My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Vous ne pouvez pas sélectionner plus de 25 sujets Les noms de sujets doivent commencer par une lettre ou un nombre, peuvent contenir des tirets ('-') et peuvent comporter jusqu'à 35 caractères.

stepper.cpp 33KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * stepper.cpp - A singleton object to execute motion plans using stepper motors
  24. * Marlin Firmware
  25. *
  26. * Derived from Grbl
  27. * Copyright (c) 2009-2011 Simen Svale Skogsrud
  28. *
  29. * Grbl is free software: you can redistribute it and/or modify
  30. * it under the terms of the GNU General Public License as published by
  31. * the Free Software Foundation, either version 3 of the License, or
  32. * (at your option) any later version.
  33. *
  34. * Grbl is distributed in the hope that it will be useful,
  35. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  36. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  37. * GNU General Public License for more details.
  38. *
  39. * You should have received a copy of the GNU General Public License
  40. * along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  41. */
  42. /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
  43. and Philipp Tiefenbacher. */
  44. #include "Marlin.h"
  45. #include "stepper.h"
  46. #include "endstops.h"
  47. #include "planner.h"
  48. #include "temperature.h"
  49. #include "ultralcd.h"
  50. #include "language.h"
  51. #include "cardreader.h"
  52. #include "speed_lookuptable.h"
  53. #if HAS_DIGIPOTSS
  54. #include <SPI.h>
  55. #endif
  56. Stepper stepper; // Singleton
  57. // public:
  58. block_t* Stepper::current_block = NULL; // A pointer to the block currently being traced
  59. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  60. bool Stepper::abort_on_endstop_hit = false;
  61. #endif
  62. #if ENABLED(Z_DUAL_ENDSTOPS)
  63. bool Stepper::performing_homing = false;
  64. #endif
  65. // private:
  66. unsigned char Stepper::last_direction_bits = 0; // The next stepping-bits to be output
  67. unsigned int Stepper::cleaning_buffer_counter = 0;
  68. #if ENABLED(Z_DUAL_ENDSTOPS)
  69. bool Stepper::locked_z_motor = false;
  70. bool Stepper::locked_z2_motor = false;
  71. #endif
  72. long Stepper::counter_X = 0,
  73. Stepper::counter_Y = 0,
  74. Stepper::counter_Z = 0,
  75. Stepper::counter_E = 0;
  76. volatile unsigned long Stepper::step_events_completed = 0; // The number of step events executed in the current block
  77. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  78. unsigned char Stepper::old_OCR0A;
  79. volatile unsigned char Stepper::eISR_Rate = 200; // Keep the ISR at a low rate until needed
  80. #if ENABLED(LIN_ADVANCE)
  81. volatile int Stepper::e_steps[EXTRUDERS];
  82. int Stepper::extruder_advance_k = LIN_ADVANCE_K,
  83. Stepper::final_estep_rate,
  84. Stepper::current_estep_rate[EXTRUDERS],
  85. Stepper::current_adv_steps[EXTRUDERS];
  86. #else
  87. long Stepper::e_steps[EXTRUDERS],
  88. Stepper::final_advance = 0,
  89. Stepper::old_advance = 0,
  90. Stepper::advance_rate,
  91. Stepper::advance;
  92. #endif
  93. #endif
  94. long Stepper::acceleration_time, Stepper::deceleration_time;
  95. volatile long Stepper::count_position[NUM_AXIS] = { 0 };
  96. volatile signed char Stepper::count_direction[NUM_AXIS] = { 1, 1, 1, 1 };
  97. unsigned short Stepper::acc_step_rate; // needed for deceleration start point
  98. uint8_t Stepper::step_loops, Stepper::step_loops_nominal;
  99. unsigned short Stepper::OCR1A_nominal;
  100. volatile long Stepper::endstops_trigsteps[3];
  101. #if ENABLED(X_DUAL_STEPPER_DRIVERS)
  102. #define X_APPLY_DIR(v,Q) do{ X_DIR_WRITE(v); X2_DIR_WRITE((v) != INVERT_X2_VS_X_DIR); }while(0)
  103. #define X_APPLY_STEP(v,Q) do{ X_STEP_WRITE(v); X2_STEP_WRITE(v); }while(0)
  104. #elif ENABLED(DUAL_X_CARRIAGE)
  105. #define X_APPLY_DIR(v,ALWAYS) \
  106. if (extruder_duplication_enabled || ALWAYS) { \
  107. X_DIR_WRITE(v); \
  108. X2_DIR_WRITE(v); \
  109. } \
  110. else { \
  111. if (current_block->active_extruder) X2_DIR_WRITE(v); else X_DIR_WRITE(v); \
  112. }
  113. #define X_APPLY_STEP(v,ALWAYS) \
  114. if (extruder_duplication_enabled || ALWAYS) { \
  115. X_STEP_WRITE(v); \
  116. X2_STEP_WRITE(v); \
  117. } \
  118. else { \
  119. if (current_block->active_extruder != 0) X2_STEP_WRITE(v); else X_STEP_WRITE(v); \
  120. }
  121. #else
  122. #define X_APPLY_DIR(v,Q) X_DIR_WRITE(v)
  123. #define X_APPLY_STEP(v,Q) X_STEP_WRITE(v)
  124. #endif
  125. #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
  126. #define Y_APPLY_DIR(v,Q) do{ Y_DIR_WRITE(v); Y2_DIR_WRITE((v) != INVERT_Y2_VS_Y_DIR); }while(0)
  127. #define Y_APPLY_STEP(v,Q) do{ Y_STEP_WRITE(v); Y2_STEP_WRITE(v); }while(0)
  128. #else
  129. #define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v)
  130. #define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v)
  131. #endif
  132. #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
  133. #define Z_APPLY_DIR(v,Q) do{ Z_DIR_WRITE(v); Z2_DIR_WRITE(v); }while(0)
  134. #if ENABLED(Z_DUAL_ENDSTOPS)
  135. #define Z_APPLY_STEP(v,Q) \
  136. if (performing_homing) { \
  137. if (Z_HOME_DIR > 0) {\
  138. if (!(TEST(endstops.old_endstop_bits, Z_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
  139. if (!(TEST(endstops.old_endstop_bits, Z2_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
  140. } \
  141. else { \
  142. if (!(TEST(endstops.old_endstop_bits, Z_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
  143. if (!(TEST(endstops.old_endstop_bits, Z2_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
  144. } \
  145. } \
  146. else { \
  147. Z_STEP_WRITE(v); \
  148. Z2_STEP_WRITE(v); \
  149. }
  150. #else
  151. #define Z_APPLY_STEP(v,Q) do{ Z_STEP_WRITE(v); Z2_STEP_WRITE(v); }while(0)
  152. #endif
  153. #else
  154. #define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v)
  155. #define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v)
  156. #endif
  157. #define E_APPLY_STEP(v,Q) E_STEP_WRITE(v)
  158. // intRes = longIn1 * longIn2 >> 24
  159. // uses:
  160. // r26 to store 0
  161. // r27 to store bits 16-23 of the 48bit result. The top bit is used to round the two byte result.
  162. // note that the lower two bytes and the upper byte of the 48bit result are not calculated.
  163. // this can cause the result to be out by one as the lower bytes may cause carries into the upper ones.
  164. // B0 A0 are bits 24-39 and are the returned value
  165. // C1 B1 A1 is longIn1
  166. // D2 C2 B2 A2 is longIn2
  167. //
  168. #define MultiU24X32toH16(intRes, longIn1, longIn2) \
  169. asm volatile ( \
  170. "clr r26 \n\t" \
  171. "mul %A1, %B2 \n\t" \
  172. "mov r27, r1 \n\t" \
  173. "mul %B1, %C2 \n\t" \
  174. "movw %A0, r0 \n\t" \
  175. "mul %C1, %C2 \n\t" \
  176. "add %B0, r0 \n\t" \
  177. "mul %C1, %B2 \n\t" \
  178. "add %A0, r0 \n\t" \
  179. "adc %B0, r1 \n\t" \
  180. "mul %A1, %C2 \n\t" \
  181. "add r27, r0 \n\t" \
  182. "adc %A0, r1 \n\t" \
  183. "adc %B0, r26 \n\t" \
  184. "mul %B1, %B2 \n\t" \
  185. "add r27, r0 \n\t" \
  186. "adc %A0, r1 \n\t" \
  187. "adc %B0, r26 \n\t" \
  188. "mul %C1, %A2 \n\t" \
  189. "add r27, r0 \n\t" \
  190. "adc %A0, r1 \n\t" \
  191. "adc %B0, r26 \n\t" \
  192. "mul %B1, %A2 \n\t" \
  193. "add r27, r1 \n\t" \
  194. "adc %A0, r26 \n\t" \
  195. "adc %B0, r26 \n\t" \
  196. "lsr r27 \n\t" \
  197. "adc %A0, r26 \n\t" \
  198. "adc %B0, r26 \n\t" \
  199. "mul %D2, %A1 \n\t" \
  200. "add %A0, r0 \n\t" \
  201. "adc %B0, r1 \n\t" \
  202. "mul %D2, %B1 \n\t" \
  203. "add %B0, r0 \n\t" \
  204. "clr r1 \n\t" \
  205. : \
  206. "=&r" (intRes) \
  207. : \
  208. "d" (longIn1), \
  209. "d" (longIn2) \
  210. : \
  211. "r26" , "r27" \
  212. )
  213. // Some useful constants
  214. #define ENABLE_STEPPER_DRIVER_INTERRUPT() SBI(TIMSK1, OCIE1A)
  215. #define DISABLE_STEPPER_DRIVER_INTERRUPT() CBI(TIMSK1, OCIE1A)
  216. /**
  217. * __________________________
  218. * /| |\ _________________ ^
  219. * / | | \ /| |\ |
  220. * / | | \ / | | \ s
  221. * / | | | | | \ p
  222. * / | | | | | \ e
  223. * +-----+------------------------+---+--+---------------+----+ e
  224. * | BLOCK 1 | BLOCK 2 | d
  225. *
  226. * time ----->
  227. *
  228. * The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
  229. * first block->accelerate_until step_events_completed, then keeps going at constant speed until
  230. * step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
  231. * The slope of acceleration is calculated using v = u + at where t is the accumulated timer values of the steps so far.
  232. */
  233. void Stepper::wake_up() {
  234. // TCNT1 = 0;
  235. ENABLE_STEPPER_DRIVER_INTERRUPT();
  236. }
  237. /**
  238. * Set the stepper direction of each axis
  239. *
  240. * COREXY: X_AXIS=A_AXIS and Y_AXIS=B_AXIS
  241. * COREXZ: X_AXIS=A_AXIS and Z_AXIS=C_AXIS
  242. * COREYZ: Y_AXIS=B_AXIS and Z_AXIS=C_AXIS
  243. */
  244. void Stepper::set_directions() {
  245. #define SET_STEP_DIR(AXIS) \
  246. if (motor_direction(AXIS ##_AXIS)) { \
  247. AXIS ##_APPLY_DIR(INVERT_## AXIS ##_DIR, false); \
  248. count_direction[AXIS ##_AXIS] = -1; \
  249. } \
  250. else { \
  251. AXIS ##_APPLY_DIR(!INVERT_## AXIS ##_DIR, false); \
  252. count_direction[AXIS ##_AXIS] = 1; \
  253. }
  254. SET_STEP_DIR(X); // A
  255. SET_STEP_DIR(Y); // B
  256. SET_STEP_DIR(Z); // C
  257. #if DISABLED(ADVANCE)
  258. if (motor_direction(E_AXIS)) {
  259. REV_E_DIR();
  260. count_direction[E_AXIS] = -1;
  261. }
  262. else {
  263. NORM_E_DIR();
  264. count_direction[E_AXIS] = 1;
  265. }
  266. #endif //!ADVANCE
  267. }
  268. // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
  269. // It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
  270. ISR(TIMER1_COMPA_vect) { Stepper::isr(); }
  271. void Stepper::isr() {
  272. if (cleaning_buffer_counter) {
  273. current_block = NULL;
  274. planner.discard_current_block();
  275. #ifdef SD_FINISHED_RELEASECOMMAND
  276. if ((cleaning_buffer_counter == 1) && (SD_FINISHED_STEPPERRELEASE)) enqueue_and_echo_commands_P(PSTR(SD_FINISHED_RELEASECOMMAND));
  277. #endif
  278. cleaning_buffer_counter--;
  279. OCR1A = 200;
  280. return;
  281. }
  282. // If there is no current block, attempt to pop one from the buffer
  283. if (!current_block) {
  284. // Anything in the buffer?
  285. current_block = planner.get_current_block();
  286. if (current_block) {
  287. current_block->busy = true;
  288. trapezoid_generator_reset();
  289. counter_X = -(current_block->step_event_count >> 1);
  290. counter_Y = counter_Z = counter_E = counter_X;
  291. step_events_completed = 0;
  292. #if ENABLED(Z_LATE_ENABLE)
  293. if (current_block->steps[Z_AXIS] > 0) {
  294. enable_z();
  295. OCR1A = 2000; //1ms wait
  296. return;
  297. }
  298. #endif
  299. // #if ENABLED(ADVANCE)
  300. // e_steps[current_block->active_extruder] = 0;
  301. // #endif
  302. }
  303. else {
  304. OCR1A = 2000; // 1kHz.
  305. }
  306. }
  307. if (current_block != NULL) {
  308. // Update endstops state, if enabled
  309. #if HAS_BED_PROBE
  310. if (endstops.enabled || endstops.z_probe_enabled) endstops.update();
  311. #else
  312. if (endstops.enabled) endstops.update();
  313. #endif
  314. // Take multiple steps per interrupt (For high speed moves)
  315. for (int8_t i = 0; i < step_loops; i++) {
  316. #ifndef USBCON
  317. customizedSerial.checkRx(); // Check for serial chars.
  318. #endif
  319. #if ENABLED(LIN_ADVANCE)
  320. counter_E += current_block->steps[E_AXIS];
  321. if (counter_E > 0) {
  322. counter_E -= current_block->step_event_count;
  323. count_position[E_AXIS] += count_direction[E_AXIS];
  324. e_steps[current_block->active_extruder] += motor_direction(E_AXIS) ? -1 : 1;
  325. }
  326. if (current_block->use_advance_lead) {
  327. int delta_adv_steps; //Maybe a char would be enough?
  328. delta_adv_steps = (((long)extruder_advance_k * current_estep_rate[current_block->active_extruder]) >> 9) - current_adv_steps[current_block->active_extruder];
  329. e_steps[current_block->active_extruder] += delta_adv_steps;
  330. current_adv_steps[current_block->active_extruder] += delta_adv_steps;
  331. }
  332. #elif ENABLED(ADVANCE)
  333. counter_E += current_block->steps[E_AXIS];
  334. if (counter_E > 0) {
  335. counter_E -= current_block->step_event_count;
  336. e_steps[current_block->active_extruder] += motor_direction(E_AXIS) ? -1 : 1;
  337. }
  338. #endif // ADVANCE or LIN_ADVANCE
  339. #define _COUNTER(AXIS) counter_## AXIS
  340. #define _APPLY_STEP(AXIS) AXIS ##_APPLY_STEP
  341. #define _INVERT_STEP_PIN(AXIS) INVERT_## AXIS ##_STEP_PIN
  342. #define STEP_ADD(AXIS) \
  343. _COUNTER(AXIS) += current_block->steps[_AXIS(AXIS)]; \
  344. if (_COUNTER(AXIS) > 0) { _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS),0); }
  345. STEP_ADD(X);
  346. STEP_ADD(Y);
  347. STEP_ADD(Z);
  348. #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
  349. STEP_ADD(E);
  350. #endif
  351. #define STEP_IF_COUNTER(AXIS) \
  352. if (_COUNTER(AXIS) > 0) { \
  353. _COUNTER(AXIS) -= current_block->step_event_count; \
  354. count_position[_AXIS(AXIS)] += count_direction[_AXIS(AXIS)]; \
  355. _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS),0); \
  356. }
  357. STEP_IF_COUNTER(X);
  358. STEP_IF_COUNTER(Y);
  359. STEP_IF_COUNTER(Z);
  360. #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
  361. STEP_IF_COUNTER(E);
  362. #endif
  363. step_events_completed++;
  364. if (step_events_completed >= current_block->step_event_count) break;
  365. }
  366. #if ENABLED(LIN_ADVANCE)
  367. // If we have esteps to execute, fire the next ISR "now"
  368. if (e_steps[current_block->active_extruder]) OCR0A = TCNT0 + 2;
  369. #endif
  370. // Calculate new timer value
  371. unsigned short timer, step_rate;
  372. if (step_events_completed <= (unsigned long)current_block->accelerate_until) {
  373. MultiU24X32toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
  374. acc_step_rate += current_block->initial_rate;
  375. // upper limit
  376. NOMORE(acc_step_rate, current_block->nominal_rate);
  377. // step_rate to timer interval
  378. timer = calc_timer(acc_step_rate);
  379. OCR1A = timer;
  380. acceleration_time += timer;
  381. #if ENABLED(LIN_ADVANCE)
  382. if (current_block->use_advance_lead)
  383. current_estep_rate[current_block->active_extruder] = ((unsigned long)acc_step_rate * current_block->e_speed_multiplier8) >> 8;
  384. #elif ENABLED(ADVANCE)
  385. advance += advance_rate * step_loops;
  386. //NOLESS(advance, current_block->advance);
  387. // Do E steps + advance steps
  388. e_steps[current_block->active_extruder] += ((advance >> 8) - old_advance);
  389. old_advance = advance >> 8;
  390. #endif // ADVANCE or LIN_ADVANCE
  391. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  392. eISR_Rate = (timer >> 2) * step_loops / abs(e_steps[current_block->active_extruder]);
  393. #endif
  394. }
  395. else if (step_events_completed > (unsigned long)current_block->decelerate_after) {
  396. MultiU24X32toH16(step_rate, deceleration_time, current_block->acceleration_rate);
  397. if (step_rate <= acc_step_rate) { // Still decelerating?
  398. step_rate = acc_step_rate - step_rate;
  399. NOLESS(step_rate, current_block->final_rate);
  400. }
  401. else
  402. step_rate = current_block->final_rate;
  403. // step_rate to timer interval
  404. timer = calc_timer(step_rate);
  405. OCR1A = timer;
  406. deceleration_time += timer;
  407. #if ENABLED(LIN_ADVANCE)
  408. if (current_block->use_advance_lead)
  409. current_estep_rate[current_block->active_extruder] = ((unsigned long)step_rate * current_block->e_speed_multiplier8) >> 8;
  410. #elif ENABLED(ADVANCE)
  411. advance -= advance_rate * step_loops;
  412. NOLESS(advance, final_advance);
  413. // Do E steps + advance steps
  414. uint32_t advance_whole = advance >> 8;
  415. e_steps[current_block->active_extruder] += advance_whole - old_advance;
  416. old_advance = advance_whole;
  417. #endif // ADVANCE or LIN_ADVANCE
  418. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  419. eISR_Rate = (timer >> 2) * step_loops / abs(e_steps[current_block->active_extruder]);
  420. #endif
  421. }
  422. else {
  423. #if ENABLED(LIN_ADVANCE)
  424. if (current_block->use_advance_lead)
  425. current_estep_rate[current_block->active_extruder] = final_estep_rate;
  426. eISR_Rate = (OCR1A_nominal >> 2) * step_loops_nominal / abs(e_steps[current_block->active_extruder]);
  427. #endif
  428. OCR1A = OCR1A_nominal;
  429. // ensure we're running at the correct step rate, even if we just came off an acceleration
  430. step_loops = step_loops_nominal;
  431. }
  432. OCR1A = (OCR1A < (TCNT1 + 16)) ? (TCNT1 + 16) : OCR1A;
  433. // If current block is finished, reset pointer
  434. if (step_events_completed >= current_block->step_event_count) {
  435. current_block = NULL;
  436. planner.discard_current_block();
  437. }
  438. }
  439. }
  440. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  441. // Timer interrupt for E. e_steps is set in the main routine;
  442. // Timer 0 is shared with millies
  443. ISR(TIMER0_COMPA_vect) { Stepper::advance_isr(); }
  444. void Stepper::advance_isr() {
  445. old_OCR0A += eISR_Rate;
  446. OCR0A = old_OCR0A;
  447. #define STEP_E_ONCE(INDEX) \
  448. if (e_steps[INDEX] != 0) { \
  449. E## INDEX ##_STEP_WRITE(INVERT_E_STEP_PIN); \
  450. if (e_steps[INDEX] < 0) { \
  451. E## INDEX ##_DIR_WRITE(INVERT_E## INDEX ##_DIR); \
  452. e_steps[INDEX]++; \
  453. } \
  454. else if (e_steps[INDEX] > 0) { \
  455. E## INDEX ##_DIR_WRITE(!INVERT_E## INDEX ##_DIR); \
  456. e_steps[INDEX]--; \
  457. } \
  458. E## INDEX ##_STEP_WRITE(!INVERT_E_STEP_PIN); \
  459. }
  460. // Step all E steppers that have steps
  461. for (uint8_t i = 0; i < step_loops; i++) {
  462. STEP_E_ONCE(0);
  463. #if EXTRUDERS > 1
  464. STEP_E_ONCE(1);
  465. #if EXTRUDERS > 2
  466. STEP_E_ONCE(2);
  467. #if EXTRUDERS > 3
  468. STEP_E_ONCE(3);
  469. #endif
  470. #endif
  471. #endif
  472. }
  473. }
  474. #endif // ADVANCE or LIN_ADVANCE
  475. void Stepper::init() {
  476. digipot_init(); //Initialize Digipot Motor Current
  477. microstep_init(); //Initialize Microstepping Pins
  478. // initialise TMC Steppers
  479. #if ENABLED(HAVE_TMCDRIVER)
  480. tmc_init();
  481. #endif
  482. // initialise L6470 Steppers
  483. #if ENABLED(HAVE_L6470DRIVER)
  484. L6470_init();
  485. #endif
  486. // Initialize Dir Pins
  487. #if HAS_X_DIR
  488. X_DIR_INIT;
  489. #endif
  490. #if HAS_X2_DIR
  491. X2_DIR_INIT;
  492. #endif
  493. #if HAS_Y_DIR
  494. Y_DIR_INIT;
  495. #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_DIR
  496. Y2_DIR_INIT;
  497. #endif
  498. #endif
  499. #if HAS_Z_DIR
  500. Z_DIR_INIT;
  501. #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_DIR
  502. Z2_DIR_INIT;
  503. #endif
  504. #endif
  505. #if HAS_E0_DIR
  506. E0_DIR_INIT;
  507. #endif
  508. #if HAS_E1_DIR
  509. E1_DIR_INIT;
  510. #endif
  511. #if HAS_E2_DIR
  512. E2_DIR_INIT;
  513. #endif
  514. #if HAS_E3_DIR
  515. E3_DIR_INIT;
  516. #endif
  517. //Initialize Enable Pins - steppers default to disabled.
  518. #if HAS_X_ENABLE
  519. X_ENABLE_INIT;
  520. if (!X_ENABLE_ON) X_ENABLE_WRITE(HIGH);
  521. #if ENABLED(DUAL_X_CARRIAGE) && HAS_X2_ENABLE
  522. X2_ENABLE_INIT;
  523. if (!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH);
  524. #endif
  525. #endif
  526. #if HAS_Y_ENABLE
  527. Y_ENABLE_INIT;
  528. if (!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH);
  529. #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_ENABLE
  530. Y2_ENABLE_INIT;
  531. if (!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH);
  532. #endif
  533. #endif
  534. #if HAS_Z_ENABLE
  535. Z_ENABLE_INIT;
  536. if (!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH);
  537. #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_ENABLE
  538. Z2_ENABLE_INIT;
  539. if (!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH);
  540. #endif
  541. #endif
  542. #if HAS_E0_ENABLE
  543. E0_ENABLE_INIT;
  544. if (!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH);
  545. #endif
  546. #if HAS_E1_ENABLE
  547. E1_ENABLE_INIT;
  548. if (!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH);
  549. #endif
  550. #if HAS_E2_ENABLE
  551. E2_ENABLE_INIT;
  552. if (!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH);
  553. #endif
  554. #if HAS_E3_ENABLE
  555. E3_ENABLE_INIT;
  556. if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH);
  557. #endif
  558. //
  559. // Init endstops and pullups here
  560. //
  561. endstops.init();
  562. #define _STEP_INIT(AXIS) AXIS ##_STEP_INIT
  563. #define _WRITE_STEP(AXIS, HIGHLOW) AXIS ##_STEP_WRITE(HIGHLOW)
  564. #define _DISABLE(axis) disable_## axis()
  565. #define AXIS_INIT(axis, AXIS, PIN) \
  566. _STEP_INIT(AXIS); \
  567. _WRITE_STEP(AXIS, _INVERT_STEP_PIN(PIN)); \
  568. _DISABLE(axis)
  569. #define E_AXIS_INIT(NUM) AXIS_INIT(e## NUM, E## NUM, E)
  570. // Initialize Step Pins
  571. #if HAS_X_STEP
  572. #if ENABLED(X_DUAL_STEPPER_DRIVERS) || ENABLED(DUAL_X_CARRIAGE)
  573. X2_STEP_INIT;
  574. X2_STEP_WRITE(INVERT_X_STEP_PIN);
  575. #endif
  576. AXIS_INIT(x, X, X);
  577. #endif
  578. #if HAS_Y_STEP
  579. #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
  580. Y2_STEP_INIT;
  581. Y2_STEP_WRITE(INVERT_Y_STEP_PIN);
  582. #endif
  583. AXIS_INIT(y, Y, Y);
  584. #endif
  585. #if HAS_Z_STEP
  586. #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
  587. Z2_STEP_INIT;
  588. Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
  589. #endif
  590. AXIS_INIT(z, Z, Z);
  591. #endif
  592. #if HAS_E0_STEP
  593. E_AXIS_INIT(0);
  594. #endif
  595. #if HAS_E1_STEP
  596. E_AXIS_INIT(1);
  597. #endif
  598. #if HAS_E2_STEP
  599. E_AXIS_INIT(2);
  600. #endif
  601. #if HAS_E3_STEP
  602. E_AXIS_INIT(3);
  603. #endif
  604. // waveform generation = 0100 = CTC
  605. CBI(TCCR1B, WGM13);
  606. SBI(TCCR1B, WGM12);
  607. CBI(TCCR1A, WGM11);
  608. CBI(TCCR1A, WGM10);
  609. // output mode = 00 (disconnected)
  610. TCCR1A &= ~(3 << COM1A0);
  611. TCCR1A &= ~(3 << COM1B0);
  612. // Set the timer pre-scaler
  613. // Generally we use a divider of 8, resulting in a 2MHz timer
  614. // frequency on a 16MHz MCU. If you are going to change this, be
  615. // sure to regenerate speed_lookuptable.h with
  616. // create_speed_lookuptable.py
  617. TCCR1B = (TCCR1B & ~(0x07 << CS10)) | (2 << CS10);
  618. OCR1A = 0x4000;
  619. TCNT1 = 0;
  620. ENABLE_STEPPER_DRIVER_INTERRUPT();
  621. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  622. #if ENABLED(LIN_ADVANCE)
  623. for (int i = 0; i < EXTRUDERS; i++) {
  624. e_steps[i] = 0;
  625. current_adv_steps[i] = 0;
  626. }
  627. #elif ENABLED(ADVANCE)
  628. for (uint8_t i = 0; i < EXTRUDERS; i++) e_steps[i] = 0;
  629. #endif
  630. #if defined(TCCR0A) && defined(WGM01)
  631. CBI(TCCR0A, WGM01);
  632. CBI(TCCR0A, WGM00);
  633. #endif
  634. SBI(TIMSK0, OCIE0A);
  635. #endif // ADVANCE or LIN_ADVANCE
  636. endstops.enable(true); // Start with endstops active. After homing they can be disabled
  637. sei();
  638. set_directions(); // Init directions to last_direction_bits = 0
  639. }
  640. /**
  641. * Block until all buffered steps are executed
  642. */
  643. void Stepper::synchronize() { while (planner.blocks_queued()) idle(); }
  644. /**
  645. * Set the stepper positions directly in steps
  646. *
  647. * The input is based on the typical per-axis XYZ steps.
  648. * For CORE machines XYZ needs to be translated to ABC.
  649. *
  650. * This allows get_axis_position_mm to correctly
  651. * derive the current XYZ position later on.
  652. */
  653. void Stepper::set_position(const long& x, const long& y, const long& z, const long& e) {
  654. CRITICAL_SECTION_START;
  655. #if ENABLED(COREXY)
  656. // corexy positioning
  657. // these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
  658. count_position[A_AXIS] = x + y;
  659. count_position[B_AXIS] = x - y;
  660. count_position[Z_AXIS] = z;
  661. #elif ENABLED(COREXZ)
  662. // corexz planning
  663. count_position[A_AXIS] = x + z;
  664. count_position[Y_AXIS] = y;
  665. count_position[C_AXIS] = x - z;
  666. #elif ENABLED(COREYZ)
  667. // coreyz planning
  668. count_position[X_AXIS] = x;
  669. count_position[B_AXIS] = y + z;
  670. count_position[C_AXIS] = y - z;
  671. #else
  672. // default non-h-bot planning
  673. count_position[X_AXIS] = x;
  674. count_position[Y_AXIS] = y;
  675. count_position[Z_AXIS] = z;
  676. #endif
  677. count_position[E_AXIS] = e;
  678. CRITICAL_SECTION_END;
  679. }
  680. void Stepper::set_e_position(const long& e) {
  681. CRITICAL_SECTION_START;
  682. count_position[E_AXIS] = e;
  683. CRITICAL_SECTION_END;
  684. }
  685. /**
  686. * Get a stepper's position in steps.
  687. */
  688. long Stepper::position(AxisEnum axis) {
  689. CRITICAL_SECTION_START;
  690. long count_pos = count_position[axis];
  691. CRITICAL_SECTION_END;
  692. return count_pos;
  693. }
  694. /**
  695. * Get an axis position according to stepper position(s)
  696. * For CORE machines apply translation from ABC to XYZ.
  697. */
  698. float Stepper::get_axis_position_mm(AxisEnum axis) {
  699. float axis_steps;
  700. #if ENABLED(COREXY) || ENABLED(COREXZ) || ENABLED(COREYZ)
  701. // Requesting one of the "core" axes?
  702. if (axis == CORE_AXIS_1 || axis == CORE_AXIS_2) {
  703. CRITICAL_SECTION_START;
  704. long pos1 = count_position[CORE_AXIS_1],
  705. pos2 = count_position[CORE_AXIS_2];
  706. CRITICAL_SECTION_END;
  707. // ((a1+a2)+(a1-a2))/2 -> (a1+a2+a1-a2)/2 -> (a1+a1)/2 -> a1
  708. // ((a1+a2)-(a1-a2))/2 -> (a1+a2-a1+a2)/2 -> (a2+a2)/2 -> a2
  709. axis_steps = (pos1 + ((axis == CORE_AXIS_1) ? pos2 : -pos2)) / 2.0f;
  710. }
  711. else
  712. axis_steps = position(axis);
  713. #else
  714. axis_steps = position(axis);
  715. #endif
  716. return axis_steps / planner.axis_steps_per_mm[axis];
  717. }
  718. void Stepper::finish_and_disable() {
  719. synchronize();
  720. disable_all_steppers();
  721. }
  722. void Stepper::quick_stop() {
  723. cleaning_buffer_counter = 5000;
  724. DISABLE_STEPPER_DRIVER_INTERRUPT();
  725. while (planner.blocks_queued()) planner.discard_current_block();
  726. current_block = NULL;
  727. ENABLE_STEPPER_DRIVER_INTERRUPT();
  728. }
  729. void Stepper::endstop_triggered(AxisEnum axis) {
  730. #if ENABLED(COREXY) || ENABLED(COREXZ) || ENABLED(COREYZ)
  731. float axis_pos = count_position[axis];
  732. if (axis == CORE_AXIS_1)
  733. axis_pos = (axis_pos + count_position[CORE_AXIS_2]) / 2;
  734. else if (axis == CORE_AXIS_2)
  735. axis_pos = (count_position[CORE_AXIS_1] - axis_pos) / 2;
  736. endstops_trigsteps[axis] = axis_pos;
  737. #else // !COREXY && !COREXZ && !COREYZ
  738. endstops_trigsteps[axis] = count_position[axis];
  739. #endif // !COREXY && !COREXZ && !COREYZ
  740. kill_current_block();
  741. }
  742. void Stepper::report_positions() {
  743. CRITICAL_SECTION_START;
  744. long xpos = count_position[X_AXIS],
  745. ypos = count_position[Y_AXIS],
  746. zpos = count_position[Z_AXIS];
  747. CRITICAL_SECTION_END;
  748. #if ENABLED(COREXY) || ENABLED(COREXZ)
  749. SERIAL_PROTOCOLPGM(MSG_COUNT_A);
  750. #else
  751. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  752. #endif
  753. SERIAL_PROTOCOL(xpos);
  754. #if ENABLED(COREXY) || ENABLED(COREYZ)
  755. SERIAL_PROTOCOLPGM(" B:");
  756. #else
  757. SERIAL_PROTOCOLPGM(" Y:");
  758. #endif
  759. SERIAL_PROTOCOL(ypos);
  760. #if ENABLED(COREXZ) || ENABLED(COREYZ)
  761. SERIAL_PROTOCOLPGM(" C:");
  762. #else
  763. SERIAL_PROTOCOLPGM(" Z:");
  764. #endif
  765. SERIAL_PROTOCOL(zpos);
  766. SERIAL_EOL;
  767. }
  768. #if ENABLED(BABYSTEPPING)
  769. // MUST ONLY BE CALLED BY AN ISR,
  770. // No other ISR should ever interrupt this!
  771. void Stepper::babystep(const uint8_t axis, const bool direction) {
  772. #define _ENABLE(axis) enable_## axis()
  773. #define _READ_DIR(AXIS) AXIS ##_DIR_READ
  774. #define _INVERT_DIR(AXIS) INVERT_## AXIS ##_DIR
  775. #define _APPLY_DIR(AXIS, INVERT) AXIS ##_APPLY_DIR(INVERT, true)
  776. #define BABYSTEP_AXIS(axis, AXIS, INVERT) { \
  777. _ENABLE(axis); \
  778. uint8_t old_pin = _READ_DIR(AXIS); \
  779. _APPLY_DIR(AXIS, _INVERT_DIR(AXIS)^direction^INVERT); \
  780. _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS), true); \
  781. delayMicroseconds(2); \
  782. _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS), true); \
  783. _APPLY_DIR(AXIS, old_pin); \
  784. }
  785. switch (axis) {
  786. case X_AXIS:
  787. BABYSTEP_AXIS(x, X, false);
  788. break;
  789. case Y_AXIS:
  790. BABYSTEP_AXIS(y, Y, false);
  791. break;
  792. case Z_AXIS: {
  793. #if DISABLED(DELTA)
  794. BABYSTEP_AXIS(z, Z, BABYSTEP_INVERT_Z);
  795. #else // DELTA
  796. bool z_direction = direction ^ BABYSTEP_INVERT_Z;
  797. enable_x();
  798. enable_y();
  799. enable_z();
  800. uint8_t old_x_dir_pin = X_DIR_READ,
  801. old_y_dir_pin = Y_DIR_READ,
  802. old_z_dir_pin = Z_DIR_READ;
  803. //setup new step
  804. X_DIR_WRITE(INVERT_X_DIR ^ z_direction);
  805. Y_DIR_WRITE(INVERT_Y_DIR ^ z_direction);
  806. Z_DIR_WRITE(INVERT_Z_DIR ^ z_direction);
  807. //perform step
  808. X_STEP_WRITE(!INVERT_X_STEP_PIN);
  809. Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
  810. Z_STEP_WRITE(!INVERT_Z_STEP_PIN);
  811. delayMicroseconds(2);
  812. X_STEP_WRITE(INVERT_X_STEP_PIN);
  813. Y_STEP_WRITE(INVERT_Y_STEP_PIN);
  814. Z_STEP_WRITE(INVERT_Z_STEP_PIN);
  815. //get old pin state back.
  816. X_DIR_WRITE(old_x_dir_pin);
  817. Y_DIR_WRITE(old_y_dir_pin);
  818. Z_DIR_WRITE(old_z_dir_pin);
  819. #endif
  820. } break;
  821. default: break;
  822. }
  823. }
  824. #endif //BABYSTEPPING
  825. /**
  826. * Software-controlled Stepper Motor Current
  827. */
  828. #if HAS_DIGIPOTSS
  829. // From Arduino DigitalPotControl example
  830. void Stepper::digitalPotWrite(int address, int value) {
  831. digitalWrite(DIGIPOTSS_PIN, LOW); // take the SS pin low to select the chip
  832. SPI.transfer(address); // send in the address and value via SPI:
  833. SPI.transfer(value);
  834. digitalWrite(DIGIPOTSS_PIN, HIGH); // take the SS pin high to de-select the chip:
  835. //delay(10);
  836. }
  837. #endif //HAS_DIGIPOTSS
  838. void Stepper::digipot_init() {
  839. #if HAS_DIGIPOTSS
  840. const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
  841. SPI.begin();
  842. pinMode(DIGIPOTSS_PIN, OUTPUT);
  843. for (uint8_t i = 0; i < COUNT(digipot_motor_current); i++) {
  844. //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
  845. digipot_current(i, digipot_motor_current[i]);
  846. }
  847. #endif
  848. #if HAS_MOTOR_CURRENT_PWM
  849. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  850. pinMode(MOTOR_CURRENT_PWM_XY_PIN, OUTPUT);
  851. digipot_current(0, motor_current_setting[0]);
  852. #endif
  853. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  854. pinMode(MOTOR_CURRENT_PWM_Z_PIN, OUTPUT);
  855. digipot_current(1, motor_current_setting[1]);
  856. #endif
  857. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  858. pinMode(MOTOR_CURRENT_PWM_E_PIN, OUTPUT);
  859. digipot_current(2, motor_current_setting[2]);
  860. #endif
  861. //Set timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
  862. TCCR5B = (TCCR5B & ~(_BV(CS50) | _BV(CS51) | _BV(CS52))) | _BV(CS50);
  863. #endif
  864. }
  865. void Stepper::digipot_current(uint8_t driver, int current) {
  866. #if HAS_DIGIPOTSS
  867. const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
  868. digitalPotWrite(digipot_ch[driver], current);
  869. #elif HAS_MOTOR_CURRENT_PWM
  870. #define _WRITE_CURRENT_PWM(P) analogWrite(P, 255L * current / (MOTOR_CURRENT_PWM_RANGE))
  871. switch (driver) {
  872. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  873. case 0: _WRITE_CURRENT_PWM(MOTOR_CURRENT_PWM_XY_PIN); break;
  874. #endif
  875. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  876. case 1: _WRITE_CURRENT_PWM(MOTOR_CURRENT_PWM_Z_PIN); break;
  877. #endif
  878. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  879. case 2: _WRITE_CURRENT_PWM(MOTOR_CURRENT_PWM_E_PIN); break;
  880. #endif
  881. }
  882. #else
  883. UNUSED(driver);
  884. UNUSED(current);
  885. #endif
  886. }
  887. void Stepper::microstep_init() {
  888. #if HAS_MICROSTEPS_E1
  889. pinMode(E1_MS1_PIN, OUTPUT);
  890. pinMode(E1_MS2_PIN, OUTPUT);
  891. #endif
  892. #if HAS_MICROSTEPS
  893. pinMode(X_MS1_PIN, OUTPUT);
  894. pinMode(X_MS2_PIN, OUTPUT);
  895. pinMode(Y_MS1_PIN, OUTPUT);
  896. pinMode(Y_MS2_PIN, OUTPUT);
  897. pinMode(Z_MS1_PIN, OUTPUT);
  898. pinMode(Z_MS2_PIN, OUTPUT);
  899. pinMode(E0_MS1_PIN, OUTPUT);
  900. pinMode(E0_MS2_PIN, OUTPUT);
  901. const uint8_t microstep_modes[] = MICROSTEP_MODES;
  902. for (uint16_t i = 0; i < COUNT(microstep_modes); i++)
  903. microstep_mode(i, microstep_modes[i]);
  904. #endif
  905. }
  906. /**
  907. * Software-controlled Microstepping
  908. */
  909. void Stepper::microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2) {
  910. if (ms1 >= 0) switch (driver) {
  911. case 0: digitalWrite(X_MS1_PIN, ms1); break;
  912. case 1: digitalWrite(Y_MS1_PIN, ms1); break;
  913. case 2: digitalWrite(Z_MS1_PIN, ms1); break;
  914. case 3: digitalWrite(E0_MS1_PIN, ms1); break;
  915. #if HAS_MICROSTEPS_E1
  916. case 4: digitalWrite(E1_MS1_PIN, ms1); break;
  917. #endif
  918. }
  919. if (ms2 >= 0) switch (driver) {
  920. case 0: digitalWrite(X_MS2_PIN, ms2); break;
  921. case 1: digitalWrite(Y_MS2_PIN, ms2); break;
  922. case 2: digitalWrite(Z_MS2_PIN, ms2); break;
  923. case 3: digitalWrite(E0_MS2_PIN, ms2); break;
  924. #if PIN_EXISTS(E1_MS2)
  925. case 4: digitalWrite(E1_MS2_PIN, ms2); break;
  926. #endif
  927. }
  928. }
  929. void Stepper::microstep_mode(uint8_t driver, uint8_t stepping_mode) {
  930. switch (stepping_mode) {
  931. case 1: microstep_ms(driver, MICROSTEP1); break;
  932. case 2: microstep_ms(driver, MICROSTEP2); break;
  933. case 4: microstep_ms(driver, MICROSTEP4); break;
  934. case 8: microstep_ms(driver, MICROSTEP8); break;
  935. case 16: microstep_ms(driver, MICROSTEP16); break;
  936. }
  937. }
  938. void Stepper::microstep_readings() {
  939. SERIAL_PROTOCOLLNPGM("MS1,MS2 Pins");
  940. SERIAL_PROTOCOLPGM("X: ");
  941. SERIAL_PROTOCOL(digitalRead(X_MS1_PIN));
  942. SERIAL_PROTOCOLLN(digitalRead(X_MS2_PIN));
  943. SERIAL_PROTOCOLPGM("Y: ");
  944. SERIAL_PROTOCOL(digitalRead(Y_MS1_PIN));
  945. SERIAL_PROTOCOLLN(digitalRead(Y_MS2_PIN));
  946. SERIAL_PROTOCOLPGM("Z: ");
  947. SERIAL_PROTOCOL(digitalRead(Z_MS1_PIN));
  948. SERIAL_PROTOCOLLN(digitalRead(Z_MS2_PIN));
  949. SERIAL_PROTOCOLPGM("E0: ");
  950. SERIAL_PROTOCOL(digitalRead(E0_MS1_PIN));
  951. SERIAL_PROTOCOLLN(digitalRead(E0_MS2_PIN));
  952. #if HAS_MICROSTEPS_E1
  953. SERIAL_PROTOCOLPGM("E1: ");
  954. SERIAL_PROTOCOL(digitalRead(E1_MS1_PIN));
  955. SERIAL_PROTOCOLLN(digitalRead(E1_MS2_PIN));
  956. #endif
  957. }
  958. #if ENABLED(LIN_ADVANCE)
  959. void Stepper::advance_M905(const float &k) {
  960. if (k >= 0) extruder_advance_k = k;
  961. SERIAL_ECHO_START;
  962. SERIAL_ECHOPAIR("Advance factor: ", extruder_advance_k);
  963. SERIAL_EOL;
  964. }
  965. #endif // LIN_ADVANCE