My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Vous ne pouvez pas sélectionner plus de 25 sujets Les noms de sujets doivent commencer par une lettre ou un nombre, peuvent contenir des tirets ('-') et peuvent comporter jusqu'à 35 caractères.

Marlin_main.cpp 390KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016, 2017 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * About Marlin
  24. *
  25. * This firmware is a mashup between Sprinter and grbl.
  26. * - https://github.com/kliment/Sprinter
  27. * - https://github.com/simen/grbl/tree
  28. */
  29. /**
  30. * -----------------
  31. * G-Codes in Marlin
  32. * -----------------
  33. *
  34. * Helpful G-code references:
  35. * - http://linuxcnc.org/handbook/gcode/g-code.html
  36. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  37. *
  38. * Help to document Marlin's G-codes online:
  39. * - http://reprap.org/wiki/G-code
  40. * - https://github.com/MarlinFirmware/MarlinDocumentation
  41. *
  42. * -----------------
  43. *
  44. * "G" Codes
  45. *
  46. * G0 -> G1
  47. * G1 - Coordinated Movement X Y Z E
  48. * G2 - CW ARC
  49. * G3 - CCW ARC
  50. * G4 - Dwell S<seconds> or P<milliseconds>
  51. * G5 - Cubic B-spline with XYZE destination and IJPQ offsets
  52. * G10 - Retract filament according to settings of M207
  53. * G11 - Retract recover filament according to settings of M208
  54. * G12 - Clean tool
  55. * G20 - Set input units to inches
  56. * G21 - Set input units to millimeters
  57. * G28 - Home one or more axes
  58. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  59. * G30 - Single Z probe, probes bed at X Y location (defaults to current XY location)
  60. * G31 - Dock sled (Z_PROBE_SLED only)
  61. * G32 - Undock sled (Z_PROBE_SLED only)
  62. * G33 - Delta Auto-Calibration (Requires DELTA_AUTO_CALIBRATION)
  63. * G38 - Probe target - similar to G28 except it uses the Z_MIN_PROBE for all three axes
  64. * G90 - Use Absolute Coordinates
  65. * G91 - Use Relative Coordinates
  66. * G92 - Set current position to coordinates given
  67. *
  68. * "M" Codes
  69. *
  70. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  71. * M1 - Same as M0
  72. * M17 - Enable/Power all stepper motors
  73. * M18 - Disable all stepper motors; same as M84
  74. * M20 - List SD card. (Requires SDSUPPORT)
  75. * M21 - Init SD card. (Requires SDSUPPORT)
  76. * M22 - Release SD card. (Requires SDSUPPORT)
  77. * M23 - Select SD file: "M23 /path/file.gco". (Requires SDSUPPORT)
  78. * M24 - Start/resume SD print. (Requires SDSUPPORT)
  79. * M25 - Pause SD print. (Requires SDSUPPORT)
  80. * M26 - Set SD position in bytes: "M26 S12345". (Requires SDSUPPORT)
  81. * M27 - Report SD print status. (Requires SDSUPPORT)
  82. * M28 - Start SD write: "M28 /path/file.gco". (Requires SDSUPPORT)
  83. * M29 - Stop SD write. (Requires SDSUPPORT)
  84. * M30 - Delete file from SD: "M30 /path/file.gco"
  85. * M31 - Report time since last M109 or SD card start to serial.
  86. * M32 - Select file and start SD print: "M32 [S<bytepos>] !/path/file.gco#". (Requires SDSUPPORT)
  87. * Use P to run other files as sub-programs: "M32 P !filename#"
  88. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  89. * M33 - Get the longname version of a path. (Requires LONG_FILENAME_HOST_SUPPORT)
  90. * M34 - Set SD Card sorting options. (Requires SDCARD_SORT_ALPHA)
  91. * M42 - Change pin status via gcode: M42 P<pin> S<value>. LED pin assumed if P is omitted.
  92. * M43 - Display pin status, watch pins for changes, watch endstops & toggle LED, Z servo probe test, toggle pins
  93. * M48 - Measure Z Probe repeatability: M48 P<points> X<pos> Y<pos> V<level> E<engage> L<legs>. (Requires Z_MIN_PROBE_REPEATABILITY_TEST)
  94. * M75 - Start the print job timer.
  95. * M76 - Pause the print job timer.
  96. * M77 - Stop the print job timer.
  97. * M78 - Show statistical information about the print jobs. (Requires PRINTCOUNTER)
  98. * M80 - Turn on Power Supply. (Requires POWER_SUPPLY)
  99. * M81 - Turn off Power Supply. (Requires POWER_SUPPLY)
  100. * M82 - Set E codes absolute (default).
  101. * M83 - Set E codes relative while in Absolute (G90) mode.
  102. * M84 - Disable steppers until next move, or use S<seconds> to specify an idle
  103. * duration after which steppers should turn off. S0 disables the timeout.
  104. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  105. * M92 - Set planner.axis_steps_per_mm for one or more axes.
  106. * M104 - Set extruder target temp.
  107. * M105 - Report current temperatures.
  108. * M106 - Fan on.
  109. * M107 - Fan off.
  110. * M108 - Break out of heating loops (M109, M190, M303). With no controller, breaks out of M0/M1. (Requires EMERGENCY_PARSER)
  111. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  112. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  113. * If AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  114. * M110 - Set the current line number. (Used by host printing)
  115. * M111 - Set debug flags: "M111 S<flagbits>". See flag bits defined in enum.h.
  116. * M112 - Emergency stop.
  117. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages. (Requires HOST_KEEPALIVE_FEATURE)
  118. * M114 - Report current position.
  119. * M115 - Report capabilities. (Extended capabilities requires EXTENDED_CAPABILITIES_REPORT)
  120. * M117 - Display a message on the controller screen. (Requires an LCD)
  121. * M119 - Report endstops status.
  122. * M120 - Enable endstops detection.
  123. * M121 - Disable endstops detection.
  124. * M125 - Save current position and move to filament change position. (Requires PARK_HEAD_ON_PAUSE)
  125. * M126 - Solenoid Air Valve Open. (Requires BARICUDA)
  126. * M127 - Solenoid Air Valve Closed. (Requires BARICUDA)
  127. * M128 - EtoP Open. (Requires BARICUDA)
  128. * M129 - EtoP Closed. (Requires BARICUDA)
  129. * M140 - Set bed target temp. S<temp>
  130. * M145 - Set heatup values for materials on the LCD. H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  131. * M149 - Set temperature units. (Requires TEMPERATURE_UNITS_SUPPORT)
  132. * M150 - Set Status LED Color as R<red> U<green> B<blue>. Values 0-255. (Requires BLINKM or RGB_LED)
  133. * M155 - Auto-report temperatures with interval of S<seconds>. (Requires AUTO_REPORT_TEMPERATURES)
  134. * M163 - Set a single proportion for a mixing extruder. (Requires MIXING_EXTRUDER)
  135. * M164 - Save the mix as a virtual extruder. (Requires MIXING_EXTRUDER and MIXING_VIRTUAL_TOOLS)
  136. * M165 - Set the proportions for a mixing extruder. Use parameters ABCDHI to set the mixing factors. (Requires MIXING_EXTRUDER)
  137. * M190 - Sxxx Wait for bed current temp to reach target temp. ** Waits only when heating! **
  138. * Rxxx Wait for bed current temp to reach target temp. ** Waits for heating or cooling. **
  139. * M200 - Set filament diameter, D<diameter>, setting E axis units to cubic. (Use S0 to revert to linear units.)
  140. * M201 - Set max acceleration in units/s^2 for print moves: "M201 X<accel> Y<accel> Z<accel> E<accel>"
  141. * M202 - Set max acceleration in units/s^2 for travel moves: "M202 X<accel> Y<accel> Z<accel> E<accel>" ** UNUSED IN MARLIN! **
  142. * M203 - Set maximum feedrate: "M203 X<fr> Y<fr> Z<fr> E<fr>" in units/sec.
  143. * M204 - Set default acceleration in units/sec^2: P<printing> R<extruder_only> T<travel>
  144. * M205 - Set advanced settings. Current units apply:
  145. S<print> T<travel> minimum speeds
  146. B<minimum segment time>
  147. X<max X jerk>, Y<max Y jerk>, Z<max Z jerk>, E<max E jerk>
  148. * M206 - Set additional homing offset. (Disabled by NO_WORKSPACE_OFFSETS or DELTA)
  149. * M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>. (Requires FWRETRACT)
  150. * M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>. (Requires FWRETRACT)
  151. * M209 - Turn Automatic Retract Detection on/off: S<0|1> (For slicers that don't support G10/11). (Requires FWRETRACT)
  152. Every normal extrude-only move will be classified as retract depending on the direction.
  153. * M211 - Enable, Disable, and/or Report software endstops: S<0|1> (Requires MIN_SOFTWARE_ENDSTOPS or MAX_SOFTWARE_ENDSTOPS)
  154. * M218 - Set a tool offset: "M218 T<index> X<offset> Y<offset>". (Requires 2 or more extruders)
  155. * M220 - Set Feedrate Percentage: "M220 S<percent>" (i.e., "FR" on the LCD)
  156. * M221 - Set Flow Percentage: "M221 S<percent>"
  157. * M226 - Wait until a pin is in a given state: "M226 P<pin> S<state>"
  158. * M240 - Trigger a camera to take a photograph. (Requires CHDK or PHOTOGRAPH_PIN)
  159. * M250 - Set LCD contrast: "M250 C<contrast>" (0-63). (Requires LCD support)
  160. * M260 - i2c Send Data (Requires EXPERIMENTAL_I2CBUS)
  161. * M261 - i2c Request Data (Requires EXPERIMENTAL_I2CBUS)
  162. * M280 - Set servo position absolute: "M280 P<index> S<angle|µs>". (Requires servos)
  163. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  164. * M301 - Set PID parameters P I and D. (Requires PIDTEMP)
  165. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>. (Requires PREVENT_COLD_EXTRUSION)
  166. * M303 - PID relay autotune S<temperature> sets the target temperature. Default 150C. (Requires PIDTEMP)
  167. * M304 - Set bed PID parameters P I and D. (Requires PIDTEMPBED)
  168. * M355 - Turn the Case Light on/off and set its brightness. (Requires CASE_LIGHT_PIN)
  169. * M380 - Activate solenoid on active extruder. (Requires EXT_SOLENOID)
  170. * M381 - Disable all solenoids. (Requires EXT_SOLENOID)
  171. * M400 - Finish all moves.
  172. * M401 - Lower Z probe. (Requires a probe)
  173. * M402 - Raise Z probe. (Requires a probe)
  174. * M404 - Display or set the Nominal Filament Width: "W<diameter>". (Requires FILAMENT_WIDTH_SENSOR)
  175. * M405 - Enable Filament Sensor flow control. "M405 D<delay_cm>". (Requires FILAMENT_WIDTH_SENSOR)
  176. * M406 - Disable Filament Sensor flow control. (Requires FILAMENT_WIDTH_SENSOR)
  177. * M407 - Display measured filament diameter in millimeters. (Requires FILAMENT_WIDTH_SENSOR)
  178. * M410 - Quickstop. Abort all planned moves.
  179. * M420 - Enable/Disable Leveling (with current values) S1=enable S0=disable (Requires MESH_BED_LEVELING or ABL)
  180. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<units> Y<units> Z<units> (Requires MESH_BED_LEVELING or AUTO_BED_LEVELING_UBL)
  181. * M428 - Set the home_offset based on the current_position. Nearest edge applies. (Disabled by NO_WORKSPACE_OFFSETS or DELTA)
  182. * M500 - Store parameters in EEPROM. (Requires EEPROM_SETTINGS)
  183. * M501 - Restore parameters from EEPROM. (Requires EEPROM_SETTINGS)
  184. * M502 - Revert to the default "factory settings". ** Does not write them to EEPROM! **
  185. * M503 - Print the current settings (in memory): "M503 S<verbose>". S0 specifies compact output.
  186. * M540 - Enable/disable SD card abort on endstop hit: "M540 S<state>". (Requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  187. * M600 - Pause for filament change: "M600 X<pos> Y<pos> Z<raise> E<first_retract> L<later_retract>". (Requires FILAMENT_CHANGE_FEATURE)
  188. * M665 - Set delta configurations: "M665 L<diagonal rod> R<delta radius> S<segments/s> A<rod A trim mm> B<rod B trim mm> C<rod C trim mm> I<tower A trim angle> J<tower B trim angle> K<tower C trim angle>" (Requires DELTA)
  189. * M666 - Set delta endstop adjustment. (Requires DELTA)
  190. * M605 - Set dual x-carriage movement mode: "M605 S<mode> [X<x_offset>] [R<temp_offset>]". (Requires DUAL_X_CARRIAGE)
  191. * M851 - Set Z probe's Z offset in current units. (Negative = below the nozzle.)
  192. * M906 - Set or get motor current in milliamps using axis codes X, Y, Z, E. Report values if no axis codes given. (Requires HAVE_TMC2130)
  193. * M907 - Set digital trimpot motor current using axis codes. (Requires a board with digital trimpots)
  194. * M908 - Control digital trimpot directly. (Requires DAC_STEPPER_CURRENT or DIGIPOTSS_PIN)
  195. * M909 - Print digipot/DAC current value. (Requires DAC_STEPPER_CURRENT)
  196. * M910 - Commit digipot/DAC value to external EEPROM via I2C. (Requires DAC_STEPPER_CURRENT)
  197. * M911 - Report stepper driver overtemperature pre-warn condition. (Requires HAVE_TMC2130)
  198. * M912 - Clear stepper driver overtemperature pre-warn condition flag. (Requires HAVE_TMC2130)
  199. * M913 - Set HYBRID_THRESHOLD speed. (Requires HYBRID_THRESHOLD)
  200. * M914 - Set SENSORLESS_HOMING sensitivity. (Requires SENSORLESS_HOMING)
  201. * M350 - Set microstepping mode. (Requires digital microstepping pins.)
  202. * M351 - Toggle MS1 MS2 pins directly. (Requires digital microstepping pins.)
  203. *
  204. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  205. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  206. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  207. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  208. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  209. *
  210. * ************ Custom codes - This can change to suit future G-code regulations
  211. * M100 - Watch Free Memory (For Debugging). (Requires M100_FREE_MEMORY_WATCHER)
  212. * M928 - Start SD logging: "M928 filename.gco". Stop with M29. (Requires SDSUPPORT)
  213. * M999 - Restart after being stopped by error
  214. *
  215. * "T" Codes
  216. *
  217. * T0-T3 - Select an extruder (tool) by index: "T<n> F<units/min>"
  218. *
  219. */
  220. #include "Marlin.h"
  221. #include "ultralcd.h"
  222. #include "planner.h"
  223. #include "stepper.h"
  224. #include "endstops.h"
  225. #include "temperature.h"
  226. #include "cardreader.h"
  227. #include "configuration_store.h"
  228. #include "language.h"
  229. #include "pins_arduino.h"
  230. #include "math.h"
  231. #include "nozzle.h"
  232. #include "duration_t.h"
  233. #include "types.h"
  234. #if HAS_ABL
  235. #include "vector_3.h"
  236. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  237. #include "qr_solve.h"
  238. #endif
  239. #elif ENABLED(MESH_BED_LEVELING)
  240. #include "mesh_bed_leveling.h"
  241. #endif
  242. #if ENABLED(BEZIER_CURVE_SUPPORT)
  243. #include "planner_bezier.h"
  244. #endif
  245. #if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
  246. #include "buzzer.h"
  247. #endif
  248. #if ENABLED(USE_WATCHDOG)
  249. #include "watchdog.h"
  250. #endif
  251. #if ENABLED(BLINKM)
  252. #include "blinkm.h"
  253. #include "Wire.h"
  254. #endif
  255. #if HAS_SERVOS
  256. #include "servo.h"
  257. #endif
  258. #if HAS_DIGIPOTSS
  259. #include <SPI.h>
  260. #endif
  261. #if ENABLED(DAC_STEPPER_CURRENT)
  262. #include "stepper_dac.h"
  263. #endif
  264. #if ENABLED(EXPERIMENTAL_I2CBUS)
  265. #include "twibus.h"
  266. #endif
  267. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  268. #include "endstop_interrupts.h"
  269. #endif
  270. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  271. void gcode_M100();
  272. void M100_dump_routine(const char * const title, const char *start, const char *end);
  273. #endif
  274. #if ENABLED(SDSUPPORT)
  275. CardReader card;
  276. #endif
  277. #if ENABLED(EXPERIMENTAL_I2CBUS)
  278. TWIBus i2c;
  279. #endif
  280. #if ENABLED(G38_PROBE_TARGET)
  281. bool G38_move = false,
  282. G38_endstop_hit = false;
  283. #endif
  284. #if ENABLED(AUTO_BED_LEVELING_UBL)
  285. #include "ubl.h"
  286. unified_bed_leveling ubl;
  287. #define UBL_MESH_VALID !( ( ubl.z_values[0][0] == ubl.z_values[0][1] && ubl.z_values[0][1] == ubl.z_values[0][2] \
  288. && ubl.z_values[1][0] == ubl.z_values[1][1] && ubl.z_values[1][1] == ubl.z_values[1][2] \
  289. && ubl.z_values[2][0] == ubl.z_values[2][1] && ubl.z_values[2][1] == ubl.z_values[2][2] \
  290. && ubl.z_values[0][0] == 0 && ubl.z_values[1][0] == 0 && ubl.z_values[2][0] == 0 ) \
  291. || isnan(ubl.z_values[0][0]))
  292. #endif
  293. bool Running = true;
  294. uint8_t marlin_debug_flags = DEBUG_NONE;
  295. /**
  296. * Cartesian Current Position
  297. * Used to track the logical position as moves are queued.
  298. * Used by 'line_to_current_position' to do a move after changing it.
  299. * Used by 'SYNC_PLAN_POSITION_KINEMATIC' to update 'planner.position'.
  300. */
  301. float current_position[XYZE] = { 0.0 };
  302. /**
  303. * Cartesian Destination
  304. * A temporary position, usually applied to 'current_position'.
  305. * Set with 'gcode_get_destination' or 'set_destination_to_current'.
  306. * 'line_to_destination' sets 'current_position' to 'destination'.
  307. */
  308. float destination[XYZE] = { 0.0 };
  309. /**
  310. * axis_homed
  311. * Flags that each linear axis was homed.
  312. * XYZ on cartesian, ABC on delta, ABZ on SCARA.
  313. *
  314. * axis_known_position
  315. * Flags that the position is known in each linear axis. Set when homed.
  316. * Cleared whenever a stepper powers off, potentially losing its position.
  317. */
  318. bool axis_homed[XYZ] = { false }, axis_known_position[XYZ] = { false };
  319. /**
  320. * GCode line number handling. Hosts may opt to include line numbers when
  321. * sending commands to Marlin, and lines will be checked for sequentiality.
  322. * M110 N<int> sets the current line number.
  323. */
  324. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  325. /**
  326. * GCode Command Queue
  327. * A simple ring buffer of BUFSIZE command strings.
  328. *
  329. * Commands are copied into this buffer by the command injectors
  330. * (immediate, serial, sd card) and they are processed sequentially by
  331. * the main loop. The process_next_command function parses the next
  332. * command and hands off execution to individual handler functions.
  333. */
  334. uint8_t commands_in_queue = 0; // Count of commands in the queue
  335. static uint8_t cmd_queue_index_r = 0, // Ring buffer read position
  336. cmd_queue_index_w = 0; // Ring buffer write position
  337. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  338. char command_queue[BUFSIZE][MAX_CMD_SIZE]; // Necessary so M100 Free Memory Dumper can show us the commands and any corruption
  339. #else // This can be collapsed back to the way it was soon.
  340. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  341. #endif
  342. /**
  343. * Current GCode Command
  344. * When a GCode handler is running, these will be set
  345. */
  346. static char *current_command, // The command currently being executed
  347. *current_command_args, // The address where arguments begin
  348. *seen_pointer; // Set by code_seen(), used by the code_value functions
  349. /**
  350. * Next Injected Command pointer. NULL if no commands are being injected.
  351. * Used by Marlin internally to ensure that commands initiated from within
  352. * are enqueued ahead of any pending serial or sd card commands.
  353. */
  354. static const char *injected_commands_P = NULL;
  355. #if ENABLED(INCH_MODE_SUPPORT)
  356. float linear_unit_factor = 1.0, volumetric_unit_factor = 1.0;
  357. #endif
  358. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  359. TempUnit input_temp_units = TEMPUNIT_C;
  360. #endif
  361. /**
  362. * Feed rates are often configured with mm/m
  363. * but the planner and stepper like mm/s units.
  364. */
  365. float constexpr homing_feedrate_mm_s[] = {
  366. #if ENABLED(DELTA)
  367. MMM_TO_MMS(HOMING_FEEDRATE_Z), MMM_TO_MMS(HOMING_FEEDRATE_Z),
  368. #else
  369. MMM_TO_MMS(HOMING_FEEDRATE_XY), MMM_TO_MMS(HOMING_FEEDRATE_XY),
  370. #endif
  371. MMM_TO_MMS(HOMING_FEEDRATE_Z), 0
  372. };
  373. static float feedrate_mm_s = MMM_TO_MMS(1500.0), saved_feedrate_mm_s;
  374. int feedrate_percentage = 100, saved_feedrate_percentage,
  375. flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  376. bool axis_relative_modes[] = AXIS_RELATIVE_MODES,
  377. volumetric_enabled =
  378. #if ENABLED(VOLUMETRIC_DEFAULT_ON)
  379. true
  380. #else
  381. false
  382. #endif
  383. ;
  384. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA),
  385. volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  386. #if HAS_WORKSPACE_OFFSET
  387. #if HAS_POSITION_SHIFT
  388. // The distance that XYZ has been offset by G92. Reset by G28.
  389. float position_shift[XYZ] = { 0 };
  390. #endif
  391. #if HAS_HOME_OFFSET
  392. // This offset is added to the configured home position.
  393. // Set by M206, M428, or menu item. Saved to EEPROM.
  394. float home_offset[XYZ] = { 0 };
  395. #endif
  396. #if HAS_HOME_OFFSET && HAS_POSITION_SHIFT
  397. // The above two are combined to save on computes
  398. float workspace_offset[XYZ] = { 0 };
  399. #endif
  400. #endif
  401. // Software Endstops are based on the configured limits.
  402. #if HAS_SOFTWARE_ENDSTOPS
  403. bool soft_endstops_enabled = true;
  404. #endif
  405. float soft_endstop_min[XYZ] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS },
  406. soft_endstop_max[XYZ] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  407. #if FAN_COUNT > 0
  408. int16_t fanSpeeds[FAN_COUNT] = { 0 };
  409. #endif
  410. // The active extruder (tool). Set with T<extruder> command.
  411. uint8_t active_extruder = 0;
  412. // Relative Mode. Enable with G91, disable with G90.
  413. static bool relative_mode = false;
  414. // For M109 and M190, this flag may be cleared (by M108) to exit the wait loop
  415. volatile bool wait_for_heatup = true;
  416. // For M0/M1, this flag may be cleared (by M108) to exit the wait-for-user loop
  417. #if HAS_RESUME_CONTINUE
  418. volatile bool wait_for_user = false;
  419. #endif
  420. const char axis_codes[XYZE] = {'X', 'Y', 'Z', 'E'};
  421. // Number of characters read in the current line of serial input
  422. static int serial_count = 0;
  423. // Inactivity shutdown
  424. millis_t previous_cmd_ms = 0;
  425. static millis_t max_inactive_time = 0;
  426. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
  427. // Print Job Timer
  428. #if ENABLED(PRINTCOUNTER)
  429. PrintCounter print_job_timer = PrintCounter();
  430. #else
  431. Stopwatch print_job_timer = Stopwatch();
  432. #endif
  433. // Buzzer - I2C on the LCD or a BEEPER_PIN
  434. #if ENABLED(LCD_USE_I2C_BUZZER)
  435. #define BUZZ(d,f) lcd_buzz(d, f)
  436. #elif PIN_EXISTS(BEEPER)
  437. Buzzer buzzer;
  438. #define BUZZ(d,f) buzzer.tone(d, f)
  439. #else
  440. #define BUZZ(d,f) NOOP
  441. #endif
  442. static uint8_t target_extruder;
  443. #if HAS_BED_PROBE
  444. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  445. #endif
  446. #if HAS_ABL
  447. float xy_probe_feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  448. #define XY_PROBE_FEEDRATE_MM_S xy_probe_feedrate_mm_s
  449. #elif defined(XY_PROBE_SPEED)
  450. #define XY_PROBE_FEEDRATE_MM_S MMM_TO_MMS(XY_PROBE_SPEED)
  451. #else
  452. #define XY_PROBE_FEEDRATE_MM_S PLANNER_XY_FEEDRATE()
  453. #endif
  454. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  455. #if ENABLED(DELTA)
  456. #define ADJUST_DELTA(V) \
  457. if (planner.abl_enabled) { \
  458. const float zadj = bilinear_z_offset(V); \
  459. delta[A_AXIS] += zadj; \
  460. delta[B_AXIS] += zadj; \
  461. delta[C_AXIS] += zadj; \
  462. }
  463. #else
  464. #define ADJUST_DELTA(V) if (planner.abl_enabled) { delta[Z_AXIS] += bilinear_z_offset(V); }
  465. #endif
  466. #elif IS_KINEMATIC
  467. #define ADJUST_DELTA(V) NOOP
  468. #endif
  469. #if ENABLED(Z_DUAL_ENDSTOPS)
  470. float z_endstop_adj =
  471. #ifdef Z_DUAL_ENDSTOPS_ADJUSTMENT
  472. Z_DUAL_ENDSTOPS_ADJUSTMENT
  473. #else
  474. 0
  475. #endif
  476. ;
  477. #endif
  478. // Extruder offsets
  479. #if HOTENDS > 1
  480. float hotend_offset[XYZ][HOTENDS];
  481. #endif
  482. #if HAS_Z_SERVO_ENDSTOP
  483. const int z_servo_angle[2] = Z_SERVO_ANGLES;
  484. #endif
  485. #if ENABLED(BARICUDA)
  486. int baricuda_valve_pressure = 0;
  487. int baricuda_e_to_p_pressure = 0;
  488. #endif
  489. #if ENABLED(FWRETRACT)
  490. bool autoretract_enabled = false;
  491. bool retracted[EXTRUDERS] = { false };
  492. bool retracted_swap[EXTRUDERS] = { false };
  493. float retract_length = RETRACT_LENGTH;
  494. float retract_length_swap = RETRACT_LENGTH_SWAP;
  495. float retract_feedrate_mm_s = RETRACT_FEEDRATE;
  496. float retract_zlift = RETRACT_ZLIFT;
  497. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  498. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  499. float retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE;
  500. #endif // FWRETRACT
  501. #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
  502. bool powersupply =
  503. #if ENABLED(PS_DEFAULT_OFF)
  504. false
  505. #else
  506. true
  507. #endif
  508. ;
  509. #endif
  510. #if HAS_CASE_LIGHT
  511. bool case_light_on =
  512. #if ENABLED(CASE_LIGHT_DEFAULT_ON)
  513. true
  514. #else
  515. false
  516. #endif
  517. ;
  518. #endif
  519. #if ENABLED(DELTA)
  520. float delta[ABC],
  521. endstop_adj[ABC] = { 0 };
  522. // These values are loaded or reset at boot time when setup() calls
  523. // settings.load(), which calls recalc_delta_settings().
  524. float delta_radius,
  525. delta_tower_angle_trim[2],
  526. delta_tower[ABC][2],
  527. delta_diagonal_rod,
  528. delta_calibration_radius,
  529. delta_diagonal_rod_2_tower[ABC],
  530. delta_segments_per_second,
  531. delta_clip_start_height = Z_MAX_POS;
  532. float delta_safe_distance_from_top();
  533. #endif
  534. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  535. int bilinear_grid_spacing[2], bilinear_start[2];
  536. float bilinear_grid_factor[2],
  537. z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  538. #endif
  539. #if IS_SCARA
  540. // Float constants for SCARA calculations
  541. const float L1 = SCARA_LINKAGE_1, L2 = SCARA_LINKAGE_2,
  542. L1_2 = sq(float(L1)), L1_2_2 = 2.0 * L1_2,
  543. L2_2 = sq(float(L2));
  544. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND,
  545. delta[ABC];
  546. #endif
  547. float cartes[XYZ] = { 0 };
  548. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  549. bool filament_sensor = false; // M405 turns on filament sensor control. M406 turns it off.
  550. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA, // Nominal filament width. Change with M404.
  551. filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; // Measured filament diameter
  552. int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; // Ring buffer to delayed measurement. Store extruder factor after subtracting 100
  553. int filwidth_delay_index[2] = { 0, -1 }; // Indexes into ring buffer
  554. int meas_delay_cm = MEASUREMENT_DELAY_CM; // Distance delay setting
  555. #endif
  556. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  557. static bool filament_ran_out = false;
  558. #endif
  559. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  560. FilamentChangeMenuResponse filament_change_menu_response;
  561. #endif
  562. #if ENABLED(MIXING_EXTRUDER)
  563. float mixing_factor[MIXING_STEPPERS]; // Reciprocal of mix proportion. 0.0 = off, otherwise >= 1.0.
  564. #if MIXING_VIRTUAL_TOOLS > 1
  565. float mixing_virtual_tool_mix[MIXING_VIRTUAL_TOOLS][MIXING_STEPPERS];
  566. #endif
  567. #endif
  568. static bool send_ok[BUFSIZE];
  569. #if HAS_SERVOS
  570. Servo servo[NUM_SERVOS];
  571. #define MOVE_SERVO(I, P) servo[I].move(P)
  572. #if HAS_Z_SERVO_ENDSTOP
  573. #define DEPLOY_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[0])
  574. #define STOW_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[1])
  575. #endif
  576. #endif
  577. #ifdef CHDK
  578. millis_t chdkHigh = 0;
  579. bool chdkActive = false;
  580. #endif
  581. #ifdef AUTOMATIC_CURRENT_CONTROL
  582. bool auto_current_control = 0;
  583. #endif
  584. #if ENABLED(PID_EXTRUSION_SCALING)
  585. int lpq_len = 20;
  586. #endif
  587. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  588. MarlinBusyState busy_state = NOT_BUSY;
  589. static millis_t next_busy_signal_ms = 0;
  590. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  591. #else
  592. #define host_keepalive() NOOP
  593. #endif
  594. static inline float pgm_read_any(const float *p) { return pgm_read_float_near(p); }
  595. static inline signed char pgm_read_any(const signed char *p) { return pgm_read_byte_near(p); }
  596. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  597. static const PROGMEM type array##_P[XYZ] = { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  598. static inline type array(AxisEnum axis) { return pgm_read_any(&array##_P[axis]); } \
  599. typedef void __void_##CONFIG##__
  600. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  601. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  602. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  603. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  604. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  605. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  606. /**
  607. * ***************************************************************************
  608. * ******************************** FUNCTIONS ********************************
  609. * ***************************************************************************
  610. */
  611. void stop();
  612. void get_available_commands();
  613. void process_next_command();
  614. void prepare_move_to_destination();
  615. void get_cartesian_from_steppers();
  616. void set_current_from_steppers_for_axis(const AxisEnum axis);
  617. #if ENABLED(ARC_SUPPORT)
  618. void plan_arc(float target[XYZE], float* offset, uint8_t clockwise);
  619. #endif
  620. #if ENABLED(BEZIER_CURVE_SUPPORT)
  621. void plan_cubic_move(const float offset[4]);
  622. #endif
  623. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s=0.0, bool no_move=false);
  624. static void report_current_position();
  625. #if ENABLED(DEBUG_LEVELING_FEATURE)
  626. void print_xyz(const char* prefix, const char* suffix, const float x, const float y, const float z) {
  627. serialprintPGM(prefix);
  628. SERIAL_CHAR('(');
  629. SERIAL_ECHO(x);
  630. SERIAL_ECHOPAIR(", ", y);
  631. SERIAL_ECHOPAIR(", ", z);
  632. SERIAL_CHAR(')');
  633. suffix ? serialprintPGM(suffix) : SERIAL_EOL;
  634. }
  635. void print_xyz(const char* prefix, const char* suffix, const float xyz[]) {
  636. print_xyz(prefix, suffix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  637. }
  638. #if HAS_ABL
  639. void print_xyz(const char* prefix, const char* suffix, const vector_3 &xyz) {
  640. print_xyz(prefix, suffix, xyz.x, xyz.y, xyz.z);
  641. }
  642. #endif
  643. #define DEBUG_POS(SUFFIX,VAR) do { \
  644. print_xyz(PSTR(" " STRINGIFY(VAR) "="), PSTR(" : " SUFFIX "\n"), VAR); } while(0)
  645. #endif
  646. /**
  647. * sync_plan_position
  648. *
  649. * Set the planner/stepper positions directly from current_position with
  650. * no kinematic translation. Used for homing axes and cartesian/core syncing.
  651. */
  652. inline void sync_plan_position() {
  653. #if ENABLED(DEBUG_LEVELING_FEATURE)
  654. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  655. #endif
  656. planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  657. }
  658. inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
  659. #if IS_KINEMATIC
  660. inline void sync_plan_position_kinematic() {
  661. #if ENABLED(DEBUG_LEVELING_FEATURE)
  662. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_kinematic", current_position);
  663. #endif
  664. planner.set_position_mm_kinematic(current_position);
  665. }
  666. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_kinematic()
  667. #else
  668. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position()
  669. #endif
  670. #if ENABLED(SDSUPPORT)
  671. #include "SdFatUtil.h"
  672. int freeMemory() { return SdFatUtil::FreeRam(); }
  673. #else
  674. extern "C" {
  675. extern char __bss_end;
  676. extern char __heap_start;
  677. extern void* __brkval;
  678. int freeMemory() {
  679. int free_memory;
  680. if ((int)__brkval == 0)
  681. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  682. else
  683. free_memory = ((int)&free_memory) - ((int)__brkval);
  684. return free_memory;
  685. }
  686. }
  687. #endif //!SDSUPPORT
  688. #if ENABLED(DIGIPOT_I2C)
  689. extern void digipot_i2c_set_current(int channel, float current);
  690. extern void digipot_i2c_init();
  691. #endif
  692. /**
  693. * Inject the next "immediate" command, when possible, onto the front of the queue.
  694. * Return true if any immediate commands remain to inject.
  695. */
  696. static bool drain_injected_commands_P() {
  697. if (injected_commands_P != NULL) {
  698. size_t i = 0;
  699. char c, cmd[30];
  700. strncpy_P(cmd, injected_commands_P, sizeof(cmd) - 1);
  701. cmd[sizeof(cmd) - 1] = '\0';
  702. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  703. cmd[i] = '\0';
  704. if (enqueue_and_echo_command(cmd)) // success?
  705. injected_commands_P = c ? injected_commands_P + i + 1 : NULL; // next command or done
  706. }
  707. return (injected_commands_P != NULL); // return whether any more remain
  708. }
  709. /**
  710. * Record one or many commands to run from program memory.
  711. * Aborts the current queue, if any.
  712. * Note: drain_injected_commands_P() must be called repeatedly to drain the commands afterwards
  713. */
  714. void enqueue_and_echo_commands_P(const char* pgcode) {
  715. injected_commands_P = pgcode;
  716. drain_injected_commands_P(); // first command executed asap (when possible)
  717. }
  718. /**
  719. * Clear the Marlin command queue
  720. */
  721. void clear_command_queue() {
  722. cmd_queue_index_r = cmd_queue_index_w;
  723. commands_in_queue = 0;
  724. }
  725. /**
  726. * Once a new command is in the ring buffer, call this to commit it
  727. */
  728. inline void _commit_command(bool say_ok) {
  729. send_ok[cmd_queue_index_w] = say_ok;
  730. if (++cmd_queue_index_w >= BUFSIZE) cmd_queue_index_w = 0;
  731. commands_in_queue++;
  732. }
  733. /**
  734. * Copy a command from RAM into the main command buffer.
  735. * Return true if the command was successfully added.
  736. * Return false for a full buffer, or if the 'command' is a comment.
  737. */
  738. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  739. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  740. strcpy(command_queue[cmd_queue_index_w], cmd);
  741. _commit_command(say_ok);
  742. return true;
  743. }
  744. /**
  745. * Enqueue with Serial Echo
  746. */
  747. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  748. if (_enqueuecommand(cmd, say_ok)) {
  749. SERIAL_ECHO_START;
  750. SERIAL_ECHOPAIR(MSG_ENQUEUEING, cmd);
  751. SERIAL_CHAR('"');
  752. SERIAL_EOL;
  753. return true;
  754. }
  755. return false;
  756. }
  757. void setup_killpin() {
  758. #if HAS_KILL
  759. SET_INPUT_PULLUP(KILL_PIN);
  760. #endif
  761. }
  762. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  763. void setup_filrunoutpin() {
  764. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  765. SET_INPUT_PULLUP(FIL_RUNOUT_PIN);
  766. #else
  767. SET_INPUT(FIL_RUNOUT_PIN);
  768. #endif
  769. }
  770. #endif
  771. void setup_homepin(void) {
  772. #if HAS_HOME
  773. SET_INPUT_PULLUP(HOME_PIN);
  774. #endif
  775. }
  776. void setup_powerhold() {
  777. #if HAS_SUICIDE
  778. OUT_WRITE(SUICIDE_PIN, HIGH);
  779. #endif
  780. #if HAS_POWER_SWITCH
  781. #if ENABLED(PS_DEFAULT_OFF)
  782. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  783. #else
  784. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  785. #endif
  786. #endif
  787. }
  788. void suicide() {
  789. #if HAS_SUICIDE
  790. OUT_WRITE(SUICIDE_PIN, LOW);
  791. #endif
  792. }
  793. void servo_init() {
  794. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  795. servo[0].attach(SERVO0_PIN);
  796. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  797. #endif
  798. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  799. servo[1].attach(SERVO1_PIN);
  800. servo[1].detach();
  801. #endif
  802. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  803. servo[2].attach(SERVO2_PIN);
  804. servo[2].detach();
  805. #endif
  806. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  807. servo[3].attach(SERVO3_PIN);
  808. servo[3].detach();
  809. #endif
  810. #if HAS_Z_SERVO_ENDSTOP
  811. /**
  812. * Set position of Z Servo Endstop
  813. *
  814. * The servo might be deployed and positioned too low to stow
  815. * when starting up the machine or rebooting the board.
  816. * There's no way to know where the nozzle is positioned until
  817. * homing has been done - no homing with z-probe without init!
  818. *
  819. */
  820. STOW_Z_SERVO();
  821. #endif
  822. }
  823. /**
  824. * Stepper Reset (RigidBoard, et.al.)
  825. */
  826. #if HAS_STEPPER_RESET
  827. void disableStepperDrivers() {
  828. OUT_WRITE(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  829. }
  830. void enableStepperDrivers() { SET_INPUT(STEPPER_RESET_PIN); } // set to input, which allows it to be pulled high by pullups
  831. #endif
  832. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  833. void i2c_on_receive(int bytes) { // just echo all bytes received to serial
  834. i2c.receive(bytes);
  835. }
  836. void i2c_on_request() { // just send dummy data for now
  837. i2c.reply("Hello World!\n");
  838. }
  839. #endif
  840. #if HAS_COLOR_LEDS
  841. void set_led_color(
  842. const uint8_t r, const uint8_t g, const uint8_t b
  843. #if ENABLED(RGBW_LED)
  844. , const uint8_t w=0
  845. #endif
  846. ) {
  847. #if ENABLED(BLINKM)
  848. // This variant uses i2c to send the RGB components to the device.
  849. SendColors(r, g, b);
  850. #else
  851. // This variant uses 3 separate pins for the RGB components.
  852. // If the pins can do PWM then their intensity will be set.
  853. WRITE(RGB_LED_R_PIN, r ? HIGH : LOW);
  854. WRITE(RGB_LED_G_PIN, g ? HIGH : LOW);
  855. WRITE(RGB_LED_B_PIN, b ? HIGH : LOW);
  856. analogWrite(RGB_LED_R_PIN, r);
  857. analogWrite(RGB_LED_G_PIN, g);
  858. analogWrite(RGB_LED_B_PIN, b);
  859. #if ENABLED(RGBW_LED)
  860. WRITE(RGB_LED_W_PIN, w ? HIGH : LOW);
  861. analogWrite(RGB_LED_W_PIN, w);
  862. #endif
  863. #endif
  864. }
  865. #endif // HAS_COLOR_LEDS
  866. void gcode_line_error(const char* err, bool doFlush = true) {
  867. SERIAL_ERROR_START;
  868. serialprintPGM(err);
  869. SERIAL_ERRORLN(gcode_LastN);
  870. //Serial.println(gcode_N);
  871. if (doFlush) FlushSerialRequestResend();
  872. serial_count = 0;
  873. }
  874. /**
  875. * Get all commands waiting on the serial port and queue them.
  876. * Exit when the buffer is full or when no more characters are
  877. * left on the serial port.
  878. */
  879. inline void get_serial_commands() {
  880. static char serial_line_buffer[MAX_CMD_SIZE];
  881. static bool serial_comment_mode = false;
  882. // If the command buffer is empty for too long,
  883. // send "wait" to indicate Marlin is still waiting.
  884. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  885. static millis_t last_command_time = 0;
  886. const millis_t ms = millis();
  887. if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
  888. SERIAL_ECHOLNPGM(MSG_WAIT);
  889. last_command_time = ms;
  890. }
  891. #endif
  892. /**
  893. * Loop while serial characters are incoming and the queue is not full
  894. */
  895. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  896. char serial_char = MYSERIAL.read();
  897. /**
  898. * If the character ends the line
  899. */
  900. if (serial_char == '\n' || serial_char == '\r') {
  901. serial_comment_mode = false; // end of line == end of comment
  902. if (!serial_count) continue; // skip empty lines
  903. serial_line_buffer[serial_count] = 0; // terminate string
  904. serial_count = 0; //reset buffer
  905. char* command = serial_line_buffer;
  906. while (*command == ' ') command++; // skip any leading spaces
  907. char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  908. char* apos = strchr(command, '*');
  909. if (npos) {
  910. bool M110 = strstr_P(command, PSTR("M110")) != NULL;
  911. if (M110) {
  912. char* n2pos = strchr(command + 4, 'N');
  913. if (n2pos) npos = n2pos;
  914. }
  915. gcode_N = strtol(npos + 1, NULL, 10);
  916. if (gcode_N != gcode_LastN + 1 && !M110) {
  917. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  918. return;
  919. }
  920. if (apos) {
  921. byte checksum = 0, count = 0;
  922. while (command[count] != '*') checksum ^= command[count++];
  923. if (strtol(apos + 1, NULL, 10) != checksum) {
  924. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  925. return;
  926. }
  927. // if no errors, continue parsing
  928. }
  929. else {
  930. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  931. return;
  932. }
  933. gcode_LastN = gcode_N;
  934. // if no errors, continue parsing
  935. }
  936. else if (apos) { // No '*' without 'N'
  937. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  938. return;
  939. }
  940. // Movement commands alert when stopped
  941. if (IsStopped()) {
  942. char* gpos = strchr(command, 'G');
  943. if (gpos) {
  944. const int codenum = strtol(gpos + 1, NULL, 10);
  945. switch (codenum) {
  946. case 0:
  947. case 1:
  948. case 2:
  949. case 3:
  950. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  951. LCD_MESSAGEPGM(MSG_STOPPED);
  952. break;
  953. }
  954. }
  955. }
  956. #if DISABLED(EMERGENCY_PARSER)
  957. // If command was e-stop process now
  958. if (strcmp(command, "M108") == 0) {
  959. wait_for_heatup = false;
  960. #if ENABLED(ULTIPANEL)
  961. wait_for_user = false;
  962. #endif
  963. }
  964. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  965. if (strcmp(command, "M410") == 0) { quickstop_stepper(); }
  966. #endif
  967. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  968. last_command_time = ms;
  969. #endif
  970. // Add the command to the queue
  971. _enqueuecommand(serial_line_buffer, true);
  972. }
  973. else if (serial_count >= MAX_CMD_SIZE - 1) {
  974. // Keep fetching, but ignore normal characters beyond the max length
  975. // The command will be injected when EOL is reached
  976. }
  977. else if (serial_char == '\\') { // Handle escapes
  978. if (MYSERIAL.available() > 0) {
  979. // if we have one more character, copy it over
  980. serial_char = MYSERIAL.read();
  981. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  982. }
  983. // otherwise do nothing
  984. }
  985. else { // it's not a newline, carriage return or escape char
  986. if (serial_char == ';') serial_comment_mode = true;
  987. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  988. }
  989. } // queue has space, serial has data
  990. }
  991. #if ENABLED(SDSUPPORT)
  992. /**
  993. * Get commands from the SD Card until the command buffer is full
  994. * or until the end of the file is reached. The special character '#'
  995. * can also interrupt buffering.
  996. */
  997. inline void get_sdcard_commands() {
  998. static bool stop_buffering = false,
  999. sd_comment_mode = false;
  1000. if (!card.sdprinting) return;
  1001. /**
  1002. * '#' stops reading from SD to the buffer prematurely, so procedural
  1003. * macro calls are possible. If it occurs, stop_buffering is triggered
  1004. * and the buffer is run dry; this character _can_ occur in serial com
  1005. * due to checksums, however, no checksums are used in SD printing.
  1006. */
  1007. if (commands_in_queue == 0) stop_buffering = false;
  1008. uint16_t sd_count = 0;
  1009. bool card_eof = card.eof();
  1010. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  1011. const int16_t n = card.get();
  1012. char sd_char = (char)n;
  1013. card_eof = card.eof();
  1014. if (card_eof || n == -1
  1015. || sd_char == '\n' || sd_char == '\r'
  1016. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  1017. ) {
  1018. if (card_eof) {
  1019. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  1020. card.printingHasFinished();
  1021. #if ENABLED(PRINTER_EVENT_LEDS)
  1022. LCD_MESSAGEPGM(MSG_INFO_COMPLETED_PRINTS);
  1023. set_led_color(0, 255, 0); // Green
  1024. #if HAS_RESUME_CONTINUE
  1025. enqueue_and_echo_commands_P(PSTR("M0")); // end of the queue!
  1026. #else
  1027. safe_delay(1000);
  1028. #endif
  1029. set_led_color(0, 0, 0); // OFF
  1030. #endif
  1031. card.checkautostart(true);
  1032. }
  1033. else if (n == -1) {
  1034. SERIAL_ERROR_START;
  1035. SERIAL_ECHOLNPGM(MSG_SD_ERR_READ);
  1036. }
  1037. if (sd_char == '#') stop_buffering = true;
  1038. sd_comment_mode = false; // for new command
  1039. if (!sd_count) continue; // skip empty lines (and comment lines)
  1040. command_queue[cmd_queue_index_w][sd_count] = '\0'; // terminate string
  1041. sd_count = 0; // clear sd line buffer
  1042. _commit_command(false);
  1043. }
  1044. else if (sd_count >= MAX_CMD_SIZE - 1) {
  1045. /**
  1046. * Keep fetching, but ignore normal characters beyond the max length
  1047. * The command will be injected when EOL is reached
  1048. */
  1049. }
  1050. else {
  1051. if (sd_char == ';') sd_comment_mode = true;
  1052. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  1053. }
  1054. }
  1055. }
  1056. #endif // SDSUPPORT
  1057. /**
  1058. * Add to the circular command queue the next command from:
  1059. * - The command-injection queue (injected_commands_P)
  1060. * - The active serial input (usually USB)
  1061. * - The SD card file being actively printed
  1062. */
  1063. void get_available_commands() {
  1064. // if any immediate commands remain, don't get other commands yet
  1065. if (drain_injected_commands_P()) return;
  1066. get_serial_commands();
  1067. #if ENABLED(SDSUPPORT)
  1068. get_sdcard_commands();
  1069. #endif
  1070. }
  1071. inline bool code_has_value() {
  1072. int i = 1;
  1073. char c = seen_pointer[i];
  1074. while (c == ' ') c = seen_pointer[++i];
  1075. if (c == '-' || c == '+') c = seen_pointer[++i];
  1076. if (c == '.') c = seen_pointer[++i];
  1077. return NUMERIC(c);
  1078. }
  1079. inline float code_value_float() {
  1080. char* e = strchr(seen_pointer, 'E');
  1081. if (!e) return strtod(seen_pointer + 1, NULL);
  1082. *e = 0;
  1083. float ret = strtod(seen_pointer + 1, NULL);
  1084. *e = 'E';
  1085. return ret;
  1086. }
  1087. inline unsigned long code_value_ulong() { return strtoul(seen_pointer + 1, NULL, 10); }
  1088. inline long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  1089. inline int code_value_int() { return (int)strtol(seen_pointer + 1, NULL, 10); }
  1090. inline uint16_t code_value_ushort() { return (uint16_t)strtoul(seen_pointer + 1, NULL, 10); }
  1091. inline uint8_t code_value_byte() { return (uint8_t)(constrain(strtol(seen_pointer + 1, NULL, 10), 0, 255)); }
  1092. inline bool code_value_bool() { return !code_has_value() || code_value_byte() > 0; }
  1093. #if ENABLED(INCH_MODE_SUPPORT)
  1094. inline void set_input_linear_units(LinearUnit units) {
  1095. switch (units) {
  1096. case LINEARUNIT_INCH:
  1097. linear_unit_factor = 25.4;
  1098. break;
  1099. case LINEARUNIT_MM:
  1100. default:
  1101. linear_unit_factor = 1.0;
  1102. break;
  1103. }
  1104. volumetric_unit_factor = pow(linear_unit_factor, 3.0);
  1105. }
  1106. inline float axis_unit_factor(const AxisEnum axis) {
  1107. return (axis >= E_AXIS && volumetric_enabled ? volumetric_unit_factor : linear_unit_factor);
  1108. }
  1109. inline float code_value_linear_units() { return code_value_float() * linear_unit_factor; }
  1110. inline float code_value_axis_units(const AxisEnum axis) { return code_value_float() * axis_unit_factor(axis); }
  1111. inline float code_value_per_axis_unit(const AxisEnum axis) { return code_value_float() / axis_unit_factor(axis); }
  1112. #endif
  1113. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  1114. inline void set_input_temp_units(TempUnit units) { input_temp_units = units; }
  1115. int16_t code_value_temp_abs() {
  1116. switch (input_temp_units) {
  1117. case TEMPUNIT_F:
  1118. return (code_value_float() - 32) * 0.5555555556;
  1119. case TEMPUNIT_K:
  1120. return code_value_float() - 273.15;
  1121. case TEMPUNIT_C:
  1122. default:
  1123. return code_value_int();
  1124. }
  1125. }
  1126. int16_t code_value_temp_diff() {
  1127. switch (input_temp_units) {
  1128. case TEMPUNIT_C:
  1129. case TEMPUNIT_K:
  1130. return code_value_float();
  1131. case TEMPUNIT_F:
  1132. return code_value_float() * 0.5555555556;
  1133. default:
  1134. return code_value_float();
  1135. }
  1136. }
  1137. #else
  1138. int16_t code_value_temp_abs() { return code_value_int(); }
  1139. int16_t code_value_temp_diff() { return code_value_int(); }
  1140. #endif
  1141. FORCE_INLINE millis_t code_value_millis() { return code_value_ulong(); }
  1142. inline millis_t code_value_millis_from_seconds() { return code_value_float() * 1000; }
  1143. bool code_seen(char code) {
  1144. seen_pointer = strchr(current_command_args, code);
  1145. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  1146. }
  1147. /**
  1148. * Set target_extruder from the T parameter or the active_extruder
  1149. *
  1150. * Returns TRUE if the target is invalid
  1151. */
  1152. bool get_target_extruder_from_command(int code) {
  1153. if (code_seen('T')) {
  1154. if (code_value_byte() >= EXTRUDERS) {
  1155. SERIAL_ECHO_START;
  1156. SERIAL_CHAR('M');
  1157. SERIAL_ECHO(code);
  1158. SERIAL_ECHOLNPAIR(" " MSG_INVALID_EXTRUDER " ", code_value_byte());
  1159. return true;
  1160. }
  1161. target_extruder = code_value_byte();
  1162. }
  1163. else
  1164. target_extruder = active_extruder;
  1165. return false;
  1166. }
  1167. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  1168. bool extruder_duplication_enabled = false; // Used in Dual X mode 2
  1169. #endif
  1170. #if ENABLED(DUAL_X_CARRIAGE)
  1171. static DualXMode dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1172. static float x_home_pos(const int extruder) {
  1173. if (extruder == 0)
  1174. return LOGICAL_X_POSITION(base_home_pos(X_AXIS));
  1175. else
  1176. /**
  1177. * In dual carriage mode the extruder offset provides an override of the
  1178. * second X-carriage position when homed - otherwise X2_HOME_POS is used.
  1179. * This allows soft recalibration of the second extruder home position
  1180. * without firmware reflash (through the M218 command).
  1181. */
  1182. return LOGICAL_X_POSITION(hotend_offset[X_AXIS][1] > 0 ? hotend_offset[X_AXIS][1] : X2_HOME_POS);
  1183. }
  1184. static int x_home_dir(const int extruder) { return extruder ? X2_HOME_DIR : X_HOME_DIR; }
  1185. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1186. static bool active_extruder_parked = false; // used in mode 1 & 2
  1187. static float raised_parked_position[XYZE]; // used in mode 1
  1188. static millis_t delayed_move_time = 0; // used in mode 1
  1189. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1190. static int16_t duplicate_extruder_temp_offset = 0; // used in mode 2
  1191. #endif // DUAL_X_CARRIAGE
  1192. #if HAS_WORKSPACE_OFFSET || ENABLED(DUAL_X_CARRIAGE)
  1193. /**
  1194. * Software endstops can be used to monitor the open end of
  1195. * an axis that has a hardware endstop on the other end. Or
  1196. * they can prevent axes from moving past endstops and grinding.
  1197. *
  1198. * To keep doing their job as the coordinate system changes,
  1199. * the software endstop positions must be refreshed to remain
  1200. * at the same positions relative to the machine.
  1201. */
  1202. void update_software_endstops(const AxisEnum axis) {
  1203. const float offs = 0.0
  1204. #if HAS_HOME_OFFSET
  1205. + home_offset[axis]
  1206. #endif
  1207. #if HAS_POSITION_SHIFT
  1208. + position_shift[axis]
  1209. #endif
  1210. ;
  1211. #if HAS_HOME_OFFSET && HAS_POSITION_SHIFT
  1212. workspace_offset[axis] = offs;
  1213. #endif
  1214. #if ENABLED(DUAL_X_CARRIAGE)
  1215. if (axis == X_AXIS) {
  1216. // In Dual X mode hotend_offset[X] is T1's home position
  1217. float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS);
  1218. if (active_extruder != 0) {
  1219. // T1 can move from X2_MIN_POS to X2_MAX_POS or X2 home position (whichever is larger)
  1220. soft_endstop_min[X_AXIS] = X2_MIN_POS + offs;
  1221. soft_endstop_max[X_AXIS] = dual_max_x + offs;
  1222. }
  1223. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1224. // In Duplication Mode, T0 can move as far left as X_MIN_POS
  1225. // but not so far to the right that T1 would move past the end
  1226. soft_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
  1227. soft_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
  1228. }
  1229. else {
  1230. // In other modes, T0 can move from X_MIN_POS to X_MAX_POS
  1231. soft_endstop_min[axis] = base_min_pos(axis) + offs;
  1232. soft_endstop_max[axis] = base_max_pos(axis) + offs;
  1233. }
  1234. }
  1235. #else
  1236. soft_endstop_min[axis] = base_min_pos(axis) + offs;
  1237. soft_endstop_max[axis] = base_max_pos(axis) + offs;
  1238. #endif
  1239. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1240. if (DEBUGGING(LEVELING)) {
  1241. SERIAL_ECHOPAIR("For ", axis_codes[axis]);
  1242. #if HAS_HOME_OFFSET
  1243. SERIAL_ECHOPAIR(" axis:\n home_offset = ", home_offset[axis]);
  1244. #endif
  1245. #if HAS_POSITION_SHIFT
  1246. SERIAL_ECHOPAIR("\n position_shift = ", position_shift[axis]);
  1247. #endif
  1248. SERIAL_ECHOPAIR("\n soft_endstop_min = ", soft_endstop_min[axis]);
  1249. SERIAL_ECHOLNPAIR("\n soft_endstop_max = ", soft_endstop_max[axis]);
  1250. }
  1251. #endif
  1252. #if ENABLED(DELTA)
  1253. if (axis == Z_AXIS)
  1254. delta_clip_start_height = soft_endstop_max[axis] - delta_safe_distance_from_top();
  1255. #endif
  1256. }
  1257. #endif // HAS_WORKSPACE_OFFSET || DUAL_X_CARRIAGE
  1258. #if HAS_M206_COMMAND
  1259. /**
  1260. * Change the home offset for an axis, update the current
  1261. * position and the software endstops to retain the same
  1262. * relative distance to the new home.
  1263. *
  1264. * Since this changes the current_position, code should
  1265. * call sync_plan_position soon after this.
  1266. */
  1267. static void set_home_offset(const AxisEnum axis, const float v) {
  1268. current_position[axis] += v - home_offset[axis];
  1269. home_offset[axis] = v;
  1270. update_software_endstops(axis);
  1271. }
  1272. #endif // HAS_M206_COMMAND
  1273. /**
  1274. * Set an axis' current position to its home position (after homing).
  1275. *
  1276. * For Core and Cartesian robots this applies one-to-one when an
  1277. * individual axis has been homed.
  1278. *
  1279. * DELTA should wait until all homing is done before setting the XYZ
  1280. * current_position to home, because homing is a single operation.
  1281. * In the case where the axis positions are already known and previously
  1282. * homed, DELTA could home to X or Y individually by moving either one
  1283. * to the center. However, homing Z always homes XY and Z.
  1284. *
  1285. * SCARA should wait until all XY homing is done before setting the XY
  1286. * current_position to home, because neither X nor Y is at home until
  1287. * both are at home. Z can however be homed individually.
  1288. *
  1289. * Callers must sync the planner position after calling this!
  1290. */
  1291. static void set_axis_is_at_home(AxisEnum axis) {
  1292. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1293. if (DEBUGGING(LEVELING)) {
  1294. SERIAL_ECHOPAIR(">>> set_axis_is_at_home(", axis_codes[axis]);
  1295. SERIAL_CHAR(')');
  1296. SERIAL_EOL;
  1297. }
  1298. #endif
  1299. axis_known_position[axis] = axis_homed[axis] = true;
  1300. #if HAS_POSITION_SHIFT
  1301. position_shift[axis] = 0;
  1302. update_software_endstops(axis);
  1303. #endif
  1304. #if ENABLED(DUAL_X_CARRIAGE)
  1305. if (axis == X_AXIS && (active_extruder == 1 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
  1306. current_position[X_AXIS] = x_home_pos(active_extruder);
  1307. return;
  1308. }
  1309. #endif
  1310. #if ENABLED(MORGAN_SCARA)
  1311. /**
  1312. * Morgan SCARA homes XY at the same time
  1313. */
  1314. if (axis == X_AXIS || axis == Y_AXIS) {
  1315. float homeposition[XYZ];
  1316. LOOP_XYZ(i) homeposition[i] = LOGICAL_POSITION(base_home_pos((AxisEnum)i), i);
  1317. // SERIAL_ECHOPAIR("homeposition X:", homeposition[X_AXIS]);
  1318. // SERIAL_ECHOLNPAIR(" Y:", homeposition[Y_AXIS]);
  1319. /**
  1320. * Get Home position SCARA arm angles using inverse kinematics,
  1321. * and calculate homing offset using forward kinematics
  1322. */
  1323. inverse_kinematics(homeposition);
  1324. forward_kinematics_SCARA(delta[A_AXIS], delta[B_AXIS]);
  1325. // SERIAL_ECHOPAIR("Cartesian X:", cartes[X_AXIS]);
  1326. // SERIAL_ECHOLNPAIR(" Y:", cartes[Y_AXIS]);
  1327. current_position[axis] = LOGICAL_POSITION(cartes[axis], axis);
  1328. /**
  1329. * SCARA home positions are based on configuration since the actual
  1330. * limits are determined by the inverse kinematic transform.
  1331. */
  1332. soft_endstop_min[axis] = base_min_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1333. soft_endstop_max[axis] = base_max_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1334. }
  1335. else
  1336. #endif
  1337. {
  1338. current_position[axis] = LOGICAL_POSITION(base_home_pos(axis), axis);
  1339. }
  1340. /**
  1341. * Z Probe Z Homing? Account for the probe's Z offset.
  1342. */
  1343. #if HAS_BED_PROBE && Z_HOME_DIR < 0
  1344. if (axis == Z_AXIS) {
  1345. #if HOMING_Z_WITH_PROBE
  1346. current_position[Z_AXIS] -= zprobe_zoffset;
  1347. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1348. if (DEBUGGING(LEVELING)) {
  1349. SERIAL_ECHOLNPGM("*** Z HOMED WITH PROBE (Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) ***");
  1350. SERIAL_ECHOLNPAIR("> zprobe_zoffset = ", zprobe_zoffset);
  1351. }
  1352. #endif
  1353. #elif ENABLED(DEBUG_LEVELING_FEATURE)
  1354. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("*** Z HOMED TO ENDSTOP (Z_MIN_PROBE_ENDSTOP) ***");
  1355. #endif
  1356. }
  1357. #endif
  1358. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1359. if (DEBUGGING(LEVELING)) {
  1360. #if HAS_HOME_OFFSET
  1361. SERIAL_ECHOPAIR("> home_offset[", axis_codes[axis]);
  1362. SERIAL_ECHOLNPAIR("] = ", home_offset[axis]);
  1363. #endif
  1364. DEBUG_POS("", current_position);
  1365. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis_codes[axis]);
  1366. SERIAL_CHAR(')');
  1367. SERIAL_EOL;
  1368. }
  1369. #endif
  1370. }
  1371. /**
  1372. * Some planner shorthand inline functions
  1373. */
  1374. inline float get_homing_bump_feedrate(AxisEnum axis) {
  1375. int constexpr homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  1376. int hbd = homing_bump_divisor[axis];
  1377. if (hbd < 1) {
  1378. hbd = 10;
  1379. SERIAL_ECHO_START;
  1380. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1381. }
  1382. return homing_feedrate_mm_s[axis] / hbd;
  1383. }
  1384. //
  1385. // line_to_current_position
  1386. // Move the planner to the current position from wherever it last moved
  1387. // (or from wherever it has been told it is located).
  1388. //
  1389. inline void line_to_current_position() {
  1390. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate_mm_s, active_extruder);
  1391. }
  1392. //
  1393. // line_to_destination
  1394. // Move the planner, not necessarily synced with current_position
  1395. //
  1396. inline void line_to_destination(float fr_mm_s) {
  1397. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], fr_mm_s, active_extruder);
  1398. }
  1399. inline void line_to_destination() { line_to_destination(feedrate_mm_s); }
  1400. inline void set_current_to_destination() { COPY(current_position, destination); }
  1401. inline void set_destination_to_current() { COPY(destination, current_position); }
  1402. #if IS_KINEMATIC
  1403. /**
  1404. * Calculate delta, start a line, and set current_position to destination
  1405. */
  1406. void prepare_uninterpolated_move_to_destination(const float fr_mm_s=0.0) {
  1407. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1408. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_uninterpolated_move_to_destination", destination);
  1409. #endif
  1410. if ( current_position[X_AXIS] == destination[X_AXIS]
  1411. && current_position[Y_AXIS] == destination[Y_AXIS]
  1412. && current_position[Z_AXIS] == destination[Z_AXIS]
  1413. && current_position[E_AXIS] == destination[E_AXIS]
  1414. ) return;
  1415. refresh_cmd_timeout();
  1416. planner.buffer_line_kinematic(destination, MMS_SCALED(fr_mm_s ? fr_mm_s : feedrate_mm_s), active_extruder);
  1417. set_current_to_destination();
  1418. }
  1419. #endif // IS_KINEMATIC
  1420. /**
  1421. * Plan a move to (X, Y, Z) and set the current_position
  1422. * The final current_position may not be the one that was requested
  1423. */
  1424. void do_blocking_move_to(const float &x, const float &y, const float &z, const float &fr_mm_s /*=0.0*/) {
  1425. const float old_feedrate_mm_s = feedrate_mm_s;
  1426. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1427. if (DEBUGGING(LEVELING)) print_xyz(PSTR(">>> do_blocking_move_to"), NULL, x, y, z);
  1428. #endif
  1429. #if ENABLED(DELTA)
  1430. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1431. set_destination_to_current(); // sync destination at the start
  1432. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1433. if (DEBUGGING(LEVELING)) DEBUG_POS("set_destination_to_current", destination);
  1434. #endif
  1435. // when in the danger zone
  1436. if (current_position[Z_AXIS] > delta_clip_start_height) {
  1437. if (z > delta_clip_start_height) { // staying in the danger zone
  1438. destination[X_AXIS] = x; // move directly (uninterpolated)
  1439. destination[Y_AXIS] = y;
  1440. destination[Z_AXIS] = z;
  1441. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1442. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1443. if (DEBUGGING(LEVELING)) DEBUG_POS("danger zone move", current_position);
  1444. #endif
  1445. return;
  1446. }
  1447. else {
  1448. destination[Z_AXIS] = delta_clip_start_height;
  1449. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1450. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1451. if (DEBUGGING(LEVELING)) DEBUG_POS("zone border move", current_position);
  1452. #endif
  1453. }
  1454. }
  1455. if (z > current_position[Z_AXIS]) { // raising?
  1456. destination[Z_AXIS] = z;
  1457. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1458. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1459. if (DEBUGGING(LEVELING)) DEBUG_POS("z raise move", current_position);
  1460. #endif
  1461. }
  1462. destination[X_AXIS] = x;
  1463. destination[Y_AXIS] = y;
  1464. prepare_move_to_destination(); // set_current_to_destination
  1465. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1466. if (DEBUGGING(LEVELING)) DEBUG_POS("xy move", current_position);
  1467. #endif
  1468. if (z < current_position[Z_AXIS]) { // lowering?
  1469. destination[Z_AXIS] = z;
  1470. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1471. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1472. if (DEBUGGING(LEVELING)) DEBUG_POS("z lower move", current_position);
  1473. #endif
  1474. }
  1475. #elif IS_SCARA
  1476. set_destination_to_current();
  1477. // If Z needs to raise, do it before moving XY
  1478. if (destination[Z_AXIS] < z) {
  1479. destination[Z_AXIS] = z;
  1480. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS]);
  1481. }
  1482. destination[X_AXIS] = x;
  1483. destination[Y_AXIS] = y;
  1484. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S);
  1485. // If Z needs to lower, do it after moving XY
  1486. if (destination[Z_AXIS] > z) {
  1487. destination[Z_AXIS] = z;
  1488. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS]);
  1489. }
  1490. #else
  1491. // If Z needs to raise, do it before moving XY
  1492. if (current_position[Z_AXIS] < z) {
  1493. feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1494. current_position[Z_AXIS] = z;
  1495. line_to_current_position();
  1496. }
  1497. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1498. current_position[X_AXIS] = x;
  1499. current_position[Y_AXIS] = y;
  1500. line_to_current_position();
  1501. // If Z needs to lower, do it after moving XY
  1502. if (current_position[Z_AXIS] > z) {
  1503. feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1504. current_position[Z_AXIS] = z;
  1505. line_to_current_position();
  1506. }
  1507. #endif
  1508. stepper.synchronize();
  1509. feedrate_mm_s = old_feedrate_mm_s;
  1510. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1511. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< do_blocking_move_to");
  1512. #endif
  1513. }
  1514. void do_blocking_move_to_x(const float &x, const float &fr_mm_s/*=0.0*/) {
  1515. do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS], fr_mm_s);
  1516. }
  1517. void do_blocking_move_to_z(const float &z, const float &fr_mm_s/*=0.0*/) {
  1518. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z, fr_mm_s);
  1519. }
  1520. void do_blocking_move_to_xy(const float &x, const float &y, const float &fr_mm_s/*=0.0*/) {
  1521. do_blocking_move_to(x, y, current_position[Z_AXIS], fr_mm_s);
  1522. }
  1523. //
  1524. // Prepare to do endstop or probe moves
  1525. // with custom feedrates.
  1526. //
  1527. // - Save current feedrates
  1528. // - Reset the rate multiplier
  1529. // - Reset the command timeout
  1530. // - Enable the endstops (for endstop moves)
  1531. //
  1532. static void setup_for_endstop_or_probe_move() {
  1533. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1534. if (DEBUGGING(LEVELING)) DEBUG_POS("setup_for_endstop_or_probe_move", current_position);
  1535. #endif
  1536. saved_feedrate_mm_s = feedrate_mm_s;
  1537. saved_feedrate_percentage = feedrate_percentage;
  1538. feedrate_percentage = 100;
  1539. refresh_cmd_timeout();
  1540. }
  1541. static void clean_up_after_endstop_or_probe_move() {
  1542. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1543. if (DEBUGGING(LEVELING)) DEBUG_POS("clean_up_after_endstop_or_probe_move", current_position);
  1544. #endif
  1545. feedrate_mm_s = saved_feedrate_mm_s;
  1546. feedrate_percentage = saved_feedrate_percentage;
  1547. refresh_cmd_timeout();
  1548. }
  1549. #if HAS_BED_PROBE
  1550. /**
  1551. * Raise Z to a minimum height to make room for a probe to move
  1552. */
  1553. inline void do_probe_raise(float z_raise) {
  1554. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1555. if (DEBUGGING(LEVELING)) {
  1556. SERIAL_ECHOPAIR("do_probe_raise(", z_raise);
  1557. SERIAL_CHAR(')');
  1558. SERIAL_EOL;
  1559. }
  1560. #endif
  1561. float z_dest = LOGICAL_Z_POSITION(z_raise);
  1562. if (zprobe_zoffset < 0) z_dest -= zprobe_zoffset;
  1563. #if ENABLED(DELTA)
  1564. z_dest -= home_offset[Z_AXIS];
  1565. #endif
  1566. if (z_dest > current_position[Z_AXIS])
  1567. do_blocking_move_to_z(z_dest);
  1568. }
  1569. #endif //HAS_BED_PROBE
  1570. #if HAS_PROBING_PROCEDURE || HOTENDS > 1 || ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED) || ENABLED(NOZZLE_CLEAN_FEATURE) || ENABLED(NOZZLE_PARK_FEATURE) || ENABLED(DELTA_AUTO_CALIBRATION)
  1571. bool axis_unhomed_error(const bool x, const bool y, const bool z) {
  1572. const bool xx = x && !axis_homed[X_AXIS],
  1573. yy = y && !axis_homed[Y_AXIS],
  1574. zz = z && !axis_homed[Z_AXIS];
  1575. if (xx || yy || zz) {
  1576. SERIAL_ECHO_START;
  1577. SERIAL_ECHOPGM(MSG_HOME " ");
  1578. if (xx) SERIAL_ECHOPGM(MSG_X);
  1579. if (yy) SERIAL_ECHOPGM(MSG_Y);
  1580. if (zz) SERIAL_ECHOPGM(MSG_Z);
  1581. SERIAL_ECHOLNPGM(" " MSG_FIRST);
  1582. #if ENABLED(ULTRA_LCD)
  1583. lcd_status_printf_P(0, PSTR(MSG_HOME " %s%s%s " MSG_FIRST), xx ? MSG_X : "", yy ? MSG_Y : "", zz ? MSG_Z : "");
  1584. #endif
  1585. return true;
  1586. }
  1587. return false;
  1588. }
  1589. #endif
  1590. #if ENABLED(Z_PROBE_SLED)
  1591. #ifndef SLED_DOCKING_OFFSET
  1592. #define SLED_DOCKING_OFFSET 0
  1593. #endif
  1594. /**
  1595. * Method to dock/undock a sled designed by Charles Bell.
  1596. *
  1597. * stow[in] If false, move to MAX_X and engage the solenoid
  1598. * If true, move to MAX_X and release the solenoid
  1599. */
  1600. static void dock_sled(bool stow) {
  1601. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1602. if (DEBUGGING(LEVELING)) {
  1603. SERIAL_ECHOPAIR("dock_sled(", stow);
  1604. SERIAL_CHAR(')');
  1605. SERIAL_EOL;
  1606. }
  1607. #endif
  1608. // Dock sled a bit closer to ensure proper capturing
  1609. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET - ((stow) ? 1 : 0));
  1610. #if HAS_SOLENOID_1 && DISABLED(EXT_SOLENOID)
  1611. WRITE(SOL1_PIN, !stow); // switch solenoid
  1612. #endif
  1613. }
  1614. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1615. void run_deploy_moves_script() {
  1616. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1617. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_X
  1618. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_X current_position[X_AXIS]
  1619. #endif
  1620. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Y
  1621. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Y current_position[Y_AXIS]
  1622. #endif
  1623. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Z
  1624. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Z current_position[Z_AXIS]
  1625. #endif
  1626. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE
  1627. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE 0.0
  1628. #endif
  1629. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_1_X, Z_PROBE_ALLEN_KEY_DEPLOY_1_Y, Z_PROBE_ALLEN_KEY_DEPLOY_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE));
  1630. #endif
  1631. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1632. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_X
  1633. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_X current_position[X_AXIS]
  1634. #endif
  1635. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Y
  1636. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Y current_position[Y_AXIS]
  1637. #endif
  1638. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Z
  1639. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Z current_position[Z_AXIS]
  1640. #endif
  1641. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE
  1642. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE 0.0
  1643. #endif
  1644. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_2_X, Z_PROBE_ALLEN_KEY_DEPLOY_2_Y, Z_PROBE_ALLEN_KEY_DEPLOY_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE));
  1645. #endif
  1646. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Z)
  1647. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1648. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_X current_position[X_AXIS]
  1649. #endif
  1650. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Y
  1651. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Y current_position[Y_AXIS]
  1652. #endif
  1653. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Z
  1654. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Z current_position[Z_AXIS]
  1655. #endif
  1656. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE
  1657. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE 0.0
  1658. #endif
  1659. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_3_X, Z_PROBE_ALLEN_KEY_DEPLOY_3_Y, Z_PROBE_ALLEN_KEY_DEPLOY_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE));
  1660. #endif
  1661. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Z)
  1662. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_X
  1663. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_X current_position[X_AXIS]
  1664. #endif
  1665. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Y
  1666. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Y current_position[Y_AXIS]
  1667. #endif
  1668. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Z
  1669. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Z current_position[Z_AXIS]
  1670. #endif
  1671. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE
  1672. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE 0.0
  1673. #endif
  1674. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_4_X, Z_PROBE_ALLEN_KEY_DEPLOY_4_Y, Z_PROBE_ALLEN_KEY_DEPLOY_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE));
  1675. #endif
  1676. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Z)
  1677. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_X
  1678. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_X current_position[X_AXIS]
  1679. #endif
  1680. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Y
  1681. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Y current_position[Y_AXIS]
  1682. #endif
  1683. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Z
  1684. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Z current_position[Z_AXIS]
  1685. #endif
  1686. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE
  1687. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE 0.0
  1688. #endif
  1689. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_5_X, Z_PROBE_ALLEN_KEY_DEPLOY_5_Y, Z_PROBE_ALLEN_KEY_DEPLOY_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE));
  1690. #endif
  1691. }
  1692. void run_stow_moves_script() {
  1693. #if defined(Z_PROBE_ALLEN_KEY_STOW_1_X) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Z)
  1694. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_X
  1695. #define Z_PROBE_ALLEN_KEY_STOW_1_X current_position[X_AXIS]
  1696. #endif
  1697. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Y
  1698. #define Z_PROBE_ALLEN_KEY_STOW_1_Y current_position[Y_AXIS]
  1699. #endif
  1700. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Z
  1701. #define Z_PROBE_ALLEN_KEY_STOW_1_Z current_position[Z_AXIS]
  1702. #endif
  1703. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE
  1704. #define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE 0.0
  1705. #endif
  1706. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_1_X, Z_PROBE_ALLEN_KEY_STOW_1_Y, Z_PROBE_ALLEN_KEY_STOW_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE));
  1707. #endif
  1708. #if defined(Z_PROBE_ALLEN_KEY_STOW_2_X) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Z)
  1709. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_X
  1710. #define Z_PROBE_ALLEN_KEY_STOW_2_X current_position[X_AXIS]
  1711. #endif
  1712. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Y
  1713. #define Z_PROBE_ALLEN_KEY_STOW_2_Y current_position[Y_AXIS]
  1714. #endif
  1715. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Z
  1716. #define Z_PROBE_ALLEN_KEY_STOW_2_Z current_position[Z_AXIS]
  1717. #endif
  1718. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE
  1719. #define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE 0.0
  1720. #endif
  1721. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_2_X, Z_PROBE_ALLEN_KEY_STOW_2_Y, Z_PROBE_ALLEN_KEY_STOW_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE));
  1722. #endif
  1723. #if defined(Z_PROBE_ALLEN_KEY_STOW_3_X) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Z)
  1724. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_X
  1725. #define Z_PROBE_ALLEN_KEY_STOW_3_X current_position[X_AXIS]
  1726. #endif
  1727. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Y
  1728. #define Z_PROBE_ALLEN_KEY_STOW_3_Y current_position[Y_AXIS]
  1729. #endif
  1730. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Z
  1731. #define Z_PROBE_ALLEN_KEY_STOW_3_Z current_position[Z_AXIS]
  1732. #endif
  1733. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE
  1734. #define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE 0.0
  1735. #endif
  1736. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_3_X, Z_PROBE_ALLEN_KEY_STOW_3_Y, Z_PROBE_ALLEN_KEY_STOW_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE));
  1737. #endif
  1738. #if defined(Z_PROBE_ALLEN_KEY_STOW_4_X) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Z)
  1739. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_X
  1740. #define Z_PROBE_ALLEN_KEY_STOW_4_X current_position[X_AXIS]
  1741. #endif
  1742. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Y
  1743. #define Z_PROBE_ALLEN_KEY_STOW_4_Y current_position[Y_AXIS]
  1744. #endif
  1745. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Z
  1746. #define Z_PROBE_ALLEN_KEY_STOW_4_Z current_position[Z_AXIS]
  1747. #endif
  1748. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE
  1749. #define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE 0.0
  1750. #endif
  1751. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_4_X, Z_PROBE_ALLEN_KEY_STOW_4_Y, Z_PROBE_ALLEN_KEY_STOW_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE));
  1752. #endif
  1753. #if defined(Z_PROBE_ALLEN_KEY_STOW_5_X) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Z)
  1754. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_X
  1755. #define Z_PROBE_ALLEN_KEY_STOW_5_X current_position[X_AXIS]
  1756. #endif
  1757. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Y
  1758. #define Z_PROBE_ALLEN_KEY_STOW_5_Y current_position[Y_AXIS]
  1759. #endif
  1760. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Z
  1761. #define Z_PROBE_ALLEN_KEY_STOW_5_Z current_position[Z_AXIS]
  1762. #endif
  1763. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE
  1764. #define Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE 0.0
  1765. #endif
  1766. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_5_X, Z_PROBE_ALLEN_KEY_STOW_5_Y, Z_PROBE_ALLEN_KEY_STOW_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE));
  1767. #endif
  1768. }
  1769. #endif
  1770. #if HAS_BED_PROBE
  1771. // TRIGGERED_WHEN_STOWED_TEST can easily be extended to servo probes, ... if needed.
  1772. #if ENABLED(PROBE_IS_TRIGGERED_WHEN_STOWED_TEST)
  1773. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1774. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING)
  1775. #else
  1776. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)
  1777. #endif
  1778. #endif
  1779. #if ENABLED(BLTOUCH)
  1780. void bltouch_command(int angle) {
  1781. servo[Z_ENDSTOP_SERVO_NR].move(angle); // Give the BL-Touch the command and wait
  1782. safe_delay(BLTOUCH_DELAY);
  1783. }
  1784. /**
  1785. * BLTouch probes have a Hall effect sensor. The high currents switching
  1786. * on and off cause a magnetic field that can affect the repeatability of the
  1787. * sensor. So for BLTouch probes, heaters are turned off during the probe,
  1788. * then quickly turned back on after the point is sampled.
  1789. */
  1790. #if ENABLED(BLTOUCH_HEATERS_OFF)
  1791. void set_heaters_for_bltouch(const bool deploy) {
  1792. static bool heaters_were_disabled = false;
  1793. static millis_t next_emi_protection = 0;
  1794. static int16_t temps_at_entry[HOTENDS];
  1795. #if HAS_TEMP_BED
  1796. static int16_t bed_temp_at_entry;
  1797. #endif
  1798. // If called out of order or far apart something is seriously wrong
  1799. if (deploy == heaters_were_disabled
  1800. || (next_emi_protection && ELAPSED(millis(), next_emi_protection)))
  1801. kill(PSTR(MSG_KILLED));
  1802. if (deploy) {
  1803. next_emi_protection = millis() + 20 * 1000UL;
  1804. HOTEND_LOOP() {
  1805. temps_at_entry[e] = thermalManager.degTargetHotend(e);
  1806. thermalManager.setTargetHotend(0, e);
  1807. }
  1808. #if HAS_TEMP_BED
  1809. bed_temp_at_entry = thermalManager.degTargetBed();
  1810. thermalManager.setTargetBed(0);
  1811. #endif
  1812. }
  1813. else {
  1814. next_emi_protection = 0;
  1815. HOTEND_LOOP() thermalManager.setTargetHotend(temps_at_entry[e], e);
  1816. #if HAS_TEMP_BED
  1817. thermalManager.setTargetBed(bed_temp_at_entry);
  1818. #endif
  1819. }
  1820. heaters_were_disabled = deploy;
  1821. }
  1822. #endif // BLTOUCH_HEATERS_OFF
  1823. void set_bltouch_deployed(const bool deploy) {
  1824. if (deploy && TEST_BLTOUCH()) { // If BL-Touch says it's triggered
  1825. bltouch_command(BLTOUCH_RESET); // try to reset it.
  1826. bltouch_command(BLTOUCH_DEPLOY); // Also needs to deploy and stow to
  1827. bltouch_command(BLTOUCH_STOW); // clear the triggered condition.
  1828. safe_delay(1500); // Wait for internal self-test to complete.
  1829. // (Measured completion time was 0.65 seconds
  1830. // after reset, deploy, and stow sequence)
  1831. if (TEST_BLTOUCH()) { // If it still claims to be triggered...
  1832. SERIAL_ERROR_START;
  1833. SERIAL_ERRORLNPGM(MSG_STOP_BLTOUCH);
  1834. stop(); // punt!
  1835. }
  1836. }
  1837. #if ENABLED(BLTOUCH_HEATERS_OFF)
  1838. set_heaters_for_bltouch(deploy);
  1839. #endif
  1840. bltouch_command(deploy ? BLTOUCH_DEPLOY : BLTOUCH_STOW);
  1841. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1842. if (DEBUGGING(LEVELING)) {
  1843. SERIAL_ECHOPAIR("set_bltouch_deployed(", deploy);
  1844. SERIAL_CHAR(')');
  1845. SERIAL_EOL;
  1846. }
  1847. #endif
  1848. }
  1849. #endif // BLTOUCH
  1850. // returns false for ok and true for failure
  1851. bool set_probe_deployed(bool deploy) {
  1852. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1853. if (DEBUGGING(LEVELING)) {
  1854. DEBUG_POS("set_probe_deployed", current_position);
  1855. SERIAL_ECHOLNPAIR("deploy: ", deploy);
  1856. }
  1857. #endif
  1858. if (endstops.z_probe_enabled == deploy) return false;
  1859. // Make room for probe
  1860. do_probe_raise(_Z_CLEARANCE_DEPLOY_PROBE);
  1861. // When deploying make sure BLTOUCH is not already triggered
  1862. #if ENABLED(BLTOUCH)
  1863. if (deploy && TEST_BLTOUCH()) { // If BL-Touch says it's triggered
  1864. bltouch_command(BLTOUCH_RESET); // try to reset it.
  1865. bltouch_command(BLTOUCH_DEPLOY); // Also needs to deploy and stow to
  1866. bltouch_command(BLTOUCH_STOW); // clear the triggered condition.
  1867. safe_delay(1500); // wait for internal self test to complete
  1868. // measured completion time was 0.65 seconds
  1869. // after reset, deploy & stow sequence
  1870. if (TEST_BLTOUCH()) { // If it still claims to be triggered...
  1871. SERIAL_ERROR_START;
  1872. SERIAL_ERRORLNPGM(MSG_STOP_BLTOUCH);
  1873. stop(); // punt!
  1874. return true;
  1875. }
  1876. }
  1877. #elif ENABLED(Z_PROBE_SLED)
  1878. if (axis_unhomed_error(true, false, false)) {
  1879. SERIAL_ERROR_START;
  1880. SERIAL_ERRORLNPGM(MSG_STOP_UNHOMED);
  1881. stop();
  1882. return true;
  1883. }
  1884. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1885. if (axis_unhomed_error(true, true, true )) {
  1886. SERIAL_ERROR_START;
  1887. SERIAL_ERRORLNPGM(MSG_STOP_UNHOMED);
  1888. stop();
  1889. return true;
  1890. }
  1891. #endif
  1892. const float oldXpos = current_position[X_AXIS],
  1893. oldYpos = current_position[Y_AXIS];
  1894. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1895. // If endstop is already false, the Z probe is deployed
  1896. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // closed after the probe specific actions.
  1897. // Would a goto be less ugly?
  1898. //while (!_TRIGGERED_WHEN_STOWED_TEST) idle(); // would offer the opportunity
  1899. // for a triggered when stowed manual probe.
  1900. if (!deploy) endstops.enable_z_probe(false); // Switch off triggered when stowed probes early
  1901. // otherwise an Allen-Key probe can't be stowed.
  1902. #endif
  1903. #if ENABLED(SOLENOID_PROBE)
  1904. #if HAS_SOLENOID_1
  1905. WRITE(SOL1_PIN, deploy);
  1906. #endif
  1907. #elif ENABLED(Z_PROBE_SLED)
  1908. dock_sled(!deploy);
  1909. #elif HAS_Z_SERVO_ENDSTOP && DISABLED(BLTOUCH)
  1910. servo[Z_ENDSTOP_SERVO_NR].move(z_servo_angle[deploy ? 0 : 1]);
  1911. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1912. deploy ? run_deploy_moves_script() : run_stow_moves_script();
  1913. #endif
  1914. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1915. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1916. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // State hasn't changed?
  1917. if (IsRunning()) {
  1918. SERIAL_ERROR_START;
  1919. SERIAL_ERRORLNPGM("Z-Probe failed");
  1920. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1921. }
  1922. stop();
  1923. return true;
  1924. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1925. #endif
  1926. do_blocking_move_to(oldXpos, oldYpos, current_position[Z_AXIS]); // return to position before deploy
  1927. endstops.enable_z_probe(deploy);
  1928. return false;
  1929. }
  1930. static void do_probe_move(float z, float fr_mm_m) {
  1931. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1932. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> do_probe_move", current_position);
  1933. #endif
  1934. // Deploy BLTouch at the start of any probe
  1935. #if ENABLED(BLTOUCH)
  1936. set_bltouch_deployed(true);
  1937. #endif
  1938. // Move down until probe triggered
  1939. do_blocking_move_to_z(LOGICAL_Z_POSITION(z), MMM_TO_MMS(fr_mm_m));
  1940. // Retract BLTouch immediately after a probe
  1941. #if ENABLED(BLTOUCH)
  1942. set_bltouch_deployed(false);
  1943. #endif
  1944. // Clear endstop flags
  1945. endstops.hit_on_purpose();
  1946. // Get Z where the steppers were interrupted
  1947. set_current_from_steppers_for_axis(Z_AXIS);
  1948. // Tell the planner where we actually are
  1949. SYNC_PLAN_POSITION_KINEMATIC();
  1950. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1951. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< do_probe_move", current_position);
  1952. #endif
  1953. }
  1954. // Do a single Z probe and return with current_position[Z_AXIS]
  1955. // at the height where the probe triggered.
  1956. static float run_z_probe() {
  1957. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1958. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> run_z_probe", current_position);
  1959. #endif
  1960. // Prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
  1961. refresh_cmd_timeout();
  1962. #if ENABLED(PROBE_DOUBLE_TOUCH)
  1963. // Do a first probe at the fast speed
  1964. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_FAST);
  1965. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1966. float first_probe_z = current_position[Z_AXIS];
  1967. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("1st Probe Z:", first_probe_z);
  1968. #endif
  1969. // move up by the bump distance
  1970. do_blocking_move_to_z(current_position[Z_AXIS] + home_bump_mm(Z_AXIS), MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1971. #else
  1972. // If the nozzle is above the travel height then
  1973. // move down quickly before doing the slow probe
  1974. float z = LOGICAL_Z_POSITION(Z_CLEARANCE_BETWEEN_PROBES);
  1975. if (zprobe_zoffset < 0) z -= zprobe_zoffset;
  1976. #if ENABLED(DELTA)
  1977. z -= home_offset[Z_AXIS];
  1978. #endif
  1979. if (z < current_position[Z_AXIS])
  1980. do_blocking_move_to_z(z, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1981. #endif
  1982. // move down slowly to find bed
  1983. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_SLOW);
  1984. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1985. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< run_z_probe", current_position);
  1986. #endif
  1987. // Debug: compare probe heights
  1988. #if ENABLED(PROBE_DOUBLE_TOUCH) && ENABLED(DEBUG_LEVELING_FEATURE)
  1989. if (DEBUGGING(LEVELING)) {
  1990. SERIAL_ECHOPAIR("2nd Probe Z:", current_position[Z_AXIS]);
  1991. SERIAL_ECHOLNPAIR(" Discrepancy:", first_probe_z - current_position[Z_AXIS]);
  1992. }
  1993. #endif
  1994. return current_position[Z_AXIS] + zprobe_zoffset;
  1995. }
  1996. /**
  1997. * - Move to the given XY
  1998. * - Deploy the probe, if not already deployed
  1999. * - Probe the bed, get the Z position
  2000. * - Depending on the 'stow' flag
  2001. * - Stow the probe, or
  2002. * - Raise to the BETWEEN height
  2003. * - Return the probed Z position
  2004. */
  2005. float probe_pt(const float x, const float y, const bool stow/*=true*/, const int verbose_level/*=1*/) {
  2006. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2007. if (DEBUGGING(LEVELING)) {
  2008. SERIAL_ECHOPAIR(">>> probe_pt(", x);
  2009. SERIAL_ECHOPAIR(", ", y);
  2010. SERIAL_ECHOPAIR(", ", stow ? "" : "no ");
  2011. SERIAL_ECHOLNPGM("stow)");
  2012. DEBUG_POS("", current_position);
  2013. }
  2014. #endif
  2015. const float old_feedrate_mm_s = feedrate_mm_s;
  2016. #if ENABLED(DELTA)
  2017. if (current_position[Z_AXIS] > delta_clip_start_height)
  2018. do_blocking_move_to_z(delta_clip_start_height);
  2019. #endif
  2020. // Ensure a minimum height before moving the probe
  2021. do_probe_raise(Z_CLEARANCE_BETWEEN_PROBES);
  2022. feedrate_mm_s = XY_PROBE_FEEDRATE_MM_S;
  2023. // Move the probe to the given XY
  2024. do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  2025. if (DEPLOY_PROBE()) return NAN;
  2026. const float measured_z = run_z_probe();
  2027. if (!stow)
  2028. do_probe_raise(Z_CLEARANCE_BETWEEN_PROBES);
  2029. else
  2030. if (STOW_PROBE()) return NAN;
  2031. if (verbose_level > 2) {
  2032. SERIAL_PROTOCOLPGM("Bed X: ");
  2033. SERIAL_PROTOCOL_F(x, 3);
  2034. SERIAL_PROTOCOLPGM(" Y: ");
  2035. SERIAL_PROTOCOL_F(y, 3);
  2036. SERIAL_PROTOCOLPGM(" Z: ");
  2037. SERIAL_PROTOCOL_F(measured_z, 3);
  2038. SERIAL_EOL;
  2039. }
  2040. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2041. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  2042. #endif
  2043. feedrate_mm_s = old_feedrate_mm_s;
  2044. return measured_z;
  2045. }
  2046. #endif // HAS_BED_PROBE
  2047. #if HAS_LEVELING
  2048. /**
  2049. * Turn bed leveling on or off, fixing the current
  2050. * position as-needed.
  2051. *
  2052. * Disable: Current position = physical position
  2053. * Enable: Current position = "unleveled" physical position
  2054. */
  2055. void set_bed_leveling_enabled(bool enable/*=true*/) {
  2056. #if ENABLED(MESH_BED_LEVELING)
  2057. if (enable != mbl.active()) {
  2058. if (!enable)
  2059. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  2060. mbl.set_active(enable && mbl.has_mesh());
  2061. if (enable && mbl.has_mesh()) planner.unapply_leveling(current_position);
  2062. }
  2063. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2064. ubl.state.active = enable;
  2065. //set_current_from_steppers_for_axis(Z_AXIS);
  2066. #else
  2067. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2068. const bool can_change = (!enable || (bilinear_grid_spacing[0] && bilinear_grid_spacing[1]));
  2069. #else
  2070. constexpr bool can_change = true;
  2071. #endif
  2072. if (can_change && enable != planner.abl_enabled) {
  2073. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2074. // Force bilinear_z_offset to re-calculate next time
  2075. const float reset[XYZ] = { -9999.999, -9999.999, 0 };
  2076. (void)bilinear_z_offset(reset);
  2077. #endif
  2078. planner.abl_enabled = enable;
  2079. if (!enable)
  2080. set_current_from_steppers_for_axis(
  2081. #if ABL_PLANAR
  2082. ALL_AXES
  2083. #else
  2084. Z_AXIS
  2085. #endif
  2086. );
  2087. else
  2088. planner.unapply_leveling(current_position);
  2089. }
  2090. #endif
  2091. }
  2092. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  2093. void set_z_fade_height(const float zfh) {
  2094. planner.z_fade_height = zfh;
  2095. planner.inverse_z_fade_height = RECIPROCAL(zfh);
  2096. if (
  2097. #if ENABLED(MESH_BED_LEVELING)
  2098. mbl.active()
  2099. #else
  2100. planner.abl_enabled
  2101. #endif
  2102. ) {
  2103. set_current_from_steppers_for_axis(
  2104. #if ABL_PLANAR
  2105. ALL_AXES
  2106. #else
  2107. Z_AXIS
  2108. #endif
  2109. );
  2110. }
  2111. }
  2112. #endif // LEVELING_FADE_HEIGHT
  2113. /**
  2114. * Reset calibration results to zero.
  2115. */
  2116. void reset_bed_level() {
  2117. set_bed_leveling_enabled(false);
  2118. #if ENABLED(MESH_BED_LEVELING)
  2119. if (mbl.has_mesh()) {
  2120. mbl.reset();
  2121. mbl.set_has_mesh(false);
  2122. }
  2123. #else
  2124. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2125. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  2126. #endif
  2127. #if ABL_PLANAR
  2128. planner.bed_level_matrix.set_to_identity();
  2129. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2130. bilinear_start[X_AXIS] = bilinear_start[Y_AXIS] =
  2131. bilinear_grid_spacing[X_AXIS] = bilinear_grid_spacing[Y_AXIS] = 0;
  2132. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  2133. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  2134. z_values[x][y] = NAN;
  2135. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2136. ubl.reset();
  2137. #endif
  2138. #endif
  2139. }
  2140. #endif // HAS_LEVELING
  2141. #if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(MESH_BED_LEVELING)
  2142. /**
  2143. * Enable to produce output in JSON format suitable
  2144. * for SCAD or JavaScript mesh visualizers.
  2145. *
  2146. * Visualize meshes in OpenSCAD using the included script.
  2147. *
  2148. * buildroot/shared/scripts/MarlinMesh.scad
  2149. */
  2150. //#define SCAD_MESH_OUTPUT
  2151. /**
  2152. * Print calibration results for plotting or manual frame adjustment.
  2153. */
  2154. static void print_2d_array(const uint8_t sx, const uint8_t sy, const uint8_t precision, float (*fn)(const uint8_t, const uint8_t)) {
  2155. #ifndef SCAD_MESH_OUTPUT
  2156. for (uint8_t x = 0; x < sx; x++) {
  2157. for (uint8_t i = 0; i < precision + 2 + (x < 10 ? 1 : 0); i++)
  2158. SERIAL_PROTOCOLCHAR(' ');
  2159. SERIAL_PROTOCOL((int)x);
  2160. }
  2161. SERIAL_EOL;
  2162. #endif
  2163. #ifdef SCAD_MESH_OUTPUT
  2164. SERIAL_PROTOCOLLNPGM("measured_z = ["); // open 2D array
  2165. #endif
  2166. for (uint8_t y = 0; y < sy; y++) {
  2167. #ifdef SCAD_MESH_OUTPUT
  2168. SERIAL_PROTOCOLLNPGM(" ["); // open sub-array
  2169. #else
  2170. if (y < 10) SERIAL_PROTOCOLCHAR(' ');
  2171. SERIAL_PROTOCOL((int)y);
  2172. #endif
  2173. for (uint8_t x = 0; x < sx; x++) {
  2174. SERIAL_PROTOCOLCHAR(' ');
  2175. const float offset = fn(x, y);
  2176. if (!isnan(offset)) {
  2177. if (offset >= 0) SERIAL_PROTOCOLCHAR('+');
  2178. SERIAL_PROTOCOL_F(offset, precision);
  2179. }
  2180. else {
  2181. #ifdef SCAD_MESH_OUTPUT
  2182. for (uint8_t i = 3; i < precision + 3; i++)
  2183. SERIAL_PROTOCOLCHAR(' ');
  2184. SERIAL_PROTOCOLPGM("NAN");
  2185. #else
  2186. for (uint8_t i = 0; i < precision + 3; i++)
  2187. SERIAL_PROTOCOLCHAR(i ? '=' : ' ');
  2188. #endif
  2189. }
  2190. #ifdef SCAD_MESH_OUTPUT
  2191. if (x < sx - 1) SERIAL_PROTOCOLCHAR(',');
  2192. #endif
  2193. }
  2194. #ifdef SCAD_MESH_OUTPUT
  2195. SERIAL_PROTOCOLCHAR(' ');
  2196. SERIAL_PROTOCOLCHAR(']'); // close sub-array
  2197. if (y < sy - 1) SERIAL_PROTOCOLCHAR(',');
  2198. #endif
  2199. SERIAL_EOL;
  2200. }
  2201. #ifdef SCAD_MESH_OUTPUT
  2202. SERIAL_PROTOCOLPGM("\n];"); // close 2D array
  2203. #endif
  2204. SERIAL_EOL;
  2205. }
  2206. #endif
  2207. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2208. /**
  2209. * Extrapolate a single point from its neighbors
  2210. */
  2211. static void extrapolate_one_point(const uint8_t x, const uint8_t y, const int8_t xdir, const int8_t ydir) {
  2212. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2213. if (DEBUGGING(LEVELING)) {
  2214. SERIAL_ECHOPGM("Extrapolate [");
  2215. if (x < 10) SERIAL_CHAR(' ');
  2216. SERIAL_ECHO((int)x);
  2217. SERIAL_CHAR(xdir ? (xdir > 0 ? '+' : '-') : ' ');
  2218. SERIAL_CHAR(' ');
  2219. if (y < 10) SERIAL_CHAR(' ');
  2220. SERIAL_ECHO((int)y);
  2221. SERIAL_CHAR(ydir ? (ydir > 0 ? '+' : '-') : ' ');
  2222. SERIAL_CHAR(']');
  2223. }
  2224. #endif
  2225. if (!isnan(z_values[x][y])) {
  2226. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2227. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM(" (done)");
  2228. #endif
  2229. return; // Don't overwrite good values.
  2230. }
  2231. SERIAL_EOL;
  2232. // Get X neighbors, Y neighbors, and XY neighbors
  2233. const uint8_t x1 = x + xdir, y1 = y + ydir, x2 = x1 + xdir, y2 = y1 + ydir;
  2234. float a1 = z_values[x1][y ], a2 = z_values[x2][y ],
  2235. b1 = z_values[x ][y1], b2 = z_values[x ][y2],
  2236. c1 = z_values[x1][y1], c2 = z_values[x2][y2];
  2237. // Treat far unprobed points as zero, near as equal to far
  2238. if (isnan(a2)) a2 = 0.0; if (isnan(a1)) a1 = a2;
  2239. if (isnan(b2)) b2 = 0.0; if (isnan(b1)) b1 = b2;
  2240. if (isnan(c2)) c2 = 0.0; if (isnan(c1)) c1 = c2;
  2241. const float a = 2 * a1 - a2, b = 2 * b1 - b2, c = 2 * c1 - c2;
  2242. // Take the average instead of the median
  2243. z_values[x][y] = (a + b + c) / 3.0;
  2244. // Median is robust (ignores outliers).
  2245. // z_values[x][y] = (a < b) ? ((b < c) ? b : (c < a) ? a : c)
  2246. // : ((c < b) ? b : (a < c) ? a : c);
  2247. }
  2248. //Enable this if your SCARA uses 180° of total area
  2249. //#define EXTRAPOLATE_FROM_EDGE
  2250. #if ENABLED(EXTRAPOLATE_FROM_EDGE)
  2251. #if GRID_MAX_POINTS_X < GRID_MAX_POINTS_Y
  2252. #define HALF_IN_X
  2253. #elif GRID_MAX_POINTS_Y < GRID_MAX_POINTS_X
  2254. #define HALF_IN_Y
  2255. #endif
  2256. #endif
  2257. /**
  2258. * Fill in the unprobed points (corners of circular print surface)
  2259. * using linear extrapolation, away from the center.
  2260. */
  2261. static void extrapolate_unprobed_bed_level() {
  2262. #ifdef HALF_IN_X
  2263. constexpr uint8_t ctrx2 = 0, xlen = GRID_MAX_POINTS_X - 1;
  2264. #else
  2265. constexpr uint8_t ctrx1 = (GRID_MAX_POINTS_X - 1) / 2, // left-of-center
  2266. ctrx2 = (GRID_MAX_POINTS_X) / 2, // right-of-center
  2267. xlen = ctrx1;
  2268. #endif
  2269. #ifdef HALF_IN_Y
  2270. constexpr uint8_t ctry2 = 0, ylen = GRID_MAX_POINTS_Y - 1;
  2271. #else
  2272. constexpr uint8_t ctry1 = (GRID_MAX_POINTS_Y - 1) / 2, // top-of-center
  2273. ctry2 = (GRID_MAX_POINTS_Y) / 2, // bottom-of-center
  2274. ylen = ctry1;
  2275. #endif
  2276. for (uint8_t xo = 0; xo <= xlen; xo++)
  2277. for (uint8_t yo = 0; yo <= ylen; yo++) {
  2278. uint8_t x2 = ctrx2 + xo, y2 = ctry2 + yo;
  2279. #ifndef HALF_IN_X
  2280. const uint8_t x1 = ctrx1 - xo;
  2281. #endif
  2282. #ifndef HALF_IN_Y
  2283. const uint8_t y1 = ctry1 - yo;
  2284. #ifndef HALF_IN_X
  2285. extrapolate_one_point(x1, y1, +1, +1); // left-below + +
  2286. #endif
  2287. extrapolate_one_point(x2, y1, -1, +1); // right-below - +
  2288. #endif
  2289. #ifndef HALF_IN_X
  2290. extrapolate_one_point(x1, y2, +1, -1); // left-above + -
  2291. #endif
  2292. extrapolate_one_point(x2, y2, -1, -1); // right-above - -
  2293. }
  2294. }
  2295. static void print_bilinear_leveling_grid() {
  2296. SERIAL_ECHOLNPGM("Bilinear Leveling Grid:");
  2297. print_2d_array(GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y, 3,
  2298. [](const uint8_t ix, const uint8_t iy) { return z_values[ix][iy]; }
  2299. );
  2300. }
  2301. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  2302. #define ABL_GRID_POINTS_VIRT_X (GRID_MAX_POINTS_X - 1) * (BILINEAR_SUBDIVISIONS) + 1
  2303. #define ABL_GRID_POINTS_VIRT_Y (GRID_MAX_POINTS_Y - 1) * (BILINEAR_SUBDIVISIONS) + 1
  2304. #define ABL_TEMP_POINTS_X (GRID_MAX_POINTS_X + 2)
  2305. #define ABL_TEMP_POINTS_Y (GRID_MAX_POINTS_Y + 2)
  2306. float z_values_virt[ABL_GRID_POINTS_VIRT_X][ABL_GRID_POINTS_VIRT_Y];
  2307. int bilinear_grid_spacing_virt[2] = { 0 };
  2308. float bilinear_grid_factor_virt[2] = { 0 };
  2309. static void bed_level_virt_print() {
  2310. SERIAL_ECHOLNPGM("Subdivided with CATMULL ROM Leveling Grid:");
  2311. print_2d_array(ABL_GRID_POINTS_VIRT_X, ABL_GRID_POINTS_VIRT_Y, 5,
  2312. [](const uint8_t ix, const uint8_t iy) { return z_values_virt[ix][iy]; }
  2313. );
  2314. }
  2315. #define LINEAR_EXTRAPOLATION(E, I) ((E) * 2 - (I))
  2316. float bed_level_virt_coord(const uint8_t x, const uint8_t y) {
  2317. uint8_t ep = 0, ip = 1;
  2318. if (!x || x == ABL_TEMP_POINTS_X - 1) {
  2319. if (x) {
  2320. ep = GRID_MAX_POINTS_X - 1;
  2321. ip = GRID_MAX_POINTS_X - 2;
  2322. }
  2323. if (WITHIN(y, 1, ABL_TEMP_POINTS_Y - 2))
  2324. return LINEAR_EXTRAPOLATION(
  2325. z_values[ep][y - 1],
  2326. z_values[ip][y - 1]
  2327. );
  2328. else
  2329. return LINEAR_EXTRAPOLATION(
  2330. bed_level_virt_coord(ep + 1, y),
  2331. bed_level_virt_coord(ip + 1, y)
  2332. );
  2333. }
  2334. if (!y || y == ABL_TEMP_POINTS_Y - 1) {
  2335. if (y) {
  2336. ep = GRID_MAX_POINTS_Y - 1;
  2337. ip = GRID_MAX_POINTS_Y - 2;
  2338. }
  2339. if (WITHIN(x, 1, ABL_TEMP_POINTS_X - 2))
  2340. return LINEAR_EXTRAPOLATION(
  2341. z_values[x - 1][ep],
  2342. z_values[x - 1][ip]
  2343. );
  2344. else
  2345. return LINEAR_EXTRAPOLATION(
  2346. bed_level_virt_coord(x, ep + 1),
  2347. bed_level_virt_coord(x, ip + 1)
  2348. );
  2349. }
  2350. return z_values[x - 1][y - 1];
  2351. }
  2352. static float bed_level_virt_cmr(const float p[4], const uint8_t i, const float t) {
  2353. return (
  2354. p[i-1] * -t * sq(1 - t)
  2355. + p[i] * (2 - 5 * sq(t) + 3 * t * sq(t))
  2356. + p[i+1] * t * (1 + 4 * t - 3 * sq(t))
  2357. - p[i+2] * sq(t) * (1 - t)
  2358. ) * 0.5;
  2359. }
  2360. static float bed_level_virt_2cmr(const uint8_t x, const uint8_t y, const float &tx, const float &ty) {
  2361. float row[4], column[4];
  2362. for (uint8_t i = 0; i < 4; i++) {
  2363. for (uint8_t j = 0; j < 4; j++) {
  2364. column[j] = bed_level_virt_coord(i + x - 1, j + y - 1);
  2365. }
  2366. row[i] = bed_level_virt_cmr(column, 1, ty);
  2367. }
  2368. return bed_level_virt_cmr(row, 1, tx);
  2369. }
  2370. void bed_level_virt_interpolate() {
  2371. bilinear_grid_spacing_virt[X_AXIS] = bilinear_grid_spacing[X_AXIS] / (BILINEAR_SUBDIVISIONS);
  2372. bilinear_grid_spacing_virt[Y_AXIS] = bilinear_grid_spacing[Y_AXIS] / (BILINEAR_SUBDIVISIONS);
  2373. bilinear_grid_factor_virt[X_AXIS] = RECIPROCAL(bilinear_grid_spacing_virt[X_AXIS]);
  2374. bilinear_grid_factor_virt[Y_AXIS] = RECIPROCAL(bilinear_grid_spacing_virt[Y_AXIS]);
  2375. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  2376. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  2377. for (uint8_t ty = 0; ty < BILINEAR_SUBDIVISIONS; ty++)
  2378. for (uint8_t tx = 0; tx < BILINEAR_SUBDIVISIONS; tx++) {
  2379. if ((ty && y == GRID_MAX_POINTS_Y - 1) || (tx && x == GRID_MAX_POINTS_X - 1))
  2380. continue;
  2381. z_values_virt[x * (BILINEAR_SUBDIVISIONS) + tx][y * (BILINEAR_SUBDIVISIONS) + ty] =
  2382. bed_level_virt_2cmr(
  2383. x + 1,
  2384. y + 1,
  2385. (float)tx / (BILINEAR_SUBDIVISIONS),
  2386. (float)ty / (BILINEAR_SUBDIVISIONS)
  2387. );
  2388. }
  2389. }
  2390. #endif // ABL_BILINEAR_SUBDIVISION
  2391. // Refresh after other values have been updated
  2392. void refresh_bed_level() {
  2393. bilinear_grid_factor[X_AXIS] = RECIPROCAL(bilinear_grid_spacing[X_AXIS]);
  2394. bilinear_grid_factor[Y_AXIS] = RECIPROCAL(bilinear_grid_spacing[Y_AXIS]);
  2395. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  2396. bed_level_virt_interpolate();
  2397. #endif
  2398. }
  2399. #endif // AUTO_BED_LEVELING_BILINEAR
  2400. /**
  2401. * Home an individual linear axis
  2402. */
  2403. static void do_homing_move(const AxisEnum axis, float distance, float fr_mm_s=0.0) {
  2404. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2405. if (DEBUGGING(LEVELING)) {
  2406. SERIAL_ECHOPAIR(">>> do_homing_move(", axis_codes[axis]);
  2407. SERIAL_ECHOPAIR(", ", distance);
  2408. SERIAL_ECHOPAIR(", ", fr_mm_s);
  2409. SERIAL_CHAR(')');
  2410. SERIAL_EOL;
  2411. }
  2412. #endif
  2413. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  2414. const bool deploy_bltouch = (axis == Z_AXIS && distance < 0);
  2415. if (deploy_bltouch) set_bltouch_deployed(true);
  2416. #endif
  2417. // Tell the planner we're at Z=0
  2418. current_position[axis] = 0;
  2419. #if IS_SCARA
  2420. SYNC_PLAN_POSITION_KINEMATIC();
  2421. current_position[axis] = distance;
  2422. inverse_kinematics(current_position);
  2423. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[axis], active_extruder);
  2424. #else
  2425. sync_plan_position();
  2426. current_position[axis] = distance;
  2427. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[axis], active_extruder);
  2428. #endif
  2429. stepper.synchronize();
  2430. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  2431. if (deploy_bltouch) set_bltouch_deployed(false);
  2432. #endif
  2433. endstops.hit_on_purpose();
  2434. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2435. if (DEBUGGING(LEVELING)) {
  2436. SERIAL_ECHOPAIR("<<< do_homing_move(", axis_codes[axis]);
  2437. SERIAL_CHAR(')');
  2438. SERIAL_EOL;
  2439. }
  2440. #endif
  2441. }
  2442. /**
  2443. * TMC2130 specific sensorless homing using stallGuard2.
  2444. * stallGuard2 only works when in spreadCycle mode.
  2445. * spreadCycle and stealthChop are mutually exclusive.
  2446. */
  2447. #if ENABLED(SENSORLESS_HOMING)
  2448. void tmc2130_sensorless_homing(TMC2130Stepper &st, bool enable=true) {
  2449. #if ENABLED(STEALTHCHOP)
  2450. if (enable) {
  2451. st.coolstep_min_speed(1024UL * 1024UL - 1UL);
  2452. st.stealthChop(0);
  2453. }
  2454. else {
  2455. st.coolstep_min_speed(0);
  2456. st.stealthChop(1);
  2457. }
  2458. #endif
  2459. st.diag1_stall(enable ? 1 : 0);
  2460. }
  2461. #endif
  2462. /**
  2463. * Home an individual "raw axis" to its endstop.
  2464. * This applies to XYZ on Cartesian and Core robots, and
  2465. * to the individual ABC steppers on DELTA and SCARA.
  2466. *
  2467. * At the end of the procedure the axis is marked as
  2468. * homed and the current position of that axis is updated.
  2469. * Kinematic robots should wait till all axes are homed
  2470. * before updating the current position.
  2471. */
  2472. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  2473. static void homeaxis(const AxisEnum axis) {
  2474. #if IS_SCARA
  2475. // Only Z homing (with probe) is permitted
  2476. if (axis != Z_AXIS) { BUZZ(100, 880); return; }
  2477. #else
  2478. #define CAN_HOME(A) \
  2479. (axis == A##_AXIS && ((A##_MIN_PIN > -1 && A##_HOME_DIR < 0) || (A##_MAX_PIN > -1 && A##_HOME_DIR > 0)))
  2480. if (!CAN_HOME(X) && !CAN_HOME(Y) && !CAN_HOME(Z)) return;
  2481. #endif
  2482. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2483. if (DEBUGGING(LEVELING)) {
  2484. SERIAL_ECHOPAIR(">>> homeaxis(", axis_codes[axis]);
  2485. SERIAL_CHAR(')');
  2486. SERIAL_EOL;
  2487. }
  2488. #endif
  2489. const int axis_home_dir =
  2490. #if ENABLED(DUAL_X_CARRIAGE)
  2491. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  2492. #endif
  2493. home_dir(axis);
  2494. // Homing Z towards the bed? Deploy the Z probe or endstop.
  2495. #if HOMING_Z_WITH_PROBE
  2496. if (axis == Z_AXIS && DEPLOY_PROBE()) return;
  2497. #endif
  2498. // Set a flag for Z motor locking
  2499. #if ENABLED(Z_DUAL_ENDSTOPS)
  2500. if (axis == Z_AXIS) stepper.set_homing_flag(true);
  2501. #endif
  2502. // Disable stealthChop if used. Enable diag1 pin on driver.
  2503. #if ENABLED(SENSORLESS_HOMING)
  2504. #if ENABLED(X_IS_TMC2130)
  2505. if (axis == X_AXIS) tmc2130_sensorless_homing(stepperX);
  2506. #endif
  2507. #if ENABLED(Y_IS_TMC2130)
  2508. if (axis == Y_AXIS) tmc2130_sensorless_homing(stepperY);
  2509. #endif
  2510. #endif
  2511. // Fast move towards endstop until triggered
  2512. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2513. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 1 Fast:");
  2514. #endif
  2515. do_homing_move(axis, 1.5 * max_length(axis) * axis_home_dir);
  2516. // When homing Z with probe respect probe clearance
  2517. const float bump = axis_home_dir * (
  2518. #if HOMING_Z_WITH_PROBE
  2519. (axis == Z_AXIS) ? max(Z_CLEARANCE_BETWEEN_PROBES, home_bump_mm(Z_AXIS)) :
  2520. #endif
  2521. home_bump_mm(axis)
  2522. );
  2523. // If a second homing move is configured...
  2524. if (bump) {
  2525. // Move away from the endstop by the axis HOME_BUMP_MM
  2526. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2527. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Move Away:");
  2528. #endif
  2529. do_homing_move(axis, -bump);
  2530. // Slow move towards endstop until triggered
  2531. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2532. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 2 Slow:");
  2533. #endif
  2534. do_homing_move(axis, 2 * bump, get_homing_bump_feedrate(axis));
  2535. }
  2536. #if ENABLED(Z_DUAL_ENDSTOPS)
  2537. if (axis == Z_AXIS) {
  2538. float adj = fabs(z_endstop_adj);
  2539. bool lockZ1;
  2540. if (axis_home_dir > 0) {
  2541. adj = -adj;
  2542. lockZ1 = (z_endstop_adj > 0);
  2543. }
  2544. else
  2545. lockZ1 = (z_endstop_adj < 0);
  2546. if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
  2547. // Move to the adjusted endstop height
  2548. do_homing_move(axis, adj);
  2549. if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
  2550. stepper.set_homing_flag(false);
  2551. } // Z_AXIS
  2552. #endif
  2553. #if IS_SCARA
  2554. set_axis_is_at_home(axis);
  2555. SYNC_PLAN_POSITION_KINEMATIC();
  2556. #elif ENABLED(DELTA)
  2557. // Delta has already moved all three towers up in G28
  2558. // so here it re-homes each tower in turn.
  2559. // Delta homing treats the axes as normal linear axes.
  2560. // retrace by the amount specified in endstop_adj
  2561. if (endstop_adj[axis] * Z_HOME_DIR < 0) {
  2562. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2563. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("endstop_adj:");
  2564. #endif
  2565. do_homing_move(axis, endstop_adj[axis]);
  2566. }
  2567. #else
  2568. // For cartesian/core machines,
  2569. // set the axis to its home position
  2570. set_axis_is_at_home(axis);
  2571. sync_plan_position();
  2572. destination[axis] = current_position[axis];
  2573. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2574. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  2575. #endif
  2576. #endif
  2577. // Re-enable stealthChop if used. Disable diag1 pin on driver.
  2578. #if ENABLED(SENSORLESS_HOMING)
  2579. #if ENABLED(X_IS_TMC2130)
  2580. if (axis == X_AXIS) tmc2130_sensorless_homing(stepperX, false);
  2581. #endif
  2582. #if ENABLED(Y_IS_TMC2130)
  2583. if (axis == Y_AXIS) tmc2130_sensorless_homing(stepperY, false);
  2584. #endif
  2585. #endif
  2586. // Put away the Z probe
  2587. #if HOMING_Z_WITH_PROBE
  2588. if (axis == Z_AXIS && STOW_PROBE()) return;
  2589. #endif
  2590. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2591. if (DEBUGGING(LEVELING)) {
  2592. SERIAL_ECHOPAIR("<<< homeaxis(", axis_codes[axis]);
  2593. SERIAL_CHAR(')');
  2594. SERIAL_EOL;
  2595. }
  2596. #endif
  2597. } // homeaxis()
  2598. #if ENABLED(FWRETRACT)
  2599. void retract(const bool retracting, const bool swapping = false) {
  2600. static float hop_height;
  2601. if (retracting == retracted[active_extruder]) return;
  2602. const float old_feedrate_mm_s = feedrate_mm_s;
  2603. set_destination_to_current();
  2604. if (retracting) {
  2605. feedrate_mm_s = retract_feedrate_mm_s;
  2606. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  2607. sync_plan_position_e();
  2608. prepare_move_to_destination();
  2609. if (retract_zlift > 0.01) {
  2610. hop_height = current_position[Z_AXIS];
  2611. // Pretend current position is lower
  2612. current_position[Z_AXIS] -= retract_zlift;
  2613. SYNC_PLAN_POSITION_KINEMATIC();
  2614. // Raise up to the old current_position
  2615. prepare_move_to_destination();
  2616. }
  2617. }
  2618. else {
  2619. // If the height hasn't been altered, undo the Z hop
  2620. if (retract_zlift > 0.01 && hop_height == current_position[Z_AXIS]) {
  2621. // Pretend current position is higher. Z will lower on the next move
  2622. current_position[Z_AXIS] += retract_zlift;
  2623. SYNC_PLAN_POSITION_KINEMATIC();
  2624. // Lower Z
  2625. prepare_move_to_destination();
  2626. }
  2627. feedrate_mm_s = retract_recover_feedrate_mm_s;
  2628. const float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  2629. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  2630. sync_plan_position_e();
  2631. // Recover E
  2632. prepare_move_to_destination();
  2633. }
  2634. feedrate_mm_s = old_feedrate_mm_s;
  2635. retracted[active_extruder] = retracting;
  2636. } // retract()
  2637. #endif // FWRETRACT
  2638. #if ENABLED(MIXING_EXTRUDER)
  2639. void normalize_mix() {
  2640. float mix_total = 0.0;
  2641. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) mix_total += RECIPROCAL(mixing_factor[i]);
  2642. // Scale all values if they don't add up to ~1.0
  2643. if (!NEAR(mix_total, 1.0)) {
  2644. SERIAL_PROTOCOLLNPGM("Warning: Mix factors must add up to 1.0. Scaling.");
  2645. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) mixing_factor[i] *= mix_total;
  2646. }
  2647. }
  2648. #if ENABLED(DIRECT_MIXING_IN_G1)
  2649. // Get mixing parameters from the GCode
  2650. // The total "must" be 1.0 (but it will be normalized)
  2651. // If no mix factors are given, the old mix is preserved
  2652. void gcode_get_mix() {
  2653. const char* mixing_codes = "ABCDHI";
  2654. byte mix_bits = 0;
  2655. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) {
  2656. if (code_seen(mixing_codes[i])) {
  2657. SBI(mix_bits, i);
  2658. float v = code_value_float();
  2659. NOLESS(v, 0.0);
  2660. mixing_factor[i] = RECIPROCAL(v);
  2661. }
  2662. }
  2663. // If any mixing factors were included, clear the rest
  2664. // If none were included, preserve the last mix
  2665. if (mix_bits) {
  2666. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  2667. if (!TEST(mix_bits, i)) mixing_factor[i] = 0.0;
  2668. normalize_mix();
  2669. }
  2670. }
  2671. #endif
  2672. #endif
  2673. /**
  2674. * ***************************************************************************
  2675. * ***************************** G-CODE HANDLING *****************************
  2676. * ***************************************************************************
  2677. */
  2678. /**
  2679. * Set XYZE destination and feedrate from the current GCode command
  2680. *
  2681. * - Set destination from included axis codes
  2682. * - Set to current for missing axis codes
  2683. * - Set the feedrate, if included
  2684. */
  2685. void gcode_get_destination() {
  2686. LOOP_XYZE(i) {
  2687. if (code_seen(axis_codes[i]))
  2688. destination[i] = code_value_axis_units((AxisEnum)i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  2689. else
  2690. destination[i] = current_position[i];
  2691. }
  2692. if (code_seen('F') && code_value_linear_units() > 0.0)
  2693. feedrate_mm_s = MMM_TO_MMS(code_value_linear_units());
  2694. #if ENABLED(PRINTCOUNTER)
  2695. if (!DEBUGGING(DRYRUN))
  2696. print_job_timer.incFilamentUsed(destination[E_AXIS] - current_position[E_AXIS]);
  2697. #endif
  2698. // Get ABCDHI mixing factors
  2699. #if ENABLED(MIXING_EXTRUDER) && ENABLED(DIRECT_MIXING_IN_G1)
  2700. gcode_get_mix();
  2701. #endif
  2702. }
  2703. void unknown_command_error() {
  2704. SERIAL_ECHO_START;
  2705. SERIAL_ECHOPAIR(MSG_UNKNOWN_COMMAND, current_command);
  2706. SERIAL_CHAR('"');
  2707. SERIAL_EOL;
  2708. }
  2709. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  2710. /**
  2711. * Output a "busy" message at regular intervals
  2712. * while the machine is not accepting commands.
  2713. */
  2714. void host_keepalive() {
  2715. const millis_t ms = millis();
  2716. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  2717. if (PENDING(ms, next_busy_signal_ms)) return;
  2718. switch (busy_state) {
  2719. case IN_HANDLER:
  2720. case IN_PROCESS:
  2721. SERIAL_ECHO_START;
  2722. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  2723. break;
  2724. case PAUSED_FOR_USER:
  2725. SERIAL_ECHO_START;
  2726. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  2727. break;
  2728. case PAUSED_FOR_INPUT:
  2729. SERIAL_ECHO_START;
  2730. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  2731. break;
  2732. default:
  2733. break;
  2734. }
  2735. }
  2736. next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
  2737. }
  2738. #endif //HOST_KEEPALIVE_FEATURE
  2739. bool position_is_reachable(const float target[XYZ]
  2740. #if HAS_BED_PROBE
  2741. , bool by_probe=false
  2742. #endif
  2743. ) {
  2744. float dx = RAW_X_POSITION(target[X_AXIS]),
  2745. dy = RAW_Y_POSITION(target[Y_AXIS]);
  2746. #if HAS_BED_PROBE
  2747. if (by_probe) {
  2748. dx -= X_PROBE_OFFSET_FROM_EXTRUDER;
  2749. dy -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  2750. }
  2751. #endif
  2752. #if IS_SCARA
  2753. #if MIDDLE_DEAD_ZONE_R > 0
  2754. const float R2 = HYPOT2(dx - SCARA_OFFSET_X, dy - SCARA_OFFSET_Y);
  2755. return R2 >= sq(float(MIDDLE_DEAD_ZONE_R)) && R2 <= sq(L1 + L2);
  2756. #else
  2757. return HYPOT2(dx - SCARA_OFFSET_X, dy - SCARA_OFFSET_Y) <= sq(L1 + L2);
  2758. #endif
  2759. #elif ENABLED(DELTA)
  2760. return HYPOT2(dx, dy) <= sq((float)(DELTA_PRINTABLE_RADIUS));
  2761. #else
  2762. const float dz = RAW_Z_POSITION(target[Z_AXIS]);
  2763. return WITHIN(dx, X_MIN_POS - 0.0001, X_MAX_POS + 0.0001)
  2764. && WITHIN(dy, Y_MIN_POS - 0.0001, Y_MAX_POS + 0.0001)
  2765. && WITHIN(dz, Z_MIN_POS - 0.0001, Z_MAX_POS + 0.0001);
  2766. #endif
  2767. }
  2768. /**************************************************
  2769. ***************** GCode Handlers *****************
  2770. **************************************************/
  2771. /**
  2772. * G0, G1: Coordinated movement of X Y Z E axes
  2773. */
  2774. inline void gcode_G0_G1(
  2775. #if IS_SCARA
  2776. bool fast_move=false
  2777. #endif
  2778. ) {
  2779. if (IsRunning()) {
  2780. gcode_get_destination(); // For X Y Z E F
  2781. #if ENABLED(FWRETRACT)
  2782. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2783. const float echange = destination[E_AXIS] - current_position[E_AXIS];
  2784. // Is this move an attempt to retract or recover?
  2785. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  2786. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  2787. sync_plan_position_e(); // AND from the planner
  2788. retract(!retracted[active_extruder]);
  2789. return;
  2790. }
  2791. }
  2792. #endif //FWRETRACT
  2793. #if IS_SCARA
  2794. fast_move ? prepare_uninterpolated_move_to_destination() : prepare_move_to_destination();
  2795. #else
  2796. prepare_move_to_destination();
  2797. #endif
  2798. }
  2799. }
  2800. /**
  2801. * G2: Clockwise Arc
  2802. * G3: Counterclockwise Arc
  2803. *
  2804. * This command has two forms: IJ-form and R-form.
  2805. *
  2806. * - I specifies an X offset. J specifies a Y offset.
  2807. * At least one of the IJ parameters is required.
  2808. * X and Y can be omitted to do a complete circle.
  2809. * The given XY is not error-checked. The arc ends
  2810. * based on the angle of the destination.
  2811. * Mixing I or J with R will throw an error.
  2812. *
  2813. * - R specifies the radius. X or Y is required.
  2814. * Omitting both X and Y will throw an error.
  2815. * X or Y must differ from the current XY.
  2816. * Mixing R with I or J will throw an error.
  2817. *
  2818. * Examples:
  2819. *
  2820. * G2 I10 ; CW circle centered at X+10
  2821. * G3 X20 Y12 R14 ; CCW circle with r=14 ending at X20 Y12
  2822. */
  2823. #if ENABLED(ARC_SUPPORT)
  2824. inline void gcode_G2_G3(bool clockwise) {
  2825. if (IsRunning()) {
  2826. #if ENABLED(SF_ARC_FIX)
  2827. const bool relative_mode_backup = relative_mode;
  2828. relative_mode = true;
  2829. #endif
  2830. gcode_get_destination();
  2831. #if ENABLED(SF_ARC_FIX)
  2832. relative_mode = relative_mode_backup;
  2833. #endif
  2834. float arc_offset[2] = { 0.0, 0.0 };
  2835. if (code_seen('R')) {
  2836. const float r = code_value_linear_units(),
  2837. x1 = current_position[X_AXIS], y1 = current_position[Y_AXIS],
  2838. x2 = destination[X_AXIS], y2 = destination[Y_AXIS];
  2839. if (r && (x2 != x1 || y2 != y1)) {
  2840. const float e = clockwise ^ (r < 0) ? -1 : 1, // clockwise -1/1, counterclockwise 1/-1
  2841. dx = x2 - x1, dy = y2 - y1, // X and Y differences
  2842. d = HYPOT(dx, dy), // Linear distance between the points
  2843. h = sqrt(sq(r) - sq(d * 0.5)), // Distance to the arc pivot-point
  2844. mx = (x1 + x2) * 0.5, my = (y1 + y2) * 0.5, // Point between the two points
  2845. sx = -dy / d, sy = dx / d, // Slope of the perpendicular bisector
  2846. cx = mx + e * h * sx, cy = my + e * h * sy; // Pivot-point of the arc
  2847. arc_offset[X_AXIS] = cx - x1;
  2848. arc_offset[Y_AXIS] = cy - y1;
  2849. }
  2850. }
  2851. else {
  2852. if (code_seen('I')) arc_offset[X_AXIS] = code_value_linear_units();
  2853. if (code_seen('J')) arc_offset[Y_AXIS] = code_value_linear_units();
  2854. }
  2855. if (arc_offset[0] || arc_offset[1]) {
  2856. // Send an arc to the planner
  2857. plan_arc(destination, arc_offset, clockwise);
  2858. refresh_cmd_timeout();
  2859. }
  2860. else {
  2861. // Bad arguments
  2862. SERIAL_ERROR_START;
  2863. SERIAL_ERRORLNPGM(MSG_ERR_ARC_ARGS);
  2864. }
  2865. }
  2866. }
  2867. #endif
  2868. /**
  2869. * G4: Dwell S<seconds> or P<milliseconds>
  2870. */
  2871. inline void gcode_G4() {
  2872. millis_t dwell_ms = 0;
  2873. if (code_seen('P')) dwell_ms = code_value_millis(); // milliseconds to wait
  2874. if (code_seen('S')) dwell_ms = code_value_millis_from_seconds(); // seconds to wait
  2875. stepper.synchronize();
  2876. refresh_cmd_timeout();
  2877. dwell_ms += previous_cmd_ms; // keep track of when we started waiting
  2878. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  2879. while (PENDING(millis(), dwell_ms)) idle();
  2880. }
  2881. #if ENABLED(BEZIER_CURVE_SUPPORT)
  2882. /**
  2883. * Parameters interpreted according to:
  2884. * http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline
  2885. * However I, J omission is not supported at this point; all
  2886. * parameters can be omitted and default to zero.
  2887. */
  2888. /**
  2889. * G5: Cubic B-spline
  2890. */
  2891. inline void gcode_G5() {
  2892. if (IsRunning()) {
  2893. gcode_get_destination();
  2894. const float offset[] = {
  2895. code_seen('I') ? code_value_linear_units() : 0.0,
  2896. code_seen('J') ? code_value_linear_units() : 0.0,
  2897. code_seen('P') ? code_value_linear_units() : 0.0,
  2898. code_seen('Q') ? code_value_linear_units() : 0.0
  2899. };
  2900. plan_cubic_move(offset);
  2901. }
  2902. }
  2903. #endif // BEZIER_CURVE_SUPPORT
  2904. #if ENABLED(FWRETRACT)
  2905. /**
  2906. * G10 - Retract filament according to settings of M207
  2907. * G11 - Recover filament according to settings of M208
  2908. */
  2909. inline void gcode_G10_G11(bool doRetract=false) {
  2910. #if EXTRUDERS > 1
  2911. if (doRetract) {
  2912. retracted_swap[active_extruder] = (code_seen('S') && code_value_bool()); // checks for swap retract argument
  2913. }
  2914. #endif
  2915. retract(doRetract
  2916. #if EXTRUDERS > 1
  2917. , retracted_swap[active_extruder]
  2918. #endif
  2919. );
  2920. }
  2921. #endif //FWRETRACT
  2922. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  2923. /**
  2924. * G12: Clean the nozzle
  2925. */
  2926. inline void gcode_G12() {
  2927. // Don't allow nozzle cleaning without homing first
  2928. if (axis_unhomed_error(true, true, true)) return;
  2929. const uint8_t pattern = code_seen('P') ? code_value_ushort() : 0,
  2930. strokes = code_seen('S') ? code_value_ushort() : NOZZLE_CLEAN_STROKES,
  2931. objects = code_seen('T') ? code_value_ushort() : NOZZLE_CLEAN_TRIANGLES;
  2932. const float radius = code_seen('R') ? code_value_float() : NOZZLE_CLEAN_CIRCLE_RADIUS;
  2933. Nozzle::clean(pattern, strokes, radius, objects);
  2934. }
  2935. #endif
  2936. #if ENABLED(INCH_MODE_SUPPORT)
  2937. /**
  2938. * G20: Set input mode to inches
  2939. */
  2940. inline void gcode_G20() { set_input_linear_units(LINEARUNIT_INCH); }
  2941. /**
  2942. * G21: Set input mode to millimeters
  2943. */
  2944. inline void gcode_G21() { set_input_linear_units(LINEARUNIT_MM); }
  2945. #endif
  2946. #if ENABLED(NOZZLE_PARK_FEATURE)
  2947. /**
  2948. * G27: Park the nozzle
  2949. */
  2950. inline void gcode_G27() {
  2951. // Don't allow nozzle parking without homing first
  2952. if (axis_unhomed_error(true, true, true)) return;
  2953. Nozzle::park(code_seen('P') ? code_value_ushort() : 0);
  2954. }
  2955. #endif // NOZZLE_PARK_FEATURE
  2956. #if ENABLED(QUICK_HOME)
  2957. static void quick_home_xy() {
  2958. // Pretend the current position is 0,0
  2959. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2960. sync_plan_position();
  2961. const int x_axis_home_dir =
  2962. #if ENABLED(DUAL_X_CARRIAGE)
  2963. x_home_dir(active_extruder)
  2964. #else
  2965. home_dir(X_AXIS)
  2966. #endif
  2967. ;
  2968. const float mlx = max_length(X_AXIS),
  2969. mly = max_length(Y_AXIS),
  2970. mlratio = mlx > mly ? mly / mlx : mlx / mly,
  2971. fr_mm_s = min(homing_feedrate_mm_s[X_AXIS], homing_feedrate_mm_s[Y_AXIS]) * sqrt(sq(mlratio) + 1.0);
  2972. do_blocking_move_to_xy(1.5 * mlx * x_axis_home_dir, 1.5 * mly * home_dir(Y_AXIS), fr_mm_s);
  2973. endstops.hit_on_purpose(); // clear endstop hit flags
  2974. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2975. }
  2976. #endif // QUICK_HOME
  2977. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2978. void log_machine_info() {
  2979. SERIAL_ECHOPGM("Machine Type: ");
  2980. #if ENABLED(DELTA)
  2981. SERIAL_ECHOLNPGM("Delta");
  2982. #elif IS_SCARA
  2983. SERIAL_ECHOLNPGM("SCARA");
  2984. #elif IS_CORE
  2985. SERIAL_ECHOLNPGM("Core");
  2986. #else
  2987. SERIAL_ECHOLNPGM("Cartesian");
  2988. #endif
  2989. SERIAL_ECHOPGM("Probe: ");
  2990. #if ENABLED(PROBE_MANUALLY)
  2991. SERIAL_ECHOLNPGM("PROBE_MANUALLY");
  2992. #elif ENABLED(FIX_MOUNTED_PROBE)
  2993. SERIAL_ECHOLNPGM("FIX_MOUNTED_PROBE");
  2994. #elif ENABLED(BLTOUCH)
  2995. SERIAL_ECHOLNPGM("BLTOUCH");
  2996. #elif HAS_Z_SERVO_ENDSTOP
  2997. SERIAL_ECHOLNPGM("SERVO PROBE");
  2998. #elif ENABLED(Z_PROBE_SLED)
  2999. SERIAL_ECHOLNPGM("Z_PROBE_SLED");
  3000. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  3001. SERIAL_ECHOLNPGM("Z_PROBE_ALLEN_KEY");
  3002. #else
  3003. SERIAL_ECHOLNPGM("NONE");
  3004. #endif
  3005. #if HAS_BED_PROBE
  3006. SERIAL_ECHOPAIR("Probe Offset X:", X_PROBE_OFFSET_FROM_EXTRUDER);
  3007. SERIAL_ECHOPAIR(" Y:", Y_PROBE_OFFSET_FROM_EXTRUDER);
  3008. SERIAL_ECHOPAIR(" Z:", zprobe_zoffset);
  3009. #if (X_PROBE_OFFSET_FROM_EXTRUDER > 0)
  3010. SERIAL_ECHOPGM(" (Right");
  3011. #elif (X_PROBE_OFFSET_FROM_EXTRUDER < 0)
  3012. SERIAL_ECHOPGM(" (Left");
  3013. #elif (Y_PROBE_OFFSET_FROM_EXTRUDER != 0)
  3014. SERIAL_ECHOPGM(" (Middle");
  3015. #else
  3016. SERIAL_ECHOPGM(" (Aligned With");
  3017. #endif
  3018. #if (Y_PROBE_OFFSET_FROM_EXTRUDER > 0)
  3019. SERIAL_ECHOPGM("-Back");
  3020. #elif (Y_PROBE_OFFSET_FROM_EXTRUDER < 0)
  3021. SERIAL_ECHOPGM("-Front");
  3022. #elif (X_PROBE_OFFSET_FROM_EXTRUDER != 0)
  3023. SERIAL_ECHOPGM("-Center");
  3024. #endif
  3025. if (zprobe_zoffset < 0)
  3026. SERIAL_ECHOPGM(" & Below");
  3027. else if (zprobe_zoffset > 0)
  3028. SERIAL_ECHOPGM(" & Above");
  3029. else
  3030. SERIAL_ECHOPGM(" & Same Z as");
  3031. SERIAL_ECHOLNPGM(" Nozzle)");
  3032. #endif
  3033. #if HAS_ABL
  3034. SERIAL_ECHOPGM("Auto Bed Leveling: ");
  3035. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3036. SERIAL_ECHOPGM("LINEAR");
  3037. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3038. SERIAL_ECHOPGM("BILINEAR");
  3039. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3040. SERIAL_ECHOPGM("3POINT");
  3041. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  3042. SERIAL_ECHOPGM("UBL");
  3043. #endif
  3044. if (planner.abl_enabled) {
  3045. SERIAL_ECHOLNPGM(" (enabled)");
  3046. #if ABL_PLANAR
  3047. float diff[XYZ] = {
  3048. stepper.get_axis_position_mm(X_AXIS) - current_position[X_AXIS],
  3049. stepper.get_axis_position_mm(Y_AXIS) - current_position[Y_AXIS],
  3050. stepper.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS]
  3051. };
  3052. SERIAL_ECHOPGM("ABL Adjustment X");
  3053. if (diff[X_AXIS] > 0) SERIAL_CHAR('+');
  3054. SERIAL_ECHO(diff[X_AXIS]);
  3055. SERIAL_ECHOPGM(" Y");
  3056. if (diff[Y_AXIS] > 0) SERIAL_CHAR('+');
  3057. SERIAL_ECHO(diff[Y_AXIS]);
  3058. SERIAL_ECHOPGM(" Z");
  3059. if (diff[Z_AXIS] > 0) SERIAL_CHAR('+');
  3060. SERIAL_ECHO(diff[Z_AXIS]);
  3061. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  3062. SERIAL_ECHOPAIR("UBL Adjustment Z", stepper.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS]);
  3063. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3064. SERIAL_ECHOPAIR("ABL Adjustment Z", bilinear_z_offset(current_position));
  3065. #endif
  3066. }
  3067. else
  3068. SERIAL_ECHOLNPGM(" (disabled)");
  3069. SERIAL_EOL;
  3070. #elif ENABLED(MESH_BED_LEVELING)
  3071. SERIAL_ECHOPGM("Mesh Bed Leveling");
  3072. if (mbl.active()) {
  3073. float lz = current_position[Z_AXIS];
  3074. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], lz);
  3075. SERIAL_ECHOLNPGM(" (enabled)");
  3076. SERIAL_ECHOPAIR("MBL Adjustment Z", lz);
  3077. }
  3078. else
  3079. SERIAL_ECHOPGM(" (disabled)");
  3080. SERIAL_EOL;
  3081. #endif // MESH_BED_LEVELING
  3082. }
  3083. #endif // DEBUG_LEVELING_FEATURE
  3084. #if ENABLED(DELTA)
  3085. /**
  3086. * A delta can only safely home all axes at the same time
  3087. * This is like quick_home_xy() but for 3 towers.
  3088. */
  3089. inline void home_delta() {
  3090. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3091. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> home_delta", current_position);
  3092. #endif
  3093. // Init the current position of all carriages to 0,0,0
  3094. ZERO(current_position);
  3095. sync_plan_position();
  3096. // Move all carriages together linearly until an endstop is hit.
  3097. current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = (Z_MAX_LENGTH + 10);
  3098. feedrate_mm_s = homing_feedrate_mm_s[X_AXIS];
  3099. line_to_current_position();
  3100. stepper.synchronize();
  3101. endstops.hit_on_purpose(); // clear endstop hit flags
  3102. // At least one carriage has reached the top.
  3103. // Now re-home each carriage separately.
  3104. HOMEAXIS(A);
  3105. HOMEAXIS(B);
  3106. HOMEAXIS(C);
  3107. // Set all carriages to their home positions
  3108. // Do this here all at once for Delta, because
  3109. // XYZ isn't ABC. Applying this per-tower would
  3110. // give the impression that they are the same.
  3111. LOOP_XYZ(i) set_axis_is_at_home((AxisEnum)i);
  3112. SYNC_PLAN_POSITION_KINEMATIC();
  3113. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3114. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< home_delta", current_position);
  3115. #endif
  3116. }
  3117. #endif // DELTA
  3118. #if ENABLED(Z_SAFE_HOMING)
  3119. inline void home_z_safely() {
  3120. // Disallow Z homing if X or Y are unknown
  3121. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  3122. LCD_MESSAGEPGM(MSG_ERR_Z_HOMING);
  3123. SERIAL_ECHO_START;
  3124. SERIAL_ECHOLNPGM(MSG_ERR_Z_HOMING);
  3125. return;
  3126. }
  3127. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3128. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Z_SAFE_HOMING >>>");
  3129. #endif
  3130. SYNC_PLAN_POSITION_KINEMATIC();
  3131. /**
  3132. * Move the Z probe (or just the nozzle) to the safe homing point
  3133. */
  3134. destination[X_AXIS] = LOGICAL_X_POSITION(Z_SAFE_HOMING_X_POINT);
  3135. destination[Y_AXIS] = LOGICAL_Y_POSITION(Z_SAFE_HOMING_Y_POINT);
  3136. destination[Z_AXIS] = current_position[Z_AXIS]; // Z is already at the right height
  3137. if (position_is_reachable(
  3138. destination
  3139. #if HOMING_Z_WITH_PROBE
  3140. , true
  3141. #endif
  3142. )
  3143. ) {
  3144. #if HOMING_Z_WITH_PROBE
  3145. destination[X_AXIS] -= X_PROBE_OFFSET_FROM_EXTRUDER;
  3146. destination[Y_AXIS] -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  3147. #endif
  3148. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3149. if (DEBUGGING(LEVELING)) DEBUG_POS("Z_SAFE_HOMING", destination);
  3150. #endif
  3151. // This causes the carriage on Dual X to unpark
  3152. #if ENABLED(DUAL_X_CARRIAGE)
  3153. active_extruder_parked = false;
  3154. #endif
  3155. do_blocking_move_to_xy(destination[X_AXIS], destination[Y_AXIS]);
  3156. HOMEAXIS(Z);
  3157. }
  3158. else {
  3159. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  3160. SERIAL_ECHO_START;
  3161. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  3162. }
  3163. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3164. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  3165. #endif
  3166. }
  3167. #endif // Z_SAFE_HOMING
  3168. #if ENABLED(PROBE_MANUALLY)
  3169. bool g29_in_progress = false;
  3170. #else
  3171. constexpr bool g29_in_progress = false;
  3172. #endif
  3173. /**
  3174. * G28: Home all axes according to settings
  3175. *
  3176. * Parameters
  3177. *
  3178. * None Home to all axes with no parameters.
  3179. * With QUICK_HOME enabled XY will home together, then Z.
  3180. *
  3181. * Cartesian parameters
  3182. *
  3183. * X Home to the X endstop
  3184. * Y Home to the Y endstop
  3185. * Z Home to the Z endstop
  3186. *
  3187. */
  3188. inline void gcode_G28() {
  3189. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3190. if (DEBUGGING(LEVELING)) {
  3191. SERIAL_ECHOLNPGM(">>> gcode_G28");
  3192. log_machine_info();
  3193. }
  3194. #endif
  3195. // Wait for planner moves to finish!
  3196. stepper.synchronize();
  3197. // Cancel the active G29 session
  3198. #if ENABLED(PROBE_MANUALLY)
  3199. g29_in_progress = false;
  3200. #endif
  3201. // Disable the leveling matrix before homing
  3202. #if HAS_LEVELING
  3203. set_bed_leveling_enabled(false);
  3204. #endif
  3205. // Always home with tool 0 active
  3206. #if HOTENDS > 1
  3207. const uint8_t old_tool_index = active_extruder;
  3208. tool_change(0, 0, true);
  3209. #endif
  3210. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  3211. extruder_duplication_enabled = false;
  3212. #endif
  3213. setup_for_endstop_or_probe_move();
  3214. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3215. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  3216. #endif
  3217. endstops.enable(true); // Enable endstops for next homing move
  3218. #if ENABLED(DELTA)
  3219. home_delta();
  3220. #else // NOT DELTA
  3221. const bool homeX = code_seen('X'), homeY = code_seen('Y'), homeZ = code_seen('Z'),
  3222. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  3223. set_destination_to_current();
  3224. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  3225. if (home_all_axis || homeZ) {
  3226. HOMEAXIS(Z);
  3227. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3228. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  3229. #endif
  3230. }
  3231. #else
  3232. if (home_all_axis || homeX || homeY) {
  3233. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  3234. destination[Z_AXIS] = LOGICAL_Z_POSITION(Z_HOMING_HEIGHT);
  3235. if (destination[Z_AXIS] > current_position[Z_AXIS]) {
  3236. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3237. if (DEBUGGING(LEVELING))
  3238. SERIAL_ECHOLNPAIR("Raise Z (before homing) to ", destination[Z_AXIS]);
  3239. #endif
  3240. do_blocking_move_to_z(destination[Z_AXIS]);
  3241. }
  3242. }
  3243. #endif
  3244. #if ENABLED(QUICK_HOME)
  3245. if (home_all_axis || (homeX && homeY)) quick_home_xy();
  3246. #endif
  3247. #if ENABLED(HOME_Y_BEFORE_X)
  3248. // Home Y
  3249. if (home_all_axis || homeY) {
  3250. HOMEAXIS(Y);
  3251. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3252. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  3253. #endif
  3254. }
  3255. #endif
  3256. // Home X
  3257. if (home_all_axis || homeX) {
  3258. #if ENABLED(DUAL_X_CARRIAGE)
  3259. // Always home the 2nd (right) extruder first
  3260. active_extruder = 1;
  3261. HOMEAXIS(X);
  3262. // Remember this extruder's position for later tool change
  3263. inactive_extruder_x_pos = RAW_X_POSITION(current_position[X_AXIS]);
  3264. // Home the 1st (left) extruder
  3265. active_extruder = 0;
  3266. HOMEAXIS(X);
  3267. // Consider the active extruder to be parked
  3268. COPY(raised_parked_position, current_position);
  3269. delayed_move_time = 0;
  3270. active_extruder_parked = true;
  3271. #else
  3272. HOMEAXIS(X);
  3273. #endif
  3274. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3275. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  3276. #endif
  3277. }
  3278. #if DISABLED(HOME_Y_BEFORE_X)
  3279. // Home Y
  3280. if (home_all_axis || homeY) {
  3281. HOMEAXIS(Y);
  3282. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3283. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  3284. #endif
  3285. }
  3286. #endif
  3287. // Home Z last if homing towards the bed
  3288. #if Z_HOME_DIR < 0
  3289. if (home_all_axis || homeZ) {
  3290. #if ENABLED(Z_SAFE_HOMING)
  3291. home_z_safely();
  3292. #else
  3293. HOMEAXIS(Z);
  3294. #endif
  3295. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3296. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all_axis || homeZ) > final", current_position);
  3297. #endif
  3298. } // home_all_axis || homeZ
  3299. #endif // Z_HOME_DIR < 0
  3300. SYNC_PLAN_POSITION_KINEMATIC();
  3301. #endif // !DELTA (gcode_G28)
  3302. endstops.not_homing();
  3303. #if ENABLED(DELTA) && ENABLED(DELTA_HOME_TO_SAFE_ZONE)
  3304. // move to a height where we can use the full xy-area
  3305. do_blocking_move_to_z(delta_clip_start_height);
  3306. #endif
  3307. clean_up_after_endstop_or_probe_move();
  3308. // Restore the active tool after homing
  3309. #if HOTENDS > 1
  3310. tool_change(old_tool_index, 0, true);
  3311. #endif
  3312. report_current_position();
  3313. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3314. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G28");
  3315. #endif
  3316. } // G28
  3317. void home_all_axes() { gcode_G28(); }
  3318. #if HAS_PROBING_PROCEDURE
  3319. void out_of_range_error(const char* p_edge) {
  3320. SERIAL_PROTOCOLPGM("?Probe ");
  3321. serialprintPGM(p_edge);
  3322. SERIAL_PROTOCOLLNPGM(" position out of range.");
  3323. }
  3324. #endif
  3325. #if ENABLED(MESH_BED_LEVELING) || ENABLED(PROBE_MANUALLY)
  3326. inline void _manual_goto_xy(const float &x, const float &y) {
  3327. const float old_feedrate_mm_s = feedrate_mm_s;
  3328. #if MANUAL_PROBE_HEIGHT > 0
  3329. feedrate_mm_s = homing_feedrate_mm_s[Z_AXIS];
  3330. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS) + MANUAL_PROBE_HEIGHT;
  3331. line_to_current_position();
  3332. #endif
  3333. feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  3334. current_position[X_AXIS] = LOGICAL_X_POSITION(x);
  3335. current_position[Y_AXIS] = LOGICAL_Y_POSITION(y);
  3336. line_to_current_position();
  3337. #if MANUAL_PROBE_HEIGHT > 0
  3338. feedrate_mm_s = homing_feedrate_mm_s[Z_AXIS];
  3339. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS) + 0.2; // just slightly over the bed
  3340. line_to_current_position();
  3341. #endif
  3342. feedrate_mm_s = old_feedrate_mm_s;
  3343. stepper.synchronize();
  3344. }
  3345. #endif
  3346. #if ENABLED(MESH_BED_LEVELING)
  3347. // Save 130 bytes with non-duplication of PSTR
  3348. void say_not_entered() { SERIAL_PROTOCOLLNPGM(" not entered."); }
  3349. void mbl_mesh_report() {
  3350. SERIAL_PROTOCOLLNPGM("Num X,Y: " STRINGIFY(GRID_MAX_POINTS_X) "," STRINGIFY(GRID_MAX_POINTS_Y));
  3351. SERIAL_PROTOCOLPGM("Z offset: "); SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  3352. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3353. print_2d_array(GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y, 5,
  3354. [](const uint8_t ix, const uint8_t iy) { return mbl.z_values[ix][iy]; }
  3355. );
  3356. }
  3357. void mesh_probing_done() {
  3358. mbl.set_has_mesh(true);
  3359. home_all_axes();
  3360. set_bed_leveling_enabled(true);
  3361. #if ENABLED(MESH_G28_REST_ORIGIN)
  3362. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS);
  3363. set_destination_to_current();
  3364. line_to_destination(homing_feedrate_mm_s[Z_AXIS]);
  3365. stepper.synchronize();
  3366. #endif
  3367. }
  3368. /**
  3369. * G29: Mesh-based Z probe, probes a grid and produces a
  3370. * mesh to compensate for variable bed height
  3371. *
  3372. * Parameters With MESH_BED_LEVELING:
  3373. *
  3374. * S0 Produce a mesh report
  3375. * S1 Start probing mesh points
  3376. * S2 Probe the next mesh point
  3377. * S3 Xn Yn Zn.nn Manually modify a single point
  3378. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  3379. * S5 Reset and disable mesh
  3380. *
  3381. * The S0 report the points as below
  3382. *
  3383. * +----> X-axis 1-n
  3384. * |
  3385. * |
  3386. * v Y-axis 1-n
  3387. *
  3388. */
  3389. inline void gcode_G29() {
  3390. static int mbl_probe_index = -1;
  3391. #if HAS_SOFTWARE_ENDSTOPS
  3392. static bool enable_soft_endstops;
  3393. #endif
  3394. const MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_byte() : MeshReport;
  3395. if (!WITHIN(state, 0, 5)) {
  3396. SERIAL_PROTOCOLLNPGM("S out of range (0-5).");
  3397. return;
  3398. }
  3399. int8_t px, py;
  3400. switch (state) {
  3401. case MeshReport:
  3402. if (mbl.has_mesh()) {
  3403. SERIAL_PROTOCOLLNPAIR("State: ", mbl.active() ? MSG_ON : MSG_OFF);
  3404. mbl_mesh_report();
  3405. }
  3406. else
  3407. SERIAL_PROTOCOLLNPGM("Mesh bed leveling has no data.");
  3408. break;
  3409. case MeshStart:
  3410. mbl.reset();
  3411. mbl_probe_index = 0;
  3412. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  3413. break;
  3414. case MeshNext:
  3415. if (mbl_probe_index < 0) {
  3416. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  3417. return;
  3418. }
  3419. // For each G29 S2...
  3420. if (mbl_probe_index == 0) {
  3421. #if HAS_SOFTWARE_ENDSTOPS
  3422. // For the initial G29 S2 save software endstop state
  3423. enable_soft_endstops = soft_endstops_enabled;
  3424. #endif
  3425. }
  3426. else {
  3427. // For G29 S2 after adjusting Z.
  3428. mbl.set_zigzag_z(mbl_probe_index - 1, current_position[Z_AXIS]);
  3429. #if HAS_SOFTWARE_ENDSTOPS
  3430. soft_endstops_enabled = enable_soft_endstops;
  3431. #endif
  3432. }
  3433. // If there's another point to sample, move there with optional lift.
  3434. if (mbl_probe_index < (GRID_MAX_POINTS_X) * (GRID_MAX_POINTS_Y)) {
  3435. mbl.zigzag(mbl_probe_index, px, py);
  3436. _manual_goto_xy(mbl.index_to_xpos[px], mbl.index_to_ypos[py]);
  3437. #if HAS_SOFTWARE_ENDSTOPS
  3438. // Disable software endstops to allow manual adjustment
  3439. // If G29 is not completed, they will not be re-enabled
  3440. soft_endstops_enabled = false;
  3441. #endif
  3442. mbl_probe_index++;
  3443. }
  3444. else {
  3445. // One last "return to the bed" (as originally coded) at completion
  3446. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS) + MANUAL_PROBE_HEIGHT;
  3447. line_to_current_position();
  3448. stepper.synchronize();
  3449. // After recording the last point, activate home and activate
  3450. mbl_probe_index = -1;
  3451. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  3452. BUZZ(100, 659);
  3453. BUZZ(100, 698);
  3454. mesh_probing_done();
  3455. }
  3456. break;
  3457. case MeshSet:
  3458. if (code_seen('X')) {
  3459. px = code_value_int() - 1;
  3460. if (!WITHIN(px, 0, GRID_MAX_POINTS_X - 1)) {
  3461. SERIAL_PROTOCOLLNPGM("X out of range (1-" STRINGIFY(GRID_MAX_POINTS_X) ").");
  3462. return;
  3463. }
  3464. }
  3465. else {
  3466. SERIAL_CHAR('X'); say_not_entered();
  3467. return;
  3468. }
  3469. if (code_seen('Y')) {
  3470. py = code_value_int() - 1;
  3471. if (!WITHIN(py, 0, GRID_MAX_POINTS_Y - 1)) {
  3472. SERIAL_PROTOCOLLNPGM("Y out of range (1-" STRINGIFY(GRID_MAX_POINTS_Y) ").");
  3473. return;
  3474. }
  3475. }
  3476. else {
  3477. SERIAL_CHAR('Y'); say_not_entered();
  3478. return;
  3479. }
  3480. if (code_seen('Z')) {
  3481. mbl.z_values[px][py] = code_value_linear_units();
  3482. }
  3483. else {
  3484. SERIAL_CHAR('Z'); say_not_entered();
  3485. return;
  3486. }
  3487. break;
  3488. case MeshSetZOffset:
  3489. if (code_seen('Z')) {
  3490. mbl.z_offset = code_value_linear_units();
  3491. }
  3492. else {
  3493. SERIAL_CHAR('Z'); say_not_entered();
  3494. return;
  3495. }
  3496. break;
  3497. case MeshReset:
  3498. reset_bed_level();
  3499. break;
  3500. } // switch(state)
  3501. report_current_position();
  3502. }
  3503. #elif HAS_ABL && DISABLED(AUTO_BED_LEVELING_UBL)
  3504. #if ABL_GRID
  3505. #if ENABLED(PROBE_Y_FIRST)
  3506. #define PR_OUTER_VAR xCount
  3507. #define PR_OUTER_END abl_grid_points_x
  3508. #define PR_INNER_VAR yCount
  3509. #define PR_INNER_END abl_grid_points_y
  3510. #else
  3511. #define PR_OUTER_VAR yCount
  3512. #define PR_OUTER_END abl_grid_points_y
  3513. #define PR_INNER_VAR xCount
  3514. #define PR_INNER_END abl_grid_points_x
  3515. #endif
  3516. #endif
  3517. /**
  3518. * G29: Detailed Z probe, probes the bed at 3 or more points.
  3519. * Will fail if the printer has not been homed with G28.
  3520. *
  3521. * Enhanced G29 Auto Bed Leveling Probe Routine
  3522. *
  3523. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  3524. * or alter the bed level data. Useful to check the topology
  3525. * after a first run of G29.
  3526. *
  3527. * J Jettison current bed leveling data
  3528. *
  3529. * V Set the verbose level (0-4). Example: "G29 V3"
  3530. *
  3531. * Parameters With LINEAR leveling only:
  3532. *
  3533. * P Set the size of the grid that will be probed (P x P points).
  3534. * Example: "G29 P4"
  3535. *
  3536. * X Set the X size of the grid that will be probed (X x Y points).
  3537. * Example: "G29 X7 Y5"
  3538. *
  3539. * Y Set the Y size of the grid that will be probed (X x Y points).
  3540. *
  3541. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  3542. * This is useful for manual bed leveling and finding flaws in the bed (to
  3543. * assist with part placement).
  3544. * Not supported by non-linear delta printer bed leveling.
  3545. *
  3546. * Parameters With LINEAR and BILINEAR leveling only:
  3547. *
  3548. * S Set the XY travel speed between probe points (in units/min)
  3549. *
  3550. * F Set the Front limit of the probing grid
  3551. * B Set the Back limit of the probing grid
  3552. * L Set the Left limit of the probing grid
  3553. * R Set the Right limit of the probing grid
  3554. *
  3555. * Parameters with DEBUG_LEVELING_FEATURE only:
  3556. *
  3557. * C Make a totally fake grid with no actual probing.
  3558. * For use in testing when no probing is possible.
  3559. *
  3560. * Parameters with BILINEAR leveling only:
  3561. *
  3562. * Z Supply an additional Z probe offset
  3563. *
  3564. * Extra parameters with PROBE_MANUALLY:
  3565. *
  3566. * To do manual probing simply repeat G29 until the procedure is complete.
  3567. * The first G29 accepts parameters. 'G29 Q' for status, 'G29 A' to abort.
  3568. *
  3569. * Q Query leveling and G29 state
  3570. *
  3571. * A Abort current leveling procedure
  3572. *
  3573. * W Write a mesh point. (Ignored during leveling.)
  3574. * X Required X for mesh point
  3575. * Y Required Y for mesh point
  3576. * Z Required Z for mesh point
  3577. *
  3578. * Without PROBE_MANUALLY:
  3579. *
  3580. * E By default G29 will engage the Z probe, test the bed, then disengage.
  3581. * Include "E" to engage/disengage the Z probe for each sample.
  3582. * There's no extra effect if you have a fixed Z probe.
  3583. *
  3584. */
  3585. inline void gcode_G29() {
  3586. // G29 Q is also available if debugging
  3587. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3588. const bool query = code_seen('Q');
  3589. const uint8_t old_debug_flags = marlin_debug_flags;
  3590. if (query) marlin_debug_flags |= DEBUG_LEVELING;
  3591. if (DEBUGGING(LEVELING)) {
  3592. DEBUG_POS(">>> gcode_G29", current_position);
  3593. log_machine_info();
  3594. }
  3595. marlin_debug_flags = old_debug_flags;
  3596. #if DISABLED(PROBE_MANUALLY)
  3597. if (query) return;
  3598. #endif
  3599. #endif
  3600. #if ENABLED(DEBUG_LEVELING_FEATURE) && DISABLED(PROBE_MANUALLY)
  3601. const bool faux = code_seen('C') && code_value_bool();
  3602. #else
  3603. bool constexpr faux = false;
  3604. #endif
  3605. // Don't allow auto-leveling without homing first
  3606. if (axis_unhomed_error(true, true, true)) return;
  3607. // Define local vars 'static' for manual probing, 'auto' otherwise
  3608. #if ENABLED(PROBE_MANUALLY)
  3609. #define ABL_VAR static
  3610. #else
  3611. #define ABL_VAR
  3612. #endif
  3613. ABL_VAR int verbose_level;
  3614. ABL_VAR float xProbe, yProbe, measured_z;
  3615. ABL_VAR bool dryrun, abl_should_enable;
  3616. #if ENABLED(PROBE_MANUALLY) || ENABLED(AUTO_BED_LEVELING_LINEAR)
  3617. ABL_VAR int abl_probe_index;
  3618. #endif
  3619. #if HAS_SOFTWARE_ENDSTOPS && ENABLED(PROBE_MANUALLY)
  3620. ABL_VAR bool enable_soft_endstops = true;
  3621. #endif
  3622. #if ABL_GRID
  3623. #if ENABLED(PROBE_MANUALLY)
  3624. ABL_VAR uint8_t PR_OUTER_VAR;
  3625. ABL_VAR int8_t PR_INNER_VAR;
  3626. #endif
  3627. ABL_VAR int left_probe_bed_position, right_probe_bed_position, front_probe_bed_position, back_probe_bed_position;
  3628. ABL_VAR float xGridSpacing, yGridSpacing;
  3629. #define ABL_GRID_MAX (GRID_MAX_POINTS_X) * (GRID_MAX_POINTS_Y)
  3630. #if ABL_PLANAR
  3631. ABL_VAR uint8_t abl_grid_points_x = GRID_MAX_POINTS_X,
  3632. abl_grid_points_y = GRID_MAX_POINTS_Y;
  3633. ABL_VAR bool do_topography_map;
  3634. #else // 3-point
  3635. uint8_t constexpr abl_grid_points_x = GRID_MAX_POINTS_X,
  3636. abl_grid_points_y = GRID_MAX_POINTS_Y;
  3637. #endif
  3638. #if ENABLED(AUTO_BED_LEVELING_LINEAR) || ENABLED(PROBE_MANUALLY)
  3639. #if ABL_PLANAR
  3640. ABL_VAR int abl2;
  3641. #else // 3-point
  3642. int constexpr abl2 = ABL_GRID_MAX;
  3643. #endif
  3644. #endif
  3645. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3646. ABL_VAR float zoffset;
  3647. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3648. ABL_VAR int indexIntoAB[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  3649. ABL_VAR float eqnAMatrix[ABL_GRID_MAX * 3], // "A" matrix of the linear system of equations
  3650. eqnBVector[ABL_GRID_MAX], // "B" vector of Z points
  3651. mean;
  3652. #endif
  3653. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3654. // Probe at 3 arbitrary points
  3655. ABL_VAR vector_3 points[3] = {
  3656. vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, 0),
  3657. vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, 0),
  3658. vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, 0)
  3659. };
  3660. #endif // AUTO_BED_LEVELING_3POINT
  3661. /**
  3662. * On the initial G29 fetch command parameters.
  3663. */
  3664. if (!g29_in_progress) {
  3665. #if ENABLED(PROBE_MANUALLY) || ENABLED(AUTO_BED_LEVELING_LINEAR)
  3666. abl_probe_index = 0;
  3667. #endif
  3668. abl_should_enable = planner.abl_enabled;
  3669. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3670. if (code_seen('W')) {
  3671. if (!bilinear_grid_spacing[X_AXIS]) {
  3672. SERIAL_ERROR_START;
  3673. SERIAL_ERRORLNPGM("No bilinear grid");
  3674. return;
  3675. }
  3676. const float z = code_seen('Z') && code_has_value() ? code_value_float() : 99999;
  3677. if (!WITHIN(z, -10, 10)) {
  3678. SERIAL_ERROR_START;
  3679. SERIAL_ERRORLNPGM("Bad Z value");
  3680. return;
  3681. }
  3682. const float x = code_seen('X') && code_has_value() ? code_value_float() : 99999,
  3683. y = code_seen('Y') && code_has_value() ? code_value_float() : 99999;
  3684. int8_t i = code_seen('I') && code_has_value() ? code_value_byte() : -1,
  3685. j = code_seen('J') && code_has_value() ? code_value_byte() : -1;
  3686. if (x < 99998 && y < 99998) {
  3687. // Get nearest i / j from x / y
  3688. i = (x - LOGICAL_X_POSITION(bilinear_start[X_AXIS]) + 0.5 * xGridSpacing) / xGridSpacing;
  3689. j = (y - LOGICAL_Y_POSITION(bilinear_start[Y_AXIS]) + 0.5 * yGridSpacing) / yGridSpacing;
  3690. i = constrain(i, 0, GRID_MAX_POINTS_X - 1);
  3691. j = constrain(j, 0, GRID_MAX_POINTS_Y - 1);
  3692. }
  3693. if (WITHIN(i, 0, GRID_MAX_POINTS_X - 1) && WITHIN(j, 0, GRID_MAX_POINTS_Y)) {
  3694. set_bed_leveling_enabled(false);
  3695. z_values[i][j] = z;
  3696. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  3697. bed_level_virt_interpolate();
  3698. #endif
  3699. set_bed_leveling_enabled(abl_should_enable);
  3700. }
  3701. return;
  3702. } // code_seen('W')
  3703. #endif
  3704. #if HAS_LEVELING
  3705. // Jettison bed leveling data
  3706. if (code_seen('J')) {
  3707. reset_bed_level();
  3708. return;
  3709. }
  3710. #endif
  3711. verbose_level = code_seen('V') && code_has_value() ? code_value_int() : 0;
  3712. if (!WITHIN(verbose_level, 0, 4)) {
  3713. SERIAL_PROTOCOLLNPGM("?(V)erbose Level is implausible (0-4).");
  3714. return;
  3715. }
  3716. dryrun = code_seen('D') && code_value_bool();
  3717. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3718. do_topography_map = verbose_level > 2 || code_seen('T');
  3719. // X and Y specify points in each direction, overriding the default
  3720. // These values may be saved with the completed mesh
  3721. abl_grid_points_x = code_seen('X') ? code_value_int() : GRID_MAX_POINTS_X;
  3722. abl_grid_points_y = code_seen('Y') ? code_value_int() : GRID_MAX_POINTS_Y;
  3723. if (code_seen('P')) abl_grid_points_x = abl_grid_points_y = code_value_int();
  3724. if (abl_grid_points_x < 2 || abl_grid_points_y < 2) {
  3725. SERIAL_PROTOCOLLNPGM("?Number of probe points is implausible (2 minimum).");
  3726. return;
  3727. }
  3728. abl2 = abl_grid_points_x * abl_grid_points_y;
  3729. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3730. zoffset = code_seen('Z') ? code_value_linear_units() : 0;
  3731. #endif
  3732. #if ABL_GRID
  3733. xy_probe_feedrate_mm_s = MMM_TO_MMS(code_seen('S') ? code_value_linear_units() : XY_PROBE_SPEED);
  3734. left_probe_bed_position = code_seen('L') ? (int)code_value_linear_units() : LOGICAL_X_POSITION(LEFT_PROBE_BED_POSITION);
  3735. right_probe_bed_position = code_seen('R') ? (int)code_value_linear_units() : LOGICAL_X_POSITION(RIGHT_PROBE_BED_POSITION);
  3736. front_probe_bed_position = code_seen('F') ? (int)code_value_linear_units() : LOGICAL_Y_POSITION(FRONT_PROBE_BED_POSITION);
  3737. back_probe_bed_position = code_seen('B') ? (int)code_value_linear_units() : LOGICAL_Y_POSITION(BACK_PROBE_BED_POSITION);
  3738. const bool left_out_l = left_probe_bed_position < LOGICAL_X_POSITION(MIN_PROBE_X),
  3739. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  3740. right_out_r = right_probe_bed_position > LOGICAL_X_POSITION(MAX_PROBE_X),
  3741. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  3742. front_out_f = front_probe_bed_position < LOGICAL_Y_POSITION(MIN_PROBE_Y),
  3743. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  3744. back_out_b = back_probe_bed_position > LOGICAL_Y_POSITION(MAX_PROBE_Y),
  3745. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  3746. if (left_out || right_out || front_out || back_out) {
  3747. if (left_out) {
  3748. out_of_range_error(PSTR("(L)eft"));
  3749. left_probe_bed_position = left_out_l ? LOGICAL_X_POSITION(MIN_PROBE_X) : right_probe_bed_position - (MIN_PROBE_EDGE);
  3750. }
  3751. if (right_out) {
  3752. out_of_range_error(PSTR("(R)ight"));
  3753. right_probe_bed_position = right_out_r ? LOGICAL_Y_POSITION(MAX_PROBE_X) : left_probe_bed_position + MIN_PROBE_EDGE;
  3754. }
  3755. if (front_out) {
  3756. out_of_range_error(PSTR("(F)ront"));
  3757. front_probe_bed_position = front_out_f ? LOGICAL_Y_POSITION(MIN_PROBE_Y) : back_probe_bed_position - (MIN_PROBE_EDGE);
  3758. }
  3759. if (back_out) {
  3760. out_of_range_error(PSTR("(B)ack"));
  3761. back_probe_bed_position = back_out_b ? LOGICAL_Y_POSITION(MAX_PROBE_Y) : front_probe_bed_position + MIN_PROBE_EDGE;
  3762. }
  3763. return;
  3764. }
  3765. // probe at the points of a lattice grid
  3766. xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (abl_grid_points_x - 1);
  3767. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (abl_grid_points_y - 1);
  3768. #endif // ABL_GRID
  3769. if (verbose_level > 0) {
  3770. SERIAL_PROTOCOLLNPGM("G29 Auto Bed Leveling");
  3771. if (dryrun) SERIAL_PROTOCOLLNPGM("Running in DRY-RUN mode");
  3772. }
  3773. stepper.synchronize();
  3774. // Disable auto bed leveling during G29
  3775. planner.abl_enabled = false;
  3776. if (!dryrun) {
  3777. // Re-orient the current position without leveling
  3778. // based on where the steppers are positioned.
  3779. set_current_from_steppers_for_axis(ALL_AXES);
  3780. // Sync the planner to where the steppers stopped
  3781. SYNC_PLAN_POSITION_KINEMATIC();
  3782. }
  3783. if (!faux) setup_for_endstop_or_probe_move();
  3784. //xProbe = yProbe = measured_z = 0;
  3785. #if HAS_BED_PROBE
  3786. // Deploy the probe. Probe will raise if needed.
  3787. if (DEPLOY_PROBE()) {
  3788. planner.abl_enabled = abl_should_enable;
  3789. return;
  3790. }
  3791. #endif
  3792. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3793. if ( xGridSpacing != bilinear_grid_spacing[X_AXIS]
  3794. || yGridSpacing != bilinear_grid_spacing[Y_AXIS]
  3795. || left_probe_bed_position != LOGICAL_X_POSITION(bilinear_start[X_AXIS])
  3796. || front_probe_bed_position != LOGICAL_Y_POSITION(bilinear_start[Y_AXIS])
  3797. ) {
  3798. if (dryrun) {
  3799. // Before reset bed level, re-enable to correct the position
  3800. planner.abl_enabled = abl_should_enable;
  3801. }
  3802. // Reset grid to 0.0 or "not probed". (Also disables ABL)
  3803. reset_bed_level();
  3804. // Initialize a grid with the given dimensions
  3805. bilinear_grid_spacing[X_AXIS] = xGridSpacing;
  3806. bilinear_grid_spacing[Y_AXIS] = yGridSpacing;
  3807. bilinear_start[X_AXIS] = RAW_X_POSITION(left_probe_bed_position);
  3808. bilinear_start[Y_AXIS] = RAW_Y_POSITION(front_probe_bed_position);
  3809. // Can't re-enable (on error) until the new grid is written
  3810. abl_should_enable = false;
  3811. }
  3812. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3813. mean = 0.0;
  3814. #endif // AUTO_BED_LEVELING_LINEAR
  3815. #if ENABLED(AUTO_BED_LEVELING_3POINT)
  3816. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3817. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> 3-point Leveling");
  3818. #endif
  3819. // Probe at 3 arbitrary points
  3820. points[0].z = points[1].z = points[2].z = 0;
  3821. #endif // AUTO_BED_LEVELING_3POINT
  3822. } // !g29_in_progress
  3823. #if ENABLED(PROBE_MANUALLY)
  3824. // Abort current G29 procedure, go back to ABLStart
  3825. if (code_seen('A') && g29_in_progress) {
  3826. SERIAL_PROTOCOLLNPGM("Manual G29 aborted");
  3827. #if HAS_SOFTWARE_ENDSTOPS
  3828. soft_endstops_enabled = enable_soft_endstops;
  3829. #endif
  3830. planner.abl_enabled = abl_should_enable;
  3831. g29_in_progress = false;
  3832. }
  3833. // Query G29 status
  3834. if (code_seen('Q')) {
  3835. if (!g29_in_progress)
  3836. SERIAL_PROTOCOLLNPGM("Manual G29 idle");
  3837. else {
  3838. SERIAL_PROTOCOLPAIR("Manual G29 point ", abl_probe_index + 1);
  3839. SERIAL_PROTOCOLLNPAIR(" of ", abl2);
  3840. }
  3841. }
  3842. if (code_seen('A') || code_seen('Q')) return;
  3843. // Fall through to probe the first point
  3844. g29_in_progress = true;
  3845. if (abl_probe_index == 0) {
  3846. // For the initial G29 save software endstop state
  3847. #if HAS_SOFTWARE_ENDSTOPS
  3848. enable_soft_endstops = soft_endstops_enabled;
  3849. #endif
  3850. }
  3851. else {
  3852. // For G29 after adjusting Z.
  3853. // Save the previous Z before going to the next point
  3854. measured_z = current_position[Z_AXIS];
  3855. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3856. mean += measured_z;
  3857. eqnBVector[abl_probe_index] = measured_z;
  3858. eqnAMatrix[abl_probe_index + 0 * abl2] = xProbe;
  3859. eqnAMatrix[abl_probe_index + 1 * abl2] = yProbe;
  3860. eqnAMatrix[abl_probe_index + 2 * abl2] = 1;
  3861. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3862. z_values[xCount][yCount] = measured_z + zoffset;
  3863. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3864. points[i].z = measured_z;
  3865. #endif
  3866. }
  3867. //
  3868. // If there's another point to sample, move there with optional lift.
  3869. //
  3870. #if ABL_GRID
  3871. // Find a next point to probe
  3872. // On the first G29 this will be the first probe point
  3873. while (abl_probe_index < abl2) {
  3874. // Set xCount, yCount based on abl_probe_index, with zig-zag
  3875. PR_OUTER_VAR = abl_probe_index / PR_INNER_END;
  3876. PR_INNER_VAR = abl_probe_index - (PR_OUTER_VAR * PR_INNER_END);
  3877. bool zig = (PR_OUTER_VAR & 1) != ((PR_OUTER_END) & 1);
  3878. if (zig) PR_INNER_VAR = (PR_INNER_END - 1) - PR_INNER_VAR;
  3879. const float xBase = left_probe_bed_position + xGridSpacing * xCount,
  3880. yBase = front_probe_bed_position + yGridSpacing * yCount;
  3881. xProbe = floor(xBase + (xBase < 0 ? 0 : 0.5));
  3882. yProbe = floor(yBase + (yBase < 0 ? 0 : 0.5));
  3883. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3884. indexIntoAB[xCount][yCount] = abl_probe_index;
  3885. #endif
  3886. float pos[XYZ] = { xProbe, yProbe, 0 };
  3887. if (position_is_reachable(pos)) break;
  3888. ++abl_probe_index;
  3889. }
  3890. // Is there a next point to move to?
  3891. if (abl_probe_index < abl2) {
  3892. _manual_goto_xy(xProbe, yProbe); // Can be used here too!
  3893. ++abl_probe_index;
  3894. #if HAS_SOFTWARE_ENDSTOPS
  3895. // Disable software endstops to allow manual adjustment
  3896. // If G29 is not completed, they will not be re-enabled
  3897. soft_endstops_enabled = false;
  3898. #endif
  3899. return;
  3900. }
  3901. else {
  3902. // Then leveling is done!
  3903. // G29 finishing code goes here
  3904. // After recording the last point, activate abl
  3905. SERIAL_PROTOCOLLNPGM("Grid probing done.");
  3906. g29_in_progress = false;
  3907. // Re-enable software endstops, if needed
  3908. #if HAS_SOFTWARE_ENDSTOPS
  3909. soft_endstops_enabled = enable_soft_endstops;
  3910. #endif
  3911. }
  3912. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3913. // Probe at 3 arbitrary points
  3914. if (abl_probe_index < 3) {
  3915. xProbe = LOGICAL_X_POSITION(points[i].x);
  3916. yProbe = LOGICAL_Y_POSITION(points[i].y);
  3917. ++abl_probe_index;
  3918. #if HAS_SOFTWARE_ENDSTOPS
  3919. // Disable software endstops to allow manual adjustment
  3920. // If G29 is not completed, they will not be re-enabled
  3921. soft_endstops_enabled = false;
  3922. #endif
  3923. return;
  3924. }
  3925. else {
  3926. SERIAL_PROTOCOLLNPGM("3-point probing done.");
  3927. g29_in_progress = false;
  3928. // Re-enable software endstops, if needed
  3929. #if HAS_SOFTWARE_ENDSTOPS
  3930. soft_endstops_enabled = enable_soft_endstops;
  3931. #endif
  3932. if (!dryrun) {
  3933. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  3934. if (planeNormal.z < 0) {
  3935. planeNormal.x *= -1;
  3936. planeNormal.y *= -1;
  3937. planeNormal.z *= -1;
  3938. }
  3939. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  3940. // Can't re-enable (on error) until the new grid is written
  3941. abl_should_enable = false;
  3942. }
  3943. }
  3944. #endif // AUTO_BED_LEVELING_3POINT
  3945. #else // !PROBE_MANUALLY
  3946. bool stow_probe_after_each = code_seen('E');
  3947. #if ABL_GRID
  3948. bool zig = PR_OUTER_END & 1; // Always end at RIGHT and BACK_PROBE_BED_POSITION
  3949. // Outer loop is Y with PROBE_Y_FIRST disabled
  3950. for (uint8_t PR_OUTER_VAR = 0; PR_OUTER_VAR < PR_OUTER_END; PR_OUTER_VAR++) {
  3951. int8_t inStart, inStop, inInc;
  3952. if (zig) { // away from origin
  3953. inStart = 0;
  3954. inStop = PR_INNER_END;
  3955. inInc = 1;
  3956. }
  3957. else { // towards origin
  3958. inStart = PR_INNER_END - 1;
  3959. inStop = -1;
  3960. inInc = -1;
  3961. }
  3962. zig ^= true; // zag
  3963. // Inner loop is Y with PROBE_Y_FIRST enabled
  3964. for (int8_t PR_INNER_VAR = inStart; PR_INNER_VAR != inStop; PR_INNER_VAR += inInc) {
  3965. float xBase = left_probe_bed_position + xGridSpacing * xCount,
  3966. yBase = front_probe_bed_position + yGridSpacing * yCount;
  3967. xProbe = floor(xBase + (xBase < 0 ? 0 : 0.5));
  3968. yProbe = floor(yBase + (yBase < 0 ? 0 : 0.5));
  3969. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3970. indexIntoAB[xCount][yCount] = ++abl_probe_index;
  3971. #endif
  3972. #if IS_KINEMATIC
  3973. // Avoid probing outside the round or hexagonal area
  3974. const float pos[XYZ] = { xProbe, yProbe, 0 };
  3975. if (!position_is_reachable(pos, true)) continue;
  3976. #endif
  3977. measured_z = faux ? 0.001 * random(-100, 101) : probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  3978. if (isnan(measured_z)) {
  3979. planner.abl_enabled = abl_should_enable;
  3980. return;
  3981. }
  3982. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3983. mean += measured_z;
  3984. eqnBVector[abl_probe_index] = measured_z;
  3985. eqnAMatrix[abl_probe_index + 0 * abl2] = xProbe;
  3986. eqnAMatrix[abl_probe_index + 1 * abl2] = yProbe;
  3987. eqnAMatrix[abl_probe_index + 2 * abl2] = 1;
  3988. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3989. z_values[xCount][yCount] = measured_z + zoffset;
  3990. #endif
  3991. abl_should_enable = false;
  3992. idle();
  3993. } // inner
  3994. } // outer
  3995. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3996. // Probe at 3 arbitrary points
  3997. for (uint8_t i = 0; i < 3; ++i) {
  3998. // Retain the last probe position
  3999. xProbe = LOGICAL_X_POSITION(points[i].x);
  4000. yProbe = LOGICAL_Y_POSITION(points[i].y);
  4001. measured_z = points[i].z = faux ? 0.001 * random(-100, 101) : probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  4002. }
  4003. if (isnan(measured_z)) {
  4004. planner.abl_enabled = abl_should_enable;
  4005. return;
  4006. }
  4007. if (!dryrun) {
  4008. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  4009. if (planeNormal.z < 0) {
  4010. planeNormal.x *= -1;
  4011. planeNormal.y *= -1;
  4012. planeNormal.z *= -1;
  4013. }
  4014. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  4015. // Can't re-enable (on error) until the new grid is written
  4016. abl_should_enable = false;
  4017. }
  4018. #endif // AUTO_BED_LEVELING_3POINT
  4019. // Raise to _Z_CLEARANCE_DEPLOY_PROBE. Stow the probe.
  4020. if (STOW_PROBE()) {
  4021. planner.abl_enabled = abl_should_enable;
  4022. return;
  4023. }
  4024. #endif // !PROBE_MANUALLY
  4025. //
  4026. // G29 Finishing Code
  4027. //
  4028. // Unless this is a dry run, auto bed leveling will
  4029. // definitely be enabled after this point
  4030. //
  4031. // Restore state after probing
  4032. if (!faux) clean_up_after_endstop_or_probe_move();
  4033. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4034. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  4035. #endif
  4036. // Calculate leveling, print reports, correct the position
  4037. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  4038. if (!dryrun) extrapolate_unprobed_bed_level();
  4039. print_bilinear_leveling_grid();
  4040. refresh_bed_level();
  4041. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  4042. bed_level_virt_print();
  4043. #endif
  4044. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  4045. // For LINEAR leveling calculate matrix, print reports, correct the position
  4046. /**
  4047. * solve the plane equation ax + by + d = z
  4048. * A is the matrix with rows [x y 1] for all the probed points
  4049. * B is the vector of the Z positions
  4050. * the normal vector to the plane is formed by the coefficients of the
  4051. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  4052. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  4053. */
  4054. float plane_equation_coefficients[3];
  4055. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  4056. mean /= abl2;
  4057. if (verbose_level) {
  4058. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  4059. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  4060. SERIAL_PROTOCOLPGM(" b: ");
  4061. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  4062. SERIAL_PROTOCOLPGM(" d: ");
  4063. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  4064. SERIAL_EOL;
  4065. if (verbose_level > 2) {
  4066. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  4067. SERIAL_PROTOCOL_F(mean, 8);
  4068. SERIAL_EOL;
  4069. }
  4070. }
  4071. // Create the matrix but don't correct the position yet
  4072. if (!dryrun) {
  4073. planner.bed_level_matrix = matrix_3x3::create_look_at(
  4074. vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1)
  4075. );
  4076. }
  4077. // Show the Topography map if enabled
  4078. if (do_topography_map) {
  4079. SERIAL_PROTOCOLLNPGM("\nBed Height Topography:\n"
  4080. " +--- BACK --+\n"
  4081. " | |\n"
  4082. " L | (+) | R\n"
  4083. " E | | I\n"
  4084. " F | (-) N (+) | G\n"
  4085. " T | | H\n"
  4086. " | (-) | T\n"
  4087. " | |\n"
  4088. " O-- FRONT --+\n"
  4089. " (0,0)");
  4090. float min_diff = 999;
  4091. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  4092. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  4093. int ind = indexIntoAB[xx][yy];
  4094. float diff = eqnBVector[ind] - mean,
  4095. x_tmp = eqnAMatrix[ind + 0 * abl2],
  4096. y_tmp = eqnAMatrix[ind + 1 * abl2],
  4097. z_tmp = 0;
  4098. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  4099. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  4100. if (diff >= 0.0)
  4101. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  4102. else
  4103. SERIAL_PROTOCOLCHAR(' ');
  4104. SERIAL_PROTOCOL_F(diff, 5);
  4105. } // xx
  4106. SERIAL_EOL;
  4107. } // yy
  4108. SERIAL_EOL;
  4109. if (verbose_level > 3) {
  4110. SERIAL_PROTOCOLLNPGM("\nCorrected Bed Height vs. Bed Topology:");
  4111. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  4112. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  4113. int ind = indexIntoAB[xx][yy];
  4114. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  4115. y_tmp = eqnAMatrix[ind + 1 * abl2],
  4116. z_tmp = 0;
  4117. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  4118. float diff = eqnBVector[ind] - z_tmp - min_diff;
  4119. if (diff >= 0.0)
  4120. SERIAL_PROTOCOLPGM(" +");
  4121. // Include + for column alignment
  4122. else
  4123. SERIAL_PROTOCOLCHAR(' ');
  4124. SERIAL_PROTOCOL_F(diff, 5);
  4125. } // xx
  4126. SERIAL_EOL;
  4127. } // yy
  4128. SERIAL_EOL;
  4129. }
  4130. } //do_topography_map
  4131. #endif // AUTO_BED_LEVELING_LINEAR
  4132. #if ABL_PLANAR
  4133. // For LINEAR and 3POINT leveling correct the current position
  4134. if (verbose_level > 0)
  4135. planner.bed_level_matrix.debug(PSTR("\n\nBed Level Correction Matrix:"));
  4136. if (!dryrun) {
  4137. //
  4138. // Correct the current XYZ position based on the tilted plane.
  4139. //
  4140. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4141. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 uncorrected XYZ", current_position);
  4142. #endif
  4143. float converted[XYZ];
  4144. COPY(converted, current_position);
  4145. planner.abl_enabled = true;
  4146. planner.unapply_leveling(converted); // use conversion machinery
  4147. planner.abl_enabled = false;
  4148. // Use the last measured distance to the bed, if possible
  4149. if ( NEAR(current_position[X_AXIS], xProbe - (X_PROBE_OFFSET_FROM_EXTRUDER))
  4150. && NEAR(current_position[Y_AXIS], yProbe - (Y_PROBE_OFFSET_FROM_EXTRUDER))
  4151. ) {
  4152. float simple_z = current_position[Z_AXIS] - measured_z;
  4153. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4154. if (DEBUGGING(LEVELING)) {
  4155. SERIAL_ECHOPAIR("Z from Probe:", simple_z);
  4156. SERIAL_ECHOPAIR(" Matrix:", converted[Z_AXIS]);
  4157. SERIAL_ECHOLNPAIR(" Discrepancy:", simple_z - converted[Z_AXIS]);
  4158. }
  4159. #endif
  4160. converted[Z_AXIS] = simple_z;
  4161. }
  4162. // The rotated XY and corrected Z are now current_position
  4163. COPY(current_position, converted);
  4164. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4165. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 corrected XYZ", current_position);
  4166. #endif
  4167. }
  4168. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  4169. if (!dryrun) {
  4170. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4171. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("G29 uncorrected Z:", current_position[Z_AXIS]);
  4172. #endif
  4173. // Unapply the offset because it is going to be immediately applied
  4174. // and cause compensation movement in Z
  4175. current_position[Z_AXIS] -= bilinear_z_offset(current_position);
  4176. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4177. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR(" corrected Z:", current_position[Z_AXIS]);
  4178. #endif
  4179. }
  4180. #endif // ABL_PLANAR
  4181. #ifdef Z_PROBE_END_SCRIPT
  4182. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4183. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("Z Probe End Script: ", Z_PROBE_END_SCRIPT);
  4184. #endif
  4185. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  4186. stepper.synchronize();
  4187. #endif
  4188. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4189. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G29");
  4190. #endif
  4191. report_current_position();
  4192. KEEPALIVE_STATE(IN_HANDLER);
  4193. // Auto Bed Leveling is complete! Enable if possible.
  4194. planner.abl_enabled = dryrun ? abl_should_enable : true;
  4195. if (planner.abl_enabled)
  4196. SYNC_PLAN_POSITION_KINEMATIC();
  4197. }
  4198. #endif // HAS_ABL && !AUTO_BED_LEVELING_UBL
  4199. #if HAS_BED_PROBE
  4200. /**
  4201. * G30: Do a single Z probe at the current XY
  4202. *
  4203. * Parameters:
  4204. *
  4205. * X Probe X position (default current X)
  4206. * Y Probe Y position (default current Y)
  4207. * S0 Leave the probe deployed
  4208. */
  4209. inline void gcode_G30() {
  4210. const float xpos = code_seen('X') ? code_value_linear_units() : current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  4211. ypos = code_seen('Y') ? code_value_linear_units() : current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  4212. pos[XYZ] = { xpos, ypos, LOGICAL_Z_POSITION(0) };
  4213. if (!position_is_reachable(pos, true)) return;
  4214. // Disable leveling so the planner won't mess with us
  4215. #if HAS_LEVELING
  4216. set_bed_leveling_enabled(false);
  4217. #endif
  4218. setup_for_endstop_or_probe_move();
  4219. const float measured_z = probe_pt(xpos, ypos, !code_seen('S') || code_value_bool(), 1);
  4220. SERIAL_PROTOCOLPAIR("Bed X: ", FIXFLOAT(xpos));
  4221. SERIAL_PROTOCOLPAIR(" Y: ", FIXFLOAT(ypos));
  4222. SERIAL_PROTOCOLLNPAIR(" Z: ", FIXFLOAT(measured_z));
  4223. clean_up_after_endstop_or_probe_move();
  4224. report_current_position();
  4225. }
  4226. #if ENABLED(Z_PROBE_SLED)
  4227. /**
  4228. * G31: Deploy the Z probe
  4229. */
  4230. inline void gcode_G31() { DEPLOY_PROBE(); }
  4231. /**
  4232. * G32: Stow the Z probe
  4233. */
  4234. inline void gcode_G32() { STOW_PROBE(); }
  4235. #endif // Z_PROBE_SLED
  4236. #if ENABLED(DELTA_AUTO_CALIBRATION)
  4237. /**
  4238. * G33 - Delta '1-4-7-point' Auto-Calibration
  4239. * Calibrate height, endstops, delta radius, and tower angles.
  4240. *
  4241. * Parameters:
  4242. *
  4243. * P Number of probe points:
  4244. *
  4245. * P1 Probe center and set height only.
  4246. * P2 Probe center and towers. Set height, endstops, and delta radius.
  4247. * P3 Probe all positions: center, towers and opposite towers. Set all.
  4248. * P4-P7 Probe all positions at different locations and average them.
  4249. *
  4250. * A Abort delta height calibration after 1 probe (only P1)
  4251. *
  4252. * O Use opposite tower points instead of tower points (only P2)
  4253. *
  4254. * T Don't calibrate tower angle corrections (P3-P7)
  4255. *
  4256. * V Verbose level:
  4257. *
  4258. * V0 Dry-run mode. Report settings and probe results. No calibration.
  4259. * V1 Report settings
  4260. * V2 Report settings and probe results
  4261. */
  4262. inline void gcode_G33() {
  4263. const int8_t probe_points = code_seen('P') ? code_value_int() : DELTA_CALIBRATION_DEFAULT_POINTS;
  4264. if (!WITHIN(probe_points, 1, 7)) {
  4265. SERIAL_PROTOCOLLNPGM("?(P)oints is implausible (1 to 7).");
  4266. return;
  4267. }
  4268. const int8_t verbose_level = code_seen('V') ? code_value_byte() : 1;
  4269. if (!WITHIN(verbose_level, 0, 2)) {
  4270. SERIAL_PROTOCOLLNPGM("?(V)erbose Level is implausible (0-2).");
  4271. return;
  4272. }
  4273. const bool do_height_only = probe_points == 1,
  4274. do_center_and_towers = probe_points == 2,
  4275. do_all_positions = probe_points == 3,
  4276. do_circle_x2 = probe_points == 5,
  4277. do_circle_x3 = probe_points == 6,
  4278. do_circle_x4 = probe_points == 7,
  4279. probe_center_plus_3 = probe_points >= 3,
  4280. point_averaging = probe_points >= 4,
  4281. probe_center_plus_6 = probe_points >= 5;
  4282. const char negating_parameter = do_height_only ? 'A' : do_center_and_towers ? 'O' : 'T';
  4283. int8_t probe_mode = code_seen(negating_parameter) && code_value_bool() ? -probe_points : probe_points;
  4284. SERIAL_PROTOCOLLNPGM("G33 Auto Calibrate");
  4285. #if HAS_LEVELING
  4286. set_bed_leveling_enabled(false);
  4287. #endif
  4288. home_all_axes();
  4289. const static char save_message[] PROGMEM = "Save with M500 and/or copy to Configuration.h";
  4290. float test_precision,
  4291. zero_std_dev = (verbose_level ? 999.0 : 0.0), // 0.0 in dry-run mode : forced end
  4292. e_old[XYZ] = {
  4293. endstop_adj[A_AXIS],
  4294. endstop_adj[B_AXIS],
  4295. endstop_adj[C_AXIS]
  4296. },
  4297. dr_old = delta_radius,
  4298. zh_old = home_offset[Z_AXIS],
  4299. alpha_old = delta_tower_angle_trim[A_AXIS],
  4300. beta_old = delta_tower_angle_trim[B_AXIS];
  4301. // print settings
  4302. SERIAL_PROTOCOLPGM("Checking... AC");
  4303. if (verbose_level == 0) SERIAL_PROTOCOLPGM(" (DRY-RUN)");
  4304. SERIAL_EOL;
  4305. LCD_MESSAGEPGM("Checking... AC");
  4306. SERIAL_PROTOCOLPAIR(".Height:", DELTA_HEIGHT + home_offset[Z_AXIS]);
  4307. if (!do_height_only) {
  4308. SERIAL_PROTOCOLPGM(" Ex:");
  4309. if (endstop_adj[A_AXIS] >= 0) SERIAL_CHAR('+');
  4310. SERIAL_PROTOCOL_F(endstop_adj[A_AXIS], 2);
  4311. SERIAL_PROTOCOLPGM(" Ey:");
  4312. if (endstop_adj[B_AXIS] >= 0) SERIAL_CHAR('+');
  4313. SERIAL_PROTOCOL_F(endstop_adj[B_AXIS], 2);
  4314. SERIAL_PROTOCOLPGM(" Ez:");
  4315. if (endstop_adj[C_AXIS] >= 0) SERIAL_CHAR('+');
  4316. SERIAL_PROTOCOL_F(endstop_adj[C_AXIS], 2);
  4317. SERIAL_PROTOCOLPAIR(" Radius:", delta_radius);
  4318. }
  4319. SERIAL_EOL;
  4320. if (probe_mode > 2) { // negative disables tower angles
  4321. SERIAL_PROTOCOLPGM(".Tower angle : Tx:");
  4322. if (delta_tower_angle_trim[A_AXIS] >= 0) SERIAL_CHAR('+');
  4323. SERIAL_PROTOCOL_F(delta_tower_angle_trim[A_AXIS], 2);
  4324. SERIAL_PROTOCOLPGM(" Ty:");
  4325. if (delta_tower_angle_trim[B_AXIS] >= 0) SERIAL_CHAR('+');
  4326. SERIAL_PROTOCOL_F(delta_tower_angle_trim[B_AXIS], 2);
  4327. SERIAL_PROTOCOLPGM(" Tz:+0.00");
  4328. SERIAL_EOL;
  4329. }
  4330. #if ENABLED(Z_PROBE_SLED)
  4331. DEPLOY_PROBE();
  4332. #endif
  4333. int8_t iterations = 0;
  4334. do {
  4335. float z_at_pt[13] = { 0 },
  4336. S1 = 0.0,
  4337. S2 = 0.0;
  4338. int16_t N = 0;
  4339. test_precision = zero_std_dev;
  4340. iterations++;
  4341. // Probe the points
  4342. if (!do_all_positions && !do_circle_x3) { // probe the center
  4343. setup_for_endstop_or_probe_move();
  4344. z_at_pt[0] += probe_pt(0.0, 0.0 , true, 1);
  4345. clean_up_after_endstop_or_probe_move();
  4346. }
  4347. if (probe_center_plus_3) { // probe extra center points
  4348. for (int8_t axis = probe_center_plus_6 ? 11 : 9; axis > 0; axis -= probe_center_plus_6 ? 2 : 4) {
  4349. setup_for_endstop_or_probe_move();
  4350. z_at_pt[0] += probe_pt(
  4351. cos(RADIANS(180 + 30 * axis)) * (0.1 * delta_calibration_radius),
  4352. sin(RADIANS(180 + 30 * axis)) * (0.1 * delta_calibration_radius), true, 1);
  4353. clean_up_after_endstop_or_probe_move();
  4354. }
  4355. z_at_pt[0] /= float(do_circle_x2 ? 7 : probe_points);
  4356. }
  4357. if (!do_height_only) { // probe the radius
  4358. bool zig_zag = true;
  4359. for (uint8_t axis = (probe_mode == -2 ? 3 : 1); axis < 13;
  4360. axis += (do_center_and_towers ? 4 : do_all_positions ? 2 : 1)) {
  4361. float offset_circles = (do_circle_x4 ? (zig_zag ? 1.5 : 1.0) :
  4362. do_circle_x3 ? (zig_zag ? 1.0 : 0.5) :
  4363. do_circle_x2 ? (zig_zag ? 0.5 : 0.0) : 0);
  4364. for (float circles = -offset_circles ; circles <= offset_circles; circles++) {
  4365. setup_for_endstop_or_probe_move();
  4366. z_at_pt[axis] += probe_pt(
  4367. cos(RADIANS(180 + 30 * axis)) * delta_calibration_radius *
  4368. (1 + circles * 0.1 * (zig_zag ? 1 : -1)),
  4369. sin(RADIANS(180 + 30 * axis)) * delta_calibration_radius *
  4370. (1 + circles * 0.1 * (zig_zag ? 1 : -1)), true, 1);
  4371. clean_up_after_endstop_or_probe_move();
  4372. }
  4373. zig_zag = !zig_zag;
  4374. z_at_pt[axis] /= (2 * offset_circles + 1);
  4375. }
  4376. }
  4377. if (point_averaging) // average intermediates to tower and opposites
  4378. for (uint8_t axis = 1; axis <= 11; axis += 2)
  4379. z_at_pt[axis] = (z_at_pt[axis] + (z_at_pt[axis + 1] + z_at_pt[(axis + 10) % 12 + 1]) / 2.0) / 2.0;
  4380. S1 += z_at_pt[0];
  4381. S2 += sq(z_at_pt[0]);
  4382. N++;
  4383. if (!do_height_only) // std dev from zero plane
  4384. for (uint8_t axis = (probe_mode == -2 ? 3 : 1); axis < 13; axis += (do_center_and_towers ? 4 : 2)) {
  4385. S1 += z_at_pt[axis];
  4386. S2 += sq(z_at_pt[axis]);
  4387. N++;
  4388. }
  4389. zero_std_dev = round(sqrt(S2 / N) * 1000.0) / 1000.0 + 0.00001;
  4390. // Solve matrices
  4391. if (zero_std_dev < test_precision) {
  4392. COPY(e_old, endstop_adj);
  4393. dr_old = delta_radius;
  4394. zh_old = home_offset[Z_AXIS];
  4395. alpha_old = delta_tower_angle_trim[A_AXIS];
  4396. beta_old = delta_tower_angle_trim[B_AXIS];
  4397. float e_delta[XYZ] = { 0.0 }, r_delta = 0.0,
  4398. t_alpha = 0.0, t_beta = 0.0;
  4399. const float r_diff = delta_radius - delta_calibration_radius,
  4400. h_factor = 1.00 + r_diff * 0.001, //1.02 for r_diff = 20mm
  4401. r_factor = -(1.75 + 0.005 * r_diff + 0.001 * sq(r_diff)), //2.25 for r_diff = 20mm
  4402. a_factor = 100.0 / delta_calibration_radius; //1.25 for cal_rd = 80mm
  4403. #define ZP(N,I) ((N) * z_at_pt[I])
  4404. #define Z1000(I) ZP(1.00, I)
  4405. #define Z1050(I) ZP(h_factor, I)
  4406. #define Z0700(I) ZP(h_factor * 2.0 / 3.00, I)
  4407. #define Z0350(I) ZP(h_factor / 3.00, I)
  4408. #define Z0175(I) ZP(h_factor / 6.00, I)
  4409. #define Z2250(I) ZP(r_factor, I)
  4410. #define Z0750(I) ZP(r_factor / 3.00, I)
  4411. #define Z0375(I) ZP(r_factor / 6.00, I)
  4412. #define Z0444(I) ZP(a_factor * 4.0 / 9.0, I)
  4413. #define Z0888(I) ZP(a_factor * 8.0 / 9.0, I)
  4414. switch (probe_mode) {
  4415. case -1:
  4416. test_precision = 0.00;
  4417. case 1:
  4418. LOOP_XYZ(i) e_delta[i] = Z1000(0);
  4419. break;
  4420. case 2:
  4421. e_delta[X_AXIS] = Z1050(0) + Z0700(1) - Z0350(5) - Z0350(9);
  4422. e_delta[Y_AXIS] = Z1050(0) - Z0350(1) + Z0700(5) - Z0350(9);
  4423. e_delta[Z_AXIS] = Z1050(0) - Z0350(1) - Z0350(5) + Z0700(9);
  4424. r_delta = Z2250(0) - Z0750(1) - Z0750(5) - Z0750(9);
  4425. break;
  4426. case -2:
  4427. e_delta[X_AXIS] = Z1050(0) - Z0700(7) + Z0350(11) + Z0350(3);
  4428. e_delta[Y_AXIS] = Z1050(0) + Z0350(7) - Z0700(11) + Z0350(3);
  4429. e_delta[Z_AXIS] = Z1050(0) + Z0350(7) + Z0350(11) - Z0700(3);
  4430. r_delta = Z2250(0) - Z0750(7) - Z0750(11) - Z0750(3);
  4431. break;
  4432. default:
  4433. e_delta[X_AXIS] = Z1050(0) + Z0350(1) - Z0175(5) - Z0175(9) - Z0350(7) + Z0175(11) + Z0175(3);
  4434. e_delta[Y_AXIS] = Z1050(0) - Z0175(1) + Z0350(5) - Z0175(9) + Z0175(7) - Z0350(11) + Z0175(3);
  4435. e_delta[Z_AXIS] = Z1050(0) - Z0175(1) - Z0175(5) + Z0350(9) + Z0175(7) + Z0175(11) - Z0350(3);
  4436. r_delta = Z2250(0) - Z0375(1) - Z0375(5) - Z0375(9) - Z0375(7) - Z0375(11) - Z0375(3);
  4437. if (probe_mode > 0) { // negative disables tower angles
  4438. t_alpha = + Z0444(1) - Z0888(5) + Z0444(9) + Z0444(7) - Z0888(11) + Z0444(3);
  4439. t_beta = - Z0888(1) + Z0444(5) + Z0444(9) - Z0888(7) + Z0444(11) + Z0444(3);
  4440. }
  4441. break;
  4442. }
  4443. LOOP_XYZ(axis) endstop_adj[axis] += e_delta[axis];
  4444. delta_radius += r_delta;
  4445. delta_tower_angle_trim[A_AXIS] += t_alpha;
  4446. delta_tower_angle_trim[B_AXIS] -= t_beta;
  4447. // adjust delta_height and endstops by the max amount
  4448. const float z_temp = MAX3(endstop_adj[A_AXIS], endstop_adj[B_AXIS], endstop_adj[C_AXIS]);
  4449. home_offset[Z_AXIS] -= z_temp;
  4450. LOOP_XYZ(i) endstop_adj[i] -= z_temp;
  4451. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  4452. }
  4453. else { // step one back
  4454. COPY(endstop_adj, e_old);
  4455. delta_radius = dr_old;
  4456. home_offset[Z_AXIS] = zh_old;
  4457. delta_tower_angle_trim[A_AXIS] = alpha_old;
  4458. delta_tower_angle_trim[B_AXIS] = beta_old;
  4459. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  4460. }
  4461. // print report
  4462. if (verbose_level != 1) {
  4463. SERIAL_PROTOCOLPGM(". c:");
  4464. if (z_at_pt[0] > 0) SERIAL_CHAR('+');
  4465. SERIAL_PROTOCOL_F(z_at_pt[0], 2);
  4466. if (probe_mode == 2 || probe_center_plus_3) {
  4467. SERIAL_PROTOCOLPGM(" x:");
  4468. if (z_at_pt[1] >= 0) SERIAL_CHAR('+');
  4469. SERIAL_PROTOCOL_F(z_at_pt[1], 2);
  4470. SERIAL_PROTOCOLPGM(" y:");
  4471. if (z_at_pt[5] >= 0) SERIAL_CHAR('+');
  4472. SERIAL_PROTOCOL_F(z_at_pt[5], 2);
  4473. SERIAL_PROTOCOLPGM(" z:");
  4474. if (z_at_pt[9] >= 0) SERIAL_CHAR('+');
  4475. SERIAL_PROTOCOL_F(z_at_pt[9], 2);
  4476. }
  4477. if (probe_mode != -2) SERIAL_EOL;
  4478. if (probe_mode == -2 || probe_center_plus_3) {
  4479. if (probe_center_plus_3) {
  4480. SERIAL_CHAR('.');
  4481. SERIAL_PROTOCOL_SP(13);
  4482. }
  4483. SERIAL_PROTOCOLPGM(" yz:");
  4484. if (z_at_pt[7] >= 0) SERIAL_CHAR('+');
  4485. SERIAL_PROTOCOL_F(z_at_pt[7], 2);
  4486. SERIAL_PROTOCOLPGM(" zx:");
  4487. if (z_at_pt[11] >= 0) SERIAL_CHAR('+');
  4488. SERIAL_PROTOCOL_F(z_at_pt[11], 2);
  4489. SERIAL_PROTOCOLPGM(" xy:");
  4490. if (z_at_pt[3] >= 0) SERIAL_CHAR('+');
  4491. SERIAL_PROTOCOL_F(z_at_pt[3], 2);
  4492. SERIAL_EOL;
  4493. }
  4494. }
  4495. if (test_precision != 0.0) { // !forced end
  4496. if (zero_std_dev >= test_precision) { // end iterations
  4497. SERIAL_PROTOCOLPGM("Calibration OK");
  4498. SERIAL_PROTOCOL_SP(36);
  4499. SERIAL_PROTOCOLPGM("rolling back.");
  4500. SERIAL_EOL;
  4501. LCD_MESSAGEPGM("Calibration OK");
  4502. }
  4503. else { // !end iterations
  4504. char mess[15] = "No convergence";
  4505. if (iterations < 31)
  4506. sprintf_P(mess, PSTR("Iteration : %02i"), (int)iterations);
  4507. SERIAL_PROTOCOL(mess);
  4508. SERIAL_PROTOCOL_SP(36);
  4509. SERIAL_PROTOCOLPGM("std dev:");
  4510. SERIAL_PROTOCOL_F(zero_std_dev, 3);
  4511. SERIAL_EOL;
  4512. lcd_setstatus(mess);
  4513. }
  4514. SERIAL_PROTOCOLPAIR(".Height:", DELTA_HEIGHT + home_offset[Z_AXIS]);
  4515. if (!do_height_only) {
  4516. SERIAL_PROTOCOLPGM(" Ex:");
  4517. if (endstop_adj[A_AXIS] >= 0) SERIAL_CHAR('+');
  4518. SERIAL_PROTOCOL_F(endstop_adj[A_AXIS], 2);
  4519. SERIAL_PROTOCOLPGM(" Ey:");
  4520. if (endstop_adj[B_AXIS] >= 0) SERIAL_CHAR('+');
  4521. SERIAL_PROTOCOL_F(endstop_adj[B_AXIS], 2);
  4522. SERIAL_PROTOCOLPGM(" Ez:");
  4523. if (endstop_adj[C_AXIS] >= 0) SERIAL_CHAR('+');
  4524. SERIAL_PROTOCOL_F(endstop_adj[C_AXIS], 2);
  4525. SERIAL_PROTOCOLPAIR(" Radius:", delta_radius);
  4526. }
  4527. SERIAL_EOL;
  4528. if (probe_mode > 2) { // negative disables tower angles
  4529. SERIAL_PROTOCOLPGM(".Tower angle : Tx:");
  4530. if (delta_tower_angle_trim[A_AXIS] >= 0) SERIAL_CHAR('+');
  4531. SERIAL_PROTOCOL_F(delta_tower_angle_trim[A_AXIS], 2);
  4532. SERIAL_PROTOCOLPGM(" Ty:");
  4533. if (delta_tower_angle_trim[B_AXIS] >= 0) SERIAL_CHAR('+');
  4534. SERIAL_PROTOCOL_F(delta_tower_angle_trim[B_AXIS], 2);
  4535. SERIAL_PROTOCOLPGM(" Tz:+0.00");
  4536. SERIAL_EOL;
  4537. }
  4538. if (zero_std_dev >= test_precision)
  4539. serialprintPGM(save_message);
  4540. SERIAL_EOL;
  4541. }
  4542. else { // forced end
  4543. if (verbose_level == 0) {
  4544. SERIAL_PROTOCOLPGM("End DRY-RUN");
  4545. SERIAL_PROTOCOL_SP(39);
  4546. SERIAL_PROTOCOLPGM("std dev:");
  4547. SERIAL_PROTOCOL_F(zero_std_dev, 3);
  4548. SERIAL_EOL;
  4549. }
  4550. else {
  4551. SERIAL_PROTOCOLLNPGM("Calibration OK");
  4552. LCD_MESSAGEPGM("Calibration OK");
  4553. SERIAL_PROTOCOLPAIR(".Height:", DELTA_HEIGHT + home_offset[Z_AXIS]);
  4554. SERIAL_EOL;
  4555. serialprintPGM(save_message);
  4556. SERIAL_EOL;
  4557. }
  4558. }
  4559. stepper.synchronize();
  4560. home_all_axes();
  4561. } while (zero_std_dev < test_precision && iterations < 31);
  4562. #if ENABLED(Z_PROBE_SLED)
  4563. RETRACT_PROBE();
  4564. #endif
  4565. }
  4566. #endif // DELTA_AUTO_CALIBRATION
  4567. #endif // HAS_BED_PROBE
  4568. #if ENABLED(G38_PROBE_TARGET)
  4569. static bool G38_run_probe() {
  4570. bool G38_pass_fail = false;
  4571. // Get direction of move and retract
  4572. float retract_mm[XYZ];
  4573. LOOP_XYZ(i) {
  4574. float dist = destination[i] - current_position[i];
  4575. retract_mm[i] = fabs(dist) < G38_MINIMUM_MOVE ? 0 : home_bump_mm((AxisEnum)i) * (dist > 0 ? -1 : 1);
  4576. }
  4577. stepper.synchronize(); // wait until the machine is idle
  4578. // Move until destination reached or target hit
  4579. endstops.enable(true);
  4580. G38_move = true;
  4581. G38_endstop_hit = false;
  4582. prepare_move_to_destination();
  4583. stepper.synchronize();
  4584. G38_move = false;
  4585. endstops.hit_on_purpose();
  4586. set_current_from_steppers_for_axis(ALL_AXES);
  4587. SYNC_PLAN_POSITION_KINEMATIC();
  4588. if (G38_endstop_hit) {
  4589. G38_pass_fail = true;
  4590. #if ENABLED(PROBE_DOUBLE_TOUCH)
  4591. // Move away by the retract distance
  4592. set_destination_to_current();
  4593. LOOP_XYZ(i) destination[i] += retract_mm[i];
  4594. endstops.enable(false);
  4595. prepare_move_to_destination();
  4596. stepper.synchronize();
  4597. feedrate_mm_s /= 4;
  4598. // Bump the target more slowly
  4599. LOOP_XYZ(i) destination[i] -= retract_mm[i] * 2;
  4600. endstops.enable(true);
  4601. G38_move = true;
  4602. prepare_move_to_destination();
  4603. stepper.synchronize();
  4604. G38_move = false;
  4605. set_current_from_steppers_for_axis(ALL_AXES);
  4606. SYNC_PLAN_POSITION_KINEMATIC();
  4607. #endif
  4608. }
  4609. endstops.hit_on_purpose();
  4610. endstops.not_homing();
  4611. return G38_pass_fail;
  4612. }
  4613. /**
  4614. * G38.2 - probe toward workpiece, stop on contact, signal error if failure
  4615. * G38.3 - probe toward workpiece, stop on contact
  4616. *
  4617. * Like G28 except uses Z min probe for all axes
  4618. */
  4619. inline void gcode_G38(bool is_38_2) {
  4620. // Get X Y Z E F
  4621. gcode_get_destination();
  4622. setup_for_endstop_or_probe_move();
  4623. // If any axis has enough movement, do the move
  4624. LOOP_XYZ(i)
  4625. if (fabs(destination[i] - current_position[i]) >= G38_MINIMUM_MOVE) {
  4626. if (!code_seen('F')) feedrate_mm_s = homing_feedrate_mm_s[i];
  4627. // If G38.2 fails throw an error
  4628. if (!G38_run_probe() && is_38_2) {
  4629. SERIAL_ERROR_START;
  4630. SERIAL_ERRORLNPGM("Failed to reach target");
  4631. }
  4632. break;
  4633. }
  4634. clean_up_after_endstop_or_probe_move();
  4635. }
  4636. #endif // G38_PROBE_TARGET
  4637. /**
  4638. * G92: Set current position to given X Y Z E
  4639. */
  4640. inline void gcode_G92() {
  4641. bool didXYZ = false,
  4642. didE = code_seen('E');
  4643. if (!didE) stepper.synchronize();
  4644. LOOP_XYZE(i) {
  4645. if (code_seen(axis_codes[i])) {
  4646. #if IS_SCARA
  4647. current_position[i] = code_value_axis_units((AxisEnum)i);
  4648. if (i != E_AXIS) didXYZ = true;
  4649. #else
  4650. #if HAS_POSITION_SHIFT
  4651. const float p = current_position[i];
  4652. #endif
  4653. float v = code_value_axis_units((AxisEnum)i);
  4654. current_position[i] = v;
  4655. if (i != E_AXIS) {
  4656. didXYZ = true;
  4657. #if HAS_POSITION_SHIFT
  4658. position_shift[i] += v - p; // Offset the coordinate space
  4659. update_software_endstops((AxisEnum)i);
  4660. #endif
  4661. }
  4662. #endif
  4663. }
  4664. }
  4665. if (didXYZ)
  4666. SYNC_PLAN_POSITION_KINEMATIC();
  4667. else if (didE)
  4668. sync_plan_position_e();
  4669. report_current_position();
  4670. }
  4671. #if HAS_RESUME_CONTINUE
  4672. /**
  4673. * M0: Unconditional stop - Wait for user button press on LCD
  4674. * M1: Conditional stop - Wait for user button press on LCD
  4675. */
  4676. inline void gcode_M0_M1() {
  4677. const char * const args = current_command_args;
  4678. millis_t codenum = 0;
  4679. bool hasP = false, hasS = false;
  4680. if (code_seen('P')) {
  4681. codenum = code_value_millis(); // milliseconds to wait
  4682. hasP = codenum > 0;
  4683. }
  4684. if (code_seen('S')) {
  4685. codenum = code_value_millis_from_seconds(); // seconds to wait
  4686. hasS = codenum > 0;
  4687. }
  4688. #if ENABLED(ULTIPANEL)
  4689. if (!hasP && !hasS && *args != '\0')
  4690. lcd_setstatus(args, true);
  4691. else {
  4692. LCD_MESSAGEPGM(MSG_USERWAIT);
  4693. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  4694. dontExpireStatus();
  4695. #endif
  4696. }
  4697. #else
  4698. if (!hasP && !hasS && *args != '\0') {
  4699. SERIAL_ECHO_START;
  4700. SERIAL_ECHOLN(args);
  4701. }
  4702. #endif
  4703. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4704. wait_for_user = true;
  4705. stepper.synchronize();
  4706. refresh_cmd_timeout();
  4707. if (codenum > 0) {
  4708. codenum += previous_cmd_ms; // wait until this time for a click
  4709. while (PENDING(millis(), codenum) && wait_for_user) idle();
  4710. }
  4711. else {
  4712. #if ENABLED(ULTIPANEL)
  4713. if (lcd_detected()) {
  4714. while (wait_for_user) idle();
  4715. IS_SD_PRINTING ? LCD_MESSAGEPGM(MSG_RESUMING) : LCD_MESSAGEPGM(WELCOME_MSG);
  4716. }
  4717. #else
  4718. while (wait_for_user) idle();
  4719. #endif
  4720. }
  4721. wait_for_user = false;
  4722. KEEPALIVE_STATE(IN_HANDLER);
  4723. }
  4724. #endif // HAS_RESUME_CONTINUE
  4725. /**
  4726. * M17: Enable power on all stepper motors
  4727. */
  4728. inline void gcode_M17() {
  4729. LCD_MESSAGEPGM(MSG_NO_MOVE);
  4730. enable_all_steppers();
  4731. }
  4732. #if IS_KINEMATIC
  4733. #define RUNPLAN(RATE_MM_S) planner.buffer_line_kinematic(destination, RATE_MM_S, active_extruder)
  4734. #else
  4735. #define RUNPLAN(RATE_MM_S) line_to_destination(RATE_MM_S)
  4736. #endif
  4737. #if ENABLED(PARK_HEAD_ON_PAUSE)
  4738. float resume_position[XYZE];
  4739. bool move_away_flag = false;
  4740. inline void move_back_on_resume() {
  4741. if (!move_away_flag) return;
  4742. move_away_flag = false;
  4743. // Set extruder to saved position
  4744. destination[E_AXIS] = current_position[E_AXIS] = resume_position[E_AXIS];
  4745. planner.set_e_position_mm(current_position[E_AXIS]);
  4746. #if IS_KINEMATIC
  4747. // Move XYZ to starting position
  4748. planner.buffer_line_kinematic(lastpos, FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  4749. #else
  4750. // Move XY to starting position, then Z
  4751. destination[X_AXIS] = resume_position[X_AXIS];
  4752. destination[Y_AXIS] = resume_position[Y_AXIS];
  4753. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  4754. destination[Z_AXIS] = resume_position[Z_AXIS];
  4755. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  4756. #endif
  4757. stepper.synchronize();
  4758. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  4759. filament_ran_out = false;
  4760. #endif
  4761. set_current_to_destination();
  4762. }
  4763. #endif // PARK_HEAD_ON_PAUSE
  4764. #if ENABLED(SDSUPPORT)
  4765. /**
  4766. * M20: List SD card to serial output
  4767. */
  4768. inline void gcode_M20() {
  4769. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  4770. card.ls();
  4771. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  4772. }
  4773. /**
  4774. * M21: Init SD Card
  4775. */
  4776. inline void gcode_M21() { card.initsd(); }
  4777. /**
  4778. * M22: Release SD Card
  4779. */
  4780. inline void gcode_M22() { card.release(); }
  4781. /**
  4782. * M23: Open a file
  4783. */
  4784. inline void gcode_M23() { card.openFile(current_command_args, true); }
  4785. /**
  4786. * M24: Start or Resume SD Print
  4787. */
  4788. inline void gcode_M24() {
  4789. #if ENABLED(PARK_HEAD_ON_PAUSE)
  4790. move_back_on_resume();
  4791. #endif
  4792. card.startFileprint();
  4793. print_job_timer.start();
  4794. }
  4795. /**
  4796. * M25: Pause SD Print
  4797. */
  4798. inline void gcode_M25() {
  4799. card.pauseSDPrint();
  4800. print_job_timer.pause();
  4801. #if ENABLED(PARK_HEAD_ON_PAUSE)
  4802. enqueue_and_echo_commands_P(PSTR("M125")); // Must be enqueued with pauseSDPrint set to be last in the buffer
  4803. #endif
  4804. }
  4805. /**
  4806. * M26: Set SD Card file index
  4807. */
  4808. inline void gcode_M26() {
  4809. if (card.cardOK && code_seen('S'))
  4810. card.setIndex(code_value_long());
  4811. }
  4812. /**
  4813. * M27: Get SD Card status
  4814. */
  4815. inline void gcode_M27() { card.getStatus(); }
  4816. /**
  4817. * M28: Start SD Write
  4818. */
  4819. inline void gcode_M28() { card.openFile(current_command_args, false); }
  4820. /**
  4821. * M29: Stop SD Write
  4822. * Processed in write to file routine above
  4823. */
  4824. inline void gcode_M29() {
  4825. // card.saving = false;
  4826. }
  4827. /**
  4828. * M30 <filename>: Delete SD Card file
  4829. */
  4830. inline void gcode_M30() {
  4831. if (card.cardOK) {
  4832. card.closefile();
  4833. card.removeFile(current_command_args);
  4834. }
  4835. }
  4836. #endif // SDSUPPORT
  4837. /**
  4838. * M31: Get the time since the start of SD Print (or last M109)
  4839. */
  4840. inline void gcode_M31() {
  4841. char buffer[21];
  4842. duration_t elapsed = print_job_timer.duration();
  4843. elapsed.toString(buffer);
  4844. lcd_setstatus(buffer);
  4845. SERIAL_ECHO_START;
  4846. SERIAL_ECHOLNPAIR("Print time: ", buffer);
  4847. }
  4848. #if ENABLED(SDSUPPORT)
  4849. /**
  4850. * M32: Select file and start SD Print
  4851. */
  4852. inline void gcode_M32() {
  4853. if (card.sdprinting)
  4854. stepper.synchronize();
  4855. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  4856. if (!namestartpos)
  4857. namestartpos = current_command_args; // Default name position, 4 letters after the M
  4858. else
  4859. namestartpos++; //to skip the '!'
  4860. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  4861. if (card.cardOK) {
  4862. card.openFile(namestartpos, true, call_procedure);
  4863. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  4864. card.setIndex(code_value_long());
  4865. card.startFileprint();
  4866. // Procedure calls count as normal print time.
  4867. if (!call_procedure) print_job_timer.start();
  4868. }
  4869. }
  4870. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  4871. /**
  4872. * M33: Get the long full path of a file or folder
  4873. *
  4874. * Parameters:
  4875. * <dospath> Case-insensitive DOS-style path to a file or folder
  4876. *
  4877. * Example:
  4878. * M33 miscel~1/armchair/armcha~1.gco
  4879. *
  4880. * Output:
  4881. * /Miscellaneous/Armchair/Armchair.gcode
  4882. */
  4883. inline void gcode_M33() {
  4884. card.printLongPath(current_command_args);
  4885. }
  4886. #endif
  4887. #if ENABLED(SDCARD_SORT_ALPHA) && ENABLED(SDSORT_GCODE)
  4888. /**
  4889. * M34: Set SD Card Sorting Options
  4890. */
  4891. inline void gcode_M34() {
  4892. if (code_seen('S')) card.setSortOn(code_value_bool());
  4893. if (code_seen('F')) {
  4894. int v = code_value_long();
  4895. card.setSortFolders(v < 0 ? -1 : v > 0 ? 1 : 0);
  4896. }
  4897. //if (code_seen('R')) card.setSortReverse(code_value_bool());
  4898. }
  4899. #endif // SDCARD_SORT_ALPHA && SDSORT_GCODE
  4900. /**
  4901. * M928: Start SD Write
  4902. */
  4903. inline void gcode_M928() {
  4904. card.openLogFile(current_command_args);
  4905. }
  4906. #endif // SDSUPPORT
  4907. /**
  4908. * Sensitive pin test for M42, M226
  4909. */
  4910. static bool pin_is_protected(uint8_t pin) {
  4911. static const int sensitive_pins[] = SENSITIVE_PINS;
  4912. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  4913. if (sensitive_pins[i] == pin) return true;
  4914. return false;
  4915. }
  4916. /**
  4917. * M42: Change pin status via GCode
  4918. *
  4919. * P<pin> Pin number (LED if omitted)
  4920. * S<byte> Pin status from 0 - 255
  4921. */
  4922. inline void gcode_M42() {
  4923. if (!code_seen('S')) return;
  4924. int pin_status = code_value_int();
  4925. if (!WITHIN(pin_status, 0, 255)) return;
  4926. int pin_number = code_seen('P') ? code_value_int() : LED_PIN;
  4927. if (pin_number < 0) return;
  4928. if (pin_is_protected(pin_number)) {
  4929. SERIAL_ERROR_START;
  4930. SERIAL_ERRORLNPGM(MSG_ERR_PROTECTED_PIN);
  4931. return;
  4932. }
  4933. pinMode(pin_number, OUTPUT);
  4934. digitalWrite(pin_number, pin_status);
  4935. analogWrite(pin_number, pin_status);
  4936. #if FAN_COUNT > 0
  4937. switch (pin_number) {
  4938. #if HAS_FAN0
  4939. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  4940. #endif
  4941. #if HAS_FAN1
  4942. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  4943. #endif
  4944. #if HAS_FAN2
  4945. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  4946. #endif
  4947. }
  4948. #endif
  4949. }
  4950. #if ENABLED(PINS_DEBUGGING)
  4951. #include "pinsDebug.h"
  4952. inline void toggle_pins() {
  4953. const bool I_flag = code_seen('I') && code_value_bool();
  4954. const int repeat = code_seen('R') ? code_value_int() : 1,
  4955. start = code_seen('S') ? code_value_int() : 0,
  4956. end = code_seen('E') ? code_value_int() : NUM_DIGITAL_PINS - 1,
  4957. wait = code_seen('W') ? code_value_int() : 500;
  4958. for (uint8_t pin = start; pin <= end; pin++) {
  4959. if (!I_flag && pin_is_protected(pin)) {
  4960. SERIAL_ECHOPAIR("Sensitive Pin: ", pin);
  4961. SERIAL_ECHOLNPGM(" untouched.");
  4962. }
  4963. else {
  4964. SERIAL_ECHOPAIR("Pulsing Pin: ", pin);
  4965. pinMode(pin, OUTPUT);
  4966. for (int16_t j = 0; j < repeat; j++) {
  4967. digitalWrite(pin, 0);
  4968. safe_delay(wait);
  4969. digitalWrite(pin, 1);
  4970. safe_delay(wait);
  4971. digitalWrite(pin, 0);
  4972. safe_delay(wait);
  4973. }
  4974. }
  4975. SERIAL_CHAR('\n');
  4976. }
  4977. SERIAL_ECHOLNPGM("Done.");
  4978. } // toggle_pins
  4979. inline void servo_probe_test() {
  4980. #if !(NUM_SERVOS > 0 && HAS_SERVO_0)
  4981. SERIAL_ERROR_START;
  4982. SERIAL_ERRORLNPGM("SERVO not setup");
  4983. #elif !HAS_Z_SERVO_ENDSTOP
  4984. SERIAL_ERROR_START;
  4985. SERIAL_ERRORLNPGM("Z_ENDSTOP_SERVO_NR not setup");
  4986. #else
  4987. const uint8_t probe_index = code_seen('P') ? code_value_byte() : Z_ENDSTOP_SERVO_NR;
  4988. SERIAL_PROTOCOLLNPGM("Servo probe test");
  4989. SERIAL_PROTOCOLLNPAIR(". using index: ", probe_index);
  4990. SERIAL_PROTOCOLLNPAIR(". deploy angle: ", z_servo_angle[0]);
  4991. SERIAL_PROTOCOLLNPAIR(". stow angle: ", z_servo_angle[1]);
  4992. bool probe_inverting;
  4993. #if ENABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN)
  4994. #define PROBE_TEST_PIN Z_MIN_PIN
  4995. SERIAL_PROTOCOLLNPAIR(". probe uses Z_MIN pin: ", PROBE_TEST_PIN);
  4996. SERIAL_PROTOCOLLNPGM(". uses Z_MIN_ENDSTOP_INVERTING (ignores Z_MIN_PROBE_ENDSTOP_INVERTING)");
  4997. SERIAL_PROTOCOLPGM(". Z_MIN_ENDSTOP_INVERTING: ");
  4998. #if Z_MIN_ENDSTOP_INVERTING
  4999. SERIAL_PROTOCOLLNPGM("true");
  5000. #else
  5001. SERIAL_PROTOCOLLNPGM("false");
  5002. #endif
  5003. probe_inverting = Z_MIN_ENDSTOP_INVERTING;
  5004. #elif ENABLED(Z_MIN_PROBE_ENDSTOP)
  5005. #define PROBE_TEST_PIN Z_MIN_PROBE_PIN
  5006. SERIAL_PROTOCOLLNPAIR(". probe uses Z_MIN_PROBE_PIN: ", PROBE_TEST_PIN);
  5007. SERIAL_PROTOCOLLNPGM(". uses Z_MIN_PROBE_ENDSTOP_INVERTING (ignores Z_MIN_ENDSTOP_INVERTING)");
  5008. SERIAL_PROTOCOLPGM(". Z_MIN_PROBE_ENDSTOP_INVERTING: ");
  5009. #if Z_MIN_PROBE_ENDSTOP_INVERTING
  5010. SERIAL_PROTOCOLLNPGM("true");
  5011. #else
  5012. SERIAL_PROTOCOLLNPGM("false");
  5013. #endif
  5014. probe_inverting = Z_MIN_PROBE_ENDSTOP_INVERTING;
  5015. #endif
  5016. SERIAL_PROTOCOLLNPGM(". deploy & stow 4 times");
  5017. pinMode(PROBE_TEST_PIN, INPUT_PULLUP);
  5018. bool deploy_state;
  5019. bool stow_state;
  5020. for (uint8_t i = 0; i < 4; i++) {
  5021. servo[probe_index].move(z_servo_angle[0]); //deploy
  5022. safe_delay(500);
  5023. deploy_state = digitalRead(PROBE_TEST_PIN);
  5024. servo[probe_index].move(z_servo_angle[1]); //stow
  5025. safe_delay(500);
  5026. stow_state = digitalRead(PROBE_TEST_PIN);
  5027. }
  5028. if (probe_inverting != deploy_state) SERIAL_PROTOCOLLNPGM("WARNING - INVERTING setting probably backwards");
  5029. refresh_cmd_timeout();
  5030. if (deploy_state != stow_state) {
  5031. SERIAL_PROTOCOLLNPGM("BLTouch clone detected");
  5032. if (deploy_state) {
  5033. SERIAL_PROTOCOLLNPGM(". DEPLOYED state: HIGH (logic 1)");
  5034. SERIAL_PROTOCOLLNPGM(". STOWED (triggered) state: LOW (logic 0)");
  5035. }
  5036. else {
  5037. SERIAL_PROTOCOLLNPGM(". DEPLOYED state: LOW (logic 0)");
  5038. SERIAL_PROTOCOLLNPGM(". STOWED (triggered) state: HIGH (logic 1)");
  5039. }
  5040. #if ENABLED(BLTOUCH)
  5041. SERIAL_PROTOCOLLNPGM("ERROR: BLTOUCH enabled - set this device up as a Z Servo Probe with inverting as true.");
  5042. #endif
  5043. }
  5044. else { // measure active signal length
  5045. servo[probe_index].move(z_servo_angle[0]); // deploy
  5046. safe_delay(500);
  5047. SERIAL_PROTOCOLLNPGM("please trigger probe");
  5048. uint16_t probe_counter = 0;
  5049. // Allow 30 seconds max for operator to trigger probe
  5050. for (uint16_t j = 0; j < 500 * 30 && probe_counter == 0 ; j++) {
  5051. safe_delay(2);
  5052. if (0 == j % (500 * 1)) // keep cmd_timeout happy
  5053. refresh_cmd_timeout();
  5054. if (deploy_state != digitalRead(PROBE_TEST_PIN)) { // probe triggered
  5055. for (probe_counter = 1; probe_counter < 50 && deploy_state != digitalRead(PROBE_TEST_PIN); ++probe_counter)
  5056. safe_delay(2);
  5057. if (probe_counter == 50)
  5058. SERIAL_PROTOCOLLNPGM("Z Servo Probe detected"); // >= 100mS active time
  5059. else if (probe_counter >= 2)
  5060. SERIAL_PROTOCOLLNPAIR("BLTouch compatible probe detected - pulse width (+/- 4mS): ", probe_counter * 2); // allow 4 - 100mS pulse
  5061. else
  5062. SERIAL_PROTOCOLLNPGM("noise detected - please re-run test"); // less than 2mS pulse
  5063. servo[probe_index].move(z_servo_angle[1]); //stow
  5064. } // pulse detected
  5065. } // for loop waiting for trigger
  5066. if (probe_counter == 0) SERIAL_PROTOCOLLNPGM("trigger not detected");
  5067. } // measure active signal length
  5068. #endif
  5069. } // servo_probe_test
  5070. /**
  5071. * M43: Pin debug - report pin state, watch pins, toggle pins and servo probe test/report
  5072. *
  5073. * M43 - report name and state of pin(s)
  5074. * P<pin> Pin to read or watch. If omitted, reads all pins.
  5075. * I Flag to ignore Marlin's pin protection.
  5076. *
  5077. * M43 W - Watch pins -reporting changes- until reset, click, or M108.
  5078. * P<pin> Pin to read or watch. If omitted, read/watch all pins.
  5079. * I Flag to ignore Marlin's pin protection.
  5080. *
  5081. * M43 E<bool> - Enable / disable background endstop monitoring
  5082. * - Machine continues to operate
  5083. * - Reports changes to endstops
  5084. * - Toggles LED when an endstop changes
  5085. * - Can not reliably catch the 5mS pulse from BLTouch type probes
  5086. *
  5087. * M43 T - Toggle pin(s) and report which pin is being toggled
  5088. * S<pin> - Start Pin number. If not given, will default to 0
  5089. * L<pin> - End Pin number. If not given, will default to last pin defined for this board
  5090. * I - Flag to ignore Marlin's pin protection. Use with caution!!!!
  5091. * R - Repeat pulses on each pin this number of times before continueing to next pin
  5092. * W - Wait time (in miliseconds) between pulses. If not given will default to 500
  5093. *
  5094. * M43 S - Servo probe test
  5095. * P<index> - Probe index (optional - defaults to 0
  5096. */
  5097. inline void gcode_M43() {
  5098. if (code_seen('T')) { // must be first ot else it's "S" and "E" parameters will execute endstop or servo test
  5099. toggle_pins();
  5100. return;
  5101. }
  5102. // Enable or disable endstop monitoring
  5103. if (code_seen('E')) {
  5104. endstop_monitor_flag = code_value_bool();
  5105. SERIAL_PROTOCOLPGM("endstop monitor ");
  5106. SERIAL_PROTOCOL(endstop_monitor_flag ? "en" : "dis");
  5107. SERIAL_PROTOCOLLNPGM("abled");
  5108. return;
  5109. }
  5110. if (code_seen('S')) {
  5111. servo_probe_test();
  5112. return;
  5113. }
  5114. // Get the range of pins to test or watch
  5115. const uint8_t first_pin = code_seen('P') ? code_value_byte() : 0,
  5116. last_pin = code_seen('P') ? first_pin : NUM_DIGITAL_PINS - 1;
  5117. if (first_pin > last_pin) return;
  5118. const bool ignore_protection = code_seen('I') && code_value_bool();
  5119. // Watch until click, M108, or reset
  5120. if (code_seen('W') && code_value_bool()) {
  5121. SERIAL_PROTOCOLLNPGM("Watching pins");
  5122. byte pin_state[last_pin - first_pin + 1];
  5123. for (int8_t pin = first_pin; pin <= last_pin; pin++) {
  5124. if (pin_is_protected(pin) && !ignore_protection) continue;
  5125. pinMode(pin, INPUT_PULLUP);
  5126. /*
  5127. if (IS_ANALOG(pin))
  5128. pin_state[pin - first_pin] = analogRead(pin - analogInputToDigitalPin(0)); // int16_t pin_state[...]
  5129. else
  5130. //*/
  5131. pin_state[pin - first_pin] = digitalRead(pin);
  5132. }
  5133. #if HAS_RESUME_CONTINUE
  5134. wait_for_user = true;
  5135. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5136. #endif
  5137. for (;;) {
  5138. for (int8_t pin = first_pin; pin <= last_pin; pin++) {
  5139. if (pin_is_protected(pin)) continue;
  5140. const byte val =
  5141. /*
  5142. IS_ANALOG(pin)
  5143. ? analogRead(pin - analogInputToDigitalPin(0)) : // int16_t val
  5144. :
  5145. //*/
  5146. digitalRead(pin);
  5147. if (val != pin_state[pin - first_pin]) {
  5148. report_pin_state(pin);
  5149. pin_state[pin - first_pin] = val;
  5150. }
  5151. }
  5152. #if HAS_RESUME_CONTINUE
  5153. if (!wait_for_user) {
  5154. KEEPALIVE_STATE(IN_HANDLER);
  5155. break;
  5156. }
  5157. #endif
  5158. safe_delay(500);
  5159. }
  5160. return;
  5161. }
  5162. // Report current state of selected pin(s)
  5163. for (uint8_t pin = first_pin; pin <= last_pin; pin++)
  5164. report_pin_state_extended(pin, ignore_protection);
  5165. }
  5166. #endif // PINS_DEBUGGING
  5167. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  5168. /**
  5169. * M48: Z probe repeatability measurement function.
  5170. *
  5171. * Usage:
  5172. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  5173. * P = Number of sampled points (4-50, default 10)
  5174. * X = Sample X position
  5175. * Y = Sample Y position
  5176. * V = Verbose level (0-4, default=1)
  5177. * E = Engage Z probe for each reading
  5178. * L = Number of legs of movement before probe
  5179. * S = Schizoid (Or Star if you prefer)
  5180. *
  5181. * This function assumes the bed has been homed. Specifically, that a G28 command
  5182. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  5183. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  5184. * regenerated.
  5185. */
  5186. inline void gcode_M48() {
  5187. if (axis_unhomed_error(true, true, true)) return;
  5188. const int8_t verbose_level = code_seen('V') ? code_value_byte() : 1;
  5189. if (!WITHIN(verbose_level, 0, 4)) {
  5190. SERIAL_PROTOCOLLNPGM("?Verbose Level not plausible (0-4).");
  5191. return;
  5192. }
  5193. if (verbose_level > 0)
  5194. SERIAL_PROTOCOLLNPGM("M48 Z-Probe Repeatability Test");
  5195. int8_t n_samples = code_seen('P') ? code_value_byte() : 10;
  5196. if (!WITHIN(n_samples, 4, 50)) {
  5197. SERIAL_PROTOCOLLNPGM("?Sample size not plausible (4-50).");
  5198. return;
  5199. }
  5200. float X_current = current_position[X_AXIS],
  5201. Y_current = current_position[Y_AXIS];
  5202. bool stow_probe_after_each = code_seen('E');
  5203. float X_probe_location = code_seen('X') ? code_value_linear_units() : X_current + X_PROBE_OFFSET_FROM_EXTRUDER;
  5204. #if DISABLED(DELTA)
  5205. if (!WITHIN(X_probe_location, LOGICAL_X_POSITION(MIN_PROBE_X), LOGICAL_X_POSITION(MAX_PROBE_X))) {
  5206. out_of_range_error(PSTR("X"));
  5207. return;
  5208. }
  5209. #endif
  5210. float Y_probe_location = code_seen('Y') ? code_value_linear_units() : Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER;
  5211. #if DISABLED(DELTA)
  5212. if (!WITHIN(Y_probe_location, LOGICAL_Y_POSITION(MIN_PROBE_Y), LOGICAL_Y_POSITION(MAX_PROBE_Y))) {
  5213. out_of_range_error(PSTR("Y"));
  5214. return;
  5215. }
  5216. #else
  5217. float pos[XYZ] = { X_probe_location, Y_probe_location, 0 };
  5218. if (!position_is_reachable(pos, true)) {
  5219. SERIAL_PROTOCOLLNPGM("? (X,Y) location outside of probeable radius.");
  5220. return;
  5221. }
  5222. #endif
  5223. bool seen_L = code_seen('L');
  5224. uint8_t n_legs = seen_L ? code_value_byte() : 0;
  5225. if (n_legs > 15) {
  5226. SERIAL_PROTOCOLLNPGM("?Number of legs in movement not plausible (0-15).");
  5227. return;
  5228. }
  5229. if (n_legs == 1) n_legs = 2;
  5230. bool schizoid_flag = code_seen('S');
  5231. if (schizoid_flag && !seen_L) n_legs = 7;
  5232. /**
  5233. * Now get everything to the specified probe point So we can safely do a
  5234. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  5235. * we don't want to use that as a starting point for each probe.
  5236. */
  5237. if (verbose_level > 2)
  5238. SERIAL_PROTOCOLLNPGM("Positioning the probe...");
  5239. // Disable bed level correction in M48 because we want the raw data when we probe
  5240. #if HAS_LEVELING
  5241. const bool was_enabled =
  5242. #if ENABLED(AUTO_BED_LEVELING_UBL)
  5243. ubl.state.active
  5244. #elif ENABLED(MESH_BED_LEVELING)
  5245. mbl.active()
  5246. #else
  5247. planner.abl_enabled
  5248. #endif
  5249. ;
  5250. set_bed_leveling_enabled(false);
  5251. #endif
  5252. setup_for_endstop_or_probe_move();
  5253. // Move to the first point, deploy, and probe
  5254. probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  5255. randomSeed(millis());
  5256. double mean = 0.0, sigma = 0.0, min = 99999.9, max = -99999.9, sample_set[n_samples];
  5257. for (uint8_t n = 0; n < n_samples; n++) {
  5258. if (n_legs) {
  5259. int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  5260. float angle = random(0.0, 360.0),
  5261. radius = random(
  5262. #if ENABLED(DELTA)
  5263. DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
  5264. #else
  5265. 5, X_MAX_LENGTH / 8
  5266. #endif
  5267. );
  5268. if (verbose_level > 3) {
  5269. SERIAL_ECHOPAIR("Starting radius: ", radius);
  5270. SERIAL_ECHOPAIR(" angle: ", angle);
  5271. SERIAL_ECHOPGM(" Direction: ");
  5272. if (dir > 0) SERIAL_ECHOPGM("Counter-");
  5273. SERIAL_ECHOLNPGM("Clockwise");
  5274. }
  5275. for (uint8_t l = 0; l < n_legs - 1; l++) {
  5276. double delta_angle;
  5277. if (schizoid_flag)
  5278. // The points of a 5 point star are 72 degrees apart. We need to
  5279. // skip a point and go to the next one on the star.
  5280. delta_angle = dir * 2.0 * 72.0;
  5281. else
  5282. // If we do this line, we are just trying to move further
  5283. // around the circle.
  5284. delta_angle = dir * (float) random(25, 45);
  5285. angle += delta_angle;
  5286. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  5287. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  5288. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  5289. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  5290. X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
  5291. Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
  5292. #if DISABLED(DELTA)
  5293. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  5294. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  5295. #else
  5296. // If we have gone out too far, we can do a simple fix and scale the numbers
  5297. // back in closer to the origin.
  5298. while (HYPOT(X_current, Y_current) > DELTA_PROBEABLE_RADIUS) {
  5299. X_current *= 0.8;
  5300. Y_current *= 0.8;
  5301. if (verbose_level > 3) {
  5302. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  5303. SERIAL_ECHOLNPAIR(", ", Y_current);
  5304. }
  5305. }
  5306. #endif
  5307. if (verbose_level > 3) {
  5308. SERIAL_PROTOCOLPGM("Going to:");
  5309. SERIAL_ECHOPAIR(" X", X_current);
  5310. SERIAL_ECHOPAIR(" Y", Y_current);
  5311. SERIAL_ECHOLNPAIR(" Z", current_position[Z_AXIS]);
  5312. }
  5313. do_blocking_move_to_xy(X_current, Y_current);
  5314. } // n_legs loop
  5315. } // n_legs
  5316. // Probe a single point
  5317. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, 0);
  5318. /**
  5319. * Get the current mean for the data points we have so far
  5320. */
  5321. double sum = 0.0;
  5322. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  5323. mean = sum / (n + 1);
  5324. NOMORE(min, sample_set[n]);
  5325. NOLESS(max, sample_set[n]);
  5326. /**
  5327. * Now, use that mean to calculate the standard deviation for the
  5328. * data points we have so far
  5329. */
  5330. sum = 0.0;
  5331. for (uint8_t j = 0; j <= n; j++)
  5332. sum += sq(sample_set[j] - mean);
  5333. sigma = sqrt(sum / (n + 1));
  5334. if (verbose_level > 0) {
  5335. if (verbose_level > 1) {
  5336. SERIAL_PROTOCOL(n + 1);
  5337. SERIAL_PROTOCOLPGM(" of ");
  5338. SERIAL_PROTOCOL((int)n_samples);
  5339. SERIAL_PROTOCOLPGM(": z: ");
  5340. SERIAL_PROTOCOL_F(sample_set[n], 3);
  5341. if (verbose_level > 2) {
  5342. SERIAL_PROTOCOLPGM(" mean: ");
  5343. SERIAL_PROTOCOL_F(mean, 4);
  5344. SERIAL_PROTOCOLPGM(" sigma: ");
  5345. SERIAL_PROTOCOL_F(sigma, 6);
  5346. SERIAL_PROTOCOLPGM(" min: ");
  5347. SERIAL_PROTOCOL_F(min, 3);
  5348. SERIAL_PROTOCOLPGM(" max: ");
  5349. SERIAL_PROTOCOL_F(max, 3);
  5350. SERIAL_PROTOCOLPGM(" range: ");
  5351. SERIAL_PROTOCOL_F(max-min, 3);
  5352. }
  5353. SERIAL_EOL;
  5354. }
  5355. }
  5356. } // End of probe loop
  5357. if (STOW_PROBE()) return;
  5358. SERIAL_PROTOCOLPGM("Finished!");
  5359. SERIAL_EOL;
  5360. if (verbose_level > 0) {
  5361. SERIAL_PROTOCOLPGM("Mean: ");
  5362. SERIAL_PROTOCOL_F(mean, 6);
  5363. SERIAL_PROTOCOLPGM(" Min: ");
  5364. SERIAL_PROTOCOL_F(min, 3);
  5365. SERIAL_PROTOCOLPGM(" Max: ");
  5366. SERIAL_PROTOCOL_F(max, 3);
  5367. SERIAL_PROTOCOLPGM(" Range: ");
  5368. SERIAL_PROTOCOL_F(max-min, 3);
  5369. SERIAL_EOL;
  5370. }
  5371. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  5372. SERIAL_PROTOCOL_F(sigma, 6);
  5373. SERIAL_EOL;
  5374. SERIAL_EOL;
  5375. clean_up_after_endstop_or_probe_move();
  5376. // Re-enable bed level correction if it had been on
  5377. #if HAS_LEVELING
  5378. set_bed_leveling_enabled(was_enabled);
  5379. #endif
  5380. report_current_position();
  5381. }
  5382. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  5383. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_EDITING)
  5384. inline void gcode_M49() {
  5385. ubl.g26_debug_flag ^= true;
  5386. SERIAL_PROTOCOLPGM("UBL Debug Flag turned ");
  5387. serialprintPGM(ubl.g26_debug_flag ? PSTR("on.") : PSTR("off."));
  5388. }
  5389. #endif // AUTO_BED_LEVELING_UBL && UBL_G26_MESH_EDITING
  5390. /**
  5391. * M75: Start print timer
  5392. */
  5393. inline void gcode_M75() { print_job_timer.start(); }
  5394. /**
  5395. * M76: Pause print timer
  5396. */
  5397. inline void gcode_M76() { print_job_timer.pause(); }
  5398. /**
  5399. * M77: Stop print timer
  5400. */
  5401. inline void gcode_M77() { print_job_timer.stop(); }
  5402. #if ENABLED(PRINTCOUNTER)
  5403. /**
  5404. * M78: Show print statistics
  5405. */
  5406. inline void gcode_M78() {
  5407. // "M78 S78" will reset the statistics
  5408. if (code_seen('S') && code_value_int() == 78)
  5409. print_job_timer.initStats();
  5410. else
  5411. print_job_timer.showStats();
  5412. }
  5413. #endif
  5414. /**
  5415. * M104: Set hot end temperature
  5416. */
  5417. inline void gcode_M104() {
  5418. if (get_target_extruder_from_command(104)) return;
  5419. if (DEBUGGING(DRYRUN)) return;
  5420. #if ENABLED(SINGLENOZZLE)
  5421. if (target_extruder != active_extruder) return;
  5422. #endif
  5423. if (code_seen('S')) {
  5424. const int16_t temp = code_value_temp_abs();
  5425. thermalManager.setTargetHotend(temp, target_extruder);
  5426. #if ENABLED(DUAL_X_CARRIAGE)
  5427. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  5428. thermalManager.setTargetHotend(temp ? temp + duplicate_extruder_temp_offset : 0, 1);
  5429. #endif
  5430. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  5431. /**
  5432. * Stop the timer at the end of print. Start is managed by 'heat and wait' M109.
  5433. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  5434. * standby mode, for instance in a dual extruder setup, without affecting
  5435. * the running print timer.
  5436. */
  5437. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP) / 2) {
  5438. print_job_timer.stop();
  5439. LCD_MESSAGEPGM(WELCOME_MSG);
  5440. }
  5441. #endif
  5442. if (code_value_temp_abs() > thermalManager.degHotend(target_extruder)) lcd_status_printf_P(0, PSTR("E%i %s"), target_extruder + 1, MSG_HEATING);
  5443. }
  5444. #if ENABLED(AUTOTEMP)
  5445. planner.autotemp_M104_M109();
  5446. #endif
  5447. }
  5448. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  5449. void print_heaterstates() {
  5450. #if HAS_TEMP_HOTEND
  5451. SERIAL_PROTOCOLPGM(" T:");
  5452. SERIAL_PROTOCOL(thermalManager.degHotend(target_extruder));
  5453. SERIAL_PROTOCOLPGM(" /");
  5454. SERIAL_PROTOCOL(thermalManager.degTargetHotend(target_extruder));
  5455. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  5456. SERIAL_PROTOCOLPAIR(" (", thermalManager.rawHotendTemp(target_extruder) / OVERSAMPLENR);
  5457. SERIAL_PROTOCOLCHAR(')');
  5458. #endif
  5459. #endif
  5460. #if HAS_TEMP_BED
  5461. SERIAL_PROTOCOLPGM(" B:");
  5462. SERIAL_PROTOCOL(thermalManager.degBed());
  5463. SERIAL_PROTOCOLPGM(" /");
  5464. SERIAL_PROTOCOL(thermalManager.degTargetBed());
  5465. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  5466. SERIAL_PROTOCOLPAIR(" (", thermalManager.rawBedTemp() / OVERSAMPLENR);
  5467. SERIAL_PROTOCOLCHAR(')');
  5468. #endif
  5469. #endif
  5470. #if HOTENDS > 1
  5471. HOTEND_LOOP() {
  5472. SERIAL_PROTOCOLPAIR(" T", e);
  5473. SERIAL_PROTOCOLCHAR(':');
  5474. SERIAL_PROTOCOL(thermalManager.degHotend(e));
  5475. SERIAL_PROTOCOLPGM(" /");
  5476. SERIAL_PROTOCOL(thermalManager.degTargetHotend(e));
  5477. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  5478. SERIAL_PROTOCOLPAIR(" (", thermalManager.rawHotendTemp(e) / OVERSAMPLENR);
  5479. SERIAL_PROTOCOLCHAR(')');
  5480. #endif
  5481. }
  5482. #endif
  5483. SERIAL_PROTOCOLPGM(" @:");
  5484. SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder));
  5485. #if HAS_TEMP_BED
  5486. SERIAL_PROTOCOLPGM(" B@:");
  5487. SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1));
  5488. #endif
  5489. #if HOTENDS > 1
  5490. HOTEND_LOOP() {
  5491. SERIAL_PROTOCOLPAIR(" @", e);
  5492. SERIAL_PROTOCOLCHAR(':');
  5493. SERIAL_PROTOCOL(thermalManager.getHeaterPower(e));
  5494. }
  5495. #endif
  5496. }
  5497. #endif
  5498. /**
  5499. * M105: Read hot end and bed temperature
  5500. */
  5501. inline void gcode_M105() {
  5502. if (get_target_extruder_from_command(105)) return;
  5503. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  5504. SERIAL_PROTOCOLPGM(MSG_OK);
  5505. print_heaterstates();
  5506. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  5507. SERIAL_ERROR_START;
  5508. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  5509. #endif
  5510. SERIAL_EOL;
  5511. }
  5512. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  5513. static uint8_t auto_report_temp_interval;
  5514. static millis_t next_temp_report_ms;
  5515. /**
  5516. * M155: Set temperature auto-report interval. M155 S<seconds>
  5517. */
  5518. inline void gcode_M155() {
  5519. if (code_seen('S')) {
  5520. auto_report_temp_interval = code_value_byte();
  5521. NOMORE(auto_report_temp_interval, 60);
  5522. next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval;
  5523. }
  5524. }
  5525. inline void auto_report_temperatures() {
  5526. if (auto_report_temp_interval && ELAPSED(millis(), next_temp_report_ms)) {
  5527. next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval;
  5528. print_heaterstates();
  5529. SERIAL_EOL;
  5530. }
  5531. }
  5532. #endif // AUTO_REPORT_TEMPERATURES
  5533. #if FAN_COUNT > 0
  5534. /**
  5535. * M106: Set Fan Speed
  5536. *
  5537. * S<int> Speed between 0-255
  5538. * P<index> Fan index, if more than one fan
  5539. */
  5540. inline void gcode_M106() {
  5541. uint16_t s = code_seen('S') ? code_value_ushort() : 255,
  5542. p = code_seen('P') ? code_value_ushort() : 0;
  5543. NOMORE(s, 255);
  5544. if (p < FAN_COUNT) fanSpeeds[p] = s;
  5545. }
  5546. /**
  5547. * M107: Fan Off
  5548. */
  5549. inline void gcode_M107() {
  5550. uint16_t p = code_seen('P') ? code_value_ushort() : 0;
  5551. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  5552. }
  5553. #endif // FAN_COUNT > 0
  5554. #if DISABLED(EMERGENCY_PARSER)
  5555. /**
  5556. * M108: Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  5557. */
  5558. inline void gcode_M108() { wait_for_heatup = false; }
  5559. /**
  5560. * M112: Emergency Stop
  5561. */
  5562. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  5563. /**
  5564. * M410: Quickstop - Abort all planned moves
  5565. *
  5566. * This will stop the carriages mid-move, so most likely they
  5567. * will be out of sync with the stepper position after this.
  5568. */
  5569. inline void gcode_M410() { quickstop_stepper(); }
  5570. #endif
  5571. /**
  5572. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  5573. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  5574. */
  5575. #ifndef MIN_COOLING_SLOPE_DEG
  5576. #define MIN_COOLING_SLOPE_DEG 1.50
  5577. #endif
  5578. #ifndef MIN_COOLING_SLOPE_TIME
  5579. #define MIN_COOLING_SLOPE_TIME 60
  5580. #endif
  5581. inline void gcode_M109() {
  5582. if (get_target_extruder_from_command(109)) return;
  5583. if (DEBUGGING(DRYRUN)) return;
  5584. #if ENABLED(SINGLENOZZLE)
  5585. if (target_extruder != active_extruder) return;
  5586. #endif
  5587. const bool no_wait_for_cooling = code_seen('S');
  5588. if (no_wait_for_cooling || code_seen('R')) {
  5589. const int16_t temp = code_value_temp_abs();
  5590. thermalManager.setTargetHotend(temp, target_extruder);
  5591. #if ENABLED(DUAL_X_CARRIAGE)
  5592. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  5593. thermalManager.setTargetHotend(temp ? temp + duplicate_extruder_temp_offset : 0, 1);
  5594. #endif
  5595. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  5596. /**
  5597. * Use half EXTRUDE_MINTEMP to allow nozzles to be put into hot
  5598. * standby mode, (e.g., in a dual extruder setup) without affecting
  5599. * the running print timer.
  5600. */
  5601. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP) / 2) {
  5602. print_job_timer.stop();
  5603. LCD_MESSAGEPGM(WELCOME_MSG);
  5604. }
  5605. else
  5606. print_job_timer.start();
  5607. #endif
  5608. if (thermalManager.isHeatingHotend(target_extruder)) lcd_status_printf_P(0, PSTR("E%i %s"), target_extruder + 1, MSG_HEATING);
  5609. }
  5610. else return;
  5611. #if ENABLED(AUTOTEMP)
  5612. planner.autotemp_M104_M109();
  5613. #endif
  5614. #if TEMP_RESIDENCY_TIME > 0
  5615. millis_t residency_start_ms = 0;
  5616. // Loop until the temperature has stabilized
  5617. #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  5618. #else
  5619. // Loop until the temperature is very close target
  5620. #define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
  5621. #endif
  5622. float target_temp = -1.0, old_temp = 9999.0;
  5623. bool wants_to_cool = false;
  5624. wait_for_heatup = true;
  5625. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  5626. KEEPALIVE_STATE(NOT_BUSY);
  5627. #if ENABLED(PRINTER_EVENT_LEDS)
  5628. const float start_temp = thermalManager.degHotend(target_extruder);
  5629. uint8_t old_blue = 0;
  5630. #endif
  5631. do {
  5632. // Target temperature might be changed during the loop
  5633. if (target_temp != thermalManager.degTargetHotend(target_extruder)) {
  5634. wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
  5635. target_temp = thermalManager.degTargetHotend(target_extruder);
  5636. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  5637. if (no_wait_for_cooling && wants_to_cool) break;
  5638. }
  5639. now = millis();
  5640. if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
  5641. next_temp_ms = now + 1000UL;
  5642. print_heaterstates();
  5643. #if TEMP_RESIDENCY_TIME > 0
  5644. SERIAL_PROTOCOLPGM(" W:");
  5645. if (residency_start_ms) {
  5646. long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  5647. SERIAL_PROTOCOLLN(rem);
  5648. }
  5649. else {
  5650. SERIAL_PROTOCOLLNPGM("?");
  5651. }
  5652. #else
  5653. SERIAL_EOL;
  5654. #endif
  5655. }
  5656. idle();
  5657. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  5658. const float temp = thermalManager.degHotend(target_extruder);
  5659. #if ENABLED(PRINTER_EVENT_LEDS)
  5660. // Gradually change LED strip from violet to red as nozzle heats up
  5661. if (!wants_to_cool) {
  5662. const uint8_t blue = map(constrain(temp, start_temp, target_temp), start_temp, target_temp, 255, 0);
  5663. if (blue != old_blue) set_led_color(255, 0, (old_blue = blue));
  5664. }
  5665. #endif
  5666. #if TEMP_RESIDENCY_TIME > 0
  5667. const float temp_diff = fabs(target_temp - temp);
  5668. if (!residency_start_ms) {
  5669. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  5670. if (temp_diff < TEMP_WINDOW) residency_start_ms = now;
  5671. }
  5672. else if (temp_diff > TEMP_HYSTERESIS) {
  5673. // Restart the timer whenever the temperature falls outside the hysteresis.
  5674. residency_start_ms = now;
  5675. }
  5676. #endif
  5677. // Prevent a wait-forever situation if R is misused i.e. M109 R0
  5678. if (wants_to_cool) {
  5679. // break after MIN_COOLING_SLOPE_TIME seconds
  5680. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG
  5681. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  5682. if (old_temp - temp < MIN_COOLING_SLOPE_DEG) break;
  5683. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME;
  5684. old_temp = temp;
  5685. }
  5686. }
  5687. } while (wait_for_heatup && TEMP_CONDITIONS);
  5688. if (wait_for_heatup) {
  5689. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  5690. #if ENABLED(PRINTER_EVENT_LEDS)
  5691. #if ENABLED(RGBW_LED)
  5692. set_led_color(0, 0, 0, 255); // Turn on the WHITE LED
  5693. #else
  5694. set_led_color(255, 255, 255); // Set LEDs All On
  5695. #endif
  5696. #endif
  5697. }
  5698. KEEPALIVE_STATE(IN_HANDLER);
  5699. }
  5700. #if HAS_TEMP_BED
  5701. #ifndef MIN_COOLING_SLOPE_DEG_BED
  5702. #define MIN_COOLING_SLOPE_DEG_BED 1.50
  5703. #endif
  5704. #ifndef MIN_COOLING_SLOPE_TIME_BED
  5705. #define MIN_COOLING_SLOPE_TIME_BED 60
  5706. #endif
  5707. /**
  5708. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  5709. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  5710. */
  5711. inline void gcode_M190() {
  5712. if (DEBUGGING(DRYRUN)) return;
  5713. LCD_MESSAGEPGM(MSG_BED_HEATING);
  5714. const bool no_wait_for_cooling = code_seen('S');
  5715. if (no_wait_for_cooling || code_seen('R')) {
  5716. thermalManager.setTargetBed(code_value_temp_abs());
  5717. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  5718. if (code_value_temp_abs() > BED_MINTEMP)
  5719. print_job_timer.start();
  5720. #endif
  5721. }
  5722. else return;
  5723. #if TEMP_BED_RESIDENCY_TIME > 0
  5724. millis_t residency_start_ms = 0;
  5725. // Loop until the temperature has stabilized
  5726. #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
  5727. #else
  5728. // Loop until the temperature is very close target
  5729. #define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
  5730. #endif
  5731. float target_temp = -1.0, old_temp = 9999.0;
  5732. bool wants_to_cool = false;
  5733. wait_for_heatup = true;
  5734. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  5735. KEEPALIVE_STATE(NOT_BUSY);
  5736. target_extruder = active_extruder; // for print_heaterstates
  5737. #if ENABLED(PRINTER_EVENT_LEDS)
  5738. const float start_temp = thermalManager.degBed();
  5739. uint8_t old_red = 255;
  5740. #endif
  5741. do {
  5742. // Target temperature might be changed during the loop
  5743. if (target_temp != thermalManager.degTargetBed()) {
  5744. wants_to_cool = thermalManager.isCoolingBed();
  5745. target_temp = thermalManager.degTargetBed();
  5746. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  5747. if (no_wait_for_cooling && wants_to_cool) break;
  5748. }
  5749. now = millis();
  5750. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
  5751. next_temp_ms = now + 1000UL;
  5752. print_heaterstates();
  5753. #if TEMP_BED_RESIDENCY_TIME > 0
  5754. SERIAL_PROTOCOLPGM(" W:");
  5755. if (residency_start_ms) {
  5756. long rem = (((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  5757. SERIAL_PROTOCOLLN(rem);
  5758. }
  5759. else {
  5760. SERIAL_PROTOCOLLNPGM("?");
  5761. }
  5762. #else
  5763. SERIAL_EOL;
  5764. #endif
  5765. }
  5766. idle();
  5767. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  5768. const float temp = thermalManager.degBed();
  5769. #if ENABLED(PRINTER_EVENT_LEDS)
  5770. // Gradually change LED strip from blue to violet as bed heats up
  5771. if (!wants_to_cool) {
  5772. const uint8_t red = map(constrain(temp, start_temp, target_temp), start_temp, target_temp, 0, 255);
  5773. if (red != old_red) set_led_color((old_red = red), 0, 255);
  5774. }
  5775. }
  5776. #endif
  5777. #if TEMP_BED_RESIDENCY_TIME > 0
  5778. const float temp_diff = fabs(target_temp - temp);
  5779. if (!residency_start_ms) {
  5780. // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
  5781. if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = now;
  5782. }
  5783. else if (temp_diff > TEMP_BED_HYSTERESIS) {
  5784. // Restart the timer whenever the temperature falls outside the hysteresis.
  5785. residency_start_ms = now;
  5786. }
  5787. #endif // TEMP_BED_RESIDENCY_TIME > 0
  5788. // Prevent a wait-forever situation if R is misused i.e. M190 R0
  5789. if (wants_to_cool) {
  5790. // Break after MIN_COOLING_SLOPE_TIME_BED seconds
  5791. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_BED
  5792. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  5793. if (old_temp - temp < MIN_COOLING_SLOPE_DEG_BED) break;
  5794. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_BED;
  5795. old_temp = temp;
  5796. }
  5797. }
  5798. } while (wait_for_heatup && TEMP_BED_CONDITIONS);
  5799. if (wait_for_heatup) LCD_MESSAGEPGM(MSG_BED_DONE);
  5800. KEEPALIVE_STATE(IN_HANDLER);
  5801. }
  5802. #endif // HAS_TEMP_BED
  5803. /**
  5804. * M110: Set Current Line Number
  5805. */
  5806. inline void gcode_M110() {
  5807. if (code_seen('N')) gcode_LastN = code_value_long();
  5808. }
  5809. /**
  5810. * M111: Set the debug level
  5811. */
  5812. inline void gcode_M111() {
  5813. marlin_debug_flags = code_seen('S') ? code_value_byte() : (uint8_t)DEBUG_NONE;
  5814. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
  5815. const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
  5816. const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
  5817. const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
  5818. const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
  5819. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5820. const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
  5821. #endif
  5822. const static char* const debug_strings[] PROGMEM = {
  5823. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16,
  5824. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5825. str_debug_32
  5826. #endif
  5827. };
  5828. SERIAL_ECHO_START;
  5829. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  5830. if (marlin_debug_flags) {
  5831. uint8_t comma = 0;
  5832. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  5833. if (TEST(marlin_debug_flags, i)) {
  5834. if (comma++) SERIAL_CHAR(',');
  5835. serialprintPGM((char*)pgm_read_word(&debug_strings[i]));
  5836. }
  5837. }
  5838. }
  5839. else {
  5840. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  5841. }
  5842. SERIAL_EOL;
  5843. }
  5844. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  5845. /**
  5846. * M113: Get or set Host Keepalive interval (0 to disable)
  5847. *
  5848. * S<seconds> Optional. Set the keepalive interval.
  5849. */
  5850. inline void gcode_M113() {
  5851. if (code_seen('S')) {
  5852. host_keepalive_interval = code_value_byte();
  5853. NOMORE(host_keepalive_interval, 60);
  5854. }
  5855. else {
  5856. SERIAL_ECHO_START;
  5857. SERIAL_ECHOLNPAIR("M113 S", (unsigned long)host_keepalive_interval);
  5858. }
  5859. }
  5860. #endif
  5861. #if ENABLED(BARICUDA)
  5862. #if HAS_HEATER_1
  5863. /**
  5864. * M126: Heater 1 valve open
  5865. */
  5866. inline void gcode_M126() { baricuda_valve_pressure = code_seen('S') ? code_value_byte() : 255; }
  5867. /**
  5868. * M127: Heater 1 valve close
  5869. */
  5870. inline void gcode_M127() { baricuda_valve_pressure = 0; }
  5871. #endif
  5872. #if HAS_HEATER_2
  5873. /**
  5874. * M128: Heater 2 valve open
  5875. */
  5876. inline void gcode_M128() { baricuda_e_to_p_pressure = code_seen('S') ? code_value_byte() : 255; }
  5877. /**
  5878. * M129: Heater 2 valve close
  5879. */
  5880. inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
  5881. #endif
  5882. #endif //BARICUDA
  5883. /**
  5884. * M140: Set bed temperature
  5885. */
  5886. inline void gcode_M140() {
  5887. if (DEBUGGING(DRYRUN)) return;
  5888. if (code_seen('S')) thermalManager.setTargetBed(code_value_temp_abs());
  5889. }
  5890. #if ENABLED(ULTIPANEL)
  5891. /**
  5892. * M145: Set the heatup state for a material in the LCD menu
  5893. *
  5894. * S<material> (0=PLA, 1=ABS)
  5895. * H<hotend temp>
  5896. * B<bed temp>
  5897. * F<fan speed>
  5898. */
  5899. inline void gcode_M145() {
  5900. uint8_t material = code_seen('S') ? (uint8_t)code_value_int() : 0;
  5901. if (material >= COUNT(lcd_preheat_hotend_temp)) {
  5902. SERIAL_ERROR_START;
  5903. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  5904. }
  5905. else {
  5906. int v;
  5907. if (code_seen('H')) {
  5908. v = code_value_int();
  5909. lcd_preheat_hotend_temp[material] = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  5910. }
  5911. if (code_seen('F')) {
  5912. v = code_value_int();
  5913. lcd_preheat_fan_speed[material] = constrain(v, 0, 255);
  5914. }
  5915. #if TEMP_SENSOR_BED != 0
  5916. if (code_seen('B')) {
  5917. v = code_value_int();
  5918. lcd_preheat_bed_temp[material] = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  5919. }
  5920. #endif
  5921. }
  5922. }
  5923. #endif // ULTIPANEL
  5924. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  5925. /**
  5926. * M149: Set temperature units
  5927. */
  5928. inline void gcode_M149() {
  5929. if (code_seen('C')) set_input_temp_units(TEMPUNIT_C);
  5930. else if (code_seen('K')) set_input_temp_units(TEMPUNIT_K);
  5931. else if (code_seen('F')) set_input_temp_units(TEMPUNIT_F);
  5932. }
  5933. #endif
  5934. #if HAS_POWER_SWITCH
  5935. /**
  5936. * M80: Turn on Power Supply
  5937. */
  5938. inline void gcode_M80() {
  5939. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  5940. /**
  5941. * If you have a switch on suicide pin, this is useful
  5942. * if you want to start another print with suicide feature after
  5943. * a print without suicide...
  5944. */
  5945. #if HAS_SUICIDE
  5946. OUT_WRITE(SUICIDE_PIN, HIGH);
  5947. #endif
  5948. #if ENABLED(HAVE_TMC2130)
  5949. delay(100);
  5950. tmc2130_init(); // Settings only stick when the driver has power
  5951. #endif
  5952. #if ENABLED(ULTIPANEL)
  5953. powersupply = true;
  5954. LCD_MESSAGEPGM(WELCOME_MSG);
  5955. #endif
  5956. }
  5957. #endif // HAS_POWER_SWITCH
  5958. /**
  5959. * M81: Turn off Power, including Power Supply, if there is one.
  5960. *
  5961. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  5962. */
  5963. inline void gcode_M81() {
  5964. thermalManager.disable_all_heaters();
  5965. stepper.finish_and_disable();
  5966. #if FAN_COUNT > 0
  5967. #if FAN_COUNT > 1
  5968. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  5969. #else
  5970. fanSpeeds[0] = 0;
  5971. #endif
  5972. #endif
  5973. safe_delay(1000); // Wait 1 second before switching off
  5974. #if HAS_SUICIDE
  5975. stepper.synchronize();
  5976. suicide();
  5977. #elif HAS_POWER_SWITCH
  5978. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  5979. #endif
  5980. #if ENABLED(ULTIPANEL)
  5981. #if HAS_POWER_SWITCH
  5982. powersupply = false;
  5983. #endif
  5984. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  5985. #endif
  5986. }
  5987. /**
  5988. * M82: Set E codes absolute (default)
  5989. */
  5990. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  5991. /**
  5992. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  5993. */
  5994. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  5995. /**
  5996. * M18, M84: Disable all stepper motors
  5997. */
  5998. inline void gcode_M18_M84() {
  5999. if (code_seen('S')) {
  6000. stepper_inactive_time = code_value_millis_from_seconds();
  6001. }
  6002. else {
  6003. bool all_axis = !((code_seen('X')) || (code_seen('Y')) || (code_seen('Z')) || (code_seen('E')));
  6004. if (all_axis) {
  6005. stepper.finish_and_disable();
  6006. }
  6007. else {
  6008. stepper.synchronize();
  6009. if (code_seen('X')) disable_X();
  6010. if (code_seen('Y')) disable_Y();
  6011. if (code_seen('Z')) disable_Z();
  6012. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  6013. if (code_seen('E')) disable_e_steppers();
  6014. #endif
  6015. }
  6016. }
  6017. }
  6018. /**
  6019. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  6020. */
  6021. inline void gcode_M85() {
  6022. if (code_seen('S')) max_inactive_time = code_value_millis_from_seconds();
  6023. }
  6024. /**
  6025. * Multi-stepper support for M92, M201, M203
  6026. */
  6027. #if ENABLED(DISTINCT_E_FACTORS)
  6028. #define GET_TARGET_EXTRUDER(CMD) if (get_target_extruder_from_command(CMD)) return
  6029. #define TARGET_EXTRUDER target_extruder
  6030. #else
  6031. #define GET_TARGET_EXTRUDER(CMD) NOOP
  6032. #define TARGET_EXTRUDER 0
  6033. #endif
  6034. /**
  6035. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  6036. * (Follows the same syntax as G92)
  6037. *
  6038. * With multiple extruders use T to specify which one.
  6039. */
  6040. inline void gcode_M92() {
  6041. GET_TARGET_EXTRUDER(92);
  6042. LOOP_XYZE(i) {
  6043. if (code_seen(axis_codes[i])) {
  6044. if (i == E_AXIS) {
  6045. const float value = code_value_per_axis_unit((AxisEnum)(E_AXIS + TARGET_EXTRUDER));
  6046. if (value < 20.0) {
  6047. float factor = planner.axis_steps_per_mm[E_AXIS + TARGET_EXTRUDER] / value; // increase e constants if M92 E14 is given for netfab.
  6048. planner.max_jerk[E_AXIS] *= factor;
  6049. planner.max_feedrate_mm_s[E_AXIS + TARGET_EXTRUDER] *= factor;
  6050. planner.max_acceleration_steps_per_s2[E_AXIS + TARGET_EXTRUDER] *= factor;
  6051. }
  6052. planner.axis_steps_per_mm[E_AXIS + TARGET_EXTRUDER] = value;
  6053. }
  6054. else {
  6055. planner.axis_steps_per_mm[i] = code_value_per_axis_unit((AxisEnum)i);
  6056. }
  6057. }
  6058. }
  6059. planner.refresh_positioning();
  6060. }
  6061. /**
  6062. * Output the current position to serial
  6063. */
  6064. static void report_current_position() {
  6065. SERIAL_PROTOCOLPGM("X:");
  6066. SERIAL_PROTOCOL(current_position[X_AXIS]);
  6067. SERIAL_PROTOCOLPGM(" Y:");
  6068. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  6069. SERIAL_PROTOCOLPGM(" Z:");
  6070. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  6071. SERIAL_PROTOCOLPGM(" E:");
  6072. SERIAL_PROTOCOL(current_position[E_AXIS]);
  6073. stepper.report_positions();
  6074. #if IS_SCARA
  6075. SERIAL_PROTOCOLPAIR("SCARA Theta:", stepper.get_axis_position_degrees(A_AXIS));
  6076. SERIAL_PROTOCOLLNPAIR(" Psi+Theta:", stepper.get_axis_position_degrees(B_AXIS));
  6077. SERIAL_EOL;
  6078. #endif
  6079. }
  6080. /**
  6081. * M114: Output current position to serial port
  6082. */
  6083. inline void gcode_M114() { stepper.synchronize(); report_current_position(); }
  6084. /**
  6085. * M115: Capabilities string
  6086. */
  6087. inline void gcode_M115() {
  6088. SERIAL_PROTOCOLLNPGM(MSG_M115_REPORT);
  6089. #if ENABLED(EXTENDED_CAPABILITIES_REPORT)
  6090. // EEPROM (M500, M501)
  6091. #if ENABLED(EEPROM_SETTINGS)
  6092. SERIAL_PROTOCOLLNPGM("Cap:EEPROM:1");
  6093. #else
  6094. SERIAL_PROTOCOLLNPGM("Cap:EEPROM:0");
  6095. #endif
  6096. // AUTOREPORT_TEMP (M155)
  6097. #if ENABLED(AUTO_REPORT_TEMPERATURES)
  6098. SERIAL_PROTOCOLLNPGM("Cap:AUTOREPORT_TEMP:1");
  6099. #else
  6100. SERIAL_PROTOCOLLNPGM("Cap:AUTOREPORT_TEMP:0");
  6101. #endif
  6102. // PROGRESS (M530 S L, M531 <file>, M532 X L)
  6103. SERIAL_PROTOCOLLNPGM("Cap:PROGRESS:0");
  6104. // AUTOLEVEL (G29)
  6105. #if HAS_ABL
  6106. SERIAL_PROTOCOLLNPGM("Cap:AUTOLEVEL:1");
  6107. #else
  6108. SERIAL_PROTOCOLLNPGM("Cap:AUTOLEVEL:0");
  6109. #endif
  6110. // Z_PROBE (G30)
  6111. #if HAS_BED_PROBE
  6112. SERIAL_PROTOCOLLNPGM("Cap:Z_PROBE:1");
  6113. #else
  6114. SERIAL_PROTOCOLLNPGM("Cap:Z_PROBE:0");
  6115. #endif
  6116. // MESH_REPORT (M420 V)
  6117. #if HAS_LEVELING
  6118. SERIAL_PROTOCOLLNPGM("Cap:LEVELING_DATA:1");
  6119. #else
  6120. SERIAL_PROTOCOLLNPGM("Cap:LEVELING_DATA:0");
  6121. #endif
  6122. // SOFTWARE_POWER (G30)
  6123. #if HAS_POWER_SWITCH
  6124. SERIAL_PROTOCOLLNPGM("Cap:SOFTWARE_POWER:1");
  6125. #else
  6126. SERIAL_PROTOCOLLNPGM("Cap:SOFTWARE_POWER:0");
  6127. #endif
  6128. // TOGGLE_LIGHTS (M355)
  6129. #if HAS_CASE_LIGHT
  6130. SERIAL_PROTOCOLLNPGM("Cap:TOGGLE_LIGHTS:1");
  6131. #else
  6132. SERIAL_PROTOCOLLNPGM("Cap:TOGGLE_LIGHTS:0");
  6133. #endif
  6134. // EMERGENCY_PARSER (M108, M112, M410)
  6135. #if ENABLED(EMERGENCY_PARSER)
  6136. SERIAL_PROTOCOLLNPGM("Cap:EMERGENCY_PARSER:1");
  6137. #else
  6138. SERIAL_PROTOCOLLNPGM("Cap:EMERGENCY_PARSER:0");
  6139. #endif
  6140. #endif // EXTENDED_CAPABILITIES_REPORT
  6141. }
  6142. /**
  6143. * M117: Set LCD Status Message
  6144. */
  6145. inline void gcode_M117() {
  6146. lcd_setstatus(current_command_args);
  6147. }
  6148. /**
  6149. * M119: Output endstop states to serial output
  6150. */
  6151. inline void gcode_M119() { endstops.M119(); }
  6152. /**
  6153. * M120: Enable endstops and set non-homing endstop state to "enabled"
  6154. */
  6155. inline void gcode_M120() { endstops.enable_globally(true); }
  6156. /**
  6157. * M121: Disable endstops and set non-homing endstop state to "disabled"
  6158. */
  6159. inline void gcode_M121() { endstops.enable_globally(false); }
  6160. #if ENABLED(PARK_HEAD_ON_PAUSE)
  6161. /**
  6162. * M125: Store current position and move to filament change position.
  6163. * Called on pause (by M25) to prevent material leaking onto the
  6164. * object. On resume (M24) the head will be moved back and the
  6165. * print will resume.
  6166. *
  6167. * If Marlin is compiled without SD Card support, M125 can be
  6168. * used directly to pause the print and move to park position,
  6169. * resuming with a button click or M108.
  6170. *
  6171. * L = override retract length
  6172. * X = override X
  6173. * Y = override Y
  6174. * Z = override Z raise
  6175. */
  6176. inline void gcode_M125() {
  6177. if (move_away_flag) return; // already paused
  6178. const bool job_running = print_job_timer.isRunning();
  6179. // there are blocks after this one, or sd printing
  6180. move_away_flag = job_running || planner.blocks_queued()
  6181. #if ENABLED(SDSUPPORT)
  6182. || card.sdprinting
  6183. #endif
  6184. ;
  6185. if (!move_away_flag) return; // nothing to pause
  6186. // M125 can be used to pause a print too
  6187. #if ENABLED(SDSUPPORT)
  6188. card.pauseSDPrint();
  6189. #endif
  6190. print_job_timer.pause();
  6191. // Save current position
  6192. COPY(resume_position, current_position);
  6193. set_destination_to_current();
  6194. // Initial retract before move to filament change position
  6195. destination[E_AXIS] += code_seen('L') ? code_value_axis_units(E_AXIS) : 0
  6196. #if defined(FILAMENT_CHANGE_RETRACT_LENGTH) && FILAMENT_CHANGE_RETRACT_LENGTH > 0
  6197. - (FILAMENT_CHANGE_RETRACT_LENGTH)
  6198. #endif
  6199. ;
  6200. RUNPLAN(FILAMENT_CHANGE_RETRACT_FEEDRATE);
  6201. // Lift Z axis
  6202. const float z_lift = code_seen('Z') ? code_value_linear_units() :
  6203. #if defined(FILAMENT_CHANGE_Z_ADD) && FILAMENT_CHANGE_Z_ADD > 0
  6204. FILAMENT_CHANGE_Z_ADD
  6205. #else
  6206. 0
  6207. #endif
  6208. ;
  6209. if (z_lift > 0) {
  6210. destination[Z_AXIS] += z_lift;
  6211. NOMORE(destination[Z_AXIS], Z_MAX_POS);
  6212. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  6213. }
  6214. // Move XY axes to filament change position or given position
  6215. destination[X_AXIS] = code_seen('X') ? code_value_linear_units() : 0
  6216. #ifdef FILAMENT_CHANGE_X_POS
  6217. + FILAMENT_CHANGE_X_POS
  6218. #endif
  6219. ;
  6220. destination[Y_AXIS] = code_seen('Y') ? code_value_linear_units() : 0
  6221. #ifdef FILAMENT_CHANGE_Y_POS
  6222. + FILAMENT_CHANGE_Y_POS
  6223. #endif
  6224. ;
  6225. #if HOTENDS > 1 && DISABLED(DUAL_X_CARRIAGE)
  6226. if (active_extruder > 0) {
  6227. if (!code_seen('X')) destination[X_AXIS] += hotend_offset[X_AXIS][active_extruder];
  6228. if (!code_seen('Y')) destination[Y_AXIS] += hotend_offset[Y_AXIS][active_extruder];
  6229. }
  6230. #endif
  6231. clamp_to_software_endstops(destination);
  6232. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  6233. set_current_to_destination();
  6234. stepper.synchronize();
  6235. disable_e_steppers();
  6236. #if DISABLED(SDSUPPORT)
  6237. // Wait for lcd click or M108
  6238. KEEPALIVE_STATE(PAUSED_FOR_USER);
  6239. wait_for_user = true;
  6240. while (wait_for_user) idle();
  6241. KEEPALIVE_STATE(IN_HANDLER);
  6242. // Return to print position and continue
  6243. move_back_on_resume();
  6244. if (job_running) print_job_timer.start();
  6245. move_away_flag = false;
  6246. #endif
  6247. }
  6248. #endif // PARK_HEAD_ON_PAUSE
  6249. #if HAS_COLOR_LEDS
  6250. /**
  6251. * M150: Set Status LED Color - Use R-U-B-W for R-G-B-W
  6252. *
  6253. * Always sets all 3 or 4 components. If a component is left out, set to 0.
  6254. *
  6255. * Examples:
  6256. *
  6257. * M150 R255 ; Turn LED red
  6258. * M150 R255 U127 ; Turn LED orange (PWM only)
  6259. * M150 ; Turn LED off
  6260. * M150 R U B ; Turn LED white
  6261. * M150 W ; Turn LED white using a white LED
  6262. *
  6263. */
  6264. inline void gcode_M150() {
  6265. set_led_color(
  6266. code_seen('R') ? (code_has_value() ? code_value_byte() : 255) : 0,
  6267. code_seen('U') ? (code_has_value() ? code_value_byte() : 255) : 0,
  6268. code_seen('B') ? (code_has_value() ? code_value_byte() : 255) : 0
  6269. #if ENABLED(RGBW_LED)
  6270. , code_seen('W') ? (code_has_value() ? code_value_byte() : 255) : 0
  6271. #endif
  6272. );
  6273. }
  6274. #endif // BLINKM || RGB_LED
  6275. /**
  6276. * M200: Set filament diameter and set E axis units to cubic units
  6277. *
  6278. * T<extruder> - Optional extruder number. Current extruder if omitted.
  6279. * D<linear> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.
  6280. */
  6281. inline void gcode_M200() {
  6282. if (get_target_extruder_from_command(200)) return;
  6283. if (code_seen('D')) {
  6284. // setting any extruder filament size disables volumetric on the assumption that
  6285. // slicers either generate in extruder values as cubic mm or as as filament feeds
  6286. // for all extruders
  6287. volumetric_enabled = (code_value_linear_units() != 0.0);
  6288. if (volumetric_enabled) {
  6289. filament_size[target_extruder] = code_value_linear_units();
  6290. // make sure all extruders have some sane value for the filament size
  6291. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  6292. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  6293. }
  6294. }
  6295. calculate_volumetric_multipliers();
  6296. }
  6297. /**
  6298. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  6299. *
  6300. * With multiple extruders use T to specify which one.
  6301. */
  6302. inline void gcode_M201() {
  6303. GET_TARGET_EXTRUDER(201);
  6304. LOOP_XYZE(i) {
  6305. if (code_seen(axis_codes[i])) {
  6306. const uint8_t a = i + (i == E_AXIS ? TARGET_EXTRUDER : 0);
  6307. planner.max_acceleration_mm_per_s2[a] = code_value_axis_units((AxisEnum)a);
  6308. }
  6309. }
  6310. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  6311. planner.reset_acceleration_rates();
  6312. }
  6313. #if 0 // Not used for Sprinter/grbl gen6
  6314. inline void gcode_M202() {
  6315. LOOP_XYZE(i) {
  6316. if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value_axis_units((AxisEnum)i) * planner.axis_steps_per_mm[i];
  6317. }
  6318. }
  6319. #endif
  6320. /**
  6321. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  6322. *
  6323. * With multiple extruders use T to specify which one.
  6324. */
  6325. inline void gcode_M203() {
  6326. GET_TARGET_EXTRUDER(203);
  6327. LOOP_XYZE(i)
  6328. if (code_seen(axis_codes[i])) {
  6329. const uint8_t a = i + (i == E_AXIS ? TARGET_EXTRUDER : 0);
  6330. planner.max_feedrate_mm_s[a] = code_value_axis_units((AxisEnum)a);
  6331. }
  6332. }
  6333. /**
  6334. * M204: Set Accelerations in units/sec^2 (M204 P1200 R3000 T3000)
  6335. *
  6336. * P = Printing moves
  6337. * R = Retract only (no X, Y, Z) moves
  6338. * T = Travel (non printing) moves
  6339. *
  6340. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  6341. */
  6342. inline void gcode_M204() {
  6343. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  6344. planner.travel_acceleration = planner.acceleration = code_value_linear_units();
  6345. SERIAL_ECHOLNPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
  6346. }
  6347. if (code_seen('P')) {
  6348. planner.acceleration = code_value_linear_units();
  6349. SERIAL_ECHOLNPAIR("Setting Print Acceleration: ", planner.acceleration);
  6350. }
  6351. if (code_seen('R')) {
  6352. planner.retract_acceleration = code_value_linear_units();
  6353. SERIAL_ECHOLNPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
  6354. }
  6355. if (code_seen('T')) {
  6356. planner.travel_acceleration = code_value_linear_units();
  6357. SERIAL_ECHOLNPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
  6358. }
  6359. }
  6360. /**
  6361. * M205: Set Advanced Settings
  6362. *
  6363. * S = Min Feed Rate (units/s)
  6364. * T = Min Travel Feed Rate (units/s)
  6365. * B = Min Segment Time (µs)
  6366. * X = Max X Jerk (units/sec^2)
  6367. * Y = Max Y Jerk (units/sec^2)
  6368. * Z = Max Z Jerk (units/sec^2)
  6369. * E = Max E Jerk (units/sec^2)
  6370. */
  6371. inline void gcode_M205() {
  6372. if (code_seen('S')) planner.min_feedrate_mm_s = code_value_linear_units();
  6373. if (code_seen('T')) planner.min_travel_feedrate_mm_s = code_value_linear_units();
  6374. if (code_seen('B')) planner.min_segment_time = code_value_millis();
  6375. if (code_seen('X')) planner.max_jerk[X_AXIS] = code_value_linear_units();
  6376. if (code_seen('Y')) planner.max_jerk[Y_AXIS] = code_value_linear_units();
  6377. if (code_seen('Z')) planner.max_jerk[Z_AXIS] = code_value_linear_units();
  6378. if (code_seen('E')) planner.max_jerk[E_AXIS] = code_value_linear_units();
  6379. }
  6380. #if HAS_M206_COMMAND
  6381. /**
  6382. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  6383. */
  6384. inline void gcode_M206() {
  6385. LOOP_XYZ(i)
  6386. if (code_seen(axis_codes[i]))
  6387. set_home_offset((AxisEnum)i, code_value_linear_units());
  6388. #if ENABLED(MORGAN_SCARA)
  6389. if (code_seen('T')) set_home_offset(A_AXIS, code_value_linear_units()); // Theta
  6390. if (code_seen('P')) set_home_offset(B_AXIS, code_value_linear_units()); // Psi
  6391. #endif
  6392. SYNC_PLAN_POSITION_KINEMATIC();
  6393. report_current_position();
  6394. }
  6395. #endif // HAS_M206_COMMAND
  6396. #if ENABLED(DELTA)
  6397. /**
  6398. * M665: Set delta configurations
  6399. *
  6400. * H = diagonal rod // AC-version
  6401. * L = diagonal rod
  6402. * R = delta radius
  6403. * S = segments per second
  6404. * A = Alpha (Tower 1) diagonal rod trim
  6405. * B = Beta (Tower 2) diagonal rod trim
  6406. * C = Gamma (Tower 3) diagonal rod trim
  6407. */
  6408. inline void gcode_M665() {
  6409. if (code_seen('H')) {
  6410. home_offset[Z_AXIS] = code_value_linear_units() - DELTA_HEIGHT;
  6411. current_position[Z_AXIS] += code_value_linear_units() - DELTA_HEIGHT - home_offset[Z_AXIS];
  6412. home_offset[Z_AXIS] = code_value_linear_units() - DELTA_HEIGHT;
  6413. update_software_endstops(Z_AXIS);
  6414. }
  6415. if (code_seen('L')) delta_diagonal_rod = code_value_linear_units();
  6416. if (code_seen('R')) delta_radius = code_value_linear_units();
  6417. if (code_seen('S')) delta_segments_per_second = code_value_float();
  6418. if (code_seen('B')) delta_calibration_radius = code_value_float();
  6419. if (code_seen('X')) delta_tower_angle_trim[A_AXIS] = code_value_linear_units();
  6420. if (code_seen('Y')) delta_tower_angle_trim[B_AXIS] = code_value_linear_units();
  6421. if (code_seen('Z')) { // rotate all 3 axis for Z = 0
  6422. delta_tower_angle_trim[A_AXIS] -= code_value_linear_units();
  6423. delta_tower_angle_trim[B_AXIS] -= code_value_linear_units();
  6424. }
  6425. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  6426. }
  6427. /**
  6428. * M666: Set delta endstop adjustment
  6429. */
  6430. inline void gcode_M666() {
  6431. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6432. if (DEBUGGING(LEVELING)) {
  6433. SERIAL_ECHOLNPGM(">>> gcode_M666");
  6434. }
  6435. #endif
  6436. LOOP_XYZ(i) {
  6437. if (code_seen(axis_codes[i])) {
  6438. endstop_adj[i] = code_value_linear_units();
  6439. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6440. if (DEBUGGING(LEVELING)) {
  6441. SERIAL_ECHOPAIR("endstop_adj[", axis_codes[i]);
  6442. SERIAL_ECHOLNPAIR("] = ", endstop_adj[i]);
  6443. }
  6444. #endif
  6445. }
  6446. }
  6447. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6448. if (DEBUGGING(LEVELING)) {
  6449. SERIAL_ECHOLNPGM("<<< gcode_M666");
  6450. }
  6451. #endif
  6452. // normalize endstops so all are <=0; set the residue to delta height
  6453. const float z_temp = MAX3(endstop_adj[A_AXIS], endstop_adj[B_AXIS], endstop_adj[C_AXIS]);
  6454. home_offset[Z_AXIS] -= z_temp;
  6455. LOOP_XYZ(i) endstop_adj[i] -= z_temp;
  6456. }
  6457. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  6458. /**
  6459. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  6460. */
  6461. inline void gcode_M666() {
  6462. if (code_seen('Z')) z_endstop_adj = code_value_linear_units();
  6463. SERIAL_ECHOLNPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  6464. }
  6465. #endif // !DELTA && Z_DUAL_ENDSTOPS
  6466. #if ENABLED(FWRETRACT)
  6467. /**
  6468. * M207: Set firmware retraction values
  6469. *
  6470. * S[+units] retract_length
  6471. * W[+units] retract_length_swap (multi-extruder)
  6472. * F[units/min] retract_feedrate_mm_s
  6473. * Z[units] retract_zlift
  6474. */
  6475. inline void gcode_M207() {
  6476. if (code_seen('S')) retract_length = code_value_axis_units(E_AXIS);
  6477. if (code_seen('F')) retract_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  6478. if (code_seen('Z')) retract_zlift = code_value_linear_units();
  6479. #if EXTRUDERS > 1
  6480. if (code_seen('W')) retract_length_swap = code_value_axis_units(E_AXIS);
  6481. #endif
  6482. }
  6483. /**
  6484. * M208: Set firmware un-retraction values
  6485. *
  6486. * S[+units] retract_recover_length (in addition to M207 S*)
  6487. * W[+units] retract_recover_length_swap (multi-extruder)
  6488. * F[units/min] retract_recover_feedrate_mm_s
  6489. */
  6490. inline void gcode_M208() {
  6491. if (code_seen('S')) retract_recover_length = code_value_axis_units(E_AXIS);
  6492. if (code_seen('F')) retract_recover_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  6493. #if EXTRUDERS > 1
  6494. if (code_seen('W')) retract_recover_length_swap = code_value_axis_units(E_AXIS);
  6495. #endif
  6496. }
  6497. /**
  6498. * M209: Enable automatic retract (M209 S1)
  6499. * For slicers that don't support G10/11, reversed extrude-only
  6500. * moves will be classified as retraction.
  6501. */
  6502. inline void gcode_M209() {
  6503. if (code_seen('S')) {
  6504. autoretract_enabled = code_value_bool();
  6505. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  6506. }
  6507. }
  6508. #endif // FWRETRACT
  6509. /**
  6510. * M211: Enable, Disable, and/or Report software endstops
  6511. *
  6512. * Usage: M211 S1 to enable, M211 S0 to disable, M211 alone for report
  6513. */
  6514. inline void gcode_M211() {
  6515. SERIAL_ECHO_START;
  6516. #if HAS_SOFTWARE_ENDSTOPS
  6517. if (code_seen('S')) soft_endstops_enabled = code_value_bool();
  6518. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  6519. serialprintPGM(soft_endstops_enabled ? PSTR(MSG_ON) : PSTR(MSG_OFF));
  6520. #else
  6521. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  6522. SERIAL_ECHOPGM(MSG_OFF);
  6523. #endif
  6524. SERIAL_ECHOPGM(MSG_SOFT_MIN);
  6525. SERIAL_ECHOPAIR( MSG_X, soft_endstop_min[X_AXIS]);
  6526. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_min[Y_AXIS]);
  6527. SERIAL_ECHOPAIR(" " MSG_Z, soft_endstop_min[Z_AXIS]);
  6528. SERIAL_ECHOPGM(MSG_SOFT_MAX);
  6529. SERIAL_ECHOPAIR( MSG_X, soft_endstop_max[X_AXIS]);
  6530. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_max[Y_AXIS]);
  6531. SERIAL_ECHOLNPAIR(" " MSG_Z, soft_endstop_max[Z_AXIS]);
  6532. }
  6533. #if HOTENDS > 1
  6534. /**
  6535. * M218 - set hotend offset (in linear units)
  6536. *
  6537. * T<tool>
  6538. * X<xoffset>
  6539. * Y<yoffset>
  6540. * Z<zoffset> - Available with DUAL_X_CARRIAGE and SWITCHING_EXTRUDER
  6541. */
  6542. inline void gcode_M218() {
  6543. if (get_target_extruder_from_command(218) || target_extruder == 0) return;
  6544. if (code_seen('X')) hotend_offset[X_AXIS][target_extruder] = code_value_linear_units();
  6545. if (code_seen('Y')) hotend_offset[Y_AXIS][target_extruder] = code_value_linear_units();
  6546. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  6547. if (code_seen('Z')) hotend_offset[Z_AXIS][target_extruder] = code_value_linear_units();
  6548. #endif
  6549. SERIAL_ECHO_START;
  6550. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  6551. HOTEND_LOOP() {
  6552. SERIAL_CHAR(' ');
  6553. SERIAL_ECHO(hotend_offset[X_AXIS][e]);
  6554. SERIAL_CHAR(',');
  6555. SERIAL_ECHO(hotend_offset[Y_AXIS][e]);
  6556. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  6557. SERIAL_CHAR(',');
  6558. SERIAL_ECHO(hotend_offset[Z_AXIS][e]);
  6559. #endif
  6560. }
  6561. SERIAL_EOL;
  6562. }
  6563. #endif // HOTENDS > 1
  6564. /**
  6565. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  6566. */
  6567. inline void gcode_M220() {
  6568. if (code_seen('S')) feedrate_percentage = code_value_int();
  6569. }
  6570. /**
  6571. * M221: Set extrusion percentage (M221 T0 S95)
  6572. */
  6573. inline void gcode_M221() {
  6574. if (get_target_extruder_from_command(221)) return;
  6575. if (code_seen('S'))
  6576. flow_percentage[target_extruder] = code_value_int();
  6577. }
  6578. /**
  6579. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  6580. */
  6581. inline void gcode_M226() {
  6582. if (code_seen('P')) {
  6583. int pin_number = code_value_int(),
  6584. pin_state = code_seen('S') ? code_value_int() : -1; // required pin state - default is inverted
  6585. if (pin_state >= -1 && pin_state <= 1 && pin_number > -1 && !pin_is_protected(pin_number)) {
  6586. int target = LOW;
  6587. stepper.synchronize();
  6588. pinMode(pin_number, INPUT);
  6589. switch (pin_state) {
  6590. case 1:
  6591. target = HIGH;
  6592. break;
  6593. case 0:
  6594. target = LOW;
  6595. break;
  6596. case -1:
  6597. target = !digitalRead(pin_number);
  6598. break;
  6599. }
  6600. while (digitalRead(pin_number) != target) idle();
  6601. } // pin_state -1 0 1 && pin_number > -1
  6602. } // code_seen('P')
  6603. }
  6604. #if ENABLED(EXPERIMENTAL_I2CBUS)
  6605. /**
  6606. * M260: Send data to a I2C slave device
  6607. *
  6608. * This is a PoC, the formating and arguments for the GCODE will
  6609. * change to be more compatible, the current proposal is:
  6610. *
  6611. * M260 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  6612. *
  6613. * M260 B<byte-1 value in base 10>
  6614. * M260 B<byte-2 value in base 10>
  6615. * M260 B<byte-3 value in base 10>
  6616. *
  6617. * M260 S1 ; Send the buffered data and reset the buffer
  6618. * M260 R1 ; Reset the buffer without sending data
  6619. *
  6620. */
  6621. inline void gcode_M260() {
  6622. // Set the target address
  6623. if (code_seen('A')) i2c.address(code_value_byte());
  6624. // Add a new byte to the buffer
  6625. if (code_seen('B')) i2c.addbyte(code_value_byte());
  6626. // Flush the buffer to the bus
  6627. if (code_seen('S')) i2c.send();
  6628. // Reset and rewind the buffer
  6629. else if (code_seen('R')) i2c.reset();
  6630. }
  6631. /**
  6632. * M261: Request X bytes from I2C slave device
  6633. *
  6634. * Usage: M261 A<slave device address base 10> B<number of bytes>
  6635. */
  6636. inline void gcode_M261() {
  6637. if (code_seen('A')) i2c.address(code_value_byte());
  6638. uint8_t bytes = code_seen('B') ? code_value_byte() : 1;
  6639. if (i2c.addr && bytes && bytes <= TWIBUS_BUFFER_SIZE) {
  6640. i2c.relay(bytes);
  6641. }
  6642. else {
  6643. SERIAL_ERROR_START;
  6644. SERIAL_ERRORLN("Bad i2c request");
  6645. }
  6646. }
  6647. #endif // EXPERIMENTAL_I2CBUS
  6648. #if HAS_SERVOS
  6649. /**
  6650. * M280: Get or set servo position. P<index> [S<angle>]
  6651. */
  6652. inline void gcode_M280() {
  6653. if (!code_seen('P')) return;
  6654. int servo_index = code_value_int();
  6655. if (WITHIN(servo_index, 0, NUM_SERVOS - 1)) {
  6656. if (code_seen('S'))
  6657. MOVE_SERVO(servo_index, code_value_int());
  6658. else {
  6659. SERIAL_ECHO_START;
  6660. SERIAL_ECHOPAIR(" Servo ", servo_index);
  6661. SERIAL_ECHOLNPAIR(": ", servo[servo_index].read());
  6662. }
  6663. }
  6664. else {
  6665. SERIAL_ERROR_START;
  6666. SERIAL_ECHOPAIR("Servo ", servo_index);
  6667. SERIAL_ECHOLNPGM(" out of range");
  6668. }
  6669. }
  6670. #endif // HAS_SERVOS
  6671. #if HAS_BUZZER
  6672. /**
  6673. * M300: Play beep sound S<frequency Hz> P<duration ms>
  6674. */
  6675. inline void gcode_M300() {
  6676. uint16_t const frequency = code_seen('S') ? code_value_ushort() : 260;
  6677. uint16_t duration = code_seen('P') ? code_value_ushort() : 1000;
  6678. // Limits the tone duration to 0-5 seconds.
  6679. NOMORE(duration, 5000);
  6680. BUZZ(duration, frequency);
  6681. }
  6682. #endif // HAS_BUZZER
  6683. #if ENABLED(PIDTEMP)
  6684. /**
  6685. * M301: Set PID parameters P I D (and optionally C, L)
  6686. *
  6687. * P[float] Kp term
  6688. * I[float] Ki term (unscaled)
  6689. * D[float] Kd term (unscaled)
  6690. *
  6691. * With PID_EXTRUSION_SCALING:
  6692. *
  6693. * C[float] Kc term
  6694. * L[float] LPQ length
  6695. */
  6696. inline void gcode_M301() {
  6697. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  6698. // default behaviour (omitting E parameter) is to update for extruder 0 only
  6699. int e = code_seen('E') ? code_value_int() : 0; // extruder being updated
  6700. if (e < HOTENDS) { // catch bad input value
  6701. if (code_seen('P')) PID_PARAM(Kp, e) = code_value_float();
  6702. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value_float());
  6703. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value_float());
  6704. #if ENABLED(PID_EXTRUSION_SCALING)
  6705. if (code_seen('C')) PID_PARAM(Kc, e) = code_value_float();
  6706. if (code_seen('L')) lpq_len = code_value_float();
  6707. NOMORE(lpq_len, LPQ_MAX_LEN);
  6708. #endif
  6709. thermalManager.updatePID();
  6710. SERIAL_ECHO_START;
  6711. #if ENABLED(PID_PARAMS_PER_HOTEND)
  6712. SERIAL_ECHOPAIR(" e:", e); // specify extruder in serial output
  6713. #endif // PID_PARAMS_PER_HOTEND
  6714. SERIAL_ECHOPAIR(" p:", PID_PARAM(Kp, e));
  6715. SERIAL_ECHOPAIR(" i:", unscalePID_i(PID_PARAM(Ki, e)));
  6716. SERIAL_ECHOPAIR(" d:", unscalePID_d(PID_PARAM(Kd, e)));
  6717. #if ENABLED(PID_EXTRUSION_SCALING)
  6718. //Kc does not have scaling applied above, or in resetting defaults
  6719. SERIAL_ECHOPAIR(" c:", PID_PARAM(Kc, e));
  6720. #endif
  6721. SERIAL_EOL;
  6722. }
  6723. else {
  6724. SERIAL_ERROR_START;
  6725. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  6726. }
  6727. }
  6728. #endif // PIDTEMP
  6729. #if ENABLED(PIDTEMPBED)
  6730. inline void gcode_M304() {
  6731. if (code_seen('P')) thermalManager.bedKp = code_value_float();
  6732. if (code_seen('I')) thermalManager.bedKi = scalePID_i(code_value_float());
  6733. if (code_seen('D')) thermalManager.bedKd = scalePID_d(code_value_float());
  6734. thermalManager.updatePID();
  6735. SERIAL_ECHO_START;
  6736. SERIAL_ECHOPAIR(" p:", thermalManager.bedKp);
  6737. SERIAL_ECHOPAIR(" i:", unscalePID_i(thermalManager.bedKi));
  6738. SERIAL_ECHOLNPAIR(" d:", unscalePID_d(thermalManager.bedKd));
  6739. }
  6740. #endif // PIDTEMPBED
  6741. #if defined(CHDK) || HAS_PHOTOGRAPH
  6742. /**
  6743. * M240: Trigger a camera by emulating a Canon RC-1
  6744. * See http://www.doc-diy.net/photo/rc-1_hacked/
  6745. */
  6746. inline void gcode_M240() {
  6747. #ifdef CHDK
  6748. OUT_WRITE(CHDK, HIGH);
  6749. chdkHigh = millis();
  6750. chdkActive = true;
  6751. #elif HAS_PHOTOGRAPH
  6752. const uint8_t NUM_PULSES = 16;
  6753. const float PULSE_LENGTH = 0.01524;
  6754. for (int i = 0; i < NUM_PULSES; i++) {
  6755. WRITE(PHOTOGRAPH_PIN, HIGH);
  6756. _delay_ms(PULSE_LENGTH);
  6757. WRITE(PHOTOGRAPH_PIN, LOW);
  6758. _delay_ms(PULSE_LENGTH);
  6759. }
  6760. delay(7.33);
  6761. for (int i = 0; i < NUM_PULSES; i++) {
  6762. WRITE(PHOTOGRAPH_PIN, HIGH);
  6763. _delay_ms(PULSE_LENGTH);
  6764. WRITE(PHOTOGRAPH_PIN, LOW);
  6765. _delay_ms(PULSE_LENGTH);
  6766. }
  6767. #endif // !CHDK && HAS_PHOTOGRAPH
  6768. }
  6769. #endif // CHDK || PHOTOGRAPH_PIN
  6770. #if HAS_LCD_CONTRAST
  6771. /**
  6772. * M250: Read and optionally set the LCD contrast
  6773. */
  6774. inline void gcode_M250() {
  6775. if (code_seen('C')) set_lcd_contrast(code_value_int());
  6776. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  6777. SERIAL_PROTOCOL(lcd_contrast);
  6778. SERIAL_EOL;
  6779. }
  6780. #endif // HAS_LCD_CONTRAST
  6781. #if ENABLED(PREVENT_COLD_EXTRUSION)
  6782. /**
  6783. * M302: Allow cold extrudes, or set the minimum extrude temperature
  6784. *
  6785. * S<temperature> sets the minimum extrude temperature
  6786. * P<bool> enables (1) or disables (0) cold extrusion
  6787. *
  6788. * Examples:
  6789. *
  6790. * M302 ; report current cold extrusion state
  6791. * M302 P0 ; enable cold extrusion checking
  6792. * M302 P1 ; disables cold extrusion checking
  6793. * M302 S0 ; always allow extrusion (disables checking)
  6794. * M302 S170 ; only allow extrusion above 170
  6795. * M302 S170 P1 ; set min extrude temp to 170 but leave disabled
  6796. */
  6797. inline void gcode_M302() {
  6798. bool seen_S = code_seen('S');
  6799. if (seen_S) {
  6800. thermalManager.extrude_min_temp = code_value_temp_abs();
  6801. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0);
  6802. }
  6803. if (code_seen('P'))
  6804. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0) || code_value_bool();
  6805. else if (!seen_S) {
  6806. // Report current state
  6807. SERIAL_ECHO_START;
  6808. SERIAL_ECHOPAIR("Cold extrudes are ", (thermalManager.allow_cold_extrude ? "en" : "dis"));
  6809. SERIAL_ECHOPAIR("abled (min temp ", int(thermalManager.extrude_min_temp + 0.5));
  6810. SERIAL_ECHOLNPGM("C)");
  6811. }
  6812. }
  6813. #endif // PREVENT_COLD_EXTRUSION
  6814. /**
  6815. * M303: PID relay autotune
  6816. *
  6817. * S<temperature> sets the target temperature. (default 150C)
  6818. * E<extruder> (-1 for the bed) (default 0)
  6819. * C<cycles>
  6820. * U<bool> with a non-zero value will apply the result to current settings
  6821. */
  6822. inline void gcode_M303() {
  6823. #if HAS_PID_HEATING
  6824. const int e = code_seen('E') ? code_value_int() : 0,
  6825. c = code_seen('C') ? code_value_int() : 5;
  6826. const bool u = code_seen('U') && code_value_bool();
  6827. int16_t temp = code_seen('S') ? code_value_temp_abs() : (e < 0 ? 70 : 150);
  6828. if (WITHIN(e, 0, HOTENDS - 1))
  6829. target_extruder = e;
  6830. KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
  6831. thermalManager.PID_autotune(temp, e, c, u);
  6832. KEEPALIVE_STATE(IN_HANDLER);
  6833. #else
  6834. SERIAL_ERROR_START;
  6835. SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
  6836. #endif
  6837. }
  6838. #if ENABLED(MORGAN_SCARA)
  6839. bool SCARA_move_to_cal(uint8_t delta_a, uint8_t delta_b) {
  6840. if (IsRunning()) {
  6841. forward_kinematics_SCARA(delta_a, delta_b);
  6842. destination[X_AXIS] = LOGICAL_X_POSITION(cartes[X_AXIS]);
  6843. destination[Y_AXIS] = LOGICAL_Y_POSITION(cartes[Y_AXIS]);
  6844. destination[Z_AXIS] = current_position[Z_AXIS];
  6845. prepare_move_to_destination();
  6846. return true;
  6847. }
  6848. return false;
  6849. }
  6850. /**
  6851. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  6852. */
  6853. inline bool gcode_M360() {
  6854. SERIAL_ECHOLNPGM(" Cal: Theta 0");
  6855. return SCARA_move_to_cal(0, 120);
  6856. }
  6857. /**
  6858. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  6859. */
  6860. inline bool gcode_M361() {
  6861. SERIAL_ECHOLNPGM(" Cal: Theta 90");
  6862. return SCARA_move_to_cal(90, 130);
  6863. }
  6864. /**
  6865. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  6866. */
  6867. inline bool gcode_M362() {
  6868. SERIAL_ECHOLNPGM(" Cal: Psi 0");
  6869. return SCARA_move_to_cal(60, 180);
  6870. }
  6871. /**
  6872. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  6873. */
  6874. inline bool gcode_M363() {
  6875. SERIAL_ECHOLNPGM(" Cal: Psi 90");
  6876. return SCARA_move_to_cal(50, 90);
  6877. }
  6878. /**
  6879. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  6880. */
  6881. inline bool gcode_M364() {
  6882. SERIAL_ECHOLNPGM(" Cal: Theta-Psi 90");
  6883. return SCARA_move_to_cal(45, 135);
  6884. }
  6885. #endif // SCARA
  6886. #if ENABLED(EXT_SOLENOID)
  6887. void enable_solenoid(const uint8_t num) {
  6888. switch (num) {
  6889. case 0:
  6890. OUT_WRITE(SOL0_PIN, HIGH);
  6891. break;
  6892. #if HAS_SOLENOID_1 && EXTRUDERS > 1
  6893. case 1:
  6894. OUT_WRITE(SOL1_PIN, HIGH);
  6895. break;
  6896. #endif
  6897. #if HAS_SOLENOID_2 && EXTRUDERS > 2
  6898. case 2:
  6899. OUT_WRITE(SOL2_PIN, HIGH);
  6900. break;
  6901. #endif
  6902. #if HAS_SOLENOID_3 && EXTRUDERS > 3
  6903. case 3:
  6904. OUT_WRITE(SOL3_PIN, HIGH);
  6905. break;
  6906. #endif
  6907. #if HAS_SOLENOID_4 && EXTRUDERS > 4
  6908. case 4:
  6909. OUT_WRITE(SOL4_PIN, HIGH);
  6910. break;
  6911. #endif
  6912. default:
  6913. SERIAL_ECHO_START;
  6914. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  6915. break;
  6916. }
  6917. }
  6918. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  6919. void disable_all_solenoids() {
  6920. OUT_WRITE(SOL0_PIN, LOW);
  6921. #if HAS_SOLENOID_1 && EXTRUDERS > 1
  6922. OUT_WRITE(SOL1_PIN, LOW);
  6923. #endif
  6924. #if HAS_SOLENOID_2 && EXTRUDERS > 2
  6925. OUT_WRITE(SOL2_PIN, LOW);
  6926. #endif
  6927. #if HAS_SOLENOID_3 && EXTRUDERS > 3
  6928. OUT_WRITE(SOL3_PIN, LOW);
  6929. #endif
  6930. #if HAS_SOLENOID_4 && EXTRUDERS > 4
  6931. OUT_WRITE(SOL4_PIN, LOW);
  6932. #endif
  6933. }
  6934. /**
  6935. * M380: Enable solenoid on the active extruder
  6936. */
  6937. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  6938. /**
  6939. * M381: Disable all solenoids
  6940. */
  6941. inline void gcode_M381() { disable_all_solenoids(); }
  6942. #endif // EXT_SOLENOID
  6943. /**
  6944. * M400: Finish all moves
  6945. */
  6946. inline void gcode_M400() { stepper.synchronize(); }
  6947. #if HAS_BED_PROBE
  6948. /**
  6949. * M401: Engage Z Servo endstop if available
  6950. */
  6951. inline void gcode_M401() { DEPLOY_PROBE(); }
  6952. /**
  6953. * M402: Retract Z Servo endstop if enabled
  6954. */
  6955. inline void gcode_M402() { STOW_PROBE(); }
  6956. #endif // HAS_BED_PROBE
  6957. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  6958. /**
  6959. * M404: Display or set (in current units) the nominal filament width (3mm, 1.75mm ) W<3.0>
  6960. */
  6961. inline void gcode_M404() {
  6962. if (code_seen('W')) {
  6963. filament_width_nominal = code_value_linear_units();
  6964. }
  6965. else {
  6966. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  6967. SERIAL_PROTOCOLLN(filament_width_nominal);
  6968. }
  6969. }
  6970. /**
  6971. * M405: Turn on filament sensor for control
  6972. */
  6973. inline void gcode_M405() {
  6974. // This is technically a linear measurement, but since it's quantized to centimeters and is a different unit than
  6975. // everything else, it uses code_value_int() instead of code_value_linear_units().
  6976. if (code_seen('D')) meas_delay_cm = code_value_int();
  6977. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  6978. if (filwidth_delay_index[1] == -1) { // Initialize the ring buffer if not done since startup
  6979. const int temp_ratio = thermalManager.widthFil_to_size_ratio() - 100; // -100 to scale within a signed byte
  6980. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  6981. measurement_delay[i] = temp_ratio;
  6982. filwidth_delay_index[0] = filwidth_delay_index[1] = 0;
  6983. }
  6984. filament_sensor = true;
  6985. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  6986. //SERIAL_PROTOCOL(filament_width_meas);
  6987. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  6988. //SERIAL_PROTOCOL(flow_percentage[active_extruder]);
  6989. }
  6990. /**
  6991. * M406: Turn off filament sensor for control
  6992. */
  6993. inline void gcode_M406() { filament_sensor = false; }
  6994. /**
  6995. * M407: Get measured filament diameter on serial output
  6996. */
  6997. inline void gcode_M407() {
  6998. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  6999. SERIAL_PROTOCOLLN(filament_width_meas);
  7000. }
  7001. #endif // FILAMENT_WIDTH_SENSOR
  7002. void quickstop_stepper() {
  7003. stepper.quick_stop();
  7004. stepper.synchronize();
  7005. set_current_from_steppers_for_axis(ALL_AXES);
  7006. SYNC_PLAN_POSITION_KINEMATIC();
  7007. }
  7008. #if HAS_LEVELING
  7009. /**
  7010. * M420: Enable/Disable Bed Leveling and/or set the Z fade height.
  7011. *
  7012. * S[bool] Turns leveling on or off
  7013. * Z[height] Sets the Z fade height (0 or none to disable)
  7014. * V[bool] Verbose - Print the leveling grid
  7015. *
  7016. * With AUTO_BED_LEVELING_UBL only:
  7017. *
  7018. * L[index] Load UBL mesh from index (0 is default)
  7019. */
  7020. inline void gcode_M420() {
  7021. #if ENABLED(AUTO_BED_LEVELING_UBL)
  7022. // L to load a mesh from the EEPROM
  7023. if (code_seen('L')) {
  7024. const int8_t storage_slot = code_has_value() ? code_value_int() : ubl.state.eeprom_storage_slot;
  7025. const int16_t j = (UBL_LAST_EEPROM_INDEX - ubl.eeprom_start) / sizeof(ubl.z_values);
  7026. if (!WITHIN(storage_slot, 0, j - 1) || ubl.eeprom_start <= 0) {
  7027. SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n");
  7028. return;
  7029. }
  7030. ubl.load_mesh(storage_slot);
  7031. ubl.state.eeprom_storage_slot = storage_slot;
  7032. }
  7033. #endif // AUTO_BED_LEVELING_UBL
  7034. // V to print the matrix or mesh
  7035. if (code_seen('V')) {
  7036. #if ABL_PLANAR
  7037. planner.bed_level_matrix.debug(PSTR("Bed Level Correction Matrix:"));
  7038. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  7039. if (bilinear_grid_spacing[X_AXIS]) {
  7040. print_bilinear_leveling_grid();
  7041. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  7042. bed_level_virt_print();
  7043. #endif
  7044. }
  7045. #elif ENABLED(MESH_BED_LEVELING)
  7046. if (mbl.has_mesh()) {
  7047. SERIAL_ECHOLNPGM("Mesh Bed Level data:");
  7048. mbl_mesh_report();
  7049. }
  7050. #endif
  7051. }
  7052. #if ENABLED(AUTO_BED_LEVELING_UBL)
  7053. // L to load a mesh from the EEPROM
  7054. if (code_seen('L') || code_seen('V')) {
  7055. ubl.display_map(0); // Currently only supports one map type
  7056. SERIAL_ECHOLNPAIR("UBL_MESH_VALID = ", UBL_MESH_VALID);
  7057. SERIAL_ECHOLNPAIR("eeprom_storage_slot = ", ubl.state.eeprom_storage_slot);
  7058. }
  7059. #endif
  7060. bool to_enable = false;
  7061. if (code_seen('S')) {
  7062. to_enable = code_value_bool();
  7063. set_bed_leveling_enabled(to_enable);
  7064. }
  7065. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  7066. if (code_seen('Z')) set_z_fade_height(code_value_linear_units());
  7067. #endif
  7068. const bool new_status =
  7069. #if ENABLED(MESH_BED_LEVELING)
  7070. mbl.active()
  7071. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  7072. ubl.state.active
  7073. #else
  7074. planner.abl_enabled
  7075. #endif
  7076. ;
  7077. if (to_enable && !new_status) {
  7078. SERIAL_ERROR_START;
  7079. SERIAL_ERRORLNPGM(MSG_ERR_M420_FAILED);
  7080. }
  7081. SERIAL_ECHO_START;
  7082. SERIAL_ECHOLNPAIR("Bed Leveling ", new_status ? MSG_ON : MSG_OFF);
  7083. }
  7084. #endif
  7085. #if ENABLED(MESH_BED_LEVELING)
  7086. /**
  7087. * M421: Set a single Mesh Bed Leveling Z coordinate
  7088. * Use either 'M421 X<linear> Y<linear> Z<linear>' or 'M421 I<xindex> J<yindex> Z<linear>'
  7089. */
  7090. inline void gcode_M421() {
  7091. int8_t px = 0, py = 0;
  7092. float z = 0;
  7093. bool hasX, hasY, hasZ, hasI, hasJ;
  7094. if ((hasX = code_seen('X'))) px = mbl.probe_index_x(code_value_linear_units());
  7095. if ((hasY = code_seen('Y'))) py = mbl.probe_index_y(code_value_linear_units());
  7096. if ((hasI = code_seen('I'))) px = code_value_linear_units();
  7097. if ((hasJ = code_seen('J'))) py = code_value_linear_units();
  7098. if ((hasZ = code_seen('Z'))) z = code_value_linear_units();
  7099. if (hasX && hasY && hasZ) {
  7100. if (px >= 0 && py >= 0)
  7101. mbl.set_z(px, py, z);
  7102. else {
  7103. SERIAL_ERROR_START;
  7104. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  7105. }
  7106. }
  7107. else if (hasI && hasJ && hasZ) {
  7108. if (WITHIN(px, 0, GRID_MAX_POINTS_X - 1) && WITHIN(py, 0, GRID_MAX_POINTS_Y - 1))
  7109. mbl.set_z(px, py, z);
  7110. else {
  7111. SERIAL_ERROR_START;
  7112. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  7113. }
  7114. }
  7115. else {
  7116. SERIAL_ERROR_START;
  7117. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  7118. }
  7119. }
  7120. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(AUTO_BED_LEVELING_UBL)
  7121. /**
  7122. * M421: Set a single Mesh Bed Leveling Z coordinate
  7123. *
  7124. * M421 I<xindex> J<yindex> Z<linear>
  7125. */
  7126. inline void gcode_M421() {
  7127. int8_t px = 0, py = 0;
  7128. float z = 0;
  7129. bool hasI, hasJ, hasZ;
  7130. if ((hasI = code_seen('I'))) px = code_value_linear_units();
  7131. if ((hasJ = code_seen('J'))) py = code_value_linear_units();
  7132. if ((hasZ = code_seen('Z'))) z = code_value_linear_units();
  7133. if (hasI && hasJ && hasZ) {
  7134. if (WITHIN(px, 0, GRID_MAX_POINTS_X - 1) && WITHIN(py, 0, GRID_MAX_POINTS_X - 1)) {
  7135. #if ENABLED(AUTO_BED_LEVELING_UBL)
  7136. ubl.z_values[px][py] = z;
  7137. #else
  7138. z_values[px][py] = z;
  7139. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  7140. bed_level_virt_interpolate();
  7141. #endif
  7142. #endif
  7143. }
  7144. else {
  7145. SERIAL_ERROR_START;
  7146. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  7147. }
  7148. }
  7149. else {
  7150. SERIAL_ERROR_START;
  7151. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  7152. }
  7153. }
  7154. #endif
  7155. #if HAS_M206_COMMAND
  7156. /**
  7157. * M428: Set home_offset based on the distance between the
  7158. * current_position and the nearest "reference point."
  7159. * If an axis is past center its endstop position
  7160. * is the reference-point. Otherwise it uses 0. This allows
  7161. * the Z offset to be set near the bed when using a max endstop.
  7162. *
  7163. * M428 can't be used more than 2cm away from 0 or an endstop.
  7164. *
  7165. * Use M206 to set these values directly.
  7166. */
  7167. inline void gcode_M428() {
  7168. bool err = false;
  7169. LOOP_XYZ(i) {
  7170. if (axis_homed[i]) {
  7171. float base = (current_position[i] > (soft_endstop_min[i] + soft_endstop_max[i]) * 0.5) ? base_home_pos((AxisEnum)i) : 0,
  7172. diff = current_position[i] - LOGICAL_POSITION(base, i);
  7173. if (WITHIN(diff, -20, 20)) {
  7174. set_home_offset((AxisEnum)i, home_offset[i] - diff);
  7175. }
  7176. else {
  7177. SERIAL_ERROR_START;
  7178. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  7179. LCD_ALERTMESSAGEPGM("Err: Too far!");
  7180. BUZZ(200, 40);
  7181. err = true;
  7182. break;
  7183. }
  7184. }
  7185. }
  7186. if (!err) {
  7187. SYNC_PLAN_POSITION_KINEMATIC();
  7188. report_current_position();
  7189. LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  7190. BUZZ(100, 659);
  7191. BUZZ(100, 698);
  7192. }
  7193. }
  7194. #endif // HAS_M206_COMMAND
  7195. /**
  7196. * M500: Store settings in EEPROM
  7197. */
  7198. inline void gcode_M500() {
  7199. (void)settings.save();
  7200. }
  7201. /**
  7202. * M501: Read settings from EEPROM
  7203. */
  7204. inline void gcode_M501() {
  7205. (void)settings.load();
  7206. }
  7207. /**
  7208. * M502: Revert to default settings
  7209. */
  7210. inline void gcode_M502() {
  7211. (void)settings.reset();
  7212. }
  7213. /**
  7214. * M503: print settings currently in memory
  7215. */
  7216. inline void gcode_M503() {
  7217. (void)settings.report(code_seen('S') && !code_value_bool());
  7218. }
  7219. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  7220. /**
  7221. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  7222. */
  7223. inline void gcode_M540() {
  7224. if (code_seen('S')) stepper.abort_on_endstop_hit = code_value_bool();
  7225. }
  7226. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  7227. #if HAS_BED_PROBE
  7228. void refresh_zprobe_zoffset(const bool no_babystep/*=false*/) {
  7229. static float last_zoffset = NAN;
  7230. if (!isnan(last_zoffset)) {
  7231. #if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(BABYSTEP_ZPROBE_OFFSET) || ENABLED(DELTA)
  7232. const float diff = zprobe_zoffset - last_zoffset;
  7233. #endif
  7234. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  7235. // Correct bilinear grid for new probe offset
  7236. if (diff) {
  7237. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  7238. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  7239. z_values[x][y] -= diff;
  7240. }
  7241. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  7242. bed_level_virt_interpolate();
  7243. #endif
  7244. #endif
  7245. #if ENABLED(BABYSTEP_ZPROBE_OFFSET)
  7246. if (!no_babystep && planner.abl_enabled)
  7247. thermalManager.babystep_axis(Z_AXIS, -lround(diff * planner.axis_steps_per_mm[Z_AXIS]));
  7248. #else
  7249. UNUSED(no_babystep);
  7250. #endif
  7251. #if ENABLED(DELTA) // correct the delta_height
  7252. home_offset[Z_AXIS] -= diff;
  7253. #endif
  7254. }
  7255. last_zoffset = zprobe_zoffset;
  7256. }
  7257. inline void gcode_M851() {
  7258. SERIAL_ECHO_START;
  7259. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET " ");
  7260. if (code_seen('Z')) {
  7261. const float value = code_value_linear_units();
  7262. if (WITHIN(value, Z_PROBE_OFFSET_RANGE_MIN, Z_PROBE_OFFSET_RANGE_MAX)) {
  7263. zprobe_zoffset = value;
  7264. refresh_zprobe_zoffset();
  7265. SERIAL_ECHO(zprobe_zoffset);
  7266. }
  7267. else
  7268. SERIAL_ECHOPGM(MSG_Z_MIN " " STRINGIFY(Z_PROBE_OFFSET_RANGE_MIN) " " MSG_Z_MAX " " STRINGIFY(Z_PROBE_OFFSET_RANGE_MAX));
  7269. }
  7270. else
  7271. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  7272. SERIAL_EOL;
  7273. }
  7274. #endif // HAS_BED_PROBE
  7275. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  7276. void filament_change_beep(const bool init=false) {
  7277. static millis_t next_buzz = 0;
  7278. static uint16_t runout_beep = 0;
  7279. if (init) next_buzz = runout_beep = 0;
  7280. const millis_t ms = millis();
  7281. if (ELAPSED(ms, next_buzz)) {
  7282. if (runout_beep <= FILAMENT_CHANGE_NUMBER_OF_ALERT_BEEPS + 5) { // Only beep as long as we're supposed to
  7283. next_buzz = ms + (runout_beep <= FILAMENT_CHANGE_NUMBER_OF_ALERT_BEEPS ? 2500 : 400);
  7284. BUZZ(300, 2000);
  7285. runout_beep++;
  7286. }
  7287. }
  7288. }
  7289. static bool busy_doing_M600 = false;
  7290. /**
  7291. * M600: Pause for filament change
  7292. *
  7293. * E[distance] - Retract the filament this far (negative value)
  7294. * Z[distance] - Move the Z axis by this distance
  7295. * X[position] - Move to this X position, with Y
  7296. * Y[position] - Move to this Y position, with X
  7297. * L[distance] - Retract distance for removal (manual reload)
  7298. *
  7299. * Default values are used for omitted arguments.
  7300. *
  7301. */
  7302. inline void gcode_M600() {
  7303. if (!DEBUGGING(DRYRUN) && thermalManager.tooColdToExtrude(active_extruder)) {
  7304. SERIAL_ERROR_START;
  7305. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  7306. return;
  7307. }
  7308. busy_doing_M600 = true; // Stepper Motors can't timeout when this is set
  7309. // Pause the print job timer
  7310. const bool job_running = print_job_timer.isRunning();
  7311. print_job_timer.pause();
  7312. // Show initial message and wait for synchronize steppers
  7313. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INIT);
  7314. stepper.synchronize();
  7315. // Save current position of all axes
  7316. float lastpos[XYZE];
  7317. COPY(lastpos, current_position);
  7318. set_destination_to_current();
  7319. // Initial retract before move to filament change position
  7320. destination[E_AXIS] += code_seen('E') ? code_value_axis_units(E_AXIS) : 0
  7321. #if defined(FILAMENT_CHANGE_RETRACT_LENGTH) && FILAMENT_CHANGE_RETRACT_LENGTH > 0
  7322. - (FILAMENT_CHANGE_RETRACT_LENGTH)
  7323. #endif
  7324. ;
  7325. RUNPLAN(FILAMENT_CHANGE_RETRACT_FEEDRATE);
  7326. // Lift Z axis
  7327. float z_lift = code_seen('Z') ? code_value_linear_units() :
  7328. #if defined(FILAMENT_CHANGE_Z_ADD) && FILAMENT_CHANGE_Z_ADD > 0
  7329. FILAMENT_CHANGE_Z_ADD
  7330. #else
  7331. 0
  7332. #endif
  7333. ;
  7334. if (z_lift > 0) {
  7335. destination[Z_AXIS] += z_lift;
  7336. NOMORE(destination[Z_AXIS], Z_MAX_POS);
  7337. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  7338. }
  7339. // Move XY axes to filament exchange position
  7340. if (code_seen('X')) destination[X_AXIS] = code_value_linear_units();
  7341. #ifdef FILAMENT_CHANGE_X_POS
  7342. else destination[X_AXIS] = FILAMENT_CHANGE_X_POS;
  7343. #endif
  7344. if (code_seen('Y')) destination[Y_AXIS] = code_value_linear_units();
  7345. #ifdef FILAMENT_CHANGE_Y_POS
  7346. else destination[Y_AXIS] = FILAMENT_CHANGE_Y_POS;
  7347. #endif
  7348. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  7349. stepper.synchronize();
  7350. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_UNLOAD);
  7351. idle();
  7352. // Unload filament
  7353. destination[E_AXIS] += code_seen('L') ? code_value_axis_units(E_AXIS) : 0
  7354. #if FILAMENT_CHANGE_UNLOAD_LENGTH > 0
  7355. - (FILAMENT_CHANGE_UNLOAD_LENGTH)
  7356. #endif
  7357. ;
  7358. RUNPLAN(FILAMENT_CHANGE_UNLOAD_FEEDRATE);
  7359. // Synchronize steppers and then disable extruders steppers for manual filament changing
  7360. stepper.synchronize();
  7361. disable_e_steppers();
  7362. safe_delay(100);
  7363. const millis_t nozzle_timeout = millis() + (millis_t)(FILAMENT_CHANGE_NOZZLE_TIMEOUT) * 1000UL;
  7364. bool nozzle_timed_out = false;
  7365. // Wait for filament insert by user and press button
  7366. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INSERT);
  7367. #if HAS_BUZZER
  7368. filament_change_beep(true);
  7369. #endif
  7370. idle();
  7371. int16_t temps[HOTENDS];
  7372. HOTEND_LOOP() temps[e] = thermalManager.target_temperature[e]; // Save nozzle temps
  7373. KEEPALIVE_STATE(PAUSED_FOR_USER);
  7374. wait_for_user = true; // LCD click or M108 will clear this
  7375. while (wait_for_user) {
  7376. if (nozzle_timed_out)
  7377. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_CLICK_TO_HEAT_NOZZLE);
  7378. #if HAS_BUZZER
  7379. filament_change_beep();
  7380. #endif
  7381. if (!nozzle_timed_out && ELAPSED(millis(), nozzle_timeout)) {
  7382. nozzle_timed_out = true; // on nozzle timeout remember the nozzles need to be reheated
  7383. HOTEND_LOOP() thermalManager.setTargetHotend(0, e); // Turn off all the nozzles
  7384. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_CLICK_TO_HEAT_NOZZLE);
  7385. }
  7386. idle(true);
  7387. }
  7388. KEEPALIVE_STATE(IN_HANDLER);
  7389. if (nozzle_timed_out) // Turn nozzles back on if they were turned off
  7390. HOTEND_LOOP() thermalManager.setTargetHotend(temps[e], e);
  7391. // Show "wait for heating"
  7392. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_WAIT_FOR_NOZZLES_TO_HEAT);
  7393. wait_for_heatup = true;
  7394. while (wait_for_heatup) {
  7395. idle();
  7396. wait_for_heatup = false;
  7397. HOTEND_LOOP() {
  7398. if (abs(thermalManager.degHotend(e) - temps[e]) > 3) {
  7399. wait_for_heatup = true;
  7400. break;
  7401. }
  7402. }
  7403. }
  7404. // Show "insert filament"
  7405. if (nozzle_timed_out)
  7406. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INSERT);
  7407. #if HAS_BUZZER
  7408. filament_change_beep(true);
  7409. #endif
  7410. KEEPALIVE_STATE(PAUSED_FOR_USER);
  7411. wait_for_user = true; // LCD click or M108 will clear this
  7412. while (wait_for_user && nozzle_timed_out) {
  7413. #if HAS_BUZZER
  7414. filament_change_beep();
  7415. #endif
  7416. idle(true);
  7417. }
  7418. KEEPALIVE_STATE(IN_HANDLER);
  7419. // Show "load" message
  7420. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_LOAD);
  7421. // Load filament
  7422. destination[E_AXIS] += code_seen('L') ? -code_value_axis_units(E_AXIS) : 0
  7423. #if FILAMENT_CHANGE_LOAD_LENGTH > 0
  7424. + FILAMENT_CHANGE_LOAD_LENGTH
  7425. #endif
  7426. ;
  7427. RUNPLAN(FILAMENT_CHANGE_LOAD_FEEDRATE);
  7428. stepper.synchronize();
  7429. #if defined(FILAMENT_CHANGE_EXTRUDE_LENGTH) && FILAMENT_CHANGE_EXTRUDE_LENGTH > 0
  7430. do {
  7431. // "Wait for filament extrude"
  7432. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_EXTRUDE);
  7433. // Extrude filament to get into hotend
  7434. destination[E_AXIS] += FILAMENT_CHANGE_EXTRUDE_LENGTH;
  7435. RUNPLAN(FILAMENT_CHANGE_EXTRUDE_FEEDRATE);
  7436. stepper.synchronize();
  7437. // Show "Extrude More" / "Resume" menu and wait for reply
  7438. KEEPALIVE_STATE(PAUSED_FOR_USER);
  7439. wait_for_user = false;
  7440. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_OPTION);
  7441. while (filament_change_menu_response == FILAMENT_CHANGE_RESPONSE_WAIT_FOR) idle(true);
  7442. KEEPALIVE_STATE(IN_HANDLER);
  7443. // Keep looping if "Extrude More" was selected
  7444. } while (filament_change_menu_response == FILAMENT_CHANGE_RESPONSE_EXTRUDE_MORE);
  7445. #endif
  7446. // "Wait for print to resume"
  7447. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_RESUME);
  7448. // Set extruder to saved position
  7449. destination[E_AXIS] = current_position[E_AXIS] = lastpos[E_AXIS];
  7450. planner.set_e_position_mm(current_position[E_AXIS]);
  7451. #if IS_KINEMATIC
  7452. // Move XYZ to starting position
  7453. planner.buffer_line_kinematic(lastpos, FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  7454. #else
  7455. // Move XY to starting position, then Z
  7456. destination[X_AXIS] = lastpos[X_AXIS];
  7457. destination[Y_AXIS] = lastpos[Y_AXIS];
  7458. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  7459. destination[Z_AXIS] = lastpos[Z_AXIS];
  7460. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  7461. #endif
  7462. stepper.synchronize();
  7463. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  7464. filament_ran_out = false;
  7465. #endif
  7466. // Show status screen
  7467. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_STATUS);
  7468. // Resume the print job timer if it was running
  7469. if (job_running) print_job_timer.start();
  7470. busy_doing_M600 = false; // Allow Stepper Motors to be turned off during inactivity
  7471. }
  7472. #endif // FILAMENT_CHANGE_FEATURE
  7473. #if ENABLED(DUAL_X_CARRIAGE)
  7474. /**
  7475. * M605: Set dual x-carriage movement mode
  7476. *
  7477. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  7478. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  7479. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  7480. * units x-offset and an optional differential hotend temperature of
  7481. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  7482. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  7483. *
  7484. * Note: the X axis should be homed after changing dual x-carriage mode.
  7485. */
  7486. inline void gcode_M605() {
  7487. stepper.synchronize();
  7488. if (code_seen('S')) dual_x_carriage_mode = (DualXMode)code_value_byte();
  7489. switch (dual_x_carriage_mode) {
  7490. case DXC_FULL_CONTROL_MODE:
  7491. case DXC_AUTO_PARK_MODE:
  7492. break;
  7493. case DXC_DUPLICATION_MODE:
  7494. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value_linear_units(), X2_MIN_POS - x_home_pos(0));
  7495. if (code_seen('R')) duplicate_extruder_temp_offset = code_value_temp_diff();
  7496. SERIAL_ECHO_START;
  7497. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  7498. SERIAL_CHAR(' ');
  7499. SERIAL_ECHO(hotend_offset[X_AXIS][0]);
  7500. SERIAL_CHAR(',');
  7501. SERIAL_ECHO(hotend_offset[Y_AXIS][0]);
  7502. SERIAL_CHAR(' ');
  7503. SERIAL_ECHO(duplicate_extruder_x_offset);
  7504. SERIAL_CHAR(',');
  7505. SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]);
  7506. break;
  7507. default:
  7508. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  7509. break;
  7510. }
  7511. active_extruder_parked = false;
  7512. extruder_duplication_enabled = false;
  7513. delayed_move_time = 0;
  7514. }
  7515. #elif ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  7516. inline void gcode_M605() {
  7517. stepper.synchronize();
  7518. extruder_duplication_enabled = code_seen('S') && code_value_int() == (int)DXC_DUPLICATION_MODE;
  7519. SERIAL_ECHO_START;
  7520. SERIAL_ECHOLNPAIR(MSG_DUPLICATION_MODE, extruder_duplication_enabled ? MSG_ON : MSG_OFF);
  7521. }
  7522. #endif // DUAL_NOZZLE_DUPLICATION_MODE
  7523. #if ENABLED(LIN_ADVANCE)
  7524. /**
  7525. * M900: Set and/or Get advance K factor and WH/D ratio
  7526. *
  7527. * K<factor> Set advance K factor
  7528. * R<ratio> Set ratio directly (overrides WH/D)
  7529. * W<width> H<height> D<diam> Set ratio from WH/D
  7530. */
  7531. inline void gcode_M900() {
  7532. stepper.synchronize();
  7533. const float newK = code_seen('K') ? code_value_float() : -1;
  7534. if (newK >= 0) planner.extruder_advance_k = newK;
  7535. float newR = code_seen('R') ? code_value_float() : -1;
  7536. if (newR < 0) {
  7537. const float newD = code_seen('D') ? code_value_float() : -1,
  7538. newW = code_seen('W') ? code_value_float() : -1,
  7539. newH = code_seen('H') ? code_value_float() : -1;
  7540. if (newD >= 0 && newW >= 0 && newH >= 0)
  7541. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  7542. }
  7543. if (newR >= 0) planner.advance_ed_ratio = newR;
  7544. SERIAL_ECHO_START;
  7545. SERIAL_ECHOPAIR("Advance K=", planner.extruder_advance_k);
  7546. SERIAL_ECHOPGM(" E/D=");
  7547. const float ratio = planner.advance_ed_ratio;
  7548. if (ratio) SERIAL_ECHO(ratio); else SERIAL_ECHOPGM("Auto");
  7549. SERIAL_EOL;
  7550. }
  7551. #endif // LIN_ADVANCE
  7552. #if ENABLED(HAVE_TMC2130)
  7553. static void tmc2130_get_current(TMC2130Stepper &st, const char name) {
  7554. SERIAL_CHAR(name);
  7555. SERIAL_ECHOPGM(" axis driver current: ");
  7556. SERIAL_ECHOLN(st.getCurrent());
  7557. }
  7558. static void tmc2130_set_current(TMC2130Stepper &st, const char name, const int mA) {
  7559. st.setCurrent(mA, R_SENSE, HOLD_MULTIPLIER);
  7560. tmc2130_get_current(st, name);
  7561. }
  7562. static void tmc2130_report_otpw(TMC2130Stepper &st, const char name) {
  7563. SERIAL_CHAR(name);
  7564. SERIAL_ECHOPGM(" axis temperature prewarn triggered: ");
  7565. serialprintPGM(st.getOTPW() ? PSTR("true") : PSTR("false"));
  7566. SERIAL_EOL;
  7567. }
  7568. static void tmc2130_clear_otpw(TMC2130Stepper &st, const char name) {
  7569. st.clear_otpw();
  7570. SERIAL_CHAR(name);
  7571. SERIAL_ECHOLNPGM(" prewarn flag cleared");
  7572. }
  7573. static void tmc2130_get_pwmthrs(TMC2130Stepper &st, const char name, const uint16_t spmm) {
  7574. SERIAL_CHAR(name);
  7575. SERIAL_ECHOPGM(" stealthChop max speed set to ");
  7576. SERIAL_ECHOLN(12650000UL * st.microsteps() / (256 * st.stealth_max_speed() * spmm));
  7577. }
  7578. static void tmc2130_set_pwmthrs(TMC2130Stepper &st, const char name, const int32_t thrs, const uint32_t spmm) {
  7579. st.stealth_max_speed(12650000UL * st.microsteps() / (256 * thrs * spmm));
  7580. tmc2130_get_pwmthrs(st, name, spmm);
  7581. }
  7582. static void tmc2130_get_sgt(TMC2130Stepper &st, const char name) {
  7583. SERIAL_CHAR(name);
  7584. SERIAL_ECHOPGM(" driver homing sensitivity set to ");
  7585. SERIAL_ECHOLN(st.sgt());
  7586. }
  7587. static void tmc2130_set_sgt(TMC2130Stepper &st, const char name, const int8_t sgt_val) {
  7588. st.sgt(sgt_val);
  7589. tmc2130_get_sgt(st, name);
  7590. }
  7591. /**
  7592. * M906: Set motor current in milliamps using axis codes X, Y, Z, E
  7593. * Report driver currents when no axis specified
  7594. *
  7595. * S1: Enable automatic current control
  7596. * S0: Disable
  7597. */
  7598. inline void gcode_M906() {
  7599. uint16_t values[XYZE];
  7600. LOOP_XYZE(i)
  7601. values[i] = code_seen(axis_codes[i]) ? code_value_int() : 0;
  7602. #if ENABLED(X_IS_TMC2130)
  7603. if (values[X_AXIS]) tmc2130_set_current(stepperX, 'X', values[X_AXIS]);
  7604. else tmc2130_get_current(stepperX, 'X');
  7605. #endif
  7606. #if ENABLED(Y_IS_TMC2130)
  7607. if (values[Y_AXIS]) tmc2130_set_current(stepperY, 'Y', values[Y_AXIS]);
  7608. else tmc2130_get_current(stepperY, 'Y');
  7609. #endif
  7610. #if ENABLED(Z_IS_TMC2130)
  7611. if (values[Z_AXIS]) tmc2130_set_current(stepperZ, 'Z', values[Z_AXIS]);
  7612. else tmc2130_get_current(stepperZ, 'Z');
  7613. #endif
  7614. #if ENABLED(E0_IS_TMC2130)
  7615. if (values[E_AXIS]) tmc2130_set_current(stepperE0, 'E', values[E_AXIS]);
  7616. else tmc2130_get_current(stepperE0, 'E');
  7617. #endif
  7618. #if ENABLED(AUTOMATIC_CURRENT_CONTROL)
  7619. if (code_seen('S')) auto_current_control = code_value_bool();
  7620. #endif
  7621. }
  7622. /**
  7623. * M911: Report TMC2130 stepper driver overtemperature pre-warn flag
  7624. * The flag is held by the library and persist until manually cleared by M912
  7625. */
  7626. inline void gcode_M911() {
  7627. const bool reportX = code_seen('X'), reportY = code_seen('Y'), reportZ = code_seen('Z'), reportE = code_seen('E'),
  7628. reportAll = (!reportX && !reportY && !reportZ && !reportE) || (reportX && reportY && reportZ && reportE);
  7629. #if ENABLED(X_IS_TMC2130)
  7630. if (reportX || reportAll) tmc2130_report_otpw(stepperX, 'X');
  7631. #endif
  7632. #if ENABLED(Y_IS_TMC2130)
  7633. if (reportY || reportAll) tmc2130_report_otpw(stepperY, 'Y');
  7634. #endif
  7635. #if ENABLED(Z_IS_TMC2130)
  7636. if (reportZ || reportAll) tmc2130_report_otpw(stepperZ, 'Z');
  7637. #endif
  7638. #if ENABLED(E0_IS_TMC2130)
  7639. if (reportE || reportAll) tmc2130_report_otpw(stepperE0, 'E');
  7640. #endif
  7641. }
  7642. /**
  7643. * M912: Clear TMC2130 stepper driver overtemperature pre-warn flag held by the library
  7644. */
  7645. inline void gcode_M912() {
  7646. const bool clearX = code_seen('X'), clearY = code_seen('Y'), clearZ = code_seen('Z'), clearE = code_seen('E'),
  7647. clearAll = (!clearX && !clearY && !clearZ && !clearE) || (clearX && clearY && clearZ && clearE);
  7648. #if ENABLED(X_IS_TMC2130)
  7649. if (clearX || clearAll) tmc2130_clear_otpw(stepperX, 'X');
  7650. #endif
  7651. #if ENABLED(Y_IS_TMC2130)
  7652. if (clearY || clearAll) tmc2130_clear_otpw(stepperY, 'Y');
  7653. #endif
  7654. #if ENABLED(Z_IS_TMC2130)
  7655. if (clearZ || clearAll) tmc2130_clear_otpw(stepperZ, 'Z');
  7656. #endif
  7657. #if ENABLED(E0_IS_TMC2130)
  7658. if (clearE || clearAll) tmc2130_clear_otpw(stepperE0, 'E');
  7659. #endif
  7660. }
  7661. /**
  7662. * M913: Set HYBRID_THRESHOLD speed.
  7663. */
  7664. #if ENABLED(HYBRID_THRESHOLD)
  7665. inline void gcode_M913() {
  7666. uint16_t values[XYZE];
  7667. LOOP_XYZE(i)
  7668. values[i] = code_seen(axis_codes[i]) ? code_value_int() : 0;
  7669. #if ENABLED(X_IS_TMC2130)
  7670. if (values[X_AXIS]) tmc2130_set_pwmthrs(stepperX, 'X', values[X_AXIS], planner.axis_steps_per_mm[X_AXIS]);
  7671. else tmc2130_get_pwmthrs(stepperX, 'X', planner.axis_steps_per_mm[X_AXIS]);
  7672. #endif
  7673. #if ENABLED(Y_IS_TMC2130)
  7674. if (values[Y_AXIS]) tmc2130_set_pwmthrs(stepperY, 'Y', values[Y_AXIS], planner.axis_steps_per_mm[Y_AXIS]);
  7675. else tmc2130_get_pwmthrs(stepperY, 'Y', planner.axis_steps_per_mm[Y_AXIS]);
  7676. #endif
  7677. #if ENABLED(Z_IS_TMC2130)
  7678. if (values[Z_AXIS]) tmc2130_set_pwmthrs(stepperZ, 'Z', values[Z_AXIS], planner.axis_steps_per_mm[Z_AXIS]);
  7679. else tmc2130_get_pwmthrs(stepperZ, 'Z', planner.axis_steps_per_mm[Z_AXIS]);
  7680. #endif
  7681. #if ENABLED(E0_IS_TMC2130)
  7682. if (values[E_AXIS]) tmc2130_set_pwmthrs(stepperE0, 'E', values[E_AXIS], planner.axis_steps_per_mm[E_AXIS]);
  7683. else tmc2130_get_pwmthrs(stepperE0, 'E', planner.axis_steps_per_mm[E_AXIS]);
  7684. #endif
  7685. }
  7686. #endif // HYBRID_THRESHOLD
  7687. /**
  7688. * M914: Set SENSORLESS_HOMING sensitivity.
  7689. */
  7690. #if ENABLED(SENSORLESS_HOMING)
  7691. inline void gcode_M914() {
  7692. #if ENABLED(X_IS_TMC2130)
  7693. if (code_seen(axis_codes[X_AXIS])) tmc2130_set_sgt(stepperX, 'X', code_value_int());
  7694. else tmc2130_get_sgt(stepperX, 'X');
  7695. #endif
  7696. #if ENABLED(Y_IS_TMC2130)
  7697. if (code_seen(axis_codes[Y_AXIS])) tmc2130_set_sgt(stepperY, 'Y', code_value_int());
  7698. else tmc2130_get_sgt(stepperY, 'Y');
  7699. #endif
  7700. }
  7701. #endif // SENSORLESS_HOMING
  7702. #endif // HAVE_TMC2130
  7703. /**
  7704. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  7705. */
  7706. inline void gcode_M907() {
  7707. #if HAS_DIGIPOTSS
  7708. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.digipot_current(i, code_value_int());
  7709. if (code_seen('B')) stepper.digipot_current(4, code_value_int());
  7710. if (code_seen('S')) for (uint8_t i = 0; i <= 4; i++) stepper.digipot_current(i, code_value_int());
  7711. #elif HAS_MOTOR_CURRENT_PWM
  7712. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  7713. if (code_seen('X')) stepper.digipot_current(0, code_value_int());
  7714. #endif
  7715. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  7716. if (code_seen('Z')) stepper.digipot_current(1, code_value_int());
  7717. #endif
  7718. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  7719. if (code_seen('E')) stepper.digipot_current(2, code_value_int());
  7720. #endif
  7721. #endif
  7722. #if ENABLED(DIGIPOT_I2C)
  7723. // this one uses actual amps in floating point
  7724. LOOP_XYZE(i) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value_float());
  7725. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  7726. for (uint8_t i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value_float());
  7727. #endif
  7728. #if ENABLED(DAC_STEPPER_CURRENT)
  7729. if (code_seen('S')) {
  7730. const float dac_percent = code_value_float();
  7731. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  7732. }
  7733. LOOP_XYZE(i) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value_float());
  7734. #endif
  7735. }
  7736. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  7737. /**
  7738. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  7739. */
  7740. inline void gcode_M908() {
  7741. #if HAS_DIGIPOTSS
  7742. stepper.digitalPotWrite(
  7743. code_seen('P') ? code_value_int() : 0,
  7744. code_seen('S') ? code_value_int() : 0
  7745. );
  7746. #endif
  7747. #ifdef DAC_STEPPER_CURRENT
  7748. dac_current_raw(
  7749. code_seen('P') ? code_value_byte() : -1,
  7750. code_seen('S') ? code_value_ushort() : 0
  7751. );
  7752. #endif
  7753. }
  7754. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  7755. inline void gcode_M909() { dac_print_values(); }
  7756. inline void gcode_M910() { dac_commit_eeprom(); }
  7757. #endif
  7758. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  7759. #if HAS_MICROSTEPS
  7760. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  7761. inline void gcode_M350() {
  7762. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, code_value_byte());
  7763. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_mode(i, code_value_byte());
  7764. if (code_seen('B')) stepper.microstep_mode(4, code_value_byte());
  7765. stepper.microstep_readings();
  7766. }
  7767. /**
  7768. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  7769. * S# determines MS1 or MS2, X# sets the pin high/low.
  7770. */
  7771. inline void gcode_M351() {
  7772. if (code_seen('S')) switch (code_value_byte()) {
  7773. case 1:
  7774. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, code_value_byte(), -1);
  7775. if (code_seen('B')) stepper.microstep_ms(4, code_value_byte(), -1);
  7776. break;
  7777. case 2:
  7778. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, -1, code_value_byte());
  7779. if (code_seen('B')) stepper.microstep_ms(4, -1, code_value_byte());
  7780. break;
  7781. }
  7782. stepper.microstep_readings();
  7783. }
  7784. #endif // HAS_MICROSTEPS
  7785. #if HAS_CASE_LIGHT
  7786. uint8_t case_light_brightness = 255;
  7787. void update_case_light() {
  7788. WRITE(CASE_LIGHT_PIN, case_light_on != INVERT_CASE_LIGHT ? HIGH : LOW);
  7789. analogWrite(CASE_LIGHT_PIN, case_light_on != INVERT_CASE_LIGHT ? case_light_brightness : 0);
  7790. }
  7791. #endif // HAS_CASE_LIGHT
  7792. /**
  7793. * M355: Turn case lights on/off and set brightness
  7794. *
  7795. * S<bool> Turn case light on or off
  7796. * P<byte> Set case light brightness (PWM pin required)
  7797. */
  7798. inline void gcode_M355() {
  7799. #if HAS_CASE_LIGHT
  7800. if (code_seen('P')) case_light_brightness = code_value_byte();
  7801. if (code_seen('S')) case_light_on = code_value_bool();
  7802. update_case_light();
  7803. SERIAL_ECHO_START;
  7804. SERIAL_ECHOPGM("Case lights ");
  7805. case_light_on ? SERIAL_ECHOLNPGM("on") : SERIAL_ECHOLNPGM("off");
  7806. #else
  7807. SERIAL_ERROR_START;
  7808. SERIAL_ERRORLNPGM(MSG_ERR_M355_NONE);
  7809. #endif // HAS_CASE_LIGHT
  7810. }
  7811. #if ENABLED(MIXING_EXTRUDER)
  7812. /**
  7813. * M163: Set a single mix factor for a mixing extruder
  7814. * This is called "weight" by some systems.
  7815. *
  7816. * S[index] The channel index to set
  7817. * P[float] The mix value
  7818. *
  7819. */
  7820. inline void gcode_M163() {
  7821. const int mix_index = code_seen('S') ? code_value_int() : 0;
  7822. if (mix_index < MIXING_STEPPERS) {
  7823. float mix_value = code_seen('P') ? code_value_float() : 0.0;
  7824. NOLESS(mix_value, 0.0);
  7825. mixing_factor[mix_index] = RECIPROCAL(mix_value);
  7826. }
  7827. }
  7828. #if MIXING_VIRTUAL_TOOLS > 1
  7829. /**
  7830. * M164: Store the current mix factors as a virtual tool.
  7831. *
  7832. * S[index] The virtual tool to store
  7833. *
  7834. */
  7835. inline void gcode_M164() {
  7836. const int tool_index = code_seen('S') ? code_value_int() : 0;
  7837. if (tool_index < MIXING_VIRTUAL_TOOLS) {
  7838. normalize_mix();
  7839. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  7840. mixing_virtual_tool_mix[tool_index][i] = mixing_factor[i];
  7841. }
  7842. }
  7843. #endif
  7844. #if ENABLED(DIRECT_MIXING_IN_G1)
  7845. /**
  7846. * M165: Set multiple mix factors for a mixing extruder.
  7847. * Factors that are left out will be set to 0.
  7848. * All factors together must add up to 1.0.
  7849. *
  7850. * A[factor] Mix factor for extruder stepper 1
  7851. * B[factor] Mix factor for extruder stepper 2
  7852. * C[factor] Mix factor for extruder stepper 3
  7853. * D[factor] Mix factor for extruder stepper 4
  7854. * H[factor] Mix factor for extruder stepper 5
  7855. * I[factor] Mix factor for extruder stepper 6
  7856. *
  7857. */
  7858. inline void gcode_M165() { gcode_get_mix(); }
  7859. #endif
  7860. #endif // MIXING_EXTRUDER
  7861. /**
  7862. * M999: Restart after being stopped
  7863. *
  7864. * Default behaviour is to flush the serial buffer and request
  7865. * a resend to the host starting on the last N line received.
  7866. *
  7867. * Sending "M999 S1" will resume printing without flushing the
  7868. * existing command buffer.
  7869. *
  7870. */
  7871. inline void gcode_M999() {
  7872. Running = true;
  7873. lcd_reset_alert_level();
  7874. if (code_seen('S') && code_value_bool()) return;
  7875. // gcode_LastN = Stopped_gcode_LastN;
  7876. FlushSerialRequestResend();
  7877. }
  7878. #if ENABLED(SWITCHING_EXTRUDER)
  7879. inline void move_extruder_servo(uint8_t e) {
  7880. const int angles[2] = SWITCHING_EXTRUDER_SERVO_ANGLES;
  7881. MOVE_SERVO(SWITCHING_EXTRUDER_SERVO_NR, angles[e]);
  7882. safe_delay(500);
  7883. }
  7884. #endif
  7885. inline void invalid_extruder_error(const uint8_t &e) {
  7886. SERIAL_ECHO_START;
  7887. SERIAL_CHAR('T');
  7888. SERIAL_ECHO_F(e, DEC);
  7889. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  7890. }
  7891. /**
  7892. * Perform a tool-change, which may result in moving the
  7893. * previous tool out of the way and the new tool into place.
  7894. */
  7895. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s/*=0.0*/, bool no_move/*=false*/) {
  7896. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  7897. if (tmp_extruder >= MIXING_VIRTUAL_TOOLS)
  7898. return invalid_extruder_error(tmp_extruder);
  7899. // T0-Tnnn: Switch virtual tool by changing the mix
  7900. for (uint8_t j = 0; j < MIXING_STEPPERS; j++)
  7901. mixing_factor[j] = mixing_virtual_tool_mix[tmp_extruder][j];
  7902. #else //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  7903. #if HOTENDS > 1
  7904. if (tmp_extruder >= EXTRUDERS)
  7905. return invalid_extruder_error(tmp_extruder);
  7906. const float old_feedrate_mm_s = fr_mm_s > 0.0 ? fr_mm_s : feedrate_mm_s;
  7907. feedrate_mm_s = fr_mm_s > 0.0 ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  7908. if (tmp_extruder != active_extruder) {
  7909. if (!no_move && axis_unhomed_error(true, true, true)) {
  7910. SERIAL_ECHOLNPGM("No move on toolchange");
  7911. no_move = true;
  7912. }
  7913. // Save current position to destination, for use later
  7914. set_destination_to_current();
  7915. #if ENABLED(DUAL_X_CARRIAGE)
  7916. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7917. if (DEBUGGING(LEVELING)) {
  7918. SERIAL_ECHOPGM("Dual X Carriage Mode ");
  7919. switch (dual_x_carriage_mode) {
  7920. case DXC_FULL_CONTROL_MODE: SERIAL_ECHOLNPGM("DXC_FULL_CONTROL_MODE"); break;
  7921. case DXC_AUTO_PARK_MODE: SERIAL_ECHOLNPGM("DXC_AUTO_PARK_MODE"); break;
  7922. case DXC_DUPLICATION_MODE: SERIAL_ECHOLNPGM("DXC_DUPLICATION_MODE"); break;
  7923. }
  7924. }
  7925. #endif
  7926. const float xhome = x_home_pos(active_extruder);
  7927. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE
  7928. && IsRunning()
  7929. && (delayed_move_time || current_position[X_AXIS] != xhome)
  7930. ) {
  7931. float raised_z = current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT;
  7932. #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
  7933. NOMORE(raised_z, soft_endstop_max[Z_AXIS]);
  7934. #endif
  7935. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7936. if (DEBUGGING(LEVELING)) {
  7937. SERIAL_ECHOLNPAIR("Raise to ", raised_z);
  7938. SERIAL_ECHOLNPAIR("MoveX to ", xhome);
  7939. SERIAL_ECHOLNPAIR("Lower to ", current_position[Z_AXIS]);
  7940. }
  7941. #endif
  7942. // Park old head: 1) raise 2) move to park position 3) lower
  7943. for (uint8_t i = 0; i < 3; i++)
  7944. planner.buffer_line(
  7945. i == 0 ? current_position[X_AXIS] : xhome,
  7946. current_position[Y_AXIS],
  7947. i == 2 ? current_position[Z_AXIS] : raised_z,
  7948. current_position[E_AXIS],
  7949. planner.max_feedrate_mm_s[i == 1 ? X_AXIS : Z_AXIS],
  7950. active_extruder
  7951. );
  7952. stepper.synchronize();
  7953. }
  7954. // Apply Y & Z extruder offset (X offset is used as home pos with Dual X)
  7955. current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
  7956. current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
  7957. // Activate the new extruder
  7958. active_extruder = tmp_extruder;
  7959. // This function resets the max/min values - the current position may be overwritten below.
  7960. set_axis_is_at_home(X_AXIS);
  7961. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7962. if (DEBUGGING(LEVELING)) DEBUG_POS("New Extruder", current_position);
  7963. #endif
  7964. // Only when auto-parking are carriages safe to move
  7965. if (dual_x_carriage_mode != DXC_AUTO_PARK_MODE) no_move = true;
  7966. switch (dual_x_carriage_mode) {
  7967. case DXC_FULL_CONTROL_MODE:
  7968. // New current position is the position of the activated extruder
  7969. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  7970. // Save the inactive extruder's position (from the old current_position)
  7971. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  7972. break;
  7973. case DXC_AUTO_PARK_MODE:
  7974. // record raised toolhead position for use by unpark
  7975. COPY(raised_parked_position, current_position);
  7976. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  7977. #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
  7978. NOMORE(raised_parked_position[Z_AXIS], soft_endstop_max[Z_AXIS]);
  7979. #endif
  7980. active_extruder_parked = true;
  7981. delayed_move_time = 0;
  7982. break;
  7983. case DXC_DUPLICATION_MODE:
  7984. // If the new extruder is the left one, set it "parked"
  7985. // This triggers the second extruder to move into the duplication position
  7986. active_extruder_parked = (active_extruder == 0);
  7987. if (active_extruder_parked)
  7988. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  7989. else
  7990. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  7991. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  7992. extruder_duplication_enabled = false;
  7993. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7994. if (DEBUGGING(LEVELING)) {
  7995. SERIAL_ECHOLNPAIR("Set inactive_extruder_x_pos=", inactive_extruder_x_pos);
  7996. SERIAL_ECHOLNPGM("Clear extruder_duplication_enabled");
  7997. }
  7998. #endif
  7999. break;
  8000. }
  8001. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8002. if (DEBUGGING(LEVELING)) {
  8003. SERIAL_ECHOLNPAIR("Active extruder parked: ", active_extruder_parked ? "yes" : "no");
  8004. DEBUG_POS("New extruder (parked)", current_position);
  8005. }
  8006. #endif
  8007. // No extra case for HAS_ABL in DUAL_X_CARRIAGE. Does that mean they don't work together?
  8008. #else // !DUAL_X_CARRIAGE
  8009. #if ENABLED(SWITCHING_EXTRUDER)
  8010. // <0 if the new nozzle is higher, >0 if lower. A bigger raise when lower.
  8011. const float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder],
  8012. z_raise = 0.3 + (z_diff > 0.0 ? z_diff : 0.0);
  8013. // Always raise by some amount (destination copied from current_position earlier)
  8014. current_position[Z_AXIS] += z_raise;
  8015. planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  8016. stepper.synchronize();
  8017. move_extruder_servo(active_extruder);
  8018. #endif
  8019. /**
  8020. * Set current_position to the position of the new nozzle.
  8021. * Offsets are based on linear distance, so we need to get
  8022. * the resulting position in coordinate space.
  8023. *
  8024. * - With grid or 3-point leveling, offset XYZ by a tilted vector
  8025. * - With mesh leveling, update Z for the new position
  8026. * - Otherwise, just use the raw linear distance
  8027. *
  8028. * Software endstops are altered here too. Consider a case where:
  8029. * E0 at X=0 ... E1 at X=10
  8030. * When we switch to E1 now X=10, but E1 can't move left.
  8031. * To express this we apply the change in XY to the software endstops.
  8032. * E1 can move farther right than E0, so the right limit is extended.
  8033. *
  8034. * Note that we don't adjust the Z software endstops. Why not?
  8035. * Consider a case where Z=0 (here) and switching to E1 makes Z=1
  8036. * because the bed is 1mm lower at the new position. As long as
  8037. * the first nozzle is out of the way, the carriage should be
  8038. * allowed to move 1mm lower. This technically "breaks" the
  8039. * Z software endstop. But this is technically correct (and
  8040. * there is no viable alternative).
  8041. */
  8042. #if ABL_PLANAR
  8043. // Offset extruder, make sure to apply the bed level rotation matrix
  8044. vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder],
  8045. hotend_offset[Y_AXIS][tmp_extruder],
  8046. 0),
  8047. act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder],
  8048. hotend_offset[Y_AXIS][active_extruder],
  8049. 0),
  8050. offset_vec = tmp_offset_vec - act_offset_vec;
  8051. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8052. if (DEBUGGING(LEVELING)) {
  8053. tmp_offset_vec.debug(PSTR("tmp_offset_vec"));
  8054. act_offset_vec.debug(PSTR("act_offset_vec"));
  8055. offset_vec.debug(PSTR("offset_vec (BEFORE)"));
  8056. }
  8057. #endif
  8058. offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
  8059. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8060. if (DEBUGGING(LEVELING)) offset_vec.debug(PSTR("offset_vec (AFTER)"));
  8061. #endif
  8062. // Adjustments to the current position
  8063. const float xydiff[2] = { offset_vec.x, offset_vec.y };
  8064. current_position[Z_AXIS] += offset_vec.z;
  8065. #else // !ABL_PLANAR
  8066. const float xydiff[2] = {
  8067. hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder],
  8068. hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder]
  8069. };
  8070. #if ENABLED(MESH_BED_LEVELING)
  8071. if (mbl.active()) {
  8072. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8073. if (DEBUGGING(LEVELING)) SERIAL_ECHOPAIR("Z before MBL: ", current_position[Z_AXIS]);
  8074. #endif
  8075. float x2 = current_position[X_AXIS] + xydiff[X_AXIS],
  8076. y2 = current_position[Y_AXIS] + xydiff[Y_AXIS],
  8077. z1 = current_position[Z_AXIS], z2 = z1;
  8078. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], z1);
  8079. planner.apply_leveling(x2, y2, z2);
  8080. current_position[Z_AXIS] += z2 - z1;
  8081. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8082. if (DEBUGGING(LEVELING))
  8083. SERIAL_ECHOLNPAIR(" after: ", current_position[Z_AXIS]);
  8084. #endif
  8085. }
  8086. #endif // MESH_BED_LEVELING
  8087. #endif // !HAS_ABL
  8088. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8089. if (DEBUGGING(LEVELING)) {
  8090. SERIAL_ECHOPAIR("Offset Tool XY by { ", xydiff[X_AXIS]);
  8091. SERIAL_ECHOPAIR(", ", xydiff[Y_AXIS]);
  8092. SERIAL_ECHOLNPGM(" }");
  8093. }
  8094. #endif
  8095. // The newly-selected extruder XY is actually at...
  8096. current_position[X_AXIS] += xydiff[X_AXIS];
  8097. current_position[Y_AXIS] += xydiff[Y_AXIS];
  8098. #if HAS_WORKSPACE_OFFSET || ENABLED(DUAL_X_CARRIAGE)
  8099. for (uint8_t i = X_AXIS; i <= Y_AXIS; i++) {
  8100. #if HAS_POSITION_SHIFT
  8101. position_shift[i] += xydiff[i];
  8102. #endif
  8103. update_software_endstops((AxisEnum)i);
  8104. }
  8105. #endif
  8106. // Set the new active extruder
  8107. active_extruder = tmp_extruder;
  8108. #endif // !DUAL_X_CARRIAGE
  8109. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8110. if (DEBUGGING(LEVELING)) DEBUG_POS("Sync After Toolchange", current_position);
  8111. #endif
  8112. // Tell the planner the new "current position"
  8113. SYNC_PLAN_POSITION_KINEMATIC();
  8114. // Move to the "old position" (move the extruder into place)
  8115. if (!no_move && IsRunning()) {
  8116. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8117. if (DEBUGGING(LEVELING)) DEBUG_POS("Move back", destination);
  8118. #endif
  8119. prepare_move_to_destination();
  8120. }
  8121. #if ENABLED(SWITCHING_EXTRUDER)
  8122. // Move back down, if needed. (Including when the new tool is higher.)
  8123. if (z_raise != z_diff) {
  8124. destination[Z_AXIS] += z_diff;
  8125. feedrate_mm_s = planner.max_feedrate_mm_s[Z_AXIS];
  8126. prepare_move_to_destination();
  8127. }
  8128. #endif
  8129. } // (tmp_extruder != active_extruder)
  8130. stepper.synchronize();
  8131. #if ENABLED(EXT_SOLENOID)
  8132. disable_all_solenoids();
  8133. enable_solenoid_on_active_extruder();
  8134. #endif // EXT_SOLENOID
  8135. feedrate_mm_s = old_feedrate_mm_s;
  8136. #else // HOTENDS <= 1
  8137. // Set the new active extruder
  8138. active_extruder = tmp_extruder;
  8139. UNUSED(fr_mm_s);
  8140. UNUSED(no_move);
  8141. #endif // HOTENDS <= 1
  8142. SERIAL_ECHO_START;
  8143. SERIAL_ECHOLNPAIR(MSG_ACTIVE_EXTRUDER, (int)active_extruder);
  8144. #endif //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  8145. }
  8146. /**
  8147. * T0-T3: Switch tool, usually switching extruders
  8148. *
  8149. * F[units/min] Set the movement feedrate
  8150. * S1 Don't move the tool in XY after change
  8151. */
  8152. inline void gcode_T(uint8_t tmp_extruder) {
  8153. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8154. if (DEBUGGING(LEVELING)) {
  8155. SERIAL_ECHOPAIR(">>> gcode_T(", tmp_extruder);
  8156. SERIAL_CHAR(')');
  8157. SERIAL_EOL;
  8158. DEBUG_POS("BEFORE", current_position);
  8159. }
  8160. #endif
  8161. #if HOTENDS == 1 || (ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1)
  8162. tool_change(tmp_extruder);
  8163. #elif HOTENDS > 1
  8164. tool_change(
  8165. tmp_extruder,
  8166. code_seen('F') ? MMM_TO_MMS(code_value_linear_units()) : 0.0,
  8167. (tmp_extruder == active_extruder) || (code_seen('S') && code_value_bool())
  8168. );
  8169. #endif
  8170. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8171. if (DEBUGGING(LEVELING)) {
  8172. DEBUG_POS("AFTER", current_position);
  8173. SERIAL_ECHOLNPGM("<<< gcode_T");
  8174. }
  8175. #endif
  8176. }
  8177. /**
  8178. * Process a single command and dispatch it to its handler
  8179. * This is called from the main loop()
  8180. */
  8181. void process_next_command() {
  8182. current_command = command_queue[cmd_queue_index_r];
  8183. if (DEBUGGING(ECHO)) {
  8184. SERIAL_ECHO_START;
  8185. SERIAL_ECHOLN(current_command);
  8186. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  8187. SERIAL_ECHOPAIR("slot:", cmd_queue_index_r);
  8188. M100_dump_routine(" Command Queue:", &command_queue[0][0], &command_queue[BUFSIZE][MAX_CMD_SIZE]);
  8189. #endif
  8190. }
  8191. // Sanitize the current command:
  8192. // - Skip leading spaces
  8193. // - Bypass N[-0-9][0-9]*[ ]*
  8194. // - Overwrite * with nul to mark the end
  8195. while (*current_command == ' ') ++current_command;
  8196. if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) {
  8197. current_command += 2; // skip N[-0-9]
  8198. while (NUMERIC(*current_command)) ++current_command; // skip [0-9]*
  8199. while (*current_command == ' ') ++current_command; // skip [ ]*
  8200. }
  8201. char* starpos = strchr(current_command, '*'); // * should always be the last parameter
  8202. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  8203. char *cmd_ptr = current_command;
  8204. // Get the command code, which must be G, M, or T
  8205. char command_code = *cmd_ptr++;
  8206. // Skip spaces to get the numeric part
  8207. while (*cmd_ptr == ' ') cmd_ptr++;
  8208. // Allow for decimal point in command
  8209. #if ENABLED(G38_PROBE_TARGET)
  8210. uint8_t subcode = 0;
  8211. #endif
  8212. uint16_t codenum = 0; // define ahead of goto
  8213. // Bail early if there's no code
  8214. bool code_is_good = NUMERIC(*cmd_ptr);
  8215. if (!code_is_good) goto ExitUnknownCommand;
  8216. // Get and skip the code number
  8217. do {
  8218. codenum = (codenum * 10) + (*cmd_ptr - '0');
  8219. cmd_ptr++;
  8220. } while (NUMERIC(*cmd_ptr));
  8221. // Allow for decimal point in command
  8222. #if ENABLED(G38_PROBE_TARGET)
  8223. if (*cmd_ptr == '.') {
  8224. cmd_ptr++;
  8225. while (NUMERIC(*cmd_ptr))
  8226. subcode = (subcode * 10) + (*cmd_ptr++ - '0');
  8227. }
  8228. #endif
  8229. // Skip all spaces to get to the first argument, or nul
  8230. while (*cmd_ptr == ' ') cmd_ptr++;
  8231. // The command's arguments (if any) start here, for sure!
  8232. current_command_args = cmd_ptr;
  8233. KEEPALIVE_STATE(IN_HANDLER);
  8234. // Handle a known G, M, or T
  8235. switch (command_code) {
  8236. case 'G': switch (codenum) {
  8237. // G0, G1
  8238. case 0:
  8239. case 1:
  8240. #if IS_SCARA
  8241. gcode_G0_G1(codenum == 0);
  8242. #else
  8243. gcode_G0_G1();
  8244. #endif
  8245. break;
  8246. // G2, G3
  8247. #if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
  8248. case 2: // G2 - CW ARC
  8249. case 3: // G3 - CCW ARC
  8250. gcode_G2_G3(codenum == 2);
  8251. break;
  8252. #endif
  8253. // G4 Dwell
  8254. case 4:
  8255. gcode_G4();
  8256. break;
  8257. #if ENABLED(BEZIER_CURVE_SUPPORT)
  8258. // G5
  8259. case 5: // G5 - Cubic B_spline
  8260. gcode_G5();
  8261. break;
  8262. #endif // BEZIER_CURVE_SUPPORT
  8263. #if ENABLED(FWRETRACT)
  8264. case 10: // G10: retract
  8265. case 11: // G11: retract_recover
  8266. gcode_G10_G11(codenum == 10);
  8267. break;
  8268. #endif // FWRETRACT
  8269. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  8270. case 12:
  8271. gcode_G12(); // G12: Nozzle Clean
  8272. break;
  8273. #endif // NOZZLE_CLEAN_FEATURE
  8274. #if ENABLED(INCH_MODE_SUPPORT)
  8275. case 20: //G20: Inch Mode
  8276. gcode_G20();
  8277. break;
  8278. case 21: //G21: MM Mode
  8279. gcode_G21();
  8280. break;
  8281. #endif // INCH_MODE_SUPPORT
  8282. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_EDITING)
  8283. case 26: // G26: Mesh Validation Pattern generation
  8284. gcode_G26();
  8285. break;
  8286. #endif // AUTO_BED_LEVELING_UBL
  8287. #if ENABLED(NOZZLE_PARK_FEATURE)
  8288. case 27: // G27: Nozzle Park
  8289. gcode_G27();
  8290. break;
  8291. #endif // NOZZLE_PARK_FEATURE
  8292. case 28: // G28: Home all axes, one at a time
  8293. gcode_G28();
  8294. break;
  8295. #if HAS_LEVELING
  8296. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points,
  8297. // or provides access to the UBL System if enabled.
  8298. gcode_G29();
  8299. break;
  8300. #endif // HAS_LEVELING
  8301. #if HAS_BED_PROBE
  8302. case 30: // G30 Single Z probe
  8303. gcode_G30();
  8304. break;
  8305. #if ENABLED(Z_PROBE_SLED)
  8306. case 31: // G31: dock the sled
  8307. gcode_G31();
  8308. break;
  8309. case 32: // G32: undock the sled
  8310. gcode_G32();
  8311. break;
  8312. #endif // Z_PROBE_SLED
  8313. #if ENABLED(DELTA_AUTO_CALIBRATION)
  8314. case 33: // G33: Delta Auto-Calibration
  8315. gcode_G33();
  8316. break;
  8317. #endif // DELTA_AUTO_CALIBRATION
  8318. #endif // HAS_BED_PROBE
  8319. #if ENABLED(G38_PROBE_TARGET)
  8320. case 38: // G38.2 & G38.3
  8321. if (subcode == 2 || subcode == 3)
  8322. gcode_G38(subcode == 2);
  8323. break;
  8324. #endif
  8325. case 90: // G90
  8326. relative_mode = false;
  8327. break;
  8328. case 91: // G91
  8329. relative_mode = true;
  8330. break;
  8331. case 92: // G92
  8332. gcode_G92();
  8333. break;
  8334. }
  8335. break;
  8336. case 'M': switch (codenum) {
  8337. #if HAS_RESUME_CONTINUE
  8338. case 0: // M0: Unconditional stop - Wait for user button press on LCD
  8339. case 1: // M1: Conditional stop - Wait for user button press on LCD
  8340. gcode_M0_M1();
  8341. break;
  8342. #endif // ULTIPANEL
  8343. case 17: // M17: Enable all stepper motors
  8344. gcode_M17();
  8345. break;
  8346. #if ENABLED(SDSUPPORT)
  8347. case 20: // M20: list SD card
  8348. gcode_M20(); break;
  8349. case 21: // M21: init SD card
  8350. gcode_M21(); break;
  8351. case 22: // M22: release SD card
  8352. gcode_M22(); break;
  8353. case 23: // M23: Select file
  8354. gcode_M23(); break;
  8355. case 24: // M24: Start SD print
  8356. gcode_M24(); break;
  8357. case 25: // M25: Pause SD print
  8358. gcode_M25(); break;
  8359. case 26: // M26: Set SD index
  8360. gcode_M26(); break;
  8361. case 27: // M27: Get SD status
  8362. gcode_M27(); break;
  8363. case 28: // M28: Start SD write
  8364. gcode_M28(); break;
  8365. case 29: // M29: Stop SD write
  8366. gcode_M29(); break;
  8367. case 30: // M30 <filename> Delete File
  8368. gcode_M30(); break;
  8369. case 32: // M32: Select file and start SD print
  8370. gcode_M32(); break;
  8371. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  8372. case 33: // M33: Get the long full path to a file or folder
  8373. gcode_M33(); break;
  8374. #endif
  8375. #if ENABLED(SDCARD_SORT_ALPHA) && ENABLED(SDSORT_GCODE)
  8376. case 34: //M34 - Set SD card sorting options
  8377. gcode_M34(); break;
  8378. #endif // SDCARD_SORT_ALPHA && SDSORT_GCODE
  8379. case 928: // M928: Start SD write
  8380. gcode_M928(); break;
  8381. #endif //SDSUPPORT
  8382. case 31: // M31: Report time since the start of SD print or last M109
  8383. gcode_M31(); break;
  8384. case 42: // M42: Change pin state
  8385. gcode_M42(); break;
  8386. #if ENABLED(PINS_DEBUGGING)
  8387. case 43: // M43: Read pin state
  8388. gcode_M43(); break;
  8389. #endif
  8390. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  8391. case 48: // M48: Z probe repeatability test
  8392. gcode_M48();
  8393. break;
  8394. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  8395. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_EDITING)
  8396. case 49: // M49: Turn on or off G26 debug flag for verbose output
  8397. gcode_M49();
  8398. break;
  8399. #endif // AUTO_BED_LEVELING_UBL && UBL_G26_MESH_EDITING
  8400. case 75: // M75: Start print timer
  8401. gcode_M75(); break;
  8402. case 76: // M76: Pause print timer
  8403. gcode_M76(); break;
  8404. case 77: // M77: Stop print timer
  8405. gcode_M77(); break;
  8406. #if ENABLED(PRINTCOUNTER)
  8407. case 78: // M78: Show print statistics
  8408. gcode_M78(); break;
  8409. #endif
  8410. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  8411. case 100: // M100: Free Memory Report
  8412. gcode_M100();
  8413. break;
  8414. #endif
  8415. case 104: // M104: Set hot end temperature
  8416. gcode_M104();
  8417. break;
  8418. case 110: // M110: Set Current Line Number
  8419. gcode_M110();
  8420. break;
  8421. case 111: // M111: Set debug level
  8422. gcode_M111();
  8423. break;
  8424. #if DISABLED(EMERGENCY_PARSER)
  8425. case 108: // M108: Cancel Waiting
  8426. gcode_M108();
  8427. break;
  8428. case 112: // M112: Emergency Stop
  8429. gcode_M112();
  8430. break;
  8431. case 410: // M410 quickstop - Abort all the planned moves.
  8432. gcode_M410();
  8433. break;
  8434. #endif
  8435. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  8436. case 113: // M113: Set Host Keepalive interval
  8437. gcode_M113();
  8438. break;
  8439. #endif
  8440. case 140: // M140: Set bed temperature
  8441. gcode_M140();
  8442. break;
  8443. case 105: // M105: Report current temperature
  8444. gcode_M105();
  8445. KEEPALIVE_STATE(NOT_BUSY);
  8446. return; // "ok" already printed
  8447. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  8448. case 155: // M155: Set temperature auto-report interval
  8449. gcode_M155();
  8450. break;
  8451. #endif
  8452. case 109: // M109: Wait for hotend temperature to reach target
  8453. gcode_M109();
  8454. break;
  8455. #if HAS_TEMP_BED
  8456. case 190: // M190: Wait for bed temperature to reach target
  8457. gcode_M190();
  8458. break;
  8459. #endif // HAS_TEMP_BED
  8460. #if FAN_COUNT > 0
  8461. case 106: // M106: Fan On
  8462. gcode_M106();
  8463. break;
  8464. case 107: // M107: Fan Off
  8465. gcode_M107();
  8466. break;
  8467. #endif // FAN_COUNT > 0
  8468. #if ENABLED(PARK_HEAD_ON_PAUSE)
  8469. case 125: // M125: Store current position and move to filament change position
  8470. gcode_M125(); break;
  8471. #endif
  8472. #if ENABLED(BARICUDA)
  8473. // PWM for HEATER_1_PIN
  8474. #if HAS_HEATER_1
  8475. case 126: // M126: valve open
  8476. gcode_M126();
  8477. break;
  8478. case 127: // M127: valve closed
  8479. gcode_M127();
  8480. break;
  8481. #endif // HAS_HEATER_1
  8482. // PWM for HEATER_2_PIN
  8483. #if HAS_HEATER_2
  8484. case 128: // M128: valve open
  8485. gcode_M128();
  8486. break;
  8487. case 129: // M129: valve closed
  8488. gcode_M129();
  8489. break;
  8490. #endif // HAS_HEATER_2
  8491. #endif // BARICUDA
  8492. #if HAS_POWER_SWITCH
  8493. case 80: // M80: Turn on Power Supply
  8494. gcode_M80();
  8495. break;
  8496. #endif // HAS_POWER_SWITCH
  8497. case 81: // M81: Turn off Power, including Power Supply, if possible
  8498. gcode_M81();
  8499. break;
  8500. case 82: // M83: Set E axis normal mode (same as other axes)
  8501. gcode_M82();
  8502. break;
  8503. case 83: // M83: Set E axis relative mode
  8504. gcode_M83();
  8505. break;
  8506. case 18: // M18 => M84
  8507. case 84: // M84: Disable all steppers or set timeout
  8508. gcode_M18_M84();
  8509. break;
  8510. case 85: // M85: Set inactivity stepper shutdown timeout
  8511. gcode_M85();
  8512. break;
  8513. case 92: // M92: Set the steps-per-unit for one or more axes
  8514. gcode_M92();
  8515. break;
  8516. case 114: // M114: Report current position
  8517. gcode_M114();
  8518. break;
  8519. case 115: // M115: Report capabilities
  8520. gcode_M115();
  8521. break;
  8522. case 117: // M117: Set LCD message text, if possible
  8523. gcode_M117();
  8524. break;
  8525. case 119: // M119: Report endstop states
  8526. gcode_M119();
  8527. break;
  8528. case 120: // M120: Enable endstops
  8529. gcode_M120();
  8530. break;
  8531. case 121: // M121: Disable endstops
  8532. gcode_M121();
  8533. break;
  8534. #if ENABLED(ULTIPANEL)
  8535. case 145: // M145: Set material heatup parameters
  8536. gcode_M145();
  8537. break;
  8538. #endif
  8539. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  8540. case 149: // M149: Set temperature units
  8541. gcode_M149();
  8542. break;
  8543. #endif
  8544. #if HAS_COLOR_LEDS
  8545. case 150: // M150: Set Status LED Color
  8546. gcode_M150();
  8547. break;
  8548. #endif // BLINKM
  8549. #if ENABLED(MIXING_EXTRUDER)
  8550. case 163: // M163: Set a component weight for mixing extruder
  8551. gcode_M163();
  8552. break;
  8553. #if MIXING_VIRTUAL_TOOLS > 1
  8554. case 164: // M164: Save current mix as a virtual extruder
  8555. gcode_M164();
  8556. break;
  8557. #endif
  8558. #if ENABLED(DIRECT_MIXING_IN_G1)
  8559. case 165: // M165: Set multiple mix weights
  8560. gcode_M165();
  8561. break;
  8562. #endif
  8563. #endif
  8564. case 200: // M200: Set filament diameter, E to cubic units
  8565. gcode_M200();
  8566. break;
  8567. case 201: // M201: Set max acceleration for print moves (units/s^2)
  8568. gcode_M201();
  8569. break;
  8570. #if 0 // Not used for Sprinter/grbl gen6
  8571. case 202: // M202
  8572. gcode_M202();
  8573. break;
  8574. #endif
  8575. case 203: // M203: Set max feedrate (units/sec)
  8576. gcode_M203();
  8577. break;
  8578. case 204: // M204: Set acceleration
  8579. gcode_M204();
  8580. break;
  8581. case 205: //M205: Set advanced settings
  8582. gcode_M205();
  8583. break;
  8584. #if HAS_M206_COMMAND
  8585. case 206: // M206: Set home offsets
  8586. gcode_M206();
  8587. break;
  8588. #endif
  8589. #if ENABLED(DELTA)
  8590. case 665: // M665: Set delta configurations
  8591. gcode_M665();
  8592. break;
  8593. #endif
  8594. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  8595. case 666: // M666: Set delta or dual endstop adjustment
  8596. gcode_M666();
  8597. break;
  8598. #endif
  8599. #if ENABLED(FWRETRACT)
  8600. case 207: // M207: Set Retract Length, Feedrate, and Z lift
  8601. gcode_M207();
  8602. break;
  8603. case 208: // M208: Set Recover (unretract) Additional Length and Feedrate
  8604. gcode_M208();
  8605. break;
  8606. case 209: // M209: Turn Automatic Retract Detection on/off
  8607. gcode_M209();
  8608. break;
  8609. #endif // FWRETRACT
  8610. case 211: // M211: Enable, Disable, and/or Report software endstops
  8611. gcode_M211();
  8612. break;
  8613. #if HOTENDS > 1
  8614. case 218: // M218: Set a tool offset
  8615. gcode_M218();
  8616. break;
  8617. #endif
  8618. case 220: // M220: Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  8619. gcode_M220();
  8620. break;
  8621. case 221: // M221: Set Flow Percentage
  8622. gcode_M221();
  8623. break;
  8624. case 226: // M226: Wait until a pin reaches a state
  8625. gcode_M226();
  8626. break;
  8627. #if HAS_SERVOS
  8628. case 280: // M280: Set servo position absolute
  8629. gcode_M280();
  8630. break;
  8631. #endif // HAS_SERVOS
  8632. #if HAS_BUZZER
  8633. case 300: // M300: Play beep tone
  8634. gcode_M300();
  8635. break;
  8636. #endif // HAS_BUZZER
  8637. #if ENABLED(PIDTEMP)
  8638. case 301: // M301: Set hotend PID parameters
  8639. gcode_M301();
  8640. break;
  8641. #endif // PIDTEMP
  8642. #if ENABLED(PIDTEMPBED)
  8643. case 304: // M304: Set bed PID parameters
  8644. gcode_M304();
  8645. break;
  8646. #endif // PIDTEMPBED
  8647. #if defined(CHDK) || HAS_PHOTOGRAPH
  8648. case 240: // M240: Trigger a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  8649. gcode_M240();
  8650. break;
  8651. #endif // CHDK || PHOTOGRAPH_PIN
  8652. #if HAS_LCD_CONTRAST
  8653. case 250: // M250: Set LCD contrast
  8654. gcode_M250();
  8655. break;
  8656. #endif // HAS_LCD_CONTRAST
  8657. #if ENABLED(EXPERIMENTAL_I2CBUS)
  8658. case 260: // M260: Send data to an i2c slave
  8659. gcode_M260();
  8660. break;
  8661. case 261: // M261: Request data from an i2c slave
  8662. gcode_M261();
  8663. break;
  8664. #endif // EXPERIMENTAL_I2CBUS
  8665. #if ENABLED(PREVENT_COLD_EXTRUSION)
  8666. case 302: // M302: Allow cold extrudes (set the minimum extrude temperature)
  8667. gcode_M302();
  8668. break;
  8669. #endif // PREVENT_COLD_EXTRUSION
  8670. case 303: // M303: PID autotune
  8671. gcode_M303();
  8672. break;
  8673. #if ENABLED(MORGAN_SCARA)
  8674. case 360: // M360: SCARA Theta pos1
  8675. if (gcode_M360()) return;
  8676. break;
  8677. case 361: // M361: SCARA Theta pos2
  8678. if (gcode_M361()) return;
  8679. break;
  8680. case 362: // M362: SCARA Psi pos1
  8681. if (gcode_M362()) return;
  8682. break;
  8683. case 363: // M363: SCARA Psi pos2
  8684. if (gcode_M363()) return;
  8685. break;
  8686. case 364: // M364: SCARA Psi pos3 (90 deg to Theta)
  8687. if (gcode_M364()) return;
  8688. break;
  8689. #endif // SCARA
  8690. case 400: // M400: Finish all moves
  8691. gcode_M400();
  8692. break;
  8693. #if HAS_BED_PROBE
  8694. case 401: // M401: Deploy probe
  8695. gcode_M401();
  8696. break;
  8697. case 402: // M402: Stow probe
  8698. gcode_M402();
  8699. break;
  8700. #endif // HAS_BED_PROBE
  8701. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  8702. case 404: // M404: Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  8703. gcode_M404();
  8704. break;
  8705. case 405: // M405: Turn on filament sensor for control
  8706. gcode_M405();
  8707. break;
  8708. case 406: // M406: Turn off filament sensor for control
  8709. gcode_M406();
  8710. break;
  8711. case 407: // M407: Display measured filament diameter
  8712. gcode_M407();
  8713. break;
  8714. #endif // FILAMENT_WIDTH_SENSOR
  8715. #if HAS_LEVELING
  8716. case 420: // M420: Enable/Disable Bed Leveling
  8717. gcode_M420();
  8718. break;
  8719. #endif
  8720. #if ENABLED(MESH_BED_LEVELING) || ENABLED(AUTO_BED_LEVELING_UBL) || ENABLED(AUTO_BED_LEVELING_BILINEAR)
  8721. case 421: // M421: Set a Mesh Bed Leveling Z coordinate
  8722. gcode_M421();
  8723. break;
  8724. #endif
  8725. #if HAS_M206_COMMAND
  8726. case 428: // M428: Apply current_position to home_offset
  8727. gcode_M428();
  8728. break;
  8729. #endif
  8730. case 500: // M500: Store settings in EEPROM
  8731. gcode_M500();
  8732. break;
  8733. case 501: // M501: Read settings from EEPROM
  8734. gcode_M501();
  8735. break;
  8736. case 502: // M502: Revert to default settings
  8737. gcode_M502();
  8738. break;
  8739. case 503: // M503: print settings currently in memory
  8740. gcode_M503();
  8741. break;
  8742. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  8743. case 540: // M540: Set abort on endstop hit for SD printing
  8744. gcode_M540();
  8745. break;
  8746. #endif
  8747. #if HAS_BED_PROBE
  8748. case 851: // M851: Set Z Probe Z Offset
  8749. gcode_M851();
  8750. break;
  8751. #endif // HAS_BED_PROBE
  8752. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  8753. case 600: // M600: Pause for filament change
  8754. gcode_M600();
  8755. break;
  8756. #endif // FILAMENT_CHANGE_FEATURE
  8757. #if ENABLED(DUAL_X_CARRIAGE)
  8758. case 605: // M605: Set Dual X Carriage movement mode
  8759. gcode_M605();
  8760. break;
  8761. #endif // DUAL_X_CARRIAGE
  8762. #if ENABLED(LIN_ADVANCE)
  8763. case 900: // M900: Set advance K factor.
  8764. gcode_M900();
  8765. break;
  8766. #endif
  8767. #if ENABLED(HAVE_TMC2130)
  8768. case 906: // M906: Set motor current in milliamps using axis codes X, Y, Z, E
  8769. gcode_M906();
  8770. break;
  8771. #endif
  8772. case 907: // M907: Set digital trimpot motor current using axis codes.
  8773. gcode_M907();
  8774. break;
  8775. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  8776. case 908: // M908: Control digital trimpot directly.
  8777. gcode_M908();
  8778. break;
  8779. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  8780. case 909: // M909: Print digipot/DAC current value
  8781. gcode_M909();
  8782. break;
  8783. case 910: // M910: Commit digipot/DAC value to external EEPROM
  8784. gcode_M910();
  8785. break;
  8786. #endif
  8787. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  8788. #if ENABLED(HAVE_TMC2130)
  8789. case 911: // M911: Report TMC2130 prewarn triggered flags
  8790. gcode_M911();
  8791. break;
  8792. case 912: // M911: Clear TMC2130 prewarn triggered flags
  8793. gcode_M912();
  8794. break;
  8795. #if ENABLED(HYBRID_THRESHOLD)
  8796. case 913: // M913: Set HYBRID_THRESHOLD speed.
  8797. gcode_M913();
  8798. break;
  8799. #endif
  8800. #if ENABLED(SENSORLESS_HOMING)
  8801. case 914: // M914: Set SENSORLESS_HOMING sensitivity.
  8802. gcode_M914();
  8803. break;
  8804. #endif
  8805. #endif
  8806. #if HAS_MICROSTEPS
  8807. case 350: // M350: Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  8808. gcode_M350();
  8809. break;
  8810. case 351: // M351: Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  8811. gcode_M351();
  8812. break;
  8813. #endif // HAS_MICROSTEPS
  8814. case 355: // M355 Turn case lights on/off
  8815. gcode_M355();
  8816. break;
  8817. case 999: // M999: Restart after being Stopped
  8818. gcode_M999();
  8819. break;
  8820. }
  8821. break;
  8822. case 'T':
  8823. gcode_T(codenum);
  8824. break;
  8825. default: code_is_good = false;
  8826. }
  8827. KEEPALIVE_STATE(NOT_BUSY);
  8828. ExitUnknownCommand:
  8829. // Still unknown command? Throw an error
  8830. if (!code_is_good) unknown_command_error();
  8831. ok_to_send();
  8832. }
  8833. /**
  8834. * Send a "Resend: nnn" message to the host to
  8835. * indicate that a command needs to be re-sent.
  8836. */
  8837. void FlushSerialRequestResend() {
  8838. //char command_queue[cmd_queue_index_r][100]="Resend:";
  8839. MYSERIAL.flush();
  8840. SERIAL_PROTOCOLPGM(MSG_RESEND);
  8841. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  8842. ok_to_send();
  8843. }
  8844. /**
  8845. * Send an "ok" message to the host, indicating
  8846. * that a command was successfully processed.
  8847. *
  8848. * If ADVANCED_OK is enabled also include:
  8849. * N<int> Line number of the command, if any
  8850. * P<int> Planner space remaining
  8851. * B<int> Block queue space remaining
  8852. */
  8853. void ok_to_send() {
  8854. refresh_cmd_timeout();
  8855. if (!send_ok[cmd_queue_index_r]) return;
  8856. SERIAL_PROTOCOLPGM(MSG_OK);
  8857. #if ENABLED(ADVANCED_OK)
  8858. char* p = command_queue[cmd_queue_index_r];
  8859. if (*p == 'N') {
  8860. SERIAL_PROTOCOL(' ');
  8861. SERIAL_ECHO(*p++);
  8862. while (NUMERIC_SIGNED(*p))
  8863. SERIAL_ECHO(*p++);
  8864. }
  8865. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
  8866. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  8867. #endif
  8868. SERIAL_EOL;
  8869. }
  8870. #if HAS_SOFTWARE_ENDSTOPS
  8871. /**
  8872. * Constrain the given coordinates to the software endstops.
  8873. */
  8874. void clamp_to_software_endstops(float target[XYZ]) {
  8875. if (!soft_endstops_enabled) return;
  8876. #if ENABLED(MIN_SOFTWARE_ENDSTOPS)
  8877. NOLESS(target[X_AXIS], soft_endstop_min[X_AXIS]);
  8878. NOLESS(target[Y_AXIS], soft_endstop_min[Y_AXIS]);
  8879. NOLESS(target[Z_AXIS], soft_endstop_min[Z_AXIS]);
  8880. #endif
  8881. #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
  8882. NOMORE(target[X_AXIS], soft_endstop_max[X_AXIS]);
  8883. NOMORE(target[Y_AXIS], soft_endstop_max[Y_AXIS]);
  8884. NOMORE(target[Z_AXIS], soft_endstop_max[Z_AXIS]);
  8885. #endif
  8886. }
  8887. #endif
  8888. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  8889. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  8890. #define ABL_BG_SPACING(A) bilinear_grid_spacing_virt[A]
  8891. #define ABL_BG_FACTOR(A) bilinear_grid_factor_virt[A]
  8892. #define ABL_BG_POINTS_X ABL_GRID_POINTS_VIRT_X
  8893. #define ABL_BG_POINTS_Y ABL_GRID_POINTS_VIRT_Y
  8894. #define ABL_BG_GRID(X,Y) z_values_virt[X][Y]
  8895. #else
  8896. #define ABL_BG_SPACING(A) bilinear_grid_spacing[A]
  8897. #define ABL_BG_FACTOR(A) bilinear_grid_factor[A]
  8898. #define ABL_BG_POINTS_X GRID_MAX_POINTS_X
  8899. #define ABL_BG_POINTS_Y GRID_MAX_POINTS_Y
  8900. #define ABL_BG_GRID(X,Y) z_values[X][Y]
  8901. #endif
  8902. // Get the Z adjustment for non-linear bed leveling
  8903. float bilinear_z_offset(const float logical[XYZ]) {
  8904. static float z1, d2, z3, d4, L, D, ratio_x, ratio_y,
  8905. last_x = -999.999, last_y = -999.999;
  8906. // Whole units for the grid line indices. Constrained within bounds.
  8907. static int8_t gridx, gridy, nextx, nexty,
  8908. last_gridx = -99, last_gridy = -99;
  8909. // XY relative to the probed area
  8910. const float x = RAW_X_POSITION(logical[X_AXIS]) - bilinear_start[X_AXIS],
  8911. y = RAW_Y_POSITION(logical[Y_AXIS]) - bilinear_start[Y_AXIS];
  8912. #if ENABLED(EXTRAPOLATE_BEYOND_GRID)
  8913. // Keep using the last grid box
  8914. #define FAR_EDGE_OR_BOX 2
  8915. #else
  8916. // Just use the grid far edge
  8917. #define FAR_EDGE_OR_BOX 1
  8918. #endif
  8919. if (last_x != x) {
  8920. last_x = x;
  8921. ratio_x = x * ABL_BG_FACTOR(X_AXIS);
  8922. const float gx = constrain(floor(ratio_x), 0, ABL_BG_POINTS_X - FAR_EDGE_OR_BOX);
  8923. ratio_x -= gx; // Subtract whole to get the ratio within the grid box
  8924. #if DISABLED(EXTRAPOLATE_BEYOND_GRID)
  8925. // Beyond the grid maintain height at grid edges
  8926. NOLESS(ratio_x, 0); // Never < 0.0. (> 1.0 is ok when nextx==gridx.)
  8927. #endif
  8928. gridx = gx;
  8929. nextx = min(gridx + 1, ABL_BG_POINTS_X - 1);
  8930. }
  8931. if (last_y != y || last_gridx != gridx) {
  8932. if (last_y != y) {
  8933. last_y = y;
  8934. ratio_y = y * ABL_BG_FACTOR(Y_AXIS);
  8935. const float gy = constrain(floor(ratio_y), 0, ABL_BG_POINTS_Y - FAR_EDGE_OR_BOX);
  8936. ratio_y -= gy;
  8937. #if DISABLED(EXTRAPOLATE_BEYOND_GRID)
  8938. // Beyond the grid maintain height at grid edges
  8939. NOLESS(ratio_y, 0); // Never < 0.0. (> 1.0 is ok when nexty==gridy.)
  8940. #endif
  8941. gridy = gy;
  8942. nexty = min(gridy + 1, ABL_BG_POINTS_Y - 1);
  8943. }
  8944. if (last_gridx != gridx || last_gridy != gridy) {
  8945. last_gridx = gridx;
  8946. last_gridy = gridy;
  8947. // Z at the box corners
  8948. z1 = ABL_BG_GRID(gridx, gridy); // left-front
  8949. d2 = ABL_BG_GRID(gridx, nexty) - z1; // left-back (delta)
  8950. z3 = ABL_BG_GRID(nextx, gridy); // right-front
  8951. d4 = ABL_BG_GRID(nextx, nexty) - z3; // right-back (delta)
  8952. }
  8953. // Bilinear interpolate. Needed since y or gridx has changed.
  8954. L = z1 + d2 * ratio_y; // Linear interp. LF -> LB
  8955. const float R = z3 + d4 * ratio_y; // Linear interp. RF -> RB
  8956. D = R - L;
  8957. }
  8958. const float offset = L + ratio_x * D; // the offset almost always changes
  8959. /*
  8960. static float last_offset = 0;
  8961. if (fabs(last_offset - offset) > 0.2) {
  8962. SERIAL_ECHOPGM("Sudden Shift at ");
  8963. SERIAL_ECHOPAIR("x=", x);
  8964. SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[X_AXIS]);
  8965. SERIAL_ECHOLNPAIR(" -> gridx=", gridx);
  8966. SERIAL_ECHOPAIR(" y=", y);
  8967. SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[Y_AXIS]);
  8968. SERIAL_ECHOLNPAIR(" -> gridy=", gridy);
  8969. SERIAL_ECHOPAIR(" ratio_x=", ratio_x);
  8970. SERIAL_ECHOLNPAIR(" ratio_y=", ratio_y);
  8971. SERIAL_ECHOPAIR(" z1=", z1);
  8972. SERIAL_ECHOPAIR(" z2=", z2);
  8973. SERIAL_ECHOPAIR(" z3=", z3);
  8974. SERIAL_ECHOLNPAIR(" z4=", z4);
  8975. SERIAL_ECHOPAIR(" L=", L);
  8976. SERIAL_ECHOPAIR(" R=", R);
  8977. SERIAL_ECHOLNPAIR(" offset=", offset);
  8978. }
  8979. last_offset = offset;
  8980. //*/
  8981. return offset;
  8982. }
  8983. #endif // AUTO_BED_LEVELING_BILINEAR
  8984. #if ENABLED(DELTA)
  8985. /**
  8986. * Recalculate factors used for delta kinematics whenever
  8987. * settings have been changed (e.g., by M665).
  8988. */
  8989. void recalc_delta_settings(float radius, float diagonal_rod) {
  8990. const float trt[ABC] = DELTA_RADIUS_TRIM_TOWER,
  8991. drt[ABC] = DELTA_DIAGONAL_ROD_TRIM_TOWER;
  8992. delta_tower[A_AXIS][X_AXIS] = cos(RADIANS(210 + delta_tower_angle_trim[A_AXIS])) * (radius + trt[A_AXIS]); // front left tower
  8993. delta_tower[A_AXIS][Y_AXIS] = sin(RADIANS(210 + delta_tower_angle_trim[A_AXIS])) * (radius + trt[A_AXIS]);
  8994. delta_tower[B_AXIS][X_AXIS] = cos(RADIANS(330 + delta_tower_angle_trim[B_AXIS])) * (radius + trt[B_AXIS]); // front right tower
  8995. delta_tower[B_AXIS][Y_AXIS] = sin(RADIANS(330 + delta_tower_angle_trim[B_AXIS])) * (radius + trt[B_AXIS]);
  8996. delta_tower[C_AXIS][X_AXIS] = 0.0; // back middle tower
  8997. delta_tower[C_AXIS][Y_AXIS] = (radius + trt[C_AXIS]);
  8998. delta_diagonal_rod_2_tower[A_AXIS] = sq(diagonal_rod + drt[A_AXIS]);
  8999. delta_diagonal_rod_2_tower[B_AXIS] = sq(diagonal_rod + drt[B_AXIS]);
  9000. delta_diagonal_rod_2_tower[C_AXIS] = sq(diagonal_rod + drt[C_AXIS]);
  9001. }
  9002. #if ENABLED(DELTA_FAST_SQRT)
  9003. /**
  9004. * Fast inverse sqrt from Quake III Arena
  9005. * See: https://en.wikipedia.org/wiki/Fast_inverse_square_root
  9006. */
  9007. float Q_rsqrt(float number) {
  9008. long i;
  9009. float x2, y;
  9010. const float threehalfs = 1.5f;
  9011. x2 = number * 0.5f;
  9012. y = number;
  9013. i = * ( long * ) &y; // evil floating point bit level hacking
  9014. i = 0x5F3759DF - ( i >> 1 ); // what the f***?
  9015. y = * ( float * ) &i;
  9016. y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
  9017. // y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed
  9018. return y;
  9019. }
  9020. #define _SQRT(n) (1.0f / Q_rsqrt(n))
  9021. #else
  9022. #define _SQRT(n) sqrt(n)
  9023. #endif
  9024. /**
  9025. * Delta Inverse Kinematics
  9026. *
  9027. * Calculate the tower positions for a given logical
  9028. * position, storing the result in the delta[] array.
  9029. *
  9030. * This is an expensive calculation, requiring 3 square
  9031. * roots per segmented linear move, and strains the limits
  9032. * of a Mega2560 with a Graphical Display.
  9033. *
  9034. * Suggested optimizations include:
  9035. *
  9036. * - Disable the home_offset (M206) and/or position_shift (G92)
  9037. * features to remove up to 12 float additions.
  9038. *
  9039. * - Use a fast-inverse-sqrt function and add the reciprocal.
  9040. * (see above)
  9041. */
  9042. // Macro to obtain the Z position of an individual tower
  9043. #define DELTA_Z(T) raw[Z_AXIS] + _SQRT( \
  9044. delta_diagonal_rod_2_tower[T] - HYPOT2( \
  9045. delta_tower[T][X_AXIS] - raw[X_AXIS], \
  9046. delta_tower[T][Y_AXIS] - raw[Y_AXIS] \
  9047. ) \
  9048. )
  9049. #define DELTA_RAW_IK() do { \
  9050. delta[A_AXIS] = DELTA_Z(A_AXIS); \
  9051. delta[B_AXIS] = DELTA_Z(B_AXIS); \
  9052. delta[C_AXIS] = DELTA_Z(C_AXIS); \
  9053. } while(0)
  9054. #define DELTA_LOGICAL_IK() do { \
  9055. const float raw[XYZ] = { \
  9056. RAW_X_POSITION(logical[X_AXIS]), \
  9057. RAW_Y_POSITION(logical[Y_AXIS]), \
  9058. RAW_Z_POSITION(logical[Z_AXIS]) \
  9059. }; \
  9060. DELTA_RAW_IK(); \
  9061. } while(0)
  9062. #define DELTA_DEBUG() do { \
  9063. SERIAL_ECHOPAIR("cartesian X:", raw[X_AXIS]); \
  9064. SERIAL_ECHOPAIR(" Y:", raw[Y_AXIS]); \
  9065. SERIAL_ECHOLNPAIR(" Z:", raw[Z_AXIS]); \
  9066. SERIAL_ECHOPAIR("delta A:", delta[A_AXIS]); \
  9067. SERIAL_ECHOPAIR(" B:", delta[B_AXIS]); \
  9068. SERIAL_ECHOLNPAIR(" C:", delta[C_AXIS]); \
  9069. } while(0)
  9070. void inverse_kinematics(const float logical[XYZ]) {
  9071. DELTA_LOGICAL_IK();
  9072. // DELTA_DEBUG();
  9073. }
  9074. /**
  9075. * Calculate the highest Z position where the
  9076. * effector has the full range of XY motion.
  9077. */
  9078. float delta_safe_distance_from_top() {
  9079. float cartesian[XYZ] = {
  9080. LOGICAL_X_POSITION(0),
  9081. LOGICAL_Y_POSITION(0),
  9082. LOGICAL_Z_POSITION(0)
  9083. };
  9084. inverse_kinematics(cartesian);
  9085. float distance = delta[A_AXIS];
  9086. cartesian[Y_AXIS] = LOGICAL_Y_POSITION(DELTA_PRINTABLE_RADIUS);
  9087. inverse_kinematics(cartesian);
  9088. return abs(distance - delta[A_AXIS]);
  9089. }
  9090. /**
  9091. * Delta Forward Kinematics
  9092. *
  9093. * See the Wikipedia article "Trilateration"
  9094. * https://en.wikipedia.org/wiki/Trilateration
  9095. *
  9096. * Establish a new coordinate system in the plane of the
  9097. * three carriage points. This system has its origin at
  9098. * tower1, with tower2 on the X axis. Tower3 is in the X-Y
  9099. * plane with a Z component of zero.
  9100. * We will define unit vectors in this coordinate system
  9101. * in our original coordinate system. Then when we calculate
  9102. * the Xnew, Ynew and Znew values, we can translate back into
  9103. * the original system by moving along those unit vectors
  9104. * by the corresponding values.
  9105. *
  9106. * Variable names matched to Marlin, c-version, and avoid the
  9107. * use of any vector library.
  9108. *
  9109. * by Andreas Hardtung 2016-06-07
  9110. * based on a Java function from "Delta Robot Kinematics V3"
  9111. * by Steve Graves
  9112. *
  9113. * The result is stored in the cartes[] array.
  9114. */
  9115. void forward_kinematics_DELTA(float z1, float z2, float z3) {
  9116. // Create a vector in old coordinates along x axis of new coordinate
  9117. float p12[3] = { delta_tower[B_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS], delta_tower[B_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS], z2 - z1 };
  9118. // Get the Magnitude of vector.
  9119. float d = sqrt( sq(p12[0]) + sq(p12[1]) + sq(p12[2]) );
  9120. // Create unit vector by dividing by magnitude.
  9121. float ex[3] = { p12[0] / d, p12[1] / d, p12[2] / d };
  9122. // Get the vector from the origin of the new system to the third point.
  9123. float p13[3] = { delta_tower[C_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS], delta_tower[C_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS], z3 - z1 };
  9124. // Use the dot product to find the component of this vector on the X axis.
  9125. float i = ex[0] * p13[0] + ex[1] * p13[1] + ex[2] * p13[2];
  9126. // Create a vector along the x axis that represents the x component of p13.
  9127. float iex[3] = { ex[0] * i, ex[1] * i, ex[2] * i };
  9128. // Subtract the X component from the original vector leaving only Y. We use the
  9129. // variable that will be the unit vector after we scale it.
  9130. float ey[3] = { p13[0] - iex[0], p13[1] - iex[1], p13[2] - iex[2] };
  9131. // The magnitude of Y component
  9132. float j = sqrt( sq(ey[0]) + sq(ey[1]) + sq(ey[2]) );
  9133. // Convert to a unit vector
  9134. ey[0] /= j; ey[1] /= j; ey[2] /= j;
  9135. // The cross product of the unit x and y is the unit z
  9136. // float[] ez = vectorCrossProd(ex, ey);
  9137. float ez[3] = {
  9138. ex[1] * ey[2] - ex[2] * ey[1],
  9139. ex[2] * ey[0] - ex[0] * ey[2],
  9140. ex[0] * ey[1] - ex[1] * ey[0]
  9141. };
  9142. // We now have the d, i and j values defined in Wikipedia.
  9143. // Plug them into the equations defined in Wikipedia for Xnew, Ynew and Znew
  9144. float Xnew = (delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[B_AXIS] + sq(d)) / (d * 2),
  9145. Ynew = ((delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[C_AXIS] + HYPOT2(i, j)) / 2 - i * Xnew) / j,
  9146. Znew = sqrt(delta_diagonal_rod_2_tower[A_AXIS] - HYPOT2(Xnew, Ynew));
  9147. // Start from the origin of the old coordinates and add vectors in the
  9148. // old coords that represent the Xnew, Ynew and Znew to find the point
  9149. // in the old system.
  9150. cartes[X_AXIS] = delta_tower[A_AXIS][X_AXIS] + ex[0] * Xnew + ey[0] * Ynew - ez[0] * Znew;
  9151. cartes[Y_AXIS] = delta_tower[A_AXIS][Y_AXIS] + ex[1] * Xnew + ey[1] * Ynew - ez[1] * Znew;
  9152. cartes[Z_AXIS] = z1 + ex[2] * Xnew + ey[2] * Ynew - ez[2] * Znew;
  9153. }
  9154. void forward_kinematics_DELTA(float point[ABC]) {
  9155. forward_kinematics_DELTA(point[A_AXIS], point[B_AXIS], point[C_AXIS]);
  9156. }
  9157. #endif // DELTA
  9158. /**
  9159. * Get the stepper positions in the cartes[] array.
  9160. * Forward kinematics are applied for DELTA and SCARA.
  9161. *
  9162. * The result is in the current coordinate space with
  9163. * leveling applied. The coordinates need to be run through
  9164. * unapply_leveling to obtain the "ideal" coordinates
  9165. * suitable for current_position, etc.
  9166. */
  9167. void get_cartesian_from_steppers() {
  9168. #if ENABLED(DELTA)
  9169. forward_kinematics_DELTA(
  9170. stepper.get_axis_position_mm(A_AXIS),
  9171. stepper.get_axis_position_mm(B_AXIS),
  9172. stepper.get_axis_position_mm(C_AXIS)
  9173. );
  9174. cartes[X_AXIS] += LOGICAL_X_POSITION(0);
  9175. cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
  9176. cartes[Z_AXIS] += LOGICAL_Z_POSITION(0);
  9177. #elif IS_SCARA
  9178. forward_kinematics_SCARA(
  9179. stepper.get_axis_position_degrees(A_AXIS),
  9180. stepper.get_axis_position_degrees(B_AXIS)
  9181. );
  9182. cartes[X_AXIS] += LOGICAL_X_POSITION(0);
  9183. cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
  9184. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  9185. #else
  9186. cartes[X_AXIS] = stepper.get_axis_position_mm(X_AXIS);
  9187. cartes[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS);
  9188. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  9189. #endif
  9190. }
  9191. /**
  9192. * Set the current_position for an axis based on
  9193. * the stepper positions, removing any leveling that
  9194. * may have been applied.
  9195. */
  9196. void set_current_from_steppers_for_axis(const AxisEnum axis) {
  9197. get_cartesian_from_steppers();
  9198. #if PLANNER_LEVELING
  9199. planner.unapply_leveling(cartes);
  9200. #endif
  9201. if (axis == ALL_AXES)
  9202. COPY(current_position, cartes);
  9203. else
  9204. current_position[axis] = cartes[axis];
  9205. }
  9206. #if ENABLED(MESH_BED_LEVELING)
  9207. /**
  9208. * Prepare a mesh-leveled linear move in a Cartesian setup,
  9209. * splitting the move where it crosses mesh borders.
  9210. */
  9211. void mesh_line_to_destination(float fr_mm_s, uint8_t x_splits = 0xFF, uint8_t y_splits = 0xFF) {
  9212. int cx1 = mbl.cell_index_x(RAW_CURRENT_POSITION(X)),
  9213. cy1 = mbl.cell_index_y(RAW_CURRENT_POSITION(Y)),
  9214. cx2 = mbl.cell_index_x(RAW_X_POSITION(destination[X_AXIS])),
  9215. cy2 = mbl.cell_index_y(RAW_Y_POSITION(destination[Y_AXIS]));
  9216. NOMORE(cx1, GRID_MAX_POINTS_X - 2);
  9217. NOMORE(cy1, GRID_MAX_POINTS_Y - 2);
  9218. NOMORE(cx2, GRID_MAX_POINTS_X - 2);
  9219. NOMORE(cy2, GRID_MAX_POINTS_Y - 2);
  9220. if (cx1 == cx2 && cy1 == cy2) {
  9221. // Start and end on same mesh square
  9222. line_to_destination(fr_mm_s);
  9223. set_current_to_destination();
  9224. return;
  9225. }
  9226. #define MBL_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  9227. float normalized_dist, end[XYZE];
  9228. // Split at the left/front border of the right/top square
  9229. const int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  9230. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  9231. COPY(end, destination);
  9232. destination[X_AXIS] = LOGICAL_X_POSITION(mbl.index_to_xpos[gcx]);
  9233. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  9234. destination[Y_AXIS] = MBL_SEGMENT_END(Y);
  9235. CBI(x_splits, gcx);
  9236. }
  9237. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  9238. COPY(end, destination);
  9239. destination[Y_AXIS] = LOGICAL_Y_POSITION(mbl.index_to_ypos[gcy]);
  9240. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  9241. destination[X_AXIS] = MBL_SEGMENT_END(X);
  9242. CBI(y_splits, gcy);
  9243. }
  9244. else {
  9245. // Already split on a border
  9246. line_to_destination(fr_mm_s);
  9247. set_current_to_destination();
  9248. return;
  9249. }
  9250. destination[Z_AXIS] = MBL_SEGMENT_END(Z);
  9251. destination[E_AXIS] = MBL_SEGMENT_END(E);
  9252. // Do the split and look for more borders
  9253. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  9254. // Restore destination from stack
  9255. COPY(destination, end);
  9256. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  9257. }
  9258. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR) && !IS_KINEMATIC
  9259. #define CELL_INDEX(A,V) ((RAW_##A##_POSITION(V) - bilinear_start[A##_AXIS]) * ABL_BG_FACTOR(A##_AXIS))
  9260. /**
  9261. * Prepare a bilinear-leveled linear move on Cartesian,
  9262. * splitting the move where it crosses grid borders.
  9263. */
  9264. void bilinear_line_to_destination(float fr_mm_s, uint16_t x_splits = 0xFFFF, uint16_t y_splits = 0xFFFF) {
  9265. int cx1 = CELL_INDEX(X, current_position[X_AXIS]),
  9266. cy1 = CELL_INDEX(Y, current_position[Y_AXIS]),
  9267. cx2 = CELL_INDEX(X, destination[X_AXIS]),
  9268. cy2 = CELL_INDEX(Y, destination[Y_AXIS]);
  9269. cx1 = constrain(cx1, 0, ABL_BG_POINTS_X - 2);
  9270. cy1 = constrain(cy1, 0, ABL_BG_POINTS_Y - 2);
  9271. cx2 = constrain(cx2, 0, ABL_BG_POINTS_X - 2);
  9272. cy2 = constrain(cy2, 0, ABL_BG_POINTS_Y - 2);
  9273. if (cx1 == cx2 && cy1 == cy2) {
  9274. // Start and end on same mesh square
  9275. line_to_destination(fr_mm_s);
  9276. set_current_to_destination();
  9277. return;
  9278. }
  9279. #define LINE_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  9280. float normalized_dist, end[XYZE];
  9281. // Split at the left/front border of the right/top square
  9282. const int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  9283. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  9284. COPY(end, destination);
  9285. destination[X_AXIS] = LOGICAL_X_POSITION(bilinear_start[X_AXIS] + ABL_BG_SPACING(X_AXIS) * gcx);
  9286. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  9287. destination[Y_AXIS] = LINE_SEGMENT_END(Y);
  9288. CBI(x_splits, gcx);
  9289. }
  9290. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  9291. COPY(end, destination);
  9292. destination[Y_AXIS] = LOGICAL_Y_POSITION(bilinear_start[Y_AXIS] + ABL_BG_SPACING(Y_AXIS) * gcy);
  9293. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  9294. destination[X_AXIS] = LINE_SEGMENT_END(X);
  9295. CBI(y_splits, gcy);
  9296. }
  9297. else {
  9298. // Already split on a border
  9299. line_to_destination(fr_mm_s);
  9300. set_current_to_destination();
  9301. return;
  9302. }
  9303. destination[Z_AXIS] = LINE_SEGMENT_END(Z);
  9304. destination[E_AXIS] = LINE_SEGMENT_END(E);
  9305. // Do the split and look for more borders
  9306. bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
  9307. // Restore destination from stack
  9308. COPY(destination, end);
  9309. bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
  9310. }
  9311. #endif // AUTO_BED_LEVELING_BILINEAR
  9312. #if IS_KINEMATIC
  9313. /**
  9314. * Prepare a linear move in a DELTA or SCARA setup.
  9315. *
  9316. * This calls planner.buffer_line several times, adding
  9317. * small incremental moves for DELTA or SCARA.
  9318. */
  9319. inline bool prepare_kinematic_move_to(float ltarget[XYZE]) {
  9320. // Get the top feedrate of the move in the XY plane
  9321. float _feedrate_mm_s = MMS_SCALED(feedrate_mm_s);
  9322. // If the move is only in Z/E don't split up the move
  9323. if (ltarget[X_AXIS] == current_position[X_AXIS] && ltarget[Y_AXIS] == current_position[Y_AXIS]) {
  9324. planner.buffer_line_kinematic(ltarget, _feedrate_mm_s, active_extruder);
  9325. return false;
  9326. }
  9327. // Get the cartesian distances moved in XYZE
  9328. float difference[XYZE];
  9329. LOOP_XYZE(i) difference[i] = ltarget[i] - current_position[i];
  9330. // Get the linear distance in XYZ
  9331. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  9332. // If the move is very short, check the E move distance
  9333. if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = abs(difference[E_AXIS]);
  9334. // No E move either? Game over.
  9335. if (UNEAR_ZERO(cartesian_mm)) return true;
  9336. // Minimum number of seconds to move the given distance
  9337. float seconds = cartesian_mm / _feedrate_mm_s;
  9338. // The number of segments-per-second times the duration
  9339. // gives the number of segments
  9340. uint16_t segments = delta_segments_per_second * seconds;
  9341. // For SCARA minimum segment size is 0.25mm
  9342. #if IS_SCARA
  9343. NOMORE(segments, cartesian_mm * 4);
  9344. #endif
  9345. // At least one segment is required
  9346. NOLESS(segments, 1);
  9347. // The approximate length of each segment
  9348. const float inv_segments = 1.0 / float(segments),
  9349. segment_distance[XYZE] = {
  9350. difference[X_AXIS] * inv_segments,
  9351. difference[Y_AXIS] * inv_segments,
  9352. difference[Z_AXIS] * inv_segments,
  9353. difference[E_AXIS] * inv_segments
  9354. };
  9355. // SERIAL_ECHOPAIR("mm=", cartesian_mm);
  9356. // SERIAL_ECHOPAIR(" seconds=", seconds);
  9357. // SERIAL_ECHOLNPAIR(" segments=", segments);
  9358. #if IS_SCARA
  9359. // SCARA needs to scale the feed rate from mm/s to degrees/s
  9360. const float inv_segment_length = min(10.0, float(segments) / cartesian_mm), // 1/mm/segs
  9361. feed_factor = inv_segment_length * _feedrate_mm_s;
  9362. float oldA = stepper.get_axis_position_degrees(A_AXIS),
  9363. oldB = stepper.get_axis_position_degrees(B_AXIS);
  9364. #endif
  9365. // Get the logical current position as starting point
  9366. float logical[XYZE];
  9367. COPY(logical, current_position);
  9368. // Drop one segment so the last move is to the exact target.
  9369. // If there's only 1 segment, loops will be skipped entirely.
  9370. --segments;
  9371. // Calculate and execute the segments
  9372. for (uint16_t s = segments + 1; --s;) {
  9373. LOOP_XYZE(i) logical[i] += segment_distance[i];
  9374. #if ENABLED(DELTA)
  9375. DELTA_LOGICAL_IK(); // Delta can inline its kinematics
  9376. #else
  9377. inverse_kinematics(logical);
  9378. #endif
  9379. ADJUST_DELTA(logical); // Adjust Z if bed leveling is enabled
  9380. #if IS_SCARA
  9381. // For SCARA scale the feed rate from mm/s to degrees/s
  9382. // Use ratio between the length of the move and the larger angle change
  9383. const float adiff = abs(delta[A_AXIS] - oldA),
  9384. bdiff = abs(delta[B_AXIS] - oldB);
  9385. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], max(adiff, bdiff) * feed_factor, active_extruder);
  9386. oldA = delta[A_AXIS];
  9387. oldB = delta[B_AXIS];
  9388. #else
  9389. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], _feedrate_mm_s, active_extruder);
  9390. #endif
  9391. }
  9392. // Since segment_distance is only approximate,
  9393. // the final move must be to the exact destination.
  9394. #if IS_SCARA
  9395. // For SCARA scale the feed rate from mm/s to degrees/s
  9396. // With segments > 1 length is 1 segment, otherwise total length
  9397. inverse_kinematics(ltarget);
  9398. ADJUST_DELTA(logical);
  9399. const float adiff = abs(delta[A_AXIS] - oldA),
  9400. bdiff = abs(delta[B_AXIS] - oldB);
  9401. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], max(adiff, bdiff) * feed_factor, active_extruder);
  9402. #else
  9403. planner.buffer_line_kinematic(ltarget, _feedrate_mm_s, active_extruder);
  9404. #endif
  9405. return false;
  9406. }
  9407. #else // !IS_KINEMATIC
  9408. /**
  9409. * Prepare a linear move in a Cartesian setup.
  9410. * If Mesh Bed Leveling is enabled, perform a mesh move.
  9411. *
  9412. * Returns true if the caller didn't update current_position.
  9413. */
  9414. inline bool prepare_move_to_destination_cartesian() {
  9415. // Do not use feedrate_percentage for E or Z only moves
  9416. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  9417. line_to_destination();
  9418. }
  9419. else {
  9420. #if ENABLED(MESH_BED_LEVELING)
  9421. if (mbl.active()) {
  9422. mesh_line_to_destination(MMS_SCALED(feedrate_mm_s));
  9423. return true;
  9424. }
  9425. else
  9426. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  9427. if (ubl.state.active) {
  9428. ubl_line_to_destination(MMS_SCALED(feedrate_mm_s), active_extruder);
  9429. return true;
  9430. }
  9431. else
  9432. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  9433. if (planner.abl_enabled) {
  9434. bilinear_line_to_destination(MMS_SCALED(feedrate_mm_s));
  9435. return true;
  9436. }
  9437. else
  9438. #endif
  9439. line_to_destination(MMS_SCALED(feedrate_mm_s));
  9440. }
  9441. return false;
  9442. }
  9443. #endif // !IS_KINEMATIC
  9444. #if ENABLED(DUAL_X_CARRIAGE)
  9445. /**
  9446. * Prepare a linear move in a dual X axis setup
  9447. */
  9448. inline bool prepare_move_to_destination_dualx() {
  9449. if (active_extruder_parked) {
  9450. switch (dual_x_carriage_mode) {
  9451. case DXC_FULL_CONTROL_MODE:
  9452. break;
  9453. case DXC_AUTO_PARK_MODE:
  9454. if (current_position[E_AXIS] == destination[E_AXIS]) {
  9455. // This is a travel move (with no extrusion)
  9456. // Skip it, but keep track of the current position
  9457. // (so it can be used as the start of the next non-travel move)
  9458. if (delayed_move_time != 0xFFFFFFFFUL) {
  9459. set_current_to_destination();
  9460. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  9461. delayed_move_time = millis();
  9462. return true;
  9463. }
  9464. }
  9465. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  9466. for (uint8_t i = 0; i < 3; i++)
  9467. planner.buffer_line(
  9468. i == 0 ? raised_parked_position[X_AXIS] : current_position[X_AXIS],
  9469. i == 0 ? raised_parked_position[Y_AXIS] : current_position[Y_AXIS],
  9470. i == 2 ? current_position[Z_AXIS] : raised_parked_position[Z_AXIS],
  9471. current_position[E_AXIS],
  9472. i == 1 ? PLANNER_XY_FEEDRATE() : planner.max_feedrate_mm_s[Z_AXIS],
  9473. active_extruder
  9474. );
  9475. delayed_move_time = 0;
  9476. active_extruder_parked = false;
  9477. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9478. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Clear active_extruder_parked");
  9479. #endif
  9480. break;
  9481. case DXC_DUPLICATION_MODE:
  9482. if (active_extruder == 0) {
  9483. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9484. if (DEBUGGING(LEVELING)) {
  9485. SERIAL_ECHOPAIR("Set planner X", LOGICAL_X_POSITION(inactive_extruder_x_pos));
  9486. SERIAL_ECHOLNPAIR(" ... Line to X", current_position[X_AXIS] + duplicate_extruder_x_offset);
  9487. }
  9488. #endif
  9489. // move duplicate extruder into correct duplication position.
  9490. planner.set_position_mm(
  9491. LOGICAL_X_POSITION(inactive_extruder_x_pos),
  9492. current_position[Y_AXIS],
  9493. current_position[Z_AXIS],
  9494. current_position[E_AXIS]
  9495. );
  9496. planner.buffer_line(
  9497. current_position[X_AXIS] + duplicate_extruder_x_offset,
  9498. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
  9499. planner.max_feedrate_mm_s[X_AXIS], 1
  9500. );
  9501. SYNC_PLAN_POSITION_KINEMATIC();
  9502. stepper.synchronize();
  9503. extruder_duplication_enabled = true;
  9504. active_extruder_parked = false;
  9505. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9506. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Set extruder_duplication_enabled\nClear active_extruder_parked");
  9507. #endif
  9508. }
  9509. else {
  9510. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9511. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Active extruder not 0");
  9512. #endif
  9513. }
  9514. break;
  9515. }
  9516. }
  9517. return false;
  9518. }
  9519. #endif // DUAL_X_CARRIAGE
  9520. /**
  9521. * Prepare a single move and get ready for the next one
  9522. *
  9523. * This may result in several calls to planner.buffer_line to
  9524. * do smaller moves for DELTA, SCARA, mesh moves, etc.
  9525. */
  9526. void prepare_move_to_destination() {
  9527. clamp_to_software_endstops(destination);
  9528. refresh_cmd_timeout();
  9529. #if ENABLED(PREVENT_COLD_EXTRUSION)
  9530. if (!DEBUGGING(DRYRUN)) {
  9531. if (destination[E_AXIS] != current_position[E_AXIS]) {
  9532. if (thermalManager.tooColdToExtrude(active_extruder)) {
  9533. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  9534. SERIAL_ECHO_START;
  9535. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  9536. }
  9537. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  9538. if (labs(destination[E_AXIS] - current_position[E_AXIS]) > EXTRUDE_MAXLENGTH) {
  9539. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  9540. SERIAL_ECHO_START;
  9541. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  9542. }
  9543. #endif
  9544. }
  9545. }
  9546. #endif
  9547. #if IS_KINEMATIC
  9548. if (prepare_kinematic_move_to(destination)) return;
  9549. #else
  9550. #if ENABLED(DUAL_X_CARRIAGE)
  9551. if (prepare_move_to_destination_dualx()) return;
  9552. #endif
  9553. if (prepare_move_to_destination_cartesian()) return;
  9554. #endif
  9555. set_current_to_destination();
  9556. }
  9557. #if ENABLED(ARC_SUPPORT)
  9558. /**
  9559. * Plan an arc in 2 dimensions
  9560. *
  9561. * The arc is approximated by generating many small linear segments.
  9562. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  9563. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  9564. * larger segments will tend to be more efficient. Your slicer should have
  9565. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  9566. */
  9567. void plan_arc(
  9568. float logical[XYZE], // Destination position
  9569. float *offset, // Center of rotation relative to current_position
  9570. uint8_t clockwise // Clockwise?
  9571. ) {
  9572. float r_X = -offset[X_AXIS], // Radius vector from center to current location
  9573. r_Y = -offset[Y_AXIS];
  9574. const float radius = HYPOT(r_X, r_Y),
  9575. center_X = current_position[X_AXIS] - r_X,
  9576. center_Y = current_position[Y_AXIS] - r_Y,
  9577. rt_X = logical[X_AXIS] - center_X,
  9578. rt_Y = logical[Y_AXIS] - center_Y,
  9579. linear_travel = logical[Z_AXIS] - current_position[Z_AXIS],
  9580. extruder_travel = logical[E_AXIS] - current_position[E_AXIS];
  9581. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  9582. float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
  9583. if (angular_travel < 0) angular_travel += RADIANS(360);
  9584. if (clockwise) angular_travel -= RADIANS(360);
  9585. // Make a circle if the angular rotation is 0
  9586. if (angular_travel == 0 && current_position[X_AXIS] == logical[X_AXIS] && current_position[Y_AXIS] == logical[Y_AXIS])
  9587. angular_travel += RADIANS(360);
  9588. float mm_of_travel = HYPOT(angular_travel * radius, fabs(linear_travel));
  9589. if (mm_of_travel < 0.001) return;
  9590. uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
  9591. if (segments == 0) segments = 1;
  9592. /**
  9593. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  9594. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  9595. * r_T = [cos(phi) -sin(phi);
  9596. * sin(phi) cos(phi)] * r ;
  9597. *
  9598. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  9599. * defined from the circle center to the initial position. Each line segment is formed by successive
  9600. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  9601. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  9602. * all double numbers are single precision on the Arduino. (True double precision will not have
  9603. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  9604. * tool precision in some cases. Therefore, arc path correction is implemented.
  9605. *
  9606. * Small angle approximation may be used to reduce computation overhead further. This approximation
  9607. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  9608. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  9609. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  9610. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  9611. * issue for CNC machines with the single precision Arduino calculations.
  9612. *
  9613. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  9614. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  9615. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  9616. * This is important when there are successive arc motions.
  9617. */
  9618. // Vector rotation matrix values
  9619. float arc_target[XYZE];
  9620. const float theta_per_segment = angular_travel / segments,
  9621. linear_per_segment = linear_travel / segments,
  9622. extruder_per_segment = extruder_travel / segments,
  9623. sin_T = theta_per_segment,
  9624. cos_T = 1 - 0.5 * sq(theta_per_segment); // Small angle approximation
  9625. // Initialize the linear axis
  9626. arc_target[Z_AXIS] = current_position[Z_AXIS];
  9627. // Initialize the extruder axis
  9628. arc_target[E_AXIS] = current_position[E_AXIS];
  9629. const float fr_mm_s = MMS_SCALED(feedrate_mm_s);
  9630. millis_t next_idle_ms = millis() + 200UL;
  9631. int8_t count = 0;
  9632. for (uint16_t i = 1; i < segments; i++) { // Iterate (segments-1) times
  9633. thermalManager.manage_heater();
  9634. if (ELAPSED(millis(), next_idle_ms)) {
  9635. next_idle_ms = millis() + 200UL;
  9636. idle();
  9637. }
  9638. if (++count < N_ARC_CORRECTION) {
  9639. // Apply vector rotation matrix to previous r_X / 1
  9640. const float r_new_Y = r_X * sin_T + r_Y * cos_T;
  9641. r_X = r_X * cos_T - r_Y * sin_T;
  9642. r_Y = r_new_Y;
  9643. }
  9644. else {
  9645. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  9646. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  9647. // To reduce stuttering, the sin and cos could be computed at different times.
  9648. // For now, compute both at the same time.
  9649. const float cos_Ti = cos(i * theta_per_segment),
  9650. sin_Ti = sin(i * theta_per_segment);
  9651. r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
  9652. r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
  9653. count = 0;
  9654. }
  9655. // Update arc_target location
  9656. arc_target[X_AXIS] = center_X + r_X;
  9657. arc_target[Y_AXIS] = center_Y + r_Y;
  9658. arc_target[Z_AXIS] += linear_per_segment;
  9659. arc_target[E_AXIS] += extruder_per_segment;
  9660. clamp_to_software_endstops(arc_target);
  9661. planner.buffer_line_kinematic(arc_target, fr_mm_s, active_extruder);
  9662. }
  9663. // Ensure last segment arrives at target location.
  9664. planner.buffer_line_kinematic(logical, fr_mm_s, active_extruder);
  9665. // As far as the parser is concerned, the position is now == target. In reality the
  9666. // motion control system might still be processing the action and the real tool position
  9667. // in any intermediate location.
  9668. set_current_to_destination();
  9669. }
  9670. #endif
  9671. #if ENABLED(BEZIER_CURVE_SUPPORT)
  9672. void plan_cubic_move(const float offset[4]) {
  9673. cubic_b_spline(current_position, destination, offset, MMS_SCALED(feedrate_mm_s), active_extruder);
  9674. // As far as the parser is concerned, the position is now == destination. In reality the
  9675. // motion control system might still be processing the action and the real tool position
  9676. // in any intermediate location.
  9677. set_current_to_destination();
  9678. }
  9679. #endif // BEZIER_CURVE_SUPPORT
  9680. #if ENABLED(USE_CONTROLLER_FAN)
  9681. void controllerFan() {
  9682. static millis_t lastMotorOn = 0, // Last time a motor was turned on
  9683. nextMotorCheck = 0; // Last time the state was checked
  9684. const millis_t ms = millis();
  9685. if (ELAPSED(ms, nextMotorCheck)) {
  9686. nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
  9687. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_bed > 0
  9688. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  9689. #if E_STEPPERS > 1
  9690. || E1_ENABLE_READ == E_ENABLE_ON
  9691. #if HAS_X2_ENABLE
  9692. || X2_ENABLE_READ == X_ENABLE_ON
  9693. #endif
  9694. #if E_STEPPERS > 2
  9695. || E2_ENABLE_READ == E_ENABLE_ON
  9696. #if E_STEPPERS > 3
  9697. || E3_ENABLE_READ == E_ENABLE_ON
  9698. #if E_STEPPERS > 4
  9699. || E4_ENABLE_READ == E_ENABLE_ON
  9700. #endif // E_STEPPERS > 4
  9701. #endif // E_STEPPERS > 3
  9702. #endif // E_STEPPERS > 2
  9703. #endif // E_STEPPERS > 1
  9704. ) {
  9705. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  9706. }
  9707. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  9708. uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  9709. // allows digital or PWM fan output to be used (see M42 handling)
  9710. WRITE(CONTROLLER_FAN_PIN, speed);
  9711. analogWrite(CONTROLLER_FAN_PIN, speed);
  9712. }
  9713. }
  9714. #endif // USE_CONTROLLER_FAN
  9715. #if ENABLED(MORGAN_SCARA)
  9716. /**
  9717. * Morgan SCARA Forward Kinematics. Results in cartes[].
  9718. * Maths and first version by QHARLEY.
  9719. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  9720. */
  9721. void forward_kinematics_SCARA(const float &a, const float &b) {
  9722. float a_sin = sin(RADIANS(a)) * L1,
  9723. a_cos = cos(RADIANS(a)) * L1,
  9724. b_sin = sin(RADIANS(b)) * L2,
  9725. b_cos = cos(RADIANS(b)) * L2;
  9726. cartes[X_AXIS] = a_cos + b_cos + SCARA_OFFSET_X; //theta
  9727. cartes[Y_AXIS] = a_sin + b_sin + SCARA_OFFSET_Y; //theta+phi
  9728. /*
  9729. SERIAL_ECHOPAIR("SCARA FK Angle a=", a);
  9730. SERIAL_ECHOPAIR(" b=", b);
  9731. SERIAL_ECHOPAIR(" a_sin=", a_sin);
  9732. SERIAL_ECHOPAIR(" a_cos=", a_cos);
  9733. SERIAL_ECHOPAIR(" b_sin=", b_sin);
  9734. SERIAL_ECHOLNPAIR(" b_cos=", b_cos);
  9735. SERIAL_ECHOPAIR(" cartes[X_AXIS]=", cartes[X_AXIS]);
  9736. SERIAL_ECHOLNPAIR(" cartes[Y_AXIS]=", cartes[Y_AXIS]);
  9737. //*/
  9738. }
  9739. /**
  9740. * Morgan SCARA Inverse Kinematics. Results in delta[].
  9741. *
  9742. * See http://forums.reprap.org/read.php?185,283327
  9743. *
  9744. * Maths and first version by QHARLEY.
  9745. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  9746. */
  9747. void inverse_kinematics(const float logical[XYZ]) {
  9748. static float C2, S2, SK1, SK2, THETA, PSI;
  9749. float sx = RAW_X_POSITION(logical[X_AXIS]) - SCARA_OFFSET_X, // Translate SCARA to standard X Y
  9750. sy = RAW_Y_POSITION(logical[Y_AXIS]) - SCARA_OFFSET_Y; // With scaling factor.
  9751. if (L1 == L2)
  9752. C2 = HYPOT2(sx, sy) / L1_2_2 - 1;
  9753. else
  9754. C2 = (HYPOT2(sx, sy) - (L1_2 + L2_2)) / (2.0 * L1 * L2);
  9755. S2 = sqrt(sq(C2) - 1);
  9756. // Unrotated Arm1 plus rotated Arm2 gives the distance from Center to End
  9757. SK1 = L1 + L2 * C2;
  9758. // Rotated Arm2 gives the distance from Arm1 to Arm2
  9759. SK2 = L2 * S2;
  9760. // Angle of Arm1 is the difference between Center-to-End angle and the Center-to-Elbow
  9761. THETA = atan2(SK1, SK2) - atan2(sx, sy);
  9762. // Angle of Arm2
  9763. PSI = atan2(S2, C2);
  9764. delta[A_AXIS] = DEGREES(THETA); // theta is support arm angle
  9765. delta[B_AXIS] = DEGREES(THETA + PSI); // equal to sub arm angle (inverted motor)
  9766. delta[C_AXIS] = logical[Z_AXIS];
  9767. /*
  9768. DEBUG_POS("SCARA IK", logical);
  9769. DEBUG_POS("SCARA IK", delta);
  9770. SERIAL_ECHOPAIR(" SCARA (x,y) ", sx);
  9771. SERIAL_ECHOPAIR(",", sy);
  9772. SERIAL_ECHOPAIR(" C2=", C2);
  9773. SERIAL_ECHOPAIR(" S2=", S2);
  9774. SERIAL_ECHOPAIR(" Theta=", THETA);
  9775. SERIAL_ECHOLNPAIR(" Phi=", PHI);
  9776. //*/
  9777. }
  9778. #endif // MORGAN_SCARA
  9779. #if ENABLED(TEMP_STAT_LEDS)
  9780. static bool red_led = false;
  9781. static millis_t next_status_led_update_ms = 0;
  9782. void handle_status_leds(void) {
  9783. if (ELAPSED(millis(), next_status_led_update_ms)) {
  9784. next_status_led_update_ms += 500; // Update every 0.5s
  9785. float max_temp = 0.0;
  9786. #if HAS_TEMP_BED
  9787. max_temp = MAX3(max_temp, thermalManager.degTargetBed(), thermalManager.degBed());
  9788. #endif
  9789. HOTEND_LOOP() {
  9790. max_temp = MAX3(max_temp, thermalManager.degHotend(e), thermalManager.degTargetHotend(e));
  9791. }
  9792. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  9793. if (new_led != red_led) {
  9794. red_led = new_led;
  9795. #if PIN_EXISTS(STAT_LED_RED)
  9796. WRITE(STAT_LED_RED_PIN, new_led ? HIGH : LOW);
  9797. #if PIN_EXISTS(STAT_LED_BLUE)
  9798. WRITE(STAT_LED_BLUE_PIN, new_led ? LOW : HIGH);
  9799. #endif
  9800. #else
  9801. WRITE(STAT_LED_BLUE_PIN, new_led ? HIGH : LOW);
  9802. #endif
  9803. }
  9804. }
  9805. }
  9806. #endif
  9807. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  9808. void handle_filament_runout() {
  9809. if (!filament_ran_out) {
  9810. filament_ran_out = true;
  9811. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  9812. stepper.synchronize();
  9813. }
  9814. }
  9815. #endif // FILAMENT_RUNOUT_SENSOR
  9816. #if ENABLED(FAST_PWM_FAN)
  9817. void setPwmFrequency(uint8_t pin, int val) {
  9818. val &= 0x07;
  9819. switch (digitalPinToTimer(pin)) {
  9820. #ifdef TCCR0A
  9821. case TIMER0A:
  9822. case TIMER0B:
  9823. //_SET_CS(0, val);
  9824. break;
  9825. #endif
  9826. #ifdef TCCR1A
  9827. case TIMER1A:
  9828. case TIMER1B:
  9829. //_SET_CS(1, val);
  9830. break;
  9831. #endif
  9832. #ifdef TCCR2
  9833. case TIMER2:
  9834. case TIMER2:
  9835. _SET_CS(2, val);
  9836. break;
  9837. #endif
  9838. #ifdef TCCR2A
  9839. case TIMER2A:
  9840. case TIMER2B:
  9841. _SET_CS(2, val);
  9842. break;
  9843. #endif
  9844. #ifdef TCCR3A
  9845. case TIMER3A:
  9846. case TIMER3B:
  9847. case TIMER3C:
  9848. _SET_CS(3, val);
  9849. break;
  9850. #endif
  9851. #ifdef TCCR4A
  9852. case TIMER4A:
  9853. case TIMER4B:
  9854. case TIMER4C:
  9855. _SET_CS(4, val);
  9856. break;
  9857. #endif
  9858. #ifdef TCCR5A
  9859. case TIMER5A:
  9860. case TIMER5B:
  9861. case TIMER5C:
  9862. _SET_CS(5, val);
  9863. break;
  9864. #endif
  9865. }
  9866. }
  9867. #endif // FAST_PWM_FAN
  9868. float calculate_volumetric_multiplier(float diameter) {
  9869. if (!volumetric_enabled || diameter == 0) return 1.0;
  9870. return 1.0 / (M_PI * sq(diameter * 0.5));
  9871. }
  9872. void calculate_volumetric_multipliers() {
  9873. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  9874. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  9875. }
  9876. void enable_all_steppers() {
  9877. enable_X();
  9878. enable_Y();
  9879. enable_Z();
  9880. enable_E0();
  9881. enable_E1();
  9882. enable_E2();
  9883. enable_E3();
  9884. enable_E4();
  9885. }
  9886. void disable_e_steppers() {
  9887. disable_E0();
  9888. disable_E1();
  9889. disable_E2();
  9890. disable_E3();
  9891. disable_E4();
  9892. }
  9893. void disable_all_steppers() {
  9894. disable_X();
  9895. disable_Y();
  9896. disable_Z();
  9897. disable_e_steppers();
  9898. }
  9899. #if ENABLED(HAVE_TMC2130)
  9900. void automatic_current_control(TMC2130Stepper &st, String axisID) {
  9901. // Check otpw even if we don't use automatic control. Allows for flag inspection.
  9902. const bool is_otpw = st.checkOT();
  9903. // Report if a warning was triggered
  9904. static bool previous_otpw = false;
  9905. if (is_otpw && !previous_otpw) {
  9906. char timestamp[10];
  9907. duration_t elapsed = print_job_timer.duration();
  9908. const bool has_days = (elapsed.value > 60*60*24L);
  9909. (void)elapsed.toDigital(timestamp, has_days);
  9910. SERIAL_ECHO(timestamp);
  9911. SERIAL_ECHO(": ");
  9912. SERIAL_ECHO(axisID);
  9913. SERIAL_ECHOLNPGM(" driver overtemperature warning!");
  9914. }
  9915. previous_otpw = is_otpw;
  9916. #if CURRENT_STEP > 0 && ENABLED(AUTOMATIC_CURRENT_CONTROL)
  9917. // Return if user has not enabled current control start with M906 S1.
  9918. if (!auto_current_control) return;
  9919. /**
  9920. * Decrease current if is_otpw is true.
  9921. * Bail out if driver is disabled.
  9922. * Increase current if OTPW has not been triggered yet.
  9923. */
  9924. uint16_t current = st.getCurrent();
  9925. if (is_otpw) {
  9926. st.setCurrent(current - CURRENT_STEP, R_SENSE, HOLD_MULTIPLIER);
  9927. #if ENABLED(REPORT_CURRENT_CHANGE)
  9928. SERIAL_ECHO(axisID);
  9929. SERIAL_ECHOPAIR(" current decreased to ", st.getCurrent());
  9930. #endif
  9931. }
  9932. else if (!st.isEnabled())
  9933. return;
  9934. else if (!is_otpw && !st.getOTPW()) {
  9935. current += CURRENT_STEP;
  9936. if (current <= AUTO_ADJUST_MAX) {
  9937. st.setCurrent(current, R_SENSE, HOLD_MULTIPLIER);
  9938. #if ENABLED(REPORT_CURRENT_CHANGE)
  9939. SERIAL_ECHO(axisID);
  9940. SERIAL_ECHOPAIR(" current increased to ", st.getCurrent());
  9941. #endif
  9942. }
  9943. }
  9944. SERIAL_EOL;
  9945. #endif
  9946. }
  9947. void checkOverTemp() {
  9948. static millis_t next_cOT = 0;
  9949. if (ELAPSED(millis(), next_cOT)) {
  9950. next_cOT = millis() + 5000;
  9951. #if ENABLED(X_IS_TMC2130)
  9952. automatic_current_control(stepperX, "X");
  9953. #endif
  9954. #if ENABLED(Y_IS_TMC2130)
  9955. automatic_current_control(stepperY, "Y");
  9956. #endif
  9957. #if ENABLED(Z_IS_TMC2130)
  9958. automatic_current_control(stepperZ, "Z");
  9959. #endif
  9960. #if ENABLED(X2_IS_TMC2130)
  9961. automatic_current_control(stepperX2, "X2");
  9962. #endif
  9963. #if ENABLED(Y2_IS_TMC2130)
  9964. automatic_current_control(stepperY2, "Y2");
  9965. #endif
  9966. #if ENABLED(Z2_IS_TMC2130)
  9967. automatic_current_control(stepperZ2, "Z2");
  9968. #endif
  9969. #if ENABLED(E0_IS_TMC2130)
  9970. automatic_current_control(stepperE0, "E0");
  9971. #endif
  9972. #if ENABLED(E1_IS_TMC2130)
  9973. automatic_current_control(stepperE1, "E1");
  9974. #endif
  9975. #if ENABLED(E2_IS_TMC2130)
  9976. automatic_current_control(stepperE2, "E2");
  9977. #endif
  9978. #if ENABLED(E3_IS_TMC2130)
  9979. automatic_current_control(stepperE3, "E3");
  9980. #endif
  9981. #if ENABLED(E4_IS_TMC2130)
  9982. automatic_current_control(stepperE4, "E4");
  9983. #endif
  9984. #if ENABLED(E4_IS_TMC2130)
  9985. automatic_current_control(stepperE4);
  9986. #endif
  9987. }
  9988. }
  9989. #endif // HAVE_TMC2130
  9990. /**
  9991. * Manage several activities:
  9992. * - Check for Filament Runout
  9993. * - Keep the command buffer full
  9994. * - Check for maximum inactive time between commands
  9995. * - Check for maximum inactive time between stepper commands
  9996. * - Check if pin CHDK needs to go LOW
  9997. * - Check for KILL button held down
  9998. * - Check for HOME button held down
  9999. * - Check if cooling fan needs to be switched on
  10000. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  10001. */
  10002. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  10003. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  10004. if ((IS_SD_PRINTING || print_job_timer.isRunning()) && (READ(FIL_RUNOUT_PIN) == FIL_RUNOUT_INVERTING))
  10005. handle_filament_runout();
  10006. #endif
  10007. if (commands_in_queue < BUFSIZE) get_available_commands();
  10008. const millis_t ms = millis();
  10009. if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) {
  10010. SERIAL_ERROR_START;
  10011. SERIAL_ECHOLNPAIR(MSG_KILL_INACTIVE_TIME, current_command);
  10012. kill(PSTR(MSG_KILLED));
  10013. }
  10014. // Prevent steppers timing-out in the middle of M600
  10015. #if ENABLED(FILAMENT_CHANGE_FEATURE) && ENABLED(FILAMENT_CHANGE_NO_STEPPER_TIMEOUT)
  10016. #define M600_TEST !busy_doing_M600
  10017. #else
  10018. #define M600_TEST true
  10019. #endif
  10020. if (M600_TEST && stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
  10021. && !ignore_stepper_queue && !planner.blocks_queued()) {
  10022. #if ENABLED(DISABLE_INACTIVE_X)
  10023. disable_X();
  10024. #endif
  10025. #if ENABLED(DISABLE_INACTIVE_Y)
  10026. disable_Y();
  10027. #endif
  10028. #if ENABLED(DISABLE_INACTIVE_Z)
  10029. disable_Z();
  10030. #endif
  10031. #if ENABLED(DISABLE_INACTIVE_E)
  10032. disable_e_steppers();
  10033. #endif
  10034. }
  10035. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  10036. if (chdkActive && ELAPSED(ms, chdkHigh + CHDK_DELAY)) {
  10037. chdkActive = false;
  10038. WRITE(CHDK, LOW);
  10039. }
  10040. #endif
  10041. #if HAS_KILL
  10042. // Check if the kill button was pressed and wait just in case it was an accidental
  10043. // key kill key press
  10044. // -------------------------------------------------------------------------------
  10045. static int killCount = 0; // make the inactivity button a bit less responsive
  10046. const int KILL_DELAY = 750;
  10047. if (!READ(KILL_PIN))
  10048. killCount++;
  10049. else if (killCount > 0)
  10050. killCount--;
  10051. // Exceeded threshold and we can confirm that it was not accidental
  10052. // KILL the machine
  10053. // ----------------------------------------------------------------
  10054. if (killCount >= KILL_DELAY) {
  10055. SERIAL_ERROR_START;
  10056. SERIAL_ERRORLNPGM(MSG_KILL_BUTTON);
  10057. kill(PSTR(MSG_KILLED));
  10058. }
  10059. #endif
  10060. #if HAS_HOME
  10061. // Check to see if we have to home, use poor man's debouncer
  10062. // ---------------------------------------------------------
  10063. static int homeDebounceCount = 0; // poor man's debouncing count
  10064. const int HOME_DEBOUNCE_DELAY = 2500;
  10065. if (!IS_SD_PRINTING && !READ(HOME_PIN)) {
  10066. if (!homeDebounceCount) {
  10067. enqueue_and_echo_commands_P(PSTR("G28"));
  10068. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  10069. }
  10070. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  10071. homeDebounceCount++;
  10072. else
  10073. homeDebounceCount = 0;
  10074. }
  10075. #endif
  10076. #if ENABLED(USE_CONTROLLER_FAN)
  10077. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  10078. #endif
  10079. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  10080. if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL)
  10081. && thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  10082. bool oldstatus;
  10083. #if ENABLED(SWITCHING_EXTRUDER)
  10084. oldstatus = E0_ENABLE_READ;
  10085. enable_E0();
  10086. #else // !SWITCHING_EXTRUDER
  10087. switch (active_extruder) {
  10088. case 0: oldstatus = E0_ENABLE_READ; enable_E0(); break;
  10089. #if E_STEPPERS > 1
  10090. case 1: oldstatus = E1_ENABLE_READ; enable_E1(); break;
  10091. #if E_STEPPERS > 2
  10092. case 2: oldstatus = E2_ENABLE_READ; enable_E2(); break;
  10093. #if E_STEPPERS > 3
  10094. case 3: oldstatus = E3_ENABLE_READ; enable_E3(); break;
  10095. #if E_STEPPERS > 4
  10096. case 4: oldstatus = E4_ENABLE_READ; enable_E4(); break;
  10097. #endif // E_STEPPERS > 4
  10098. #endif // E_STEPPERS > 3
  10099. #endif // E_STEPPERS > 2
  10100. #endif // E_STEPPERS > 1
  10101. }
  10102. #endif // !SWITCHING_EXTRUDER
  10103. previous_cmd_ms = ms; // refresh_cmd_timeout()
  10104. const float olde = current_position[E_AXIS];
  10105. current_position[E_AXIS] += EXTRUDER_RUNOUT_EXTRUDE;
  10106. planner.buffer_line_kinematic(current_position, MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED), active_extruder);
  10107. current_position[E_AXIS] = olde;
  10108. planner.set_e_position_mm(olde);
  10109. stepper.synchronize();
  10110. #if ENABLED(SWITCHING_EXTRUDER)
  10111. E0_ENABLE_WRITE(oldstatus);
  10112. #else
  10113. switch (active_extruder) {
  10114. case 0: E0_ENABLE_WRITE(oldstatus); break;
  10115. #if E_STEPPERS > 1
  10116. case 1: E1_ENABLE_WRITE(oldstatus); break;
  10117. #if E_STEPPERS > 2
  10118. case 2: E2_ENABLE_WRITE(oldstatus); break;
  10119. #if E_STEPPERS > 3
  10120. case 3: E3_ENABLE_WRITE(oldstatus); break;
  10121. #if E_STEPPERS > 4
  10122. case 4: E4_ENABLE_WRITE(oldstatus); break;
  10123. #endif // E_STEPPERS > 4
  10124. #endif // E_STEPPERS > 3
  10125. #endif // E_STEPPERS > 2
  10126. #endif // E_STEPPERS > 1
  10127. }
  10128. #endif // !SWITCHING_EXTRUDER
  10129. }
  10130. #endif // EXTRUDER_RUNOUT_PREVENT
  10131. #if ENABLED(DUAL_X_CARRIAGE)
  10132. // handle delayed move timeout
  10133. if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
  10134. // travel moves have been received so enact them
  10135. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  10136. set_destination_to_current();
  10137. prepare_move_to_destination();
  10138. }
  10139. #endif
  10140. #if ENABLED(TEMP_STAT_LEDS)
  10141. handle_status_leds();
  10142. #endif
  10143. #if ENABLED(HAVE_TMC2130)
  10144. checkOverTemp();
  10145. #endif
  10146. planner.check_axes_activity();
  10147. }
  10148. /**
  10149. * Standard idle routine keeps the machine alive
  10150. */
  10151. void idle(
  10152. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  10153. bool no_stepper_sleep/*=false*/
  10154. #endif
  10155. ) {
  10156. lcd_update();
  10157. host_keepalive();
  10158. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  10159. auto_report_temperatures();
  10160. #endif
  10161. manage_inactivity(
  10162. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  10163. no_stepper_sleep
  10164. #endif
  10165. );
  10166. thermalManager.manage_heater();
  10167. #if ENABLED(PRINTCOUNTER)
  10168. print_job_timer.tick();
  10169. #endif
  10170. #if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
  10171. buzzer.tick();
  10172. #endif
  10173. }
  10174. /**
  10175. * Kill all activity and lock the machine.
  10176. * After this the machine will need to be reset.
  10177. */
  10178. void kill(const char* lcd_msg) {
  10179. SERIAL_ERROR_START;
  10180. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  10181. thermalManager.disable_all_heaters();
  10182. disable_all_steppers();
  10183. #if ENABLED(ULTRA_LCD)
  10184. kill_screen(lcd_msg);
  10185. #else
  10186. UNUSED(lcd_msg);
  10187. #endif
  10188. _delay_ms(600); // Wait a short time (allows messages to get out before shutting down.
  10189. cli(); // Stop interrupts
  10190. _delay_ms(250); //Wait to ensure all interrupts routines stopped
  10191. thermalManager.disable_all_heaters(); //turn off heaters again
  10192. #if HAS_POWER_SWITCH
  10193. SET_INPUT(PS_ON_PIN);
  10194. #endif
  10195. suicide();
  10196. while (1) {
  10197. #if ENABLED(USE_WATCHDOG)
  10198. watchdog_reset();
  10199. #endif
  10200. } // Wait for reset
  10201. }
  10202. /**
  10203. * Turn off heaters and stop the print in progress
  10204. * After a stop the machine may be resumed with M999
  10205. */
  10206. void stop() {
  10207. thermalManager.disable_all_heaters();
  10208. if (IsRunning()) {
  10209. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  10210. SERIAL_ERROR_START;
  10211. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  10212. LCD_MESSAGEPGM(MSG_STOPPED);
  10213. safe_delay(350); // allow enough time for messages to get out before stopping
  10214. Running = false;
  10215. }
  10216. }
  10217. /**
  10218. * Marlin entry-point: Set up before the program loop
  10219. * - Set up the kill pin, filament runout, power hold
  10220. * - Start the serial port
  10221. * - Print startup messages and diagnostics
  10222. * - Get EEPROM or default settings
  10223. * - Initialize managers for:
  10224. * • temperature
  10225. * • planner
  10226. * • watchdog
  10227. * • stepper
  10228. * • photo pin
  10229. * • servos
  10230. * • LCD controller
  10231. * • Digipot I2C
  10232. * • Z probe sled
  10233. * • status LEDs
  10234. */
  10235. void setup() {
  10236. #ifdef DISABLE_JTAG
  10237. // Disable JTAG on AT90USB chips to free up pins for IO
  10238. MCUCR = 0x80;
  10239. MCUCR = 0x80;
  10240. #endif
  10241. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  10242. setup_filrunoutpin();
  10243. #endif
  10244. setup_killpin();
  10245. setup_powerhold();
  10246. #if HAS_STEPPER_RESET
  10247. disableStepperDrivers();
  10248. #endif
  10249. MYSERIAL.begin(BAUDRATE);
  10250. SERIAL_PROTOCOLLNPGM("start");
  10251. SERIAL_ECHO_START;
  10252. // Check startup - does nothing if bootloader sets MCUSR to 0
  10253. byte mcu = MCUSR;
  10254. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  10255. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  10256. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  10257. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  10258. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  10259. MCUSR = 0;
  10260. SERIAL_ECHOPGM(MSG_MARLIN);
  10261. SERIAL_CHAR(' ');
  10262. SERIAL_ECHOLNPGM(SHORT_BUILD_VERSION);
  10263. SERIAL_EOL;
  10264. #if defined(STRING_DISTRIBUTION_DATE) && defined(STRING_CONFIG_H_AUTHOR)
  10265. SERIAL_ECHO_START;
  10266. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  10267. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  10268. SERIAL_ECHOLNPGM(MSG_AUTHOR STRING_CONFIG_H_AUTHOR);
  10269. SERIAL_ECHOLNPGM("Compiled: " __DATE__);
  10270. #endif
  10271. SERIAL_ECHO_START;
  10272. SERIAL_ECHOPAIR(MSG_FREE_MEMORY, freeMemory());
  10273. SERIAL_ECHOLNPAIR(MSG_PLANNER_BUFFER_BYTES, (int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  10274. // Send "ok" after commands by default
  10275. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  10276. // Load data from EEPROM if available (or use defaults)
  10277. // This also updates variables in the planner, elsewhere
  10278. (void)settings.load();
  10279. #if HAS_M206_COMMAND
  10280. // Initialize current position based on home_offset
  10281. COPY(current_position, home_offset);
  10282. #else
  10283. ZERO(current_position);
  10284. #endif
  10285. // Vital to init stepper/planner equivalent for current_position
  10286. SYNC_PLAN_POSITION_KINEMATIC();
  10287. thermalManager.init(); // Initialize temperature loop
  10288. #if ENABLED(USE_WATCHDOG)
  10289. watchdog_init();
  10290. #endif
  10291. stepper.init(); // Initialize stepper, this enables interrupts!
  10292. servo_init();
  10293. #if HAS_PHOTOGRAPH
  10294. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  10295. #endif
  10296. #if HAS_CASE_LIGHT
  10297. update_case_light();
  10298. #endif
  10299. #if HAS_BED_PROBE
  10300. endstops.enable_z_probe(false);
  10301. #endif
  10302. #if ENABLED(USE_CONTROLLER_FAN)
  10303. SET_OUTPUT(CONTROLLER_FAN_PIN); //Set pin used for driver cooling fan
  10304. #endif
  10305. #if HAS_STEPPER_RESET
  10306. enableStepperDrivers();
  10307. #endif
  10308. #if ENABLED(DIGIPOT_I2C)
  10309. digipot_i2c_init();
  10310. #endif
  10311. #if ENABLED(DAC_STEPPER_CURRENT)
  10312. dac_init();
  10313. #endif
  10314. #if (ENABLED(Z_PROBE_SLED) || ENABLED(SOLENOID_PROBE)) && HAS_SOLENOID_1
  10315. OUT_WRITE(SOL1_PIN, LOW); // turn it off
  10316. #endif
  10317. setup_homepin();
  10318. #if PIN_EXISTS(STAT_LED_RED)
  10319. OUT_WRITE(STAT_LED_RED_PIN, LOW); // turn it off
  10320. #endif
  10321. #if PIN_EXISTS(STAT_LED_BLUE)
  10322. OUT_WRITE(STAT_LED_BLUE_PIN, LOW); // turn it off
  10323. #endif
  10324. #if ENABLED(RGB_LED) || ENABLED(RGBW_LED)
  10325. SET_OUTPUT(RGB_LED_R_PIN);
  10326. SET_OUTPUT(RGB_LED_G_PIN);
  10327. SET_OUTPUT(RGB_LED_B_PIN);
  10328. #if ENABLED(RGBW_LED)
  10329. SET_OUTPUT(RGB_LED_W_PIN);
  10330. #endif
  10331. #endif
  10332. lcd_init();
  10333. #if ENABLED(SHOW_BOOTSCREEN)
  10334. #if ENABLED(DOGLCD)
  10335. safe_delay(BOOTSCREEN_TIMEOUT);
  10336. #elif ENABLED(ULTRA_LCD)
  10337. bootscreen();
  10338. #if DISABLED(SDSUPPORT)
  10339. lcd_init();
  10340. #endif
  10341. #endif
  10342. #endif
  10343. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  10344. // Initialize mixing to 100% color 1
  10345. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  10346. mixing_factor[i] = (i == 0) ? 1.0 : 0.0;
  10347. for (uint8_t t = 0; t < MIXING_VIRTUAL_TOOLS; t++)
  10348. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  10349. mixing_virtual_tool_mix[t][i] = mixing_factor[i];
  10350. #endif
  10351. #if ENABLED(BLTOUCH)
  10352. // Make sure any BLTouch error condition is cleared
  10353. bltouch_command(BLTOUCH_RESET);
  10354. set_bltouch_deployed(true);
  10355. set_bltouch_deployed(false);
  10356. #endif
  10357. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  10358. i2c.onReceive(i2c_on_receive);
  10359. i2c.onRequest(i2c_on_request);
  10360. #endif
  10361. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  10362. setup_endstop_interrupts();
  10363. #endif
  10364. }
  10365. /**
  10366. * The main Marlin program loop
  10367. *
  10368. * - Save or log commands to SD
  10369. * - Process available commands (if not saving)
  10370. * - Call heater manager
  10371. * - Call inactivity manager
  10372. * - Call endstop manager
  10373. * - Call LCD update
  10374. */
  10375. void loop() {
  10376. if (commands_in_queue < BUFSIZE) get_available_commands();
  10377. #if ENABLED(SDSUPPORT)
  10378. card.checkautostart(false);
  10379. #endif
  10380. if (commands_in_queue) {
  10381. #if ENABLED(SDSUPPORT)
  10382. if (card.saving) {
  10383. char* command = command_queue[cmd_queue_index_r];
  10384. if (strstr_P(command, PSTR("M29"))) {
  10385. // M29 closes the file
  10386. card.closefile();
  10387. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  10388. ok_to_send();
  10389. }
  10390. else {
  10391. // Write the string from the read buffer to SD
  10392. card.write_command(command);
  10393. if (card.logging)
  10394. process_next_command(); // The card is saving because it's logging
  10395. else
  10396. ok_to_send();
  10397. }
  10398. }
  10399. else
  10400. process_next_command();
  10401. #else
  10402. process_next_command();
  10403. #endif // SDSUPPORT
  10404. // The queue may be reset by a command handler or by code invoked by idle() within a handler
  10405. if (commands_in_queue) {
  10406. --commands_in_queue;
  10407. if (++cmd_queue_index_r >= BUFSIZE) cmd_queue_index_r = 0;
  10408. }
  10409. }
  10410. endstops.report_state();
  10411. idle();
  10412. }