My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 263KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. *
  24. * About Marlin
  25. *
  26. * This firmware is a mashup between Sprinter and grbl.
  27. * - https://github.com/kliment/Sprinter
  28. * - https://github.com/simen/grbl/tree
  29. *
  30. * It has preliminary support for Matthew Roberts advance algorithm
  31. * - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  32. */
  33. #include "Marlin.h"
  34. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  35. #include "vector_3.h"
  36. #if ENABLED(AUTO_BED_LEVELING_GRID)
  37. #include "qr_solve.h"
  38. #endif
  39. #endif // AUTO_BED_LEVELING_FEATURE
  40. #if ENABLED(MESH_BED_LEVELING)
  41. #include "mesh_bed_leveling.h"
  42. #endif
  43. #if ENABLED(BEZIER_CURVE_SUPPORT)
  44. #include "planner_bezier.h"
  45. #endif
  46. #include "ultralcd.h"
  47. #include "planner.h"
  48. #include "stepper.h"
  49. #include "endstops.h"
  50. #include "temperature.h"
  51. #include "cardreader.h"
  52. #include "configuration_store.h"
  53. #include "language.h"
  54. #include "pins_arduino.h"
  55. #include "math.h"
  56. #if ENABLED(USE_WATCHDOG)
  57. #include "watchdog.h"
  58. #endif
  59. #if ENABLED(BLINKM)
  60. #include "blinkm.h"
  61. #include "Wire.h"
  62. #endif
  63. #if HAS_SERVOS
  64. #include "servo.h"
  65. #endif
  66. #if HAS_DIGIPOTSS
  67. #include <SPI.h>
  68. #endif
  69. #if ENABLED(DAC_STEPPER_CURRENT)
  70. #include "stepper_dac.h"
  71. #endif
  72. #if ENABLED(EXPERIMENTAL_I2CBUS)
  73. #include "twibus.h"
  74. #endif
  75. /**
  76. * Look here for descriptions of G-codes:
  77. * - http://linuxcnc.org/handbook/gcode/g-code.html
  78. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  79. *
  80. * Help us document these G-codes online:
  81. * - https://github.com/MarlinFirmware/Marlin/wiki/G-Code-in-Marlin
  82. * - http://reprap.org/wiki/G-code
  83. *
  84. * -----------------
  85. * Implemented Codes
  86. * -----------------
  87. *
  88. * "G" Codes
  89. *
  90. * G0 -> G1
  91. * G1 - Coordinated Movement X Y Z E
  92. * G2 - CW ARC
  93. * G3 - CCW ARC
  94. * G4 - Dwell S<seconds> or P<milliseconds>
  95. * G5 - Cubic B-spline with XYZE destination and IJPQ offsets
  96. * G10 - retract filament according to settings of M207
  97. * G11 - retract recover filament according to settings of M208
  98. * G20 - Set input units to inches
  99. * G21 - Set input units to millimeters
  100. * G28 - Home one or more axes
  101. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  102. * G30 - Single Z probe, probes bed at current XY location.
  103. * G31 - Dock sled (Z_PROBE_SLED only)
  104. * G32 - Undock sled (Z_PROBE_SLED only)
  105. * G90 - Use Absolute Coordinates
  106. * G91 - Use Relative Coordinates
  107. * G92 - Set current position to coordinates given
  108. *
  109. * "M" Codes
  110. *
  111. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  112. * M1 - Same as M0
  113. * M17 - Enable/Power all stepper motors
  114. * M18 - Disable all stepper motors; same as M84
  115. * M20 - List SD card
  116. * M21 - Init SD card
  117. * M22 - Release SD card
  118. * M23 - Select SD file (M23 filename.g)
  119. * M24 - Start/resume SD print
  120. * M25 - Pause SD print
  121. * M26 - Set SD position in bytes (M26 S12345)
  122. * M27 - Report SD print status
  123. * M28 - Start SD write (M28 filename.g)
  124. * M29 - Stop SD write
  125. * M30 - Delete file from SD (M30 filename.g)
  126. * M31 - Output time since last M109 or SD card start to serial
  127. * M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  128. * syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  129. * Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  130. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  131. * M33 - Get the longname version of a path
  132. * M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  133. * M48 - Measure Z_Probe repeatability. M48 [P # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
  134. * M75 - Start the print job timer
  135. * M76 - Pause the print job timer
  136. * M77 - Stop the print job timer
  137. * M78 - Show statistical information about the print jobs
  138. * M80 - Turn on Power Supply
  139. * M81 - Turn off Power Supply
  140. * M82 - Set E codes absolute (default)
  141. * M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  142. * M84 - Disable steppers until next move,
  143. * or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  144. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  145. * M92 - Set planner.axis_steps_per_mm - same syntax as G92
  146. * M104 - Set extruder target temp
  147. * M105 - Read current temp
  148. * M106 - Fan on
  149. * M107 - Fan off
  150. * M108 - Cancel heatup and wait for the hotend and bed, this G-code is asynchronously handled in the get_serial_commands() parser
  151. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  152. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  153. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  154. * M110 - Set the current line number
  155. * M111 - Set debug flags with S<mask>. See flag bits defined in Marlin.h.
  156. * M112 - Emergency stop
  157. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  158. * M114 - Output current position to serial port
  159. * M115 - Capabilities string
  160. * M117 - Display a message on the controller screen
  161. * M119 - Output Endstop status to serial port
  162. * M120 - Enable endstop detection
  163. * M121 - Disable endstop detection
  164. * M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  165. * M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  166. * M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  167. * M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  168. * M140 - Set bed target temp
  169. * M145 - Set the heatup state H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  170. * M149 - Set temperature units
  171. * M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  172. * M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  173. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  174. * M200 - Set filament diameter, D<diameter>, setting E axis units to cubic. (Use S0 to revert to linear units.)
  175. * M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  176. * M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  177. * M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  178. * M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in units/sec^2
  179. * M205 - Set advanced settings. Current units apply:
  180. S<print> T<travel> minimum speeds
  181. B<minimum segment time>
  182. X<max xy jerk>, Z<max Z jerk>, E<max E jerk>
  183. * M206 - Set additional homing offset
  184. * M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>
  185. * M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>
  186. * M209 - Turn Automatic Retract Detection on/off: S<bool> (For slicers that don't support G10/11).
  187. Every normal extrude-only move will be classified as retract depending on the direction.
  188. * M218 - Set a tool offset: T<index> X<offset> Y<offset>
  189. * M220 - Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  190. * M221 - Set Flow Percentage: S<percent>
  191. * M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
  192. * M240 - Trigger a camera to take a photograph
  193. * M250 - Set LCD contrast C<contrast value> (value 0..63)
  194. * M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  195. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  196. * M301 - Set PID parameters P I and D
  197. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  198. * M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  199. * M304 - Set bed PID parameters P I and D
  200. * M380 - Activate solenoid on active extruder
  201. * M381 - Disable all solenoids
  202. * M400 - Finish all moves
  203. * M401 - Lower Z probe if present
  204. * M402 - Raise Z probe if present
  205. * M404 - Display or set the Nominal Filament Width: [ N<diameter> ]
  206. * M405 - Enable Filament Sensor extrusion control. Optional delay between sensor and extruder: D<cm>
  207. * M406 - Disable Filament Sensor extrusion control
  208. * M407 - Display measured filament diameter in millimeters
  209. * M410 - Quickstop. Abort all the planned moves
  210. * M420 - Enable/Disable Mesh Leveling (with current values) S1=enable S0=disable
  211. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<units> Y<units> Z<units>
  212. * M428 - Set the home_offset logically based on the current_position
  213. * M500 - Store parameters in EEPROM
  214. * M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  215. * M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  216. * M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  217. * M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  218. * M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  219. * M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
  220. * M666 - Set delta endstop adjustment
  221. * M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  222. * M851 - Set Z probe's Z offset in current units. (Negative values apply to probes that extend below the nozzle.)
  223. * M907 - Set digital trimpot motor current using axis codes.
  224. * M908 - Control digital trimpot directly.
  225. * M909 - DAC_STEPPER_CURRENT: Print digipot/DAC current value
  226. * M910 - DAC_STEPPER_CURRENT: Commit digipot/DAC value to external EEPROM via I2C
  227. * M350 - Set microstepping mode.
  228. * M351 - Toggle MS1 MS2 pins directly.
  229. *
  230. * ************ SCARA Specific - This can change to suit future G-code regulations
  231. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  232. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  233. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  234. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  235. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  236. * M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  237. * ************* SCARA End ***************
  238. *
  239. * ************ Custom codes - This can change to suit future G-code regulations
  240. * M100 - Watch Free Memory (For Debugging Only)
  241. * M928 - Start SD logging (M928 filename.g) - ended by M29
  242. * M999 - Restart after being stopped by error
  243. *
  244. * "T" Codes
  245. *
  246. * T0-T3 - Select a tool by index (usually an extruder) [ F<units/min> ]
  247. *
  248. */
  249. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  250. void gcode_M100();
  251. #endif
  252. #if ENABLED(SDSUPPORT)
  253. CardReader card;
  254. #endif
  255. #if ENABLED(EXPERIMENTAL_I2CBUS)
  256. TWIBus i2c;
  257. #endif
  258. bool Running = true;
  259. uint8_t marlin_debug_flags = DEBUG_NONE;
  260. static float feedrate = 1500.0, saved_feedrate;
  261. float current_position[NUM_AXIS] = { 0.0 };
  262. static float destination[NUM_AXIS] = { 0.0 };
  263. bool axis_known_position[3] = { false };
  264. bool axis_homed[3] = { false };
  265. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  266. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  267. static char* current_command, *current_command_args;
  268. static uint8_t cmd_queue_index_r = 0,
  269. cmd_queue_index_w = 0,
  270. commands_in_queue = 0;
  271. #if ENABLED(INCH_MODE_SUPPORT)
  272. float linear_unit_factor = 1.0;
  273. float volumetric_unit_factor = 1.0;
  274. #endif
  275. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  276. TempUnit input_temp_units = TEMPUNIT_C;
  277. #endif
  278. const float homing_feedrate[] = HOMING_FEEDRATE;
  279. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  280. int feedrate_multiplier = 100; //100->1 200->2
  281. int saved_feedrate_multiplier;
  282. int extruder_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  283. bool volumetric_enabled = false;
  284. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA);
  285. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  286. // The distance that XYZ has been offset by G92. Reset by G28.
  287. float position_shift[3] = { 0 };
  288. // This offset is added to the configured home position.
  289. // Set by M206, M428, or menu item. Saved to EEPROM.
  290. float home_offset[3] = { 0 };
  291. #define RAW_POSITION(POS, AXIS) (POS - home_offset[AXIS] - position_shift[AXIS])
  292. #define RAW_CURRENT_POSITION(AXIS) (RAW_POSITION(current_position[AXIS], AXIS))
  293. // Software Endstops. Default to configured limits.
  294. float sw_endstop_min[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  295. float sw_endstop_max[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  296. #if FAN_COUNT > 0
  297. int fanSpeeds[FAN_COUNT] = { 0 };
  298. #endif
  299. // The active extruder (tool). Set with T<extruder> command.
  300. uint8_t active_extruder = 0;
  301. // Relative Mode. Enable with G91, disable with G90.
  302. static bool relative_mode = false;
  303. bool wait_for_heatup = true;
  304. const char errormagic[] PROGMEM = "Error:";
  305. const char echomagic[] PROGMEM = "echo:";
  306. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  307. static int serial_count = 0;
  308. // GCode parameter pointer used by code_seen(), code_value_float(), etc.
  309. static char* seen_pointer;
  310. // Next Immediate GCode Command pointer. NULL if none.
  311. const char* queued_commands_P = NULL;
  312. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  313. // Inactivity shutdown
  314. millis_t previous_cmd_ms = 0;
  315. static millis_t max_inactive_time = 0;
  316. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
  317. // Print Job Timer
  318. #if ENABLED(PRINTCOUNTER)
  319. PrintCounter print_job_timer = PrintCounter();
  320. #else
  321. Stopwatch print_job_timer = Stopwatch();
  322. #endif
  323. // Buzzer
  324. #if HAS_BUZZER
  325. #if ENABLED(SPEAKER)
  326. Speaker buzzer;
  327. #else
  328. Buzzer buzzer;
  329. #endif
  330. #endif
  331. static uint8_t target_extruder;
  332. #if HAS_BED_PROBE
  333. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  334. #endif
  335. #define PLANNER_XY_FEEDRATE() (min(planner.max_feedrate[X_AXIS], planner.max_feedrate[Y_AXIS]))
  336. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  337. int xy_probe_speed = XY_PROBE_SPEED;
  338. bool bed_leveling_in_progress = false;
  339. #define XY_PROBE_FEEDRATE xy_probe_speed
  340. #elif defined(XY_PROBE_SPEED)
  341. #define XY_PROBE_FEEDRATE XY_PROBE_SPEED
  342. #else
  343. #define XY_PROBE_FEEDRATE (PLANNER_XY_FEEDRATE() * 60)
  344. #endif
  345. #if ENABLED(Z_DUAL_ENDSTOPS) && DISABLED(DELTA)
  346. float z_endstop_adj = 0;
  347. #endif
  348. // Extruder offsets
  349. #if HOTENDS > 1
  350. #ifndef HOTEND_OFFSET_X
  351. #define HOTEND_OFFSET_X { 0 } // X offsets for each extruder
  352. #endif
  353. #ifndef HOTEND_OFFSET_Y
  354. #define HOTEND_OFFSET_Y { 0 } // Y offsets for each extruder
  355. #endif
  356. float hotend_offset[][HOTENDS] = {
  357. HOTEND_OFFSET_X,
  358. HOTEND_OFFSET_Y
  359. #if ENABLED(DUAL_X_CARRIAGE)
  360. , { 0 } // Z offsets for each extruder
  361. #endif
  362. };
  363. #endif
  364. #if HAS_Z_SERVO_ENDSTOP
  365. const int z_servo_angle[2] = Z_SERVO_ANGLES;
  366. #endif
  367. #if ENABLED(BARICUDA)
  368. int baricuda_valve_pressure = 0;
  369. int baricuda_e_to_p_pressure = 0;
  370. #endif
  371. #if ENABLED(FWRETRACT)
  372. bool autoretract_enabled = false;
  373. bool retracted[EXTRUDERS] = { false };
  374. bool retracted_swap[EXTRUDERS] = { false };
  375. float retract_length = RETRACT_LENGTH;
  376. float retract_length_swap = RETRACT_LENGTH_SWAP;
  377. float retract_feedrate_mm_s = RETRACT_FEEDRATE;
  378. float retract_zlift = RETRACT_ZLIFT;
  379. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  380. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  381. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  382. #endif // FWRETRACT
  383. #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
  384. bool powersupply =
  385. #if ENABLED(PS_DEFAULT_OFF)
  386. false
  387. #else
  388. true
  389. #endif
  390. ;
  391. #endif
  392. #if ENABLED(DELTA)
  393. #define TOWER_1 X_AXIS
  394. #define TOWER_2 Y_AXIS
  395. #define TOWER_3 Z_AXIS
  396. float delta[3] = { 0 };
  397. #define SIN_60 0.8660254037844386
  398. #define COS_60 0.5
  399. float endstop_adj[3] = { 0 };
  400. // these are the default values, can be overriden with M665
  401. float delta_radius = DELTA_RADIUS;
  402. float delta_tower1_x = -SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  403. float delta_tower1_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1);
  404. float delta_tower2_x = SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  405. float delta_tower2_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2);
  406. float delta_tower3_x = 0; // back middle tower
  407. float delta_tower3_y = (delta_radius + DELTA_RADIUS_TRIM_TOWER_3);
  408. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  409. float delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1;
  410. float delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2;
  411. float delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3;
  412. float delta_diagonal_rod_2_tower_1 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_1);
  413. float delta_diagonal_rod_2_tower_2 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_2);
  414. float delta_diagonal_rod_2_tower_3 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_3);
  415. //float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  416. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  417. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  418. int delta_grid_spacing[2] = { 0, 0 };
  419. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  420. #endif
  421. #else
  422. static bool home_all_axis = true;
  423. #endif
  424. #if ENABLED(SCARA)
  425. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND;
  426. static float delta[3] = { 0 };
  427. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  428. #endif
  429. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  430. //Variables for Filament Sensor input
  431. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  432. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  433. float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  434. int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  435. int filwidth_delay_index1 = 0; //index into ring buffer
  436. int filwidth_delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  437. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  438. #endif
  439. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  440. static bool filament_ran_out = false;
  441. #endif
  442. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  443. FilamentChangeMenuResponse filament_change_menu_response;
  444. #endif
  445. static bool send_ok[BUFSIZE];
  446. #if HAS_SERVOS
  447. Servo servo[NUM_SERVOS];
  448. #define MOVE_SERVO(I, P) servo[I].move(P)
  449. #if HAS_Z_SERVO_ENDSTOP
  450. #define DEPLOY_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[0])
  451. #define STOW_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[1])
  452. #endif
  453. #endif
  454. #ifdef CHDK
  455. millis_t chdkHigh = 0;
  456. boolean chdkActive = false;
  457. #endif
  458. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  459. int lpq_len = 20;
  460. #endif
  461. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  462. // States for managing Marlin and host communication
  463. // Marlin sends messages if blocked or busy
  464. enum MarlinBusyState {
  465. NOT_BUSY, // Not in a handler
  466. IN_HANDLER, // Processing a GCode
  467. IN_PROCESS, // Known to be blocking command input (as in G29)
  468. PAUSED_FOR_USER, // Blocking pending any input
  469. PAUSED_FOR_INPUT // Blocking pending text input (concept)
  470. };
  471. static MarlinBusyState busy_state = NOT_BUSY;
  472. static millis_t next_busy_signal_ms = 0;
  473. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  474. #define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0)
  475. #else
  476. #define host_keepalive() ;
  477. #define KEEPALIVE_STATE(n) ;
  478. #endif // HOST_KEEPALIVE_FEATURE
  479. /**
  480. * ***************************************************************************
  481. * ******************************** FUNCTIONS ********************************
  482. * ***************************************************************************
  483. */
  484. void stop();
  485. void get_available_commands();
  486. void process_next_command();
  487. void prepare_move_to_destination();
  488. #if ENABLED(ARC_SUPPORT)
  489. void plan_arc(float target[NUM_AXIS], float* offset, uint8_t clockwise);
  490. #endif
  491. #if ENABLED(BEZIER_CURVE_SUPPORT)
  492. void plan_cubic_move(const float offset[4]);
  493. #endif
  494. void serial_echopair_P(const char* s_P, int v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  495. void serial_echopair_P(const char* s_P, long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  496. void serial_echopair_P(const char* s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  497. void serial_echopair_P(const char* s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  498. void serial_echopair_P(const char* s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  499. static void report_current_position();
  500. #if ENABLED(DEBUG_LEVELING_FEATURE)
  501. void print_xyz(const char* prefix, const float x, const float y, const float z) {
  502. SERIAL_ECHO(prefix);
  503. SERIAL_ECHOPAIR(": (", x);
  504. SERIAL_ECHOPAIR(", ", y);
  505. SERIAL_ECHOPAIR(", ", z);
  506. SERIAL_ECHOLNPGM(")");
  507. }
  508. void print_xyz(const char* prefix, const float xyz[]) {
  509. print_xyz(prefix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  510. }
  511. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  512. void print_xyz(const char* prefix, const vector_3 &xyz) {
  513. print_xyz(prefix, xyz.x, xyz.y, xyz.z);
  514. }
  515. #endif
  516. #define DEBUG_POS(PREFIX,VAR) do{ SERIAL_ECHOPGM(PREFIX); print_xyz(" > " STRINGIFY(VAR), VAR); }while(0)
  517. #endif
  518. #if ENABLED(DELTA) || ENABLED(SCARA)
  519. inline void sync_plan_position_delta() {
  520. #if ENABLED(DEBUG_LEVELING_FEATURE)
  521. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_delta", current_position);
  522. #endif
  523. calculate_delta(current_position);
  524. planner.set_position_mm(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  525. }
  526. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_delta()
  527. #else
  528. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position()
  529. #endif
  530. #if ENABLED(SDSUPPORT)
  531. #include "SdFatUtil.h"
  532. int freeMemory() { return SdFatUtil::FreeRam(); }
  533. #else
  534. extern "C" {
  535. extern unsigned int __bss_end;
  536. extern unsigned int __heap_start;
  537. extern void* __brkval;
  538. int freeMemory() {
  539. int free_memory;
  540. if ((int)__brkval == 0)
  541. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  542. else
  543. free_memory = ((int)&free_memory) - ((int)__brkval);
  544. return free_memory;
  545. }
  546. }
  547. #endif //!SDSUPPORT
  548. #if ENABLED(DIGIPOT_I2C)
  549. extern void digipot_i2c_set_current(int channel, float current);
  550. extern void digipot_i2c_init();
  551. #endif
  552. /**
  553. * Inject the next "immediate" command, when possible.
  554. * Return true if any immediate commands remain to inject.
  555. */
  556. static bool drain_queued_commands_P() {
  557. if (queued_commands_P != NULL) {
  558. size_t i = 0;
  559. char c, cmd[30];
  560. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  561. cmd[sizeof(cmd) - 1] = '\0';
  562. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  563. cmd[i] = '\0';
  564. if (enqueue_and_echo_command(cmd)) { // success?
  565. if (c) // newline char?
  566. queued_commands_P += i + 1; // advance to the next command
  567. else
  568. queued_commands_P = NULL; // nul char? no more commands
  569. }
  570. }
  571. return (queued_commands_P != NULL); // return whether any more remain
  572. }
  573. /**
  574. * Record one or many commands to run from program memory.
  575. * Aborts the current queue, if any.
  576. * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  577. */
  578. void enqueue_and_echo_commands_P(const char* pgcode) {
  579. queued_commands_P = pgcode;
  580. drain_queued_commands_P(); // first command executed asap (when possible)
  581. }
  582. void clear_command_queue() {
  583. cmd_queue_index_r = cmd_queue_index_w;
  584. commands_in_queue = 0;
  585. }
  586. /**
  587. * Once a new command is in the ring buffer, call this to commit it
  588. */
  589. inline void _commit_command(bool say_ok) {
  590. send_ok[cmd_queue_index_w] = say_ok;
  591. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  592. commands_in_queue++;
  593. }
  594. /**
  595. * Copy a command directly into the main command buffer, from RAM.
  596. * Returns true if successfully adds the command
  597. */
  598. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  599. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  600. strcpy(command_queue[cmd_queue_index_w], cmd);
  601. _commit_command(say_ok);
  602. return true;
  603. }
  604. void enqueue_and_echo_command_now(const char* cmd) {
  605. while (!enqueue_and_echo_command(cmd)) idle();
  606. }
  607. /**
  608. * Enqueue with Serial Echo
  609. */
  610. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  611. if (_enqueuecommand(cmd, say_ok)) {
  612. SERIAL_ECHO_START;
  613. SERIAL_ECHOPGM(MSG_Enqueueing);
  614. SERIAL_ECHO(cmd);
  615. SERIAL_ECHOLNPGM("\"");
  616. return true;
  617. }
  618. return false;
  619. }
  620. void setup_killpin() {
  621. #if HAS_KILL
  622. SET_INPUT(KILL_PIN);
  623. WRITE(KILL_PIN, HIGH);
  624. #endif
  625. }
  626. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  627. void setup_filrunoutpin() {
  628. pinMode(FIL_RUNOUT_PIN, INPUT);
  629. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  630. WRITE(FIL_RUNOUT_PIN, HIGH);
  631. #endif
  632. }
  633. #endif
  634. // Set home pin
  635. void setup_homepin(void) {
  636. #if HAS_HOME
  637. SET_INPUT(HOME_PIN);
  638. WRITE(HOME_PIN, HIGH);
  639. #endif
  640. }
  641. void setup_photpin() {
  642. #if HAS_PHOTOGRAPH
  643. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  644. #endif
  645. }
  646. void setup_powerhold() {
  647. #if HAS_SUICIDE
  648. OUT_WRITE(SUICIDE_PIN, HIGH);
  649. #endif
  650. #if HAS_POWER_SWITCH
  651. #if ENABLED(PS_DEFAULT_OFF)
  652. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  653. #else
  654. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  655. #endif
  656. #endif
  657. }
  658. void suicide() {
  659. #if HAS_SUICIDE
  660. OUT_WRITE(SUICIDE_PIN, LOW);
  661. #endif
  662. }
  663. void servo_init() {
  664. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  665. servo[0].attach(SERVO0_PIN);
  666. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  667. #endif
  668. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  669. servo[1].attach(SERVO1_PIN);
  670. servo[1].detach();
  671. #endif
  672. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  673. servo[2].attach(SERVO2_PIN);
  674. servo[2].detach();
  675. #endif
  676. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  677. servo[3].attach(SERVO3_PIN);
  678. servo[3].detach();
  679. #endif
  680. #if HAS_Z_SERVO_ENDSTOP
  681. /**
  682. * Set position of Z Servo Endstop
  683. *
  684. * The servo might be deployed and positioned too low to stow
  685. * when starting up the machine or rebooting the board.
  686. * There's no way to know where the nozzle is positioned until
  687. * homing has been done - no homing with z-probe without init!
  688. *
  689. */
  690. STOW_Z_SERVO();
  691. #endif
  692. #if HAS_BED_PROBE
  693. endstops.enable_z_probe(false);
  694. #endif
  695. }
  696. /**
  697. * Stepper Reset (RigidBoard, et.al.)
  698. */
  699. #if HAS_STEPPER_RESET
  700. void disableStepperDrivers() {
  701. pinMode(STEPPER_RESET_PIN, OUTPUT);
  702. digitalWrite(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  703. }
  704. void enableStepperDrivers() { pinMode(STEPPER_RESET_PIN, INPUT); } // set to input, which allows it to be pulled high by pullups
  705. #endif
  706. /**
  707. * Marlin entry-point: Set up before the program loop
  708. * - Set up the kill pin, filament runout, power hold
  709. * - Start the serial port
  710. * - Print startup messages and diagnostics
  711. * - Get EEPROM or default settings
  712. * - Initialize managers for:
  713. * • temperature
  714. * • planner
  715. * • watchdog
  716. * • stepper
  717. * • photo pin
  718. * • servos
  719. * • LCD controller
  720. * • Digipot I2C
  721. * • Z probe sled
  722. * • status LEDs
  723. */
  724. void setup() {
  725. #ifdef DISABLE_JTAG
  726. // Disable JTAG on AT90USB chips to free up pins for IO
  727. MCUCR = 0x80;
  728. MCUCR = 0x80;
  729. #endif
  730. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  731. setup_filrunoutpin();
  732. #endif
  733. setup_killpin();
  734. setup_powerhold();
  735. #if HAS_STEPPER_RESET
  736. disableStepperDrivers();
  737. #endif
  738. MYSERIAL.begin(BAUDRATE);
  739. SERIAL_PROTOCOLLNPGM("start");
  740. SERIAL_ECHO_START;
  741. // Check startup - does nothing if bootloader sets MCUSR to 0
  742. byte mcu = MCUSR;
  743. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  744. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  745. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  746. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  747. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  748. MCUSR = 0;
  749. SERIAL_ECHOPGM(MSG_MARLIN);
  750. SERIAL_ECHOLNPGM(" " SHORT_BUILD_VERSION);
  751. #ifdef STRING_DISTRIBUTION_DATE
  752. #ifdef STRING_CONFIG_H_AUTHOR
  753. SERIAL_ECHO_START;
  754. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  755. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  756. SERIAL_ECHOPGM(MSG_AUTHOR);
  757. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  758. SERIAL_ECHOPGM("Compiled: ");
  759. SERIAL_ECHOLNPGM(__DATE__);
  760. #endif // STRING_CONFIG_H_AUTHOR
  761. #endif // STRING_DISTRIBUTION_DATE
  762. SERIAL_ECHO_START;
  763. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  764. SERIAL_ECHO(freeMemory());
  765. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  766. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  767. // Send "ok" after commands by default
  768. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  769. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  770. Config_RetrieveSettings();
  771. // Initialize current position based on home_offset
  772. memcpy(current_position, home_offset, sizeof(home_offset));
  773. #if ENABLED(DELTA) || ENABLED(SCARA)
  774. // Vital to init kinematic equivalent for X0 Y0 Z0
  775. SYNC_PLAN_POSITION_KINEMATIC();
  776. #endif
  777. thermalManager.init(); // Initialize temperature loop
  778. #if ENABLED(USE_WATCHDOG)
  779. watchdog_init();
  780. #endif
  781. stepper.init(); // Initialize stepper, this enables interrupts!
  782. setup_photpin();
  783. servo_init();
  784. #if HAS_CONTROLLERFAN
  785. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  786. #endif
  787. #if HAS_STEPPER_RESET
  788. enableStepperDrivers();
  789. #endif
  790. #if ENABLED(DIGIPOT_I2C)
  791. digipot_i2c_init();
  792. #endif
  793. #if ENABLED(DAC_STEPPER_CURRENT)
  794. dac_init();
  795. #endif
  796. #if ENABLED(Z_PROBE_SLED)
  797. pinMode(SLED_PIN, OUTPUT);
  798. digitalWrite(SLED_PIN, LOW); // turn it off
  799. #endif // Z_PROBE_SLED
  800. setup_homepin();
  801. #ifdef STAT_LED_RED
  802. pinMode(STAT_LED_RED, OUTPUT);
  803. digitalWrite(STAT_LED_RED, LOW); // turn it off
  804. #endif
  805. #ifdef STAT_LED_BLUE
  806. pinMode(STAT_LED_BLUE, OUTPUT);
  807. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  808. #endif
  809. lcd_init();
  810. #if ENABLED(SHOW_BOOTSCREEN)
  811. #if ENABLED(DOGLCD)
  812. delay(1000);
  813. #elif ENABLED(ULTRA_LCD)
  814. bootscreen();
  815. lcd_init();
  816. #endif
  817. #endif
  818. }
  819. /**
  820. * The main Marlin program loop
  821. *
  822. * - Save or log commands to SD
  823. * - Process available commands (if not saving)
  824. * - Call heater manager
  825. * - Call inactivity manager
  826. * - Call endstop manager
  827. * - Call LCD update
  828. */
  829. void loop() {
  830. if (commands_in_queue < BUFSIZE) get_available_commands();
  831. #if ENABLED(SDSUPPORT)
  832. card.checkautostart(false);
  833. #endif
  834. if (commands_in_queue) {
  835. #if ENABLED(SDSUPPORT)
  836. if (card.saving) {
  837. char* command = command_queue[cmd_queue_index_r];
  838. if (strstr_P(command, PSTR("M29"))) {
  839. // M29 closes the file
  840. card.closefile();
  841. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  842. ok_to_send();
  843. }
  844. else {
  845. // Write the string from the read buffer to SD
  846. card.write_command(command);
  847. if (card.logging)
  848. process_next_command(); // The card is saving because it's logging
  849. else
  850. ok_to_send();
  851. }
  852. }
  853. else
  854. process_next_command();
  855. #else
  856. process_next_command();
  857. #endif // SDSUPPORT
  858. // The queue may be reset by a command handler or by code invoked by idle() within a handler
  859. if (commands_in_queue) {
  860. --commands_in_queue;
  861. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  862. }
  863. }
  864. endstops.report_state();
  865. idle();
  866. }
  867. void gcode_line_error(const char* err, bool doFlush = true) {
  868. SERIAL_ERROR_START;
  869. serialprintPGM(err);
  870. SERIAL_ERRORLN(gcode_LastN);
  871. //Serial.println(gcode_N);
  872. if (doFlush) FlushSerialRequestResend();
  873. serial_count = 0;
  874. }
  875. inline void get_serial_commands() {
  876. static char serial_line_buffer[MAX_CMD_SIZE];
  877. static boolean serial_comment_mode = false;
  878. // If the command buffer is empty for too long,
  879. // send "wait" to indicate Marlin is still waiting.
  880. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  881. static millis_t last_command_time = 0;
  882. millis_t ms = millis();
  883. if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
  884. SERIAL_ECHOLNPGM(MSG_WAIT);
  885. last_command_time = ms;
  886. }
  887. #endif
  888. /**
  889. * Loop while serial characters are incoming and the queue is not full
  890. */
  891. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  892. char serial_char = MYSERIAL.read();
  893. /**
  894. * If the character ends the line
  895. */
  896. if (serial_char == '\n' || serial_char == '\r') {
  897. serial_comment_mode = false; // end of line == end of comment
  898. if (!serial_count) continue; // skip empty lines
  899. serial_line_buffer[serial_count] = 0; // terminate string
  900. serial_count = 0; //reset buffer
  901. char* command = serial_line_buffer;
  902. while (*command == ' ') command++; // skip any leading spaces
  903. char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  904. char* apos = strchr(command, '*');
  905. if (npos) {
  906. boolean M110 = strstr_P(command, PSTR("M110")) != NULL;
  907. if (M110) {
  908. char* n2pos = strchr(command + 4, 'N');
  909. if (n2pos) npos = n2pos;
  910. }
  911. gcode_N = strtol(npos + 1, NULL, 10);
  912. if (gcode_N != gcode_LastN + 1 && !M110) {
  913. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  914. return;
  915. }
  916. if (apos) {
  917. byte checksum = 0, count = 0;
  918. while (command[count] != '*') checksum ^= command[count++];
  919. if (strtol(apos + 1, NULL, 10) != checksum) {
  920. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  921. return;
  922. }
  923. // if no errors, continue parsing
  924. }
  925. else {
  926. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  927. return;
  928. }
  929. gcode_LastN = gcode_N;
  930. // if no errors, continue parsing
  931. }
  932. else if (apos) { // No '*' without 'N'
  933. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  934. return;
  935. }
  936. // Movement commands alert when stopped
  937. if (IsStopped()) {
  938. char* gpos = strchr(command, 'G');
  939. if (gpos) {
  940. int codenum = strtol(gpos + 1, NULL, 10);
  941. switch (codenum) {
  942. case 0:
  943. case 1:
  944. case 2:
  945. case 3:
  946. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  947. LCD_MESSAGEPGM(MSG_STOPPED);
  948. break;
  949. }
  950. }
  951. }
  952. // If command was e-stop process now
  953. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  954. if (strcmp(command, "M108") == 0) wait_for_heatup = false;
  955. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  956. last_command_time = ms;
  957. #endif
  958. // Add the command to the queue
  959. _enqueuecommand(serial_line_buffer, true);
  960. }
  961. else if (serial_count >= MAX_CMD_SIZE - 1) {
  962. // Keep fetching, but ignore normal characters beyond the max length
  963. // The command will be injected when EOL is reached
  964. }
  965. else if (serial_char == '\\') { // Handle escapes
  966. if (MYSERIAL.available() > 0) {
  967. // if we have one more character, copy it over
  968. serial_char = MYSERIAL.read();
  969. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  970. }
  971. // otherwise do nothing
  972. }
  973. else { // it's not a newline, carriage return or escape char
  974. if (serial_char == ';') serial_comment_mode = true;
  975. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  976. }
  977. } // queue has space, serial has data
  978. }
  979. #if ENABLED(SDSUPPORT)
  980. inline void get_sdcard_commands() {
  981. static bool stop_buffering = false,
  982. sd_comment_mode = false;
  983. if (!card.sdprinting) return;
  984. /**
  985. * '#' stops reading from SD to the buffer prematurely, so procedural
  986. * macro calls are possible. If it occurs, stop_buffering is triggered
  987. * and the buffer is run dry; this character _can_ occur in serial com
  988. * due to checksums, however, no checksums are used in SD printing.
  989. */
  990. if (commands_in_queue == 0) stop_buffering = false;
  991. uint16_t sd_count = 0;
  992. bool card_eof = card.eof();
  993. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  994. int16_t n = card.get();
  995. char sd_char = (char)n;
  996. card_eof = card.eof();
  997. if (card_eof || n == -1
  998. || sd_char == '\n' || sd_char == '\r'
  999. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  1000. ) {
  1001. if (card_eof) {
  1002. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  1003. print_job_timer.stop();
  1004. char time[30];
  1005. millis_t t = print_job_timer.duration();
  1006. int hours = t / 60 / 60, minutes = (t / 60) % 60;
  1007. sprintf_P(time, PSTR("%i " MSG_END_HOUR " %i " MSG_END_MINUTE), hours, minutes);
  1008. SERIAL_ECHO_START;
  1009. SERIAL_ECHOLN(time);
  1010. lcd_setstatus(time, true);
  1011. card.printingHasFinished();
  1012. card.checkautostart(true);
  1013. }
  1014. else if (n == -1) {
  1015. SERIAL_ERROR_START;
  1016. SERIAL_ECHOLNPGM(MSG_SD_ERR_READ);
  1017. }
  1018. if (sd_char == '#') stop_buffering = true;
  1019. sd_comment_mode = false; //for new command
  1020. if (!sd_count) continue; //skip empty lines
  1021. command_queue[cmd_queue_index_w][sd_count] = '\0'; //terminate string
  1022. sd_count = 0; //clear buffer
  1023. _commit_command(false);
  1024. }
  1025. else if (sd_count >= MAX_CMD_SIZE - 1) {
  1026. /**
  1027. * Keep fetching, but ignore normal characters beyond the max length
  1028. * The command will be injected when EOL is reached
  1029. */
  1030. }
  1031. else {
  1032. if (sd_char == ';') sd_comment_mode = true;
  1033. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  1034. }
  1035. }
  1036. }
  1037. #endif // SDSUPPORT
  1038. /**
  1039. * Add to the circular command queue the next command from:
  1040. * - The command-injection queue (queued_commands_P)
  1041. * - The active serial input (usually USB)
  1042. * - The SD card file being actively printed
  1043. */
  1044. void get_available_commands() {
  1045. // if any immediate commands remain, don't get other commands yet
  1046. if (drain_queued_commands_P()) return;
  1047. get_serial_commands();
  1048. #if ENABLED(SDSUPPORT)
  1049. get_sdcard_commands();
  1050. #endif
  1051. }
  1052. inline bool code_has_value() {
  1053. int i = 1;
  1054. char c = seen_pointer[i];
  1055. while (c == ' ') c = seen_pointer[++i];
  1056. if (c == '-' || c == '+') c = seen_pointer[++i];
  1057. if (c == '.') c = seen_pointer[++i];
  1058. return NUMERIC(c);
  1059. }
  1060. inline float code_value_float() {
  1061. float ret;
  1062. char* e = strchr(seen_pointer, 'E');
  1063. if (e) {
  1064. *e = 0;
  1065. ret = strtod(seen_pointer + 1, NULL);
  1066. *e = 'E';
  1067. }
  1068. else
  1069. ret = strtod(seen_pointer + 1, NULL);
  1070. return ret;
  1071. }
  1072. inline unsigned long code_value_ulong() { return strtoul(seen_pointer + 1, NULL, 10); }
  1073. inline long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  1074. inline int code_value_int() { return (int)strtol(seen_pointer + 1, NULL, 10); }
  1075. inline uint16_t code_value_ushort() { return (uint16_t)strtoul(seen_pointer + 1, NULL, 10); }
  1076. inline uint8_t code_value_byte() { return (uint8_t)(constrain(strtol(seen_pointer + 1, NULL, 10), 0, 255)); }
  1077. inline bool code_value_bool() { return code_value_byte() > 0; }
  1078. #if ENABLED(INCH_MODE_SUPPORT)
  1079. inline void set_input_linear_units(LinearUnit units) {
  1080. switch (units) {
  1081. case LINEARUNIT_INCH:
  1082. linear_unit_factor = 25.4;
  1083. break;
  1084. case LINEARUNIT_MM:
  1085. default:
  1086. linear_unit_factor = 1.0;
  1087. break;
  1088. }
  1089. volumetric_unit_factor = pow(linear_unit_factor, 3.0);
  1090. }
  1091. inline float axis_unit_factor(int axis) {
  1092. return (axis == E_AXIS && volumetric_enabled ? volumetric_unit_factor : linear_unit_factor);
  1093. }
  1094. inline float code_value_linear_units() { return code_value_float() * linear_unit_factor; }
  1095. inline float code_value_axis_units(int axis) { return code_value_float() * axis_unit_factor(axis); }
  1096. inline float code_value_per_axis_unit(int axis) { return code_value_float() / axis_unit_factor(axis); }
  1097. #else
  1098. inline float code_value_linear_units() { return code_value_float(); }
  1099. inline float code_value_axis_units(int axis) { UNUSED(axis); return code_value_float(); }
  1100. inline float code_value_per_axis_unit(int axis) { UNUSED(axis); return code_value_float(); }
  1101. #endif
  1102. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  1103. inline void set_input_temp_units(TempUnit units) { input_temp_units = units; }
  1104. float code_value_temp_abs() {
  1105. switch (input_temp_units) {
  1106. case TEMPUNIT_C:
  1107. return code_value_float();
  1108. case TEMPUNIT_F:
  1109. return (code_value_float() - 32) / 1.8;
  1110. case TEMPUNIT_K:
  1111. return code_value_float() - 272.15;
  1112. default:
  1113. return code_value_float();
  1114. }
  1115. }
  1116. float code_value_temp_diff() {
  1117. switch (input_temp_units) {
  1118. case TEMPUNIT_C:
  1119. case TEMPUNIT_K:
  1120. return code_value_float();
  1121. case TEMPUNIT_F:
  1122. return code_value_float() / 1.8;
  1123. default:
  1124. return code_value_float();
  1125. }
  1126. }
  1127. #else
  1128. float code_value_temp_abs() { return code_value_float(); }
  1129. float code_value_temp_diff() { return code_value_float(); }
  1130. #endif
  1131. inline millis_t code_value_millis() { return code_value_ulong(); }
  1132. inline millis_t code_value_millis_from_seconds() { return code_value_float() * 1000; }
  1133. bool code_seen(char code) {
  1134. seen_pointer = strchr(current_command_args, code);
  1135. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  1136. }
  1137. /**
  1138. * Set target_extruder from the T parameter or the active_extruder
  1139. *
  1140. * Returns TRUE if the target is invalid
  1141. */
  1142. bool get_target_extruder_from_command(int code) {
  1143. if (code_seen('T')) {
  1144. uint8_t t = code_value_byte();
  1145. if (t >= EXTRUDERS) {
  1146. SERIAL_ECHO_START;
  1147. SERIAL_CHAR('M');
  1148. SERIAL_ECHO(code);
  1149. SERIAL_ECHOPAIR(" " MSG_INVALID_EXTRUDER " ", t);
  1150. SERIAL_EOL;
  1151. return true;
  1152. }
  1153. target_extruder = t;
  1154. }
  1155. else
  1156. target_extruder = active_extruder;
  1157. return false;
  1158. }
  1159. #define DEFINE_PGM_READ_ANY(type, reader) \
  1160. static inline type pgm_read_any(const type *p) \
  1161. { return pgm_read_##reader##_near(p); }
  1162. DEFINE_PGM_READ_ANY(float, float);
  1163. DEFINE_PGM_READ_ANY(signed char, byte);
  1164. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1165. static const PROGMEM type array##_P[3] = \
  1166. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1167. static inline type array(int axis) \
  1168. { return pgm_read_any(&array##_P[axis]); }
  1169. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1170. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1171. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1172. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1173. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  1174. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1175. #if ENABLED(DUAL_X_CARRIAGE)
  1176. #define DXC_FULL_CONTROL_MODE 0
  1177. #define DXC_AUTO_PARK_MODE 1
  1178. #define DXC_DUPLICATION_MODE 2
  1179. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1180. static float x_home_pos(int extruder) {
  1181. if (extruder == 0)
  1182. return base_home_pos(X_AXIS) + home_offset[X_AXIS];
  1183. else
  1184. /**
  1185. * In dual carriage mode the extruder offset provides an override of the
  1186. * second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  1187. * This allow soft recalibration of the second extruder offset position
  1188. * without firmware reflash (through the M218 command).
  1189. */
  1190. return (hotend_offset[X_AXIS][1] > 0) ? hotend_offset[X_AXIS][1] : X2_HOME_POS;
  1191. }
  1192. static int x_home_dir(int extruder) {
  1193. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  1194. }
  1195. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1196. static bool active_extruder_parked = false; // used in mode 1 & 2
  1197. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  1198. static millis_t delayed_move_time = 0; // used in mode 1
  1199. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1200. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  1201. bool extruder_duplication_enabled = false; // used in mode 2
  1202. #endif //DUAL_X_CARRIAGE
  1203. /**
  1204. * Software endstops can be used to monitor the open end of
  1205. * an axis that has a hardware endstop on the other end. Or
  1206. * they can prevent axes from moving past endstops and grinding.
  1207. *
  1208. * To keep doing their job as the coordinate system changes,
  1209. * the software endstop positions must be refreshed to remain
  1210. * at the same positions relative to the machine.
  1211. */
  1212. static void update_software_endstops(AxisEnum axis) {
  1213. float offs = home_offset[axis] + position_shift[axis];
  1214. #if ENABLED(DUAL_X_CARRIAGE)
  1215. if (axis == X_AXIS) {
  1216. float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS);
  1217. if (active_extruder != 0) {
  1218. sw_endstop_min[X_AXIS] = X2_MIN_POS + offs;
  1219. sw_endstop_max[X_AXIS] = dual_max_x + offs;
  1220. return;
  1221. }
  1222. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1223. sw_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
  1224. sw_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
  1225. return;
  1226. }
  1227. }
  1228. else
  1229. #endif
  1230. {
  1231. sw_endstop_min[axis] = base_min_pos(axis) + offs;
  1232. sw_endstop_max[axis] = base_max_pos(axis) + offs;
  1233. }
  1234. }
  1235. /**
  1236. * Change the home offset for an axis, update the current
  1237. * position and the software endstops to retain the same
  1238. * relative distance to the new home.
  1239. *
  1240. * Since this changes the current_position, code should
  1241. * call sync_plan_position soon after this.
  1242. */
  1243. static void set_home_offset(AxisEnum axis, float v) {
  1244. current_position[axis] += v - home_offset[axis];
  1245. home_offset[axis] = v;
  1246. update_software_endstops(axis);
  1247. }
  1248. static void set_axis_is_at_home(AxisEnum axis) {
  1249. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1250. if (DEBUGGING(LEVELING)) {
  1251. SERIAL_ECHOPAIR(">>> set_axis_is_at_home(", axis);
  1252. SERIAL_ECHOLNPGM(")");
  1253. }
  1254. #endif
  1255. position_shift[axis] = 0;
  1256. #if ENABLED(DUAL_X_CARRIAGE)
  1257. if (axis == X_AXIS && (active_extruder != 0 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
  1258. if (active_extruder != 0)
  1259. current_position[X_AXIS] = x_home_pos(active_extruder);
  1260. else
  1261. current_position[X_AXIS] = base_home_pos(X_AXIS) + home_offset[X_AXIS];
  1262. update_software_endstops(X_AXIS);
  1263. return;
  1264. }
  1265. #endif
  1266. #if ENABLED(SCARA)
  1267. if (axis == X_AXIS || axis == Y_AXIS) {
  1268. float homeposition[3];
  1269. for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i);
  1270. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  1271. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  1272. /**
  1273. * Works out real Homeposition angles using inverse kinematics,
  1274. * and calculates homing offset using forward kinematics
  1275. */
  1276. calculate_delta(homeposition);
  1277. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  1278. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1279. for (int i = 0; i < 2; i++) delta[i] -= home_offset[i];
  1280. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
  1281. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
  1282. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  1283. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1284. calculate_SCARA_forward_Transform(delta);
  1285. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  1286. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1287. current_position[axis] = delta[axis];
  1288. /**
  1289. * SCARA home positions are based on configuration since the actual
  1290. * limits are determined by the inverse kinematic transform.
  1291. */
  1292. sw_endstop_min[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1293. sw_endstop_max[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1294. }
  1295. else
  1296. #endif
  1297. {
  1298. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  1299. update_software_endstops(axis);
  1300. #if HAS_BED_PROBE && Z_HOME_DIR < 0
  1301. if (axis == Z_AXIS) {
  1302. current_position[Z_AXIS] -= zprobe_zoffset;
  1303. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1304. if (DEBUGGING(LEVELING)) {
  1305. SERIAL_ECHOPAIR("> zprobe_zoffset==", zprobe_zoffset);
  1306. SERIAL_EOL;
  1307. }
  1308. #endif
  1309. }
  1310. #endif
  1311. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1312. if (DEBUGGING(LEVELING)) {
  1313. SERIAL_ECHOPAIR("> home_offset[axis]==", home_offset[axis]);
  1314. DEBUG_POS("", current_position);
  1315. }
  1316. #endif
  1317. }
  1318. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1319. if (DEBUGGING(LEVELING)) {
  1320. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis);
  1321. SERIAL_ECHOLNPGM(")");
  1322. }
  1323. #endif
  1324. }
  1325. /**
  1326. * Some planner shorthand inline functions
  1327. */
  1328. inline void set_homing_bump_feedrate(AxisEnum axis) {
  1329. const int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  1330. int hbd = homing_bump_divisor[axis];
  1331. if (hbd < 1) {
  1332. hbd = 10;
  1333. SERIAL_ECHO_START;
  1334. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1335. }
  1336. feedrate = homing_feedrate[axis] / hbd;
  1337. }
  1338. //
  1339. // line_to_current_position
  1340. // Move the planner to the current position from wherever it last moved
  1341. // (or from wherever it has been told it is located).
  1342. //
  1343. inline void line_to_current_position() {
  1344. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  1345. }
  1346. inline void line_to_z(float zPosition) {
  1347. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate / 60, active_extruder);
  1348. }
  1349. //
  1350. // line_to_destination
  1351. // Move the planner, not necessarily synced with current_position
  1352. //
  1353. inline void line_to_destination(float mm_m) {
  1354. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], mm_m / 60, active_extruder);
  1355. }
  1356. inline void line_to_destination() { line_to_destination(feedrate); }
  1357. /**
  1358. * sync_plan_position
  1359. * Set planner / stepper positions to the cartesian current_position.
  1360. * The stepper code translates these coordinates into step units.
  1361. * Allows translation between steps and millimeters for cartesian & core robots
  1362. */
  1363. inline void sync_plan_position() {
  1364. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1365. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  1366. #endif
  1367. planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1368. }
  1369. inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
  1370. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1371. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1372. //
  1373. // Prepare to do endstop or probe moves
  1374. // with custom feedrates.
  1375. //
  1376. // - Save current feedrates
  1377. // - Reset the rate multiplier
  1378. // - Reset the command timeout
  1379. // - Enable the endstops (for endstop moves)
  1380. //
  1381. static void setup_for_endstop_or_probe_move() {
  1382. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1383. if (DEBUGGING(LEVELING)) DEBUG_POS("setup_for_endstop_or_probe_move", current_position);
  1384. #endif
  1385. saved_feedrate = feedrate;
  1386. saved_feedrate_multiplier = feedrate_multiplier;
  1387. feedrate_multiplier = 100;
  1388. refresh_cmd_timeout();
  1389. }
  1390. static void setup_for_endstop_move() {
  1391. setup_for_endstop_or_probe_move();
  1392. endstops.enable();
  1393. }
  1394. static void clean_up_after_endstop_or_probe_move() {
  1395. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1396. if (DEBUGGING(LEVELING)) DEBUG_POS("clean_up_after_endstop_or_probe_move", current_position);
  1397. #endif
  1398. feedrate = saved_feedrate;
  1399. feedrate_multiplier = saved_feedrate_multiplier;
  1400. refresh_cmd_timeout();
  1401. }
  1402. #if HAS_BED_PROBE
  1403. #if ENABLED(DELTA)
  1404. /**
  1405. * Calculate delta, start a line, and set current_position to destination
  1406. */
  1407. void prepare_move_to_destination_raw() {
  1408. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1409. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_move_to_destination_raw", destination);
  1410. #endif
  1411. refresh_cmd_timeout();
  1412. calculate_delta(destination);
  1413. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder);
  1414. set_current_to_destination();
  1415. }
  1416. #endif
  1417. /**
  1418. * Plan a move to (X, Y, Z) and set the current_position
  1419. * The final current_position may not be the one that was requested
  1420. */
  1421. static void do_blocking_move_to(float x, float y, float z, float feed_rate = 0.0) {
  1422. float old_feedrate = feedrate;
  1423. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1424. if (DEBUGGING(LEVELING)) print_xyz("do_blocking_move_to", x, y, z);
  1425. #endif
  1426. #if ENABLED(DELTA)
  1427. feedrate = (feed_rate != 0.0) ? feed_rate : XY_PROBE_FEEDRATE;
  1428. destination[X_AXIS] = x;
  1429. destination[Y_AXIS] = y;
  1430. destination[Z_AXIS] = z;
  1431. if (x == current_position[X_AXIS] && y == current_position[Y_AXIS])
  1432. prepare_move_to_destination_raw(); // this will also set_current_to_destination
  1433. else
  1434. prepare_move_to_destination(); // this will also set_current_to_destination
  1435. #else
  1436. // If Z needs to raise, do it before moving XY
  1437. if (current_position[Z_AXIS] < z) {
  1438. feedrate = (feed_rate != 0.0) ? feed_rate : homing_feedrate[Z_AXIS];
  1439. current_position[Z_AXIS] = z;
  1440. line_to_current_position();
  1441. }
  1442. feedrate = (feed_rate != 0.0) ? feed_rate : XY_PROBE_FEEDRATE;
  1443. current_position[X_AXIS] = x;
  1444. current_position[Y_AXIS] = y;
  1445. line_to_current_position();
  1446. // If Z needs to lower, do it after moving XY
  1447. if (current_position[Z_AXIS] > z) {
  1448. feedrate = (feed_rate != 0.0) ? feed_rate : homing_feedrate[Z_AXIS];
  1449. current_position[Z_AXIS] = z;
  1450. line_to_current_position();
  1451. }
  1452. #endif
  1453. stepper.synchronize();
  1454. feedrate = old_feedrate;
  1455. }
  1456. inline void do_blocking_move_to_x(float x, float feed_rate = 0.0) {
  1457. do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS], feed_rate);
  1458. }
  1459. inline void do_blocking_move_to_z(float z, float feed_rate = 0.0) {
  1460. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z, feed_rate);
  1461. }
  1462. /**
  1463. * Raise Z to a minimum height to make room for a probe to move
  1464. *
  1465. * zprobe_zoffset: Negative of the Z height where the probe engages
  1466. * z_raise: The probing raise distance
  1467. *
  1468. * The zprobe_zoffset is negative for a switch below the nozzle, so
  1469. * multiply by Z_HOME_DIR (-1) to move enough away from the bed.
  1470. */
  1471. inline void do_probe_raise(float z_raise) {
  1472. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1473. if (DEBUGGING(LEVELING)) {
  1474. SERIAL_ECHOPAIR("do_probe_raise(", z_raise);
  1475. SERIAL_ECHOLNPGM(")");
  1476. }
  1477. #endif
  1478. float z_dest = home_offset[Z_AXIS] + z_raise;
  1479. if ((Z_HOME_DIR) < 0 && zprobe_zoffset < 0)
  1480. z_dest -= zprobe_zoffset;
  1481. if (z_dest > current_position[Z_AXIS]) {
  1482. do_blocking_move_to_z(z_dest);
  1483. }
  1484. }
  1485. #endif //HAS_BED_PROBE
  1486. #if ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED) || ENABLED(Z_SAFE_HOMING) || HAS_PROBING_PROCEDURE
  1487. static bool axis_unhomed_error(const bool x, const bool y, const bool z) {
  1488. const bool xx = x && !axis_homed[X_AXIS],
  1489. yy = y && !axis_homed[Y_AXIS],
  1490. zz = z && !axis_homed[Z_AXIS];
  1491. if (xx || yy || zz) {
  1492. SERIAL_ECHO_START;
  1493. SERIAL_ECHOPGM(MSG_HOME " ");
  1494. if (xx) SERIAL_ECHOPGM(MSG_X);
  1495. if (yy) SERIAL_ECHOPGM(MSG_Y);
  1496. if (zz) SERIAL_ECHOPGM(MSG_Z);
  1497. SERIAL_ECHOLNPGM(" " MSG_FIRST);
  1498. #if ENABLED(ULTRA_LCD)
  1499. char message[3 * (LCD_WIDTH) + 1] = ""; // worst case is kana.utf with up to 3*LCD_WIDTH+1
  1500. strcat_P(message, PSTR(MSG_HOME " "));
  1501. if (xx) strcat_P(message, PSTR(MSG_X));
  1502. if (yy) strcat_P(message, PSTR(MSG_Y));
  1503. if (zz) strcat_P(message, PSTR(MSG_Z));
  1504. strcat_P(message, PSTR(" " MSG_FIRST));
  1505. lcd_setstatus(message);
  1506. #endif
  1507. return true;
  1508. }
  1509. return false;
  1510. }
  1511. #endif
  1512. #if ENABLED(Z_PROBE_SLED)
  1513. #ifndef SLED_DOCKING_OFFSET
  1514. #define SLED_DOCKING_OFFSET 0
  1515. #endif
  1516. /**
  1517. * Method to dock/undock a sled designed by Charles Bell.
  1518. *
  1519. * stow[in] If false, move to MAX_X and engage the solenoid
  1520. * If true, move to MAX_X and release the solenoid
  1521. */
  1522. static void dock_sled(bool stow) {
  1523. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1524. if (DEBUGGING(LEVELING)) {
  1525. SERIAL_ECHOPAIR("dock_sled(", stow);
  1526. SERIAL_ECHOLNPGM(")");
  1527. }
  1528. #endif
  1529. // Dock sled a bit closer to ensure proper capturing
  1530. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET - ((stow) ? 1 : 0));
  1531. digitalWrite(SLED_PIN, !stow); // switch solenoid
  1532. }
  1533. #endif // Z_PROBE_SLED
  1534. #if ENABLED(Z_PROBE_ALLEN_KEY)
  1535. void run_deploy_moves_script() {
  1536. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1537. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_X
  1538. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_X current_position[X_AXIS]
  1539. #endif
  1540. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Y
  1541. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Y current_position[Y_AXIS]
  1542. #endif
  1543. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Z
  1544. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Z current_position[Z_AXIS]
  1545. #endif
  1546. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE
  1547. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE 0.0
  1548. #endif
  1549. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_1_X, Z_PROBE_ALLEN_KEY_DEPLOY_1_Y, Z_PROBE_ALLEN_KEY_DEPLOY_1_Z, Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE);
  1550. #endif
  1551. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1552. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_X
  1553. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_X current_position[X_AXIS]
  1554. #endif
  1555. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Y
  1556. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Y current_position[Y_AXIS]
  1557. #endif
  1558. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Z
  1559. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Z current_position[Z_AXIS]
  1560. #endif
  1561. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE
  1562. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE 0.0
  1563. #endif
  1564. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_2_X, Z_PROBE_ALLEN_KEY_DEPLOY_2_Y, Z_PROBE_ALLEN_KEY_DEPLOY_2_Z, Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE);
  1565. #endif
  1566. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Z)
  1567. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1568. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_X current_position[X_AXIS]
  1569. #endif
  1570. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Y
  1571. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Y current_position[Y_AXIS]
  1572. #endif
  1573. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Z
  1574. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Z current_position[Z_AXIS]
  1575. #endif
  1576. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE
  1577. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE 0.0
  1578. #endif
  1579. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_3_X, Z_PROBE_ALLEN_KEY_DEPLOY_3_Y, Z_PROBE_ALLEN_KEY_DEPLOY_3_Z, Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE);
  1580. #endif
  1581. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Z)
  1582. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_X
  1583. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_X current_position[X_AXIS]
  1584. #endif
  1585. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Y
  1586. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Y current_position[Y_AXIS]
  1587. #endif
  1588. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Z
  1589. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Z current_position[Z_AXIS]
  1590. #endif
  1591. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE
  1592. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE 0.0
  1593. #endif
  1594. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_4_X, Z_PROBE_ALLEN_KEY_DEPLOY_4_Y, Z_PROBE_ALLEN_KEY_DEPLOY_4_Z, Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE);
  1595. #endif
  1596. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Z)
  1597. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_X
  1598. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_X current_position[X_AXIS]
  1599. #endif
  1600. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Y
  1601. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Y current_position[Y_AXIS]
  1602. #endif
  1603. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Z
  1604. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Z current_position[Z_AXIS]
  1605. #endif
  1606. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE
  1607. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE 0.0
  1608. #endif
  1609. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_5_X, Z_PROBE_ALLEN_KEY_DEPLOY_5_Y, Z_PROBE_ALLEN_KEY_DEPLOY_5_Z, Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE);
  1610. #endif
  1611. }
  1612. void run_stow_moves_script() {
  1613. #if defined(Z_PROBE_ALLEN_KEY_STOW_1_X) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Z)
  1614. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_X
  1615. #define Z_PROBE_ALLEN_KEY_STOW_1_X current_position[X_AXIS]
  1616. #endif
  1617. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Y
  1618. #define Z_PROBE_ALLEN_KEY_STOW_1_Y current_position[Y_AXIS]
  1619. #endif
  1620. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Z
  1621. #define Z_PROBE_ALLEN_KEY_STOW_1_Z current_position[Z_AXIS]
  1622. #endif
  1623. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE
  1624. #define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE 0.0
  1625. #endif
  1626. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_1_X, Z_PROBE_ALLEN_KEY_STOW_1_Y, Z_PROBE_ALLEN_KEY_STOW_1_Z, Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE);
  1627. #endif
  1628. #if defined(Z_PROBE_ALLEN_KEY_STOW_2_X) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Z)
  1629. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_X
  1630. #define Z_PROBE_ALLEN_KEY_STOW_2_X current_position[X_AXIS]
  1631. #endif
  1632. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Y
  1633. #define Z_PROBE_ALLEN_KEY_STOW_2_Y current_position[Y_AXIS]
  1634. #endif
  1635. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Z
  1636. #define Z_PROBE_ALLEN_KEY_STOW_2_Z current_position[Z_AXIS]
  1637. #endif
  1638. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE
  1639. #define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE 0.0
  1640. #endif
  1641. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_2_X, Z_PROBE_ALLEN_KEY_STOW_2_Y, Z_PROBE_ALLEN_KEY_STOW_2_Z, Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE);
  1642. #endif
  1643. #if defined(Z_PROBE_ALLEN_KEY_STOW_3_X) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Z)
  1644. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_X
  1645. #define Z_PROBE_ALLEN_KEY_STOW_3_X current_position[X_AXIS]
  1646. #endif
  1647. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Y
  1648. #define Z_PROBE_ALLEN_KEY_STOW_3_Y current_position[Y_AXIS]
  1649. #endif
  1650. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Z
  1651. #define Z_PROBE_ALLEN_KEY_STOW_3_Z current_position[Z_AXIS]
  1652. #endif
  1653. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE
  1654. #define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE 0.0
  1655. #endif
  1656. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_3_X, Z_PROBE_ALLEN_KEY_STOW_3_Y, Z_PROBE_ALLEN_KEY_STOW_3_Z, Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE);
  1657. #endif
  1658. #if defined(Z_PROBE_ALLEN_KEY_STOW_4_X) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Z)
  1659. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_X
  1660. #define Z_PROBE_ALLEN_KEY_STOW_4_X current_position[X_AXIS]
  1661. #endif
  1662. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Y
  1663. #define Z_PROBE_ALLEN_KEY_STOW_4_Y current_position[Y_AXIS]
  1664. #endif
  1665. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Z
  1666. #define Z_PROBE_ALLEN_KEY_STOW_4_Z current_position[Z_AXIS]
  1667. #endif
  1668. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE
  1669. #define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE 0.0
  1670. #endif
  1671. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_4_X, Z_PROBE_ALLEN_KEY_STOW_4_Y, Z_PROBE_ALLEN_KEY_STOW_4_Z, Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE);
  1672. #endif
  1673. #if defined(Z_PROBE_ALLEN_KEY_STOW_5_X) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Z)
  1674. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_X
  1675. #define Z_PROBE_ALLEN_KEY_STOW_5_X current_position[X_AXIS]
  1676. #endif
  1677. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Y
  1678. #define Z_PROBE_ALLEN_KEY_STOW_5_Y current_position[Y_AXIS]
  1679. #endif
  1680. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Z
  1681. #define Z_PROBE_ALLEN_KEY_STOW_5_Z current_position[Z_AXIS]
  1682. #endif
  1683. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE
  1684. #define Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE 0.0
  1685. #endif
  1686. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_5_X, Z_PROBE_ALLEN_KEY_STOW_5_Y, Z_PROBE_ALLEN_KEY_STOW_5_Z, Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE);
  1687. #endif
  1688. }
  1689. #endif
  1690. #if HAS_BED_PROBE
  1691. // TRIGGERED_WHEN_STOWED_TEST can easily be extended to servo probes, ... if needed.
  1692. #if ENABLED(PROBE_IS_TRIGGERED_WHEN_STOWED_TEST)
  1693. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1694. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING)
  1695. #else
  1696. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)
  1697. #endif
  1698. #endif
  1699. #define DEPLOY_PROBE() set_probe_deployed( true )
  1700. #define STOW_PROBE() set_probe_deployed( false )
  1701. // returns false for ok and true for failure
  1702. static bool set_probe_deployed(bool deploy) {
  1703. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1704. if (DEBUGGING(LEVELING)) {
  1705. DEBUG_POS("set_probe_deployed", current_position);
  1706. SERIAL_ECHOPAIR("deploy: ", deploy);
  1707. }
  1708. #endif
  1709. if (endstops.z_probe_enabled == deploy) return false;
  1710. // Make room for probe
  1711. do_probe_raise(_Z_RAISE_PROBE_DEPLOY_STOW);
  1712. #if ENABLED(Z_PROBE_SLED)
  1713. if (axis_unhomed_error(true, false, false)) { stop(); return true; }
  1714. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1715. if (axis_unhomed_error(true, true, true )) { stop(); return true; }
  1716. #endif
  1717. float oldXpos = current_position[X_AXIS]; // save x position
  1718. float oldYpos = current_position[Y_AXIS]; // save y position
  1719. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1720. // If endstop is already false, the Z probe is deployed
  1721. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // closed after the probe specific actions.
  1722. // Would a goto be less ugly?
  1723. //while (!_TRIGGERED_WHEN_STOWED_TEST) { idle(); // would offer the opportunity
  1724. // for a triggered when stowed manual probe.
  1725. #endif
  1726. #if ENABLED(Z_PROBE_SLED)
  1727. dock_sled(!deploy);
  1728. #elif HAS_Z_SERVO_ENDSTOP
  1729. servo[Z_ENDSTOP_SERVO_NR].move(z_servo_angle[((deploy) ? 0 : 1)]);
  1730. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1731. if (!deploy) run_stow_moves_script();
  1732. else run_deploy_moves_script();
  1733. #else
  1734. // Nothing to be done. Just enable_z_probe below...
  1735. #endif
  1736. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1737. }; // opened before the probe specific actions
  1738. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) {
  1739. if (IsRunning()) {
  1740. SERIAL_ERROR_START;
  1741. SERIAL_ERRORLNPGM("Z-Probe failed");
  1742. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1743. }
  1744. stop();
  1745. return true;
  1746. }
  1747. #endif
  1748. do_blocking_move_to(oldXpos, oldYpos, current_position[Z_AXIS]); // return to position before deploy
  1749. endstops.enable_z_probe( deploy );
  1750. return false;
  1751. }
  1752. // Do a single Z probe and return with current_position[Z_AXIS]
  1753. // at the height where the probe triggered.
  1754. static float run_z_probe() {
  1755. float old_feedrate = feedrate;
  1756. // Prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
  1757. refresh_cmd_timeout();
  1758. #if ENABLED(DELTA)
  1759. float start_z = current_position[Z_AXIS];
  1760. long start_steps = stepper.position(Z_AXIS);
  1761. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1762. if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe (DELTA) 1", current_position);
  1763. #endif
  1764. // move down slowly until you find the bed
  1765. feedrate = homing_feedrate[Z_AXIS] / 4;
  1766. destination[Z_AXIS] = -10;
  1767. prepare_move_to_destination_raw(); // this will also set_current_to_destination
  1768. stepper.synchronize();
  1769. endstops.hit_on_purpose(); // clear endstop hit flags
  1770. /**
  1771. * We have to let the planner know where we are right now as it
  1772. * is not where we said to go.
  1773. */
  1774. long stop_steps = stepper.position(Z_AXIS);
  1775. float mm = start_z - float(start_steps - stop_steps) / planner.axis_steps_per_mm[Z_AXIS];
  1776. current_position[Z_AXIS] = mm;
  1777. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1778. if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe (DELTA) 2", current_position);
  1779. #endif
  1780. #else // !DELTA
  1781. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  1782. planner.bed_level_matrix.set_to_identity();
  1783. #endif
  1784. feedrate = homing_feedrate[Z_AXIS];
  1785. // Move down until the Z probe (or endstop?) is triggered
  1786. float zPosition = -(Z_MAX_LENGTH + 10);
  1787. line_to_z(zPosition);
  1788. stepper.synchronize();
  1789. // Tell the planner where we ended up - Get this from the stepper handler
  1790. zPosition = stepper.get_axis_position_mm(Z_AXIS);
  1791. planner.set_position_mm(
  1792. current_position[X_AXIS], current_position[Y_AXIS], zPosition,
  1793. current_position[E_AXIS]
  1794. );
  1795. // move up the retract distance
  1796. zPosition += home_bump_mm(Z_AXIS);
  1797. line_to_z(zPosition);
  1798. stepper.synchronize();
  1799. endstops.hit_on_purpose(); // clear endstop hit flags
  1800. // move back down slowly to find bed
  1801. set_homing_bump_feedrate(Z_AXIS);
  1802. zPosition -= home_bump_mm(Z_AXIS) * 2;
  1803. line_to_z(zPosition);
  1804. stepper.synchronize();
  1805. endstops.hit_on_purpose(); // clear endstop hit flags
  1806. // Get the current stepper position after bumping an endstop
  1807. current_position[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  1808. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1809. if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe", current_position);
  1810. #endif
  1811. #endif // !DELTA
  1812. SYNC_PLAN_POSITION_KINEMATIC();
  1813. feedrate = old_feedrate;
  1814. return current_position[Z_AXIS];
  1815. }
  1816. inline void do_blocking_move_to_xy(float x, float y, float feed_rate = 0.0) {
  1817. do_blocking_move_to(x, y, current_position[Z_AXIS], feed_rate);
  1818. }
  1819. //
  1820. // - Move to the given XY
  1821. // - Deploy the probe, if not already deployed
  1822. // - Probe the bed, get the Z position
  1823. // - Depending on the 'stow' flag
  1824. // - Stow the probe, or
  1825. // - Raise to the BETWEEN height
  1826. // - Return the probed Z position
  1827. //
  1828. static float probe_pt(float x, float y, bool stow = true, int verbose_level = 1) {
  1829. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1830. if (DEBUGGING(LEVELING)) {
  1831. SERIAL_ECHOPAIR(">>> probe_pt(", x);
  1832. SERIAL_ECHOPAIR(", ", y);
  1833. SERIAL_ECHOPAIR(", ", stow ? "stow" : "no stow");
  1834. SERIAL_ECHOLNPGM(")");
  1835. DEBUG_POS("", current_position);
  1836. }
  1837. #endif
  1838. float old_feedrate = feedrate;
  1839. // Ensure a minimum height before moving the probe
  1840. do_probe_raise(Z_RAISE_BETWEEN_PROBINGS);
  1841. // Move to the XY where we shall probe
  1842. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1843. if (DEBUGGING(LEVELING)) {
  1844. SERIAL_ECHOPAIR("> do_blocking_move_to_xy(", x - (X_PROBE_OFFSET_FROM_EXTRUDER));
  1845. SERIAL_ECHOPAIR(", ", y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1846. SERIAL_ECHOLNPGM(")");
  1847. }
  1848. #endif
  1849. feedrate = XY_PROBE_FEEDRATE;
  1850. do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1851. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1852. if (DEBUGGING(LEVELING)) SERIAL_ECHOPGM("> ");
  1853. #endif
  1854. if (DEPLOY_PROBE()) return NAN;
  1855. float measured_z = run_z_probe();
  1856. if (stow) {
  1857. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1858. if (DEBUGGING(LEVELING)) SERIAL_ECHOPGM("> ");
  1859. #endif
  1860. if (STOW_PROBE()) return NAN;
  1861. }
  1862. else {
  1863. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1864. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> do_probe_raise");
  1865. #endif
  1866. do_probe_raise(Z_RAISE_BETWEEN_PROBINGS);
  1867. }
  1868. if (verbose_level > 2) {
  1869. SERIAL_PROTOCOLPGM("Bed X: ");
  1870. SERIAL_PROTOCOL_F(x, 3);
  1871. SERIAL_PROTOCOLPGM(" Y: ");
  1872. SERIAL_PROTOCOL_F(y, 3);
  1873. SERIAL_PROTOCOLPGM(" Z: ");
  1874. SERIAL_PROTOCOL_F(measured_z, 3);
  1875. SERIAL_EOL;
  1876. }
  1877. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1878. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  1879. #endif
  1880. feedrate = old_feedrate;
  1881. return measured_z;
  1882. }
  1883. #endif // HAS_BED_PROBE
  1884. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  1885. #if ENABLED(AUTO_BED_LEVELING_GRID)
  1886. #if DISABLED(DELTA)
  1887. static void set_bed_level_equation_lsq(double* plane_equation_coefficients) {
  1888. //planner.bed_level_matrix.debug("bed level before");
  1889. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1890. planner.bed_level_matrix.set_to_identity();
  1891. if (DEBUGGING(LEVELING)) {
  1892. vector_3 uncorrected_position = planner.adjusted_position();
  1893. DEBUG_POS(">>> set_bed_level_equation_lsq", uncorrected_position);
  1894. DEBUG_POS(">>> set_bed_level_equation_lsq", current_position);
  1895. }
  1896. #endif
  1897. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1898. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1899. vector_3 corrected_position = planner.adjusted_position();
  1900. current_position[X_AXIS] = corrected_position.x;
  1901. current_position[Y_AXIS] = corrected_position.y;
  1902. current_position[Z_AXIS] = corrected_position.z;
  1903. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1904. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< set_bed_level_equation_lsq", corrected_position);
  1905. #endif
  1906. SYNC_PLAN_POSITION_KINEMATIC();
  1907. }
  1908. #endif // !DELTA
  1909. #else // !AUTO_BED_LEVELING_GRID
  1910. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1911. planner.bed_level_matrix.set_to_identity();
  1912. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1913. if (DEBUGGING(LEVELING)) {
  1914. vector_3 uncorrected_position = planner.adjusted_position();
  1915. DEBUG_POS("set_bed_level_equation_3pts", uncorrected_position);
  1916. }
  1917. #endif
  1918. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1919. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1920. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1921. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  1922. if (planeNormal.z < 0) {
  1923. planeNormal.x = -planeNormal.x;
  1924. planeNormal.y = -planeNormal.y;
  1925. planeNormal.z = -planeNormal.z;
  1926. }
  1927. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1928. vector_3 corrected_position = planner.adjusted_position();
  1929. current_position[X_AXIS] = corrected_position.x;
  1930. current_position[Y_AXIS] = corrected_position.y;
  1931. current_position[Z_AXIS] = corrected_position.z;
  1932. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1933. if (DEBUGGING(LEVELING)) DEBUG_POS("set_bed_level_equation_3pts", corrected_position);
  1934. #endif
  1935. SYNC_PLAN_POSITION_KINEMATIC();
  1936. }
  1937. #endif // !AUTO_BED_LEVELING_GRID
  1938. #if ENABLED(DELTA)
  1939. /**
  1940. * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
  1941. */
  1942. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1943. if (bed_level[x][y] != 0.0) {
  1944. return; // Don't overwrite good values.
  1945. }
  1946. float a = 2 * bed_level[x + xdir][y] - bed_level[x + xdir * 2][y]; // Left to right.
  1947. float b = 2 * bed_level[x][y + ydir] - bed_level[x][y + ydir * 2]; // Front to back.
  1948. float c = 2 * bed_level[x + xdir][y + ydir] - bed_level[x + xdir * 2][y + ydir * 2]; // Diagonal.
  1949. float median = c; // Median is robust (ignores outliers).
  1950. if (a < b) {
  1951. if (b < c) median = b;
  1952. if (c < a) median = a;
  1953. }
  1954. else { // b <= a
  1955. if (c < b) median = b;
  1956. if (a < c) median = a;
  1957. }
  1958. bed_level[x][y] = median;
  1959. }
  1960. /**
  1961. * Fill in the unprobed points (corners of circular print surface)
  1962. * using linear extrapolation, away from the center.
  1963. */
  1964. static void extrapolate_unprobed_bed_level() {
  1965. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  1966. for (int y = 0; y <= half; y++) {
  1967. for (int x = 0; x <= half; x++) {
  1968. if (x + y < 3) continue;
  1969. extrapolate_one_point(half - x, half - y, x > 1 ? +1 : 0, y > 1 ? +1 : 0);
  1970. extrapolate_one_point(half + x, half - y, x > 1 ? -1 : 0, y > 1 ? +1 : 0);
  1971. extrapolate_one_point(half - x, half + y, x > 1 ? +1 : 0, y > 1 ? -1 : 0);
  1972. extrapolate_one_point(half + x, half + y, x > 1 ? -1 : 0, y > 1 ? -1 : 0);
  1973. }
  1974. }
  1975. }
  1976. /**
  1977. * Print calibration results for plotting or manual frame adjustment.
  1978. */
  1979. static void print_bed_level() {
  1980. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1981. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1982. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1983. SERIAL_PROTOCOLCHAR(' ');
  1984. }
  1985. SERIAL_EOL;
  1986. }
  1987. }
  1988. /**
  1989. * Reset calibration results to zero.
  1990. */
  1991. void reset_bed_level() {
  1992. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1993. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  1994. #endif
  1995. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1996. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1997. bed_level[x][y] = 0.0;
  1998. }
  1999. }
  2000. }
  2001. #endif // DELTA
  2002. #endif // AUTO_BED_LEVELING_FEATURE
  2003. /**
  2004. * Home an individual axis
  2005. */
  2006. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  2007. static void homeaxis(AxisEnum axis) {
  2008. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2009. if (DEBUGGING(LEVELING)) {
  2010. SERIAL_ECHOPAIR(">>> homeaxis(", axis);
  2011. SERIAL_ECHOLNPGM(")");
  2012. }
  2013. #endif
  2014. #define HOMEAXIS_DO(LETTER) \
  2015. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  2016. if (axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0) {
  2017. int axis_home_dir =
  2018. #if ENABLED(DUAL_X_CARRIAGE)
  2019. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  2020. #endif
  2021. home_dir(axis);
  2022. // Homing Z towards the bed? Deploy the Z probe or endstop.
  2023. #if HAS_BED_PROBE
  2024. if (axis == Z_AXIS && axis_home_dir < 0) {
  2025. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2026. if (DEBUGGING(LEVELING)) SERIAL_ECHOPGM("> ");
  2027. #endif
  2028. if (DEPLOY_PROBE()) return;
  2029. }
  2030. #endif
  2031. // Set the axis position as setup for the move
  2032. current_position[axis] = 0;
  2033. sync_plan_position();
  2034. // Set a flag for Z motor locking
  2035. #if ENABLED(Z_DUAL_ENDSTOPS)
  2036. if (axis == Z_AXIS) stepper.set_homing_flag(true);
  2037. #endif
  2038. // Move towards the endstop until an endstop is triggered
  2039. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  2040. feedrate = homing_feedrate[axis];
  2041. line_to_destination();
  2042. stepper.synchronize();
  2043. // Set the axis position as setup for the move
  2044. current_position[axis] = 0;
  2045. sync_plan_position();
  2046. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2047. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(false)");
  2048. #endif
  2049. endstops.enable(false); // Disable endstops while moving away
  2050. // Move away from the endstop by the axis HOME_BUMP_MM
  2051. destination[axis] = -home_bump_mm(axis) * axis_home_dir;
  2052. line_to_destination();
  2053. stepper.synchronize();
  2054. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2055. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  2056. #endif
  2057. endstops.enable(true); // Enable endstops for next homing move
  2058. // Slow down the feedrate for the next move
  2059. set_homing_bump_feedrate(axis);
  2060. // Move slowly towards the endstop until triggered
  2061. destination[axis] = 2 * home_bump_mm(axis) * axis_home_dir;
  2062. line_to_destination();
  2063. stepper.synchronize();
  2064. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2065. if (DEBUGGING(LEVELING)) DEBUG_POS("> TRIGGER ENDSTOP", current_position);
  2066. #endif
  2067. #if ENABLED(Z_DUAL_ENDSTOPS)
  2068. if (axis == Z_AXIS) {
  2069. float adj = fabs(z_endstop_adj);
  2070. bool lockZ1;
  2071. if (axis_home_dir > 0) {
  2072. adj = -adj;
  2073. lockZ1 = (z_endstop_adj > 0);
  2074. }
  2075. else
  2076. lockZ1 = (z_endstop_adj < 0);
  2077. if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
  2078. sync_plan_position();
  2079. // Move to the adjusted endstop height
  2080. feedrate = homing_feedrate[axis];
  2081. destination[Z_AXIS] = adj;
  2082. line_to_destination();
  2083. stepper.synchronize();
  2084. if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
  2085. stepper.set_homing_flag(false);
  2086. } // Z_AXIS
  2087. #endif
  2088. #if ENABLED(DELTA)
  2089. // retrace by the amount specified in endstop_adj
  2090. if (endstop_adj[axis] * axis_home_dir < 0) {
  2091. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2092. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(false)");
  2093. #endif
  2094. endstops.enable(false); // Disable endstops while moving away
  2095. sync_plan_position();
  2096. destination[axis] = endstop_adj[axis];
  2097. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2098. if (DEBUGGING(LEVELING)) {
  2099. SERIAL_ECHOPAIR("> endstop_adj = ", endstop_adj[axis]);
  2100. DEBUG_POS("", destination);
  2101. }
  2102. #endif
  2103. line_to_destination();
  2104. stepper.synchronize();
  2105. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2106. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  2107. #endif
  2108. endstops.enable(true); // Enable endstops for next homing move
  2109. }
  2110. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2111. else {
  2112. if (DEBUGGING(LEVELING)) {
  2113. SERIAL_ECHOPAIR("> endstop_adj * axis_home_dir = ", endstop_adj[axis] * axis_home_dir);
  2114. SERIAL_EOL;
  2115. }
  2116. }
  2117. #endif
  2118. #endif
  2119. // Set the axis position to its home position (plus home offsets)
  2120. set_axis_is_at_home(axis);
  2121. SYNC_PLAN_POSITION_KINEMATIC();
  2122. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2123. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  2124. #endif
  2125. destination[axis] = current_position[axis];
  2126. endstops.hit_on_purpose(); // clear endstop hit flags
  2127. axis_known_position[axis] = true;
  2128. axis_homed[axis] = true;
  2129. // Put away the Z probe
  2130. #if HAS_BED_PROBE
  2131. if (axis == Z_AXIS && axis_home_dir < 0) {
  2132. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2133. if (DEBUGGING(LEVELING)) SERIAL_ECHOPGM("> ");
  2134. #endif
  2135. if (STOW_PROBE()) return;
  2136. }
  2137. #endif
  2138. }
  2139. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2140. if (DEBUGGING(LEVELING)) {
  2141. SERIAL_ECHOPAIR("<<< homeaxis(", axis);
  2142. SERIAL_ECHOLNPGM(")");
  2143. }
  2144. #endif
  2145. }
  2146. #if ENABLED(FWRETRACT)
  2147. void retract(bool retracting, bool swapping = false) {
  2148. if (retracting == retracted[active_extruder]) return;
  2149. float old_feedrate = feedrate;
  2150. set_destination_to_current();
  2151. if (retracting) {
  2152. feedrate = retract_feedrate_mm_s * 60;
  2153. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  2154. sync_plan_position_e();
  2155. prepare_move_to_destination();
  2156. if (retract_zlift > 0.01) {
  2157. current_position[Z_AXIS] -= retract_zlift;
  2158. SYNC_PLAN_POSITION_KINEMATIC();
  2159. prepare_move_to_destination();
  2160. }
  2161. }
  2162. else {
  2163. if (retract_zlift > 0.01) {
  2164. current_position[Z_AXIS] += retract_zlift;
  2165. SYNC_PLAN_POSITION_KINEMATIC();
  2166. }
  2167. feedrate = retract_recover_feedrate * 60;
  2168. float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  2169. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  2170. sync_plan_position_e();
  2171. prepare_move_to_destination();
  2172. }
  2173. feedrate = old_feedrate;
  2174. retracted[active_extruder] = retracting;
  2175. } // retract()
  2176. #endif // FWRETRACT
  2177. /**
  2178. * ***************************************************************************
  2179. * ***************************** G-CODE HANDLING *****************************
  2180. * ***************************************************************************
  2181. */
  2182. /**
  2183. * Set XYZE destination and feedrate from the current GCode command
  2184. *
  2185. * - Set destination from included axis codes
  2186. * - Set to current for missing axis codes
  2187. * - Set the feedrate, if included
  2188. */
  2189. void gcode_get_destination() {
  2190. for (int i = 0; i < NUM_AXIS; i++) {
  2191. if (code_seen(axis_codes[i]))
  2192. destination[i] = code_value_axis_units(i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  2193. else
  2194. destination[i] = current_position[i];
  2195. }
  2196. if (code_seen('F')) {
  2197. float next_feedrate = code_value_linear_units();
  2198. if (next_feedrate > 0.0) feedrate = next_feedrate;
  2199. }
  2200. }
  2201. void unknown_command_error() {
  2202. SERIAL_ECHO_START;
  2203. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2204. SERIAL_ECHO(current_command);
  2205. SERIAL_ECHOLNPGM("\"");
  2206. }
  2207. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  2208. /**
  2209. * Output a "busy" message at regular intervals
  2210. * while the machine is not accepting commands.
  2211. */
  2212. void host_keepalive() {
  2213. millis_t ms = millis();
  2214. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  2215. if (PENDING(ms, next_busy_signal_ms)) return;
  2216. switch (busy_state) {
  2217. case IN_HANDLER:
  2218. case IN_PROCESS:
  2219. SERIAL_ECHO_START;
  2220. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  2221. break;
  2222. case PAUSED_FOR_USER:
  2223. SERIAL_ECHO_START;
  2224. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  2225. break;
  2226. case PAUSED_FOR_INPUT:
  2227. SERIAL_ECHO_START;
  2228. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  2229. break;
  2230. default:
  2231. break;
  2232. }
  2233. }
  2234. next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
  2235. }
  2236. #endif //HOST_KEEPALIVE_FEATURE
  2237. /**
  2238. * G0, G1: Coordinated movement of X Y Z E axes
  2239. */
  2240. inline void gcode_G0_G1() {
  2241. if (IsRunning()) {
  2242. gcode_get_destination(); // For X Y Z E F
  2243. #if ENABLED(FWRETRACT)
  2244. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2245. float echange = destination[E_AXIS] - current_position[E_AXIS];
  2246. // Is this move an attempt to retract or recover?
  2247. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  2248. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  2249. sync_plan_position_e(); // AND from the planner
  2250. retract(!retracted[active_extruder]);
  2251. return;
  2252. }
  2253. }
  2254. #endif //FWRETRACT
  2255. prepare_move_to_destination();
  2256. }
  2257. }
  2258. /**
  2259. * G2: Clockwise Arc
  2260. * G3: Counterclockwise Arc
  2261. */
  2262. #if ENABLED(ARC_SUPPORT)
  2263. inline void gcode_G2_G3(bool clockwise) {
  2264. if (IsRunning()) {
  2265. #if ENABLED(SF_ARC_FIX)
  2266. bool relative_mode_backup = relative_mode;
  2267. relative_mode = true;
  2268. #endif
  2269. gcode_get_destination();
  2270. #if ENABLED(SF_ARC_FIX)
  2271. relative_mode = relative_mode_backup;
  2272. #endif
  2273. // Center of arc as offset from current_position
  2274. float arc_offset[2] = {
  2275. code_seen('I') ? code_value_axis_units(X_AXIS) : 0,
  2276. code_seen('J') ? code_value_axis_units(Y_AXIS) : 0
  2277. };
  2278. // Send an arc to the planner
  2279. plan_arc(destination, arc_offset, clockwise);
  2280. refresh_cmd_timeout();
  2281. }
  2282. }
  2283. #endif
  2284. /**
  2285. * G4: Dwell S<seconds> or P<milliseconds>
  2286. */
  2287. inline void gcode_G4() {
  2288. millis_t codenum = 0;
  2289. if (code_seen('P')) codenum = code_value_millis(); // milliseconds to wait
  2290. if (code_seen('S')) codenum = code_value_millis_from_seconds(); // seconds to wait
  2291. stepper.synchronize();
  2292. refresh_cmd_timeout();
  2293. codenum += previous_cmd_ms; // keep track of when we started waiting
  2294. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  2295. while (PENDING(millis(), codenum)) idle();
  2296. }
  2297. #if ENABLED(BEZIER_CURVE_SUPPORT)
  2298. /**
  2299. * Parameters interpreted according to:
  2300. * http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline
  2301. * However I, J omission is not supported at this point; all
  2302. * parameters can be omitted and default to zero.
  2303. */
  2304. /**
  2305. * G5: Cubic B-spline
  2306. */
  2307. inline void gcode_G5() {
  2308. if (IsRunning()) {
  2309. gcode_get_destination();
  2310. float offset[] = {
  2311. code_seen('I') ? code_value_axis_units(X_AXIS) : 0.0,
  2312. code_seen('J') ? code_value_axis_units(Y_AXIS) : 0.0,
  2313. code_seen('P') ? code_value_axis_units(X_AXIS) : 0.0,
  2314. code_seen('Q') ? code_value_axis_units(Y_AXIS) : 0.0
  2315. };
  2316. plan_cubic_move(offset);
  2317. }
  2318. }
  2319. #endif // BEZIER_CURVE_SUPPORT
  2320. #if ENABLED(FWRETRACT)
  2321. /**
  2322. * G10 - Retract filament according to settings of M207
  2323. * G11 - Recover filament according to settings of M208
  2324. */
  2325. inline void gcode_G10_G11(bool doRetract=false) {
  2326. #if EXTRUDERS > 1
  2327. if (doRetract) {
  2328. retracted_swap[active_extruder] = (code_seen('S') && code_value_bool()); // checks for swap retract argument
  2329. }
  2330. #endif
  2331. retract(doRetract
  2332. #if EXTRUDERS > 1
  2333. , retracted_swap[active_extruder]
  2334. #endif
  2335. );
  2336. }
  2337. #endif //FWRETRACT
  2338. #if ENABLED(INCH_MODE_SUPPORT)
  2339. /**
  2340. * G20: Set input mode to inches
  2341. */
  2342. inline void gcode_G20() {
  2343. set_input_linear_units(LINEARUNIT_INCH);
  2344. }
  2345. /**
  2346. * G21: Set input mode to millimeters
  2347. */
  2348. inline void gcode_G21() {
  2349. set_input_linear_units(LINEARUNIT_MM);
  2350. }
  2351. #endif
  2352. /**
  2353. * G28: Home all axes according to settings
  2354. *
  2355. * Parameters
  2356. *
  2357. * None Home to all axes with no parameters.
  2358. * With QUICK_HOME enabled XY will home together, then Z.
  2359. *
  2360. * Cartesian parameters
  2361. *
  2362. * X Home to the X endstop
  2363. * Y Home to the Y endstop
  2364. * Z Home to the Z endstop
  2365. *
  2366. */
  2367. inline void gcode_G28() {
  2368. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2369. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM(">>> gcode_G28");
  2370. #endif
  2371. // Wait for planner moves to finish!
  2372. stepper.synchronize();
  2373. // For auto bed leveling, clear the level matrix
  2374. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  2375. planner.bed_level_matrix.set_to_identity();
  2376. #if ENABLED(DELTA)
  2377. reset_bed_level();
  2378. #endif
  2379. #endif
  2380. /**
  2381. * For mesh bed leveling deactivate the mesh calculations, will be turned
  2382. * on again when homing all axis
  2383. */
  2384. #if ENABLED(MESH_BED_LEVELING)
  2385. float pre_home_z = MESH_HOME_SEARCH_Z;
  2386. if (mbl.active()) {
  2387. // Save known Z position if already homed
  2388. if (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) {
  2389. pre_home_z = current_position[Z_AXIS];
  2390. pre_home_z += mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS));
  2391. }
  2392. mbl.set_active(false);
  2393. current_position[Z_AXIS] = pre_home_z;
  2394. }
  2395. #endif
  2396. setup_for_endstop_move();
  2397. /**
  2398. * Directly after a reset this is all 0. Later we get a hint if we have
  2399. * to raise z or not.
  2400. */
  2401. set_destination_to_current();
  2402. #if ENABLED(DELTA)
  2403. /**
  2404. * A delta can only safely home all axis at the same time
  2405. * all axis have to home at the same time
  2406. */
  2407. // Pretend the current position is 0,0,0
  2408. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  2409. sync_plan_position();
  2410. // Move all carriages up together until the first endstop is hit.
  2411. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * (Z_MAX_LENGTH);
  2412. feedrate = 1.732 * homing_feedrate[X_AXIS];
  2413. line_to_destination();
  2414. stepper.synchronize();
  2415. endstops.hit_on_purpose(); // clear endstop hit flags
  2416. // Destination reached
  2417. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  2418. // take care of back off and rehome now we are all at the top
  2419. HOMEAXIS(X);
  2420. HOMEAXIS(Y);
  2421. HOMEAXIS(Z);
  2422. SYNC_PLAN_POSITION_KINEMATIC();
  2423. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2424. if (DEBUGGING(LEVELING)) DEBUG_POS("(DELTA)", current_position);
  2425. #endif
  2426. #else // NOT DELTA
  2427. bool homeX = code_seen(axis_codes[X_AXIS]),
  2428. homeY = code_seen(axis_codes[Y_AXIS]),
  2429. homeZ = code_seen(axis_codes[Z_AXIS]);
  2430. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  2431. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2432. if (home_all_axis || homeZ) {
  2433. HOMEAXIS(Z);
  2434. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2435. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  2436. #endif
  2437. }
  2438. #elif defined(MIN_Z_HEIGHT_FOR_HOMING) && MIN_Z_HEIGHT_FOR_HOMING > 0
  2439. #if HAS_BED_PROBE
  2440. do_probe_raise(MIN_Z_HEIGHT_FOR_HOMING);
  2441. destination[Z_AXIS] = current_position[Z_AXIS];
  2442. #else
  2443. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  2444. if (current_position[Z_AXIS] <= MIN_Z_HEIGHT_FOR_HOMING) {
  2445. destination[Z_AXIS] = MIN_Z_HEIGHT_FOR_HOMING;
  2446. feedrate = planner.max_feedrate[Z_AXIS] * 60; // feedrate (mm/m) = max_feedrate (mm/s)
  2447. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2448. if (DEBUGGING(LEVELING)) {
  2449. SERIAL_ECHOPAIR("Raise Z (before homing) to ", (MIN_Z_HEIGHT_FOR_HOMING));
  2450. SERIAL_EOL;
  2451. DEBUG_POS("> (home_all_axis || homeZ)", current_position);
  2452. DEBUG_POS("> (home_all_axis || homeZ)", destination);
  2453. }
  2454. #endif
  2455. line_to_destination();
  2456. stepper.synchronize();
  2457. /**
  2458. * Update the current Z position even if it currently not real from
  2459. * Z-home otherwise each call to line_to_destination() will want to
  2460. * move Z-axis by MIN_Z_HEIGHT_FOR_HOMING.
  2461. */
  2462. current_position[Z_AXIS] = destination[Z_AXIS];
  2463. }
  2464. #endif
  2465. #endif
  2466. #if ENABLED(QUICK_HOME)
  2467. if (home_all_axis || (homeX && homeY)) { // First diagonal move
  2468. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  2469. #if ENABLED(DUAL_X_CARRIAGE)
  2470. int x_axis_home_dir = x_home_dir(active_extruder);
  2471. extruder_duplication_enabled = false;
  2472. #else
  2473. int x_axis_home_dir = home_dir(X_AXIS);
  2474. #endif
  2475. SYNC_PLAN_POSITION_KINEMATIC();
  2476. float mlx = max_length(X_AXIS), mly = max_length(Y_AXIS),
  2477. mlratio = mlx > mly ? mly / mlx : mlx / mly;
  2478. destination[X_AXIS] = 1.5 * mlx * x_axis_home_dir;
  2479. destination[Y_AXIS] = 1.5 * mly * home_dir(Y_AXIS);
  2480. feedrate = min(homing_feedrate[X_AXIS], homing_feedrate[Y_AXIS]) * sqrt(mlratio * mlratio + 1);
  2481. line_to_destination();
  2482. stepper.synchronize();
  2483. set_axis_is_at_home(X_AXIS);
  2484. set_axis_is_at_home(Y_AXIS);
  2485. SYNC_PLAN_POSITION_KINEMATIC();
  2486. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2487. if (DEBUGGING(LEVELING)) DEBUG_POS("> QUICK_HOME 1", current_position);
  2488. #endif
  2489. destination[X_AXIS] = current_position[X_AXIS];
  2490. destination[Y_AXIS] = current_position[Y_AXIS];
  2491. line_to_destination();
  2492. stepper.synchronize();
  2493. endstops.hit_on_purpose(); // clear endstop hit flags
  2494. current_position[X_AXIS] = destination[X_AXIS];
  2495. current_position[Y_AXIS] = destination[Y_AXIS];
  2496. #if DISABLED(SCARA)
  2497. current_position[Z_AXIS] = destination[Z_AXIS];
  2498. #endif
  2499. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2500. if (DEBUGGING(LEVELING)) DEBUG_POS("> QUICK_HOME 2", current_position);
  2501. #endif
  2502. }
  2503. #endif // QUICK_HOME
  2504. #if ENABLED(HOME_Y_BEFORE_X)
  2505. // Home Y
  2506. if (home_all_axis || homeY) {
  2507. HOMEAXIS(Y);
  2508. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2509. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2510. #endif
  2511. }
  2512. #endif
  2513. // Home X
  2514. if (home_all_axis || homeX) {
  2515. #if ENABLED(DUAL_X_CARRIAGE)
  2516. int tmp_extruder = active_extruder;
  2517. extruder_duplication_enabled = false;
  2518. active_extruder = !active_extruder;
  2519. HOMEAXIS(X);
  2520. inactive_extruder_x_pos = current_position[X_AXIS];
  2521. active_extruder = tmp_extruder;
  2522. HOMEAXIS(X);
  2523. // reset state used by the different modes
  2524. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2525. delayed_move_time = 0;
  2526. active_extruder_parked = true;
  2527. #else
  2528. HOMEAXIS(X);
  2529. #endif
  2530. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2531. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  2532. #endif
  2533. }
  2534. #if DISABLED(HOME_Y_BEFORE_X)
  2535. // Home Y
  2536. if (home_all_axis || homeY) {
  2537. HOMEAXIS(Y);
  2538. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2539. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2540. #endif
  2541. }
  2542. #endif
  2543. // Home Z last if homing towards the bed
  2544. #if Z_HOME_DIR < 0
  2545. if (home_all_axis || homeZ) {
  2546. #if ENABLED(Z_SAFE_HOMING)
  2547. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2548. if (DEBUGGING(LEVELING)) {
  2549. SERIAL_ECHOLNPGM("> Z_SAFE_HOMING >>>");
  2550. }
  2551. #endif
  2552. if (home_all_axis) {
  2553. /**
  2554. * At this point we already have Z at MIN_Z_HEIGHT_FOR_HOMING height
  2555. * No need to move Z any more as this height should already be safe
  2556. * enough to reach Z_SAFE_HOMING XY positions.
  2557. * Just make sure the planner is in sync.
  2558. */
  2559. SYNC_PLAN_POSITION_KINEMATIC();
  2560. /**
  2561. * Set the Z probe (or just the nozzle) destination to the safe
  2562. * homing point
  2563. */
  2564. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - (X_PROBE_OFFSET_FROM_EXTRUDER));
  2565. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  2566. destination[Z_AXIS] = current_position[Z_AXIS]; //z is already at the right height
  2567. feedrate = XY_PROBE_FEEDRATE;
  2568. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2569. if (DEBUGGING(LEVELING)) {
  2570. DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", current_position);
  2571. DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", destination);
  2572. }
  2573. #endif
  2574. // Move in the XY plane
  2575. line_to_destination();
  2576. stepper.synchronize();
  2577. /**
  2578. * Update the current positions for XY, Z is still at least at
  2579. * MIN_Z_HEIGHT_FOR_HOMING height, no changes there.
  2580. */
  2581. current_position[X_AXIS] = destination[X_AXIS];
  2582. current_position[Y_AXIS] = destination[Y_AXIS];
  2583. // Home the Z axis
  2584. HOMEAXIS(Z);
  2585. }
  2586. else if (homeZ) { // Don't need to Home Z twice
  2587. // Let's see if X and Y are homed
  2588. if (axis_unhomed_error(true, true, false)) return;
  2589. /**
  2590. * Make sure the Z probe is within the physical limits
  2591. * NOTE: This doesn't necessarily ensure the Z probe is also
  2592. * within the bed!
  2593. */
  2594. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  2595. if ( cpx >= X_MIN_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2596. && cpx <= X_MAX_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2597. && cpy >= Y_MIN_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)
  2598. && cpy <= Y_MAX_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)) {
  2599. // Home the Z axis
  2600. HOMEAXIS(Z);
  2601. }
  2602. else {
  2603. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  2604. SERIAL_ECHO_START;
  2605. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  2606. }
  2607. } // !home_all_axes && homeZ
  2608. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2609. if (DEBUGGING(LEVELING)) {
  2610. SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  2611. }
  2612. #endif
  2613. #else // !Z_SAFE_HOMING
  2614. HOMEAXIS(Z);
  2615. #endif // !Z_SAFE_HOMING
  2616. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2617. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all_axis || homeZ) > final", current_position);
  2618. #endif
  2619. } // home_all_axis || homeZ
  2620. #endif // Z_HOME_DIR < 0
  2621. SYNC_PLAN_POSITION_KINEMATIC();
  2622. #endif // !DELTA (gcode_G28)
  2623. endstops.not_homing();
  2624. // Enable mesh leveling again
  2625. #if ENABLED(MESH_BED_LEVELING)
  2626. if (mbl.has_mesh()) {
  2627. if (home_all_axis || (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && homeZ)) {
  2628. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2629. #if Z_HOME_DIR > 0
  2630. + Z_MAX_POS
  2631. #endif
  2632. ;
  2633. SYNC_PLAN_POSITION_KINEMATIC();
  2634. mbl.set_active(true);
  2635. #if ENABLED(MESH_G28_REST_ORIGIN)
  2636. current_position[Z_AXIS] = 0.0;
  2637. set_destination_to_current();
  2638. feedrate = homing_feedrate[Z_AXIS];
  2639. line_to_destination();
  2640. stepper.synchronize();
  2641. #else
  2642. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z -
  2643. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS))
  2644. #if Z_HOME_DIR > 0
  2645. + Z_MAX_POS
  2646. #endif
  2647. ;
  2648. #endif
  2649. }
  2650. else if ((axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) && (homeX || homeY)) {
  2651. current_position[Z_AXIS] = pre_home_z;
  2652. SYNC_PLAN_POSITION_KINEMATIC();
  2653. mbl.set_active(true);
  2654. current_position[Z_AXIS] = pre_home_z -
  2655. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS));
  2656. }
  2657. }
  2658. #endif
  2659. clean_up_after_endstop_or_probe_move();
  2660. endstops.hit_on_purpose(); // clear endstop hit flags
  2661. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2662. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G28");
  2663. #endif
  2664. report_current_position();
  2665. }
  2666. #if HAS_PROBING_PROCEDURE
  2667. void out_of_range_error(const char* p_edge) {
  2668. SERIAL_PROTOCOLPGM("?Probe ");
  2669. serialprintPGM(p_edge);
  2670. SERIAL_PROTOCOLLNPGM(" position out of range.");
  2671. }
  2672. #endif
  2673. #if ENABLED(MESH_BED_LEVELING)
  2674. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet, MeshSetZOffset, MeshReset };
  2675. inline void _mbl_goto_xy(float x, float y) {
  2676. float old_feedrate = feedrate;
  2677. feedrate = homing_feedrate[X_AXIS];
  2678. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2679. #if Z_RAISE_BETWEEN_PROBINGS > MIN_Z_HEIGHT_FOR_HOMING
  2680. + Z_RAISE_BETWEEN_PROBINGS
  2681. #elif MIN_Z_HEIGHT_FOR_HOMING > 0
  2682. + MIN_Z_HEIGHT_FOR_HOMING
  2683. #endif
  2684. ;
  2685. line_to_current_position();
  2686. current_position[X_AXIS] = x + home_offset[X_AXIS];
  2687. current_position[Y_AXIS] = y + home_offset[Y_AXIS];
  2688. line_to_current_position();
  2689. #if Z_RAISE_BETWEEN_PROBINGS > 0 || MIN_Z_HEIGHT_FOR_HOMING > 0
  2690. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2691. line_to_current_position();
  2692. #endif
  2693. feedrate = old_feedrate;
  2694. stepper.synchronize();
  2695. }
  2696. /**
  2697. * G29: Mesh-based Z probe, probes a grid and produces a
  2698. * mesh to compensate for variable bed height
  2699. *
  2700. * Parameters With MESH_BED_LEVELING:
  2701. *
  2702. * S0 Produce a mesh report
  2703. * S1 Start probing mesh points
  2704. * S2 Probe the next mesh point
  2705. * S3 Xn Yn Zn.nn Manually modify a single point
  2706. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  2707. * S5 Reset and disable mesh
  2708. *
  2709. * The S0 report the points as below
  2710. *
  2711. * +----> X-axis 1-n
  2712. * |
  2713. * |
  2714. * v Y-axis 1-n
  2715. *
  2716. */
  2717. inline void gcode_G29() {
  2718. static int probe_point = -1;
  2719. MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_byte() : MeshReport;
  2720. if (state < 0 || state > 5) {
  2721. SERIAL_PROTOCOLLNPGM("S out of range (0-5).");
  2722. return;
  2723. }
  2724. int8_t px, py;
  2725. float z;
  2726. switch (state) {
  2727. case MeshReport:
  2728. if (mbl.has_mesh()) {
  2729. SERIAL_PROTOCOLPAIR("State: ", mbl.active() ? "On" : "Off");
  2730. SERIAL_PROTOCOLPAIR("\nNum X,Y: ", MESH_NUM_X_POINTS);
  2731. SERIAL_PROTOCOLCHAR(','); SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2732. SERIAL_PROTOCOLPAIR("\nZ search height: ", MESH_HOME_SEARCH_Z);
  2733. SERIAL_PROTOCOLPGM("\nZ offset: "); SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  2734. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2735. for (py = 0; py < MESH_NUM_Y_POINTS; py++) {
  2736. for (px = 0; px < MESH_NUM_X_POINTS; px++) {
  2737. SERIAL_PROTOCOLPGM(" ");
  2738. SERIAL_PROTOCOL_F(mbl.z_values[py][px], 5);
  2739. }
  2740. SERIAL_EOL;
  2741. }
  2742. }
  2743. else
  2744. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2745. break;
  2746. case MeshStart:
  2747. mbl.reset();
  2748. probe_point = 0;
  2749. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  2750. break;
  2751. case MeshNext:
  2752. if (probe_point < 0) {
  2753. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  2754. return;
  2755. }
  2756. // For each G29 S2...
  2757. if (probe_point == 0) {
  2758. // For the intial G29 S2 make Z a positive value (e.g., 4.0)
  2759. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2760. #if Z_HOME_DIR > 0
  2761. + Z_MAX_POS
  2762. #endif
  2763. ;
  2764. SYNC_PLAN_POSITION_KINEMATIC();
  2765. }
  2766. else {
  2767. // For G29 S2 after adjusting Z.
  2768. mbl.set_zigzag_z(probe_point - 1, current_position[Z_AXIS]);
  2769. }
  2770. // If there's another point to sample, move there with optional lift.
  2771. if (probe_point < (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)) {
  2772. mbl.zigzag(probe_point, px, py);
  2773. _mbl_goto_xy(mbl.get_probe_x(px), mbl.get_probe_y(py));
  2774. probe_point++;
  2775. }
  2776. else {
  2777. // One last "return to the bed" (as originally coded) at completion
  2778. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2779. #if Z_RAISE_BETWEEN_PROBINGS > MIN_Z_HEIGHT_FOR_HOMING
  2780. + Z_RAISE_BETWEEN_PROBINGS
  2781. #elif MIN_Z_HEIGHT_FOR_HOMING > 0
  2782. + MIN_Z_HEIGHT_FOR_HOMING
  2783. #endif
  2784. ;
  2785. line_to_current_position();
  2786. stepper.synchronize();
  2787. // After recording the last point, activate the mbl and home
  2788. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  2789. probe_point = -1;
  2790. mbl.set_has_mesh(true);
  2791. enqueue_and_echo_commands_P(PSTR("G28"));
  2792. }
  2793. break;
  2794. case MeshSet:
  2795. if (code_seen('X')) {
  2796. px = code_value_int() - 1;
  2797. if (px < 0 || px >= MESH_NUM_X_POINTS) {
  2798. SERIAL_PROTOCOLLNPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").");
  2799. return;
  2800. }
  2801. }
  2802. else {
  2803. SERIAL_PROTOCOLLNPGM("X not entered.");
  2804. return;
  2805. }
  2806. if (code_seen('Y')) {
  2807. py = code_value_int() - 1;
  2808. if (py < 0 || py >= MESH_NUM_Y_POINTS) {
  2809. SERIAL_PROTOCOLLNPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").");
  2810. return;
  2811. }
  2812. }
  2813. else {
  2814. SERIAL_PROTOCOLLNPGM("Y not entered.");
  2815. return;
  2816. }
  2817. if (code_seen('Z')) {
  2818. z = code_value_axis_units(Z_AXIS);
  2819. }
  2820. else {
  2821. SERIAL_PROTOCOLLNPGM("Z not entered.");
  2822. return;
  2823. }
  2824. mbl.z_values[py][px] = z;
  2825. break;
  2826. case MeshSetZOffset:
  2827. if (code_seen('Z')) {
  2828. z = code_value_axis_units(Z_AXIS);
  2829. }
  2830. else {
  2831. SERIAL_PROTOCOLLNPGM("Z not entered.");
  2832. return;
  2833. }
  2834. mbl.z_offset = z;
  2835. break;
  2836. case MeshReset:
  2837. if (mbl.active()) {
  2838. current_position[Z_AXIS] +=
  2839. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS)) - MESH_HOME_SEARCH_Z;
  2840. mbl.reset();
  2841. SYNC_PLAN_POSITION_KINEMATIC();
  2842. }
  2843. else
  2844. mbl.reset();
  2845. } // switch(state)
  2846. report_current_position();
  2847. }
  2848. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  2849. /**
  2850. * G29: Detailed Z probe, probes the bed at 3 or more points.
  2851. * Will fail if the printer has not been homed with G28.
  2852. *
  2853. * Enhanced G29 Auto Bed Leveling Probe Routine
  2854. *
  2855. * Parameters With AUTO_BED_LEVELING_GRID:
  2856. *
  2857. * P Set the size of the grid that will be probed (P x P points).
  2858. * Not supported by non-linear delta printer bed leveling.
  2859. * Example: "G29 P4"
  2860. *
  2861. * S Set the XY travel speed between probe points (in units/min)
  2862. *
  2863. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  2864. * or clean the rotation Matrix. Useful to check the topology
  2865. * after a first run of G29.
  2866. *
  2867. * V Set the verbose level (0-4). Example: "G29 V3"
  2868. *
  2869. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  2870. * This is useful for manual bed leveling and finding flaws in the bed (to
  2871. * assist with part placement).
  2872. * Not supported by non-linear delta printer bed leveling.
  2873. *
  2874. * F Set the Front limit of the probing grid
  2875. * B Set the Back limit of the probing grid
  2876. * L Set the Left limit of the probing grid
  2877. * R Set the Right limit of the probing grid
  2878. *
  2879. * Global Parameters:
  2880. *
  2881. * E/e By default G29 will engage the Z probe, test the bed, then disengage.
  2882. * Include "E" to engage/disengage the Z probe for each sample.
  2883. * There's no extra effect if you have a fixed Z probe.
  2884. * Usage: "G29 E" or "G29 e"
  2885. *
  2886. */
  2887. inline void gcode_G29() {
  2888. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2889. if (DEBUGGING(LEVELING)) {
  2890. SERIAL_ECHOLNPGM(">>> gcode_G29");
  2891. DEBUG_POS("", current_position);
  2892. }
  2893. #endif
  2894. // Don't allow auto-leveling without homing first
  2895. if (axis_unhomed_error(true, true, true)) return;
  2896. int verbose_level = code_seen('V') ? code_value_int() : 1;
  2897. if (verbose_level < 0 || verbose_level > 4) {
  2898. SERIAL_ECHOLNPGM("?(V)erbose Level is implausible (0-4).");
  2899. return;
  2900. }
  2901. bool dryrun = code_seen('D');
  2902. bool stow_probe_after_each = code_seen('E');
  2903. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2904. #if DISABLED(DELTA)
  2905. bool do_topography_map = verbose_level > 2 || code_seen('T');
  2906. #endif
  2907. if (verbose_level > 0) {
  2908. SERIAL_PROTOCOLLNPGM("G29 Auto Bed Leveling");
  2909. if (dryrun) SERIAL_PROTOCOLLNPGM("Running in DRY-RUN mode");
  2910. }
  2911. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  2912. #if DISABLED(DELTA)
  2913. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_int();
  2914. if (auto_bed_leveling_grid_points < 2) {
  2915. SERIAL_PROTOCOLLNPGM("?Number of probed (P)oints is implausible (2 minimum).");
  2916. return;
  2917. }
  2918. #endif
  2919. xy_probe_speed = code_seen('S') ? (int)code_value_linear_units() : XY_PROBE_SPEED;
  2920. int left_probe_bed_position = code_seen('L') ? (int)code_value_axis_units(X_AXIS) : LEFT_PROBE_BED_POSITION,
  2921. right_probe_bed_position = code_seen('R') ? (int)code_value_axis_units(X_AXIS) : RIGHT_PROBE_BED_POSITION,
  2922. front_probe_bed_position = code_seen('F') ? (int)code_value_axis_units(Y_AXIS) : FRONT_PROBE_BED_POSITION,
  2923. back_probe_bed_position = code_seen('B') ? (int)code_value_axis_units(Y_AXIS) : BACK_PROBE_BED_POSITION;
  2924. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  2925. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  2926. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  2927. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  2928. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  2929. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  2930. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  2931. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  2932. if (left_out || right_out || front_out || back_out) {
  2933. if (left_out) {
  2934. out_of_range_error(PSTR("(L)eft"));
  2935. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - (MIN_PROBE_EDGE);
  2936. }
  2937. if (right_out) {
  2938. out_of_range_error(PSTR("(R)ight"));
  2939. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  2940. }
  2941. if (front_out) {
  2942. out_of_range_error(PSTR("(F)ront"));
  2943. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - (MIN_PROBE_EDGE);
  2944. }
  2945. if (back_out) {
  2946. out_of_range_error(PSTR("(B)ack"));
  2947. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  2948. }
  2949. return;
  2950. }
  2951. #endif // AUTO_BED_LEVELING_GRID
  2952. if (!dryrun) {
  2953. #if ENABLED(DEBUG_LEVELING_FEATURE) && DISABLED(DELTA)
  2954. if (DEBUGGING(LEVELING)) {
  2955. vector_3 corrected_position = planner.adjusted_position();
  2956. DEBUG_POS("BEFORE matrix.set_to_identity", corrected_position);
  2957. DEBUG_POS("BEFORE matrix.set_to_identity", current_position);
  2958. }
  2959. #endif
  2960. // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
  2961. planner.bed_level_matrix.set_to_identity();
  2962. #if ENABLED(DELTA)
  2963. reset_bed_level();
  2964. #else //!DELTA
  2965. //vector_3 corrected_position = planner.adjusted_position();
  2966. //corrected_position.debug("position before G29");
  2967. vector_3 uncorrected_position = planner.adjusted_position();
  2968. //uncorrected_position.debug("position during G29");
  2969. current_position[X_AXIS] = uncorrected_position.x;
  2970. current_position[Y_AXIS] = uncorrected_position.y;
  2971. current_position[Z_AXIS] = uncorrected_position.z;
  2972. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2973. if (DEBUGGING(LEVELING)) DEBUG_POS("AFTER matrix.set_to_identity", uncorrected_position);
  2974. #endif
  2975. SYNC_PLAN_POSITION_KINEMATIC();
  2976. #endif // !DELTA
  2977. }
  2978. stepper.synchronize();
  2979. setup_for_endstop_or_probe_move();
  2980. // Deploy the probe. Probe will raise if needed.
  2981. if (DEPLOY_PROBE()) return;
  2982. bed_leveling_in_progress = true;
  2983. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2984. // probe at the points of a lattice grid
  2985. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
  2986. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  2987. #if ENABLED(DELTA)
  2988. delta_grid_spacing[0] = xGridSpacing;
  2989. delta_grid_spacing[1] = yGridSpacing;
  2990. float zoffset = zprobe_zoffset;
  2991. if (code_seen(axis_codes[Z_AXIS])) zoffset += code_value_axis_units(Z_AXIS);
  2992. #else // !DELTA
  2993. /**
  2994. * solve the plane equation ax + by + d = z
  2995. * A is the matrix with rows [x y 1] for all the probed points
  2996. * B is the vector of the Z positions
  2997. * the normal vector to the plane is formed by the coefficients of the
  2998. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2999. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3000. */
  3001. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  3002. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  3003. eqnBVector[abl2], // "B" vector of Z points
  3004. mean = 0.0;
  3005. int8_t indexIntoAB[auto_bed_leveling_grid_points][auto_bed_leveling_grid_points];
  3006. #endif // !DELTA
  3007. int probePointCounter = 0;
  3008. bool zig = (auto_bed_leveling_grid_points & 1) ? true : false; //always end at [RIGHT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION]
  3009. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  3010. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  3011. int xStart, xStop, xInc;
  3012. if (zig) {
  3013. xStart = 0;
  3014. xStop = auto_bed_leveling_grid_points;
  3015. xInc = 1;
  3016. }
  3017. else {
  3018. xStart = auto_bed_leveling_grid_points - 1;
  3019. xStop = -1;
  3020. xInc = -1;
  3021. }
  3022. zig = !zig;
  3023. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  3024. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  3025. #if ENABLED(DELTA)
  3026. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  3027. float distance_from_center = sqrt(xProbe * xProbe + yProbe * yProbe);
  3028. if (distance_from_center > DELTA_PROBEABLE_RADIUS) continue;
  3029. #endif //DELTA
  3030. float measured_z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  3031. #if DISABLED(DELTA)
  3032. mean += measured_z;
  3033. eqnBVector[probePointCounter] = measured_z;
  3034. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  3035. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  3036. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  3037. indexIntoAB[xCount][yCount] = probePointCounter;
  3038. #else
  3039. bed_level[xCount][yCount] = measured_z + zoffset;
  3040. #endif
  3041. probePointCounter++;
  3042. idle();
  3043. } //xProbe
  3044. } //yProbe
  3045. #else // !AUTO_BED_LEVELING_GRID
  3046. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3047. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> 3-point Leveling");
  3048. #endif
  3049. // Probe at 3 arbitrary points
  3050. float z_at_pt_1 = probe_pt( ABL_PROBE_PT_1_X + home_offset[X_AXIS],
  3051. ABL_PROBE_PT_1_Y + home_offset[Y_AXIS],
  3052. stow_probe_after_each, verbose_level),
  3053. z_at_pt_2 = probe_pt( ABL_PROBE_PT_2_X + home_offset[X_AXIS],
  3054. ABL_PROBE_PT_2_Y + home_offset[Y_AXIS],
  3055. stow_probe_after_each, verbose_level),
  3056. z_at_pt_3 = probe_pt( ABL_PROBE_PT_3_X + home_offset[X_AXIS],
  3057. ABL_PROBE_PT_3_Y + home_offset[Y_AXIS],
  3058. stow_probe_after_each, verbose_level);
  3059. if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3060. #endif // !AUTO_BED_LEVELING_GRID
  3061. // Raise to _Z_RAISE_PROBE_DEPLOY_STOW. Stow the probe.
  3062. if (STOW_PROBE()) return;
  3063. // Restore state after probing
  3064. clean_up_after_endstop_or_probe_move();
  3065. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3066. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  3067. #endif
  3068. // Calculate leveling, print reports, correct the position
  3069. #if ENABLED(AUTO_BED_LEVELING_GRID)
  3070. #if ENABLED(DELTA)
  3071. if (!dryrun) extrapolate_unprobed_bed_level();
  3072. print_bed_level();
  3073. #else // !DELTA
  3074. // solve lsq problem
  3075. double plane_equation_coefficients[3];
  3076. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  3077. mean /= abl2;
  3078. if (verbose_level) {
  3079. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3080. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  3081. SERIAL_PROTOCOLPGM(" b: ");
  3082. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  3083. SERIAL_PROTOCOLPGM(" d: ");
  3084. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  3085. SERIAL_EOL;
  3086. if (verbose_level > 2) {
  3087. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  3088. SERIAL_PROTOCOL_F(mean, 8);
  3089. SERIAL_EOL;
  3090. }
  3091. }
  3092. if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
  3093. // Show the Topography map if enabled
  3094. if (do_topography_map) {
  3095. SERIAL_PROTOCOLLNPGM("\nBed Height Topography:\n"
  3096. " +--- BACK --+\n"
  3097. " | |\n"
  3098. " L | (+) | R\n"
  3099. " E | | I\n"
  3100. " F | (-) N (+) | G\n"
  3101. " T | | H\n"
  3102. " | (-) | T\n"
  3103. " | |\n"
  3104. " O-- FRONT --+\n"
  3105. " (0,0)");
  3106. float min_diff = 999;
  3107. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  3108. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  3109. int ind = indexIntoAB[xx][yy];
  3110. float diff = eqnBVector[ind] - mean;
  3111. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  3112. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3113. z_tmp = 0;
  3114. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3115. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  3116. if (diff >= 0.0)
  3117. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  3118. else
  3119. SERIAL_PROTOCOLCHAR(' ');
  3120. SERIAL_PROTOCOL_F(diff, 5);
  3121. } // xx
  3122. SERIAL_EOL;
  3123. } // yy
  3124. SERIAL_EOL;
  3125. if (verbose_level > 3) {
  3126. SERIAL_PROTOCOLLNPGM("\nCorrected Bed Height vs. Bed Topology:");
  3127. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  3128. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  3129. int ind = indexIntoAB[xx][yy];
  3130. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  3131. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3132. z_tmp = 0;
  3133. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3134. float diff = eqnBVector[ind] - z_tmp - min_diff;
  3135. if (diff >= 0.0)
  3136. SERIAL_PROTOCOLPGM(" +");
  3137. // Include + for column alignment
  3138. else
  3139. SERIAL_PROTOCOLCHAR(' ');
  3140. SERIAL_PROTOCOL_F(diff, 5);
  3141. } // xx
  3142. SERIAL_EOL;
  3143. } // yy
  3144. SERIAL_EOL;
  3145. }
  3146. } //do_topography_map
  3147. #endif //!DELTA
  3148. #endif // AUTO_BED_LEVELING_GRID
  3149. #if DISABLED(DELTA)
  3150. if (verbose_level > 0)
  3151. planner.bed_level_matrix.debug("\n\nBed Level Correction Matrix:");
  3152. if (!dryrun) {
  3153. /**
  3154. * Correct the Z height difference from Z probe position and nozzle tip position.
  3155. * The Z height on homing is measured by Z probe, but the Z probe is quite far
  3156. * from the nozzle. When the bed is uneven, this height must be corrected.
  3157. */
  3158. float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  3159. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  3160. z_tmp = current_position[Z_AXIS],
  3161. stepper_z = stepper.get_axis_position_mm(Z_AXIS); //get the real Z (since planner.adjusted_position is now correcting the plane)
  3162. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3163. if (DEBUGGING(LEVELING)) {
  3164. SERIAL_ECHOPAIR("> BEFORE apply_rotation_xyz > stepper_z = ", stepper_z);
  3165. SERIAL_ECHOPAIR(" ... z_tmp = ", z_tmp);
  3166. SERIAL_EOL;
  3167. }
  3168. #endif
  3169. // Apply the correction sending the Z probe offset
  3170. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3171. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3172. if (DEBUGGING(LEVELING)) {
  3173. SERIAL_ECHOPAIR("> AFTER apply_rotation_xyz > z_tmp = ", z_tmp);
  3174. SERIAL_EOL;
  3175. }
  3176. #endif
  3177. // Adjust the current Z and send it to the planner.
  3178. current_position[Z_AXIS] += z_tmp - stepper_z;
  3179. SYNC_PLAN_POSITION_KINEMATIC();
  3180. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3181. if (DEBUGGING(LEVELING)) DEBUG_POS("> corrected Z in G29", current_position);
  3182. #endif
  3183. }
  3184. #endif // !DELTA
  3185. #ifdef Z_PROBE_END_SCRIPT
  3186. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3187. if (DEBUGGING(LEVELING)) {
  3188. SERIAL_ECHOPGM("Z Probe End Script: ");
  3189. SERIAL_ECHOLNPGM(Z_PROBE_END_SCRIPT);
  3190. }
  3191. #endif
  3192. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  3193. stepper.synchronize();
  3194. #endif
  3195. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3196. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G29");
  3197. #endif
  3198. bed_leveling_in_progress = false;
  3199. report_current_position();
  3200. KEEPALIVE_STATE(IN_HANDLER);
  3201. }
  3202. #endif //AUTO_BED_LEVELING_FEATURE
  3203. #if HAS_BED_PROBE
  3204. /**
  3205. * G30: Do a single Z probe at the current XY
  3206. */
  3207. inline void gcode_G30() {
  3208. setup_for_endstop_or_probe_move();
  3209. // TODO: clear the leveling matrix or the planner will be set incorrectly
  3210. float measured_z = probe_pt(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  3211. current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  3212. true, 1);
  3213. SERIAL_PROTOCOLPGM("Bed X: ");
  3214. SERIAL_PROTOCOL(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3215. SERIAL_PROTOCOLPGM(" Y: ");
  3216. SERIAL_PROTOCOL(current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3217. SERIAL_PROTOCOLPGM(" Z: ");
  3218. SERIAL_PROTOCOL(measured_z + 0.0001);
  3219. SERIAL_EOL;
  3220. clean_up_after_endstop_or_probe_move();
  3221. report_current_position();
  3222. }
  3223. #if ENABLED(Z_PROBE_SLED)
  3224. /**
  3225. * G31: Deploy the Z probe
  3226. */
  3227. inline void gcode_G31() { DEPLOY_PROBE(); }
  3228. /**
  3229. * G32: Stow the Z probe
  3230. */
  3231. inline void gcode_G32() { STOW_PROBE(); }
  3232. #endif // Z_PROBE_SLED
  3233. #endif // HAS_BED_PROBE
  3234. /**
  3235. * G92: Set current position to given X Y Z E
  3236. */
  3237. inline void gcode_G92() {
  3238. bool didE = code_seen(axis_codes[E_AXIS]);
  3239. if (!didE) stepper.synchronize();
  3240. bool didXYZ = false;
  3241. for (int i = 0; i < NUM_AXIS; i++) {
  3242. if (code_seen(axis_codes[i])) {
  3243. float p = current_position[i],
  3244. v = code_value_axis_units(i);
  3245. current_position[i] = v;
  3246. if (i != E_AXIS) {
  3247. position_shift[i] += v - p; // Offset the coordinate space
  3248. update_software_endstops((AxisEnum)i);
  3249. didXYZ = true;
  3250. }
  3251. }
  3252. }
  3253. if (didXYZ)
  3254. SYNC_PLAN_POSITION_KINEMATIC();
  3255. else if (didE)
  3256. sync_plan_position_e();
  3257. }
  3258. #if ENABLED(ULTIPANEL)
  3259. /**
  3260. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  3261. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  3262. */
  3263. inline void gcode_M0_M1() {
  3264. char* args = current_command_args;
  3265. uint8_t test_value = 12;
  3266. SERIAL_ECHOPAIR("TEST", test_value);
  3267. millis_t codenum = 0;
  3268. bool hasP = false, hasS = false;
  3269. if (code_seen('P')) {
  3270. codenum = code_value_millis(); // milliseconds to wait
  3271. hasP = codenum > 0;
  3272. }
  3273. if (code_seen('S')) {
  3274. codenum = code_value_millis_from_seconds(); // seconds to wait
  3275. hasS = codenum > 0;
  3276. }
  3277. if (!hasP && !hasS && *args != '\0')
  3278. lcd_setstatus(args, true);
  3279. else {
  3280. LCD_MESSAGEPGM(MSG_USERWAIT);
  3281. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  3282. dontExpireStatus();
  3283. #endif
  3284. }
  3285. lcd_ignore_click();
  3286. stepper.synchronize();
  3287. refresh_cmd_timeout();
  3288. if (codenum > 0) {
  3289. codenum += previous_cmd_ms; // wait until this time for a click
  3290. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3291. while (PENDING(millis(), codenum) && !lcd_clicked()) idle();
  3292. KEEPALIVE_STATE(IN_HANDLER);
  3293. lcd_ignore_click(false);
  3294. }
  3295. else {
  3296. if (!lcd_detected()) return;
  3297. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3298. while (!lcd_clicked()) idle();
  3299. KEEPALIVE_STATE(IN_HANDLER);
  3300. }
  3301. if (IS_SD_PRINTING)
  3302. LCD_MESSAGEPGM(MSG_RESUMING);
  3303. else
  3304. LCD_MESSAGEPGM(WELCOME_MSG);
  3305. }
  3306. #endif // ULTIPANEL
  3307. /**
  3308. * M17: Enable power on all stepper motors
  3309. */
  3310. inline void gcode_M17() {
  3311. LCD_MESSAGEPGM(MSG_NO_MOVE);
  3312. enable_all_steppers();
  3313. }
  3314. #if ENABLED(SDSUPPORT)
  3315. /**
  3316. * M20: List SD card to serial output
  3317. */
  3318. inline void gcode_M20() {
  3319. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  3320. card.ls();
  3321. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  3322. }
  3323. /**
  3324. * M21: Init SD Card
  3325. */
  3326. inline void gcode_M21() {
  3327. card.initsd();
  3328. }
  3329. /**
  3330. * M22: Release SD Card
  3331. */
  3332. inline void gcode_M22() {
  3333. card.release();
  3334. }
  3335. /**
  3336. * M23: Open a file
  3337. */
  3338. inline void gcode_M23() {
  3339. card.openFile(current_command_args, true);
  3340. }
  3341. /**
  3342. * M24: Start SD Print
  3343. */
  3344. inline void gcode_M24() {
  3345. card.startFileprint();
  3346. print_job_timer.start();
  3347. }
  3348. /**
  3349. * M25: Pause SD Print
  3350. */
  3351. inline void gcode_M25() {
  3352. card.pauseSDPrint();
  3353. }
  3354. /**
  3355. * M26: Set SD Card file index
  3356. */
  3357. inline void gcode_M26() {
  3358. if (card.cardOK && code_seen('S'))
  3359. card.setIndex(code_value_long());
  3360. }
  3361. /**
  3362. * M27: Get SD Card status
  3363. */
  3364. inline void gcode_M27() {
  3365. card.getStatus();
  3366. }
  3367. /**
  3368. * M28: Start SD Write
  3369. */
  3370. inline void gcode_M28() {
  3371. card.openFile(current_command_args, false);
  3372. }
  3373. /**
  3374. * M29: Stop SD Write
  3375. * Processed in write to file routine above
  3376. */
  3377. inline void gcode_M29() {
  3378. // card.saving = false;
  3379. }
  3380. /**
  3381. * M30 <filename>: Delete SD Card file
  3382. */
  3383. inline void gcode_M30() {
  3384. if (card.cardOK) {
  3385. card.closefile();
  3386. card.removeFile(current_command_args);
  3387. }
  3388. }
  3389. #endif //SDSUPPORT
  3390. /**
  3391. * M31: Get the time since the start of SD Print (or last M109)
  3392. */
  3393. inline void gcode_M31() {
  3394. millis_t t = print_job_timer.duration();
  3395. int min = t / 60, sec = t % 60;
  3396. char time[30];
  3397. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3398. SERIAL_ECHO_START;
  3399. SERIAL_ECHOLN(time);
  3400. lcd_setstatus(time);
  3401. thermalManager.autotempShutdown();
  3402. }
  3403. #if ENABLED(SDSUPPORT)
  3404. /**
  3405. * M32: Select file and start SD Print
  3406. */
  3407. inline void gcode_M32() {
  3408. if (card.sdprinting)
  3409. stepper.synchronize();
  3410. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  3411. if (!namestartpos)
  3412. namestartpos = current_command_args; // Default name position, 4 letters after the M
  3413. else
  3414. namestartpos++; //to skip the '!'
  3415. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  3416. if (card.cardOK) {
  3417. card.openFile(namestartpos, true, call_procedure);
  3418. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  3419. card.setIndex(code_value_long());
  3420. card.startFileprint();
  3421. // Procedure calls count as normal print time.
  3422. if (!call_procedure) print_job_timer.start();
  3423. }
  3424. }
  3425. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  3426. /**
  3427. * M33: Get the long full path of a file or folder
  3428. *
  3429. * Parameters:
  3430. * <dospath> Case-insensitive DOS-style path to a file or folder
  3431. *
  3432. * Example:
  3433. * M33 miscel~1/armchair/armcha~1.gco
  3434. *
  3435. * Output:
  3436. * /Miscellaneous/Armchair/Armchair.gcode
  3437. */
  3438. inline void gcode_M33() {
  3439. card.printLongPath(current_command_args);
  3440. }
  3441. #endif
  3442. /**
  3443. * M928: Start SD Write
  3444. */
  3445. inline void gcode_M928() {
  3446. card.openLogFile(current_command_args);
  3447. }
  3448. #endif // SDSUPPORT
  3449. /**
  3450. * M42: Change pin status via GCode
  3451. *
  3452. * P<pin> Pin number (LED if omitted)
  3453. * S<byte> Pin status from 0 - 255
  3454. */
  3455. inline void gcode_M42() {
  3456. if (code_seen('S')) {
  3457. int pin_status = code_value_int();
  3458. if (pin_status < 0 || pin_status > 255) return;
  3459. int pin_number = code_seen('P') ? code_value_int() : LED_PIN;
  3460. if (pin_number < 0) return;
  3461. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  3462. if (pin_number == sensitive_pins[i]) return;
  3463. pinMode(pin_number, OUTPUT);
  3464. digitalWrite(pin_number, pin_status);
  3465. analogWrite(pin_number, pin_status);
  3466. #if FAN_COUNT > 0
  3467. switch (pin_number) {
  3468. #if HAS_FAN0
  3469. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  3470. #endif
  3471. #if HAS_FAN1
  3472. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  3473. #endif
  3474. #if HAS_FAN2
  3475. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  3476. #endif
  3477. }
  3478. #endif
  3479. } // code_seen('S')
  3480. }
  3481. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  3482. /**
  3483. * M48: Z probe repeatability measurement function.
  3484. *
  3485. * Usage:
  3486. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  3487. * P = Number of sampled points (4-50, default 10)
  3488. * X = Sample X position
  3489. * Y = Sample Y position
  3490. * V = Verbose level (0-4, default=1)
  3491. * E = Engage Z probe for each reading
  3492. * L = Number of legs of movement before probe
  3493. * S = Schizoid (Or Star if you prefer)
  3494. *
  3495. * This function assumes the bed has been homed. Specifically, that a G28 command
  3496. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  3497. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3498. * regenerated.
  3499. */
  3500. inline void gcode_M48() {
  3501. if (axis_unhomed_error(true, true, true)) return;
  3502. int8_t verbose_level = code_seen('V') ? code_value_byte() : 1;
  3503. if (verbose_level < 0 || verbose_level > 4) {
  3504. SERIAL_PROTOCOLLNPGM("?Verbose Level not plausible (0-4).");
  3505. return;
  3506. }
  3507. if (verbose_level > 0)
  3508. SERIAL_PROTOCOLLNPGM("M48 Z-Probe Repeatability test");
  3509. int8_t n_samples = code_seen('P') ? code_value_byte() : 10;
  3510. if (n_samples < 4 || n_samples > 50) {
  3511. SERIAL_PROTOCOLLNPGM("?Sample size not plausible (4-50).");
  3512. return;
  3513. }
  3514. float X_current = current_position[X_AXIS],
  3515. Y_current = current_position[Y_AXIS];
  3516. bool stow_probe_after_each = code_seen('E');
  3517. float X_probe_location = code_seen('X') ? code_value_axis_units(X_AXIS) : X_current + X_PROBE_OFFSET_FROM_EXTRUDER;
  3518. #if DISABLED(DELTA)
  3519. if (X_probe_location < MIN_PROBE_X || X_probe_location > MAX_PROBE_X) {
  3520. out_of_range_error(PSTR("X"));
  3521. return;
  3522. }
  3523. #endif
  3524. float Y_probe_location = code_seen('Y') ? code_value_axis_units(Y_AXIS) : Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3525. #if DISABLED(DELTA)
  3526. if (Y_probe_location < MIN_PROBE_Y || Y_probe_location > MAX_PROBE_Y) {
  3527. out_of_range_error(PSTR("Y"));
  3528. return;
  3529. }
  3530. #else
  3531. if (sqrt(X_probe_location * X_probe_location + Y_probe_location * Y_probe_location) > DELTA_PROBEABLE_RADIUS) {
  3532. SERIAL_PROTOCOLLNPGM("? (X,Y) location outside of probeable radius.");
  3533. return;
  3534. }
  3535. #endif
  3536. bool seen_L = code_seen('L');
  3537. uint8_t n_legs = seen_L ? code_value_byte() : 0;
  3538. if (n_legs > 15) {
  3539. SERIAL_PROTOCOLLNPGM("?Number of legs in movement not plausible (0-15).");
  3540. return;
  3541. }
  3542. if (n_legs == 1) n_legs = 2;
  3543. bool schizoid_flag = code_seen('S');
  3544. if (schizoid_flag && !seen_L) n_legs = 7;
  3545. /**
  3546. * Now get everything to the specified probe point So we can safely do a
  3547. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  3548. * we don't want to use that as a starting point for each probe.
  3549. */
  3550. if (verbose_level > 2)
  3551. SERIAL_PROTOCOLLNPGM("Positioning the probe...");
  3552. #if ENABLED(DELTA)
  3553. // we don't do bed level correction in M48 because we want the raw data when we probe
  3554. reset_bed_level();
  3555. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  3556. // we don't do bed level correction in M48 because we want the raw data when we probe
  3557. planner.bed_level_matrix.set_to_identity();
  3558. #endif
  3559. setup_for_endstop_or_probe_move();
  3560. // Move to the first point, deploy, and probe
  3561. probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  3562. randomSeed(millis());
  3563. double mean = 0, sigma = 0, sample_set[n_samples];
  3564. for (uint8_t n = 0; n < n_samples; n++) {
  3565. if (n_legs) {
  3566. int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  3567. float angle = random(0.0, 360.0),
  3568. radius = random(
  3569. #if ENABLED(DELTA)
  3570. DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
  3571. #else
  3572. 5, X_MAX_LENGTH / 8
  3573. #endif
  3574. );
  3575. if (verbose_level > 3) {
  3576. SERIAL_ECHOPAIR("Starting radius: ", radius);
  3577. SERIAL_ECHOPAIR(" angle: ", angle);
  3578. SERIAL_ECHOPGM(" Direction: ");
  3579. if (dir > 0) SERIAL_ECHOPGM("Counter-");
  3580. SERIAL_ECHOLNPGM("Clockwise");
  3581. }
  3582. for (uint8_t l = 0; l < n_legs - 1; l++) {
  3583. double delta_angle;
  3584. if (schizoid_flag)
  3585. // The points of a 5 point star are 72 degrees apart. We need to
  3586. // skip a point and go to the next one on the star.
  3587. delta_angle = dir * 2.0 * 72.0;
  3588. else
  3589. // If we do this line, we are just trying to move further
  3590. // around the circle.
  3591. delta_angle = dir * (float) random(25, 45);
  3592. angle += delta_angle;
  3593. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  3594. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  3595. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  3596. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  3597. X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
  3598. Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
  3599. #if DISABLED(DELTA)
  3600. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  3601. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  3602. #else
  3603. // If we have gone out too far, we can do a simple fix and scale the numbers
  3604. // back in closer to the origin.
  3605. while (sqrt(X_current * X_current + Y_current * Y_current) > DELTA_PROBEABLE_RADIUS) {
  3606. X_current /= 1.25;
  3607. Y_current /= 1.25;
  3608. if (verbose_level > 3) {
  3609. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  3610. SERIAL_ECHOPAIR(", ", Y_current);
  3611. SERIAL_EOL;
  3612. }
  3613. }
  3614. #endif
  3615. if (verbose_level > 3) {
  3616. SERIAL_PROTOCOLPGM("Going to:");
  3617. SERIAL_ECHOPAIR(" X", X_current);
  3618. SERIAL_ECHOPAIR(" Y", Y_current);
  3619. SERIAL_ECHOPAIR(" Z", current_position[Z_AXIS]);
  3620. SERIAL_EOL;
  3621. }
  3622. do_blocking_move_to_xy(X_current, Y_current);
  3623. } // n_legs loop
  3624. } // n_legs
  3625. // Probe a single point
  3626. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  3627. /**
  3628. * Get the current mean for the data points we have so far
  3629. */
  3630. double sum = 0.0;
  3631. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  3632. mean = sum / (n + 1);
  3633. /**
  3634. * Now, use that mean to calculate the standard deviation for the
  3635. * data points we have so far
  3636. */
  3637. sum = 0.0;
  3638. for (uint8_t j = 0; j <= n; j++) {
  3639. float ss = sample_set[j] - mean;
  3640. sum += ss * ss;
  3641. }
  3642. sigma = sqrt(sum / (n + 1));
  3643. if (verbose_level > 0) {
  3644. if (verbose_level > 1) {
  3645. SERIAL_PROTOCOL(n + 1);
  3646. SERIAL_PROTOCOLPGM(" of ");
  3647. SERIAL_PROTOCOL((int)n_samples);
  3648. SERIAL_PROTOCOLPGM(" z: ");
  3649. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3650. if (verbose_level > 2) {
  3651. SERIAL_PROTOCOLPGM(" mean: ");
  3652. SERIAL_PROTOCOL_F(mean, 6);
  3653. SERIAL_PROTOCOLPGM(" sigma: ");
  3654. SERIAL_PROTOCOL_F(sigma, 6);
  3655. }
  3656. }
  3657. SERIAL_EOL;
  3658. }
  3659. } // End of probe loop
  3660. if (STOW_PROBE()) return;
  3661. if (verbose_level > 0) {
  3662. SERIAL_PROTOCOLPGM("Mean: ");
  3663. SERIAL_PROTOCOL_F(mean, 6);
  3664. SERIAL_EOL;
  3665. }
  3666. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3667. SERIAL_PROTOCOL_F(sigma, 6);
  3668. SERIAL_EOL; SERIAL_EOL;
  3669. clean_up_after_endstop_or_probe_move();
  3670. report_current_position();
  3671. }
  3672. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  3673. /**
  3674. * M75: Start print timer
  3675. */
  3676. inline void gcode_M75() { print_job_timer.start(); }
  3677. /**
  3678. * M76: Pause print timer
  3679. */
  3680. inline void gcode_M76() { print_job_timer.pause(); }
  3681. /**
  3682. * M77: Stop print timer
  3683. */
  3684. inline void gcode_M77() { print_job_timer.stop(); }
  3685. #if ENABLED(PRINTCOUNTER)
  3686. /*+
  3687. * M78: Show print statistics
  3688. */
  3689. inline void gcode_M78() {
  3690. // "M78 S78" will reset the statistics
  3691. if (code_seen('S') && code_value_int() == 78)
  3692. print_job_timer.initStats();
  3693. else print_job_timer.showStats();
  3694. }
  3695. #endif
  3696. /**
  3697. * M104: Set hot end temperature
  3698. */
  3699. inline void gcode_M104() {
  3700. if (get_target_extruder_from_command(104)) return;
  3701. if (DEBUGGING(DRYRUN)) return;
  3702. #if ENABLED(SINGLENOZZLE)
  3703. if (target_extruder != active_extruder) return;
  3704. #endif
  3705. if (code_seen('S')) {
  3706. float temp = code_value_temp_abs();
  3707. thermalManager.setTargetHotend(temp, target_extruder);
  3708. #if ENABLED(DUAL_X_CARRIAGE)
  3709. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3710. thermalManager.setTargetHotend(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset, 1);
  3711. #endif
  3712. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3713. /**
  3714. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3715. * stand by mode, for instance in a dual extruder setup, without affecting
  3716. * the running print timer.
  3717. */
  3718. if (temp <= (EXTRUDE_MINTEMP)/2) {
  3719. print_job_timer.stop();
  3720. LCD_MESSAGEPGM(WELCOME_MSG);
  3721. }
  3722. /**
  3723. * We do not check if the timer is already running because this check will
  3724. * be done for us inside the Stopwatch::start() method thus a running timer
  3725. * will not restart.
  3726. */
  3727. else print_job_timer.start();
  3728. #endif
  3729. if (temp > thermalManager.degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3730. }
  3731. }
  3732. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3733. void print_heaterstates() {
  3734. #if HAS_TEMP_HOTEND
  3735. SERIAL_PROTOCOLPGM(" T:");
  3736. SERIAL_PROTOCOL_F(thermalManager.degHotend(target_extruder), 1);
  3737. SERIAL_PROTOCOLPGM(" /");
  3738. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(target_extruder), 1);
  3739. #endif
  3740. #if HAS_TEMP_BED
  3741. SERIAL_PROTOCOLPGM(" B:");
  3742. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  3743. SERIAL_PROTOCOLPGM(" /");
  3744. SERIAL_PROTOCOL_F(thermalManager.degTargetBed(), 1);
  3745. #endif
  3746. #if HOTENDS > 1
  3747. for (int8_t e = 0; e < HOTENDS; ++e) {
  3748. SERIAL_PROTOCOLPGM(" T");
  3749. SERIAL_PROTOCOL(e);
  3750. SERIAL_PROTOCOLCHAR(':');
  3751. SERIAL_PROTOCOL_F(thermalManager.degHotend(e), 1);
  3752. SERIAL_PROTOCOLPGM(" /");
  3753. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(e), 1);
  3754. }
  3755. #endif
  3756. #if HAS_TEMP_BED
  3757. SERIAL_PROTOCOLPGM(" B@:");
  3758. #ifdef BED_WATTS
  3759. SERIAL_PROTOCOL(((BED_WATTS) * thermalManager.getHeaterPower(-1)) / 127);
  3760. SERIAL_PROTOCOLCHAR('W');
  3761. #else
  3762. SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1));
  3763. #endif
  3764. #endif
  3765. SERIAL_PROTOCOLPGM(" @:");
  3766. #ifdef EXTRUDER_WATTS
  3767. SERIAL_PROTOCOL(((EXTRUDER_WATTS) * thermalManager.getHeaterPower(target_extruder)) / 127);
  3768. SERIAL_PROTOCOLCHAR('W');
  3769. #else
  3770. SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder));
  3771. #endif
  3772. #if HOTENDS > 1
  3773. for (int8_t e = 0; e < HOTENDS; ++e) {
  3774. SERIAL_PROTOCOLPGM(" @");
  3775. SERIAL_PROTOCOL(e);
  3776. SERIAL_PROTOCOLCHAR(':');
  3777. #ifdef EXTRUDER_WATTS
  3778. SERIAL_PROTOCOL(((EXTRUDER_WATTS) * thermalManager.getHeaterPower(e)) / 127);
  3779. SERIAL_PROTOCOLCHAR('W');
  3780. #else
  3781. SERIAL_PROTOCOL(thermalManager.getHeaterPower(e));
  3782. #endif
  3783. }
  3784. #endif
  3785. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3786. #if HAS_TEMP_BED
  3787. SERIAL_PROTOCOLPGM(" ADC B:");
  3788. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  3789. SERIAL_PROTOCOLPGM("C->");
  3790. SERIAL_PROTOCOL_F(thermalManager.rawBedTemp() / OVERSAMPLENR, 0);
  3791. #endif
  3792. for (int8_t cur_hotend = 0; cur_hotend < HOTENDS; ++cur_hotend) {
  3793. SERIAL_PROTOCOLPGM(" T");
  3794. SERIAL_PROTOCOL(cur_hotend);
  3795. SERIAL_PROTOCOLCHAR(':');
  3796. SERIAL_PROTOCOL_F(thermalManager.degHotend(cur_hotend), 1);
  3797. SERIAL_PROTOCOLPGM("C->");
  3798. SERIAL_PROTOCOL_F(thermalManager.rawHotendTemp(cur_hotend) / OVERSAMPLENR, 0);
  3799. }
  3800. #endif
  3801. }
  3802. #endif
  3803. /**
  3804. * M105: Read hot end and bed temperature
  3805. */
  3806. inline void gcode_M105() {
  3807. if (get_target_extruder_from_command(105)) return;
  3808. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3809. SERIAL_PROTOCOLPGM(MSG_OK);
  3810. print_heaterstates();
  3811. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  3812. SERIAL_ERROR_START;
  3813. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  3814. #endif
  3815. SERIAL_EOL;
  3816. }
  3817. #if FAN_COUNT > 0
  3818. /**
  3819. * M106: Set Fan Speed
  3820. *
  3821. * S<int> Speed between 0-255
  3822. * P<index> Fan index, if more than one fan
  3823. */
  3824. inline void gcode_M106() {
  3825. uint16_t s = code_seen('S') ? code_value_ushort() : 255,
  3826. p = code_seen('P') ? code_value_ushort() : 0;
  3827. NOMORE(s, 255);
  3828. if (p < FAN_COUNT) fanSpeeds[p] = s;
  3829. }
  3830. /**
  3831. * M107: Fan Off
  3832. */
  3833. inline void gcode_M107() {
  3834. uint16_t p = code_seen('P') ? code_value_ushort() : 0;
  3835. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  3836. }
  3837. #endif // FAN_COUNT > 0
  3838. /**
  3839. * M108: Cancel heatup and wait for the hotend and bed, this G-code is asynchronously handled in the get_serial_commands() parser
  3840. */
  3841. inline void gcode_M108() { wait_for_heatup = false; }
  3842. /**
  3843. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  3844. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  3845. */
  3846. inline void gcode_M109() {
  3847. if (get_target_extruder_from_command(109)) return;
  3848. if (DEBUGGING(DRYRUN)) return;
  3849. #if ENABLED(SINGLENOZZLE)
  3850. if (target_extruder != active_extruder) return;
  3851. #endif
  3852. bool no_wait_for_cooling = code_seen('S');
  3853. if (no_wait_for_cooling || code_seen('R')) {
  3854. float temp = code_value_temp_abs();
  3855. thermalManager.setTargetHotend(temp, target_extruder);
  3856. #if ENABLED(DUAL_X_CARRIAGE)
  3857. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3858. thermalManager.setTargetHotend(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset, 1);
  3859. #endif
  3860. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3861. /**
  3862. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3863. * stand by mode, for instance in a dual extruder setup, without affecting
  3864. * the running print timer.
  3865. */
  3866. if (temp <= (EXTRUDE_MINTEMP)/2) {
  3867. print_job_timer.stop();
  3868. LCD_MESSAGEPGM(WELCOME_MSG);
  3869. }
  3870. /**
  3871. * We do not check if the timer is already running because this check will
  3872. * be done for us inside the Stopwatch::start() method thus a running timer
  3873. * will not restart.
  3874. */
  3875. else print_job_timer.start();
  3876. #endif
  3877. if (thermalManager.isHeatingHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3878. }
  3879. #if ENABLED(AUTOTEMP)
  3880. planner.autotemp_M109();
  3881. #endif
  3882. #if TEMP_RESIDENCY_TIME > 0
  3883. millis_t residency_start_ms = 0;
  3884. // Loop until the temperature has stabilized
  3885. #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  3886. #else
  3887. // Loop until the temperature is very close target
  3888. #define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
  3889. #endif //TEMP_RESIDENCY_TIME > 0
  3890. float theTarget = -1.0, old_temp = 9999.0;
  3891. bool wants_to_cool = false;
  3892. wait_for_heatup = true;
  3893. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  3894. KEEPALIVE_STATE(NOT_BUSY);
  3895. do {
  3896. // Target temperature might be changed during the loop
  3897. if (theTarget != thermalManager.degTargetHotend(target_extruder)) {
  3898. wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
  3899. theTarget = thermalManager.degTargetHotend(target_extruder);
  3900. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  3901. if (no_wait_for_cooling && wants_to_cool) break;
  3902. }
  3903. now = millis();
  3904. if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
  3905. next_temp_ms = now + 1000UL;
  3906. print_heaterstates();
  3907. #if TEMP_RESIDENCY_TIME > 0
  3908. SERIAL_PROTOCOLPGM(" W:");
  3909. if (residency_start_ms) {
  3910. long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  3911. SERIAL_PROTOCOLLN(rem);
  3912. }
  3913. else {
  3914. SERIAL_PROTOCOLLNPGM("?");
  3915. }
  3916. #else
  3917. SERIAL_EOL;
  3918. #endif
  3919. }
  3920. idle();
  3921. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3922. float temp = thermalManager.degHotend(target_extruder);
  3923. #if TEMP_RESIDENCY_TIME > 0
  3924. float temp_diff = fabs(theTarget - temp);
  3925. if (!residency_start_ms) {
  3926. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  3927. if (temp_diff < TEMP_WINDOW) residency_start_ms = now;
  3928. }
  3929. else if (temp_diff > TEMP_HYSTERESIS) {
  3930. // Restart the timer whenever the temperature falls outside the hysteresis.
  3931. residency_start_ms = now;
  3932. }
  3933. #endif //TEMP_RESIDENCY_TIME > 0
  3934. // Prevent a wait-forever situation if R is misused i.e. M109 R0
  3935. if (wants_to_cool) {
  3936. if (temp < (EXTRUDE_MINTEMP) / 2) break; // always break at (default) 85°
  3937. // break after 20 seconds if cooling stalls
  3938. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  3939. if (old_temp - temp < 1.0) break;
  3940. next_cool_check_ms = now + 20000;
  3941. old_temp = temp;
  3942. }
  3943. }
  3944. } while (wait_for_heatup && TEMP_CONDITIONS);
  3945. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  3946. KEEPALIVE_STATE(IN_HANDLER);
  3947. }
  3948. #if HAS_TEMP_BED
  3949. /**
  3950. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  3951. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  3952. */
  3953. inline void gcode_M190() {
  3954. if (DEBUGGING(DRYRUN)) return;
  3955. LCD_MESSAGEPGM(MSG_BED_HEATING);
  3956. bool no_wait_for_cooling = code_seen('S');
  3957. if (no_wait_for_cooling || code_seen('R')) thermalManager.setTargetBed(code_value_temp_abs());
  3958. #if TEMP_BED_RESIDENCY_TIME > 0
  3959. millis_t residency_start_ms = 0;
  3960. // Loop until the temperature has stabilized
  3961. #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
  3962. #else
  3963. // Loop until the temperature is very close target
  3964. #define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
  3965. #endif //TEMP_BED_RESIDENCY_TIME > 0
  3966. float theTarget = -1.0, old_temp = 9999.0;
  3967. bool wants_to_cool = false;
  3968. wait_for_heatup = true;
  3969. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  3970. KEEPALIVE_STATE(NOT_BUSY);
  3971. do {
  3972. // Target temperature might be changed during the loop
  3973. if (theTarget != thermalManager.degTargetBed()) {
  3974. wants_to_cool = thermalManager.isCoolingBed();
  3975. theTarget = thermalManager.degTargetBed();
  3976. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  3977. if (no_wait_for_cooling && wants_to_cool) break;
  3978. }
  3979. now = millis();
  3980. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
  3981. next_temp_ms = now + 1000UL;
  3982. print_heaterstates();
  3983. #if TEMP_BED_RESIDENCY_TIME > 0
  3984. SERIAL_PROTOCOLPGM(" W:");
  3985. if (residency_start_ms) {
  3986. long rem = (((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  3987. SERIAL_PROTOCOLLN(rem);
  3988. }
  3989. else {
  3990. SERIAL_PROTOCOLLNPGM("?");
  3991. }
  3992. #else
  3993. SERIAL_EOL;
  3994. #endif
  3995. }
  3996. idle();
  3997. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3998. float temp = thermalManager.degBed();
  3999. #if TEMP_BED_RESIDENCY_TIME > 0
  4000. float temp_diff = fabs(theTarget - temp);
  4001. if (!residency_start_ms) {
  4002. // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
  4003. if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = now;
  4004. }
  4005. else if (temp_diff > TEMP_BED_HYSTERESIS) {
  4006. // Restart the timer whenever the temperature falls outside the hysteresis.
  4007. residency_start_ms = now;
  4008. }
  4009. #endif //TEMP_BED_RESIDENCY_TIME > 0
  4010. // Prevent a wait-forever situation if R is misused i.e. M190 R0
  4011. if (wants_to_cool) {
  4012. if (temp < 30.0) break; // always break at 30°
  4013. // break after 20 seconds if cooling stalls
  4014. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  4015. if (old_temp - temp < 1.0) break;
  4016. next_cool_check_ms = now + 20000;
  4017. old_temp = temp;
  4018. }
  4019. }
  4020. } while (wait_for_heatup && TEMP_BED_CONDITIONS);
  4021. LCD_MESSAGEPGM(MSG_BED_DONE);
  4022. KEEPALIVE_STATE(IN_HANDLER);
  4023. }
  4024. #endif // HAS_TEMP_BED
  4025. /**
  4026. * M110: Set Current Line Number
  4027. */
  4028. inline void gcode_M110() {
  4029. if (code_seen('N')) gcode_N = code_value_long();
  4030. }
  4031. /**
  4032. * M111: Set the debug level
  4033. */
  4034. inline void gcode_M111() {
  4035. marlin_debug_flags = code_seen('S') ? code_value_byte() : (uint8_t) DEBUG_NONE;
  4036. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
  4037. const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
  4038. const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
  4039. const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
  4040. const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
  4041. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4042. const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
  4043. #endif
  4044. const static char* const debug_strings[] PROGMEM = {
  4045. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16,
  4046. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4047. str_debug_32
  4048. #endif
  4049. };
  4050. SERIAL_ECHO_START;
  4051. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  4052. if (marlin_debug_flags) {
  4053. uint8_t comma = 0;
  4054. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  4055. if (TEST(marlin_debug_flags, i)) {
  4056. if (comma++) SERIAL_CHAR(',');
  4057. serialprintPGM((char*)pgm_read_word(&(debug_strings[i])));
  4058. }
  4059. }
  4060. }
  4061. else {
  4062. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  4063. }
  4064. SERIAL_EOL;
  4065. }
  4066. /**
  4067. * M112: Emergency Stop
  4068. */
  4069. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  4070. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  4071. /**
  4072. * M113: Get or set Host Keepalive interval (0 to disable)
  4073. *
  4074. * S<seconds> Optional. Set the keepalive interval.
  4075. */
  4076. inline void gcode_M113() {
  4077. if (code_seen('S')) {
  4078. host_keepalive_interval = code_value_byte();
  4079. NOMORE(host_keepalive_interval, 60);
  4080. }
  4081. else {
  4082. SERIAL_ECHO_START;
  4083. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4084. SERIAL_EOL;
  4085. }
  4086. }
  4087. #endif
  4088. #if ENABLED(BARICUDA)
  4089. #if HAS_HEATER_1
  4090. /**
  4091. * M126: Heater 1 valve open
  4092. */
  4093. inline void gcode_M126() { baricuda_valve_pressure = code_seen('S') ? code_value_byte() : 255; }
  4094. /**
  4095. * M127: Heater 1 valve close
  4096. */
  4097. inline void gcode_M127() { baricuda_valve_pressure = 0; }
  4098. #endif
  4099. #if HAS_HEATER_2
  4100. /**
  4101. * M128: Heater 2 valve open
  4102. */
  4103. inline void gcode_M128() { baricuda_e_to_p_pressure = code_seen('S') ? code_value_byte() : 255; }
  4104. /**
  4105. * M129: Heater 2 valve close
  4106. */
  4107. inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
  4108. #endif
  4109. #endif //BARICUDA
  4110. /**
  4111. * M140: Set bed temperature
  4112. */
  4113. inline void gcode_M140() {
  4114. if (DEBUGGING(DRYRUN)) return;
  4115. if (code_seen('S')) thermalManager.setTargetBed(code_value_temp_abs());
  4116. }
  4117. #if ENABLED(ULTIPANEL)
  4118. /**
  4119. * M145: Set the heatup state for a material in the LCD menu
  4120. * S<material> (0=PLA, 1=ABS)
  4121. * H<hotend temp>
  4122. * B<bed temp>
  4123. * F<fan speed>
  4124. */
  4125. inline void gcode_M145() {
  4126. int8_t material = code_seen('S') ? (int8_t)code_value_int() : 0;
  4127. if (material < 0 || material > 1) {
  4128. SERIAL_ERROR_START;
  4129. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  4130. }
  4131. else {
  4132. int v;
  4133. switch (material) {
  4134. case 0:
  4135. if (code_seen('H')) {
  4136. v = code_value_int();
  4137. plaPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4138. }
  4139. if (code_seen('F')) {
  4140. v = code_value_int();
  4141. plaPreheatFanSpeed = constrain(v, 0, 255);
  4142. }
  4143. #if TEMP_SENSOR_BED != 0
  4144. if (code_seen('B')) {
  4145. v = code_value_int();
  4146. plaPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4147. }
  4148. #endif
  4149. break;
  4150. case 1:
  4151. if (code_seen('H')) {
  4152. v = code_value_int();
  4153. absPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4154. }
  4155. if (code_seen('F')) {
  4156. v = code_value_int();
  4157. absPreheatFanSpeed = constrain(v, 0, 255);
  4158. }
  4159. #if TEMP_SENSOR_BED != 0
  4160. if (code_seen('B')) {
  4161. v = code_value_int();
  4162. absPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4163. }
  4164. #endif
  4165. break;
  4166. }
  4167. }
  4168. }
  4169. #endif
  4170. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  4171. /**
  4172. * M149: Set temperature units
  4173. */
  4174. inline void gcode_M149() {
  4175. if (code_seen('C')) {
  4176. set_input_temp_units(TEMPUNIT_C);
  4177. } else if (code_seen('K')) {
  4178. set_input_temp_units(TEMPUNIT_K);
  4179. } else if (code_seen('F')) {
  4180. set_input_temp_units(TEMPUNIT_F);
  4181. }
  4182. }
  4183. #endif
  4184. #if HAS_POWER_SWITCH
  4185. /**
  4186. * M80: Turn on Power Supply
  4187. */
  4188. inline void gcode_M80() {
  4189. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  4190. /**
  4191. * If you have a switch on suicide pin, this is useful
  4192. * if you want to start another print with suicide feature after
  4193. * a print without suicide...
  4194. */
  4195. #if HAS_SUICIDE
  4196. OUT_WRITE(SUICIDE_PIN, HIGH);
  4197. #endif
  4198. #if ENABLED(ULTIPANEL)
  4199. powersupply = true;
  4200. LCD_MESSAGEPGM(WELCOME_MSG);
  4201. lcd_update();
  4202. #endif
  4203. }
  4204. #endif // HAS_POWER_SWITCH
  4205. /**
  4206. * M81: Turn off Power, including Power Supply, if there is one.
  4207. *
  4208. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  4209. */
  4210. inline void gcode_M81() {
  4211. thermalManager.disable_all_heaters();
  4212. stepper.finish_and_disable();
  4213. #if FAN_COUNT > 0
  4214. #if FAN_COUNT > 1
  4215. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  4216. #else
  4217. fanSpeeds[0] = 0;
  4218. #endif
  4219. #endif
  4220. delay(1000); // Wait 1 second before switching off
  4221. #if HAS_SUICIDE
  4222. stepper.synchronize();
  4223. suicide();
  4224. #elif HAS_POWER_SWITCH
  4225. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4226. #endif
  4227. #if ENABLED(ULTIPANEL)
  4228. #if HAS_POWER_SWITCH
  4229. powersupply = false;
  4230. #endif
  4231. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  4232. lcd_update();
  4233. #endif
  4234. }
  4235. /**
  4236. * M82: Set E codes absolute (default)
  4237. */
  4238. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  4239. /**
  4240. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  4241. */
  4242. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  4243. /**
  4244. * M18, M84: Disable all stepper motors
  4245. */
  4246. inline void gcode_M18_M84() {
  4247. if (code_seen('S')) {
  4248. stepper_inactive_time = code_value_millis_from_seconds();
  4249. }
  4250. else {
  4251. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])) || (code_seen(axis_codes[E_AXIS])));
  4252. if (all_axis) {
  4253. stepper.finish_and_disable();
  4254. }
  4255. else {
  4256. stepper.synchronize();
  4257. if (code_seen('X')) disable_x();
  4258. if (code_seen('Y')) disable_y();
  4259. if (code_seen('Z')) disable_z();
  4260. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4261. if (code_seen('E')) {
  4262. disable_e0();
  4263. disable_e1();
  4264. disable_e2();
  4265. disable_e3();
  4266. }
  4267. #endif
  4268. }
  4269. }
  4270. }
  4271. /**
  4272. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  4273. */
  4274. inline void gcode_M85() {
  4275. if (code_seen('S')) max_inactive_time = code_value_millis_from_seconds();
  4276. }
  4277. /**
  4278. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  4279. * (Follows the same syntax as G92)
  4280. */
  4281. inline void gcode_M92() {
  4282. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4283. if (code_seen(axis_codes[i])) {
  4284. if (i == E_AXIS) {
  4285. float value = code_value_per_axis_unit(i);
  4286. if (value < 20.0) {
  4287. float factor = planner.axis_steps_per_mm[i] / value; // increase e constants if M92 E14 is given for netfab.
  4288. planner.max_e_jerk *= factor;
  4289. planner.max_feedrate[i] *= factor;
  4290. planner.max_acceleration_steps_per_s2[i] *= factor;
  4291. }
  4292. planner.axis_steps_per_mm[i] = value;
  4293. }
  4294. else {
  4295. planner.axis_steps_per_mm[i] = code_value_per_axis_unit(i);
  4296. }
  4297. }
  4298. }
  4299. }
  4300. /**
  4301. * Output the current position to serial
  4302. */
  4303. static void report_current_position() {
  4304. SERIAL_PROTOCOLPGM("X:");
  4305. SERIAL_PROTOCOL(current_position[X_AXIS]);
  4306. SERIAL_PROTOCOLPGM(" Y:");
  4307. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  4308. SERIAL_PROTOCOLPGM(" Z:");
  4309. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  4310. SERIAL_PROTOCOLPGM(" E:");
  4311. SERIAL_PROTOCOL(current_position[E_AXIS]);
  4312. stepper.report_positions();
  4313. #if ENABLED(SCARA)
  4314. SERIAL_PROTOCOLPGM("SCARA Theta:");
  4315. SERIAL_PROTOCOL(delta[X_AXIS]);
  4316. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  4317. SERIAL_PROTOCOL(delta[Y_AXIS]);
  4318. SERIAL_EOL;
  4319. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  4320. SERIAL_PROTOCOL(delta[X_AXIS] + home_offset[X_AXIS]);
  4321. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  4322. SERIAL_PROTOCOL(delta[Y_AXIS] - delta[X_AXIS] - 90 + home_offset[Y_AXIS]);
  4323. SERIAL_EOL;
  4324. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  4325. SERIAL_PROTOCOL(delta[X_AXIS] / 90 * planner.axis_steps_per_mm[X_AXIS]);
  4326. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  4327. SERIAL_PROTOCOL((delta[Y_AXIS] - delta[X_AXIS]) / 90 * planner.axis_steps_per_mm[Y_AXIS]);
  4328. SERIAL_EOL; SERIAL_EOL;
  4329. #endif
  4330. }
  4331. /**
  4332. * M114: Output current position to serial port
  4333. */
  4334. inline void gcode_M114() { report_current_position(); }
  4335. /**
  4336. * M115: Capabilities string
  4337. */
  4338. inline void gcode_M115() {
  4339. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  4340. }
  4341. /**
  4342. * M117: Set LCD Status Message
  4343. */
  4344. inline void gcode_M117() {
  4345. lcd_setstatus(current_command_args);
  4346. }
  4347. /**
  4348. * M119: Output endstop states to serial output
  4349. */
  4350. inline void gcode_M119() { endstops.M119(); }
  4351. /**
  4352. * M120: Enable endstops and set non-homing endstop state to "enabled"
  4353. */
  4354. inline void gcode_M120() { endstops.enable_globally(true); }
  4355. /**
  4356. * M121: Disable endstops and set non-homing endstop state to "disabled"
  4357. */
  4358. inline void gcode_M121() { endstops.enable_globally(false); }
  4359. #if ENABLED(BLINKM)
  4360. /**
  4361. * M150: Set Status LED Color - Use R-U-B for R-G-B
  4362. */
  4363. inline void gcode_M150() {
  4364. SendColors(
  4365. code_seen('R') ? code_value_byte() : 0,
  4366. code_seen('U') ? code_value_byte() : 0,
  4367. code_seen('B') ? code_value_byte() : 0
  4368. );
  4369. }
  4370. #endif // BLINKM
  4371. #if ENABLED(EXPERIMENTAL_I2CBUS)
  4372. /**
  4373. * M155: Send data to a I2C slave device
  4374. *
  4375. * This is a PoC, the formating and arguments for the GCODE will
  4376. * change to be more compatible, the current proposal is:
  4377. *
  4378. * M155 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  4379. *
  4380. * M155 B<byte-1 value in base 10>
  4381. * M155 B<byte-2 value in base 10>
  4382. * M155 B<byte-3 value in base 10>
  4383. *
  4384. * M155 S1 ; Send the buffered data and reset the buffer
  4385. * M155 R1 ; Reset the buffer without sending data
  4386. *
  4387. */
  4388. inline void gcode_M155() {
  4389. // Set the target address
  4390. if (code_seen('A'))
  4391. i2c.address(code_value_byte());
  4392. // Add a new byte to the buffer
  4393. else if (code_seen('B'))
  4394. i2c.addbyte(code_value_int());
  4395. // Flush the buffer to the bus
  4396. else if (code_seen('S')) i2c.send();
  4397. // Reset and rewind the buffer
  4398. else if (code_seen('R')) i2c.reset();
  4399. }
  4400. /**
  4401. * M156: Request X bytes from I2C slave device
  4402. *
  4403. * Usage: M156 A<slave device address base 10> B<number of bytes>
  4404. */
  4405. inline void gcode_M156() {
  4406. uint8_t addr = code_seen('A') ? code_value_byte() : 0;
  4407. int bytes = code_seen('B') ? code_value_int() : 1;
  4408. if (addr && bytes > 0 && bytes <= 32) {
  4409. i2c.address(addr);
  4410. i2c.reqbytes(bytes);
  4411. }
  4412. else {
  4413. SERIAL_ERROR_START;
  4414. SERIAL_ERRORLN("Bad i2c request");
  4415. }
  4416. }
  4417. #endif //EXPERIMENTAL_I2CBUS
  4418. /**
  4419. * M200: Set filament diameter and set E axis units to cubic units
  4420. *
  4421. * T<extruder> - Optional extruder number. Current extruder if omitted.
  4422. * D<linear> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.
  4423. */
  4424. inline void gcode_M200() {
  4425. if (get_target_extruder_from_command(200)) return;
  4426. if (code_seen('D')) {
  4427. float diameter = code_value_linear_units();
  4428. // setting any extruder filament size disables volumetric on the assumption that
  4429. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4430. // for all extruders
  4431. volumetric_enabled = (diameter != 0.0);
  4432. if (volumetric_enabled) {
  4433. filament_size[target_extruder] = diameter;
  4434. // make sure all extruders have some sane value for the filament size
  4435. for (int i = 0; i < EXTRUDERS; i++)
  4436. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  4437. }
  4438. }
  4439. else {
  4440. //reserved for setting filament diameter via UFID or filament measuring device
  4441. return;
  4442. }
  4443. calculate_volumetric_multipliers();
  4444. }
  4445. /**
  4446. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  4447. */
  4448. inline void gcode_M201() {
  4449. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4450. if (code_seen(axis_codes[i])) {
  4451. planner.max_acceleration_mm_per_s2[i] = code_value_axis_units(i);
  4452. }
  4453. }
  4454. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4455. planner.reset_acceleration_rates();
  4456. }
  4457. #if 0 // Not used for Sprinter/grbl gen6
  4458. inline void gcode_M202() {
  4459. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4460. if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value_axis_units(i) * planner.axis_steps_per_mm[i];
  4461. }
  4462. }
  4463. #endif
  4464. /**
  4465. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  4466. */
  4467. inline void gcode_M203() {
  4468. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4469. if (code_seen(axis_codes[i])) {
  4470. planner.max_feedrate[i] = code_value_axis_units(i);
  4471. }
  4472. }
  4473. }
  4474. /**
  4475. * M204: Set Accelerations in units/sec^2 (M204 P1200 R3000 T3000)
  4476. *
  4477. * P = Printing moves
  4478. * R = Retract only (no X, Y, Z) moves
  4479. * T = Travel (non printing) moves
  4480. *
  4481. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  4482. */
  4483. inline void gcode_M204() {
  4484. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  4485. planner.travel_acceleration = planner.acceleration = code_value_linear_units();
  4486. SERIAL_ECHOPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
  4487. SERIAL_EOL;
  4488. }
  4489. if (code_seen('P')) {
  4490. planner.acceleration = code_value_linear_units();
  4491. SERIAL_ECHOPAIR("Setting Print Acceleration: ", planner.acceleration);
  4492. SERIAL_EOL;
  4493. }
  4494. if (code_seen('R')) {
  4495. planner.retract_acceleration = code_value_linear_units();
  4496. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
  4497. SERIAL_EOL;
  4498. }
  4499. if (code_seen('T')) {
  4500. planner.travel_acceleration = code_value_linear_units();
  4501. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
  4502. SERIAL_EOL;
  4503. }
  4504. }
  4505. /**
  4506. * M205: Set Advanced Settings
  4507. *
  4508. * S = Min Feed Rate (units/s)
  4509. * T = Min Travel Feed Rate (units/s)
  4510. * B = Min Segment Time (µs)
  4511. * X = Max XY Jerk (units/sec^2)
  4512. * Z = Max Z Jerk (units/sec^2)
  4513. * E = Max E Jerk (units/sec^2)
  4514. */
  4515. inline void gcode_M205() {
  4516. if (code_seen('S')) planner.min_feedrate = code_value_linear_units();
  4517. if (code_seen('T')) planner.min_travel_feedrate = code_value_linear_units();
  4518. if (code_seen('B')) planner.min_segment_time = code_value_millis();
  4519. if (code_seen('X')) planner.max_xy_jerk = code_value_linear_units();
  4520. if (code_seen('Z')) planner.max_z_jerk = code_value_axis_units(Z_AXIS);
  4521. if (code_seen('E')) planner.max_e_jerk = code_value_axis_units(E_AXIS);
  4522. }
  4523. /**
  4524. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  4525. */
  4526. inline void gcode_M206() {
  4527. for (int8_t i = X_AXIS; i <= Z_AXIS; i++)
  4528. if (code_seen(axis_codes[i]))
  4529. set_home_offset((AxisEnum)i, code_value_axis_units(i));
  4530. #if ENABLED(SCARA)
  4531. if (code_seen('T')) set_home_offset(X_AXIS, code_value_axis_units(X_AXIS)); // Theta
  4532. if (code_seen('P')) set_home_offset(Y_AXIS, code_value_axis_units(Y_AXIS)); // Psi
  4533. #endif
  4534. SYNC_PLAN_POSITION_KINEMATIC();
  4535. report_current_position();
  4536. }
  4537. #if ENABLED(DELTA)
  4538. /**
  4539. * M665: Set delta configurations
  4540. *
  4541. * L = diagonal rod
  4542. * R = delta radius
  4543. * S = segments per second
  4544. * A = Alpha (Tower 1) diagonal rod trim
  4545. * B = Beta (Tower 2) diagonal rod trim
  4546. * C = Gamma (Tower 3) diagonal rod trim
  4547. */
  4548. inline void gcode_M665() {
  4549. if (code_seen('L')) delta_diagonal_rod = code_value_linear_units();
  4550. if (code_seen('R')) delta_radius = code_value_linear_units();
  4551. if (code_seen('S')) delta_segments_per_second = code_value_float();
  4552. if (code_seen('A')) delta_diagonal_rod_trim_tower_1 = code_value_linear_units();
  4553. if (code_seen('B')) delta_diagonal_rod_trim_tower_2 = code_value_linear_units();
  4554. if (code_seen('C')) delta_diagonal_rod_trim_tower_3 = code_value_linear_units();
  4555. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  4556. }
  4557. /**
  4558. * M666: Set delta endstop adjustment
  4559. */
  4560. inline void gcode_M666() {
  4561. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4562. if (DEBUGGING(LEVELING)) {
  4563. SERIAL_ECHOLNPGM(">>> gcode_M666");
  4564. }
  4565. #endif
  4566. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4567. if (code_seen(axis_codes[i])) {
  4568. endstop_adj[i] = code_value_axis_units(i);
  4569. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4570. if (DEBUGGING(LEVELING)) {
  4571. SERIAL_ECHOPGM("endstop_adj[");
  4572. SERIAL_ECHO(axis_codes[i]);
  4573. SERIAL_ECHOPAIR("] = ", endstop_adj[i]);
  4574. SERIAL_EOL;
  4575. }
  4576. #endif
  4577. }
  4578. }
  4579. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4580. if (DEBUGGING(LEVELING)) {
  4581. SERIAL_ECHOLNPGM("<<< gcode_M666");
  4582. }
  4583. #endif
  4584. }
  4585. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  4586. /**
  4587. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  4588. */
  4589. inline void gcode_M666() {
  4590. if (code_seen('Z')) z_endstop_adj = code_value_axis_units(Z_AXIS);
  4591. SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  4592. SERIAL_EOL;
  4593. }
  4594. #endif // !DELTA && Z_DUAL_ENDSTOPS
  4595. #if ENABLED(FWRETRACT)
  4596. /**
  4597. * M207: Set firmware retraction values
  4598. *
  4599. * S[+units] retract_length
  4600. * W[+units] retract_length_swap (multi-extruder)
  4601. * F[units/min] retract_feedrate_mm_s
  4602. * Z[units] retract_zlift
  4603. */
  4604. inline void gcode_M207() {
  4605. if (code_seen('S')) retract_length = code_value_axis_units(E_AXIS);
  4606. if (code_seen('F')) retract_feedrate_mm_s = code_value_axis_units(E_AXIS) / 60;
  4607. if (code_seen('Z')) retract_zlift = code_value_axis_units(Z_AXIS);
  4608. #if EXTRUDERS > 1
  4609. if (code_seen('W')) retract_length_swap = code_value_axis_units(E_AXIS);
  4610. #endif
  4611. }
  4612. /**
  4613. * M208: Set firmware un-retraction values
  4614. *
  4615. * S[+units] retract_recover_length (in addition to M207 S*)
  4616. * W[+units] retract_recover_length_swap (multi-extruder)
  4617. * F[units/min] retract_recover_feedrate
  4618. */
  4619. inline void gcode_M208() {
  4620. if (code_seen('S')) retract_recover_length = code_value_axis_units(E_AXIS);
  4621. if (code_seen('F')) retract_recover_feedrate = code_value_axis_units(E_AXIS) / 60;
  4622. #if EXTRUDERS > 1
  4623. if (code_seen('W')) retract_recover_length_swap = code_value_axis_units(E_AXIS);
  4624. #endif
  4625. }
  4626. /**
  4627. * M209: Enable automatic retract (M209 S1)
  4628. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4629. */
  4630. inline void gcode_M209() {
  4631. if (code_seen('S')) {
  4632. int t = code_value_int();
  4633. switch (t) {
  4634. case 0:
  4635. autoretract_enabled = false;
  4636. break;
  4637. case 1:
  4638. autoretract_enabled = true;
  4639. break;
  4640. default:
  4641. unknown_command_error();
  4642. return;
  4643. }
  4644. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  4645. }
  4646. }
  4647. #endif // FWRETRACT
  4648. #if HOTENDS > 1
  4649. /**
  4650. * M218 - set hotend offset (in linear units)
  4651. *
  4652. * T<tool>
  4653. * X<xoffset>
  4654. * Y<yoffset>
  4655. * Z<zoffset> - Available with DUAL_X_CARRIAGE
  4656. */
  4657. inline void gcode_M218() {
  4658. if (get_target_extruder_from_command(218)) return;
  4659. if (code_seen('X')) hotend_offset[X_AXIS][target_extruder] = code_value_axis_units(X_AXIS);
  4660. if (code_seen('Y')) hotend_offset[Y_AXIS][target_extruder] = code_value_axis_units(Y_AXIS);
  4661. #if ENABLED(DUAL_X_CARRIAGE)
  4662. if (code_seen('Z')) hotend_offset[Z_AXIS][target_extruder] = code_value_axis_units(Z_AXIS);
  4663. #endif
  4664. SERIAL_ECHO_START;
  4665. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  4666. for (int e = 0; e < HOTENDS; e++) {
  4667. SERIAL_CHAR(' ');
  4668. SERIAL_ECHO(hotend_offset[X_AXIS][e]);
  4669. SERIAL_CHAR(',');
  4670. SERIAL_ECHO(hotend_offset[Y_AXIS][e]);
  4671. #if ENABLED(DUAL_X_CARRIAGE)
  4672. SERIAL_CHAR(',');
  4673. SERIAL_ECHO(hotend_offset[Z_AXIS][e]);
  4674. #endif
  4675. }
  4676. SERIAL_EOL;
  4677. }
  4678. #endif // HOTENDS > 1
  4679. /**
  4680. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  4681. */
  4682. inline void gcode_M220() {
  4683. if (code_seen('S')) feedrate_multiplier = code_value_int();
  4684. }
  4685. /**
  4686. * M221: Set extrusion percentage (M221 T0 S95)
  4687. */
  4688. inline void gcode_M221() {
  4689. if (code_seen('S')) {
  4690. int sval = code_value_int();
  4691. if (get_target_extruder_from_command(221)) return;
  4692. extruder_multiplier[target_extruder] = sval;
  4693. }
  4694. }
  4695. /**
  4696. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  4697. */
  4698. inline void gcode_M226() {
  4699. if (code_seen('P')) {
  4700. int pin_number = code_value_int();
  4701. int pin_state = code_seen('S') ? code_value_int() : -1; // required pin state - default is inverted
  4702. if (pin_state >= -1 && pin_state <= 1) {
  4703. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++) {
  4704. if (sensitive_pins[i] == pin_number) {
  4705. pin_number = -1;
  4706. break;
  4707. }
  4708. }
  4709. if (pin_number > -1) {
  4710. int target = LOW;
  4711. stepper.synchronize();
  4712. pinMode(pin_number, INPUT);
  4713. switch (pin_state) {
  4714. case 1:
  4715. target = HIGH;
  4716. break;
  4717. case 0:
  4718. target = LOW;
  4719. break;
  4720. case -1:
  4721. target = !digitalRead(pin_number);
  4722. break;
  4723. }
  4724. while (digitalRead(pin_number) != target) idle();
  4725. } // pin_number > -1
  4726. } // pin_state -1 0 1
  4727. } // code_seen('P')
  4728. }
  4729. #if HAS_SERVOS
  4730. /**
  4731. * M280: Get or set servo position. P<index> S<angle>
  4732. */
  4733. inline void gcode_M280() {
  4734. int servo_index = code_seen('P') ? code_value_int() : -1;
  4735. int servo_position = 0;
  4736. if (code_seen('S')) {
  4737. servo_position = code_value_int();
  4738. if (servo_index >= 0 && servo_index < NUM_SERVOS)
  4739. MOVE_SERVO(servo_index, servo_position);
  4740. else {
  4741. SERIAL_ERROR_START;
  4742. SERIAL_ERROR("Servo ");
  4743. SERIAL_ERROR(servo_index);
  4744. SERIAL_ERRORLN(" out of range");
  4745. }
  4746. }
  4747. else if (servo_index >= 0) {
  4748. SERIAL_ECHO_START;
  4749. SERIAL_ECHOPGM(" Servo ");
  4750. SERIAL_ECHO(servo_index);
  4751. SERIAL_ECHOPGM(": ");
  4752. SERIAL_ECHOLN(servo[servo_index].read());
  4753. }
  4754. }
  4755. #endif // HAS_SERVOS
  4756. #if HAS_BUZZER
  4757. /**
  4758. * M300: Play beep sound S<frequency Hz> P<duration ms>
  4759. */
  4760. inline void gcode_M300() {
  4761. uint16_t const frequency = code_seen('S') ? code_value_ushort() : 260;
  4762. uint16_t duration = code_seen('P') ? code_value_ushort() : 1000;
  4763. // Limits the tone duration to 0-5 seconds.
  4764. NOMORE(duration, 5000);
  4765. buzzer.tone(duration, frequency);
  4766. }
  4767. #endif // HAS_BUZZER
  4768. #if ENABLED(PIDTEMP)
  4769. /**
  4770. * M301: Set PID parameters P I D (and optionally C, L)
  4771. *
  4772. * P[float] Kp term
  4773. * I[float] Ki term (unscaled)
  4774. * D[float] Kd term (unscaled)
  4775. *
  4776. * With PID_ADD_EXTRUSION_RATE:
  4777. *
  4778. * C[float] Kc term
  4779. * L[float] LPQ length
  4780. */
  4781. inline void gcode_M301() {
  4782. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  4783. // default behaviour (omitting E parameter) is to update for extruder 0 only
  4784. int e = code_seen('E') ? code_value_int() : 0; // extruder being updated
  4785. if (e < HOTENDS) { // catch bad input value
  4786. if (code_seen('P')) PID_PARAM(Kp, e) = code_value_float();
  4787. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value_float());
  4788. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value_float());
  4789. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  4790. if (code_seen('C')) PID_PARAM(Kc, e) = code_value_float();
  4791. if (code_seen('L')) lpq_len = code_value_float();
  4792. NOMORE(lpq_len, LPQ_MAX_LEN);
  4793. #endif
  4794. thermalManager.updatePID();
  4795. SERIAL_ECHO_START;
  4796. #if ENABLED(PID_PARAMS_PER_HOTEND)
  4797. SERIAL_ECHOPGM(" e:"); // specify extruder in serial output
  4798. SERIAL_ECHO(e);
  4799. #endif // PID_PARAMS_PER_HOTEND
  4800. SERIAL_ECHOPGM(" p:");
  4801. SERIAL_ECHO(PID_PARAM(Kp, e));
  4802. SERIAL_ECHOPGM(" i:");
  4803. SERIAL_ECHO(unscalePID_i(PID_PARAM(Ki, e)));
  4804. SERIAL_ECHOPGM(" d:");
  4805. SERIAL_ECHO(unscalePID_d(PID_PARAM(Kd, e)));
  4806. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  4807. SERIAL_ECHOPGM(" c:");
  4808. //Kc does not have scaling applied above, or in resetting defaults
  4809. SERIAL_ECHO(PID_PARAM(Kc, e));
  4810. #endif
  4811. SERIAL_EOL;
  4812. }
  4813. else {
  4814. SERIAL_ERROR_START;
  4815. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  4816. }
  4817. }
  4818. #endif // PIDTEMP
  4819. #if ENABLED(PIDTEMPBED)
  4820. inline void gcode_M304() {
  4821. if (code_seen('P')) thermalManager.bedKp = code_value_float();
  4822. if (code_seen('I')) thermalManager.bedKi = scalePID_i(code_value_float());
  4823. if (code_seen('D')) thermalManager.bedKd = scalePID_d(code_value_float());
  4824. thermalManager.updatePID();
  4825. SERIAL_ECHO_START;
  4826. SERIAL_ECHOPGM(" p:");
  4827. SERIAL_ECHO(thermalManager.bedKp);
  4828. SERIAL_ECHOPGM(" i:");
  4829. SERIAL_ECHO(unscalePID_i(thermalManager.bedKi));
  4830. SERIAL_ECHOPGM(" d:");
  4831. SERIAL_ECHOLN(unscalePID_d(thermalManager.bedKd));
  4832. }
  4833. #endif // PIDTEMPBED
  4834. #if defined(CHDK) || HAS_PHOTOGRAPH
  4835. /**
  4836. * M240: Trigger a camera by emulating a Canon RC-1
  4837. * See http://www.doc-diy.net/photo/rc-1_hacked/
  4838. */
  4839. inline void gcode_M240() {
  4840. #ifdef CHDK
  4841. OUT_WRITE(CHDK, HIGH);
  4842. chdkHigh = millis();
  4843. chdkActive = true;
  4844. #elif HAS_PHOTOGRAPH
  4845. const uint8_t NUM_PULSES = 16;
  4846. const float PULSE_LENGTH = 0.01524;
  4847. for (int i = 0; i < NUM_PULSES; i++) {
  4848. WRITE(PHOTOGRAPH_PIN, HIGH);
  4849. _delay_ms(PULSE_LENGTH);
  4850. WRITE(PHOTOGRAPH_PIN, LOW);
  4851. _delay_ms(PULSE_LENGTH);
  4852. }
  4853. delay(7.33);
  4854. for (int i = 0; i < NUM_PULSES; i++) {
  4855. WRITE(PHOTOGRAPH_PIN, HIGH);
  4856. _delay_ms(PULSE_LENGTH);
  4857. WRITE(PHOTOGRAPH_PIN, LOW);
  4858. _delay_ms(PULSE_LENGTH);
  4859. }
  4860. #endif // !CHDK && HAS_PHOTOGRAPH
  4861. }
  4862. #endif // CHDK || PHOTOGRAPH_PIN
  4863. #if HAS_LCD_CONTRAST
  4864. /**
  4865. * M250: Read and optionally set the LCD contrast
  4866. */
  4867. inline void gcode_M250() {
  4868. if (code_seen('C')) set_lcd_contrast(code_value_int());
  4869. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4870. SERIAL_PROTOCOL(lcd_contrast);
  4871. SERIAL_EOL;
  4872. }
  4873. #endif // HAS_LCD_CONTRAST
  4874. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  4875. /**
  4876. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  4877. */
  4878. inline void gcode_M302() {
  4879. thermalManager.extrude_min_temp = code_seen('S') ? code_value_temp_abs() : 0;
  4880. }
  4881. #endif // PREVENT_DANGEROUS_EXTRUDE
  4882. /**
  4883. * M303: PID relay autotune
  4884. *
  4885. * S<temperature> sets the target temperature. (default 150C)
  4886. * E<extruder> (-1 for the bed) (default 0)
  4887. * C<cycles>
  4888. * U<bool> with a non-zero value will apply the result to current settings
  4889. */
  4890. inline void gcode_M303() {
  4891. #if HAS_PID_HEATING
  4892. int e = code_seen('E') ? code_value_int() : 0;
  4893. int c = code_seen('C') ? code_value_int() : 5;
  4894. bool u = code_seen('U') && code_value_bool();
  4895. float temp = code_seen('S') ? code_value_temp_abs() : (e < 0 ? 70.0 : 150.0);
  4896. if (e >= 0 && e < HOTENDS)
  4897. target_extruder = e;
  4898. KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
  4899. thermalManager.PID_autotune(temp, e, c, u);
  4900. KEEPALIVE_STATE(IN_HANDLER);
  4901. #else
  4902. SERIAL_ERROR_START;
  4903. SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
  4904. #endif
  4905. }
  4906. #if ENABLED(SCARA)
  4907. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  4908. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  4909. //SERIAL_ECHOLNPGM(" Soft endstops disabled");
  4910. if (IsRunning()) {
  4911. //gcode_get_destination(); // For X Y Z E F
  4912. delta[X_AXIS] = delta_x;
  4913. delta[Y_AXIS] = delta_y;
  4914. calculate_SCARA_forward_Transform(delta);
  4915. destination[X_AXIS] = delta[X_AXIS] / axis_scaling[X_AXIS];
  4916. destination[Y_AXIS] = delta[Y_AXIS] / axis_scaling[Y_AXIS];
  4917. prepare_move_to_destination();
  4918. //ok_to_send();
  4919. return true;
  4920. }
  4921. return false;
  4922. }
  4923. /**
  4924. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  4925. */
  4926. inline bool gcode_M360() {
  4927. SERIAL_ECHOLNPGM(" Cal: Theta 0");
  4928. return SCARA_move_to_cal(0, 120);
  4929. }
  4930. /**
  4931. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  4932. */
  4933. inline bool gcode_M361() {
  4934. SERIAL_ECHOLNPGM(" Cal: Theta 90");
  4935. return SCARA_move_to_cal(90, 130);
  4936. }
  4937. /**
  4938. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  4939. */
  4940. inline bool gcode_M362() {
  4941. SERIAL_ECHOLNPGM(" Cal: Psi 0");
  4942. return SCARA_move_to_cal(60, 180);
  4943. }
  4944. /**
  4945. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  4946. */
  4947. inline bool gcode_M363() {
  4948. SERIAL_ECHOLNPGM(" Cal: Psi 90");
  4949. return SCARA_move_to_cal(50, 90);
  4950. }
  4951. /**
  4952. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  4953. */
  4954. inline bool gcode_M364() {
  4955. SERIAL_ECHOLNPGM(" Cal: Theta-Psi 90");
  4956. return SCARA_move_to_cal(45, 135);
  4957. }
  4958. /**
  4959. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  4960. */
  4961. inline void gcode_M365() {
  4962. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4963. if (code_seen(axis_codes[i])) {
  4964. axis_scaling[i] = code_value_float();
  4965. }
  4966. }
  4967. }
  4968. #endif // SCARA
  4969. #if ENABLED(EXT_SOLENOID)
  4970. void enable_solenoid(uint8_t num) {
  4971. switch (num) {
  4972. case 0:
  4973. OUT_WRITE(SOL0_PIN, HIGH);
  4974. break;
  4975. #if HAS_SOLENOID_1
  4976. case 1:
  4977. OUT_WRITE(SOL1_PIN, HIGH);
  4978. break;
  4979. #endif
  4980. #if HAS_SOLENOID_2
  4981. case 2:
  4982. OUT_WRITE(SOL2_PIN, HIGH);
  4983. break;
  4984. #endif
  4985. #if HAS_SOLENOID_3
  4986. case 3:
  4987. OUT_WRITE(SOL3_PIN, HIGH);
  4988. break;
  4989. #endif
  4990. default:
  4991. SERIAL_ECHO_START;
  4992. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  4993. break;
  4994. }
  4995. }
  4996. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  4997. void disable_all_solenoids() {
  4998. OUT_WRITE(SOL0_PIN, LOW);
  4999. OUT_WRITE(SOL1_PIN, LOW);
  5000. OUT_WRITE(SOL2_PIN, LOW);
  5001. OUT_WRITE(SOL3_PIN, LOW);
  5002. }
  5003. /**
  5004. * M380: Enable solenoid on the active extruder
  5005. */
  5006. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  5007. /**
  5008. * M381: Disable all solenoids
  5009. */
  5010. inline void gcode_M381() { disable_all_solenoids(); }
  5011. #endif // EXT_SOLENOID
  5012. /**
  5013. * M400: Finish all moves
  5014. */
  5015. inline void gcode_M400() { stepper.synchronize(); }
  5016. #if HAS_BED_PROBE
  5017. /**
  5018. * M401: Engage Z Servo endstop if available
  5019. */
  5020. inline void gcode_M401() { DEPLOY_PROBE(); }
  5021. /**
  5022. * M402: Retract Z Servo endstop if enabled
  5023. */
  5024. inline void gcode_M402() { STOW_PROBE(); }
  5025. #endif // HAS_BED_PROBE
  5026. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  5027. /**
  5028. * M404: Display or set (in current units) the nominal filament width (3mm, 1.75mm ) W<3.0>
  5029. */
  5030. inline void gcode_M404() {
  5031. if (code_seen('W')) {
  5032. filament_width_nominal = code_value_linear_units();
  5033. }
  5034. else {
  5035. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  5036. SERIAL_PROTOCOLLN(filament_width_nominal);
  5037. }
  5038. }
  5039. /**
  5040. * M405: Turn on filament sensor for control
  5041. */
  5042. inline void gcode_M405() {
  5043. // This is technically a linear measurement, but since it's quantized to centimeters and is a different unit than
  5044. // everything else, it uses code_value_int() instead of code_value_linear_units().
  5045. if (code_seen('D')) meas_delay_cm = code_value_int();
  5046. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  5047. if (filwidth_delay_index2 == -1) { // Initialize the ring buffer if not done since startup
  5048. int temp_ratio = thermalManager.widthFil_to_size_ratio();
  5049. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  5050. measurement_delay[i] = temp_ratio - 100; // Subtract 100 to scale within a signed byte
  5051. filwidth_delay_index1 = filwidth_delay_index2 = 0;
  5052. }
  5053. filament_sensor = true;
  5054. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5055. //SERIAL_PROTOCOL(filament_width_meas);
  5056. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  5057. //SERIAL_PROTOCOL(extruder_multiplier[active_extruder]);
  5058. }
  5059. /**
  5060. * M406: Turn off filament sensor for control
  5061. */
  5062. inline void gcode_M406() { filament_sensor = false; }
  5063. /**
  5064. * M407: Get measured filament diameter on serial output
  5065. */
  5066. inline void gcode_M407() {
  5067. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5068. SERIAL_PROTOCOLLN(filament_width_meas);
  5069. }
  5070. #endif // FILAMENT_WIDTH_SENSOR
  5071. #if DISABLED(DELTA) && DISABLED(SCARA)
  5072. void set_current_position_from_planner() {
  5073. stepper.synchronize();
  5074. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5075. vector_3 pos = planner.adjusted_position(); // values directly from steppers...
  5076. current_position[X_AXIS] = pos.x;
  5077. current_position[Y_AXIS] = pos.y;
  5078. current_position[Z_AXIS] = pos.z;
  5079. #else
  5080. current_position[X_AXIS] = stepper.get_axis_position_mm(X_AXIS);
  5081. current_position[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS);
  5082. current_position[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  5083. #endif
  5084. sync_plan_position(); // ...re-apply to planner position
  5085. }
  5086. #endif
  5087. /**
  5088. * M410: Quickstop - Abort all planned moves
  5089. *
  5090. * This will stop the carriages mid-move, so most likely they
  5091. * will be out of sync with the stepper position after this.
  5092. */
  5093. inline void gcode_M410() {
  5094. stepper.quick_stop();
  5095. #if DISABLED(DELTA) && DISABLED(SCARA)
  5096. set_current_position_from_planner();
  5097. #endif
  5098. }
  5099. #if ENABLED(MESH_BED_LEVELING)
  5100. /**
  5101. * M420: Enable/Disable Mesh Bed Leveling
  5102. */
  5103. inline void gcode_M420() { if (code_seen('S') && code_has_value()) mbl.set_has_mesh(code_value_bool()); }
  5104. /**
  5105. * M421: Set a single Mesh Bed Leveling Z coordinate
  5106. * Use either 'M421 X<linear> Y<linear> Z<linear>' or 'M421 I<xindex> J<yindex> Z<linear>'
  5107. */
  5108. inline void gcode_M421() {
  5109. int8_t px, py;
  5110. float z = 0;
  5111. bool hasX, hasY, hasZ, hasI, hasJ;
  5112. if ((hasX = code_seen('X'))) px = mbl.probe_index_x(code_value_axis_units(X_AXIS));
  5113. if ((hasY = code_seen('Y'))) py = mbl.probe_index_y(code_value_axis_units(Y_AXIS));
  5114. if ((hasI = code_seen('I'))) px = code_value_axis_units(X_AXIS);
  5115. if ((hasJ = code_seen('J'))) py = code_value_axis_units(Y_AXIS);
  5116. if ((hasZ = code_seen('Z'))) z = code_value_axis_units(Z_AXIS);
  5117. if (hasX && hasY && hasZ) {
  5118. if (px >= 0 && py >= 0)
  5119. mbl.set_z(px, py, z);
  5120. else {
  5121. SERIAL_ERROR_START;
  5122. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5123. }
  5124. }
  5125. else if (hasI && hasJ && hasZ) {
  5126. if (px >= 0 && px < MESH_NUM_X_POINTS && py >= 0 && py < MESH_NUM_Y_POINTS)
  5127. mbl.set_z(px, py, z);
  5128. else {
  5129. SERIAL_ERROR_START;
  5130. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5131. }
  5132. }
  5133. else {
  5134. SERIAL_ERROR_START;
  5135. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  5136. }
  5137. }
  5138. #endif
  5139. /**
  5140. * M428: Set home_offset based on the distance between the
  5141. * current_position and the nearest "reference point."
  5142. * If an axis is past center its endstop position
  5143. * is the reference-point. Otherwise it uses 0. This allows
  5144. * the Z offset to be set near the bed when using a max endstop.
  5145. *
  5146. * M428 can't be used more than 2cm away from 0 or an endstop.
  5147. *
  5148. * Use M206 to set these values directly.
  5149. */
  5150. inline void gcode_M428() {
  5151. bool err = false;
  5152. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  5153. if (axis_homed[i]) {
  5154. float base = (current_position[i] > (sw_endstop_min[i] + sw_endstop_max[i]) / 2) ? base_home_pos(i) : 0,
  5155. diff = current_position[i] - base;
  5156. if (diff > -20 && diff < 20) {
  5157. set_home_offset((AxisEnum)i, home_offset[i] - diff);
  5158. }
  5159. else {
  5160. SERIAL_ERROR_START;
  5161. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  5162. LCD_ALERTMESSAGEPGM("Err: Too far!");
  5163. #if HAS_BUZZER
  5164. buzzer.tone(200, 40);
  5165. #endif
  5166. err = true;
  5167. break;
  5168. }
  5169. }
  5170. }
  5171. if (!err) {
  5172. SYNC_PLAN_POSITION_KINEMATIC();
  5173. report_current_position();
  5174. LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  5175. #if HAS_BUZZER
  5176. buzzer.tone(200, 659);
  5177. buzzer.tone(200, 698);
  5178. #endif
  5179. }
  5180. }
  5181. /**
  5182. * M500: Store settings in EEPROM
  5183. */
  5184. inline void gcode_M500() {
  5185. Config_StoreSettings();
  5186. }
  5187. /**
  5188. * M501: Read settings from EEPROM
  5189. */
  5190. inline void gcode_M501() {
  5191. Config_RetrieveSettings();
  5192. }
  5193. /**
  5194. * M502: Revert to default settings
  5195. */
  5196. inline void gcode_M502() {
  5197. Config_ResetDefault();
  5198. }
  5199. /**
  5200. * M503: print settings currently in memory
  5201. */
  5202. inline void gcode_M503() {
  5203. Config_PrintSettings(code_seen('S') && !code_value_bool());
  5204. }
  5205. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  5206. /**
  5207. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  5208. */
  5209. inline void gcode_M540() {
  5210. if (code_seen('S')) stepper.abort_on_endstop_hit = code_value_bool();
  5211. }
  5212. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5213. #if HAS_BED_PROBE
  5214. inline void gcode_M851() {
  5215. SERIAL_ECHO_START;
  5216. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  5217. SERIAL_CHAR(' ');
  5218. if (code_seen('Z')) {
  5219. float value = code_value_axis_units(Z_AXIS);
  5220. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  5221. zprobe_zoffset = value;
  5222. SERIAL_ECHO(zprobe_zoffset);
  5223. }
  5224. else {
  5225. SERIAL_ECHOPGM(MSG_Z_MIN);
  5226. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5227. SERIAL_CHAR(' ');
  5228. SERIAL_ECHOPGM(MSG_Z_MAX);
  5229. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5230. }
  5231. }
  5232. else {
  5233. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  5234. }
  5235. SERIAL_EOL;
  5236. }
  5237. #endif // HAS_BED_PROBE
  5238. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  5239. /**
  5240. * M600: Pause for filament change
  5241. *
  5242. * E[distance] - Retract the filament this far (negative value)
  5243. * Z[distance] - Move the Z axis by this distance
  5244. * X[position] - Move to this X position, with Y
  5245. * Y[position] - Move to this Y position, with X
  5246. * L[distance] - Retract distance for removal (manual reload)
  5247. *
  5248. * Default values are used for omitted arguments.
  5249. *
  5250. */
  5251. inline void gcode_M600() {
  5252. if (thermalManager.tooColdToExtrude(active_extruder)) {
  5253. SERIAL_ERROR_START;
  5254. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  5255. return;
  5256. }
  5257. // Show initial message and wait for synchronize steppers
  5258. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INIT);
  5259. stepper.synchronize();
  5260. float lastpos[NUM_AXIS];
  5261. // Save current position of all axes
  5262. for (uint8_t i = 0; i < NUM_AXIS; i++)
  5263. lastpos[i] = destination[i] = current_position[i];
  5264. // Define runplan for move axes
  5265. #if ENABLED(DELTA)
  5266. #define RUNPLAN(RATE) calculate_delta(destination); \
  5267. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], RATE, active_extruder);
  5268. #else
  5269. #define RUNPLAN(RATE) line_to_destination(RATE * 60);
  5270. #endif
  5271. KEEPALIVE_STATE(IN_HANDLER);
  5272. // Initial retract before move to filament change position
  5273. if (code_seen('E')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  5274. #if defined(FILAMENT_CHANGE_RETRACT_LENGTH) && FILAMENT_CHANGE_RETRACT_LENGTH > 0
  5275. else destination[E_AXIS] -= FILAMENT_CHANGE_RETRACT_LENGTH;
  5276. #endif
  5277. RUNPLAN(FILAMENT_CHANGE_RETRACT_FEEDRATE);
  5278. // Lift Z axis
  5279. float z_lift = code_seen('Z') ? code_value_axis_units(Z_AXIS) :
  5280. #if defined(FILAMENT_CHANGE_Z_ADD) && FILAMENT_CHANGE_Z_ADD > 0
  5281. FILAMENT_CHANGE_Z_ADD
  5282. #else
  5283. 0
  5284. #endif
  5285. ;
  5286. if (z_lift > 0) {
  5287. destination[Z_AXIS] += z_lift;
  5288. NOMORE(destination[Z_AXIS], Z_MAX_POS);
  5289. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  5290. }
  5291. // Move XY axes to filament exchange position
  5292. if (code_seen('X')) destination[X_AXIS] = code_value_axis_units(X_AXIS);
  5293. #ifdef FILAMENT_CHANGE_X_POS
  5294. else destination[X_AXIS] = FILAMENT_CHANGE_X_POS;
  5295. #endif
  5296. if (code_seen('Y')) destination[Y_AXIS] = code_value_axis_units(Y_AXIS);
  5297. #ifdef FILAMENT_CHANGE_Y_POS
  5298. else destination[Y_AXIS] = FILAMENT_CHANGE_Y_POS;
  5299. #endif
  5300. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  5301. stepper.synchronize();
  5302. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_UNLOAD);
  5303. // Unload filament
  5304. if (code_seen('L')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  5305. #if defined(FILAMENT_CHANGE_UNLOAD_LENGTH) && FILAMENT_CHANGE_UNLOAD_LENGTH > 0
  5306. else destination[E_AXIS] -= FILAMENT_CHANGE_UNLOAD_LENGTH;
  5307. #endif
  5308. RUNPLAN(FILAMENT_CHANGE_UNLOAD_FEEDRATE);
  5309. // Synchronize steppers and then disable extruders steppers for manual filament changing
  5310. stepper.synchronize();
  5311. disable_e0();
  5312. disable_e1();
  5313. disable_e2();
  5314. disable_e3();
  5315. delay(100);
  5316. millis_t next_tick = 0;
  5317. // Wait for filament insert by user and press button
  5318. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INSERT);
  5319. while (!lcd_clicked()) {
  5320. #if HAS_BUZZER
  5321. millis_t ms = millis();
  5322. if (ms >= next_tick) {
  5323. buzzer.tone(300, 2000);
  5324. next_tick = ms + 2500; // Beep every 2.5s while waiting
  5325. }
  5326. #endif
  5327. idle(true);
  5328. }
  5329. delay(100);
  5330. while (lcd_clicked()) idle(true);
  5331. delay(100);
  5332. // Show load message
  5333. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_LOAD);
  5334. // Load filament
  5335. if (code_seen('L')) destination[E_AXIS] -= code_value_axis_units(E_AXIS);
  5336. #if defined(FILAMENT_CHANGE_LOAD_LENGTH) && FILAMENT_CHANGE_LOAD_LENGTH > 0
  5337. else destination[E_AXIS] += FILAMENT_CHANGE_LOAD_LENGTH;
  5338. #endif
  5339. RUNPLAN(FILAMENT_CHANGE_LOAD_FEEDRATE);
  5340. stepper.synchronize();
  5341. #if defined(FILAMENT_CHANGE_EXTRUDE_LENGTH) && FILAMENT_CHANGE_EXTRUDE_LENGTH > 0
  5342. do {
  5343. // Extrude filament to get into hotend
  5344. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_EXTRUDE);
  5345. destination[E_AXIS] += FILAMENT_CHANGE_EXTRUDE_LENGTH;
  5346. RUNPLAN(FILAMENT_CHANGE_EXTRUDE_FEEDRATE);
  5347. stepper.synchronize();
  5348. // Ask user if more filament should be extruded
  5349. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5350. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_OPTION);
  5351. while (filament_change_menu_response == FILAMENT_CHANGE_RESPONSE_WAIT_FOR) idle(true);
  5352. KEEPALIVE_STATE(IN_HANDLER);
  5353. } while (filament_change_menu_response != FILAMENT_CHANGE_RESPONSE_RESUME_PRINT);
  5354. #endif
  5355. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_RESUME);
  5356. KEEPALIVE_STATE(IN_HANDLER);
  5357. // Set extruder to saved position
  5358. current_position[E_AXIS] = lastpos[E_AXIS];
  5359. destination[E_AXIS] = lastpos[E_AXIS];
  5360. planner.set_e_position_mm(current_position[E_AXIS]);
  5361. #if ENABLED(DELTA)
  5362. // Move XYZ to starting position, then E
  5363. calculate_delta(lastpos);
  5364. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  5365. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  5366. #else
  5367. // Move XY to starting position, then Z, then E
  5368. destination[X_AXIS] = lastpos[X_AXIS];
  5369. destination[Y_AXIS] = lastpos[Y_AXIS];
  5370. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  5371. destination[Z_AXIS] = lastpos[Z_AXIS];
  5372. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  5373. #endif
  5374. stepper.synchronize();
  5375. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  5376. filament_ran_out = false;
  5377. #endif
  5378. // Show status screen
  5379. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_STATUS);
  5380. }
  5381. #endif // FILAMENT_CHANGE_FEATURE
  5382. #if ENABLED(DUAL_X_CARRIAGE)
  5383. /**
  5384. * M605: Set dual x-carriage movement mode
  5385. *
  5386. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  5387. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  5388. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  5389. * units x-offset and an optional differential hotend temperature of
  5390. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  5391. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  5392. *
  5393. * Note: the X axis should be homed after changing dual x-carriage mode.
  5394. */
  5395. inline void gcode_M605() {
  5396. stepper.synchronize();
  5397. if (code_seen('S')) dual_x_carriage_mode = code_value_byte();
  5398. switch (dual_x_carriage_mode) {
  5399. case DXC_DUPLICATION_MODE:
  5400. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value_axis_units(X_AXIS), X2_MIN_POS - x_home_pos(0));
  5401. if (code_seen('R')) duplicate_extruder_temp_offset = code_value_temp_diff();
  5402. SERIAL_ECHO_START;
  5403. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  5404. SERIAL_CHAR(' ');
  5405. SERIAL_ECHO(hotend_offset[X_AXIS][0]);
  5406. SERIAL_CHAR(',');
  5407. SERIAL_ECHO(hotend_offset[Y_AXIS][0]);
  5408. SERIAL_CHAR(' ');
  5409. SERIAL_ECHO(duplicate_extruder_x_offset);
  5410. SERIAL_CHAR(',');
  5411. SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]);
  5412. break;
  5413. case DXC_FULL_CONTROL_MODE:
  5414. case DXC_AUTO_PARK_MODE:
  5415. break;
  5416. default:
  5417. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  5418. break;
  5419. }
  5420. active_extruder_parked = false;
  5421. extruder_duplication_enabled = false;
  5422. delayed_move_time = 0;
  5423. }
  5424. #endif // DUAL_X_CARRIAGE
  5425. #if ENABLED(LIN_ADVANCE)
  5426. /**
  5427. * M905: Set advance factor
  5428. */
  5429. inline void gcode_M905() {
  5430. stepper.synchronize();
  5431. stepper.advance_M905(code_seen('K') ? code_value_float() : -1.0);
  5432. }
  5433. #endif
  5434. /**
  5435. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  5436. */
  5437. inline void gcode_M907() {
  5438. #if HAS_DIGIPOTSS
  5439. for (int i = 0; i < NUM_AXIS; i++)
  5440. if (code_seen(axis_codes[i])) stepper.digipot_current(i, code_value_int());
  5441. if (code_seen('B')) stepper.digipot_current(4, code_value_int());
  5442. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.digipot_current(i, code_value_int());
  5443. #endif
  5444. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  5445. if (code_seen('X')) stepper.digipot_current(0, code_value_int());
  5446. #endif
  5447. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  5448. if (code_seen('Z')) stepper.digipot_current(1, code_value_int());
  5449. #endif
  5450. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  5451. if (code_seen('E')) stepper.digipot_current(2, code_value_int());
  5452. #endif
  5453. #if ENABLED(DIGIPOT_I2C)
  5454. // this one uses actual amps in floating point
  5455. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value_float());
  5456. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  5457. for (int i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value_float());
  5458. #endif
  5459. #if ENABLED(DAC_STEPPER_CURRENT)
  5460. if (code_seen('S')) {
  5461. float dac_percent = code_value_float();
  5462. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  5463. }
  5464. for (uint8_t i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value_float());
  5465. #endif
  5466. }
  5467. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  5468. /**
  5469. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  5470. */
  5471. inline void gcode_M908() {
  5472. #if HAS_DIGIPOTSS
  5473. stepper.digitalPotWrite(
  5474. code_seen('P') ? code_value_int() : 0,
  5475. code_seen('S') ? code_value_int() : 0
  5476. );
  5477. #endif
  5478. #ifdef DAC_STEPPER_CURRENT
  5479. dac_current_raw(
  5480. code_seen('P') ? code_value_byte() : -1,
  5481. code_seen('S') ? code_value_ushort() : 0
  5482. );
  5483. #endif
  5484. }
  5485. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  5486. inline void gcode_M909() { dac_print_values(); }
  5487. inline void gcode_M910() { dac_commit_eeprom(); }
  5488. #endif
  5489. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  5490. #if HAS_MICROSTEPS
  5491. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5492. inline void gcode_M350() {
  5493. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, code_value_byte());
  5494. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) stepper.microstep_mode(i, code_value_byte());
  5495. if (code_seen('B')) stepper.microstep_mode(4, code_value_byte());
  5496. stepper.microstep_readings();
  5497. }
  5498. /**
  5499. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  5500. * S# determines MS1 or MS2, X# sets the pin high/low.
  5501. */
  5502. inline void gcode_M351() {
  5503. if (code_seen('S')) switch (code_value_byte()) {
  5504. case 1:
  5505. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, code_value_byte(), -1);
  5506. if (code_seen('B')) stepper.microstep_ms(4, code_value_byte(), -1);
  5507. break;
  5508. case 2:
  5509. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, -1, code_value_byte());
  5510. if (code_seen('B')) stepper.microstep_ms(4, -1, code_value_byte());
  5511. break;
  5512. }
  5513. stepper.microstep_readings();
  5514. }
  5515. #endif // HAS_MICROSTEPS
  5516. /**
  5517. * M999: Restart after being stopped
  5518. *
  5519. * Default behaviour is to flush the serial buffer and request
  5520. * a resend to the host starting on the last N line received.
  5521. *
  5522. * Sending "M999 S1" will resume printing without flushing the
  5523. * existing command buffer.
  5524. *
  5525. */
  5526. inline void gcode_M999() {
  5527. Running = true;
  5528. lcd_reset_alert_level();
  5529. if (code_seen('S') && code_value_bool()) return;
  5530. // gcode_LastN = Stopped_gcode_LastN;
  5531. FlushSerialRequestResend();
  5532. }
  5533. /**
  5534. * T0-T3: Switch tool, usually switching extruders
  5535. *
  5536. * F[units/min] Set the movement feedrate
  5537. * S1 Don't move the tool in XY after change
  5538. */
  5539. inline void gcode_T(uint8_t tmp_extruder) {
  5540. if (tmp_extruder >= EXTRUDERS) {
  5541. SERIAL_ECHO_START;
  5542. SERIAL_CHAR('T');
  5543. SERIAL_PROTOCOL_F(tmp_extruder, DEC);
  5544. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  5545. return;
  5546. }
  5547. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5548. if (DEBUGGING(LEVELING)) {
  5549. SERIAL_ECHOLNPGM(">>> gcode_T");
  5550. DEBUG_POS("BEFORE", current_position);
  5551. }
  5552. #endif
  5553. #if HOTENDS > 1
  5554. float old_feedrate = feedrate;
  5555. if (code_seen('F')) {
  5556. float next_feedrate = code_value_axis_units(X_AXIS);
  5557. if (next_feedrate > 0.0) old_feedrate = feedrate = next_feedrate;
  5558. }
  5559. else
  5560. feedrate = XY_PROBE_FEEDRATE;
  5561. if (tmp_extruder != active_extruder) {
  5562. bool no_move = code_seen('S') && code_value_bool();
  5563. // Save current position to return to after applying extruder offset
  5564. if (!no_move) set_destination_to_current();
  5565. #if ENABLED(DUAL_X_CARRIAGE)
  5566. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  5567. (delayed_move_time || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  5568. // Park old head: 1) raise 2) move to park position 3) lower
  5569. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  5570. current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder);
  5571. planner.buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  5572. current_position[E_AXIS], planner.max_feedrate[X_AXIS], active_extruder);
  5573. planner.buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  5574. current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder);
  5575. stepper.synchronize();
  5576. }
  5577. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  5578. current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
  5579. current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
  5580. active_extruder = tmp_extruder;
  5581. // This function resets the max/min values - the current position may be overwritten below.
  5582. set_axis_is_at_home(X_AXIS);
  5583. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  5584. current_position[X_AXIS] = inactive_extruder_x_pos;
  5585. inactive_extruder_x_pos = destination[X_AXIS];
  5586. }
  5587. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  5588. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  5589. if (active_extruder_parked)
  5590. current_position[X_AXIS] = inactive_extruder_x_pos;
  5591. else
  5592. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  5593. inactive_extruder_x_pos = destination[X_AXIS];
  5594. extruder_duplication_enabled = false;
  5595. }
  5596. else {
  5597. // record raised toolhead position for use by unpark
  5598. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  5599. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  5600. active_extruder_parked = true;
  5601. delayed_move_time = 0;
  5602. }
  5603. // No extra case for AUTO_BED_LEVELING_FEATURE in DUAL_X_CARRIAGE. Does that mean they don't work together?
  5604. #else // !DUAL_X_CARRIAGE
  5605. //
  5606. // Set current_position to the position of the new nozzle.
  5607. // Offsets are based on linear distance, so we need to get
  5608. // the resulting position in coordinate space.
  5609. //
  5610. // - With grid or 3-point leveling, offset XYZ by a tilted vector
  5611. // - With mesh leveling, update Z for the new position
  5612. // - Otherwise, just use the raw linear distance
  5613. //
  5614. // Software endstops are altered here too. Consider a case where:
  5615. // E0 at X=0 ... E1 at X=10
  5616. // When we switch to E1 now X=10, but E1 can't move left.
  5617. // To express this we apply the change in XY to the software endstops.
  5618. // E1 can move farther right than E0, so the right limit is extended.
  5619. //
  5620. // Note that we don't adjust the Z software endstops. Why not?
  5621. // Consider a case where Z=0 (here) and switching to E1 makes Z=1
  5622. // because the bed is 1mm lower at the new position. As long as
  5623. // the first nozzle is out of the way, the carriage should be
  5624. // allowed to move 1mm lower. This technically "breaks" the
  5625. // Z software endstop. But this is technically correct (and
  5626. // there is no viable alternative).
  5627. //
  5628. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5629. // Offset extruder, make sure to apply the bed level rotation matrix
  5630. vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder],
  5631. hotend_offset[Y_AXIS][tmp_extruder],
  5632. 0),
  5633. act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder],
  5634. hotend_offset[Y_AXIS][active_extruder],
  5635. 0),
  5636. offset_vec = tmp_offset_vec - act_offset_vec;
  5637. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5638. if (DEBUGGING(LEVELING)) {
  5639. tmp_offset_vec.debug("tmp_offset_vec");
  5640. act_offset_vec.debug("act_offset_vec");
  5641. offset_vec.debug("offset_vec (BEFORE)");
  5642. }
  5643. #endif
  5644. offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
  5645. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5646. if (DEBUGGING(LEVELING)) offset_vec.debug("offset_vec (AFTER)");
  5647. #endif
  5648. // Adjustments to the current position
  5649. float xydiff[2] = { offset_vec.x, offset_vec.y };
  5650. current_position[Z_AXIS] += offset_vec.z;
  5651. #else // !AUTO_BED_LEVELING_FEATURE
  5652. float xydiff[2] = {
  5653. hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder],
  5654. hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder]
  5655. };
  5656. #if ENABLED(MESH_BED_LEVELING)
  5657. if (mbl.active()) {
  5658. float xpos = RAW_CURRENT_POSITION(X_AXIS),
  5659. ypos = RAW_CURRENT_POSITION(Y_AXIS);
  5660. current_position[Z_AXIS] += mbl.get_z(xpos + xydiff[X_AXIS], ypos + xydiff[Y_AXIS]) - mbl.get_z(xpos, ypos);
  5661. }
  5662. #endif // MESH_BED_LEVELING
  5663. #endif // !AUTO_BED_LEVELING_FEATURE
  5664. // The newly-selected extruder XY is actually at...
  5665. current_position[X_AXIS] += xydiff[X_AXIS];
  5666. current_position[Y_AXIS] += xydiff[Y_AXIS];
  5667. for (uint8_t i = X_AXIS; i <= Y_AXIS; i++) {
  5668. position_shift[i] += xydiff[i];
  5669. update_software_endstops((AxisEnum)i);
  5670. }
  5671. // Set the new active extruder
  5672. active_extruder = tmp_extruder;
  5673. #endif // !DUAL_X_CARRIAGE
  5674. // Tell the planner the new "current position"
  5675. SYNC_PLAN_POSITION_KINEMATIC();
  5676. // Move to the "old position" (move the extruder into place)
  5677. if (!no_move && IsRunning()) prepare_move_to_destination();
  5678. } // (tmp_extruder != active_extruder)
  5679. #if ENABLED(EXT_SOLENOID)
  5680. stepper.synchronize();
  5681. disable_all_solenoids();
  5682. enable_solenoid_on_active_extruder();
  5683. #endif // EXT_SOLENOID
  5684. feedrate = old_feedrate;
  5685. #else // !HOTENDS > 1
  5686. // Set the new active extruder
  5687. active_extruder = tmp_extruder;
  5688. #endif
  5689. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5690. if (DEBUGGING(LEVELING)) {
  5691. DEBUG_POS("AFTER", current_position);
  5692. SERIAL_ECHOLNPGM("<<< gcode_T");
  5693. }
  5694. #endif
  5695. SERIAL_ECHO_START;
  5696. SERIAL_ECHOPGM(MSG_ACTIVE_EXTRUDER);
  5697. SERIAL_PROTOCOLLN((int)active_extruder);
  5698. }
  5699. /**
  5700. * Process a single command and dispatch it to its handler
  5701. * This is called from the main loop()
  5702. */
  5703. void process_next_command() {
  5704. current_command = command_queue[cmd_queue_index_r];
  5705. if (DEBUGGING(ECHO)) {
  5706. SERIAL_ECHO_START;
  5707. SERIAL_ECHOLN(current_command);
  5708. }
  5709. // Sanitize the current command:
  5710. // - Skip leading spaces
  5711. // - Bypass N[-0-9][0-9]*[ ]*
  5712. // - Overwrite * with nul to mark the end
  5713. while (*current_command == ' ') ++current_command;
  5714. if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) {
  5715. current_command += 2; // skip N[-0-9]
  5716. while (NUMERIC(*current_command)) ++current_command; // skip [0-9]*
  5717. while (*current_command == ' ') ++current_command; // skip [ ]*
  5718. }
  5719. char* starpos = strchr(current_command, '*'); // * should always be the last parameter
  5720. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  5721. char *cmd_ptr = current_command;
  5722. // Get the command code, which must be G, M, or T
  5723. char command_code = *cmd_ptr++;
  5724. // Skip spaces to get the numeric part
  5725. while (*cmd_ptr == ' ') cmd_ptr++;
  5726. uint16_t codenum = 0; // define ahead of goto
  5727. // Bail early if there's no code
  5728. bool code_is_good = NUMERIC(*cmd_ptr);
  5729. if (!code_is_good) goto ExitUnknownCommand;
  5730. // Get and skip the code number
  5731. do {
  5732. codenum = (codenum * 10) + (*cmd_ptr - '0');
  5733. cmd_ptr++;
  5734. } while (NUMERIC(*cmd_ptr));
  5735. // Skip all spaces to get to the first argument, or nul
  5736. while (*cmd_ptr == ' ') cmd_ptr++;
  5737. // The command's arguments (if any) start here, for sure!
  5738. current_command_args = cmd_ptr;
  5739. KEEPALIVE_STATE(IN_HANDLER);
  5740. // Handle a known G, M, or T
  5741. switch (command_code) {
  5742. case 'G': switch (codenum) {
  5743. // G0, G1
  5744. case 0:
  5745. case 1:
  5746. gcode_G0_G1();
  5747. break;
  5748. // G2, G3
  5749. #if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
  5750. case 2: // G2 - CW ARC
  5751. case 3: // G3 - CCW ARC
  5752. gcode_G2_G3(codenum == 2);
  5753. break;
  5754. #endif
  5755. // G4 Dwell
  5756. case 4:
  5757. gcode_G4();
  5758. break;
  5759. #if ENABLED(BEZIER_CURVE_SUPPORT)
  5760. // G5
  5761. case 5: // G5 - Cubic B_spline
  5762. gcode_G5();
  5763. break;
  5764. #endif // BEZIER_CURVE_SUPPORT
  5765. #if ENABLED(FWRETRACT)
  5766. case 10: // G10: retract
  5767. case 11: // G11: retract_recover
  5768. gcode_G10_G11(codenum == 10);
  5769. break;
  5770. #endif // FWRETRACT
  5771. #if ENABLED(INCH_MODE_SUPPORT)
  5772. case 20: //G20: Inch Mode
  5773. gcode_G20();
  5774. break;
  5775. case 21: //G21: MM Mode
  5776. gcode_G21();
  5777. break;
  5778. #endif
  5779. case 28: // G28: Home all axes, one at a time
  5780. gcode_G28();
  5781. break;
  5782. #if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
  5783. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points.
  5784. gcode_G29();
  5785. break;
  5786. #endif
  5787. #if HAS_BED_PROBE
  5788. case 30: // G30 Single Z probe
  5789. gcode_G30();
  5790. break;
  5791. #if ENABLED(Z_PROBE_SLED)
  5792. case 31: // G31: dock the sled
  5793. gcode_G31();
  5794. break;
  5795. case 32: // G32: undock the sled
  5796. gcode_G32();
  5797. break;
  5798. #endif // Z_PROBE_SLED
  5799. #endif // HAS_BED_PROBE
  5800. case 90: // G90
  5801. relative_mode = false;
  5802. break;
  5803. case 91: // G91
  5804. relative_mode = true;
  5805. break;
  5806. case 92: // G92
  5807. gcode_G92();
  5808. break;
  5809. }
  5810. break;
  5811. case 'M': switch (codenum) {
  5812. #if ENABLED(ULTIPANEL)
  5813. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  5814. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  5815. gcode_M0_M1();
  5816. break;
  5817. #endif // ULTIPANEL
  5818. case 17:
  5819. gcode_M17();
  5820. break;
  5821. #if ENABLED(SDSUPPORT)
  5822. case 20: // M20 - list SD card
  5823. gcode_M20(); break;
  5824. case 21: // M21 - init SD card
  5825. gcode_M21(); break;
  5826. case 22: //M22 - release SD card
  5827. gcode_M22(); break;
  5828. case 23: //M23 - Select file
  5829. gcode_M23(); break;
  5830. case 24: //M24 - Start SD print
  5831. gcode_M24(); break;
  5832. case 25: //M25 - Pause SD print
  5833. gcode_M25(); break;
  5834. case 26: //M26 - Set SD index
  5835. gcode_M26(); break;
  5836. case 27: //M27 - Get SD status
  5837. gcode_M27(); break;
  5838. case 28: //M28 - Start SD write
  5839. gcode_M28(); break;
  5840. case 29: //M29 - Stop SD write
  5841. gcode_M29(); break;
  5842. case 30: //M30 <filename> Delete File
  5843. gcode_M30(); break;
  5844. case 32: //M32 - Select file and start SD print
  5845. gcode_M32(); break;
  5846. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  5847. case 33: //M33 - Get the long full path to a file or folder
  5848. gcode_M33(); break;
  5849. #endif // LONG_FILENAME_HOST_SUPPORT
  5850. case 928: //M928 - Start SD write
  5851. gcode_M928(); break;
  5852. #endif //SDSUPPORT
  5853. case 31: //M31 take time since the start of the SD print or an M109 command
  5854. gcode_M31();
  5855. break;
  5856. case 42: //M42 -Change pin status via gcode
  5857. gcode_M42();
  5858. break;
  5859. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  5860. case 48: // M48 Z probe repeatability
  5861. gcode_M48();
  5862. break;
  5863. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  5864. case 75: // Start print timer
  5865. gcode_M75();
  5866. break;
  5867. case 76: // Pause print timer
  5868. gcode_M76();
  5869. break;
  5870. case 77: // Stop print timer
  5871. gcode_M77();
  5872. break;
  5873. #if ENABLED(PRINTCOUNTER)
  5874. case 78: // Show print statistics
  5875. gcode_M78();
  5876. break;
  5877. #endif
  5878. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  5879. case 100:
  5880. gcode_M100();
  5881. break;
  5882. #endif
  5883. case 104: // M104
  5884. gcode_M104();
  5885. break;
  5886. case 110: // M110: Set Current Line Number
  5887. gcode_M110();
  5888. break;
  5889. case 111: // M111: Set debug level
  5890. gcode_M111();
  5891. break;
  5892. case 112: // M112: Emergency Stop
  5893. gcode_M112();
  5894. break;
  5895. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  5896. case 113: // M113: Set Host Keepalive interval
  5897. gcode_M113();
  5898. break;
  5899. #endif
  5900. case 140: // M140: Set bed temp
  5901. gcode_M140();
  5902. break;
  5903. case 105: // M105: Read current temperature
  5904. gcode_M105();
  5905. KEEPALIVE_STATE(NOT_BUSY);
  5906. return; // "ok" already printed
  5907. case 108:
  5908. gcode_M108();
  5909. break;
  5910. case 109: // M109: Wait for temperature
  5911. gcode_M109();
  5912. break;
  5913. #if HAS_TEMP_BED
  5914. case 190: // M190: Wait for bed heater to reach target
  5915. gcode_M190();
  5916. break;
  5917. #endif // HAS_TEMP_BED
  5918. #if FAN_COUNT > 0
  5919. case 106: // M106: Fan On
  5920. gcode_M106();
  5921. break;
  5922. case 107: // M107: Fan Off
  5923. gcode_M107();
  5924. break;
  5925. #endif // FAN_COUNT > 0
  5926. #if ENABLED(BARICUDA)
  5927. // PWM for HEATER_1_PIN
  5928. #if HAS_HEATER_1
  5929. case 126: // M126: valve open
  5930. gcode_M126();
  5931. break;
  5932. case 127: // M127: valve closed
  5933. gcode_M127();
  5934. break;
  5935. #endif // HAS_HEATER_1
  5936. // PWM for HEATER_2_PIN
  5937. #if HAS_HEATER_2
  5938. case 128: // M128: valve open
  5939. gcode_M128();
  5940. break;
  5941. case 129: // M129: valve closed
  5942. gcode_M129();
  5943. break;
  5944. #endif // HAS_HEATER_2
  5945. #endif // BARICUDA
  5946. #if HAS_POWER_SWITCH
  5947. case 80: // M80: Turn on Power Supply
  5948. gcode_M80();
  5949. break;
  5950. #endif // HAS_POWER_SWITCH
  5951. case 81: // M81: Turn off Power, including Power Supply, if possible
  5952. gcode_M81();
  5953. break;
  5954. case 82:
  5955. gcode_M82();
  5956. break;
  5957. case 83:
  5958. gcode_M83();
  5959. break;
  5960. case 18: // (for compatibility)
  5961. case 84: // M84
  5962. gcode_M18_M84();
  5963. break;
  5964. case 85: // M85
  5965. gcode_M85();
  5966. break;
  5967. case 92: // M92: Set the steps-per-unit for one or more axes
  5968. gcode_M92();
  5969. break;
  5970. case 115: // M115: Report capabilities
  5971. gcode_M115();
  5972. break;
  5973. case 117: // M117: Set LCD message text, if possible
  5974. gcode_M117();
  5975. break;
  5976. case 114: // M114: Report current position
  5977. gcode_M114();
  5978. break;
  5979. case 120: // M120: Enable endstops
  5980. gcode_M120();
  5981. break;
  5982. case 121: // M121: Disable endstops
  5983. gcode_M121();
  5984. break;
  5985. case 119: // M119: Report endstop states
  5986. gcode_M119();
  5987. break;
  5988. #if ENABLED(ULTIPANEL)
  5989. case 145: // M145: Set material heatup parameters
  5990. gcode_M145();
  5991. break;
  5992. #endif
  5993. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  5994. case 149:
  5995. gcode_M149();
  5996. break;
  5997. #endif
  5998. #if ENABLED(BLINKM)
  5999. case 150: // M150
  6000. gcode_M150();
  6001. break;
  6002. #endif //BLINKM
  6003. #if ENABLED(EXPERIMENTAL_I2CBUS)
  6004. case 155:
  6005. gcode_M155();
  6006. break;
  6007. case 156:
  6008. gcode_M156();
  6009. break;
  6010. #endif //EXPERIMENTAL_I2CBUS
  6011. case 200: // M200 D<diameter> Set filament diameter and set E axis units to cubic. (Use S0 to revert to linear units.)
  6012. gcode_M200();
  6013. break;
  6014. case 201: // M201
  6015. gcode_M201();
  6016. break;
  6017. #if 0 // Not used for Sprinter/grbl gen6
  6018. case 202: // M202
  6019. gcode_M202();
  6020. break;
  6021. #endif
  6022. case 203: // M203 max feedrate units/sec
  6023. gcode_M203();
  6024. break;
  6025. case 204: // M204 acclereration S normal moves T filmanent only moves
  6026. gcode_M204();
  6027. break;
  6028. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  6029. gcode_M205();
  6030. break;
  6031. case 206: // M206 additional homing offset
  6032. gcode_M206();
  6033. break;
  6034. #if ENABLED(DELTA)
  6035. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  6036. gcode_M665();
  6037. break;
  6038. #endif
  6039. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  6040. case 666: // M666 set delta / dual endstop adjustment
  6041. gcode_M666();
  6042. break;
  6043. #endif
  6044. #if ENABLED(FWRETRACT)
  6045. case 207: // M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>
  6046. gcode_M207();
  6047. break;
  6048. case 208: // M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>
  6049. gcode_M208();
  6050. break;
  6051. case 209: // M209 - Turn Automatic Retract Detection on/off: S<bool> (For slicers that don't support G10/11). Every normal extrude-only move will be classified as retract depending on the direction.
  6052. gcode_M209();
  6053. break;
  6054. #endif // FWRETRACT
  6055. #if HOTENDS > 1
  6056. case 218: // M218 - Set a tool offset: T<index> X<offset> Y<offset>
  6057. gcode_M218();
  6058. break;
  6059. #endif
  6060. case 220: // M220 - Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  6061. gcode_M220();
  6062. break;
  6063. case 221: // M221 - Set Flow Percentage: S<percent>
  6064. gcode_M221();
  6065. break;
  6066. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  6067. gcode_M226();
  6068. break;
  6069. #if HAS_SERVOS
  6070. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  6071. gcode_M280();
  6072. break;
  6073. #endif // HAS_SERVOS
  6074. #if HAS_BUZZER
  6075. case 300: // M300 - Play beep tone
  6076. gcode_M300();
  6077. break;
  6078. #endif // HAS_BUZZER
  6079. #if ENABLED(PIDTEMP)
  6080. case 301: // M301
  6081. gcode_M301();
  6082. break;
  6083. #endif // PIDTEMP
  6084. #if ENABLED(PIDTEMPBED)
  6085. case 304: // M304
  6086. gcode_M304();
  6087. break;
  6088. #endif // PIDTEMPBED
  6089. #if defined(CHDK) || HAS_PHOTOGRAPH
  6090. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  6091. gcode_M240();
  6092. break;
  6093. #endif // CHDK || PHOTOGRAPH_PIN
  6094. #if HAS_LCD_CONTRAST
  6095. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  6096. gcode_M250();
  6097. break;
  6098. #endif // HAS_LCD_CONTRAST
  6099. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  6100. case 302: // allow cold extrudes, or set the minimum extrude temperature
  6101. gcode_M302();
  6102. break;
  6103. #endif // PREVENT_DANGEROUS_EXTRUDE
  6104. case 303: // M303 PID autotune
  6105. gcode_M303();
  6106. break;
  6107. #if ENABLED(SCARA)
  6108. case 360: // M360 SCARA Theta pos1
  6109. if (gcode_M360()) return;
  6110. break;
  6111. case 361: // M361 SCARA Theta pos2
  6112. if (gcode_M361()) return;
  6113. break;
  6114. case 362: // M362 SCARA Psi pos1
  6115. if (gcode_M362()) return;
  6116. break;
  6117. case 363: // M363 SCARA Psi pos2
  6118. if (gcode_M363()) return;
  6119. break;
  6120. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  6121. if (gcode_M364()) return;
  6122. break;
  6123. case 365: // M365 Set SCARA scaling for X Y Z
  6124. gcode_M365();
  6125. break;
  6126. #endif // SCARA
  6127. case 400: // M400 finish all moves
  6128. gcode_M400();
  6129. break;
  6130. #if HAS_BED_PROBE
  6131. case 401:
  6132. gcode_M401();
  6133. break;
  6134. case 402:
  6135. gcode_M402();
  6136. break;
  6137. #endif // HAS_BED_PROBE
  6138. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  6139. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  6140. gcode_M404();
  6141. break;
  6142. case 405: //M405 Turn on filament sensor for control
  6143. gcode_M405();
  6144. break;
  6145. case 406: //M406 Turn off filament sensor for control
  6146. gcode_M406();
  6147. break;
  6148. case 407: //M407 Display measured filament diameter
  6149. gcode_M407();
  6150. break;
  6151. #endif // ENABLED(FILAMENT_WIDTH_SENSOR)
  6152. case 410: // M410 quickstop - Abort all the planned moves.
  6153. gcode_M410();
  6154. break;
  6155. #if ENABLED(MESH_BED_LEVELING)
  6156. case 420: // M420 Enable/Disable Mesh Bed Leveling
  6157. gcode_M420();
  6158. break;
  6159. case 421: // M421 Set a Mesh Bed Leveling Z coordinate
  6160. gcode_M421();
  6161. break;
  6162. #endif
  6163. case 428: // M428 Apply current_position to home_offset
  6164. gcode_M428();
  6165. break;
  6166. case 500: // M500 Store settings in EEPROM
  6167. gcode_M500();
  6168. break;
  6169. case 501: // M501 Read settings from EEPROM
  6170. gcode_M501();
  6171. break;
  6172. case 502: // M502 Revert to default settings
  6173. gcode_M502();
  6174. break;
  6175. case 503: // M503 print settings currently in memory
  6176. gcode_M503();
  6177. break;
  6178. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  6179. case 540:
  6180. gcode_M540();
  6181. break;
  6182. #endif
  6183. #if HAS_BED_PROBE
  6184. case 851:
  6185. gcode_M851();
  6186. break;
  6187. #endif // HAS_BED_PROBE
  6188. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  6189. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  6190. gcode_M600();
  6191. break;
  6192. #endif // FILAMENT_CHANGE_FEATURE
  6193. #if ENABLED(DUAL_X_CARRIAGE)
  6194. case 605:
  6195. gcode_M605();
  6196. break;
  6197. #endif // DUAL_X_CARRIAGE
  6198. #if ENABLED(LIN_ADVANCE)
  6199. case 905: // M905 Set advance factor.
  6200. gcode_M905();
  6201. break;
  6202. #endif
  6203. case 907: // M907 Set digital trimpot motor current using axis codes.
  6204. gcode_M907();
  6205. break;
  6206. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  6207. case 908: // M908 Control digital trimpot directly.
  6208. gcode_M908();
  6209. break;
  6210. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  6211. case 909: // M909 Print digipot/DAC current value
  6212. gcode_M909();
  6213. break;
  6214. case 910: // M910 Commit digipot/DAC value to external EEPROM
  6215. gcode_M910();
  6216. break;
  6217. #endif
  6218. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  6219. #if HAS_MICROSTEPS
  6220. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  6221. gcode_M350();
  6222. break;
  6223. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  6224. gcode_M351();
  6225. break;
  6226. #endif // HAS_MICROSTEPS
  6227. case 999: // M999: Restart after being Stopped
  6228. gcode_M999();
  6229. break;
  6230. }
  6231. break;
  6232. case 'T':
  6233. gcode_T(codenum);
  6234. break;
  6235. default: code_is_good = false;
  6236. }
  6237. KEEPALIVE_STATE(NOT_BUSY);
  6238. ExitUnknownCommand:
  6239. // Still unknown command? Throw an error
  6240. if (!code_is_good) unknown_command_error();
  6241. ok_to_send();
  6242. }
  6243. void FlushSerialRequestResend() {
  6244. //char command_queue[cmd_queue_index_r][100]="Resend:";
  6245. MYSERIAL.flush();
  6246. SERIAL_PROTOCOLPGM(MSG_RESEND);
  6247. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  6248. ok_to_send();
  6249. }
  6250. void ok_to_send() {
  6251. refresh_cmd_timeout();
  6252. if (!send_ok[cmd_queue_index_r]) return;
  6253. SERIAL_PROTOCOLPGM(MSG_OK);
  6254. #if ENABLED(ADVANCED_OK)
  6255. char* p = command_queue[cmd_queue_index_r];
  6256. if (*p == 'N') {
  6257. SERIAL_PROTOCOL(' ');
  6258. SERIAL_ECHO(*p++);
  6259. while (NUMERIC_SIGNED(*p))
  6260. SERIAL_ECHO(*p++);
  6261. }
  6262. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
  6263. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  6264. #endif
  6265. SERIAL_EOL;
  6266. }
  6267. void clamp_to_software_endstops(float target[3]) {
  6268. if (min_software_endstops) {
  6269. NOLESS(target[X_AXIS], sw_endstop_min[X_AXIS]);
  6270. NOLESS(target[Y_AXIS], sw_endstop_min[Y_AXIS]);
  6271. NOLESS(target[Z_AXIS], sw_endstop_min[Z_AXIS]);
  6272. }
  6273. if (max_software_endstops) {
  6274. NOMORE(target[X_AXIS], sw_endstop_max[X_AXIS]);
  6275. NOMORE(target[Y_AXIS], sw_endstop_max[Y_AXIS]);
  6276. NOMORE(target[Z_AXIS], sw_endstop_max[Z_AXIS]);
  6277. }
  6278. }
  6279. #if ENABLED(DELTA)
  6280. void recalc_delta_settings(float radius, float diagonal_rod) {
  6281. delta_tower1_x = -SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  6282. delta_tower1_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1);
  6283. delta_tower2_x = SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  6284. delta_tower2_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2);
  6285. delta_tower3_x = 0.0; // back middle tower
  6286. delta_tower3_y = (radius + DELTA_RADIUS_TRIM_TOWER_3);
  6287. delta_diagonal_rod_2_tower_1 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_1);
  6288. delta_diagonal_rod_2_tower_2 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_2);
  6289. delta_diagonal_rod_2_tower_3 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_3);
  6290. }
  6291. void calculate_delta(float cartesian[3]) {
  6292. delta[TOWER_1] = sqrt(delta_diagonal_rod_2_tower_1
  6293. - sq(delta_tower1_x - cartesian[X_AXIS])
  6294. - sq(delta_tower1_y - cartesian[Y_AXIS])
  6295. ) + cartesian[Z_AXIS];
  6296. delta[TOWER_2] = sqrt(delta_diagonal_rod_2_tower_2
  6297. - sq(delta_tower2_x - cartesian[X_AXIS])
  6298. - sq(delta_tower2_y - cartesian[Y_AXIS])
  6299. ) + cartesian[Z_AXIS];
  6300. delta[TOWER_3] = sqrt(delta_diagonal_rod_2_tower_3
  6301. - sq(delta_tower3_x - cartesian[X_AXIS])
  6302. - sq(delta_tower3_y - cartesian[Y_AXIS])
  6303. ) + cartesian[Z_AXIS];
  6304. /**
  6305. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  6306. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  6307. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  6308. SERIAL_ECHOPGM("delta a="); SERIAL_ECHO(delta[TOWER_1]);
  6309. SERIAL_ECHOPGM(" b="); SERIAL_ECHO(delta[TOWER_2]);
  6310. SERIAL_ECHOPGM(" c="); SERIAL_ECHOLN(delta[TOWER_3]);
  6311. */
  6312. }
  6313. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6314. // Adjust print surface height by linear interpolation over the bed_level array.
  6315. void adjust_delta(float cartesian[3]) {
  6316. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0) return; // G29 not done!
  6317. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  6318. float h1 = 0.001 - half, h2 = half - 0.001,
  6319. grid_x = max(h1, min(h2, cartesian[X_AXIS] / delta_grid_spacing[0])),
  6320. grid_y = max(h1, min(h2, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  6321. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  6322. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  6323. z1 = bed_level[floor_x + half][floor_y + half],
  6324. z2 = bed_level[floor_x + half][floor_y + half + 1],
  6325. z3 = bed_level[floor_x + half + 1][floor_y + half],
  6326. z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
  6327. left = (1 - ratio_y) * z1 + ratio_y * z2,
  6328. right = (1 - ratio_y) * z3 + ratio_y * z4,
  6329. offset = (1 - ratio_x) * left + ratio_x * right;
  6330. delta[X_AXIS] += offset;
  6331. delta[Y_AXIS] += offset;
  6332. delta[Z_AXIS] += offset;
  6333. /**
  6334. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  6335. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  6336. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  6337. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  6338. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  6339. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  6340. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  6341. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  6342. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  6343. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  6344. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  6345. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  6346. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  6347. */
  6348. }
  6349. #endif // AUTO_BED_LEVELING_FEATURE
  6350. #endif // DELTA
  6351. #if ENABLED(MESH_BED_LEVELING)
  6352. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  6353. void mesh_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t& extruder, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
  6354. if (!mbl.active()) {
  6355. planner.buffer_line(x, y, z, e, feed_rate, extruder);
  6356. set_current_to_destination();
  6357. return;
  6358. }
  6359. int pcx = mbl.cell_index_x(RAW_CURRENT_POSITION(X_AXIS)),
  6360. pcy = mbl.cell_index_y(RAW_CURRENT_POSITION(Y_AXIS)),
  6361. cx = mbl.cell_index_x(RAW_POSITION(x, X_AXIS)),
  6362. cy = mbl.cell_index_y(RAW_POSITION(y, Y_AXIS));
  6363. NOMORE(pcx, MESH_NUM_X_POINTS - 2);
  6364. NOMORE(pcy, MESH_NUM_Y_POINTS - 2);
  6365. NOMORE(cx, MESH_NUM_X_POINTS - 2);
  6366. NOMORE(cy, MESH_NUM_Y_POINTS - 2);
  6367. if (pcx == cx && pcy == cy) {
  6368. // Start and end on same mesh square
  6369. planner.buffer_line(x, y, z, e, feed_rate, extruder);
  6370. set_current_to_destination();
  6371. return;
  6372. }
  6373. float nx, ny, nz, ne, normalized_dist;
  6374. if (cx > pcx && TEST(x_splits, cx)) {
  6375. nx = mbl.get_probe_x(cx) + home_offset[X_AXIS];
  6376. normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]);
  6377. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  6378. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6379. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6380. CBI(x_splits, cx);
  6381. }
  6382. else if (cx < pcx && TEST(x_splits, pcx)) {
  6383. nx = mbl.get_probe_x(pcx) + home_offset[X_AXIS];
  6384. normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]);
  6385. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  6386. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6387. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6388. CBI(x_splits, pcx);
  6389. }
  6390. else if (cy > pcy && TEST(y_splits, cy)) {
  6391. ny = mbl.get_probe_y(cy) + home_offset[Y_AXIS];
  6392. normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]);
  6393. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  6394. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6395. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6396. CBI(y_splits, cy);
  6397. }
  6398. else if (cy < pcy && TEST(y_splits, pcy)) {
  6399. ny = mbl.get_probe_y(pcy) + home_offset[Y_AXIS];
  6400. normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]);
  6401. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  6402. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6403. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6404. CBI(y_splits, pcy);
  6405. }
  6406. else {
  6407. // Already split on a border
  6408. planner.buffer_line(x, y, z, e, feed_rate, extruder);
  6409. set_current_to_destination();
  6410. return;
  6411. }
  6412. // Do the split and look for more borders
  6413. destination[X_AXIS] = nx;
  6414. destination[Y_AXIS] = ny;
  6415. destination[Z_AXIS] = nz;
  6416. destination[E_AXIS] = ne;
  6417. mesh_buffer_line(nx, ny, nz, ne, feed_rate, extruder, x_splits, y_splits);
  6418. destination[X_AXIS] = x;
  6419. destination[Y_AXIS] = y;
  6420. destination[Z_AXIS] = z;
  6421. destination[E_AXIS] = e;
  6422. mesh_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
  6423. }
  6424. #endif // MESH_BED_LEVELING
  6425. #if ENABLED(DELTA) || ENABLED(SCARA)
  6426. inline bool prepare_delta_move_to(float target[NUM_AXIS]) {
  6427. float difference[NUM_AXIS];
  6428. for (int8_t i = 0; i < NUM_AXIS; i++) difference[i] = target[i] - current_position[i];
  6429. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  6430. if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
  6431. if (cartesian_mm < 0.000001) return false;
  6432. float _feedrate = feedrate * feedrate_multiplier / 6000.0;
  6433. float seconds = cartesian_mm / _feedrate;
  6434. int steps = max(1, int(delta_segments_per_second * seconds));
  6435. float inv_steps = 1.0/steps;
  6436. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  6437. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  6438. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  6439. for (int s = 1; s <= steps; s++) {
  6440. float fraction = float(s) * inv_steps;
  6441. for (int8_t i = 0; i < NUM_AXIS; i++)
  6442. target[i] = current_position[i] + difference[i] * fraction;
  6443. calculate_delta(target);
  6444. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6445. if (!bed_leveling_in_progress) adjust_delta(target);
  6446. #endif
  6447. //DEBUG_POS("prepare_delta_move_to", target);
  6448. //DEBUG_POS("prepare_delta_move_to", delta);
  6449. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], _feedrate, active_extruder);
  6450. }
  6451. return true;
  6452. }
  6453. #endif // DELTA || SCARA
  6454. #if ENABLED(SCARA)
  6455. inline bool prepare_scara_move_to(float target[NUM_AXIS]) { return prepare_delta_move_to(target); }
  6456. #endif
  6457. #if ENABLED(DUAL_X_CARRIAGE)
  6458. inline bool prepare_move_to_destination_dualx() {
  6459. if (active_extruder_parked) {
  6460. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  6461. // move duplicate extruder into correct duplication position.
  6462. planner.set_position_mm(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6463. planner.buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  6464. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate[X_AXIS], 1);
  6465. SYNC_PLAN_POSITION_KINEMATIC();
  6466. stepper.synchronize();
  6467. extruder_duplication_enabled = true;
  6468. active_extruder_parked = false;
  6469. }
  6470. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  6471. if (current_position[E_AXIS] == destination[E_AXIS]) {
  6472. // This is a travel move (with no extrusion)
  6473. // Skip it, but keep track of the current position
  6474. // (so it can be used as the start of the next non-travel move)
  6475. if (delayed_move_time != 0xFFFFFFFFUL) {
  6476. set_current_to_destination();
  6477. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  6478. delayed_move_time = millis();
  6479. return false;
  6480. }
  6481. }
  6482. delayed_move_time = 0;
  6483. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  6484. planner.buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder);
  6485. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], PLANNER_XY_FEEDRATE(), active_extruder);
  6486. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder);
  6487. active_extruder_parked = false;
  6488. }
  6489. }
  6490. return true;
  6491. }
  6492. #endif // DUAL_X_CARRIAGE
  6493. #if DISABLED(DELTA) && DISABLED(SCARA)
  6494. inline bool prepare_move_to_destination_cartesian() {
  6495. // Do not use feedrate_multiplier for E or Z only moves
  6496. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  6497. line_to_destination();
  6498. }
  6499. else {
  6500. #if ENABLED(MESH_BED_LEVELING)
  6501. mesh_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder);
  6502. return false;
  6503. #else
  6504. line_to_destination(feedrate * feedrate_multiplier / 100.0);
  6505. #endif
  6506. }
  6507. return true;
  6508. }
  6509. #endif // !DELTA && !SCARA
  6510. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  6511. inline void prevent_dangerous_extrude(float& curr_e, float& dest_e) {
  6512. if (DEBUGGING(DRYRUN)) return;
  6513. float de = dest_e - curr_e;
  6514. if (de) {
  6515. if (thermalManager.tooColdToExtrude(active_extruder)) {
  6516. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  6517. SERIAL_ECHO_START;
  6518. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  6519. }
  6520. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  6521. if (labs(de) > EXTRUDE_MAXLENGTH) {
  6522. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  6523. SERIAL_ECHO_START;
  6524. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  6525. }
  6526. #endif
  6527. }
  6528. }
  6529. #endif // PREVENT_DANGEROUS_EXTRUDE
  6530. /**
  6531. * Prepare a single move and get ready for the next one
  6532. *
  6533. * (This may call planner.buffer_line several times to put
  6534. * smaller moves into the planner for DELTA or SCARA.)
  6535. */
  6536. void prepare_move_to_destination() {
  6537. clamp_to_software_endstops(destination);
  6538. refresh_cmd_timeout();
  6539. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  6540. prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]);
  6541. #endif
  6542. #if ENABLED(SCARA)
  6543. if (!prepare_scara_move_to(destination)) return;
  6544. #elif ENABLED(DELTA)
  6545. if (!prepare_delta_move_to(destination)) return;
  6546. #else
  6547. #if ENABLED(DUAL_X_CARRIAGE)
  6548. if (!prepare_move_to_destination_dualx()) return;
  6549. #endif
  6550. if (!prepare_move_to_destination_cartesian()) return;
  6551. #endif
  6552. set_current_to_destination();
  6553. }
  6554. #if ENABLED(ARC_SUPPORT)
  6555. /**
  6556. * Plan an arc in 2 dimensions
  6557. *
  6558. * The arc is approximated by generating many small linear segments.
  6559. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  6560. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  6561. * larger segments will tend to be more efficient. Your slicer should have
  6562. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  6563. */
  6564. void plan_arc(
  6565. float target[NUM_AXIS], // Destination position
  6566. float* offset, // Center of rotation relative to current_position
  6567. uint8_t clockwise // Clockwise?
  6568. ) {
  6569. float radius = hypot(offset[X_AXIS], offset[Y_AXIS]),
  6570. center_X = current_position[X_AXIS] + offset[X_AXIS],
  6571. center_Y = current_position[Y_AXIS] + offset[Y_AXIS],
  6572. linear_travel = target[Z_AXIS] - current_position[Z_AXIS],
  6573. extruder_travel = target[E_AXIS] - current_position[E_AXIS],
  6574. r_X = -offset[X_AXIS], // Radius vector from center to current location
  6575. r_Y = -offset[Y_AXIS],
  6576. rt_X = target[X_AXIS] - center_X,
  6577. rt_Y = target[Y_AXIS] - center_Y;
  6578. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  6579. float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
  6580. if (angular_travel < 0) angular_travel += RADIANS(360);
  6581. if (clockwise) angular_travel -= RADIANS(360);
  6582. // Make a circle if the angular rotation is 0
  6583. if (angular_travel == 0 && current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS])
  6584. angular_travel += RADIANS(360);
  6585. float mm_of_travel = hypot(angular_travel * radius, fabs(linear_travel));
  6586. if (mm_of_travel < 0.001) return;
  6587. uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
  6588. if (segments == 0) segments = 1;
  6589. float theta_per_segment = angular_travel / segments;
  6590. float linear_per_segment = linear_travel / segments;
  6591. float extruder_per_segment = extruder_travel / segments;
  6592. /**
  6593. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  6594. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  6595. * r_T = [cos(phi) -sin(phi);
  6596. * sin(phi) cos(phi] * r ;
  6597. *
  6598. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  6599. * defined from the circle center to the initial position. Each line segment is formed by successive
  6600. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  6601. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  6602. * all double numbers are single precision on the Arduino. (True double precision will not have
  6603. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  6604. * tool precision in some cases. Therefore, arc path correction is implemented.
  6605. *
  6606. * Small angle approximation may be used to reduce computation overhead further. This approximation
  6607. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  6608. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  6609. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  6610. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  6611. * issue for CNC machines with the single precision Arduino calculations.
  6612. *
  6613. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  6614. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  6615. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  6616. * This is important when there are successive arc motions.
  6617. */
  6618. // Vector rotation matrix values
  6619. float cos_T = 1 - 0.5 * theta_per_segment * theta_per_segment; // Small angle approximation
  6620. float sin_T = theta_per_segment;
  6621. float arc_target[NUM_AXIS];
  6622. float sin_Ti, cos_Ti, r_new_Y;
  6623. uint16_t i;
  6624. int8_t count = 0;
  6625. // Initialize the linear axis
  6626. arc_target[Z_AXIS] = current_position[Z_AXIS];
  6627. // Initialize the extruder axis
  6628. arc_target[E_AXIS] = current_position[E_AXIS];
  6629. float feed_rate = feedrate * feedrate_multiplier / 60 / 100.0;
  6630. millis_t next_idle_ms = millis() + 200UL;
  6631. for (i = 1; i < segments; i++) { // Iterate (segments-1) times
  6632. thermalManager.manage_heater();
  6633. millis_t now = millis();
  6634. if (ELAPSED(now, next_idle_ms)) {
  6635. next_idle_ms = now + 200UL;
  6636. idle();
  6637. }
  6638. if (++count < N_ARC_CORRECTION) {
  6639. // Apply vector rotation matrix to previous r_X / 1
  6640. r_new_Y = r_X * sin_T + r_Y * cos_T;
  6641. r_X = r_X * cos_T - r_Y * sin_T;
  6642. r_Y = r_new_Y;
  6643. }
  6644. else {
  6645. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  6646. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  6647. // To reduce stuttering, the sin and cos could be computed at different times.
  6648. // For now, compute both at the same time.
  6649. cos_Ti = cos(i * theta_per_segment);
  6650. sin_Ti = sin(i * theta_per_segment);
  6651. r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
  6652. r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
  6653. count = 0;
  6654. }
  6655. // Update arc_target location
  6656. arc_target[X_AXIS] = center_X + r_X;
  6657. arc_target[Y_AXIS] = center_Y + r_Y;
  6658. arc_target[Z_AXIS] += linear_per_segment;
  6659. arc_target[E_AXIS] += extruder_per_segment;
  6660. clamp_to_software_endstops(arc_target);
  6661. #if ENABLED(DELTA) || ENABLED(SCARA)
  6662. calculate_delta(arc_target);
  6663. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6664. adjust_delta(arc_target);
  6665. #endif
  6666. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  6667. #else
  6668. planner.buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  6669. #endif
  6670. }
  6671. // Ensure last segment arrives at target location.
  6672. #if ENABLED(DELTA) || ENABLED(SCARA)
  6673. calculate_delta(target);
  6674. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6675. adjust_delta(target);
  6676. #endif
  6677. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  6678. #else
  6679. planner.buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  6680. #endif
  6681. // As far as the parser is concerned, the position is now == target. In reality the
  6682. // motion control system might still be processing the action and the real tool position
  6683. // in any intermediate location.
  6684. set_current_to_destination();
  6685. }
  6686. #endif
  6687. #if ENABLED(BEZIER_CURVE_SUPPORT)
  6688. void plan_cubic_move(const float offset[4]) {
  6689. cubic_b_spline(current_position, destination, offset, feedrate * feedrate_multiplier / 60 / 100.0, active_extruder);
  6690. // As far as the parser is concerned, the position is now == target. In reality the
  6691. // motion control system might still be processing the action and the real tool position
  6692. // in any intermediate location.
  6693. set_current_to_destination();
  6694. }
  6695. #endif // BEZIER_CURVE_SUPPORT
  6696. #if HAS_CONTROLLERFAN
  6697. void controllerFan() {
  6698. static millis_t lastMotorOn = 0; // Last time a motor was turned on
  6699. static millis_t nextMotorCheck = 0; // Last time the state was checked
  6700. millis_t ms = millis();
  6701. if (ELAPSED(ms, nextMotorCheck)) {
  6702. nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
  6703. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_bed > 0
  6704. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  6705. #if EXTRUDERS > 1
  6706. || E1_ENABLE_READ == E_ENABLE_ON
  6707. #if HAS_X2_ENABLE
  6708. || X2_ENABLE_READ == X_ENABLE_ON
  6709. #endif
  6710. #if EXTRUDERS > 2
  6711. || E2_ENABLE_READ == E_ENABLE_ON
  6712. #if EXTRUDERS > 3
  6713. || E3_ENABLE_READ == E_ENABLE_ON
  6714. #endif
  6715. #endif
  6716. #endif
  6717. ) {
  6718. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  6719. }
  6720. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  6721. uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  6722. // allows digital or PWM fan output to be used (see M42 handling)
  6723. digitalWrite(CONTROLLERFAN_PIN, speed);
  6724. analogWrite(CONTROLLERFAN_PIN, speed);
  6725. }
  6726. }
  6727. #endif // HAS_CONTROLLERFAN
  6728. #if ENABLED(SCARA)
  6729. void calculate_SCARA_forward_Transform(float f_scara[3]) {
  6730. // Perform forward kinematics, and place results in delta[3]
  6731. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  6732. float x_sin, x_cos, y_sin, y_cos;
  6733. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  6734. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  6735. x_sin = sin(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  6736. x_cos = cos(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  6737. y_sin = sin(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  6738. y_cos = cos(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  6739. //SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  6740. //SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  6741. //SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  6742. //SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  6743. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  6744. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  6745. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  6746. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  6747. }
  6748. void calculate_delta(float cartesian[3]) {
  6749. //reverse kinematics.
  6750. // Perform reversed kinematics, and place results in delta[3]
  6751. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  6752. float SCARA_pos[2];
  6753. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  6754. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  6755. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  6756. #if (Linkage_1 == Linkage_2)
  6757. SCARA_C2 = ((sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS])) / (2 * (float)L1_2)) - 1;
  6758. #else
  6759. SCARA_C2 = (sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2) / 45000;
  6760. #endif
  6761. SCARA_S2 = sqrt(1 - sq(SCARA_C2));
  6762. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  6763. SCARA_K2 = Linkage_2 * SCARA_S2;
  6764. SCARA_theta = (atan2(SCARA_pos[X_AXIS], SCARA_pos[Y_AXIS]) - atan2(SCARA_K1, SCARA_K2)) * -1;
  6765. SCARA_psi = atan2(SCARA_S2, SCARA_C2);
  6766. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  6767. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  6768. delta[Z_AXIS] = cartesian[Z_AXIS];
  6769. /**
  6770. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  6771. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  6772. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  6773. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  6774. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  6775. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  6776. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  6777. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  6778. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  6779. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  6780. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  6781. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  6782. SERIAL_EOL;
  6783. */
  6784. }
  6785. #endif // SCARA
  6786. #if ENABLED(TEMP_STAT_LEDS)
  6787. static bool red_led = false;
  6788. static millis_t next_status_led_update_ms = 0;
  6789. void handle_status_leds(void) {
  6790. float max_temp = 0.0;
  6791. if (ELAPSED(millis(), next_status_led_update_ms)) {
  6792. next_status_led_update_ms += 500; // Update every 0.5s
  6793. for (int8_t cur_hotend = 0; cur_hotend < HOTENDS; ++cur_hotend)
  6794. max_temp = max(max(max_temp, thermalManager.degHotend(cur_hotend)), thermalManager.degTargetHotend(cur_hotend));
  6795. #if HAS_TEMP_BED
  6796. max_temp = max(max(max_temp, thermalManager.degTargetBed()), thermalManager.degBed());
  6797. #endif
  6798. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  6799. if (new_led != red_led) {
  6800. red_led = new_led;
  6801. digitalWrite(STAT_LED_RED, new_led ? HIGH : LOW);
  6802. digitalWrite(STAT_LED_BLUE, new_led ? LOW : HIGH);
  6803. }
  6804. }
  6805. }
  6806. #endif
  6807. void enable_all_steppers() {
  6808. enable_x();
  6809. enable_y();
  6810. enable_z();
  6811. enable_e0();
  6812. enable_e1();
  6813. enable_e2();
  6814. enable_e3();
  6815. }
  6816. void disable_all_steppers() {
  6817. disable_x();
  6818. disable_y();
  6819. disable_z();
  6820. disable_e0();
  6821. disable_e1();
  6822. disable_e2();
  6823. disable_e3();
  6824. }
  6825. /**
  6826. * Standard idle routine keeps the machine alive
  6827. */
  6828. void idle(
  6829. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  6830. bool no_stepper_sleep/*=false*/
  6831. #endif
  6832. ) {
  6833. lcd_update();
  6834. host_keepalive();
  6835. manage_inactivity(
  6836. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  6837. no_stepper_sleep
  6838. #endif
  6839. );
  6840. thermalManager.manage_heater();
  6841. #if ENABLED(PRINTCOUNTER)
  6842. print_job_timer.tick();
  6843. #endif
  6844. #if HAS_BUZZER
  6845. buzzer.tick();
  6846. #endif
  6847. }
  6848. /**
  6849. * Manage several activities:
  6850. * - Check for Filament Runout
  6851. * - Keep the command buffer full
  6852. * - Check for maximum inactive time between commands
  6853. * - Check for maximum inactive time between stepper commands
  6854. * - Check if pin CHDK needs to go LOW
  6855. * - Check for KILL button held down
  6856. * - Check for HOME button held down
  6857. * - Check if cooling fan needs to be switched on
  6858. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  6859. */
  6860. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  6861. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  6862. if (IS_SD_PRINTING && !(READ(FIL_RUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  6863. handle_filament_runout();
  6864. #endif
  6865. if (commands_in_queue < BUFSIZE) get_available_commands();
  6866. millis_t ms = millis();
  6867. if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) kill(PSTR(MSG_KILLED));
  6868. if (stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
  6869. && !ignore_stepper_queue && !planner.blocks_queued()) {
  6870. #if ENABLED(DISABLE_INACTIVE_X)
  6871. disable_x();
  6872. #endif
  6873. #if ENABLED(DISABLE_INACTIVE_Y)
  6874. disable_y();
  6875. #endif
  6876. #if ENABLED(DISABLE_INACTIVE_Z)
  6877. disable_z();
  6878. #endif
  6879. #if ENABLED(DISABLE_INACTIVE_E)
  6880. disable_e0();
  6881. disable_e1();
  6882. disable_e2();
  6883. disable_e3();
  6884. #endif
  6885. }
  6886. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  6887. if (chdkActive && PENDING(ms, chdkHigh + CHDK_DELAY)) {
  6888. chdkActive = false;
  6889. WRITE(CHDK, LOW);
  6890. }
  6891. #endif
  6892. #if HAS_KILL
  6893. // Check if the kill button was pressed and wait just in case it was an accidental
  6894. // key kill key press
  6895. // -------------------------------------------------------------------------------
  6896. static int killCount = 0; // make the inactivity button a bit less responsive
  6897. const int KILL_DELAY = 750;
  6898. if (!READ(KILL_PIN))
  6899. killCount++;
  6900. else if (killCount > 0)
  6901. killCount--;
  6902. // Exceeded threshold and we can confirm that it was not accidental
  6903. // KILL the machine
  6904. // ----------------------------------------------------------------
  6905. if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED));
  6906. #endif
  6907. #if HAS_HOME
  6908. // Check to see if we have to home, use poor man's debouncer
  6909. // ---------------------------------------------------------
  6910. static int homeDebounceCount = 0; // poor man's debouncing count
  6911. const int HOME_DEBOUNCE_DELAY = 2500;
  6912. if (!READ(HOME_PIN)) {
  6913. if (!homeDebounceCount) {
  6914. enqueue_and_echo_commands_P(PSTR("G28"));
  6915. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  6916. }
  6917. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  6918. homeDebounceCount++;
  6919. else
  6920. homeDebounceCount = 0;
  6921. }
  6922. #endif
  6923. #if HAS_CONTROLLERFAN
  6924. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  6925. #endif
  6926. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  6927. if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL))
  6928. if (thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  6929. bool oldstatus;
  6930. switch (active_extruder) {
  6931. case 0:
  6932. oldstatus = E0_ENABLE_READ;
  6933. enable_e0();
  6934. break;
  6935. #if EXTRUDERS > 1
  6936. case 1:
  6937. oldstatus = E1_ENABLE_READ;
  6938. enable_e1();
  6939. break;
  6940. #if EXTRUDERS > 2
  6941. case 2:
  6942. oldstatus = E2_ENABLE_READ;
  6943. enable_e2();
  6944. break;
  6945. #if EXTRUDERS > 3
  6946. case 3:
  6947. oldstatus = E3_ENABLE_READ;
  6948. enable_e3();
  6949. break;
  6950. #endif
  6951. #endif
  6952. #endif
  6953. }
  6954. float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
  6955. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6956. destination[E_AXIS] + (EXTRUDER_RUNOUT_EXTRUDE) * (EXTRUDER_RUNOUT_ESTEPS) / planner.axis_steps_per_mm[E_AXIS],
  6957. (EXTRUDER_RUNOUT_SPEED) / 60. * (EXTRUDER_RUNOUT_ESTEPS) / planner.axis_steps_per_mm[E_AXIS], active_extruder);
  6958. current_position[E_AXIS] = oldepos;
  6959. destination[E_AXIS] = oldedes;
  6960. planner.set_e_position_mm(oldepos);
  6961. previous_cmd_ms = ms; // refresh_cmd_timeout()
  6962. stepper.synchronize();
  6963. switch (active_extruder) {
  6964. case 0:
  6965. E0_ENABLE_WRITE(oldstatus);
  6966. break;
  6967. #if EXTRUDERS > 1
  6968. case 1:
  6969. E1_ENABLE_WRITE(oldstatus);
  6970. break;
  6971. #if EXTRUDERS > 2
  6972. case 2:
  6973. E2_ENABLE_WRITE(oldstatus);
  6974. break;
  6975. #if EXTRUDERS > 3
  6976. case 3:
  6977. E3_ENABLE_WRITE(oldstatus);
  6978. break;
  6979. #endif
  6980. #endif
  6981. #endif
  6982. }
  6983. }
  6984. #endif
  6985. #if ENABLED(DUAL_X_CARRIAGE)
  6986. // handle delayed move timeout
  6987. if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
  6988. // travel moves have been received so enact them
  6989. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  6990. set_destination_to_current();
  6991. prepare_move_to_destination();
  6992. }
  6993. #endif
  6994. #if ENABLED(TEMP_STAT_LEDS)
  6995. handle_status_leds();
  6996. #endif
  6997. planner.check_axes_activity();
  6998. }
  6999. void kill(const char* lcd_msg) {
  7000. #if ENABLED(ULTRA_LCD)
  7001. lcd_init();
  7002. lcd_setalertstatuspgm(lcd_msg);
  7003. #else
  7004. UNUSED(lcd_msg);
  7005. #endif
  7006. cli(); // Stop interrupts
  7007. thermalManager.disable_all_heaters();
  7008. disable_all_steppers();
  7009. #if HAS_POWER_SWITCH
  7010. pinMode(PS_ON_PIN, INPUT);
  7011. #endif
  7012. SERIAL_ERROR_START;
  7013. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  7014. // FMC small patch to update the LCD before ending
  7015. sei(); // enable interrupts
  7016. for (int i = 5; i--; lcd_update()) delay(200); // Wait a short time
  7017. cli(); // disable interrupts
  7018. suicide();
  7019. while (1) {
  7020. #if ENABLED(USE_WATCHDOG)
  7021. watchdog_reset();
  7022. #endif
  7023. } // Wait for reset
  7024. }
  7025. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  7026. void handle_filament_runout() {
  7027. if (!filament_ran_out) {
  7028. filament_ran_out = true;
  7029. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  7030. stepper.synchronize();
  7031. }
  7032. }
  7033. #endif // FILAMENT_RUNOUT_SENSOR
  7034. #if ENABLED(FAST_PWM_FAN)
  7035. void setPwmFrequency(uint8_t pin, int val) {
  7036. val &= 0x07;
  7037. switch (digitalPinToTimer(pin)) {
  7038. #if defined(TCCR0A)
  7039. case TIMER0A:
  7040. case TIMER0B:
  7041. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  7042. // TCCR0B |= val;
  7043. break;
  7044. #endif
  7045. #if defined(TCCR1A)
  7046. case TIMER1A:
  7047. case TIMER1B:
  7048. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7049. // TCCR1B |= val;
  7050. break;
  7051. #endif
  7052. #if defined(TCCR2)
  7053. case TIMER2:
  7054. case TIMER2:
  7055. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7056. TCCR2 |= val;
  7057. break;
  7058. #endif
  7059. #if defined(TCCR2A)
  7060. case TIMER2A:
  7061. case TIMER2B:
  7062. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  7063. TCCR2B |= val;
  7064. break;
  7065. #endif
  7066. #if defined(TCCR3A)
  7067. case TIMER3A:
  7068. case TIMER3B:
  7069. case TIMER3C:
  7070. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  7071. TCCR3B |= val;
  7072. break;
  7073. #endif
  7074. #if defined(TCCR4A)
  7075. case TIMER4A:
  7076. case TIMER4B:
  7077. case TIMER4C:
  7078. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  7079. TCCR4B |= val;
  7080. break;
  7081. #endif
  7082. #if defined(TCCR5A)
  7083. case TIMER5A:
  7084. case TIMER5B:
  7085. case TIMER5C:
  7086. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  7087. TCCR5B |= val;
  7088. break;
  7089. #endif
  7090. }
  7091. }
  7092. #endif // FAST_PWM_FAN
  7093. void stop() {
  7094. thermalManager.disable_all_heaters();
  7095. if (IsRunning()) {
  7096. Running = false;
  7097. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  7098. SERIAL_ERROR_START;
  7099. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  7100. LCD_MESSAGEPGM(MSG_STOPPED);
  7101. }
  7102. }
  7103. float calculate_volumetric_multiplier(float diameter) {
  7104. if (!volumetric_enabled || diameter == 0) return 1.0;
  7105. float d2 = diameter * 0.5;
  7106. return 1.0 / (M_PI * d2 * d2);
  7107. }
  7108. void calculate_volumetric_multipliers() {
  7109. for (int i = 0; i < EXTRUDERS; i++)
  7110. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  7111. }