My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Nevar pievienot vairāk kā 25 tēmas Tēmai ir jāsākas ar burtu vai ciparu, tā var saturēt domu zīmes ('-') un var būt līdz 35 simboliem gara.

configuration_store.cpp 30KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * configuration_store.cpp
  24. *
  25. * Configuration and EEPROM storage
  26. *
  27. * IMPORTANT: Whenever there are changes made to the variables stored in EEPROM
  28. * in the functions below, also increment the version number. This makes sure that
  29. * the default values are used whenever there is a change to the data, to prevent
  30. * wrong data being written to the variables.
  31. *
  32. * ALSO: Variables in the Store and Retrieve sections must be in the same order.
  33. * If a feature is disabled, some data must still be written that, when read,
  34. * either sets a Sane Default, or results in No Change to the existing value.
  35. *
  36. */
  37. #define EEPROM_VERSION "V24"
  38. // Change EEPROM version if these are changed:
  39. #define EEPROM_OFFSET 100
  40. #define MAX_EXTRUDERS 4
  41. /**
  42. * V24 EEPROM Layout:
  43. *
  44. * 100 Version (char x4)
  45. * 104 EEPROM Checksum (uint16_t)
  46. *
  47. * 106 M92 XYZE planner.axis_steps_per_mm (float x4)
  48. * 122 M203 XYZE planner.max_feedrate (float x4)
  49. * 138 M201 XYZE planner.max_acceleration_mm_per_s2 (uint32_t x4)
  50. * 154 M204 P planner.acceleration (float)
  51. * 158 M204 R planner.retract_acceleration (float)
  52. * 162 M204 T planner.travel_acceleration (float)
  53. * 166 M205 S planner.min_feedrate (float)
  54. * 170 M205 T planner.min_travel_feedrate (float)
  55. * 174 M205 B planner.min_segment_time (ulong)
  56. * 178 M205 X planner.max_xy_jerk (float)
  57. * 182 M205 Z planner.max_z_jerk (float)
  58. * 186 M205 E planner.max_e_jerk (float)
  59. * 190 M206 XYZ home_offset (float x3)
  60. *
  61. * Mesh bed leveling:
  62. * 202 M420 S status (uint8)
  63. * 203 z_offset (float)
  64. * 207 mesh_num_x (uint8 as set in firmware)
  65. * 208 mesh_num_y (uint8 as set in firmware)
  66. * 209 G29 S3 XYZ z_values[][] (float x9, by default)
  67. *
  68. * AUTO BED LEVELING
  69. * 245 M851 zprobe_zoffset (float)
  70. *
  71. * DELTA:
  72. * 249 M666 XYZ endstop_adj (float x3)
  73. * 261 M665 R delta_radius (float)
  74. * 265 M665 L delta_diagonal_rod (float)
  75. * 269 M665 S delta_segments_per_second (float)
  76. * 273 M665 A delta_diagonal_rod_trim_tower_1 (float)
  77. * 277 M665 B delta_diagonal_rod_trim_tower_2 (float)
  78. * 281 M665 C delta_diagonal_rod_trim_tower_3 (float)
  79. *
  80. * Z_DUAL_ENDSTOPS:
  81. * 285 M666 Z z_endstop_adj (float)
  82. *
  83. * ULTIPANEL:
  84. * 289 M145 S0 H plaPreheatHotendTemp (int)
  85. * 291 M145 S0 B plaPreheatHPBTemp (int)
  86. * 293 M145 S0 F plaPreheatFanSpeed (int)
  87. * 295 M145 S1 H absPreheatHotendTemp (int)
  88. * 297 M145 S1 B absPreheatHPBTemp (int)
  89. * 299 M145 S1 F absPreheatFanSpeed (int)
  90. *
  91. * PIDTEMP:
  92. * 301 M301 E0 PIDC Kp[0], Ki[0], Kd[0], Kc[0] (float x4)
  93. * 317 M301 E1 PIDC Kp[1], Ki[1], Kd[1], Kc[1] (float x4)
  94. * 333 M301 E2 PIDC Kp[2], Ki[2], Kd[2], Kc[2] (float x4)
  95. * 349 M301 E3 PIDC Kp[3], Ki[3], Kd[3], Kc[3] (float x4)
  96. * 365 M301 L lpq_len (int)
  97. *
  98. * PIDTEMPBED:
  99. * 367 M304 PID thermalManager.bedKp, thermalManager.bedKi, thermalManager.bedKd (float x3)
  100. *
  101. * DOGLCD:
  102. * 379 M250 C lcd_contrast (int)
  103. *
  104. * SCARA:
  105. * 381 M365 XYZ axis_scaling (float x3)
  106. *
  107. * FWRETRACT:
  108. * 393 M209 S autoretract_enabled (bool)
  109. * 394 M207 S retract_length (float)
  110. * 398 M207 W retract_length_swap (float)
  111. * 402 M207 F retract_feedrate_mm_s (float)
  112. * 406 M207 Z retract_zlift (float)
  113. * 410 M208 S retract_recover_length (float)
  114. * 414 M208 W retract_recover_length_swap (float)
  115. * 418 M208 F retract_recover_feedrate (float)
  116. *
  117. * Volumetric Extrusion:
  118. * 422 M200 D volumetric_enabled (bool)
  119. * 423 M200 T D filament_size (float x4) (T0..3)
  120. *
  121. * 439 This Slot is Available!
  122. *
  123. */
  124. #include "Marlin.h"
  125. #include "language.h"
  126. #include "planner.h"
  127. #include "temperature.h"
  128. #include "ultralcd.h"
  129. #include "configuration_store.h"
  130. #if ENABLED(MESH_BED_LEVELING)
  131. #include "mesh_bed_leveling.h"
  132. #endif
  133. uint16_t eeprom_checksum;
  134. const char version[4] = EEPROM_VERSION;
  135. void _EEPROM_writeData(int &pos, uint8_t* value, uint8_t size) {
  136. uint8_t c;
  137. while (size--) {
  138. eeprom_write_byte((unsigned char*)pos, *value);
  139. c = eeprom_read_byte((unsigned char*)pos);
  140. if (c != *value) {
  141. SERIAL_ECHO_START;
  142. SERIAL_ECHOLNPGM(MSG_ERR_EEPROM_WRITE);
  143. }
  144. eeprom_checksum += c;
  145. pos++;
  146. value++;
  147. };
  148. }
  149. void _EEPROM_readData(int &pos, uint8_t* value, uint8_t size) {
  150. do {
  151. uint8_t c = eeprom_read_byte((unsigned char*)pos);
  152. *value = c;
  153. eeprom_checksum += c;
  154. pos++;
  155. value++;
  156. } while (--size);
  157. }
  158. /**
  159. * Post-process after Retrieve or Reset
  160. */
  161. void Config_Postprocess() {
  162. // steps per s2 needs to be updated to agree with units per s2
  163. planner.reset_acceleration_rates();
  164. #if ENABLED(DELTA)
  165. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  166. #endif
  167. #if ENABLED(PIDTEMP)
  168. thermalManager.updatePID();
  169. #endif
  170. calculate_volumetric_multipliers();
  171. }
  172. #if ENABLED(EEPROM_SETTINGS)
  173. #define DUMMY_PID_VALUE 3000.0f
  174. #define EEPROM_WRITE_VAR(pos, value) _EEPROM_writeData(pos, (uint8_t*)&value, sizeof(value))
  175. #define EEPROM_READ_VAR(pos, value) _EEPROM_readData(pos, (uint8_t*)&value, sizeof(value))
  176. /**
  177. * M500 - Store Configuration
  178. */
  179. void Config_StoreSettings() {
  180. float dummy = 0.0f;
  181. char ver[4] = "000";
  182. int i = EEPROM_OFFSET;
  183. EEPROM_WRITE_VAR(i, ver); // invalidate data first
  184. i += sizeof(eeprom_checksum); // Skip the checksum slot
  185. eeprom_checksum = 0; // clear before first "real data"
  186. EEPROM_WRITE_VAR(i, planner.axis_steps_per_mm);
  187. EEPROM_WRITE_VAR(i, planner.max_feedrate);
  188. EEPROM_WRITE_VAR(i, planner.max_acceleration_mm_per_s2);
  189. EEPROM_WRITE_VAR(i, planner.acceleration);
  190. EEPROM_WRITE_VAR(i, planner.retract_acceleration);
  191. EEPROM_WRITE_VAR(i, planner.travel_acceleration);
  192. EEPROM_WRITE_VAR(i, planner.min_feedrate);
  193. EEPROM_WRITE_VAR(i, planner.min_travel_feedrate);
  194. EEPROM_WRITE_VAR(i, planner.min_segment_time);
  195. EEPROM_WRITE_VAR(i, planner.max_xy_jerk);
  196. EEPROM_WRITE_VAR(i, planner.max_z_jerk);
  197. EEPROM_WRITE_VAR(i, planner.max_e_jerk);
  198. EEPROM_WRITE_VAR(i, home_offset);
  199. #if ENABLED(MESH_BED_LEVELING)
  200. // Compile time test that sizeof(mbl.z_values) is as expected
  201. typedef char c_assert[(sizeof(mbl.z_values) == (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS) * sizeof(dummy)) ? 1 : -1];
  202. uint8_t mesh_num_x = MESH_NUM_X_POINTS,
  203. mesh_num_y = MESH_NUM_Y_POINTS,
  204. dummy_uint8 = mbl.status & _BV(MBL_STATUS_HAS_MESH_BIT);
  205. EEPROM_WRITE_VAR(i, dummy_uint8);
  206. EEPROM_WRITE_VAR(i, mbl.z_offset);
  207. EEPROM_WRITE_VAR(i, mesh_num_x);
  208. EEPROM_WRITE_VAR(i, mesh_num_y);
  209. EEPROM_WRITE_VAR(i, mbl.z_values);
  210. #else
  211. // For disabled MBL write a default mesh
  212. uint8_t mesh_num_x = 3,
  213. mesh_num_y = 3,
  214. dummy_uint8 = 0;
  215. dummy = 0.0f;
  216. EEPROM_WRITE_VAR(i, dummy_uint8);
  217. EEPROM_WRITE_VAR(i, dummy);
  218. EEPROM_WRITE_VAR(i, mesh_num_x);
  219. EEPROM_WRITE_VAR(i, mesh_num_y);
  220. for (uint8_t q = 0; q < mesh_num_x * mesh_num_y; q++) EEPROM_WRITE_VAR(i, dummy);
  221. #endif // MESH_BED_LEVELING
  222. #if !HAS_BED_PROBE
  223. float zprobe_zoffset = 0;
  224. #endif
  225. EEPROM_WRITE_VAR(i, zprobe_zoffset);
  226. // 9 floats for DELTA / Z_DUAL_ENDSTOPS
  227. #if ENABLED(DELTA)
  228. EEPROM_WRITE_VAR(i, endstop_adj); // 3 floats
  229. EEPROM_WRITE_VAR(i, delta_radius); // 1 float
  230. EEPROM_WRITE_VAR(i, delta_diagonal_rod); // 1 float
  231. EEPROM_WRITE_VAR(i, delta_segments_per_second); // 1 float
  232. EEPROM_WRITE_VAR(i, delta_diagonal_rod_trim_tower_1); // 1 float
  233. EEPROM_WRITE_VAR(i, delta_diagonal_rod_trim_tower_2); // 1 float
  234. EEPROM_WRITE_VAR(i, delta_diagonal_rod_trim_tower_3); // 1 float
  235. #elif ENABLED(Z_DUAL_ENDSTOPS)
  236. EEPROM_WRITE_VAR(i, z_endstop_adj); // 1 float
  237. dummy = 0.0f;
  238. for (uint8_t q = 8; q--;) EEPROM_WRITE_VAR(i, dummy);
  239. #else
  240. dummy = 0.0f;
  241. for (uint8_t q = 9; q--;) EEPROM_WRITE_VAR(i, dummy);
  242. #endif
  243. #if DISABLED(ULTIPANEL)
  244. int plaPreheatHotendTemp = PLA_PREHEAT_HOTEND_TEMP, plaPreheatHPBTemp = PLA_PREHEAT_HPB_TEMP, plaPreheatFanSpeed = PLA_PREHEAT_FAN_SPEED,
  245. absPreheatHotendTemp = ABS_PREHEAT_HOTEND_TEMP, absPreheatHPBTemp = ABS_PREHEAT_HPB_TEMP, absPreheatFanSpeed = ABS_PREHEAT_FAN_SPEED;
  246. #endif // !ULTIPANEL
  247. EEPROM_WRITE_VAR(i, plaPreheatHotendTemp);
  248. EEPROM_WRITE_VAR(i, plaPreheatHPBTemp);
  249. EEPROM_WRITE_VAR(i, plaPreheatFanSpeed);
  250. EEPROM_WRITE_VAR(i, absPreheatHotendTemp);
  251. EEPROM_WRITE_VAR(i, absPreheatHPBTemp);
  252. EEPROM_WRITE_VAR(i, absPreheatFanSpeed);
  253. for (uint8_t e = 0; e < MAX_EXTRUDERS; e++) {
  254. #if ENABLED(PIDTEMP)
  255. if (e < HOTENDS) {
  256. EEPROM_WRITE_VAR(i, PID_PARAM(Kp, e));
  257. EEPROM_WRITE_VAR(i, PID_PARAM(Ki, e));
  258. EEPROM_WRITE_VAR(i, PID_PARAM(Kd, e));
  259. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  260. EEPROM_WRITE_VAR(i, PID_PARAM(Kc, e));
  261. #else
  262. dummy = 1.0f; // 1.0 = default kc
  263. EEPROM_WRITE_VAR(i, dummy);
  264. #endif
  265. }
  266. else
  267. #endif // !PIDTEMP
  268. {
  269. dummy = DUMMY_PID_VALUE; // When read, will not change the existing value
  270. EEPROM_WRITE_VAR(i, dummy); // Kp
  271. dummy = 0.0f;
  272. for (uint8_t q = 3; q--;) EEPROM_WRITE_VAR(i, dummy); // Ki, Kd, Kc
  273. }
  274. } // Hotends Loop
  275. #if DISABLED(PID_ADD_EXTRUSION_RATE)
  276. int lpq_len = 20;
  277. #endif
  278. EEPROM_WRITE_VAR(i, lpq_len);
  279. #if DISABLED(PIDTEMPBED)
  280. dummy = DUMMY_PID_VALUE;
  281. for (uint8_t q = 3; q--;) EEPROM_WRITE_VAR(i, dummy);
  282. #else
  283. EEPROM_WRITE_VAR(i, thermalManager.bedKp);
  284. EEPROM_WRITE_VAR(i, thermalManager.bedKi);
  285. EEPROM_WRITE_VAR(i, thermalManager.bedKd);
  286. #endif
  287. #if !HAS_LCD_CONTRAST
  288. const int lcd_contrast = 32;
  289. #endif
  290. EEPROM_WRITE_VAR(i, lcd_contrast);
  291. #if ENABLED(SCARA)
  292. EEPROM_WRITE_VAR(i, axis_scaling); // 3 floats
  293. #else
  294. dummy = 1.0f;
  295. EEPROM_WRITE_VAR(i, dummy);
  296. #endif
  297. #if ENABLED(FWRETRACT)
  298. EEPROM_WRITE_VAR(i, autoretract_enabled);
  299. EEPROM_WRITE_VAR(i, retract_length);
  300. #if EXTRUDERS > 1
  301. EEPROM_WRITE_VAR(i, retract_length_swap);
  302. #else
  303. dummy = 0.0f;
  304. EEPROM_WRITE_VAR(i, dummy);
  305. #endif
  306. EEPROM_WRITE_VAR(i, retract_feedrate_mm_s);
  307. EEPROM_WRITE_VAR(i, retract_zlift);
  308. EEPROM_WRITE_VAR(i, retract_recover_length);
  309. #if EXTRUDERS > 1
  310. EEPROM_WRITE_VAR(i, retract_recover_length_swap);
  311. #else
  312. dummy = 0.0f;
  313. EEPROM_WRITE_VAR(i, dummy);
  314. #endif
  315. EEPROM_WRITE_VAR(i, retract_recover_feedrate);
  316. #endif // FWRETRACT
  317. EEPROM_WRITE_VAR(i, volumetric_enabled);
  318. // Save filament sizes
  319. for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
  320. if (q < EXTRUDERS) dummy = filament_size[q];
  321. EEPROM_WRITE_VAR(i, dummy);
  322. }
  323. uint16_t final_checksum = eeprom_checksum;
  324. int j = EEPROM_OFFSET;
  325. EEPROM_WRITE_VAR(j, version);
  326. EEPROM_WRITE_VAR(j, final_checksum);
  327. // Report storage size
  328. SERIAL_ECHO_START;
  329. SERIAL_ECHOPAIR("Settings Stored (", i);
  330. SERIAL_ECHOLNPGM(" bytes)");
  331. }
  332. /**
  333. * M501 - Retrieve Configuration
  334. */
  335. void Config_RetrieveSettings() {
  336. int i = EEPROM_OFFSET;
  337. char stored_ver[4];
  338. uint16_t stored_checksum;
  339. EEPROM_READ_VAR(i, stored_ver);
  340. EEPROM_READ_VAR(i, stored_checksum);
  341. // SERIAL_ECHOPAIR("Version: [", ver);
  342. // SERIAL_ECHOPAIR("] Stored version: [", stored_ver);
  343. // SERIAL_ECHOLNPGM("]");
  344. if (strncmp(version, stored_ver, 3) != 0) {
  345. Config_ResetDefault();
  346. }
  347. else {
  348. float dummy = 0;
  349. eeprom_checksum = 0; // clear before reading first "real data"
  350. // version number match
  351. EEPROM_READ_VAR(i, planner.axis_steps_per_mm);
  352. EEPROM_READ_VAR(i, planner.max_feedrate);
  353. EEPROM_READ_VAR(i, planner.max_acceleration_mm_per_s2);
  354. EEPROM_READ_VAR(i, planner.acceleration);
  355. EEPROM_READ_VAR(i, planner.retract_acceleration);
  356. EEPROM_READ_VAR(i, planner.travel_acceleration);
  357. EEPROM_READ_VAR(i, planner.min_feedrate);
  358. EEPROM_READ_VAR(i, planner.min_travel_feedrate);
  359. EEPROM_READ_VAR(i, planner.min_segment_time);
  360. EEPROM_READ_VAR(i, planner.max_xy_jerk);
  361. EEPROM_READ_VAR(i, planner.max_z_jerk);
  362. EEPROM_READ_VAR(i, planner.max_e_jerk);
  363. EEPROM_READ_VAR(i, home_offset);
  364. uint8_t dummy_uint8 = 0, mesh_num_x = 0, mesh_num_y = 0;
  365. EEPROM_READ_VAR(i, dummy_uint8);
  366. EEPROM_READ_VAR(i, dummy);
  367. EEPROM_READ_VAR(i, mesh_num_x);
  368. EEPROM_READ_VAR(i, mesh_num_y);
  369. #if ENABLED(MESH_BED_LEVELING)
  370. mbl.status = dummy_uint8;
  371. mbl.z_offset = dummy;
  372. if (mesh_num_x == MESH_NUM_X_POINTS && mesh_num_y == MESH_NUM_Y_POINTS) {
  373. // EEPROM data fits the current mesh
  374. EEPROM_READ_VAR(i, mbl.z_values);
  375. }
  376. else {
  377. // EEPROM data is stale
  378. mbl.reset();
  379. for (uint8_t q = 0; q < mesh_num_x * mesh_num_y; q++) EEPROM_READ_VAR(i, dummy);
  380. }
  381. #else
  382. // MBL is disabled - skip the stored data
  383. for (uint8_t q = 0; q < mesh_num_x * mesh_num_y; q++) EEPROM_READ_VAR(i, dummy);
  384. #endif // MESH_BED_LEVELING
  385. #if !HAS_BED_PROBE
  386. float zprobe_zoffset = 0;
  387. #endif
  388. EEPROM_READ_VAR(i, zprobe_zoffset);
  389. #if ENABLED(DELTA)
  390. EEPROM_READ_VAR(i, endstop_adj); // 3 floats
  391. EEPROM_READ_VAR(i, delta_radius); // 1 float
  392. EEPROM_READ_VAR(i, delta_diagonal_rod); // 1 float
  393. EEPROM_READ_VAR(i, delta_segments_per_second); // 1 float
  394. EEPROM_READ_VAR(i, delta_diagonal_rod_trim_tower_1); // 1 float
  395. EEPROM_READ_VAR(i, delta_diagonal_rod_trim_tower_2); // 1 float
  396. EEPROM_READ_VAR(i, delta_diagonal_rod_trim_tower_3); // 1 float
  397. #elif ENABLED(Z_DUAL_ENDSTOPS)
  398. EEPROM_READ_VAR(i, z_endstop_adj);
  399. dummy = 0.0f;
  400. for (uint8_t q=8; q--;) EEPROM_READ_VAR(i, dummy);
  401. #else
  402. dummy = 0.0f;
  403. for (uint8_t q=9; q--;) EEPROM_READ_VAR(i, dummy);
  404. #endif
  405. #if DISABLED(ULTIPANEL)
  406. int plaPreheatHotendTemp, plaPreheatHPBTemp, plaPreheatFanSpeed,
  407. absPreheatHotendTemp, absPreheatHPBTemp, absPreheatFanSpeed;
  408. #endif
  409. EEPROM_READ_VAR(i, plaPreheatHotendTemp);
  410. EEPROM_READ_VAR(i, plaPreheatHPBTemp);
  411. EEPROM_READ_VAR(i, plaPreheatFanSpeed);
  412. EEPROM_READ_VAR(i, absPreheatHotendTemp);
  413. EEPROM_READ_VAR(i, absPreheatHPBTemp);
  414. EEPROM_READ_VAR(i, absPreheatFanSpeed);
  415. #if ENABLED(PIDTEMP)
  416. for (uint8_t e = 0; e < MAX_EXTRUDERS; e++) {
  417. EEPROM_READ_VAR(i, dummy); // Kp
  418. if (e < HOTENDS && dummy != DUMMY_PID_VALUE) {
  419. // do not need to scale PID values as the values in EEPROM are already scaled
  420. PID_PARAM(Kp, e) = dummy;
  421. EEPROM_READ_VAR(i, PID_PARAM(Ki, e));
  422. EEPROM_READ_VAR(i, PID_PARAM(Kd, e));
  423. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  424. EEPROM_READ_VAR(i, PID_PARAM(Kc, e));
  425. #else
  426. EEPROM_READ_VAR(i, dummy);
  427. #endif
  428. }
  429. else {
  430. for (uint8_t q=3; q--;) EEPROM_READ_VAR(i, dummy); // Ki, Kd, Kc
  431. }
  432. }
  433. #else // !PIDTEMP
  434. // 4 x 4 = 16 slots for PID parameters
  435. for (uint8_t q = MAX_EXTRUDERS * 4; q--;) EEPROM_READ_VAR(i, dummy); // Kp, Ki, Kd, Kc
  436. #endif // !PIDTEMP
  437. #if DISABLED(PID_ADD_EXTRUSION_RATE)
  438. int lpq_len;
  439. #endif
  440. EEPROM_READ_VAR(i, lpq_len);
  441. #if ENABLED(PIDTEMPBED)
  442. EEPROM_READ_VAR(i, dummy); // bedKp
  443. if (dummy != DUMMY_PID_VALUE) {
  444. thermalManager.bedKp = dummy;
  445. EEPROM_READ_VAR(i, thermalManager.bedKi);
  446. EEPROM_READ_VAR(i, thermalManager.bedKd);
  447. }
  448. #else
  449. for (uint8_t q=3; q--;) EEPROM_READ_VAR(i, dummy); // bedKp, bedKi, bedKd
  450. #endif
  451. #if !HAS_LCD_CONTRAST
  452. int lcd_contrast;
  453. #endif
  454. EEPROM_READ_VAR(i, lcd_contrast);
  455. #if ENABLED(SCARA)
  456. EEPROM_READ_VAR(i, axis_scaling); // 3 floats
  457. #else
  458. EEPROM_READ_VAR(i, dummy);
  459. #endif
  460. #if ENABLED(FWRETRACT)
  461. EEPROM_READ_VAR(i, autoretract_enabled);
  462. EEPROM_READ_VAR(i, retract_length);
  463. #if EXTRUDERS > 1
  464. EEPROM_READ_VAR(i, retract_length_swap);
  465. #else
  466. EEPROM_READ_VAR(i, dummy);
  467. #endif
  468. EEPROM_READ_VAR(i, retract_feedrate_mm_s);
  469. EEPROM_READ_VAR(i, retract_zlift);
  470. EEPROM_READ_VAR(i, retract_recover_length);
  471. #if EXTRUDERS > 1
  472. EEPROM_READ_VAR(i, retract_recover_length_swap);
  473. #else
  474. EEPROM_READ_VAR(i, dummy);
  475. #endif
  476. EEPROM_READ_VAR(i, retract_recover_feedrate);
  477. #endif // FWRETRACT
  478. EEPROM_READ_VAR(i, volumetric_enabled);
  479. for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
  480. EEPROM_READ_VAR(i, dummy);
  481. if (q < EXTRUDERS) filament_size[q] = dummy;
  482. }
  483. if (eeprom_checksum == stored_checksum) {
  484. Config_Postprocess();
  485. SERIAL_ECHO_START;
  486. SERIAL_ECHO(version);
  487. SERIAL_ECHOPAIR(" stored settings retrieved (", i);
  488. SERIAL_ECHOLNPGM(" bytes)");
  489. }
  490. else {
  491. SERIAL_ERROR_START;
  492. SERIAL_ERRORLNPGM("EEPROM checksum mismatch");
  493. Config_ResetDefault();
  494. }
  495. }
  496. #if ENABLED(EEPROM_CHITCHAT)
  497. Config_PrintSettings();
  498. #endif
  499. }
  500. #endif // EEPROM_SETTINGS
  501. /**
  502. * M502 - Reset Configuration
  503. */
  504. void Config_ResetDefault() {
  505. float tmp1[] = DEFAULT_AXIS_STEPS_PER_UNIT;
  506. float tmp2[] = DEFAULT_MAX_FEEDRATE;
  507. long tmp3[] = DEFAULT_MAX_ACCELERATION;
  508. for (uint8_t i = 0; i < NUM_AXIS; i++) {
  509. planner.axis_steps_per_mm[i] = tmp1[i];
  510. planner.max_feedrate[i] = tmp2[i];
  511. planner.max_acceleration_mm_per_s2[i] = tmp3[i];
  512. #if ENABLED(SCARA)
  513. if (i < COUNT(axis_scaling))
  514. axis_scaling[i] = 1;
  515. #endif
  516. }
  517. planner.acceleration = DEFAULT_ACCELERATION;
  518. planner.retract_acceleration = DEFAULT_RETRACT_ACCELERATION;
  519. planner.travel_acceleration = DEFAULT_TRAVEL_ACCELERATION;
  520. planner.min_feedrate = DEFAULT_MINIMUMFEEDRATE;
  521. planner.min_segment_time = DEFAULT_MINSEGMENTTIME;
  522. planner.min_travel_feedrate = DEFAULT_MINTRAVELFEEDRATE;
  523. planner.max_xy_jerk = DEFAULT_XYJERK;
  524. planner.max_z_jerk = DEFAULT_ZJERK;
  525. planner.max_e_jerk = DEFAULT_EJERK;
  526. home_offset[X_AXIS] = home_offset[Y_AXIS] = home_offset[Z_AXIS] = 0;
  527. #if ENABLED(MESH_BED_LEVELING)
  528. mbl.reset();
  529. #endif
  530. #if HAS_BED_PROBE
  531. zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  532. #endif
  533. #if ENABLED(DELTA)
  534. endstop_adj[X_AXIS] = endstop_adj[Y_AXIS] = endstop_adj[Z_AXIS] = 0;
  535. delta_radius = DELTA_RADIUS;
  536. delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  537. delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  538. delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1;
  539. delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2;
  540. delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3;
  541. #elif ENABLED(Z_DUAL_ENDSTOPS)
  542. z_endstop_adj = 0;
  543. #endif
  544. #if ENABLED(ULTIPANEL)
  545. plaPreheatHotendTemp = PLA_PREHEAT_HOTEND_TEMP;
  546. plaPreheatHPBTemp = PLA_PREHEAT_HPB_TEMP;
  547. plaPreheatFanSpeed = PLA_PREHEAT_FAN_SPEED;
  548. absPreheatHotendTemp = ABS_PREHEAT_HOTEND_TEMP;
  549. absPreheatHPBTemp = ABS_PREHEAT_HPB_TEMP;
  550. absPreheatFanSpeed = ABS_PREHEAT_FAN_SPEED;
  551. #endif
  552. #if HAS_LCD_CONTRAST
  553. lcd_contrast = DEFAULT_LCD_CONTRAST;
  554. #endif
  555. #if ENABLED(PIDTEMP)
  556. #if ENABLED(PID_PARAMS_PER_HOTEND)
  557. for (uint8_t e = 0; e < HOTENDS; e++)
  558. #else
  559. int e = 0; UNUSED(e); // only need to write once
  560. #endif
  561. {
  562. PID_PARAM(Kp, e) = DEFAULT_Kp;
  563. PID_PARAM(Ki, e) = scalePID_i(DEFAULT_Ki);
  564. PID_PARAM(Kd, e) = scalePID_d(DEFAULT_Kd);
  565. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  566. PID_PARAM(Kc, e) = DEFAULT_Kc;
  567. #endif
  568. }
  569. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  570. lpq_len = 20; // default last-position-queue size
  571. #endif
  572. #endif // PIDTEMP
  573. #if ENABLED(PIDTEMPBED)
  574. thermalManager.bedKp = DEFAULT_bedKp;
  575. thermalManager.bedKi = scalePID_i(DEFAULT_bedKi);
  576. thermalManager.bedKd = scalePID_d(DEFAULT_bedKd);
  577. #endif
  578. #if ENABLED(FWRETRACT)
  579. autoretract_enabled = false;
  580. retract_length = RETRACT_LENGTH;
  581. #if EXTRUDERS > 1
  582. retract_length_swap = RETRACT_LENGTH_SWAP;
  583. #endif
  584. retract_feedrate_mm_s = RETRACT_FEEDRATE;
  585. retract_zlift = RETRACT_ZLIFT;
  586. retract_recover_length = RETRACT_RECOVER_LENGTH;
  587. #if EXTRUDERS > 1
  588. retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  589. #endif
  590. retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  591. #endif
  592. volumetric_enabled = false;
  593. for (uint8_t q = 0; q < COUNT(filament_size); q++)
  594. filament_size[q] = DEFAULT_NOMINAL_FILAMENT_DIA;
  595. Config_Postprocess();
  596. SERIAL_ECHO_START;
  597. SERIAL_ECHOLNPGM("Hardcoded Default Settings Loaded");
  598. }
  599. #if DISABLED(DISABLE_M503)
  600. #define CONFIG_ECHO_START do{ if (!forReplay) SERIAL_ECHO_START; }while(0)
  601. /**
  602. * M503 - Print Configuration
  603. */
  604. void Config_PrintSettings(bool forReplay) {
  605. // Always have this function, even with EEPROM_SETTINGS disabled, the current values will be shown
  606. CONFIG_ECHO_START;
  607. if (!forReplay) {
  608. SERIAL_ECHOLNPGM("Steps per unit:");
  609. CONFIG_ECHO_START;
  610. }
  611. SERIAL_ECHOPAIR(" M92 X", planner.axis_steps_per_mm[X_AXIS]);
  612. SERIAL_ECHOPAIR(" Y", planner.axis_steps_per_mm[Y_AXIS]);
  613. SERIAL_ECHOPAIR(" Z", planner.axis_steps_per_mm[Z_AXIS]);
  614. SERIAL_ECHOPAIR(" E", planner.axis_steps_per_mm[E_AXIS]);
  615. SERIAL_EOL;
  616. CONFIG_ECHO_START;
  617. #if ENABLED(SCARA)
  618. if (!forReplay) {
  619. SERIAL_ECHOLNPGM("Scaling factors:");
  620. CONFIG_ECHO_START;
  621. }
  622. SERIAL_ECHOPAIR(" M365 X", axis_scaling[X_AXIS]);
  623. SERIAL_ECHOPAIR(" Y", axis_scaling[Y_AXIS]);
  624. SERIAL_ECHOPAIR(" Z", axis_scaling[Z_AXIS]);
  625. SERIAL_EOL;
  626. CONFIG_ECHO_START;
  627. #endif // SCARA
  628. if (!forReplay) {
  629. SERIAL_ECHOLNPGM("Maximum feedrates (mm/s):");
  630. CONFIG_ECHO_START;
  631. }
  632. SERIAL_ECHOPAIR(" M203 X", planner.max_feedrate[X_AXIS]);
  633. SERIAL_ECHOPAIR(" Y", planner.max_feedrate[Y_AXIS]);
  634. SERIAL_ECHOPAIR(" Z", planner.max_feedrate[Z_AXIS]);
  635. SERIAL_ECHOPAIR(" E", planner.max_feedrate[E_AXIS]);
  636. SERIAL_EOL;
  637. CONFIG_ECHO_START;
  638. if (!forReplay) {
  639. SERIAL_ECHOLNPGM("Maximum Acceleration (mm/s2):");
  640. CONFIG_ECHO_START;
  641. }
  642. SERIAL_ECHOPAIR(" M201 X", planner.max_acceleration_mm_per_s2[X_AXIS]);
  643. SERIAL_ECHOPAIR(" Y", planner.max_acceleration_mm_per_s2[Y_AXIS]);
  644. SERIAL_ECHOPAIR(" Z", planner.max_acceleration_mm_per_s2[Z_AXIS]);
  645. SERIAL_ECHOPAIR(" E", planner.max_acceleration_mm_per_s2[E_AXIS]);
  646. SERIAL_EOL;
  647. CONFIG_ECHO_START;
  648. if (!forReplay) {
  649. SERIAL_ECHOLNPGM("Accelerations: P=printing, R=retract and T=travel");
  650. CONFIG_ECHO_START;
  651. }
  652. SERIAL_ECHOPAIR(" M204 P", planner.acceleration);
  653. SERIAL_ECHOPAIR(" R", planner.retract_acceleration);
  654. SERIAL_ECHOPAIR(" T", planner.travel_acceleration);
  655. SERIAL_EOL;
  656. CONFIG_ECHO_START;
  657. if (!forReplay) {
  658. SERIAL_ECHOLNPGM("Advanced variables: S=Min feedrate (mm/s), T=Min travel feedrate (mm/s), B=minimum segment time (ms), X=maximum XY jerk (mm/s), Z=maximum Z jerk (mm/s), E=maximum E jerk (mm/s)");
  659. CONFIG_ECHO_START;
  660. }
  661. SERIAL_ECHOPAIR(" M205 S", planner.min_feedrate);
  662. SERIAL_ECHOPAIR(" T", planner.min_travel_feedrate);
  663. SERIAL_ECHOPAIR(" B", planner.min_segment_time);
  664. SERIAL_ECHOPAIR(" X", planner.max_xy_jerk);
  665. SERIAL_ECHOPAIR(" Z", planner.max_z_jerk);
  666. SERIAL_ECHOPAIR(" E", planner.max_e_jerk);
  667. SERIAL_EOL;
  668. CONFIG_ECHO_START;
  669. if (!forReplay) {
  670. SERIAL_ECHOLNPGM("Home offset (mm)");
  671. CONFIG_ECHO_START;
  672. }
  673. SERIAL_ECHOPAIR(" M206 X", home_offset[X_AXIS]);
  674. SERIAL_ECHOPAIR(" Y", home_offset[Y_AXIS]);
  675. SERIAL_ECHOPAIR(" Z", home_offset[Z_AXIS]);
  676. SERIAL_EOL;
  677. #if ENABLED(MESH_BED_LEVELING)
  678. if (!forReplay) {
  679. SERIAL_ECHOLNPGM("Mesh bed leveling:");
  680. CONFIG_ECHO_START;
  681. }
  682. SERIAL_ECHOPAIR(" M420 S", mbl.has_mesh() ? 1 : 0);
  683. SERIAL_ECHOPAIR(" X", MESH_NUM_X_POINTS);
  684. SERIAL_ECHOPAIR(" Y", MESH_NUM_Y_POINTS);
  685. SERIAL_EOL;
  686. for (uint8_t py = 1; py <= MESH_NUM_Y_POINTS; py++) {
  687. for (uint8_t px = 1; px <= MESH_NUM_X_POINTS; px++) {
  688. CONFIG_ECHO_START;
  689. SERIAL_ECHOPAIR(" G29 S3 X", px);
  690. SERIAL_ECHOPAIR(" Y", py);
  691. SERIAL_ECHOPGM(" Z");
  692. SERIAL_PROTOCOL_F(mbl.z_values[py-1][px-1], 5);
  693. SERIAL_EOL;
  694. }
  695. }
  696. #endif
  697. #if ENABLED(DELTA)
  698. CONFIG_ECHO_START;
  699. if (!forReplay) {
  700. SERIAL_ECHOLNPGM("Endstop adjustment (mm):");
  701. CONFIG_ECHO_START;
  702. }
  703. SERIAL_ECHOPAIR(" M666 X", endstop_adj[X_AXIS]);
  704. SERIAL_ECHOPAIR(" Y", endstop_adj[Y_AXIS]);
  705. SERIAL_ECHOPAIR(" Z", endstop_adj[Z_AXIS]);
  706. SERIAL_EOL;
  707. CONFIG_ECHO_START;
  708. if (!forReplay) {
  709. SERIAL_ECHOLNPGM("Delta settings: L=diagonal_rod, R=radius, S=segments_per_second, ABC=diagonal_rod_trim_tower_[123]");
  710. CONFIG_ECHO_START;
  711. }
  712. SERIAL_ECHOPAIR(" M665 L", delta_diagonal_rod);
  713. SERIAL_ECHOPAIR(" R", delta_radius);
  714. SERIAL_ECHOPAIR(" S", delta_segments_per_second);
  715. SERIAL_ECHOPAIR(" A", delta_diagonal_rod_trim_tower_1);
  716. SERIAL_ECHOPAIR(" B", delta_diagonal_rod_trim_tower_2);
  717. SERIAL_ECHOPAIR(" C", delta_diagonal_rod_trim_tower_3);
  718. SERIAL_EOL;
  719. #elif ENABLED(Z_DUAL_ENDSTOPS)
  720. CONFIG_ECHO_START;
  721. if (!forReplay) {
  722. SERIAL_ECHOLNPGM("Z2 Endstop adjustment (mm):");
  723. CONFIG_ECHO_START;
  724. }
  725. SERIAL_ECHOPAIR(" M666 Z", z_endstop_adj);
  726. SERIAL_EOL;
  727. #endif // DELTA
  728. #if ENABLED(ULTIPANEL)
  729. CONFIG_ECHO_START;
  730. if (!forReplay) {
  731. SERIAL_ECHOLNPGM("Material heatup parameters:");
  732. CONFIG_ECHO_START;
  733. }
  734. SERIAL_ECHOPAIR(" M145 S0 H", plaPreheatHotendTemp);
  735. SERIAL_ECHOPAIR(" B", plaPreheatHPBTemp);
  736. SERIAL_ECHOPAIR(" F", plaPreheatFanSpeed);
  737. SERIAL_EOL;
  738. CONFIG_ECHO_START;
  739. SERIAL_ECHOPAIR(" M145 S1 H", absPreheatHotendTemp);
  740. SERIAL_ECHOPAIR(" B", absPreheatHPBTemp);
  741. SERIAL_ECHOPAIR(" F", absPreheatFanSpeed);
  742. SERIAL_EOL;
  743. #endif // ULTIPANEL
  744. #if HAS_PID_HEATING
  745. CONFIG_ECHO_START;
  746. if (!forReplay) {
  747. SERIAL_ECHOLNPGM("PID settings:");
  748. }
  749. #if ENABLED(PIDTEMP)
  750. #if HOTENDS > 1
  751. if (forReplay) {
  752. for (uint8_t i = 0; i < HOTENDS; i++) {
  753. CONFIG_ECHO_START;
  754. SERIAL_ECHOPAIR(" M301 E", i);
  755. SERIAL_ECHOPAIR(" P", PID_PARAM(Kp, i));
  756. SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, i)));
  757. SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, i)));
  758. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  759. SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, i));
  760. if (i == 0) SERIAL_ECHOPAIR(" L", lpq_len);
  761. #endif
  762. SERIAL_EOL;
  763. }
  764. }
  765. else
  766. #endif // HOTENDS > 1
  767. // !forReplay || HOTENDS == 1
  768. {
  769. CONFIG_ECHO_START;
  770. SERIAL_ECHOPAIR(" M301 P", PID_PARAM(Kp, 0)); // for compatibility with hosts, only echo values for E0
  771. SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, 0)));
  772. SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, 0)));
  773. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  774. SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, 0));
  775. SERIAL_ECHOPAIR(" L", lpq_len);
  776. #endif
  777. SERIAL_EOL;
  778. }
  779. #endif // PIDTEMP
  780. #if ENABLED(PIDTEMPBED)
  781. CONFIG_ECHO_START;
  782. SERIAL_ECHOPAIR(" M304 P", thermalManager.bedKp);
  783. SERIAL_ECHOPAIR(" I", unscalePID_i(thermalManager.bedKi));
  784. SERIAL_ECHOPAIR(" D", unscalePID_d(thermalManager.bedKd));
  785. SERIAL_EOL;
  786. #endif
  787. #endif // PIDTEMP || PIDTEMPBED
  788. #if HAS_LCD_CONTRAST
  789. CONFIG_ECHO_START;
  790. if (!forReplay) {
  791. SERIAL_ECHOLNPGM("LCD Contrast:");
  792. CONFIG_ECHO_START;
  793. }
  794. SERIAL_ECHOPAIR(" M250 C", lcd_contrast);
  795. SERIAL_EOL;
  796. #endif
  797. #if ENABLED(FWRETRACT)
  798. CONFIG_ECHO_START;
  799. if (!forReplay) {
  800. SERIAL_ECHOLNPGM("Retract: S=Length (mm) F:Speed (mm/m) Z: ZLift (mm)");
  801. CONFIG_ECHO_START;
  802. }
  803. SERIAL_ECHOPAIR(" M207 S", retract_length);
  804. #if EXTRUDERS > 1
  805. SERIAL_ECHOPAIR(" W", retract_length_swap);
  806. #endif
  807. SERIAL_ECHOPAIR(" F", retract_feedrate_mm_s * 60);
  808. SERIAL_ECHOPAIR(" Z", retract_zlift);
  809. SERIAL_EOL;
  810. CONFIG_ECHO_START;
  811. if (!forReplay) {
  812. SERIAL_ECHOLNPGM("Recover: S=Extra length (mm) F:Speed (mm/m)");
  813. CONFIG_ECHO_START;
  814. }
  815. SERIAL_ECHOPAIR(" M208 S", retract_recover_length);
  816. #if EXTRUDERS > 1
  817. SERIAL_ECHOPAIR(" W", retract_recover_length_swap);
  818. #endif
  819. SERIAL_ECHOPAIR(" F", retract_recover_feedrate * 60);
  820. SERIAL_EOL;
  821. CONFIG_ECHO_START;
  822. if (!forReplay) {
  823. SERIAL_ECHOLNPGM("Auto-Retract: S=0 to disable, 1 to interpret extrude-only moves as retracts or recoveries");
  824. CONFIG_ECHO_START;
  825. }
  826. SERIAL_ECHOPAIR(" M209 S", autoretract_enabled ? 1 : 0);
  827. SERIAL_EOL;
  828. #endif // FWRETRACT
  829. /**
  830. * Volumetric extrusion M200
  831. */
  832. if (!forReplay) {
  833. CONFIG_ECHO_START;
  834. SERIAL_ECHOPGM("Filament settings:");
  835. if (volumetric_enabled)
  836. SERIAL_EOL;
  837. else
  838. SERIAL_ECHOLNPGM(" Disabled");
  839. }
  840. CONFIG_ECHO_START;
  841. SERIAL_ECHOPAIR(" M200 D", filament_size[0]);
  842. SERIAL_EOL;
  843. #if EXTRUDERS > 1
  844. CONFIG_ECHO_START;
  845. SERIAL_ECHOPAIR(" M200 T1 D", filament_size[1]);
  846. SERIAL_EOL;
  847. #if EXTRUDERS > 2
  848. CONFIG_ECHO_START;
  849. SERIAL_ECHOPAIR(" M200 T2 D", filament_size[2]);
  850. SERIAL_EOL;
  851. #if EXTRUDERS > 3
  852. CONFIG_ECHO_START;
  853. SERIAL_ECHOPAIR(" M200 T3 D", filament_size[3]);
  854. SERIAL_EOL;
  855. #endif
  856. #endif
  857. #endif
  858. if (!volumetric_enabled) {
  859. CONFIG_ECHO_START;
  860. SERIAL_ECHOLNPGM(" M200 D0");
  861. }
  862. /**
  863. * Auto Bed Leveling
  864. */
  865. #if HAS_BED_PROBE
  866. if (!forReplay) {
  867. CONFIG_ECHO_START;
  868. SERIAL_ECHOLNPGM("Z-Probe Offset (mm):");
  869. }
  870. CONFIG_ECHO_START;
  871. SERIAL_ECHOPAIR(" M851 Z", zprobe_zoffset);
  872. SERIAL_EOL;
  873. #endif
  874. }
  875. #endif // !DISABLE_M503