My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

ubl_motion.cpp 23KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2019 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. #include "../../../inc/MarlinConfig.h"
  23. #if ENABLED(AUTO_BED_LEVELING_UBL)
  24. #include "../bedlevel.h"
  25. #include "../../../module/planner.h"
  26. #include "../../../module/stepper.h"
  27. #include "../../../module/motion.h"
  28. #if ENABLED(DELTA)
  29. #include "../../../module/delta.h"
  30. #endif
  31. #include "../../../Marlin.h"
  32. #include <math.h>
  33. #if AVR_AT90USB1286_FAMILY // Teensyduino & Printrboard IDE extensions have compile errors without this
  34. inline void set_current_from_destination() { COPY(current_position, destination); }
  35. #else
  36. extern void set_current_from_destination();
  37. #endif
  38. #if !UBL_SEGMENTED
  39. void unified_bed_leveling::line_to_destination_cartesian(const float &feed_rate, const uint8_t extruder) {
  40. /**
  41. * Much of the nozzle movement will be within the same cell. So we will do as little computation
  42. * as possible to determine if this is the case. If this move is within the same cell, we will
  43. * just do the required Z-Height correction, call the Planner's buffer_line() routine, and leave
  44. */
  45. #if HAS_POSITION_MODIFIERS
  46. float start[XYZE] = { current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS] },
  47. end[XYZE] = { destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS] };
  48. planner.apply_modifiers(start);
  49. planner.apply_modifiers(end);
  50. #else
  51. const float (&start)[XYZE] = current_position,
  52. (&end)[XYZE] = destination;
  53. #endif
  54. const int cell_start_xi = get_cell_index_x(start[X_AXIS]),
  55. cell_start_yi = get_cell_index_y(start[Y_AXIS]),
  56. cell_dest_xi = get_cell_index_x(end[X_AXIS]),
  57. cell_dest_yi = get_cell_index_y(end[Y_AXIS]);
  58. if (g26_debug_flag) {
  59. SERIAL_ECHOLNPAIR(
  60. " ubl.line_to_destination_cartesian(xe=", destination[X_AXIS],
  61. ", ye=", destination[Y_AXIS],
  62. ", ze=", destination[Z_AXIS],
  63. ", ee=", destination[E_AXIS],
  64. ")"
  65. );
  66. debug_current_and_destination(PSTR("Start of ubl.line_to_destination_cartesian()"));
  67. }
  68. // A move within the same cell needs no splitting
  69. if (cell_start_xi == cell_dest_xi && cell_start_yi == cell_dest_yi) {
  70. // For a move off the bed, use a constant Z raise
  71. if (!WITHIN(cell_dest_xi, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(cell_dest_yi, 0, GRID_MAX_POINTS_Y - 1)) {
  72. // Note: There is no Z Correction in this case. We are off the grid and don't know what
  73. // a reasonable correction would be. If the user has specified a UBL_Z_RAISE_WHEN_OFF_MESH
  74. // value, that will be used instead of a calculated (Bi-Linear interpolation) correction.
  75. const float z_raise = 0.0
  76. #ifdef UBL_Z_RAISE_WHEN_OFF_MESH
  77. + UBL_Z_RAISE_WHEN_OFF_MESH
  78. #endif
  79. ;
  80. planner.buffer_segment(end[X_AXIS], end[Y_AXIS], end[Z_AXIS] + z_raise, end[E_AXIS], feed_rate, extruder);
  81. set_current_from_destination();
  82. if (g26_debug_flag)
  83. debug_current_and_destination(PSTR("out of bounds in ubl.line_to_destination_cartesian()"));
  84. return;
  85. }
  86. FINAL_MOVE:
  87. // The distance is always MESH_X_DIST so multiply by the constant reciprocal.
  88. const float xratio = (end[X_AXIS] - mesh_index_to_xpos(cell_dest_xi)) * (1.0f / (MESH_X_DIST));
  89. float z1 = z_values[cell_dest_xi ][cell_dest_yi ] + xratio *
  90. (z_values[cell_dest_xi + 1][cell_dest_yi ] - z_values[cell_dest_xi][cell_dest_yi ]),
  91. z2 = z_values[cell_dest_xi ][cell_dest_yi + 1] + xratio *
  92. (z_values[cell_dest_xi + 1][cell_dest_yi + 1] - z_values[cell_dest_xi][cell_dest_yi + 1]);
  93. if (cell_dest_xi >= GRID_MAX_POINTS_X - 1) z1 = z2 = 0.0;
  94. // X cell-fraction done. Interpolate the two Z offsets with the Y fraction for the final Z offset.
  95. const float yratio = (end[Y_AXIS] - mesh_index_to_ypos(cell_dest_yi)) * (1.0f / (MESH_Y_DIST)),
  96. z0 = cell_dest_yi < GRID_MAX_POINTS_Y - 1 ? (z1 + (z2 - z1) * yratio) * planner.fade_scaling_factor_for_z(end[Z_AXIS]) : 0.0;
  97. // Undefined parts of the Mesh in z_values[][] are NAN.
  98. // Replace NAN corrections with 0.0 to prevent NAN propagation.
  99. planner.buffer_segment(end[X_AXIS], end[Y_AXIS], end[Z_AXIS] + (isnan(z0) ? 0.0 : z0), end[E_AXIS], feed_rate, extruder);
  100. if (g26_debug_flag)
  101. debug_current_and_destination(PSTR("FINAL_MOVE in ubl.line_to_destination_cartesian()"));
  102. set_current_from_destination();
  103. return;
  104. }
  105. /**
  106. * Past this point the move is known to cross one or more mesh lines. Check for the most common
  107. * case - crossing only one X or Y line - after details are worked out to reduce computation.
  108. */
  109. const float dx = end[X_AXIS] - start[X_AXIS],
  110. dy = end[Y_AXIS] - start[Y_AXIS];
  111. const int left_flag = dx < 0.0 ? 1 : 0,
  112. down_flag = dy < 0.0 ? 1 : 0;
  113. const float adx = left_flag ? -dx : dx,
  114. ady = down_flag ? -dy : dy;
  115. const int dxi = cell_start_xi == cell_dest_xi ? 0 : left_flag ? -1 : 1,
  116. dyi = cell_start_yi == cell_dest_yi ? 0 : down_flag ? -1 : 1;
  117. /**
  118. * Compute the extruder scaling factor for each partial move, checking for
  119. * zero-length moves that would result in an infinite scaling factor.
  120. * A float divide is required for this, but then it just multiplies.
  121. * Also select a scaling factor based on the larger of the X and Y
  122. * components. The larger of the two is used to preserve precision.
  123. */
  124. const bool use_x_dist = adx > ady;
  125. float on_axis_distance = use_x_dist ? dx : dy,
  126. e_position = end[E_AXIS] - start[E_AXIS],
  127. z_position = end[Z_AXIS] - start[Z_AXIS];
  128. const float e_normalized_dist = e_position / on_axis_distance,
  129. z_normalized_dist = z_position / on_axis_distance;
  130. int current_xi = cell_start_xi,
  131. current_yi = cell_start_yi;
  132. const float m = dy / dx,
  133. c = start[Y_AXIS] - m * start[X_AXIS];
  134. const bool inf_normalized_flag = (isinf(e_normalized_dist) != 0),
  135. inf_m_flag = (isinf(m) != 0);
  136. /**
  137. * Handle vertical lines that stay within one column.
  138. * These need not be perfectly vertical.
  139. */
  140. if (dxi == 0) { // Vertical line?
  141. current_yi += down_flag; // Line going down? Just go to the bottom.
  142. while (current_yi != cell_dest_yi + down_flag) {
  143. current_yi += dyi;
  144. const float next_mesh_line_y = mesh_index_to_ypos(current_yi);
  145. /**
  146. * Skip the calculations for an infinite slope.
  147. * For others the next X is the same so this can continue.
  148. * Calculate X at the next Y mesh line.
  149. */
  150. const float rx = inf_m_flag ? start[X_AXIS] : (next_mesh_line_y - c) / m;
  151. float z0 = z_correction_for_x_on_horizontal_mesh_line(rx, current_xi, current_yi)
  152. * planner.fade_scaling_factor_for_z(end[Z_AXIS]);
  153. // Undefined parts of the Mesh in z_values[][] are NAN.
  154. // Replace NAN corrections with 0.0 to prevent NAN propagation.
  155. if (isnan(z0)) z0 = 0.0;
  156. const float ry = mesh_index_to_ypos(current_yi);
  157. /**
  158. * Without this check, it's possible to generate a zero length move, as in the case where
  159. * the line is heading down, starting exactly on a mesh line boundary. Since this is rare
  160. * it might be fine to remove this check and let planner.buffer_segment() filter it out.
  161. */
  162. if (ry != start[Y_AXIS]) {
  163. if (!inf_normalized_flag) {
  164. on_axis_distance = use_x_dist ? rx - start[X_AXIS] : ry - start[Y_AXIS];
  165. e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist;
  166. z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;
  167. }
  168. else {
  169. e_position = end[E_AXIS];
  170. z_position = end[Z_AXIS];
  171. }
  172. planner.buffer_segment(rx, ry, z_position + z0, e_position, feed_rate, extruder);
  173. } //else printf("FIRST MOVE PRUNED ");
  174. }
  175. if (g26_debug_flag)
  176. debug_current_and_destination(PSTR("vertical move done in ubl.line_to_destination_cartesian()"));
  177. // At the final destination? Usually not, but when on a Y Mesh Line it's completed.
  178. if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS])
  179. goto FINAL_MOVE;
  180. set_current_from_destination();
  181. return;
  182. }
  183. /**
  184. * Handle horizontal lines that stay within one row.
  185. * These need not be perfectly horizontal.
  186. */
  187. if (dyi == 0) { // Horizontal line?
  188. current_xi += left_flag; // Heading left? Just go to the left edge of the cell for the first move.
  189. while (current_xi != cell_dest_xi + left_flag) {
  190. current_xi += dxi;
  191. const float next_mesh_line_x = mesh_index_to_xpos(current_xi),
  192. ry = m * next_mesh_line_x + c; // Calculate Y at the next X mesh line
  193. float z0 = z_correction_for_y_on_vertical_mesh_line(ry, current_xi, current_yi)
  194. * planner.fade_scaling_factor_for_z(end[Z_AXIS]);
  195. // Undefined parts of the Mesh in z_values[][] are NAN.
  196. // Replace NAN corrections with 0.0 to prevent NAN propagation.
  197. if (isnan(z0)) z0 = 0.0;
  198. const float rx = mesh_index_to_xpos(current_xi);
  199. /**
  200. * Without this check, it's possible to generate a zero length move, as in the case where
  201. * the line is heading left, starting exactly on a mesh line boundary. Since this is rare
  202. * it might be fine to remove this check and let planner.buffer_segment() filter it out.
  203. */
  204. if (rx != start[X_AXIS]) {
  205. if (!inf_normalized_flag) {
  206. on_axis_distance = use_x_dist ? rx - start[X_AXIS] : ry - start[Y_AXIS];
  207. e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist; // is based on X or Y because this is a horizontal move
  208. z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;
  209. }
  210. else {
  211. e_position = end[E_AXIS];
  212. z_position = end[Z_AXIS];
  213. }
  214. if (!planner.buffer_segment(rx, ry, z_position + z0, e_position, feed_rate, extruder))
  215. break;
  216. } //else printf("FIRST MOVE PRUNED ");
  217. }
  218. if (g26_debug_flag)
  219. debug_current_and_destination(PSTR("horizontal move done in ubl.line_to_destination_cartesian()"));
  220. if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS])
  221. goto FINAL_MOVE;
  222. set_current_from_destination();
  223. return;
  224. }
  225. /**
  226. *
  227. * Handle the generic case of a line crossing both X and Y Mesh lines.
  228. *
  229. */
  230. int xi_cnt = cell_start_xi - cell_dest_xi,
  231. yi_cnt = cell_start_yi - cell_dest_yi;
  232. if (xi_cnt < 0) xi_cnt = -xi_cnt;
  233. if (yi_cnt < 0) yi_cnt = -yi_cnt;
  234. current_xi += left_flag;
  235. current_yi += down_flag;
  236. while (xi_cnt || yi_cnt) {
  237. const float next_mesh_line_x = mesh_index_to_xpos(current_xi + dxi),
  238. next_mesh_line_y = mesh_index_to_ypos(current_yi + dyi),
  239. ry = m * next_mesh_line_x + c, // Calculate Y at the next X mesh line
  240. rx = (next_mesh_line_y - c) / m; // Calculate X at the next Y mesh line
  241. // (No need to worry about m being zero.
  242. // If that was the case, it was already detected
  243. // as a vertical line move above.)
  244. if (left_flag == (rx > next_mesh_line_x)) { // Check if we hit the Y line first
  245. // Yes! Crossing a Y Mesh Line next
  246. float z0 = z_correction_for_x_on_horizontal_mesh_line(rx, current_xi - left_flag, current_yi + dyi)
  247. * planner.fade_scaling_factor_for_z(end[Z_AXIS]);
  248. // Undefined parts of the Mesh in z_values[][] are NAN.
  249. // Replace NAN corrections with 0.0 to prevent NAN propagation.
  250. if (isnan(z0)) z0 = 0.0;
  251. if (!inf_normalized_flag) {
  252. on_axis_distance = use_x_dist ? rx - start[X_AXIS] : next_mesh_line_y - start[Y_AXIS];
  253. e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist;
  254. z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;
  255. }
  256. else {
  257. e_position = end[E_AXIS];
  258. z_position = end[Z_AXIS];
  259. }
  260. if (!planner.buffer_segment(rx, next_mesh_line_y, z_position + z0, e_position, feed_rate, extruder))
  261. break;
  262. current_yi += dyi;
  263. yi_cnt--;
  264. }
  265. else {
  266. // Yes! Crossing a X Mesh Line next
  267. float z0 = z_correction_for_y_on_vertical_mesh_line(ry, current_xi + dxi, current_yi - down_flag)
  268. * planner.fade_scaling_factor_for_z(end[Z_AXIS]);
  269. // Undefined parts of the Mesh in z_values[][] are NAN.
  270. // Replace NAN corrections with 0.0 to prevent NAN propagation.
  271. if (isnan(z0)) z0 = 0.0;
  272. if (!inf_normalized_flag) {
  273. on_axis_distance = use_x_dist ? next_mesh_line_x - start[X_AXIS] : ry - start[Y_AXIS];
  274. e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist;
  275. z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;
  276. }
  277. else {
  278. e_position = end[E_AXIS];
  279. z_position = end[Z_AXIS];
  280. }
  281. if (!planner.buffer_segment(next_mesh_line_x, ry, z_position + z0, e_position, feed_rate, extruder))
  282. break;
  283. current_xi += dxi;
  284. xi_cnt--;
  285. }
  286. if (xi_cnt < 0 || yi_cnt < 0) break; // Too far! Exit the loop and go to FINAL_MOVE
  287. }
  288. if (g26_debug_flag)
  289. debug_current_and_destination(PSTR("generic move done in ubl.line_to_destination_cartesian()"));
  290. if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS])
  291. goto FINAL_MOVE;
  292. set_current_from_destination();
  293. }
  294. #else // UBL_SEGMENTED
  295. #if IS_SCARA
  296. #define DELTA_SEGMENT_MIN_LENGTH 0.25 // SCARA minimum segment size is 0.25mm
  297. #elif ENABLED(DELTA)
  298. #define DELTA_SEGMENT_MIN_LENGTH 0.10 // mm (still subject to DELTA_SEGMENTS_PER_SECOND)
  299. #else // CARTESIAN
  300. #ifdef LEVELED_SEGMENT_LENGTH
  301. #define DELTA_SEGMENT_MIN_LENGTH LEVELED_SEGMENT_LENGTH
  302. #else
  303. #define DELTA_SEGMENT_MIN_LENGTH 1.00 // mm (similar to G2/G3 arc segmentation)
  304. #endif
  305. #endif
  306. /**
  307. * Prepare a segmented linear move for DELTA/SCARA/CARTESIAN with UBL and FADE semantics.
  308. * This calls planner.buffer_segment multiple times for small incremental moves.
  309. * Returns true if did NOT move, false if moved (requires current_position update).
  310. */
  311. bool _O2 unified_bed_leveling::prepare_segmented_line_to(const float (&rtarget)[XYZE], const float &feedrate) {
  312. if (!position_is_reachable(rtarget[X_AXIS], rtarget[Y_AXIS])) // fail if moving outside reachable boundary
  313. return true; // did not move, so current_position still accurate
  314. const float total[XYZE] = {
  315. rtarget[X_AXIS] - current_position[X_AXIS],
  316. rtarget[Y_AXIS] - current_position[Y_AXIS],
  317. rtarget[Z_AXIS] - current_position[Z_AXIS],
  318. rtarget[E_AXIS] - current_position[E_AXIS]
  319. };
  320. const float cartesian_xy_mm = HYPOT(total[X_AXIS], total[Y_AXIS]); // total horizontal xy distance
  321. #if IS_KINEMATIC
  322. const float seconds = cartesian_xy_mm / feedrate; // seconds to move xy distance at requested rate
  323. uint16_t segments = LROUND(delta_segments_per_second * seconds), // preferred number of segments for distance @ feedrate
  324. seglimit = LROUND(cartesian_xy_mm * (1.0f / (DELTA_SEGMENT_MIN_LENGTH))); // number of segments at minimum segment length
  325. NOMORE(segments, seglimit); // limit to minimum segment length (fewer segments)
  326. #else
  327. uint16_t segments = LROUND(cartesian_xy_mm * (1.0f / (DELTA_SEGMENT_MIN_LENGTH))); // cartesian fixed segment length
  328. #endif
  329. NOLESS(segments, 1U); // must have at least one segment
  330. const float inv_segments = 1.0f / segments; // divide once, multiply thereafter
  331. const float segment_xyz_mm = HYPOT(cartesian_xy_mm, total[Z_AXIS]) * inv_segments; // length of each segment
  332. #if ENABLED(SCARA_FEEDRATE_SCALING)
  333. const float inv_duration = feedrate / segment_xyz_mm;
  334. #endif
  335. const float diff[XYZE] = {
  336. total[X_AXIS] * inv_segments,
  337. total[Y_AXIS] * inv_segments,
  338. total[Z_AXIS] * inv_segments,
  339. total[E_AXIS] * inv_segments
  340. };
  341. // Note that E segment distance could vary slightly as z mesh height
  342. // changes for each segment, but small enough to ignore.
  343. float raw[XYZE] = {
  344. current_position[X_AXIS],
  345. current_position[Y_AXIS],
  346. current_position[Z_AXIS],
  347. current_position[E_AXIS]
  348. };
  349. // Only compute leveling per segment if ubl active and target below z_fade_height.
  350. if (!planner.leveling_active || !planner.leveling_active_at_z(rtarget[Z_AXIS])) { // no mesh leveling
  351. while (--segments) {
  352. LOOP_XYZE(i) raw[i] += diff[i];
  353. planner.buffer_line(raw, feedrate, active_extruder, segment_xyz_mm
  354. #if ENABLED(SCARA_FEEDRATE_SCALING)
  355. , inv_duration
  356. #endif
  357. );
  358. }
  359. planner.buffer_line(rtarget, feedrate, active_extruder, segment_xyz_mm
  360. #if ENABLED(SCARA_FEEDRATE_SCALING)
  361. , inv_duration
  362. #endif
  363. );
  364. return false; // moved but did not set_current_from_destination();
  365. }
  366. // Otherwise perform per-segment leveling
  367. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  368. const float fade_scaling_factor = planner.fade_scaling_factor_for_z(rtarget[Z_AXIS]);
  369. #endif
  370. // increment to first segment destination
  371. LOOP_XYZE(i) raw[i] += diff[i];
  372. for (;;) { // for each mesh cell encountered during the move
  373. // Compute mesh cell invariants that remain constant for all segments within cell.
  374. // Note for cell index, if point is outside the mesh grid (in MESH_INSET perimeter)
  375. // the bilinear interpolation from the adjacent cell within the mesh will still work.
  376. // Inner loop will exit each time (because out of cell bounds) but will come back
  377. // in top of loop and again re-find same adjacent cell and use it, just less efficient
  378. // for mesh inset area.
  379. int8_t cell_xi = (raw[X_AXIS] - (MESH_MIN_X)) * (1.0f / (MESH_X_DIST)),
  380. cell_yi = (raw[Y_AXIS] - (MESH_MIN_Y)) * (1.0f / (MESH_Y_DIST));
  381. cell_xi = constrain(cell_xi, 0, (GRID_MAX_POINTS_X) - 1);
  382. cell_yi = constrain(cell_yi, 0, (GRID_MAX_POINTS_Y) - 1);
  383. const float x0 = mesh_index_to_xpos(cell_xi), // 64 byte table lookup avoids mul+add
  384. y0 = mesh_index_to_ypos(cell_yi);
  385. float z_x0y0 = z_values[cell_xi ][cell_yi ], // z at lower left corner
  386. z_x1y0 = z_values[cell_xi+1][cell_yi ], // z at upper left corner
  387. z_x0y1 = z_values[cell_xi ][cell_yi+1], // z at lower right corner
  388. z_x1y1 = z_values[cell_xi+1][cell_yi+1]; // z at upper right corner
  389. if (isnan(z_x0y0)) z_x0y0 = 0; // ideally activating planner.leveling_active (G29 A)
  390. if (isnan(z_x1y0)) z_x1y0 = 0; // should refuse if any invalid mesh points
  391. if (isnan(z_x0y1)) z_x0y1 = 0; // in order to avoid isnan tests per cell,
  392. if (isnan(z_x1y1)) z_x1y1 = 0; // thus guessing zero for undefined points
  393. float cx = raw[X_AXIS] - x0, // cell-relative x and y
  394. cy = raw[Y_AXIS] - y0;
  395. const float z_xmy0 = (z_x1y0 - z_x0y0) * (1.0f / (MESH_X_DIST)), // z slope per x along y0 (lower left to lower right)
  396. z_xmy1 = (z_x1y1 - z_x0y1) * (1.0f / (MESH_X_DIST)); // z slope per x along y1 (upper left to upper right)
  397. float z_cxy0 = z_x0y0 + z_xmy0 * cx; // z height along y0 at cx (changes for each cx in cell)
  398. const float z_cxy1 = z_x0y1 + z_xmy1 * cx, // z height along y1 at cx
  399. z_cxyd = z_cxy1 - z_cxy0; // z height difference along cx from y0 to y1
  400. float z_cxym = z_cxyd * (1.0f / (MESH_Y_DIST)); // z slope per y along cx from y0 to y1 (changes for each cx in cell)
  401. // float z_cxcy = z_cxy0 + z_cxym * cy; // interpolated mesh z height along cx at cy (do inside the segment loop)
  402. // As subsequent segments step through this cell, the z_cxy0 intercept will change
  403. // and the z_cxym slope will change, both as a function of cx within the cell, and
  404. // each change by a constant for fixed segment lengths.
  405. const float z_sxy0 = z_xmy0 * diff[X_AXIS], // per-segment adjustment to z_cxy0
  406. z_sxym = (z_xmy1 - z_xmy0) * (1.0f / (MESH_Y_DIST)) * diff[X_AXIS]; // per-segment adjustment to z_cxym
  407. for (;;) { // for all segments within this mesh cell
  408. if (--segments == 0) // if this is last segment, use rtarget for exact
  409. COPY(raw, rtarget);
  410. const float z_cxcy = (z_cxy0 + z_cxym * cy) // interpolated mesh z height along cx at cy
  411. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  412. * fade_scaling_factor // apply fade factor to interpolated mesh height
  413. #endif
  414. ;
  415. const float z = raw[Z_AXIS];
  416. raw[Z_AXIS] += z_cxcy;
  417. planner.buffer_line(raw, feedrate, active_extruder, segment_xyz_mm
  418. #if ENABLED(SCARA_FEEDRATE_SCALING)
  419. , inv_duration
  420. #endif
  421. );
  422. raw[Z_AXIS] = z;
  423. if (segments == 0) // done with last segment
  424. return false; // did not set_current_from_destination()
  425. LOOP_XYZE(i) raw[i] += diff[i];
  426. cx += diff[X_AXIS];
  427. cy += diff[Y_AXIS];
  428. if (!WITHIN(cx, 0, MESH_X_DIST) || !WITHIN(cy, 0, MESH_Y_DIST)) // done within this cell, break to next
  429. break;
  430. // Next segment still within same mesh cell, adjust the per-segment
  431. // slope and intercept to compute next z height.
  432. z_cxy0 += z_sxy0; // adjust z_cxy0 by per-segment z_sxy0
  433. z_cxym += z_sxym; // adjust z_cxym by per-segment z_sxym
  434. } // segment loop
  435. } // cell loop
  436. return false; // caller will update current_position
  437. }
  438. #endif // UBL_SEGMENTED
  439. #endif // AUTO_BED_LEVELING_UBL