings from EEPROM
  7601. gcode_M501();
  7602. break;
  7603. case 502: // M502: Revert to default settings
  7604. gcode_M502();
  7605. break;
  7606. case 503: // M503: print settings currently in memory
  7607. gcode_M503();
  7608. break;
  7609. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  7610. case 540: // M540: Set abort on endstop hit for SD printing
  7611. gcode_M540();
  7612. break;
  7613. #endif
  7614. #if HAS_BED_PROBE
  7615. case 851: // M851: Set Z Probe Z Offset
  7616. gcode_M851();
  7617. break;
  7618. #endif // HAS_BED_PROBE
  7619. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  7620. case 600: // M600: Pause for filament change
  7621. gcode_M600();
  7622. break;
  7623. #endif // FILAMENT_CHANGE_FEATURE
  7624. #if ENABLED(DUAL_X_CARRIAGE)
  7625. case 605: // M605: Set Dual X Carriage movement mode
  7626. gcode_M605();
  7627. break;
  7628. #endif // DUAL_X_CARRIAGE
  7629. #if ENABLED(LIN_ADVANCE)
  7630. case 905: // M905: Set advance K factor.
  7631. gcode_M905();
  7632. break;
  7633. #endif
  7634. #if ENABLED(HAVE_TMC2130)
  7635. case 906: // M906: Set motor current in milliamps using axis codes X, Y, Z, E
  7636. gcode_M906();
  7637. break;
  7638. #endif
  7639. case 907: // M907: Set digital trimpot motor current using axis codes.
  7640. gcode_M907();
  7641. break;
  7642. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  7643. case 908: // M908: Control digital trimpot directly.
  7644. gcode_M908();
  7645. break;
  7646. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  7647. case 909: // M909: Print digipot/DAC current value
  7648. gcode_M909();
  7649. break;
  7650. case 910: // M910: Commit digipot/DAC value to external EEPROM
  7651. gcode_M910();
  7652. break;
  7653. #endif
  7654. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  7655. #if ENABLED(HAVE_TMC2130)
  7656. case 911: // M911: Report TMC2130 prewarn triggered flags
  7657. gcode_M911();
  7658. break;
  7659. case 912: // M911: Clear TMC2130 prewarn triggered flags
  7660. gcode_M912();
  7661. break;
  7662. #endif
  7663. #if HAS_MICROSTEPS
  7664. case 350: // M350: Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  7665. gcode_M350();
  7666. break;
  7667. case 351: // M351: Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  7668. gcode_M351();
  7669. break;
  7670. #endif // HAS_MICROSTEPS
  7671. case 355: // M355 Turn case lights on/off
  7672. gcode_M355();
  7673. break;
  7674. case 999: // M999: Restart after being Stopped
  7675. gcode_M999();
  7676. break;
  7677. }
  7678. break;
  7679. case 'T':
  7680. gcode_T(codenum);
  7681. break;
  7682. default: code_is_good = false;
  7683. }
  7684. KEEPALIVE_STATE(NOT_BUSY);
  7685. ExitUnknownCommand:
  7686. // Still unknown command? Throw an error
  7687. if (!code_is_good) unknown_command_error();
  7688. ok_to_send();
  7689. }
  7690. /**
  7691. * Send a "Resend: nnn" message to the host to
  7692. * indicate that a command needs to be re-sent.
  7693. */
  7694. void FlushSerialRequestResend() {
  7695. //char command_queue[cmd_queue_index_r][100]="Resend:";
  7696. MYSERIAL.flush();
  7697. SERIAL_PROTOCOLPGM(MSG_RESEND);
  7698. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  7699. ok_to_send();
  7700. }
  7701. /**
  7702. * Send an "ok" message to the host, indicating
  7703. * that a command was successfully processed.
  7704. *
  7705. * If ADVANCED_OK is enabled also include:
  7706. * N<int> Line number of the command, if any
  7707. * P<int> Planner space remaining
  7708. * B<int> Block queue space remaining
  7709. */
  7710. void ok_to_send() {
  7711. refresh_cmd_timeout();
  7712. if (!send_ok[cmd_queue_index_r]) return;
  7713. SERIAL_PROTOCOLPGM(MSG_OK);
  7714. #if ENABLED(ADVANCED_OK)
  7715. char* p = command_queue[cmd_queue_index_r];
  7716. if (*p == 'N') {
  7717. SERIAL_PROTOCOL(' ');
  7718. SERIAL_ECHO(*p++);
  7719. while (NUMERIC_SIGNED(*p))
  7720. SERIAL_ECHO(*p++);
  7721. }
  7722. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
  7723. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  7724. #endif
  7725. SERIAL_EOL;
  7726. }
  7727. #if HAS_SOFTWARE_ENDSTOPS
  7728. /**
  7729. * Constrain the given coordinates to the software endstops.
  7730. */
  7731. void clamp_to_software_endstops(float target[XYZ]) {
  7732. if (!soft_endstops_enabled) return;
  7733. #if ENABLED(MIN_SOFTWARE_ENDSTOPS)
  7734. NOLESS(target[X_AXIS], soft_endstop_min[X_AXIS]);
  7735. NOLESS(target[Y_AXIS], soft_endstop_min[Y_AXIS]);
  7736. NOLESS(target[Z_AXIS], soft_endstop_min[Z_AXIS]);
  7737. #endif
  7738. #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
  7739. NOMORE(target[X_AXIS], soft_endstop_max[X_AXIS]);
  7740. NOMORE(target[Y_AXIS], soft_endstop_max[Y_AXIS]);
  7741. NOMORE(target[Z_AXIS], soft_endstop_max[Z_AXIS]);
  7742. #endif
  7743. }
  7744. #endif
  7745. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  7746. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  7747. #define ABL_BG_SPACING(A) bilinear_grid_spacing_virt[A]
  7748. #define ABL_BG_POINTS_X ABL_GRID_POINTS_VIRT_X
  7749. #define ABL_BG_POINTS_Y ABL_GRID_POINTS_VIRT_Y
  7750. #define ABL_BG_GRID(X,Y) bed_level_grid_virt[X][Y]
  7751. #else
  7752. #define ABL_BG_SPACING(A) bilinear_grid_spacing[A]
  7753. #define ABL_BG_POINTS_X ABL_GRID_MAX_POINTS_X
  7754. #define ABL_BG_POINTS_Y ABL_GRID_MAX_POINTS_Y
  7755. #define ABL_BG_GRID(X,Y) bed_level_grid[X][Y]
  7756. #endif
  7757. // Get the Z adjustment for non-linear bed leveling
  7758. float bilinear_z_offset(float cartesian[XYZ]) {
  7759. // XY relative to the probed area
  7760. const float x = RAW_X_POSITION(cartesian[X_AXIS]) - bilinear_start[X_AXIS],
  7761. y = RAW_Y_POSITION(cartesian[Y_AXIS]) - bilinear_start[Y_AXIS];
  7762. // Convert to grid box units
  7763. float ratio_x = x / ABL_BG_SPACING(X_AXIS),
  7764. ratio_y = y / ABL_BG_SPACING(Y_AXIS);
  7765. // Whole units for the grid line indices. Constrained within bounds.
  7766. const int gridx = constrain(floor(ratio_x), 0, ABL_BG_POINTS_X - 1),
  7767. gridy = constrain(floor(ratio_y), 0, ABL_BG_POINTS_Y - 1),
  7768. nextx = min(gridx + 1, ABL_BG_POINTS_X - 1),
  7769. nexty = min(gridy + 1, ABL_BG_POINTS_Y - 1);
  7770. // Subtract whole to get the ratio within the grid box
  7771. ratio_x -= gridx; ratio_y -= gridy;
  7772. // Never less than 0.0. (Over 1.0 is fine due to previous contraints.)
  7773. NOLESS(ratio_x, 0); NOLESS(ratio_y, 0);
  7774. // Z at the box corners
  7775. const float z1 = ABL_BG_GRID(gridx, gridy), // left-front
  7776. z2 = ABL_BG_GRID(gridx, nexty), // left-back
  7777. z3 = ABL_BG_GRID(nextx, gridy), // right-front
  7778. z4 = ABL_BG_GRID(nextx, nexty), // right-back
  7779. // Bilinear interpolate
  7780. L = z1 + (z2 - z1) * ratio_y, // Linear interp. LF -> LB
  7781. R = z3 + (z4 - z3) * ratio_y, // Linear interp. RF -> RB
  7782. offset = L + ratio_x * (R - L);
  7783. /*
  7784. static float last_offset = 0;
  7785. if (fabs(last_offset - offset) > 0.2) {
  7786. SERIAL_ECHOPGM("Sudden Shift at ");
  7787. SERIAL_ECHOPAIR("x=", x);
  7788. SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[X_AXIS]);
  7789. SERIAL_ECHOLNPAIR(" -> gridx=", gridx);
  7790. SERIAL_ECHOPAIR(" y=", y);
  7791. SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[Y_AXIS]);
  7792. SERIAL_ECHOLNPAIR(" -> gridy=", gridy);
  7793. SERIAL_ECHOPAIR(" ratio_x=", ratio_x);
  7794. SERIAL_ECHOLNPAIR(" ratio_y=", ratio_y);
  7795. SERIAL_ECHOPAIR(" z1=", z1);
  7796. SERIAL_ECHOPAIR(" z2=", z2);
  7797. SERIAL_ECHOPAIR(" z3=", z3);
  7798. SERIAL_ECHOLNPAIR(" z4=", z4);
  7799. SERIAL_ECHOPAIR(" L=", L);
  7800. SERIAL_ECHOPAIR(" R=", R);
  7801. SERIAL_ECHOLNPAIR(" offset=", offset);
  7802. }
  7803. last_offset = offset;
  7804. */
  7805. return offset;
  7806. }
  7807. #endif // AUTO_BED_LEVELING_BILINEAR
  7808. #if ENABLED(DELTA)
  7809. /**
  7810. * Recalculate factors used for delta kinematics whenever
  7811. * settings have been changed (e.g., by M665).
  7812. */
  7813. void recalc_delta_settings(float radius, float diagonal_rod) {
  7814. delta_tower[A_AXIS][X_AXIS] = -sin(RADIANS(60 - delta_tower_angle_trim[A_AXIS])) * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1), // front left tower
  7815. delta_tower[A_AXIS][Y_AXIS] = -cos(RADIANS(60 - delta_tower_angle_trim[A_AXIS])) * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1),
  7816. delta_tower[B_AXIS][X_AXIS] = sin(RADIANS(60 + delta_tower_angle_trim[B_AXIS])) * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2), // front right tower
  7817. delta_tower[B_AXIS][Y_AXIS] = -cos(RADIANS(60 + delta_tower_angle_trim[B_AXIS])) * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2),
  7818. delta_tower[C_AXIS][X_AXIS] = -sin(RADIANS( delta_tower_angle_trim[C_AXIS])) * (delta_radius + DELTA_RADIUS_TRIM_TOWER_3), // back middle tower
  7819. delta_tower[C_AXIS][Y_AXIS] = cos(RADIANS( delta_tower_angle_trim[C_AXIS])) * (delta_radius + DELTA_RADIUS_TRIM_TOWER_3),
  7820. delta_diagonal_rod_2_tower[A_AXIS] = sq(diagonal_rod + delta_diagonal_rod_trim[A_AXIS]);
  7821. delta_diagonal_rod_2_tower[B_AXIS] = sq(diagonal_rod + delta_diagonal_rod_trim[B_AXIS]);
  7822. delta_diagonal_rod_2_tower[C_AXIS] = sq(diagonal_rod + delta_diagonal_rod_trim[C_AXIS]);
  7823. }
  7824. #if ENABLED(DELTA_FAST_SQRT)
  7825. /**
  7826. * Fast inverse sqrt from Quake III Arena
  7827. * See: https://en.wikipedia.org/wiki/Fast_inverse_square_root
  7828. */
  7829. float Q_rsqrt(float number) {
  7830. long i;
  7831. float x2, y;
  7832. const float threehalfs = 1.5f;
  7833. x2 = number * 0.5f;
  7834. y = number;
  7835. i = * ( long * ) &y; // evil floating point bit level hacking
  7836. i = 0x5f3759df - ( i >> 1 ); // what the f***?
  7837. y = * ( float * ) &i;
  7838. y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
  7839. // y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed
  7840. return y;
  7841. }
  7842. #define _SQRT(n) (1.0f / Q_rsqrt(n))
  7843. #else
  7844. #define _SQRT(n) sqrt(n)
  7845. #endif
  7846. /**
  7847. * Delta Inverse Kinematics
  7848. *
  7849. * Calculate the tower positions for a given logical
  7850. * position, storing the result in the delta[] array.
  7851. *
  7852. * This is an expensive calculation, requiring 3 square
  7853. * roots per segmented linear move, and strains the limits
  7854. * of a Mega2560 with a Graphical Display.
  7855. *
  7856. * Suggested optimizations include:
  7857. *
  7858. * - Disable the home_offset (M206) and/or position_shift (G92)
  7859. * features to remove up to 12 float additions.
  7860. *
  7861. * - Use a fast-inverse-sqrt function and add the reciprocal.
  7862. * (see above)
  7863. */
  7864. // Macro to obtain the Z position of an individual tower
  7865. #define DELTA_Z(T) raw[Z_AXIS] + _SQRT( \
  7866. delta_diagonal_rod_2_tower[T] - HYPOT2( \
  7867. delta_tower[T][X_AXIS] - raw[X_AXIS], \
  7868. delta_tower[T][Y_AXIS] - raw[Y_AXIS] \
  7869. ) \
  7870. )
  7871. #define DELTA_RAW_IK() do { \
  7872. delta[A_AXIS] = DELTA_Z(A_AXIS); \
  7873. delta[B_AXIS] = DELTA_Z(B_AXIS); \
  7874. delta[C_AXIS] = DELTA_Z(C_AXIS); \
  7875. } while(0)
  7876. #define DELTA_LOGICAL_IK() do { \
  7877. const float raw[XYZ] = { \
  7878. RAW_X_POSITION(logical[X_AXIS]), \
  7879. RAW_Y_POSITION(logical[Y_AXIS]), \
  7880. RAW_Z_POSITION(logical[Z_AXIS]) \
  7881. }; \
  7882. DELTA_RAW_IK(); \
  7883. } while(0)
  7884. #define DELTA_DEBUG() do { \
  7885. SERIAL_ECHOPAIR("cartesian X:", raw[X_AXIS]); \
  7886. SERIAL_ECHOPAIR(" Y:", raw[Y_AXIS]); \
  7887. SERIAL_ECHOLNPAIR(" Z:", raw[Z_AXIS]); \
  7888. SERIAL_ECHOPAIR("delta A:", delta[A_AXIS]); \
  7889. SERIAL_ECHOPAIR(" B:", delta[B_AXIS]); \
  7890. SERIAL_ECHOLNPAIR(" C:", delta[C_AXIS]); \
  7891. } while(0)
  7892. void inverse_kinematics(const float logical[XYZ]) {
  7893. DELTA_LOGICAL_IK();
  7894. // DELTA_DEBUG();
  7895. }
  7896. /**
  7897. * Calculate the highest Z position where the
  7898. * effector has the full range of XY motion.
  7899. */
  7900. float delta_safe_distance_from_top() {
  7901. float cartesian[XYZ] = {
  7902. LOGICAL_X_POSITION(0),
  7903. LOGICAL_Y_POSITION(0),
  7904. LOGICAL_Z_POSITION(0)
  7905. };
  7906. inverse_kinematics(cartesian);
  7907. float distance = delta[A_AXIS];
  7908. cartesian[Y_AXIS] = LOGICAL_Y_POSITION(DELTA_PRINTABLE_RADIUS);
  7909. inverse_kinematics(cartesian);
  7910. return abs(distance - delta[A_AXIS]);
  7911. }
  7912. /**
  7913. * Delta Forward Kinematics
  7914. *
  7915. * See the Wikipedia article "Trilateration"
  7916. * https://en.wikipedia.org/wiki/Trilateration
  7917. *
  7918. * Establish a new coordinate system in the plane of the
  7919. * three carriage points. This system has its origin at
  7920. * tower1, with tower2 on the X axis. Tower3 is in the X-Y
  7921. * plane with a Z component of zero.
  7922. * We will define unit vectors in this coordinate system
  7923. * in our original coordinate system. Then when we calculate
  7924. * the Xnew, Ynew and Znew values, we can translate back into
  7925. * the original system by moving along those unit vectors
  7926. * by the corresponding values.
  7927. *
  7928. * Variable names matched to Marlin, c-version, and avoid the
  7929. * use of any vector library.
  7930. *
  7931. * by Andreas Hardtung 2016-06-07
  7932. * based on a Java function from "Delta Robot Kinematics V3"
  7933. * by Steve Graves
  7934. *
  7935. * The result is stored in the cartes[] array.
  7936. */
  7937. void forward_kinematics_DELTA(float z1, float z2, float z3) {
  7938. // Create a vector in old coordinates along x axis of new coordinate
  7939. float p12[3] = { delta_tower[B_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS], delta_tower[B_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS], z2 - z1 };
  7940. // Get the Magnitude of vector.
  7941. float d = sqrt( sq(p12[0]) + sq(p12[1]) + sq(p12[2]) );
  7942. // Create unit vector by dividing by magnitude.
  7943. float ex[3] = { p12[0] / d, p12[1] / d, p12[2] / d };
  7944. // Get the vector from the origin of the new system to the third point.
  7945. float p13[3] = { delta_tower[C_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS], delta_tower[C_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS], z3 - z1 };
  7946. // Use the dot product to find the component of this vector on the X axis.
  7947. float i = ex[0] * p13[0] + ex[1] * p13[1] + ex[2] * p13[2];
  7948. // Create a vector along the x axis that represents the x component of p13.
  7949. float iex[3] = { ex[0] * i, ex[1] * i, ex[2] * i };
  7950. // Subtract the X component from the original vector leaving only Y. We use the
  7951. // variable that will be the unit vector after we scale it.
  7952. float ey[3] = { p13[0] - iex[0], p13[1] - iex[1], p13[2] - iex[2] };
  7953. // The magnitude of Y component
  7954. float j = sqrt( sq(ey[0]) + sq(ey[1]) + sq(ey[2]) );
  7955. // Convert to a unit vector
  7956. ey[0] /= j; ey[1] /= j; ey[2] /= j;
  7957. // The cross product of the unit x and y is the unit z
  7958. // float[] ez = vectorCrossProd(ex, ey);
  7959. float ez[3] = {
  7960. ex[1] * ey[2] - ex[2] * ey[1],
  7961. ex[2] * ey[0] - ex[0] * ey[2],
  7962. ex[0] * ey[1] - ex[1] * ey[0]
  7963. };
  7964. // We now have the d, i and j values defined in Wikipedia.
  7965. // Plug them into the equations defined in Wikipedia for Xnew, Ynew and Znew
  7966. float Xnew = (delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[B_AXIS] + sq(d)) / (d * 2),
  7967. Ynew = ((delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[C_AXIS] + HYPOT2(i, j)) / 2 - i * Xnew) / j,
  7968. Znew = sqrt(delta_diagonal_rod_2_tower[A_AXIS] - HYPOT2(Xnew, Ynew));
  7969. // Start from the origin of the old coordinates and add vectors in the
  7970. // old coords that represent the Xnew, Ynew and Znew to find the point
  7971. // in the old system.
  7972. cartes[X_AXIS] = delta_tower[A_AXIS][X_AXIS] + ex[0] * Xnew + ey[0] * Ynew - ez[0] * Znew;
  7973. cartes[Y_AXIS] = delta_tower[A_AXIS][Y_AXIS] + ex[1] * Xnew + ey[1] * Ynew - ez[1] * Znew;
  7974. cartes[Z_AXIS] = z1 + ex[2] * Xnew + ey[2] * Ynew - ez[2] * Znew;
  7975. }
  7976. void forward_kinematics_DELTA(float point[ABC]) {
  7977. forward_kinematics_DELTA(point[A_AXIS], point[B_AXIS], point[C_AXIS]);
  7978. }
  7979. #endif // DELTA
  7980. /**
  7981. * Get the stepper positions in the cartes[] array.
  7982. * Forward kinematics are applied for DELTA and SCARA.
  7983. *
  7984. * The result is in the current coordinate space with
  7985. * leveling applied. The coordinates need to be run through
  7986. * unapply_leveling to obtain the "ideal" coordinates
  7987. * suitable for current_position, etc.
  7988. */
  7989. void get_cartesian_from_steppers() {
  7990. #if ENABLED(DELTA)
  7991. forward_kinematics_DELTA(
  7992. stepper.get_axis_position_mm(A_AXIS),
  7993. stepper.get_axis_position_mm(B_AXIS),
  7994. stepper.get_axis_position_mm(C_AXIS)
  7995. );
  7996. cartes[X_AXIS] += LOGICAL_X_POSITION(0);
  7997. cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
  7998. cartes[Z_AXIS] += LOGICAL_Z_POSITION(0);
  7999. #elif IS_SCARA
  8000. forward_kinematics_SCARA(
  8001. stepper.get_axis_position_degrees(A_AXIS),
  8002. stepper.get_axis_position_degrees(B_AXIS)
  8003. );
  8004. cartes[X_AXIS] += LOGICAL_X_POSITION(0);
  8005. cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
  8006. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  8007. #else
  8008. cartes[X_AXIS] = stepper.get_axis_position_mm(X_AXIS);
  8009. cartes[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS);
  8010. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  8011. #endif
  8012. }
  8013. /**
  8014. * Set the current_position for an axis based on
  8015. * the stepper positions, removing any leveling that
  8016. * may have been applied.
  8017. */
  8018. void set_current_from_steppers_for_axis(const AxisEnum axis) {
  8019. get_cartesian_from_steppers();
  8020. #if PLANNER_LEVELING
  8021. planner.unapply_leveling(cartes);
  8022. #endif
  8023. if (axis == ALL_AXES)
  8024. COPY(current_position, cartes);
  8025. else
  8026. current_position[axis] = cartes[axis];
  8027. }
  8028. #if ENABLED(MESH_BED_LEVELING)
  8029. /**
  8030. * Prepare a mesh-leveled linear move in a Cartesian setup,
  8031. * splitting the move where it crosses mesh borders.
  8032. */
  8033. void mesh_line_to_destination(float fr_mm_s, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
  8034. int cx1 = mbl.cell_index_x(RAW_CURRENT_POSITION(X_AXIS)),
  8035. cy1 = mbl.cell_index_y(RAW_CURRENT_POSITION(Y_AXIS)),
  8036. cx2 = mbl.cell_index_x(RAW_X_POSITION(destination[X_AXIS])),
  8037. cy2 = mbl.cell_index_y(RAW_Y_POSITION(destination[Y_AXIS]));
  8038. NOMORE(cx1, MESH_NUM_X_POINTS - 2);
  8039. NOMORE(cy1, MESH_NUM_Y_POINTS - 2);
  8040. NOMORE(cx2, MESH_NUM_X_POINTS - 2);
  8041. NOMORE(cy2, MESH_NUM_Y_POINTS - 2);
  8042. if (cx1 == cx2 && cy1 == cy2) {
  8043. // Start and end on same mesh square
  8044. line_to_destination(fr_mm_s);
  8045. set_current_to_destination();
  8046. return;
  8047. }
  8048. #define MBL_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  8049. float normalized_dist, end[XYZE];
  8050. // Split at the left/front border of the right/top square
  8051. int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  8052. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  8053. COPY(end, destination);
  8054. destination[X_AXIS] = LOGICAL_X_POSITION(mbl.get_probe_x(gcx));
  8055. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  8056. destination[Y_AXIS] = MBL_SEGMENT_END(Y);
  8057. CBI(x_splits, gcx);
  8058. }
  8059. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  8060. COPY(end, destination);
  8061. destination[Y_AXIS] = LOGICAL_Y_POSITION(mbl.get_probe_y(gcy));
  8062. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  8063. destination[X_AXIS] = MBL_SEGMENT_END(X);
  8064. CBI(y_splits, gcy);
  8065. }
  8066. else {
  8067. // Already split on a border
  8068. line_to_destination(fr_mm_s);
  8069. set_current_to_destination();
  8070. return;
  8071. }
  8072. destination[Z_AXIS] = MBL_SEGMENT_END(Z);
  8073. destination[E_AXIS] = MBL_SEGMENT_END(E);
  8074. // Do the split and look for more borders
  8075. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  8076. // Restore destination from stack
  8077. COPY(destination, end);
  8078. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  8079. }
  8080. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR) && !IS_KINEMATIC
  8081. #define CELL_INDEX(A,V) ((RAW_##A##_POSITION(V) - bilinear_start[A##_AXIS]) / ABL_BG_SPACING(A##_AXIS))
  8082. /**
  8083. * Prepare a bilinear-leveled linear move on Cartesian,
  8084. * splitting the move where it crosses grid borders.
  8085. */
  8086. void bilinear_line_to_destination(float fr_mm_s, uint16_t x_splits = 0xFFFF, uint16_t y_splits = 0xFFFF) {
  8087. int cx1 = CELL_INDEX(X, current_position[X_AXIS]),
  8088. cy1 = CELL_INDEX(Y, current_position[Y_AXIS]),
  8089. cx2 = CELL_INDEX(X, destination[X_AXIS]),
  8090. cy2 = CELL_INDEX(Y, destination[Y_AXIS]);
  8091. cx1 = constrain(cx1, 0, ABL_BG_POINTS_X - 2);
  8092. cy1 = constrain(cy1, 0, ABL_BG_POINTS_Y - 2);
  8093. cx2 = constrain(cx2, 0, ABL_BG_POINTS_X - 2);
  8094. cy2 = constrain(cy2, 0, ABL_BG_POINTS_Y - 2);
  8095. if (cx1 == cx2 && cy1 == cy2) {
  8096. // Start and end on same mesh square
  8097. line_to_destination(fr_mm_s);
  8098. set_current_to_destination();
  8099. return;
  8100. }
  8101. #define LINE_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  8102. float normalized_dist, end[XYZE];
  8103. // Split at the left/front border of the right/top square
  8104. int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  8105. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  8106. COPY(end, destination);
  8107. destination[X_AXIS] = LOGICAL_X_POSITION(bilinear_start[X_AXIS] + ABL_BG_SPACING(X_AXIS) * gcx);
  8108. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  8109. destination[Y_AXIS] = LINE_SEGMENT_END(Y);
  8110. CBI(x_splits, gcx);
  8111. }
  8112. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  8113. COPY(end, destination);
  8114. destination[Y_AXIS] = LOGICAL_Y_POSITION(bilinear_start[Y_AXIS] + ABL_BG_SPACING(Y_AXIS) * gcy);
  8115. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  8116. destination[X_AXIS] = LINE_SEGMENT_END(X);
  8117. CBI(y_splits, gcy);
  8118. }
  8119. else {
  8120. // Already split on a border
  8121. line_to_destination(fr_mm_s);
  8122. set_current_to_destination();
  8123. return;
  8124. }
  8125. destination[Z_AXIS] = LINE_SEGMENT_END(Z);
  8126. destination[E_AXIS] = LINE_SEGMENT_END(E);
  8127. // Do the split and look for more borders
  8128. bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
  8129. // Restore destination from stack
  8130. COPY(destination, end);
  8131. bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
  8132. }
  8133. #endif // AUTO_BED_LEVELING_BILINEAR
  8134. #if IS_KINEMATIC
  8135. /**
  8136. * Prepare a linear move in a DELTA or SCARA setup.
  8137. *
  8138. * This calls planner.buffer_line several times, adding
  8139. * small incremental moves for DELTA or SCARA.
  8140. */
  8141. inline bool prepare_kinematic_move_to(float ltarget[XYZE]) {
  8142. // Get the top feedrate of the move in the XY plane
  8143. float _feedrate_mm_s = MMS_SCALED(feedrate_mm_s);
  8144. // If the move is only in Z/E don't split up the move
  8145. if (ltarget[X_AXIS] == current_position[X_AXIS] && ltarget[Y_AXIS] == current_position[Y_AXIS]) {
  8146. planner.buffer_line_kinematic(ltarget, _feedrate_mm_s, active_extruder);
  8147. return true;
  8148. }
  8149. // Get the cartesian distances moved in XYZE
  8150. float difference[XYZE];
  8151. LOOP_XYZE(i) difference[i] = ltarget[i] - current_position[i];
  8152. // Get the linear distance in XYZ
  8153. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  8154. // If the move is very short, check the E move distance
  8155. if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = abs(difference[E_AXIS]);
  8156. // No E move either? Game over.
  8157. if (UNEAR_ZERO(cartesian_mm)) return false;
  8158. // Minimum number of seconds to move the given distance
  8159. float seconds = cartesian_mm / _feedrate_mm_s;
  8160. // The number of segments-per-second times the duration
  8161. // gives the number of segments
  8162. uint16_t segments = delta_segments_per_second * seconds;
  8163. // For SCARA minimum segment size is 0.5mm
  8164. #if IS_SCARA
  8165. NOMORE(segments, cartesian_mm * 2);
  8166. #endif
  8167. // At least one segment is required
  8168. NOLESS(segments, 1);
  8169. // The approximate length of each segment
  8170. float segment_distance[XYZE] = {
  8171. difference[X_AXIS] / segments,
  8172. difference[Y_AXIS] / segments,
  8173. difference[Z_AXIS] / segments,
  8174. difference[E_AXIS] / segments
  8175. };
  8176. // SERIAL_ECHOPAIR("mm=", cartesian_mm);
  8177. // SERIAL_ECHOPAIR(" seconds=", seconds);
  8178. // SERIAL_ECHOLNPAIR(" segments=", segments);
  8179. // Drop one segment so the last move is to the exact target.
  8180. // If there's only 1 segment, loops will be skipped entirely.
  8181. --segments;
  8182. // Get the logical current position as starting point
  8183. float logical[XYZE];
  8184. COPY(logical, current_position);
  8185. // Calculate and execute the segments
  8186. for (uint16_t s = segments + 1; --s;) {
  8187. LOOP_XYZE(i) logical[i] += segment_distance[i];
  8188. #if ENABLED(DELTA)
  8189. DELTA_LOGICAL_IK(); // Delta can inline its kinematics
  8190. #else
  8191. inverse_kinematics(logical);
  8192. #endif
  8193. ADJUST_DELTA(logical); // Adjust Z if bed leveling is enabled
  8194. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], _feedrate_mm_s, active_extruder);
  8195. }
  8196. // Since segment_distance is only approximate,
  8197. // the final move must be to the exact destination.
  8198. planner.buffer_line_kinematic(ltarget, _feedrate_mm_s, active_extruder);
  8199. return true;
  8200. }
  8201. #else // !IS_KINEMATIC
  8202. /**
  8203. * Prepare a linear move in a Cartesian setup.
  8204. * If Mesh Bed Leveling is enabled, perform a mesh move.
  8205. */
  8206. inline bool prepare_move_to_destination_cartesian() {
  8207. // Do not use feedrate_percentage for E or Z only moves
  8208. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  8209. line_to_destination();
  8210. }
  8211. else {
  8212. #if ENABLED(MESH_BED_LEVELING)
  8213. if (mbl.active()) {
  8214. mesh_line_to_destination(MMS_SCALED(feedrate_mm_s));
  8215. return false;
  8216. }
  8217. else
  8218. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  8219. if (ubl.state.active) {
  8220. // ubl_line_to_destination(MMS_SCALED(feedrate_mm_s));
  8221. ubl_line_to_destination(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS],
  8222. // (feedrate*(1.0/60.0))*(feedrate_percentage*(1.0/100.0) ), active_extruder);
  8223. MMS_SCALED(feedrate_mm_s), active_extruder);
  8224. return false;
  8225. }
  8226. else
  8227. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  8228. if (planner.abl_enabled) {
  8229. bilinear_line_to_destination(MMS_SCALED(feedrate_mm_s));
  8230. return false;
  8231. }
  8232. else
  8233. #endif
  8234. line_to_destination(MMS_SCALED(feedrate_mm_s));
  8235. }
  8236. return true;
  8237. }
  8238. #endif // !IS_KINEMATIC
  8239. #if ENABLED(DUAL_X_CARRIAGE)
  8240. /**
  8241. * Prepare a linear move in a dual X axis setup
  8242. */
  8243. inline bool prepare_move_to_destination_dualx() {
  8244. if (active_extruder_parked) {
  8245. switch (dual_x_carriage_mode) {
  8246. case DXC_FULL_CONTROL_MODE:
  8247. break;
  8248. case DXC_AUTO_PARK_MODE:
  8249. if (current_position[E_AXIS] == destination[E_AXIS]) {
  8250. // This is a travel move (with no extrusion)
  8251. // Skip it, but keep track of the current position
  8252. // (so it can be used as the start of the next non-travel move)
  8253. if (delayed_move_time != 0xFFFFFFFFUL) {
  8254. set_current_to_destination();
  8255. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  8256. delayed_move_time = millis();
  8257. return false;
  8258. }
  8259. }
  8260. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  8261. for (uint8_t i = 0; i < 3; i++)
  8262. planner.buffer_line(
  8263. i == 0 ? raised_parked_position[X_AXIS] : current_position[X_AXIS],
  8264. i == 0 ? raised_parked_position[Y_AXIS] : current_position[Y_AXIS],
  8265. i == 2 ? current_position[Z_AXIS] : raised_parked_position[Z_AXIS],
  8266. current_position[E_AXIS],
  8267. i == 1 ? PLANNER_XY_FEEDRATE() : planner.max_feedrate_mm_s[Z_AXIS],
  8268. active_extruder
  8269. );
  8270. delayed_move_time = 0;
  8271. active_extruder_parked = false;
  8272. break;
  8273. case DXC_DUPLICATION_MODE:
  8274. if (active_extruder == 0) {
  8275. // move duplicate extruder into correct duplication position.
  8276. planner.set_position_mm(
  8277. LOGICAL_X_POSITION(inactive_extruder_x_pos),
  8278. current_position[Y_AXIS],
  8279. current_position[Z_AXIS],
  8280. current_position[E_AXIS]
  8281. );
  8282. planner.buffer_line(
  8283. current_position[X_AXIS] + duplicate_extruder_x_offset,
  8284. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
  8285. planner.max_feedrate_mm_s[X_AXIS], 1
  8286. );
  8287. SYNC_PLAN_POSITION_KINEMATIC();
  8288. stepper.synchronize();
  8289. extruder_duplication_enabled = true;
  8290. active_extruder_parked = false;
  8291. }
  8292. break;
  8293. }
  8294. }
  8295. return true;
  8296. }
  8297. #endif // DUAL_X_CARRIAGE
  8298. /**
  8299. * Prepare a single move and get ready for the next one
  8300. *
  8301. * This may result in several calls to planner.buffer_line to
  8302. * do smaller moves for DELTA, SCARA, mesh moves, etc.
  8303. */
  8304. void prepare_move_to_destination() {
  8305. clamp_to_software_endstops(destination);
  8306. refresh_cmd_timeout();
  8307. #if ENABLED(PREVENT_COLD_EXTRUSION)
  8308. if (!DEBUGGING(DRYRUN)) {
  8309. if (destination[E_AXIS] != current_position[E_AXIS]) {
  8310. if (thermalManager.tooColdToExtrude(active_extruder)) {
  8311. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  8312. SERIAL_ECHO_START;
  8313. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  8314. }
  8315. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  8316. if (labs(destination[E_AXIS] - current_position[E_AXIS]) > EXTRUDE_MAXLENGTH) {
  8317. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  8318. SERIAL_ECHO_START;
  8319. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  8320. }
  8321. #endif
  8322. }
  8323. }
  8324. #endif
  8325. #if IS_KINEMATIC
  8326. if (!prepare_kinematic_move_to(destination)) return;
  8327. #else
  8328. #if ENABLED(DUAL_X_CARRIAGE)
  8329. if (!prepare_move_to_destination_dualx()) return;
  8330. #endif
  8331. if (!prepare_move_to_destination_cartesian()) return;
  8332. #endif
  8333. set_current_to_destination();
  8334. }
  8335. #if ENABLED(ARC_SUPPORT)
  8336. /**
  8337. * Plan an arc in 2 dimensions
  8338. *
  8339. * The arc is approximated by generating many small linear segments.
  8340. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  8341. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  8342. * larger segments will tend to be more efficient. Your slicer should have
  8343. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  8344. */
  8345. void plan_arc(
  8346. float logical[XYZE], // Destination position
  8347. float* offset, // Center of rotation relative to current_position
  8348. uint8_t clockwise // Clockwise?
  8349. ) {
  8350. float radius = HYPOT(offset[X_AXIS], offset[Y_AXIS]),
  8351. center_X = current_position[X_AXIS] + offset[X_AXIS],
  8352. center_Y = current_position[Y_AXIS] + offset[Y_AXIS],
  8353. linear_travel = logical[Z_AXIS] - current_position[Z_AXIS],
  8354. extruder_travel = logical[E_AXIS] - current_position[E_AXIS],
  8355. r_X = -offset[X_AXIS], // Radius vector from center to current location
  8356. r_Y = -offset[Y_AXIS],
  8357. rt_X = logical[X_AXIS] - center_X,
  8358. rt_Y = logical[Y_AXIS] - center_Y;
  8359. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  8360. float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
  8361. if (angular_travel < 0) angular_travel += RADIANS(360);
  8362. if (clockwise) angular_travel -= RADIANS(360);
  8363. // Make a circle if the angular rotation is 0
  8364. if (angular_travel == 0 && current_position[X_AXIS] == logical[X_AXIS] && current_position[Y_AXIS] == logical[Y_AXIS])
  8365. angular_travel += RADIANS(360);
  8366. float mm_of_travel = HYPOT(angular_travel * radius, fabs(linear_travel));
  8367. if (mm_of_travel < 0.001) return;
  8368. uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
  8369. if (segments == 0) segments = 1;
  8370. /**
  8371. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  8372. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  8373. * r_T = [cos(phi) -sin(phi);
  8374. * sin(phi) cos(phi)] * r ;
  8375. *
  8376. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  8377. * defined from the circle center to the initial position. Each line segment is formed by successive
  8378. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  8379. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  8380. * all double numbers are single precision on the Arduino. (True double precision will not have
  8381. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  8382. * tool precision in some cases. Therefore, arc path correction is implemented.
  8383. *
  8384. * Small angle approximation may be used to reduce computation overhead further. This approximation
  8385. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  8386. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  8387. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  8388. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  8389. * issue for CNC machines with the single precision Arduino calculations.
  8390. *
  8391. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  8392. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  8393. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  8394. * This is important when there are successive arc motions.
  8395. */
  8396. // Vector rotation matrix values
  8397. float arc_target[XYZE],
  8398. theta_per_segment = angular_travel / segments,
  8399. linear_per_segment = linear_travel / segments,
  8400. extruder_per_segment = extruder_travel / segments,
  8401. sin_T = theta_per_segment,
  8402. cos_T = 1 - 0.5 * sq(theta_per_segment); // Small angle approximation
  8403. // Initialize the linear axis
  8404. arc_target[Z_AXIS] = current_position[Z_AXIS];
  8405. // Initialize the extruder axis
  8406. arc_target[E_AXIS] = current_position[E_AXIS];
  8407. float fr_mm_s = MMS_SCALED(feedrate_mm_s);
  8408. millis_t next_idle_ms = millis() + 200UL;
  8409. int8_t count = 0;
  8410. for (uint16_t i = 1; i < segments; i++) { // Iterate (segments-1) times
  8411. thermalManager.manage_heater();
  8412. if (ELAPSED(millis(), next_idle_ms)) {
  8413. next_idle_ms = millis() + 200UL;
  8414. idle();
  8415. }
  8416. if (++count < N_ARC_CORRECTION) {
  8417. // Apply vector rotation matrix to previous r_X / 1
  8418. float r_new_Y = r_X * sin_T + r_Y * cos_T;
  8419. r_X = r_X * cos_T - r_Y * sin_T;
  8420. r_Y = r_new_Y;
  8421. }
  8422. else {
  8423. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  8424. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  8425. // To reduce stuttering, the sin and cos could be computed at different times.
  8426. // For now, compute both at the same time.
  8427. float cos_Ti = cos(i * theta_per_segment),
  8428. sin_Ti = sin(i * theta_per_segment);
  8429. r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
  8430. r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
  8431. count = 0;
  8432. }
  8433. // Update arc_target location
  8434. arc_target[X_AXIS] = center_X + r_X;
  8435. arc_target[Y_AXIS] = center_Y + r_Y;
  8436. arc_target[Z_AXIS] += linear_per_segment;
  8437. arc_target[E_AXIS] += extruder_per_segment;
  8438. clamp_to_software_endstops(arc_target);
  8439. planner.buffer_line_kinematic(arc_target, fr_mm_s, active_extruder);
  8440. }
  8441. // Ensure last segment arrives at target location.
  8442. planner.buffer_line_kinematic(logical, fr_mm_s, active_extruder);
  8443. // As far as the parser is concerned, the position is now == target. In reality the
  8444. // motion control system might still be processing the action and the real tool position
  8445. // in any intermediate location.
  8446. set_current_to_destination();
  8447. }
  8448. #endif
  8449. #if ENABLED(BEZIER_CURVE_SUPPORT)
  8450. void plan_cubic_move(const float offset[4]) {
  8451. cubic_b_spline(current_position, destination, offset, MMS_SCALED(feedrate_mm_s), active_extruder);
  8452. // As far as the parser is concerned, the position is now == destination. In reality the
  8453. // motion control system might still be processing the action and the real tool position
  8454. // in any intermediate location.
  8455. set_current_to_destination();
  8456. }
  8457. #endif // BEZIER_CURVE_SUPPORT
  8458. #if HAS_CONTROLLERFAN
  8459. void controllerFan() {
  8460. static millis_t lastMotorOn = 0; // Last time a motor was turned on
  8461. static millis_t nextMotorCheck = 0; // Last time the state was checked
  8462. millis_t ms = millis();
  8463. if (ELAPSED(ms, nextMotorCheck)) {
  8464. nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
  8465. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_bed > 0
  8466. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  8467. #if E_STEPPERS > 1
  8468. || E1_ENABLE_READ == E_ENABLE_ON
  8469. #if HAS_X2_ENABLE
  8470. || X2_ENABLE_READ == X_ENABLE_ON
  8471. #endif
  8472. #if E_STEPPERS > 2
  8473. || E2_ENABLE_READ == E_ENABLE_ON
  8474. #if E_STEPPERS > 3
  8475. || E3_ENABLE_READ == E_ENABLE_ON
  8476. #endif
  8477. #endif
  8478. #endif
  8479. ) {
  8480. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  8481. }
  8482. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  8483. uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  8484. // allows digital or PWM fan output to be used (see M42 handling)
  8485. digitalWrite(CONTROLLERFAN_PIN, speed);
  8486. analogWrite(CONTROLLERFAN_PIN, speed);
  8487. }
  8488. }
  8489. #endif // HAS_CONTROLLERFAN
  8490. #if ENABLED(MORGAN_SCARA)
  8491. /**
  8492. * Morgan SCARA Forward Kinematics. Results in cartes[].
  8493. * Maths and first version by QHARLEY.
  8494. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  8495. */
  8496. void forward_kinematics_SCARA(const float &a, const float &b) {
  8497. float a_sin = sin(RADIANS(a)) * L1,
  8498. a_cos = cos(RADIANS(a)) * L1,
  8499. b_sin = sin(RADIANS(b)) * L2,
  8500. b_cos = cos(RADIANS(b)) * L2;
  8501. cartes[X_AXIS] = a_cos + b_cos + SCARA_OFFSET_X; //theta
  8502. cartes[Y_AXIS] = a_sin + b_sin + SCARA_OFFSET_Y; //theta+phi
  8503. /*
  8504. SERIAL_ECHOPAIR("SCARA FK Angle a=", a);
  8505. SERIAL_ECHOPAIR(" b=", b);
  8506. SERIAL_ECHOPAIR(" a_sin=", a_sin);
  8507. SERIAL_ECHOPAIR(" a_cos=", a_cos);
  8508. SERIAL_ECHOPAIR(" b_sin=", b_sin);
  8509. SERIAL_ECHOLNPAIR(" b_cos=", b_cos);
  8510. SERIAL_ECHOPAIR(" cartes[X_AXIS]=", cartes[X_AXIS]);
  8511. SERIAL_ECHOLNPAIR(" cartes[Y_AXIS]=", cartes[Y_AXIS]);
  8512. //*/
  8513. }
  8514. /**
  8515. * Morgan SCARA Inverse Kinematics. Results in delta[].
  8516. *
  8517. * See http://forums.reprap.org/read.php?185,283327
  8518. *
  8519. * Maths and first version by QHARLEY.
  8520. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  8521. */
  8522. void inverse_kinematics(const float logical[XYZ]) {
  8523. static float C2, S2, SK1, SK2, THETA, PSI;
  8524. float sx = RAW_X_POSITION(logical[X_AXIS]) - SCARA_OFFSET_X, // Translate SCARA to standard X Y
  8525. sy = RAW_Y_POSITION(logical[Y_AXIS]) - SCARA_OFFSET_Y; // With scaling factor.
  8526. if (L1 == L2)
  8527. C2 = HYPOT2(sx, sy) / L1_2_2 - 1;
  8528. else
  8529. C2 = (HYPOT2(sx, sy) - (L1_2 + L2_2)) / (2.0 * L1 * L2);
  8530. S2 = sqrt(sq(C2) - 1);
  8531. // Unrotated Arm1 plus rotated Arm2 gives the distance from Center to End
  8532. SK1 = L1 + L2 * C2;
  8533. // Rotated Arm2 gives the distance from Arm1 to Arm2
  8534. SK2 = L2 * S2;
  8535. // Angle of Arm1 is the difference between Center-to-End angle and the Center-to-Elbow
  8536. THETA = atan2(SK1, SK2) - atan2(sx, sy);
  8537. // Angle of Arm2
  8538. PSI = atan2(S2, C2);
  8539. delta[A_AXIS] = DEGREES(THETA); // theta is support arm angle
  8540. delta[B_AXIS] = DEGREES(THETA + PSI); // equal to sub arm angle (inverted motor)
  8541. delta[C_AXIS] = logical[Z_AXIS];
  8542. /*
  8543. DEBUG_POS("SCARA IK", logical);
  8544. DEBUG_POS("SCARA IK", delta);
  8545. SERIAL_ECHOPAIR(" SCARA (x,y) ", sx);
  8546. SERIAL_ECHOPAIR(",", sy);
  8547. SERIAL_ECHOPAIR(" C2=", C2);
  8548. SERIAL_ECHOPAIR(" S2=", S2);
  8549. SERIAL_ECHOPAIR(" Theta=", THETA);
  8550. SERIAL_ECHOLNPAIR(" Phi=", PHI);
  8551. //*/
  8552. }
  8553. #endif // MORGAN_SCARA
  8554. #if ENABLED(TEMP_STAT_LEDS)
  8555. static bool red_led = false;
  8556. static millis_t next_status_led_update_ms = 0;
  8557. void handle_status_leds(void) {
  8558. if (ELAPSED(millis(), next_status_led_update_ms)) {
  8559. next_status_led_update_ms += 500; // Update every 0.5s
  8560. float max_temp = 0.0;
  8561. #if HAS_TEMP_BED
  8562. max_temp = MAX3(max_temp, thermalManager.degTargetBed(), thermalManager.degBed());
  8563. #endif
  8564. HOTEND_LOOP() {
  8565. max_temp = MAX3(max_temp, thermalManager.degHotend(e), thermalManager.degTargetHotend(e));
  8566. }
  8567. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  8568. if (new_led != red_led) {
  8569. red_led = new_led;
  8570. #if PIN_EXISTS(STAT_LED_RED)
  8571. WRITE(STAT_LED_RED_PIN, new_led ? HIGH : LOW);
  8572. #if PIN_EXISTS(STAT_LED_BLUE)
  8573. WRITE(STAT_LED_BLUE_PIN, new_led ? LOW : HIGH);
  8574. #endif
  8575. #else
  8576. WRITE(STAT_LED_BLUE_PIN, new_led ? HIGH : LOW);
  8577. #endif
  8578. }
  8579. }
  8580. }
  8581. #endif
  8582. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  8583. void handle_filament_runout() {
  8584. if (!filament_ran_out) {
  8585. filament_ran_out = true;
  8586. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  8587. stepper.synchronize();
  8588. }
  8589. }
  8590. #endif // FILAMENT_RUNOUT_SENSOR
  8591. #if ENABLED(FAST_PWM_FAN)
  8592. void setPwmFrequency(uint8_t pin, int val) {
  8593. val &= 0x07;
  8594. switch (digitalPinToTimer(pin)) {
  8595. #ifdef TCCR0A
  8596. case TIMER0A:
  8597. case TIMER0B:
  8598. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  8599. // TCCR0B |= val;
  8600. break;
  8601. #endif
  8602. #ifdef TCCR1A
  8603. case TIMER1A:
  8604. case TIMER1B:
  8605. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  8606. // TCCR1B |= val;
  8607. break;
  8608. #endif
  8609. #ifdef TCCR2
  8610. case TIMER2:
  8611. case TIMER2:
  8612. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  8613. TCCR2 |= val;
  8614. break;
  8615. #endif
  8616. #ifdef TCCR2A
  8617. case TIMER2A:
  8618. case TIMER2B:
  8619. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  8620. TCCR2B |= val;
  8621. break;
  8622. #endif
  8623. #ifdef TCCR3A
  8624. case TIMER3A:
  8625. case TIMER3B:
  8626. case TIMER3C:
  8627. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  8628. TCCR3B |= val;
  8629. break;
  8630. #endif
  8631. #ifdef TCCR4A
  8632. case TIMER4A:
  8633. case TIMER4B:
  8634. case TIMER4C:
  8635. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  8636. TCCR4B |= val;
  8637. break;
  8638. #endif
  8639. #ifdef TCCR5A
  8640. case TIMER5A:
  8641. case TIMER5B:
  8642. case TIMER5C:
  8643. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  8644. TCCR5B |= val;
  8645. break;
  8646. #endif
  8647. }
  8648. }
  8649. #endif // FAST_PWM_FAN
  8650. float calculate_volumetric_multiplier(float diameter) {
  8651. if (!volumetric_enabled || diameter == 0) return 1.0;
  8652. return 1.0 / (M_PI * diameter * 0.5 * diameter * 0.5);
  8653. }
  8654. void calculate_volumetric_multipliers() {
  8655. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  8656. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  8657. }
  8658. void enable_all_steppers() {
  8659. enable_x();
  8660. enable_y();
  8661. enable_z();
  8662. enable_e0();
  8663. enable_e1();
  8664. enable_e2();
  8665. enable_e3();
  8666. }
  8667. void disable_e_steppers() {
  8668. disable_e0();
  8669. disable_e1();
  8670. disable_e2();
  8671. disable_e3();
  8672. }
  8673. void disable_all_steppers() {
  8674. disable_x();
  8675. disable_y();
  8676. disable_z();
  8677. disable_e_steppers();
  8678. }
  8679. #if ENABLED(AUTOMATIC_CURRENT_CONTROL)
  8680. void automatic_current_control(const TMC2130Stepper &st) {
  8681. #if CURRENT_STEP > 0
  8682. const bool is_otpw = st.checkOT(), // Check otpw even if we don't adjust. Allows for flag inspection.
  8683. is_otpw_triggered = st.getOTPW();
  8684. if (!is_otpw && !is_otpw_triggered) {
  8685. // OTPW bit not triggered yet -> Increase current
  8686. const uint16_t current = st.getCurrent() + CURRENT_STEP;
  8687. if (current <= AUTO_ADJUST_MAX) st.SilentStepStick2130(current);
  8688. }
  8689. else if (is_otpw && is_otpw_triggered) {
  8690. // OTPW bit triggered, triggered flag raised -> Decrease current
  8691. st.SilentStepStick2130((float)st.getCurrent() - CURRENT_STEP);
  8692. }
  8693. // OTPW bit cleared (we've cooled down), triggered flag still raised until manually cleared -> Do nothing, we're good
  8694. #endif
  8695. }
  8696. void checkOverTemp() {
  8697. static millis_t next_cOT = 0;
  8698. if (ELAPSED(millis(), next_cOT)) {
  8699. next_cOT = millis() + 5000;
  8700. #if ENABLED(X_IS_TMC2130)
  8701. automatic_current_control(stepperX);
  8702. #endif
  8703. #if ENABLED(Y_IS_TMC2130)
  8704. automatic_current_control(stepperY);
  8705. #endif
  8706. #if ENABLED(Z_IS_TMC2130)
  8707. automatic_current_control(stepperZ);
  8708. #endif
  8709. #if ENABLED(X2_IS_TMC2130)
  8710. automatic_current_control(stepperX2);
  8711. #endif
  8712. #if ENABLED(Y2_IS_TMC2130)
  8713. automatic_current_control(stepperY2);
  8714. #endif
  8715. #if ENABLED(Z2_IS_TMC2130)
  8716. automatic_current_control(stepperZ2);
  8717. #endif
  8718. #if ENABLED(E0_IS_TMC2130)
  8719. automatic_current_control(stepperE0);
  8720. #endif
  8721. #if ENABLED(E1_IS_TMC2130)
  8722. automatic_current_control(stepperE1);
  8723. #endif
  8724. #if ENABLED(E2_IS_TMC2130)
  8725. automatic_current_control(stepperE2);
  8726. #endif
  8727. #if ENABLED(E3_IS_TMC2130)
  8728. automatic_current_control(stepperE3);
  8729. #endif
  8730. }
  8731. }
  8732. #endif // AUTOMATIC_CURRENT_CONTROL
  8733. /**
  8734. * Manage several activities:
  8735. * - Check for Filament Runout
  8736. * - Keep the command buffer full
  8737. * - Check for maximum inactive time between commands
  8738. * - Check for maximum inactive time between stepper commands
  8739. * - Check if pin CHDK needs to go LOW
  8740. * - Check for KILL button held down
  8741. * - Check for HOME button held down
  8742. * - Check if cooling fan needs to be switched on
  8743. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  8744. */
  8745. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  8746. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  8747. if ((IS_SD_PRINTING || print_job_timer.isRunning()) && (READ(FIL_RUNOUT_PIN) == FIL_RUNOUT_INVERTING))
  8748. handle_filament_runout();
  8749. #endif
  8750. if (commands_in_queue < BUFSIZE) get_available_commands();
  8751. millis_t ms = millis();
  8752. if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) {
  8753. SERIAL_ERROR_START;
  8754. SERIAL_ECHOLNPAIR(MSG_KILL_INACTIVE_TIME, current_command);
  8755. kill(PSTR(MSG_KILLED));
  8756. }
  8757. // Prevent steppers timing-out in the middle of M600
  8758. #if ENABLED(FILAMENT_CHANGE_FEATURE) && ENABLED(FILAMENT_CHANGE_NO_STEPPER_TIMEOUT)
  8759. #define M600_TEST !busy_doing_M600
  8760. #else
  8761. #define M600_TEST true
  8762. #endif
  8763. if (M600_TEST && stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
  8764. && !ignore_stepper_queue && !planner.blocks_queued()) {
  8765. #if ENABLED(DISABLE_INACTIVE_X)
  8766. disable_x();
  8767. #endif
  8768. #if ENABLED(DISABLE_INACTIVE_Y)
  8769. disable_y();
  8770. #endif
  8771. #if ENABLED(DISABLE_INACTIVE_Z)
  8772. disable_z();
  8773. #endif
  8774. #if ENABLED(DISABLE_INACTIVE_E)
  8775. disable_e_steppers();
  8776. #endif
  8777. }
  8778. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  8779. if (chdkActive && ELAPSED(ms, chdkHigh + CHDK_DELAY)) {
  8780. chdkActive = false;
  8781. WRITE(CHDK, LOW);
  8782. }
  8783. #endif
  8784. #if HAS_KILL
  8785. // Check if the kill button was pressed and wait just in case it was an accidental
  8786. // key kill key press
  8787. // -------------------------------------------------------------------------------
  8788. static int killCount = 0; // make the inactivity button a bit less responsive
  8789. const int KILL_DELAY = 750;
  8790. if (!READ(KILL_PIN))
  8791. killCount++;
  8792. else if (killCount > 0)
  8793. killCount--;
  8794. // Exceeded threshold and we can confirm that it was not accidental
  8795. // KILL the machine
  8796. // ----------------------------------------------------------------
  8797. if (killCount >= KILL_DELAY) {
  8798. SERIAL_ERROR_START;
  8799. SERIAL_ERRORLNPGM(MSG_KILL_BUTTON);
  8800. kill(PSTR(MSG_KILLED));
  8801. }
  8802. #endif
  8803. #if HAS_HOME
  8804. // Check to see if we have to home, use poor man's debouncer
  8805. // ---------------------------------------------------------
  8806. static int homeDebounceCount = 0; // poor man's debouncing count
  8807. const int HOME_DEBOUNCE_DELAY = 2500;
  8808. if (!IS_SD_PRINTING && !READ(HOME_PIN)) {
  8809. if (!homeDebounceCount) {
  8810. enqueue_and_echo_commands_P(PSTR("G28"));
  8811. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  8812. }
  8813. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  8814. homeDebounceCount++;
  8815. else
  8816. homeDebounceCount = 0;
  8817. }
  8818. #endif
  8819. #if HAS_CONTROLLERFAN
  8820. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  8821. #endif
  8822. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  8823. if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL)
  8824. && thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  8825. bool oldstatus;
  8826. #if ENABLED(SWITCHING_EXTRUDER)
  8827. oldstatus = E0_ENABLE_READ;
  8828. enable_e0();
  8829. #else // !SWITCHING_EXTRUDER
  8830. switch (active_extruder) {
  8831. case 0:
  8832. oldstatus = E0_ENABLE_READ;
  8833. enable_e0();
  8834. break;
  8835. #if E_STEPPERS > 1
  8836. case 1:
  8837. oldstatus = E1_ENABLE_READ;
  8838. enable_e1();
  8839. break;
  8840. #if E_STEPPERS > 2
  8841. case 2:
  8842. oldstatus = E2_ENABLE_READ;
  8843. enable_e2();
  8844. break;
  8845. #if E_STEPPERS > 3
  8846. case 3:
  8847. oldstatus = E3_ENABLE_READ;
  8848. enable_e3();
  8849. break;
  8850. #endif
  8851. #endif
  8852. #endif
  8853. }
  8854. #endif // !SWITCHING_EXTRUDER
  8855. previous_cmd_ms = ms; // refresh_cmd_timeout()
  8856. #if IS_KINEMATIC
  8857. inverse_kinematics(current_position);
  8858. ADJUST_DELTA(current_position);
  8859. planner.buffer_line(
  8860. delta[A_AXIS], delta[B_AXIS], delta[C_AXIS],
  8861. current_position[E_AXIS] + EXTRUDER_RUNOUT_EXTRUDE,
  8862. MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED), active_extruder
  8863. );
  8864. #else
  8865. planner.buffer_line(
  8866. current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  8867. current_position[E_AXIS] + EXTRUDER_RUNOUT_EXTRUDE,
  8868. MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED), active_extruder
  8869. );
  8870. #endif
  8871. stepper.synchronize();
  8872. planner.set_e_position_mm(current_position[E_AXIS]);
  8873. #if ENABLED(SWITCHING_EXTRUDER)
  8874. E0_ENABLE_WRITE(oldstatus);
  8875. #else
  8876. switch (active_extruder) {
  8877. case 0:
  8878. E0_ENABLE_WRITE(oldstatus);
  8879. break;
  8880. #if E_STEPPERS > 1
  8881. case 1:
  8882. E1_ENABLE_WRITE(oldstatus);
  8883. break;
  8884. #if E_STEPPERS > 2
  8885. case 2:
  8886. E2_ENABLE_WRITE(oldstatus);
  8887. break;
  8888. #if E_STEPPERS > 3
  8889. case 3:
  8890. E3_ENABLE_WRITE(oldstatus);
  8891. break;
  8892. #endif
  8893. #endif
  8894. #endif
  8895. }
  8896. #endif // !SWITCHING_EXTRUDER
  8897. }
  8898. #endif // EXTRUDER_RUNOUT_PREVENT
  8899. #if ENABLED(DUAL_X_CARRIAGE)
  8900. // handle delayed move timeout
  8901. if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
  8902. // travel moves have been received so enact them
  8903. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  8904. set_destination_to_current();
  8905. prepare_move_to_destination();
  8906. }
  8907. #endif
  8908. #if ENABLED(TEMP_STAT_LEDS)
  8909. handle_status_leds();
  8910. #endif
  8911. #if ENABLED(AUTOMATIC_CURRENT_CONTROL)
  8912. checkOverTemp();
  8913. #endif
  8914. planner.check_axes_activity();
  8915. }
  8916. /**
  8917. * Standard idle routine keeps the machine alive
  8918. */
  8919. void idle(
  8920. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  8921. bool no_stepper_sleep/*=false*/
  8922. #endif
  8923. ) {
  8924. lcd_update();
  8925. host_keepalive();
  8926. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  8927. auto_report_temperatures();
  8928. #endif
  8929. manage_inactivity(
  8930. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  8931. no_stepper_sleep
  8932. #endif
  8933. );
  8934. thermalManager.manage_heater();
  8935. #if ENABLED(PRINTCOUNTER)
  8936. print_job_timer.tick();
  8937. #endif
  8938. #if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
  8939. buzzer.tick();
  8940. #endif
  8941. }
  8942. /**
  8943. * Kill all activity and lock the machine.
  8944. * After this the machine will need to be reset.
  8945. */
  8946. void kill(const char* lcd_msg) {
  8947. SERIAL_ERROR_START;
  8948. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  8949. #if ENABLED(ULTRA_LCD)
  8950. kill_screen(lcd_msg);
  8951. #else
  8952. UNUSED(lcd_msg);
  8953. #endif
  8954. delay(500); // Wait a short time
  8955. cli(); // Stop interrupts
  8956. thermalManager.disable_all_heaters();
  8957. disable_all_steppers();
  8958. #if HAS_POWER_SWITCH
  8959. SET_INPUT(PS_ON_PIN);
  8960. #endif
  8961. suicide();
  8962. while (1) {
  8963. #if ENABLED(USE_WATCHDOG)
  8964. watchdog_reset();
  8965. #endif
  8966. } // Wait for reset
  8967. }
  8968. /**
  8969. * Turn off heaters and stop the print in progress
  8970. * After a stop the machine may be resumed with M999
  8971. */
  8972. void stop() {
  8973. thermalManager.disable_all_heaters();
  8974. if (IsRunning()) {
  8975. Running = false;
  8976. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  8977. SERIAL_ERROR_START;
  8978. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  8979. LCD_MESSAGEPGM(MSG_STOPPED);
  8980. }
  8981. }
  8982. /**
  8983. * Marlin entry-point: Set up before the program loop
  8984. * - Set up the kill pin, filament runout, power hold
  8985. * - Start the serial port
  8986. * - Print startup messages and diagnostics
  8987. * - Get EEPROM or default settings
  8988. * - Initialize managers for:
  8989. * • temperature
  8990. * • planner
  8991. * • watchdog
  8992. * • stepper
  8993. * • photo pin
  8994. * • servos
  8995. * • LCD controller
  8996. * • Digipot I2C
  8997. * • Z probe sled
  8998. * • status LEDs
  8999. */
  9000. void setup() {
  9001. #ifdef DISABLE_JTAG
  9002. // Disable JTAG on AT90USB chips to free up pins for IO
  9003. MCUCR = 0x80;
  9004. MCUCR = 0x80;
  9005. #endif
  9006. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  9007. setup_filrunoutpin();
  9008. #endif
  9009. setup_killpin();
  9010. setup_powerhold();
  9011. #if HAS_STEPPER_RESET
  9012. disableStepperDrivers();
  9013. #endif
  9014. MYSERIAL.begin(BAUDRATE);
  9015. SERIAL_PROTOCOLLNPGM("start");
  9016. SERIAL_ECHO_START;
  9017. // Check startup - does nothing if bootloader sets MCUSR to 0
  9018. byte mcu = MCUSR;
  9019. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  9020. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  9021. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  9022. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  9023. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  9024. MCUSR = 0;
  9025. SERIAL_ECHOPGM(MSG_MARLIN);
  9026. SERIAL_CHAR(' ');
  9027. SERIAL_ECHOLNPGM(SHORT_BUILD_VERSION);
  9028. SERIAL_EOL;
  9029. #if defined(STRING_DISTRIBUTION_DATE) && defined(STRING_CONFIG_H_AUTHOR)
  9030. SERIAL_ECHO_START;
  9031. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  9032. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  9033. SERIAL_ECHOLNPGM(MSG_AUTHOR STRING_CONFIG_H_AUTHOR);
  9034. SERIAL_ECHOLNPGM("Compiled: " __DATE__);
  9035. #endif
  9036. SERIAL_ECHO_START;
  9037. SERIAL_ECHOPAIR(MSG_FREE_MEMORY, freeMemory());
  9038. SERIAL_ECHOLNPAIR(MSG_PLANNER_BUFFER_BYTES, (int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  9039. // Send "ok" after commands by default
  9040. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  9041. // Load data from EEPROM if available (or use defaults)
  9042. // This also updates variables in the planner, elsewhere
  9043. (void)Config_RetrieveSettings();
  9044. #if DISABLED(NO_WORKSPACE_OFFSETS)
  9045. // Initialize current position based on home_offset
  9046. COPY(current_position, home_offset);
  9047. #else
  9048. ZERO(current_position);
  9049. #endif
  9050. // Vital to init stepper/planner equivalent for current_position
  9051. SYNC_PLAN_POSITION_KINEMATIC();
  9052. thermalManager.init(); // Initialize temperature loop
  9053. #if ENABLED(USE_WATCHDOG)
  9054. watchdog_init();
  9055. #endif
  9056. stepper.init(); // Initialize stepper, this enables interrupts!
  9057. servo_init();
  9058. #if HAS_PHOTOGRAPH
  9059. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  9060. #endif
  9061. #if HAS_CASE_LIGHT
  9062. update_case_light();
  9063. #endif
  9064. #if HAS_BED_PROBE
  9065. endstops.enable_z_probe(false);
  9066. #endif
  9067. #if HAS_CONTROLLERFAN
  9068. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  9069. #endif
  9070. #if HAS_STEPPER_RESET
  9071. enableStepperDrivers();
  9072. #endif
  9073. #if ENABLED(DIGIPOT_I2C)
  9074. digipot_i2c_init();
  9075. #endif
  9076. #if ENABLED(DAC_STEPPER_CURRENT)
  9077. dac_init();
  9078. #endif
  9079. #if ENABLED(Z_PROBE_SLED) && PIN_EXISTS(SLED)
  9080. OUT_WRITE(SLED_PIN, LOW); // turn it off
  9081. #endif // Z_PROBE_SLED
  9082. setup_homepin();
  9083. #if PIN_EXISTS(STAT_LED_RED)
  9084. OUT_WRITE(STAT_LED_RED_PIN, LOW); // turn it off
  9085. #endif
  9086. #if PIN_EXISTS(STAT_LED_BLUE)
  9087. OUT_WRITE(STAT_LED_BLUE_PIN, LOW); // turn it off
  9088. #endif
  9089. #if ENABLED(RGB_LED)
  9090. SET_OUTPUT(RGB_LED_R_PIN);
  9091. SET_OUTPUT(RGB_LED_G_PIN);
  9092. SET_OUTPUT(RGB_LED_B_PIN);
  9093. #endif
  9094. lcd_init();
  9095. #if ENABLED(SHOW_BOOTSCREEN)
  9096. #if ENABLED(DOGLCD)
  9097. safe_delay(BOOTSCREEN_TIMEOUT);
  9098. #elif ENABLED(ULTRA_LCD)
  9099. bootscreen();
  9100. #if DISABLED(SDSUPPORT)
  9101. lcd_init();
  9102. #endif
  9103. #endif
  9104. #endif
  9105. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  9106. // Initialize mixing to 100% color 1
  9107. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  9108. mixing_factor[i] = (i == 0) ? 1.0 : 0.0;
  9109. for (uint8_t t = 0; t < MIXING_VIRTUAL_TOOLS; t++)
  9110. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  9111. mixing_virtual_tool_mix[t][i] = mixing_factor[i];
  9112. #endif
  9113. #if ENABLED(BLTOUCH)
  9114. bltouch_command(BLTOUCH_RESET); // Just in case the BLTouch is in the error state, try to
  9115. set_bltouch_deployed(true); // reset it. Also needs to deploy and stow to clear the
  9116. set_bltouch_deployed(false); // error condition.
  9117. #endif
  9118. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  9119. i2c.onReceive(i2c_on_receive);
  9120. i2c.onRequest(i2c_on_request);
  9121. #endif
  9122. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  9123. setup_endstop_interrupts();
  9124. #endif
  9125. }
  9126. /**
  9127. * The main Marlin program loop
  9128. *
  9129. * - Save or log commands to SD
  9130. * - Process available commands (if not saving)
  9131. * - Call heater manager
  9132. * - Call inactivity manager
  9133. * - Call endstop manager
  9134. * - Call LCD update
  9135. */
  9136. void loop() {
  9137. if (commands_in_queue < BUFSIZE) get_available_commands();
  9138. #if ENABLED(SDSUPPORT)
  9139. card.checkautostart(false);
  9140. #endif
  9141. if (commands_in_queue) {
  9142. #if ENABLED(SDSUPPORT)
  9143. if (card.saving) {
  9144. char* command = command_queue[cmd_queue_index_r];
  9145. if (strstr_P(command, PSTR("M29"))) {
  9146. // M29 closes the file
  9147. card.closefile();
  9148. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  9149. ok_to_send();
  9150. }
  9151. else {
  9152. // Write the string from the read buffer to SD
  9153. card.write_command(command);
  9154. if (card.logging)
  9155. process_next_command(); // The card is saving because it's logging
  9156. else
  9157. ok_to_send();
  9158. }
  9159. }
  9160. else
  9161. process_next_command();
  9162. #else
  9163. process_next_command();
  9164. #endif // SDSUPPORT
  9165. // The queue may be reset by a command handler or by code invoked by idle() within a handler
  9166. if (commands_in_queue) {
  9167. --commands_in_queue;
  9168. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  9169. }
  9170. }
  9171. endstops.report_state();
  9172. idle();
  9173. }