My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

planner.h 34KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (c) 2019 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. #pragma once
  23. /**
  24. * planner.h
  25. *
  26. * Buffer movement commands and manage the acceleration profile plan
  27. *
  28. * Derived from Grbl
  29. * Copyright (c) 2009-2011 Simen Svale Skogsrud
  30. */
  31. #include "../MarlinCore.h"
  32. #include "motion.h"
  33. #include "../gcode/queue.h"
  34. #if ENABLED(DELTA)
  35. #include "delta.h"
  36. #endif
  37. #if ABL_PLANAR
  38. #include "../libs/vector_3.h" // for matrix_3x3
  39. #endif
  40. #if ENABLED(FWRETRACT)
  41. #include "../feature/fwretract.h"
  42. #endif
  43. #if ENABLED(MIXING_EXTRUDER)
  44. #include "../feature/mixing.h"
  45. #endif
  46. #if HAS_CUTTER
  47. #include "../feature/spindle_laser.h"
  48. #endif
  49. // Feedrate for manual moves
  50. #ifdef MANUAL_FEEDRATE
  51. constexpr xyze_feedrate_t manual_feedrate_mm_m = MANUAL_FEEDRATE;
  52. #endif
  53. enum BlockFlagBit : char {
  54. // Recalculate trapezoids on entry junction. For optimization.
  55. BLOCK_BIT_RECALCULATE,
  56. // Nominal speed always reached.
  57. // i.e., The segment is long enough, so the nominal speed is reachable if accelerating
  58. // from a safe speed (in consideration of jerking from zero speed).
  59. BLOCK_BIT_NOMINAL_LENGTH,
  60. // The block is segment 2+ of a longer move
  61. BLOCK_BIT_CONTINUED,
  62. // Sync the stepper counts from the block
  63. BLOCK_BIT_SYNC_POSITION
  64. };
  65. enum BlockFlag : char {
  66. BLOCK_FLAG_RECALCULATE = _BV(BLOCK_BIT_RECALCULATE),
  67. BLOCK_FLAG_NOMINAL_LENGTH = _BV(BLOCK_BIT_NOMINAL_LENGTH),
  68. BLOCK_FLAG_CONTINUED = _BV(BLOCK_BIT_CONTINUED),
  69. BLOCK_FLAG_SYNC_POSITION = _BV(BLOCK_BIT_SYNC_POSITION)
  70. };
  71. /**
  72. * struct block_t
  73. *
  74. * A single entry in the planner buffer.
  75. * Tracks linear movement over multiple axes.
  76. *
  77. * The "nominal" values are as-specified by gcode, and
  78. * may never actually be reached due to acceleration limits.
  79. */
  80. typedef struct block_t {
  81. volatile uint8_t flag; // Block flags (See BlockFlag enum above) - Modified by ISR and main thread!
  82. // Fields used by the motion planner to manage acceleration
  83. float nominal_speed_sqr, // The nominal speed for this block in (mm/sec)^2
  84. entry_speed_sqr, // Entry speed at previous-current junction in (mm/sec)^2
  85. max_entry_speed_sqr, // Maximum allowable junction entry speed in (mm/sec)^2
  86. millimeters, // The total travel of this block in mm
  87. acceleration; // acceleration mm/sec^2
  88. union {
  89. abce_ulong_t steps; // Step count along each axis
  90. abce_long_t position; // New position to force when this sync block is executed
  91. };
  92. uint32_t step_event_count; // The number of step events required to complete this block
  93. #if EXTRUDERS > 1
  94. uint8_t extruder; // The extruder to move (if E move)
  95. #else
  96. static constexpr uint8_t extruder = 0;
  97. #endif
  98. #if ENABLED(MIXING_EXTRUDER)
  99. MIXER_BLOCK_FIELD; // Normalized color for the mixing steppers
  100. #endif
  101. // Settings for the trapezoid generator
  102. uint32_t accelerate_until, // The index of the step event on which to stop acceleration
  103. decelerate_after; // The index of the step event on which to start decelerating
  104. #if ENABLED(S_CURVE_ACCELERATION)
  105. uint32_t cruise_rate, // The actual cruise rate to use, between end of the acceleration phase and start of deceleration phase
  106. acceleration_time, // Acceleration time and deceleration time in STEP timer counts
  107. deceleration_time,
  108. acceleration_time_inverse, // Inverse of acceleration and deceleration periods, expressed as integer. Scale depends on CPU being used
  109. deceleration_time_inverse;
  110. #else
  111. uint32_t acceleration_rate; // The acceleration rate used for acceleration calculation
  112. #endif
  113. uint8_t direction_bits; // The direction bit set for this block (refers to *_DIRECTION_BIT in config.h)
  114. // Advance extrusion
  115. #if ENABLED(LIN_ADVANCE)
  116. bool use_advance_lead;
  117. uint16_t advance_speed, // STEP timer value for extruder speed offset ISR
  118. max_adv_steps, // max. advance steps to get cruising speed pressure (not always nominal_speed!)
  119. final_adv_steps; // advance steps due to exit speed
  120. float e_D_ratio;
  121. #endif
  122. uint32_t nominal_rate, // The nominal step rate for this block in step_events/sec
  123. initial_rate, // The jerk-adjusted step rate at start of block
  124. final_rate, // The minimal rate at exit
  125. acceleration_steps_per_s2; // acceleration steps/sec^2
  126. #if HAS_CUTTER
  127. cutter_power_t cutter_power; // Power level for Spindle, Laser, etc.
  128. #endif
  129. #if FAN_COUNT > 0
  130. uint8_t fan_speed[FAN_COUNT];
  131. #endif
  132. #if ENABLED(BARICUDA)
  133. uint8_t valve_pressure, e_to_p_pressure;
  134. #endif
  135. #if HAS_SPI_LCD
  136. uint32_t segment_time_us;
  137. #endif
  138. #if ENABLED(POWER_LOSS_RECOVERY)
  139. uint32_t sdpos;
  140. #endif
  141. } block_t;
  142. #define HAS_POSITION_FLOAT ANY(LIN_ADVANCE, SCARA_FEEDRATE_SCALING, GRADIENT_MIX, LCD_SHOW_E_TOTAL)
  143. #define BLOCK_MOD(n) ((n)&(BLOCK_BUFFER_SIZE-1))
  144. typedef struct {
  145. uint32_t max_acceleration_mm_per_s2[XYZE_N], // (mm/s^2) M201 XYZE
  146. min_segment_time_us; // (µs) M205 B
  147. float axis_steps_per_mm[XYZE_N]; // (steps) M92 XYZE - Steps per millimeter
  148. feedRate_t max_feedrate_mm_s[XYZE_N]; // (mm/s) M203 XYZE - Max speeds
  149. float acceleration, // (mm/s^2) M204 S - Normal acceleration. DEFAULT ACCELERATION for all printing moves.
  150. retract_acceleration, // (mm/s^2) M204 R - Retract acceleration. Filament pull-back and push-forward while standing still in the other axes
  151. travel_acceleration; // (mm/s^2) M204 T - Travel acceleration. DEFAULT ACCELERATION for all NON printing moves.
  152. feedRate_t min_feedrate_mm_s, // (mm/s) M205 S - Minimum linear feedrate
  153. min_travel_feedrate_mm_s; // (mm/s) M205 T - Minimum travel feedrate
  154. } planner_settings_t;
  155. #if DISABLED(SKEW_CORRECTION)
  156. #define XY_SKEW_FACTOR 0
  157. #define XZ_SKEW_FACTOR 0
  158. #define YZ_SKEW_FACTOR 0
  159. #endif
  160. typedef struct {
  161. #if ENABLED(SKEW_CORRECTION_GCODE)
  162. float xy;
  163. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  164. float xz, yz;
  165. #else
  166. const float xz = XZ_SKEW_FACTOR, yz = YZ_SKEW_FACTOR;
  167. #endif
  168. #else
  169. const float xy = XY_SKEW_FACTOR,
  170. xz = XZ_SKEW_FACTOR, yz = YZ_SKEW_FACTOR;
  171. #endif
  172. } skew_factor_t;
  173. class Planner {
  174. public:
  175. /**
  176. * The move buffer, calculated in stepper steps
  177. *
  178. * block_buffer is a ring buffer...
  179. *
  180. * head,tail : indexes for write,read
  181. * head==tail : the buffer is empty
  182. * head!=tail : blocks are in the buffer
  183. * head==(tail-1)%size : the buffer is full
  184. *
  185. * Writer of head is Planner::buffer_segment().
  186. * Reader of tail is Stepper::isr(). Always consider tail busy / read-only
  187. */
  188. static block_t block_buffer[BLOCK_BUFFER_SIZE];
  189. static volatile uint8_t block_buffer_head, // Index of the next block to be pushed
  190. block_buffer_nonbusy, // Index of the first non busy block
  191. block_buffer_planned, // Index of the optimally planned block
  192. block_buffer_tail; // Index of the busy block, if any
  193. static uint16_t cleaning_buffer_counter; // A counter to disable queuing of blocks
  194. static uint8_t delay_before_delivering; // This counter delays delivery of blocks when queue becomes empty to allow the opportunity of merging blocks
  195. #if ENABLED(DISTINCT_E_FACTORS)
  196. static uint8_t last_extruder; // Respond to extruder change
  197. #endif
  198. #if EXTRUDERS
  199. static int16_t flow_percentage[EXTRUDERS]; // Extrusion factor for each extruder
  200. static float e_factor[EXTRUDERS]; // The flow percentage and volumetric multiplier combine to scale E movement
  201. #endif
  202. #if DISABLED(NO_VOLUMETRICS)
  203. static float filament_size[EXTRUDERS], // diameter of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder
  204. volumetric_area_nominal, // Nominal cross-sectional area
  205. volumetric_multiplier[EXTRUDERS]; // Reciprocal of cross-sectional area of filament (in mm^2). Pre-calculated to reduce computation in the planner
  206. // May be auto-adjusted by a filament width sensor
  207. #endif
  208. static planner_settings_t settings;
  209. static uint32_t max_acceleration_steps_per_s2[XYZE_N]; // (steps/s^2) Derived from mm_per_s2
  210. static float steps_to_mm[XYZE_N]; // Millimeters per step
  211. #if DISABLED(CLASSIC_JERK)
  212. static float junction_deviation_mm; // (mm) M205 J
  213. #if ENABLED(LIN_ADVANCE)
  214. static float max_e_jerk // Calculated from junction_deviation_mm
  215. #if ENABLED(DISTINCT_E_FACTORS)
  216. [EXTRUDERS]
  217. #endif
  218. ;
  219. #endif
  220. #endif
  221. #if HAS_CLASSIC_JERK
  222. #if HAS_LINEAR_E_JERK
  223. static xyz_pos_t max_jerk; // (mm/s^2) M205 XYZ - The largest speed change requiring no acceleration.
  224. #else
  225. static xyze_pos_t max_jerk; // (mm/s^2) M205 XYZE - The largest speed change requiring no acceleration.
  226. #endif
  227. #endif
  228. #if HAS_LEVELING
  229. static bool leveling_active; // Flag that bed leveling is enabled
  230. #if ABL_PLANAR
  231. static matrix_3x3 bed_level_matrix; // Transform to compensate for bed level
  232. #endif
  233. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  234. static float z_fade_height, inverse_z_fade_height;
  235. #endif
  236. #else
  237. static constexpr bool leveling_active = false;
  238. #endif
  239. #if ENABLED(LIN_ADVANCE)
  240. static float extruder_advance_K[EXTRUDERS];
  241. #endif
  242. #if HAS_POSITION_FLOAT
  243. static xyze_pos_t position_float;
  244. #endif
  245. #if IS_KINEMATIC
  246. static xyze_pos_t position_cart;
  247. #endif
  248. static skew_factor_t skew_factor;
  249. #if ENABLED(SD_ABORT_ON_ENDSTOP_HIT)
  250. static bool abort_on_endstop_hit;
  251. #endif
  252. private:
  253. /**
  254. * The current position of the tool in absolute steps
  255. * Recalculated if any axis_steps_per_mm are changed by gcode
  256. */
  257. static xyze_long_t position;
  258. /**
  259. * Speed of previous path line segment
  260. */
  261. static xyze_float_t previous_speed;
  262. /**
  263. * Nominal speed of previous path line segment (mm/s)^2
  264. */
  265. static float previous_nominal_speed_sqr;
  266. /**
  267. * Limit where 64bit math is necessary for acceleration calculation
  268. */
  269. static uint32_t cutoff_long;
  270. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  271. static float last_fade_z;
  272. #endif
  273. #if ENABLED(DISABLE_INACTIVE_EXTRUDER)
  274. /**
  275. * Counters to manage disabling inactive extruders
  276. */
  277. static uint8_t g_uc_extruder_last_move[EXTRUDERS];
  278. #endif // DISABLE_INACTIVE_EXTRUDER
  279. #ifdef XY_FREQUENCY_LIMIT
  280. // Used for the frequency limit
  281. #define MAX_FREQ_TIME_US (uint32_t)(1000000.0 / XY_FREQUENCY_LIMIT)
  282. // Old direction bits. Used for speed calculations
  283. static unsigned char old_direction_bits;
  284. // Segment times (in µs). Used for speed calculations
  285. static xy_ulong_t axis_segment_time_us[3];
  286. #endif
  287. #if HAS_SPI_LCD
  288. volatile static uint32_t block_buffer_runtime_us; //Theoretical block buffer runtime in µs
  289. #endif
  290. public:
  291. /**
  292. * Instance Methods
  293. */
  294. Planner();
  295. void init();
  296. /**
  297. * Static (class) Methods
  298. */
  299. static void reset_acceleration_rates();
  300. static void refresh_positioning();
  301. static void set_max_acceleration(const uint8_t axis, float targetValue);
  302. static void set_max_feedrate(const uint8_t axis, float targetValue);
  303. static void set_max_jerk(const AxisEnum axis, float targetValue);
  304. #if EXTRUDERS
  305. FORCE_INLINE static void refresh_e_factor(const uint8_t e) {
  306. e_factor[e] = (flow_percentage[e] * 0.01f
  307. #if DISABLED(NO_VOLUMETRICS)
  308. * volumetric_multiplier[e]
  309. #endif
  310. );
  311. }
  312. #endif
  313. // Manage fans, paste pressure, etc.
  314. static void check_axes_activity();
  315. // Update multipliers based on new diameter measurements
  316. static void calculate_volumetric_multipliers();
  317. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  318. void apply_filament_width_sensor(const int8_t encoded_ratio);
  319. static inline float volumetric_percent(const bool vol) {
  320. return 100.0f * (vol
  321. ? volumetric_area_nominal / volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM]
  322. : volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM]
  323. );
  324. }
  325. #endif
  326. #if DISABLED(NO_VOLUMETRICS)
  327. FORCE_INLINE static void set_filament_size(const uint8_t e, const float &v) {
  328. filament_size[e] = v;
  329. // make sure all extruders have some sane value for the filament size
  330. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  331. if (!filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  332. }
  333. #endif
  334. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  335. /**
  336. * Get the Z leveling fade factor based on the given Z height,
  337. * re-calculating only when needed.
  338. *
  339. * Returns 1.0 if planner.z_fade_height is 0.0.
  340. * Returns 0.0 if Z is past the specified 'Fade Height'.
  341. */
  342. static inline float fade_scaling_factor_for_z(const float &rz) {
  343. static float z_fade_factor = 1;
  344. if (!z_fade_height) return 1;
  345. if (rz >= z_fade_height) return 0;
  346. if (last_fade_z != rz) {
  347. last_fade_z = rz;
  348. z_fade_factor = 1 - rz * inverse_z_fade_height;
  349. }
  350. return z_fade_factor;
  351. }
  352. FORCE_INLINE static void force_fade_recalc() { last_fade_z = -999.999f; }
  353. FORCE_INLINE static void set_z_fade_height(const float &zfh) {
  354. z_fade_height = zfh > 0 ? zfh : 0;
  355. inverse_z_fade_height = RECIPROCAL(z_fade_height);
  356. force_fade_recalc();
  357. }
  358. FORCE_INLINE static bool leveling_active_at_z(const float &rz) {
  359. return !z_fade_height || rz < z_fade_height;
  360. }
  361. #else
  362. FORCE_INLINE static float fade_scaling_factor_for_z(const float&) { return 1; }
  363. FORCE_INLINE static bool leveling_active_at_z(const float&) { return true; }
  364. #endif
  365. #if ENABLED(SKEW_CORRECTION)
  366. FORCE_INLINE static void skew(float &cx, float &cy, const float &cz) {
  367. if (WITHIN(cx, X_MIN_POS + 1, X_MAX_POS) && WITHIN(cy, Y_MIN_POS + 1, Y_MAX_POS)) {
  368. const float sx = cx - cy * skew_factor.xy - cz * (skew_factor.xz - (skew_factor.xy * skew_factor.yz)),
  369. sy = cy - cz * skew_factor.yz;
  370. if (WITHIN(sx, X_MIN_POS, X_MAX_POS) && WITHIN(sy, Y_MIN_POS, Y_MAX_POS)) {
  371. cx = sx; cy = sy;
  372. }
  373. }
  374. }
  375. FORCE_INLINE static void skew(xyz_pos_t &raw) { skew(raw.x, raw.y, raw.z); }
  376. FORCE_INLINE static void unskew(float &cx, float &cy, const float &cz) {
  377. if (WITHIN(cx, X_MIN_POS, X_MAX_POS) && WITHIN(cy, Y_MIN_POS, Y_MAX_POS)) {
  378. const float sx = cx + cy * skew_factor.xy + cz * skew_factor.xz,
  379. sy = cy + cz * skew_factor.yz;
  380. if (WITHIN(sx, X_MIN_POS, X_MAX_POS) && WITHIN(sy, Y_MIN_POS, Y_MAX_POS)) {
  381. cx = sx; cy = sy;
  382. }
  383. }
  384. }
  385. FORCE_INLINE static void unskew(xyz_pos_t &raw) { unskew(raw.x, raw.y, raw.z); }
  386. #endif // SKEW_CORRECTION
  387. #if HAS_LEVELING
  388. /**
  389. * Apply leveling to transform a cartesian position
  390. * as it will be given to the planner and steppers.
  391. */
  392. static void apply_leveling(xyz_pos_t &raw);
  393. static void unapply_leveling(xyz_pos_t &raw);
  394. FORCE_INLINE static void force_unapply_leveling(xyz_pos_t &raw) {
  395. leveling_active = true;
  396. unapply_leveling(raw);
  397. leveling_active = false;
  398. }
  399. #endif
  400. #if ENABLED(FWRETRACT)
  401. static void apply_retract(float &rz, float &e);
  402. FORCE_INLINE static void apply_retract(xyze_pos_t &raw) { apply_retract(raw.z, raw.e); }
  403. static void unapply_retract(float &rz, float &e);
  404. FORCE_INLINE static void unapply_retract(xyze_pos_t &raw) { unapply_retract(raw.z, raw.e); }
  405. #endif
  406. #if HAS_POSITION_MODIFIERS
  407. FORCE_INLINE static void apply_modifiers(xyze_pos_t &pos
  408. #if HAS_LEVELING
  409. , bool leveling =
  410. #if PLANNER_LEVELING
  411. true
  412. #else
  413. false
  414. #endif
  415. #endif
  416. ) {
  417. #if ENABLED(SKEW_CORRECTION)
  418. skew(pos);
  419. #endif
  420. #if HAS_LEVELING
  421. if (leveling) apply_leveling(pos);
  422. #endif
  423. #if ENABLED(FWRETRACT)
  424. apply_retract(pos);
  425. #endif
  426. }
  427. FORCE_INLINE static void unapply_modifiers(xyze_pos_t &pos
  428. #if HAS_LEVELING
  429. , bool leveling =
  430. #if PLANNER_LEVELING
  431. true
  432. #else
  433. false
  434. #endif
  435. #endif
  436. ) {
  437. #if ENABLED(FWRETRACT)
  438. unapply_retract(pos);
  439. #endif
  440. #if HAS_LEVELING
  441. if (leveling) unapply_leveling(pos);
  442. #endif
  443. #if ENABLED(SKEW_CORRECTION)
  444. unskew(pos);
  445. #endif
  446. }
  447. #endif // HAS_POSITION_MODIFIERS
  448. // Number of moves currently in the planner including the busy block, if any
  449. FORCE_INLINE static uint8_t movesplanned() { return BLOCK_MOD(block_buffer_head - block_buffer_tail); }
  450. // Number of nonbusy moves currently in the planner
  451. FORCE_INLINE static uint8_t nonbusy_movesplanned() { return BLOCK_MOD(block_buffer_head - block_buffer_nonbusy); }
  452. // Remove all blocks from the buffer
  453. FORCE_INLINE static void clear_block_buffer() { block_buffer_nonbusy = block_buffer_planned = block_buffer_head = block_buffer_tail = 0; }
  454. // Check if movement queue is full
  455. FORCE_INLINE static bool is_full() { return block_buffer_tail == next_block_index(block_buffer_head); }
  456. // Get count of movement slots free
  457. FORCE_INLINE static uint8_t moves_free() { return BLOCK_BUFFER_SIZE - 1 - movesplanned(); }
  458. /**
  459. * Planner::get_next_free_block
  460. *
  461. * - Get the next head indices (passed by reference)
  462. * - Wait for the number of spaces to open up in the planner
  463. * - Return the first head block
  464. */
  465. FORCE_INLINE static block_t* get_next_free_block(uint8_t &next_buffer_head, const uint8_t count=1) {
  466. // Wait until there are enough slots free
  467. while (moves_free() < count) { idle(); }
  468. // Return the first available block
  469. next_buffer_head = next_block_index(block_buffer_head);
  470. return &block_buffer[block_buffer_head];
  471. }
  472. /**
  473. * Planner::_buffer_steps
  474. *
  475. * Add a new linear movement to the buffer (in terms of steps).
  476. *
  477. * target - target position in steps units
  478. * fr_mm_s - (target) speed of the move
  479. * extruder - target extruder
  480. * millimeters - the length of the movement, if known
  481. *
  482. * Returns true if movement was buffered, false otherwise
  483. */
  484. static bool _buffer_steps(const xyze_long_t &target
  485. #if HAS_POSITION_FLOAT
  486. , const xyze_pos_t &target_float
  487. #endif
  488. #if IS_KINEMATIC && DISABLED(CLASSIC_JERK)
  489. , const xyze_float_t &delta_mm_cart
  490. #endif
  491. , feedRate_t fr_mm_s, const uint8_t extruder, const float &millimeters=0.0
  492. );
  493. /**
  494. * Planner::_populate_block
  495. *
  496. * Fills a new linear movement in the block (in terms of steps).
  497. *
  498. * target - target position in steps units
  499. * fr_mm_s - (target) speed of the move
  500. * extruder - target extruder
  501. * millimeters - the length of the movement, if known
  502. *
  503. * Returns true is movement is acceptable, false otherwise
  504. */
  505. static bool _populate_block(block_t * const block, bool split_move,
  506. const xyze_long_t &target
  507. #if HAS_POSITION_FLOAT
  508. , const xyze_pos_t &target_float
  509. #endif
  510. #if IS_KINEMATIC && DISABLED(CLASSIC_JERK)
  511. , const xyze_float_t &delta_mm_cart
  512. #endif
  513. , feedRate_t fr_mm_s, const uint8_t extruder, const float &millimeters=0.0
  514. );
  515. /**
  516. * Planner::buffer_sync_block
  517. * Add a block to the buffer that just updates the position
  518. */
  519. static void buffer_sync_block();
  520. #if IS_KINEMATIC
  521. private:
  522. // Allow do_homing_move to access internal functions, such as buffer_segment.
  523. friend void do_homing_move(const AxisEnum, const float, const feedRate_t);
  524. #endif
  525. /**
  526. * Planner::buffer_segment
  527. *
  528. * Add a new linear movement to the buffer in axis units.
  529. *
  530. * Leveling and kinematics should be applied ahead of calling this.
  531. *
  532. * a,b,c,e - target positions in mm and/or degrees
  533. * fr_mm_s - (target) speed of the move
  534. * extruder - target extruder
  535. * millimeters - the length of the movement, if known
  536. */
  537. static bool buffer_segment(const float &a, const float &b, const float &c, const float &e
  538. #if IS_KINEMATIC && DISABLED(CLASSIC_JERK)
  539. , const xyze_float_t &delta_mm_cart
  540. #endif
  541. , const feedRate_t &fr_mm_s, const uint8_t extruder, const float &millimeters=0.0
  542. );
  543. FORCE_INLINE static bool buffer_segment(abce_pos_t &abce
  544. #if IS_KINEMATIC && DISABLED(CLASSIC_JERK)
  545. , const xyze_float_t &delta_mm_cart
  546. #endif
  547. , const feedRate_t &fr_mm_s, const uint8_t extruder, const float &millimeters=0.0
  548. ) {
  549. return buffer_segment(abce.a, abce.b, abce.c, abce.e
  550. #if IS_KINEMATIC && DISABLED(CLASSIC_JERK)
  551. , delta_mm_cart
  552. #endif
  553. , fr_mm_s, extruder, millimeters);
  554. }
  555. public:
  556. /**
  557. * Add a new linear movement to the buffer.
  558. * The target is cartesian. It's translated to
  559. * delta/scara if needed.
  560. *
  561. * rx,ry,rz,e - target position in mm or degrees
  562. * fr_mm_s - (target) speed of the move (mm/s)
  563. * extruder - target extruder
  564. * millimeters - the length of the movement, if known
  565. * inv_duration - the reciprocal if the duration of the movement, if known (kinematic only if feeedrate scaling is enabled)
  566. */
  567. static bool buffer_line(const float &rx, const float &ry, const float &rz, const float &e, const feedRate_t &fr_mm_s, const uint8_t extruder, const float millimeters=0.0
  568. #if ENABLED(SCARA_FEEDRATE_SCALING)
  569. , const float &inv_duration=0.0
  570. #endif
  571. );
  572. FORCE_INLINE static bool buffer_line(const xyze_pos_t &cart, const feedRate_t &fr_mm_s, const uint8_t extruder, const float millimeters=0.0
  573. #if ENABLED(SCARA_FEEDRATE_SCALING)
  574. , const float &inv_duration=0.0
  575. #endif
  576. ) {
  577. return buffer_line(cart.x, cart.y, cart.z, cart.e, fr_mm_s, extruder, millimeters
  578. #if ENABLED(SCARA_FEEDRATE_SCALING)
  579. , inv_duration
  580. #endif
  581. );
  582. }
  583. /**
  584. * Set the planner.position and individual stepper positions.
  585. * Used by G92, G28, G29, and other procedures.
  586. *
  587. * The supplied position is in the cartesian coordinate space and is
  588. * translated in to machine space as needed. Modifiers such as leveling
  589. * and skew are also applied.
  590. *
  591. * Multiplies by axis_steps_per_mm[] and does necessary conversion
  592. * for COREXY / COREXZ / COREYZ to set the corresponding stepper positions.
  593. *
  594. * Clears previous speed values.
  595. */
  596. static void set_position_mm(const float &rx, const float &ry, const float &rz, const float &e);
  597. FORCE_INLINE static void set_position_mm(const xyze_pos_t &cart) { set_position_mm(cart.x, cart.y, cart.z, cart.e); }
  598. static void set_e_position_mm(const float &e);
  599. /**
  600. * Set the planner.position and individual stepper positions.
  601. *
  602. * The supplied position is in machine space, and no additional
  603. * conversions are applied.
  604. */
  605. static void set_machine_position_mm(const float &a, const float &b, const float &c, const float &e);
  606. FORCE_INLINE static void set_machine_position_mm(const abce_pos_t &abce) { set_machine_position_mm(abce.a, abce.b, abce.c, abce.e); }
  607. /**
  608. * Get an axis position according to stepper position(s)
  609. * For CORE machines apply translation from ABC to XYZ.
  610. */
  611. static float get_axis_position_mm(const AxisEnum axis);
  612. // SCARA AB axes are in degrees, not mm
  613. #if IS_SCARA
  614. FORCE_INLINE static float get_axis_position_degrees(const AxisEnum axis) { return get_axis_position_mm(axis); }
  615. #endif
  616. // Called to force a quick stop of the machine (for example, when
  617. // a Full Shutdown is required, or when endstops are hit)
  618. static void quick_stop();
  619. // Called when an endstop is triggered. Causes the machine to stop inmediately
  620. static void endstop_triggered(const AxisEnum axis);
  621. // Triggered position of an axis in mm (not core-savvy)
  622. static float triggered_position_mm(const AxisEnum axis);
  623. // Block until all buffered steps are executed / cleaned
  624. static void synchronize();
  625. // Wait for moves to finish and disable all steppers
  626. static void finish_and_disable();
  627. // Periodic tick to handle cleaning timeouts
  628. // Called from the Temperature ISR at ~1kHz
  629. static void tick() {
  630. if (cleaning_buffer_counter) {
  631. --cleaning_buffer_counter;
  632. #if ENABLED(SD_FINISHED_STEPPERRELEASE) && defined(SD_FINISHED_RELEASECOMMAND)
  633. if (!cleaning_buffer_counter) queue.inject_P(PSTR(SD_FINISHED_RELEASECOMMAND));
  634. #endif
  635. }
  636. }
  637. /**
  638. * Does the buffer have any blocks queued?
  639. */
  640. FORCE_INLINE static bool has_blocks_queued() { return (block_buffer_head != block_buffer_tail); }
  641. /**
  642. * The current block. nullptr if the buffer is empty.
  643. * This also marks the block as busy.
  644. * WARNING: Called from Stepper ISR context!
  645. */
  646. static block_t* get_current_block() {
  647. // Get the number of moves in the planner queue so far
  648. const uint8_t nr_moves = movesplanned();
  649. // If there are any moves queued ...
  650. if (nr_moves) {
  651. // If there is still delay of delivery of blocks running, decrement it
  652. if (delay_before_delivering) {
  653. --delay_before_delivering;
  654. // If the number of movements queued is less than 3, and there is still time
  655. // to wait, do not deliver anything
  656. if (nr_moves < 3 && delay_before_delivering) return nullptr;
  657. delay_before_delivering = 0;
  658. }
  659. // If we are here, there is no excuse to deliver the block
  660. block_t * const block = &block_buffer[block_buffer_tail];
  661. // No trapezoid calculated? Don't execute yet.
  662. if (TEST(block->flag, BLOCK_BIT_RECALCULATE)) return nullptr;
  663. #if HAS_SPI_LCD
  664. block_buffer_runtime_us -= block->segment_time_us; // We can't be sure how long an active block will take, so don't count it.
  665. #endif
  666. // As this block is busy, advance the nonbusy block pointer
  667. block_buffer_nonbusy = next_block_index(block_buffer_tail);
  668. // Push block_buffer_planned pointer, if encountered.
  669. if (block_buffer_tail == block_buffer_planned)
  670. block_buffer_planned = block_buffer_nonbusy;
  671. // Return the block
  672. return block;
  673. }
  674. // The queue became empty
  675. #if HAS_SPI_LCD
  676. clear_block_buffer_runtime(); // paranoia. Buffer is empty now - so reset accumulated time to zero.
  677. #endif
  678. return nullptr;
  679. }
  680. /**
  681. * "Discard" the block and "release" the memory.
  682. * Called when the current block is no longer needed.
  683. * NB: There MUST be a current block to call this function!!
  684. */
  685. FORCE_INLINE static void discard_current_block() {
  686. if (has_blocks_queued())
  687. block_buffer_tail = next_block_index(block_buffer_tail);
  688. }
  689. #if HAS_SPI_LCD
  690. static uint16_t block_buffer_runtime() {
  691. #ifdef __AVR__
  692. // Protect the access to the variable. Only required for AVR, as
  693. // any 32bit CPU offers atomic access to 32bit variables
  694. bool was_enabled = STEPPER_ISR_ENABLED();
  695. if (was_enabled) DISABLE_STEPPER_DRIVER_INTERRUPT();
  696. #endif
  697. millis_t bbru = block_buffer_runtime_us;
  698. #ifdef __AVR__
  699. // Reenable Stepper ISR
  700. if (was_enabled) ENABLE_STEPPER_DRIVER_INTERRUPT();
  701. #endif
  702. // To translate µs to ms a division by 1000 would be required.
  703. // We introduce 2.4% error here by dividing by 1024.
  704. // Doesn't matter because block_buffer_runtime_us is already too small an estimation.
  705. bbru >>= 10;
  706. // limit to about a minute.
  707. NOMORE(bbru, 0xFFFFul);
  708. return bbru;
  709. }
  710. static void clear_block_buffer_runtime() {
  711. #ifdef __AVR__
  712. // Protect the access to the variable. Only required for AVR, as
  713. // any 32bit CPU offers atomic access to 32bit variables
  714. bool was_enabled = STEPPER_ISR_ENABLED();
  715. if (was_enabled) DISABLE_STEPPER_DRIVER_INTERRUPT();
  716. #endif
  717. block_buffer_runtime_us = 0;
  718. #ifdef __AVR__
  719. // Reenable Stepper ISR
  720. if (was_enabled) ENABLE_STEPPER_DRIVER_INTERRUPT();
  721. #endif
  722. }
  723. #endif
  724. #if ENABLED(AUTOTEMP)
  725. static float autotemp_min, autotemp_max, autotemp_factor;
  726. static bool autotemp_enabled;
  727. static void getHighESpeed();
  728. static void autotemp_M104_M109();
  729. #endif
  730. #if HAS_LINEAR_E_JERK
  731. FORCE_INLINE static void recalculate_max_e_jerk() {
  732. #define GET_MAX_E_JERK(N) SQRT(SQRT(0.5) * junction_deviation_mm * (N) * RECIPROCAL(1.0 - SQRT(0.5)))
  733. #if ENABLED(DISTINCT_E_FACTORS)
  734. for (uint8_t i = 0; i < EXTRUDERS; i++)
  735. max_e_jerk[i] = GET_MAX_E_JERK(settings.max_acceleration_mm_per_s2[E_AXIS_N(i)]);
  736. #else
  737. max_e_jerk = GET_MAX_E_JERK(settings.max_acceleration_mm_per_s2[E_AXIS]);
  738. #endif
  739. }
  740. #endif
  741. private:
  742. /**
  743. * Get the index of the next / previous block in the ring buffer
  744. */
  745. static constexpr uint8_t next_block_index(const uint8_t block_index) { return BLOCK_MOD(block_index + 1); }
  746. static constexpr uint8_t prev_block_index(const uint8_t block_index) { return BLOCK_MOD(block_index - 1); }
  747. /**
  748. * Calculate the distance (not time) it takes to accelerate
  749. * from initial_rate to target_rate using the given acceleration:
  750. */
  751. static float estimate_acceleration_distance(const float &initial_rate, const float &target_rate, const float &accel) {
  752. if (accel == 0) return 0; // accel was 0, set acceleration distance to 0
  753. return (sq(target_rate) - sq(initial_rate)) / (accel * 2);
  754. }
  755. /**
  756. * Return the point at which you must start braking (at the rate of -'accel') if
  757. * you start at 'initial_rate', accelerate (until reaching the point), and want to end at
  758. * 'final_rate' after traveling 'distance'.
  759. *
  760. * This is used to compute the intersection point between acceleration and deceleration
  761. * in cases where the "trapezoid" has no plateau (i.e., never reaches maximum speed)
  762. */
  763. static float intersection_distance(const float &initial_rate, const float &final_rate, const float &accel, const float &distance) {
  764. if (accel == 0) return 0; // accel was 0, set intersection distance to 0
  765. return (accel * 2 * distance - sq(initial_rate) + sq(final_rate)) / (accel * 4);
  766. }
  767. /**
  768. * Calculate the maximum allowable speed squared at this point, in order
  769. * to reach 'target_velocity_sqr' using 'acceleration' within a given
  770. * 'distance'.
  771. */
  772. static float max_allowable_speed_sqr(const float &accel, const float &target_velocity_sqr, const float &distance) {
  773. return target_velocity_sqr - 2 * accel * distance;
  774. }
  775. #if ENABLED(S_CURVE_ACCELERATION)
  776. /**
  777. * Calculate the speed reached given initial speed, acceleration and distance
  778. */
  779. static float final_speed(const float &initial_velocity, const float &accel, const float &distance) {
  780. return SQRT(sq(initial_velocity) + 2 * accel * distance);
  781. }
  782. #endif
  783. static void calculate_trapezoid_for_block(block_t* const block, const float &entry_factor, const float &exit_factor);
  784. static void reverse_pass_kernel(block_t* const current, const block_t * const next);
  785. static void forward_pass_kernel(const block_t * const previous, block_t* const current, uint8_t block_index);
  786. static void reverse_pass();
  787. static void forward_pass();
  788. static void recalculate_trapezoids();
  789. static void recalculate();
  790. #if DISABLED(CLASSIC_JERK)
  791. FORCE_INLINE static void normalize_junction_vector(xyze_float_t &vector) {
  792. float magnitude_sq = 0;
  793. LOOP_XYZE(idx) if (vector[idx]) magnitude_sq += sq(vector[idx]);
  794. vector *= RSQRT(magnitude_sq);
  795. }
  796. FORCE_INLINE static float limit_value_by_axis_maximum(const float &max_value, xyze_float_t &unit_vec) {
  797. float limit_value = max_value;
  798. LOOP_XYZE(idx) if (unit_vec[idx]) // Avoid divide by zero
  799. NOMORE(limit_value, ABS(settings.max_acceleration_mm_per_s2[idx] / unit_vec[idx]));
  800. return limit_value;
  801. }
  802. #endif // !CLASSIC_JERK
  803. };
  804. #define PLANNER_XY_FEEDRATE() (_MIN(planner.settings.max_feedrate_mm_s[X_AXIS], planner.settings.max_feedrate_mm_s[Y_AXIS]))
  805. extern Planner planner;