My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

I2CPositionEncoder.h 11KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2019 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. #pragma once
  23. #include "../inc/MarlinConfig.h"
  24. #include "../module/planner.h"
  25. #include <Wire.h>
  26. //=========== Advanced / Less-Common Encoder Configuration Settings ==========
  27. #define I2CPE_EC_THRESH_PROPORTIONAL // if enabled adjusts the error correction threshold
  28. // proportional to the current speed of the axis allows
  29. // for very small error margin at low speeds without
  30. // stuttering due to reading latency at high speeds
  31. #define I2CPE_DEBUG // enable encoder-related debug serial echos
  32. #define I2CPE_REBOOT_TIME 5000 // time we wait for an encoder module to reboot
  33. // after changing address.
  34. #define I2CPE_MAG_SIG_GOOD 0
  35. #define I2CPE_MAG_SIG_MID 1
  36. #define I2CPE_MAG_SIG_BAD 2
  37. #define I2CPE_MAG_SIG_NF 255
  38. #define I2CPE_REQ_REPORT 0
  39. #define I2CPE_RESET_COUNT 1
  40. #define I2CPE_SET_ADDR 2
  41. #define I2CPE_SET_REPORT_MODE 3
  42. #define I2CPE_CLEAR_EEPROM 4
  43. #define I2CPE_LED_PAR_MODE 10
  44. #define I2CPE_LED_PAR_BRT 11
  45. #define I2CPE_LED_PAR_RATE 14
  46. #define I2CPE_REPORT_DISTANCE 0
  47. #define I2CPE_REPORT_STRENGTH 1
  48. #define I2CPE_REPORT_VERSION 2
  49. // Default I2C addresses
  50. #define I2CPE_PRESET_ADDR_X 30
  51. #define I2CPE_PRESET_ADDR_Y 31
  52. #define I2CPE_PRESET_ADDR_Z 32
  53. #define I2CPE_PRESET_ADDR_E 33
  54. #define I2CPE_DEF_AXIS X_AXIS
  55. #define I2CPE_DEF_ADDR I2CPE_PRESET_ADDR_X
  56. // Error event counter; tracks how many times there is an error exceeding a certain threshold
  57. #define I2CPE_ERR_CNT_THRESH 3.00
  58. #define I2CPE_ERR_CNT_DEBOUNCE_MS 2000
  59. #if ENABLED(I2CPE_ERR_ROLLING_AVERAGE)
  60. #define I2CPE_ERR_ARRAY_SIZE 32
  61. #define I2CPE_ERR_PRST_ARRAY_SIZE 10
  62. #endif
  63. // Error Correction Methods
  64. #define I2CPE_ECM_NONE 0
  65. #define I2CPE_ECM_MICROSTEP 1
  66. #define I2CPE_ECM_PLANNER 2
  67. #define I2CPE_ECM_STALLDETECT 3
  68. // Encoder types
  69. #define I2CPE_ENC_TYPE_ROTARY 0
  70. #define I2CPE_ENC_TYPE_LINEAR 1
  71. // Parser
  72. #define I2CPE_PARSE_ERR 1
  73. #define I2CPE_PARSE_OK 0
  74. #define LOOP_PE(VAR) LOOP_L_N(VAR, I2CPE_ENCODER_CNT)
  75. #define CHECK_IDX() do{ if (!WITHIN(idx, 0, I2CPE_ENCODER_CNT - 1)) return; }while(0)
  76. extern const char axis_codes[XYZE];
  77. typedef union {
  78. volatile int32_t val = 0;
  79. uint8_t bval[4];
  80. } i2cLong;
  81. class I2CPositionEncoder {
  82. private:
  83. AxisEnum encoderAxis = I2CPE_DEF_AXIS;
  84. uint8_t i2cAddress = I2CPE_DEF_ADDR,
  85. ecMethod = I2CPE_DEF_EC_METHOD,
  86. type = I2CPE_DEF_TYPE,
  87. H = I2CPE_MAG_SIG_NF; // Magnetic field strength
  88. int encoderTicksPerUnit = I2CPE_DEF_ENC_TICKS_UNIT,
  89. stepperTicks = I2CPE_DEF_TICKS_REV,
  90. errorCount = 0,
  91. errorPrev = 0;
  92. float ecThreshold = I2CPE_DEF_EC_THRESH;
  93. bool homed = false,
  94. trusted = false,
  95. initialized = false,
  96. active = false,
  97. invert = false,
  98. ec = true;
  99. int32_t zeroOffset = 0,
  100. lastPosition = 0,
  101. position;
  102. millis_t lastPositionTime = 0,
  103. nextErrorCountTime = 0,
  104. lastErrorTime;
  105. #if ENABLED(I2CPE_ERR_ROLLING_AVERAGE)
  106. uint8_t errIdx = 0, errPrstIdx = 0;
  107. int err[I2CPE_ERR_ARRAY_SIZE] = { 0 },
  108. errPrst[I2CPE_ERR_PRST_ARRAY_SIZE] = { 0 };
  109. #endif
  110. public:
  111. void init(const uint8_t address, const AxisEnum axis);
  112. void reset();
  113. void update();
  114. void set_homed();
  115. void set_unhomed();
  116. int32_t get_raw_count();
  117. FORCE_INLINE float mm_from_count(const int32_t count) {
  118. switch (type) {
  119. default: return -1;
  120. case I2CPE_ENC_TYPE_LINEAR:
  121. return count / encoderTicksPerUnit;
  122. case I2CPE_ENC_TYPE_ROTARY:
  123. return (count * stepperTicks) / (encoderTicksPerUnit * planner.settings.axis_steps_per_mm[encoderAxis]);
  124. }
  125. }
  126. FORCE_INLINE float get_position_mm() { return mm_from_count(get_position()); }
  127. FORCE_INLINE int32_t get_position() { return get_raw_count() - zeroOffset; }
  128. int32_t get_axis_error_steps(const bool report);
  129. float get_axis_error_mm(const bool report);
  130. void calibrate_steps_mm(const uint8_t iter);
  131. bool passes_test(const bool report);
  132. bool test_axis(void);
  133. FORCE_INLINE int get_error_count(void) { return errorCount; }
  134. FORCE_INLINE void set_error_count(const int newCount) { errorCount = newCount; }
  135. FORCE_INLINE uint8_t get_address() { return i2cAddress; }
  136. FORCE_INLINE void set_address(const uint8_t addr) { i2cAddress = addr; }
  137. FORCE_INLINE bool get_active(void) { return active; }
  138. FORCE_INLINE void set_active(const bool a) { active = a; }
  139. FORCE_INLINE void set_inverted(const bool i) { invert = i; }
  140. FORCE_INLINE AxisEnum get_axis() { return encoderAxis; }
  141. FORCE_INLINE bool get_ec_enabled() { return ec; }
  142. FORCE_INLINE void set_ec_enabled(const bool enabled) { ec = enabled; }
  143. FORCE_INLINE uint8_t get_ec_method() { return ecMethod; }
  144. FORCE_INLINE void set_ec_method(const byte method) { ecMethod = method; }
  145. FORCE_INLINE float get_ec_threshold() { return ecThreshold; }
  146. FORCE_INLINE void set_ec_threshold(const float newThreshold) { ecThreshold = newThreshold; }
  147. FORCE_INLINE int get_encoder_ticks_mm() {
  148. switch (type) {
  149. default: return 0;
  150. case I2CPE_ENC_TYPE_LINEAR:
  151. return encoderTicksPerUnit;
  152. case I2CPE_ENC_TYPE_ROTARY:
  153. return (int)((encoderTicksPerUnit / stepperTicks) * planner.settings.axis_steps_per_mm[encoderAxis]);
  154. }
  155. }
  156. FORCE_INLINE int get_ticks_unit() { return encoderTicksPerUnit; }
  157. FORCE_INLINE void set_ticks_unit(const int ticks) { encoderTicksPerUnit = ticks; }
  158. FORCE_INLINE uint8_t get_type() { return type; }
  159. FORCE_INLINE void set_type(const byte newType) { type = newType; }
  160. FORCE_INLINE int get_stepper_ticks() { return stepperTicks; }
  161. FORCE_INLINE void set_stepper_ticks(const int ticks) { stepperTicks = ticks; }
  162. };
  163. class I2CPositionEncodersMgr {
  164. private:
  165. static bool I2CPE_anyaxis;
  166. static uint8_t I2CPE_addr, I2CPE_idx;
  167. public:
  168. static void init(void);
  169. // consider only updating one endoder per call / tick if encoders become too time intensive
  170. static void update(void) { LOOP_PE(i) encoders[i].update(); }
  171. static void homed(const AxisEnum axis) {
  172. LOOP_PE(i)
  173. if (encoders[i].get_axis() == axis) encoders[i].set_homed();
  174. }
  175. static void unhomed(const AxisEnum axis) {
  176. LOOP_PE(i)
  177. if (encoders[i].get_axis() == axis) encoders[i].set_unhomed();
  178. }
  179. static void report_position(const int8_t idx, const bool units, const bool noOffset);
  180. static void report_status(const int8_t idx) {
  181. CHECK_IDX();
  182. SERIAL_ECHOLNPAIR("Encoder ", idx, ": ");
  183. encoders[idx].get_raw_count();
  184. encoders[idx].passes_test(true);
  185. }
  186. static void report_error(const int8_t idx) {
  187. CHECK_IDX();
  188. encoders[idx].get_axis_error_steps(true);
  189. }
  190. static void test_axis(const int8_t idx) {
  191. CHECK_IDX();
  192. encoders[idx].test_axis();
  193. }
  194. static void calibrate_steps_mm(const int8_t idx, const int iterations) {
  195. CHECK_IDX();
  196. encoders[idx].calibrate_steps_mm(iterations);
  197. }
  198. static void change_module_address(const uint8_t oldaddr, const uint8_t newaddr);
  199. static void report_module_firmware(const uint8_t address);
  200. static void report_error_count(const int8_t idx, const AxisEnum axis) {
  201. CHECK_IDX();
  202. SERIAL_ECHOLNPAIR("Error count on ", axis_codes[axis], " axis is ", encoders[idx].get_error_count());
  203. }
  204. static void reset_error_count(const int8_t idx, const AxisEnum axis) {
  205. CHECK_IDX();
  206. encoders[idx].set_error_count(0);
  207. SERIAL_ECHOLNPAIR("Error count on ", axis_codes[axis], " axis has been reset.");
  208. }
  209. static void enable_ec(const int8_t idx, const bool enabled, const AxisEnum axis) {
  210. CHECK_IDX();
  211. encoders[idx].set_ec_enabled(enabled);
  212. SERIAL_ECHOPAIR("Error correction on ", axis_codes[axis], " axis is ");
  213. serialprintPGM(encoders[idx].get_ec_enabled() ? PSTR("en") : PSTR("dis"));
  214. SERIAL_ECHOLNPGM("abled.");
  215. }
  216. static void set_ec_threshold(const int8_t idx, const float newThreshold, const AxisEnum axis) {
  217. CHECK_IDX();
  218. encoders[idx].set_ec_threshold(newThreshold);
  219. SERIAL_ECHOLNPAIR("Error correct threshold for ", axis_codes[axis], " axis set to ", FIXFLOAT(newThreshold), "mm.");
  220. }
  221. static void get_ec_threshold(const int8_t idx, const AxisEnum axis) {
  222. CHECK_IDX();
  223. const float threshold = encoders[idx].get_ec_threshold();
  224. SERIAL_ECHOLNPAIR("Error correct threshold for ", axis_codes[axis], " axis is ", FIXFLOAT(threshold), "mm.");
  225. }
  226. static int8_t idx_from_axis(const AxisEnum axis) {
  227. LOOP_PE(i)
  228. if (encoders[i].get_axis() == axis) return i;
  229. return -1;
  230. }
  231. static int8_t idx_from_addr(const uint8_t addr) {
  232. LOOP_PE(i)
  233. if (encoders[i].get_address() == addr) return i;
  234. return -1;
  235. }
  236. static int8_t parse();
  237. static void M860();
  238. static void M861();
  239. static void M862();
  240. static void M863();
  241. static void M864();
  242. static void M865();
  243. static void M866();
  244. static void M867();
  245. static void M868();
  246. static void M869();
  247. static I2CPositionEncoder encoders[I2CPE_ENCODER_CNT];
  248. };
  249. extern I2CPositionEncodersMgr I2CPEM;