My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 185KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #define SERVO_LEVELING defined(ENABLE_AUTO_BED_LEVELING) && PROBE_SERVO_DEACTIVATION_DELAY > 0
  31. #if defined(MESH_BED_LEVELING)
  32. #include "mesh_bed_leveling.h"
  33. #endif // MESH_BED_LEVELING
  34. #include "ultralcd.h"
  35. #include "planner.h"
  36. #include "stepper.h"
  37. #include "temperature.h"
  38. #include "motion_control.h"
  39. #include "cardreader.h"
  40. #include "watchdog.h"
  41. #include "ConfigurationStore.h"
  42. #include "language.h"
  43. #include "pins_arduino.h"
  44. #include "math.h"
  45. #ifdef BLINKM
  46. #include "BlinkM.h"
  47. #include "Wire.h"
  48. #endif
  49. #if NUM_SERVOS > 0
  50. #include "Servo.h"
  51. #endif
  52. #if HAS_DIGIPOTSS
  53. #include <SPI.h>
  54. #endif
  55. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  56. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  57. //Implemented Codes
  58. //-------------------
  59. // G0 -> G1
  60. // G1 - Coordinated Movement X Y Z E
  61. // G2 - CW ARC
  62. // G3 - CCW ARC
  63. // G4 - Dwell S<seconds> or P<milliseconds>
  64. // G10 - retract filament according to settings of M207
  65. // G11 - retract recover filament according to settings of M208
  66. // G28 - Home one or more axes
  67. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  68. // G30 - Single Z Probe, probes bed at current XY location.
  69. // G31 - Dock sled (Z_PROBE_SLED only)
  70. // G32 - Undock sled (Z_PROBE_SLED only)
  71. // G90 - Use Absolute Coordinates
  72. // G91 - Use Relative Coordinates
  73. // G92 - Set current position to coordinates given
  74. // M Codes
  75. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  76. // M1 - Same as M0
  77. // M17 - Enable/Power all stepper motors
  78. // M18 - Disable all stepper motors; same as M84
  79. // M20 - List SD card
  80. // M21 - Init SD card
  81. // M22 - Release SD card
  82. // M23 - Select SD file (M23 filename.g)
  83. // M24 - Start/resume SD print
  84. // M25 - Pause SD print
  85. // M26 - Set SD position in bytes (M26 S12345)
  86. // M27 - Report SD print status
  87. // M28 - Start SD write (M28 filename.g)
  88. // M29 - Stop SD write
  89. // M30 - Delete file from SD (M30 filename.g)
  90. // M31 - Output time since last M109 or SD card start to serial
  91. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  92. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  93. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  94. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  95. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  96. // M80 - Turn on Power Supply
  97. // M81 - Turn off Power Supply
  98. // M82 - Set E codes absolute (default)
  99. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  100. // M84 - Disable steppers until next move,
  101. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  102. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  103. // M92 - Set axis_steps_per_unit - same syntax as G92
  104. // M104 - Set extruder target temp
  105. // M105 - Read current temp
  106. // M106 - Fan on
  107. // M107 - Fan off
  108. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  109. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  110. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  111. // M112 - Emergency stop
  112. // M114 - Output current position to serial port
  113. // M115 - Capabilities string
  114. // M117 - display message
  115. // M119 - Output Endstop status to serial port
  116. // M120 - Enable endstop detection
  117. // M121 - Disable endstop detection
  118. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  119. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  120. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  121. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  122. // M140 - Set bed target temp
  123. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  124. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  125. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  126. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  127. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  128. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  129. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  130. // M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in mm/sec^2
  131. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  132. // M206 - Set additional homing offset
  133. // M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  134. // M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  135. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  136. // M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  137. // M220 S<factor in percent>- set speed factor override percentage
  138. // M221 S<factor in percent>- set extrude factor override percentage
  139. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  140. // M240 - Trigger a camera to take a photograph
  141. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  142. // M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  143. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  144. // M301 - Set PID parameters P I and D
  145. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  146. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  147. // M304 - Set bed PID parameters P I and D
  148. // M380 - Activate solenoid on active extruder
  149. // M381 - Disable all solenoids
  150. // M400 - Finish all moves
  151. // M401 - Lower z-probe if present
  152. // M402 - Raise z-probe if present
  153. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  154. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  155. // M406 - Turn off Filament Sensor extrusion control
  156. // M407 - Display measured filament diameter
  157. // M500 - Store parameters in EEPROM
  158. // M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  159. // M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  160. // M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  161. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  162. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  163. // M665 - Set delta configurations
  164. // M666 - Set delta endstop adjustment
  165. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  166. // M907 - Set digital trimpot motor current using axis codes.
  167. // M908 - Control digital trimpot directly.
  168. // M350 - Set microstepping mode.
  169. // M351 - Toggle MS1 MS2 pins directly.
  170. // ************ SCARA Specific - This can change to suit future G-code regulations
  171. // M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  172. // M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  173. // M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  174. // M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  175. // M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  176. // M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  177. //************* SCARA End ***************
  178. // M928 - Start SD logging (M928 filename.g) - ended by M29
  179. // M999 - Restart after being stopped by error
  180. #ifdef SDSUPPORT
  181. CardReader card;
  182. #endif
  183. float homing_feedrate[] = HOMING_FEEDRATE;
  184. #ifdef ENABLE_AUTO_BED_LEVELING
  185. int xy_travel_speed = XY_TRAVEL_SPEED;
  186. float zprobe_zoffset = -Z_PROBE_OFFSET_FROM_EXTRUDER;
  187. #endif
  188. int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  189. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  190. int feedmultiply = 100; //100->1 200->2
  191. int saved_feedmultiply;
  192. int extruder_multiply[EXTRUDERS] = ARRAY_BY_EXTRUDERS(100, 100, 100, 100);
  193. bool volumetric_enabled = false;
  194. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA);
  195. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS(1.0, 1.0, 1.0, 1.0);
  196. float current_position[NUM_AXIS] = { 0.0 };
  197. float home_offset[3] = { 0 };
  198. #ifdef DELTA
  199. float endstop_adj[3] = { 0 };
  200. #elif defined(Z_DUAL_ENDSTOPS)
  201. float z_endstop_adj = 0;
  202. #endif
  203. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  204. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  205. bool axis_known_position[3] = { false };
  206. // Extruder offsets
  207. #if EXTRUDERS > 1
  208. #ifndef EXTRUDER_OFFSET_X
  209. #define EXTRUDER_OFFSET_X { 0 }
  210. #endif
  211. #ifndef EXTRUDER_OFFSET_Y
  212. #define EXTRUDER_OFFSET_Y { 0 }
  213. #endif
  214. float extruder_offset[][EXTRUDERS] = {
  215. EXTRUDER_OFFSET_X,
  216. EXTRUDER_OFFSET_Y
  217. #ifdef DUAL_X_CARRIAGE
  218. , { 0 } // supports offsets in XYZ plane
  219. #endif
  220. };
  221. #endif
  222. uint8_t active_extruder = 0;
  223. int fanSpeed = 0;
  224. #ifdef SERVO_ENDSTOPS
  225. int servo_endstops[] = SERVO_ENDSTOPS;
  226. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  227. #endif
  228. #ifdef BARICUDA
  229. int ValvePressure = 0;
  230. int EtoPPressure = 0;
  231. #endif
  232. #ifdef FWRETRACT
  233. bool autoretract_enabled = false;
  234. bool retracted[EXTRUDERS] = { false };
  235. bool retracted_swap[EXTRUDERS] = { false };
  236. float retract_length = RETRACT_LENGTH;
  237. float retract_length_swap = RETRACT_LENGTH_SWAP;
  238. float retract_feedrate = RETRACT_FEEDRATE;
  239. float retract_zlift = RETRACT_ZLIFT;
  240. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  241. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  242. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  243. #endif // FWRETRACT
  244. #if defined(ULTIPANEL) && HAS_POWER_SWITCH
  245. bool powersupply =
  246. #ifdef PS_DEFAULT_OFF
  247. false
  248. #else
  249. true
  250. #endif
  251. ;
  252. #endif
  253. #ifdef DELTA
  254. float delta[3] = { 0, 0, 0 };
  255. #define SIN_60 0.8660254037844386
  256. #define COS_60 0.5
  257. // these are the default values, can be overriden with M665
  258. float delta_radius = DELTA_RADIUS;
  259. float delta_tower1_x = -SIN_60 * delta_radius; // front left tower
  260. float delta_tower1_y = -COS_60 * delta_radius;
  261. float delta_tower2_x = SIN_60 * delta_radius; // front right tower
  262. float delta_tower2_y = -COS_60 * delta_radius;
  263. float delta_tower3_x = 0; // back middle tower
  264. float delta_tower3_y = delta_radius;
  265. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  266. float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  267. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  268. #ifdef ENABLE_AUTO_BED_LEVELING
  269. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  270. #endif
  271. #endif
  272. #ifdef SCARA
  273. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  274. static float delta[3] = { 0, 0, 0 };
  275. #endif
  276. bool cancel_heatup = false;
  277. #ifdef FILAMENT_SENSOR
  278. //Variables for Filament Sensor input
  279. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  280. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  281. float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  282. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  283. int delay_index1 = 0; //index into ring buffer
  284. int delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  285. float delay_dist = 0; //delay distance counter
  286. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  287. #endif
  288. #ifdef FILAMENT_RUNOUT_SENSOR
  289. static bool filrunoutEnqued = false;
  290. #endif
  291. const char errormagic[] PROGMEM = "Error:";
  292. const char echomagic[] PROGMEM = "echo:";
  293. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  294. static float destination[NUM_AXIS] = { 0 };
  295. static float offset[3] = { 0 };
  296. #ifndef DELTA
  297. static bool home_all_axis = true;
  298. #endif
  299. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  300. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  301. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  302. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  303. #ifdef SDSUPPORT
  304. static bool fromsd[BUFSIZE];
  305. #endif
  306. static int bufindr = 0;
  307. static int bufindw = 0;
  308. static int buflen = 0;
  309. static char serial_char;
  310. static int serial_count = 0;
  311. static boolean comment_mode = false;
  312. static char *strchr_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.)
  313. const char* queued_commands_P= NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */
  314. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  315. // Inactivity shutdown
  316. static unsigned long previous_millis_cmd = 0;
  317. static unsigned long max_inactive_time = 0;
  318. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  319. unsigned long starttime = 0; ///< Print job start time
  320. unsigned long stoptime = 0; ///< Print job stop time
  321. static uint8_t tmp_extruder;
  322. bool Stopped = false;
  323. #if NUM_SERVOS > 0
  324. Servo servos[NUM_SERVOS];
  325. #endif
  326. bool CooldownNoWait = true;
  327. bool target_direction;
  328. #ifdef CHDK
  329. unsigned long chdkHigh = 0;
  330. boolean chdkActive = false;
  331. #endif
  332. //===========================================================================
  333. //=============================Routines======================================
  334. //===========================================================================
  335. void get_arc_coordinates();
  336. bool setTargetedHotend(int code);
  337. void serial_echopair_P(const char *s_P, float v)
  338. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  339. void serial_echopair_P(const char *s_P, double v)
  340. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  341. void serial_echopair_P(const char *s_P, unsigned long v)
  342. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  343. #ifdef SDSUPPORT
  344. #include "SdFatUtil.h"
  345. int freeMemory() { return SdFatUtil::FreeRam(); }
  346. #else
  347. extern "C" {
  348. extern unsigned int __bss_end;
  349. extern unsigned int __heap_start;
  350. extern void *__brkval;
  351. int freeMemory() {
  352. int free_memory;
  353. if ((int)__brkval == 0)
  354. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  355. else
  356. free_memory = ((int)&free_memory) - ((int)__brkval);
  357. return free_memory;
  358. }
  359. }
  360. #endif //!SDSUPPORT
  361. //Injects the next command from the pending sequence of commands, when possible
  362. //Return false if and only if no command was pending
  363. static bool drain_queued_commands_P()
  364. {
  365. char cmd[30];
  366. if(!queued_commands_P)
  367. return false;
  368. // Get the next 30 chars from the sequence of gcodes to run
  369. strncpy_P(cmd, queued_commands_P, sizeof(cmd)-1);
  370. cmd[sizeof(cmd)-1]= 0;
  371. // Look for the end of line, or the end of sequence
  372. size_t i= 0;
  373. char c;
  374. while( (c= cmd[i]) && c!='\n' )
  375. ++i; // look for the end of this gcode command
  376. cmd[i]= 0;
  377. if(enquecommand(cmd)) // buffer was not full (else we will retry later)
  378. {
  379. if(c)
  380. queued_commands_P+= i+1; // move to next command
  381. else
  382. queued_commands_P= NULL; // will have no more commands in the sequence
  383. }
  384. return true;
  385. }
  386. //Record one or many commands to run from program memory.
  387. //Aborts the current queue, if any.
  388. //Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  389. void enquecommands_P(const char* pgcode)
  390. {
  391. queued_commands_P= pgcode;
  392. drain_queued_commands_P(); // first command exectuted asap (when possible)
  393. }
  394. //adds a single command to the main command buffer, from RAM
  395. //that is really done in a non-safe way.
  396. //needs overworking someday
  397. //Returns false if it failed to do so
  398. bool enquecommand(const char *cmd)
  399. {
  400. if(*cmd==';')
  401. return false;
  402. if(buflen >= BUFSIZE)
  403. return false;
  404. //this is dangerous if a mixing of serial and this happens
  405. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  406. SERIAL_ECHO_START;
  407. SERIAL_ECHOPGM(MSG_Enqueing);
  408. SERIAL_ECHO(cmdbuffer[bufindw]);
  409. SERIAL_ECHOLNPGM("\"");
  410. bufindw= (bufindw + 1)%BUFSIZE;
  411. buflen += 1;
  412. return true;
  413. }
  414. void setup_killpin()
  415. {
  416. #if defined(KILL_PIN) && KILL_PIN > -1
  417. SET_INPUT(KILL_PIN);
  418. WRITE(KILL_PIN,HIGH);
  419. #endif
  420. }
  421. void setup_filrunoutpin()
  422. {
  423. #if defined(FILRUNOUT_PIN) && FILRUNOUT_PIN > -1
  424. pinMode(FILRUNOUT_PIN,INPUT);
  425. #if defined(ENDSTOPPULLUP_FIL_RUNOUT)
  426. WRITE(FILLRUNOUT_PIN,HIGH);
  427. #endif
  428. #endif
  429. }
  430. // Set home pin
  431. void setup_homepin(void)
  432. {
  433. #if defined(HOME_PIN) && HOME_PIN > -1
  434. SET_INPUT(HOME_PIN);
  435. WRITE(HOME_PIN,HIGH);
  436. #endif
  437. }
  438. void setup_photpin()
  439. {
  440. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  441. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  442. #endif
  443. }
  444. void setup_powerhold()
  445. {
  446. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  447. OUT_WRITE(SUICIDE_PIN, HIGH);
  448. #endif
  449. #if HAS_POWER_SWITCH
  450. #ifdef PS_DEFAULT_OFF
  451. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  452. #else
  453. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  454. #endif
  455. #endif
  456. }
  457. void suicide()
  458. {
  459. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  460. OUT_WRITE(SUICIDE_PIN, LOW);
  461. #endif
  462. }
  463. void servo_init()
  464. {
  465. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  466. servos[0].attach(SERVO0_PIN);
  467. #endif
  468. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  469. servos[1].attach(SERVO1_PIN);
  470. #endif
  471. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  472. servos[2].attach(SERVO2_PIN);
  473. #endif
  474. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  475. servos[3].attach(SERVO3_PIN);
  476. #endif
  477. #if (NUM_SERVOS >= 5)
  478. #error "TODO: enter initalisation code for more servos"
  479. #endif
  480. // Set position of Servo Endstops that are defined
  481. #ifdef SERVO_ENDSTOPS
  482. for(int8_t i = 0; i < 3; i++)
  483. {
  484. if(servo_endstops[i] > -1) {
  485. servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  486. }
  487. }
  488. #endif
  489. #if SERVO_LEVELING
  490. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  491. servos[servo_endstops[Z_AXIS]].detach();
  492. #endif
  493. }
  494. void setup()
  495. {
  496. setup_killpin();
  497. setup_filrunoutpin();
  498. setup_powerhold();
  499. MYSERIAL.begin(BAUDRATE);
  500. SERIAL_PROTOCOLLNPGM("start");
  501. SERIAL_ECHO_START;
  502. // Check startup - does nothing if bootloader sets MCUSR to 0
  503. byte mcu = MCUSR;
  504. if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  505. if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  506. if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  507. if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  508. if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  509. MCUSR=0;
  510. SERIAL_ECHOPGM(MSG_MARLIN);
  511. SERIAL_ECHOLNPGM(STRING_VERSION);
  512. #ifdef STRING_VERSION_CONFIG_H
  513. #ifdef STRING_CONFIG_H_AUTHOR
  514. SERIAL_ECHO_START;
  515. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  516. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  517. SERIAL_ECHOPGM(MSG_AUTHOR);
  518. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  519. SERIAL_ECHOPGM("Compiled: ");
  520. SERIAL_ECHOLNPGM(__DATE__);
  521. #endif // STRING_CONFIG_H_AUTHOR
  522. #endif // STRING_VERSION_CONFIG_H
  523. SERIAL_ECHO_START;
  524. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  525. SERIAL_ECHO(freeMemory());
  526. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  527. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  528. #ifdef SDSUPPORT
  529. for(int8_t i = 0; i < BUFSIZE; i++)
  530. {
  531. fromsd[i] = false;
  532. }
  533. #endif //!SDSUPPORT
  534. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  535. Config_RetrieveSettings();
  536. tp_init(); // Initialize temperature loop
  537. plan_init(); // Initialize planner;
  538. watchdog_init();
  539. st_init(); // Initialize stepper, this enables interrupts!
  540. setup_photpin();
  541. servo_init();
  542. lcd_init();
  543. _delay_ms(1000); // wait 1sec to display the splash screen
  544. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  545. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  546. #endif
  547. #ifdef DIGIPOT_I2C
  548. digipot_i2c_init();
  549. #endif
  550. #ifdef Z_PROBE_SLED
  551. pinMode(SERVO0_PIN, OUTPUT);
  552. digitalWrite(SERVO0_PIN, LOW); // turn it off
  553. #endif // Z_PROBE_SLED
  554. setup_homepin();
  555. #ifdef STAT_LED_RED
  556. pinMode(STAT_LED_RED, OUTPUT);
  557. digitalWrite(STAT_LED_RED, LOW); // turn it off
  558. #endif
  559. #ifdef STAT_LED_BLUE
  560. pinMode(STAT_LED_BLUE, OUTPUT);
  561. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  562. #endif
  563. }
  564. void loop()
  565. {
  566. if(buflen < (BUFSIZE-1))
  567. get_command();
  568. #ifdef SDSUPPORT
  569. card.checkautostart(false);
  570. #endif
  571. if(buflen)
  572. {
  573. #ifdef SDSUPPORT
  574. if(card.saving)
  575. {
  576. if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
  577. {
  578. card.write_command(cmdbuffer[bufindr]);
  579. if(card.logging)
  580. {
  581. process_commands();
  582. }
  583. else
  584. {
  585. SERIAL_PROTOCOLLNPGM(MSG_OK);
  586. }
  587. }
  588. else
  589. {
  590. card.closefile();
  591. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  592. }
  593. }
  594. else
  595. {
  596. process_commands();
  597. }
  598. #else
  599. process_commands();
  600. #endif //SDSUPPORT
  601. buflen = (buflen-1);
  602. bufindr = (bufindr + 1)%BUFSIZE;
  603. }
  604. //check heater every n milliseconds
  605. manage_heater();
  606. manage_inactivity();
  607. checkHitEndstops();
  608. lcd_update();
  609. }
  610. void get_command()
  611. {
  612. if(drain_queued_commands_P()) // priority is given to non-serial commands
  613. return;
  614. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  615. serial_char = MYSERIAL.read();
  616. if(serial_char == '\n' ||
  617. serial_char == '\r' ||
  618. serial_count >= (MAX_CMD_SIZE - 1) )
  619. {
  620. // end of line == end of comment
  621. comment_mode = false;
  622. if(!serial_count) {
  623. // short cut for empty lines
  624. return;
  625. }
  626. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  627. #ifdef SDSUPPORT
  628. fromsd[bufindw] = false;
  629. #endif //!SDSUPPORT
  630. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  631. {
  632. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  633. gcode_N = (strtol(strchr_pointer + 1, NULL, 10));
  634. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  635. SERIAL_ERROR_START;
  636. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  637. SERIAL_ERRORLN(gcode_LastN);
  638. //Serial.println(gcode_N);
  639. FlushSerialRequestResend();
  640. serial_count = 0;
  641. return;
  642. }
  643. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  644. {
  645. byte checksum = 0;
  646. byte count = 0;
  647. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  648. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  649. if(strtol(strchr_pointer + 1, NULL, 10) != checksum) {
  650. SERIAL_ERROR_START;
  651. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  652. SERIAL_ERRORLN(gcode_LastN);
  653. FlushSerialRequestResend();
  654. serial_count = 0;
  655. return;
  656. }
  657. //if no errors, continue parsing
  658. }
  659. else
  660. {
  661. SERIAL_ERROR_START;
  662. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  663. SERIAL_ERRORLN(gcode_LastN);
  664. FlushSerialRequestResend();
  665. serial_count = 0;
  666. return;
  667. }
  668. gcode_LastN = gcode_N;
  669. //if no errors, continue parsing
  670. }
  671. else // if we don't receive 'N' but still see '*'
  672. {
  673. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  674. {
  675. SERIAL_ERROR_START;
  676. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  677. SERIAL_ERRORLN(gcode_LastN);
  678. serial_count = 0;
  679. return;
  680. }
  681. }
  682. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  683. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  684. switch(strtol(strchr_pointer + 1, NULL, 10)){
  685. case 0:
  686. case 1:
  687. case 2:
  688. case 3:
  689. if (Stopped == true) {
  690. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  691. LCD_MESSAGEPGM(MSG_STOPPED);
  692. }
  693. break;
  694. default:
  695. break;
  696. }
  697. }
  698. //If command was e-stop process now
  699. if(strcmp(cmdbuffer[bufindw], "M112") == 0)
  700. kill();
  701. bufindw = (bufindw + 1)%BUFSIZE;
  702. buflen += 1;
  703. serial_count = 0; //clear buffer
  704. }
  705. else if(serial_char == '\\') { //Handle escapes
  706. if(MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  707. // if we have one more character, copy it over
  708. serial_char = MYSERIAL.read();
  709. cmdbuffer[bufindw][serial_count++] = serial_char;
  710. }
  711. //otherwise do nothing
  712. }
  713. else { // its not a newline, carriage return or escape char
  714. if(serial_char == ';') comment_mode = true;
  715. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  716. }
  717. }
  718. #ifdef SDSUPPORT
  719. if(!card.sdprinting || serial_count!=0){
  720. return;
  721. }
  722. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  723. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  724. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  725. static bool stop_buffering=false;
  726. if(buflen==0) stop_buffering=false;
  727. while( !card.eof() && buflen < BUFSIZE && !stop_buffering) {
  728. int16_t n=card.get();
  729. serial_char = (char)n;
  730. if(serial_char == '\n' ||
  731. serial_char == '\r' ||
  732. (serial_char == '#' && comment_mode == false) ||
  733. (serial_char == ':' && comment_mode == false) ||
  734. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  735. {
  736. if(card.eof()){
  737. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  738. stoptime=millis();
  739. char time[30];
  740. unsigned long t=(stoptime-starttime)/1000;
  741. int hours, minutes;
  742. minutes=(t/60)%60;
  743. hours=t/60/60;
  744. sprintf_P(time, PSTR("%i "MSG_END_HOUR" %i "MSG_END_MINUTE),hours, minutes);
  745. SERIAL_ECHO_START;
  746. SERIAL_ECHOLN(time);
  747. lcd_setstatus(time, true);
  748. card.printingHasFinished();
  749. card.checkautostart(true);
  750. }
  751. if(serial_char=='#')
  752. stop_buffering=true;
  753. if(!serial_count)
  754. {
  755. comment_mode = false; //for new command
  756. return; //if empty line
  757. }
  758. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  759. // if(!comment_mode){
  760. fromsd[bufindw] = true;
  761. buflen += 1;
  762. bufindw = (bufindw + 1)%BUFSIZE;
  763. // }
  764. comment_mode = false; //for new command
  765. serial_count = 0; //clear buffer
  766. }
  767. else
  768. {
  769. if(serial_char == ';') comment_mode = true;
  770. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  771. }
  772. }
  773. #endif //SDSUPPORT
  774. }
  775. float code_value() {
  776. float ret;
  777. char *e = strchr(strchr_pointer, 'E');
  778. if (e) {
  779. *e = 0;
  780. ret = strtod(strchr_pointer+1, NULL);
  781. *e = 'E';
  782. }
  783. else
  784. ret = strtod(strchr_pointer+1, NULL);
  785. return ret;
  786. }
  787. long code_value_long() { return (strtol(strchr_pointer + 1, NULL, 10)); }
  788. bool code_seen(char code) {
  789. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  790. return (strchr_pointer != NULL); //Return True if a character was found
  791. }
  792. #define DEFINE_PGM_READ_ANY(type, reader) \
  793. static inline type pgm_read_any(const type *p) \
  794. { return pgm_read_##reader##_near(p); }
  795. DEFINE_PGM_READ_ANY(float, float);
  796. DEFINE_PGM_READ_ANY(signed char, byte);
  797. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  798. static const PROGMEM type array##_P[3] = \
  799. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  800. static inline type array(int axis) \
  801. { return pgm_read_any(&array##_P[axis]); }
  802. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  803. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  804. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  805. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  806. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  807. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  808. #ifdef DUAL_X_CARRIAGE
  809. #define DXC_FULL_CONTROL_MODE 0
  810. #define DXC_AUTO_PARK_MODE 1
  811. #define DXC_DUPLICATION_MODE 2
  812. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  813. static float x_home_pos(int extruder) {
  814. if (extruder == 0)
  815. return base_home_pos(X_AXIS) + home_offset[X_AXIS];
  816. else
  817. // In dual carriage mode the extruder offset provides an override of the
  818. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  819. // This allow soft recalibration of the second extruder offset position without firmware reflash
  820. // (through the M218 command).
  821. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  822. }
  823. static int x_home_dir(int extruder) {
  824. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  825. }
  826. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  827. static bool active_extruder_parked = false; // used in mode 1 & 2
  828. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  829. static unsigned long delayed_move_time = 0; // used in mode 1
  830. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  831. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  832. bool extruder_duplication_enabled = false; // used in mode 2
  833. #endif //DUAL_X_CARRIAGE
  834. static void axis_is_at_home(int axis) {
  835. #ifdef DUAL_X_CARRIAGE
  836. if (axis == X_AXIS) {
  837. if (active_extruder != 0) {
  838. current_position[X_AXIS] = x_home_pos(active_extruder);
  839. min_pos[X_AXIS] = X2_MIN_POS;
  840. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  841. return;
  842. }
  843. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  844. float xoff = home_offset[X_AXIS];
  845. current_position[X_AXIS] = base_home_pos(X_AXIS) + xoff;
  846. min_pos[X_AXIS] = base_min_pos(X_AXIS) + xoff;
  847. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + xoff, max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  848. return;
  849. }
  850. }
  851. #endif
  852. #ifdef SCARA
  853. float homeposition[3];
  854. if (axis < 2) {
  855. for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i);
  856. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  857. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  858. // Works out real Homeposition angles using inverse kinematics,
  859. // and calculates homing offset using forward kinematics
  860. calculate_delta(homeposition);
  861. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  862. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  863. for (int i = 0; i < 2; i++) delta[i] -= home_offset[i];
  864. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
  865. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
  866. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  867. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  868. calculate_SCARA_forward_Transform(delta);
  869. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  870. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  871. current_position[axis] = delta[axis];
  872. // SCARA home positions are based on configuration since the actual limits are determined by the
  873. // inverse kinematic transform.
  874. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  875. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  876. }
  877. else {
  878. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  879. min_pos[axis] = base_min_pos(axis) + home_offset[axis];
  880. max_pos[axis] = base_max_pos(axis) + home_offset[axis];
  881. }
  882. #else
  883. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  884. min_pos[axis] = base_min_pos(axis) + home_offset[axis];
  885. max_pos[axis] = base_max_pos(axis) + home_offset[axis];
  886. #endif
  887. }
  888. /**
  889. * Some planner shorthand inline functions
  890. */
  891. inline void line_to_current_position() {
  892. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  893. }
  894. inline void line_to_z(float zPosition) {
  895. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  896. }
  897. inline void line_to_destination() {
  898. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  899. }
  900. inline void sync_plan_position() {
  901. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  902. }
  903. #ifdef ENABLE_AUTO_BED_LEVELING
  904. #ifdef AUTO_BED_LEVELING_GRID
  905. #ifndef DELTA
  906. static void set_bed_level_equation_lsq(double *plane_equation_coefficients) {
  907. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  908. planeNormal.debug("planeNormal");
  909. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  910. //bedLevel.debug("bedLevel");
  911. //plan_bed_level_matrix.debug("bed level before");
  912. //vector_3 uncorrected_position = plan_get_position_mm();
  913. //uncorrected_position.debug("position before");
  914. vector_3 corrected_position = plan_get_position();
  915. //corrected_position.debug("position after");
  916. current_position[X_AXIS] = corrected_position.x;
  917. current_position[Y_AXIS] = corrected_position.y;
  918. current_position[Z_AXIS] = corrected_position.z;
  919. sync_plan_position();
  920. }
  921. #endif // !DELTA
  922. #else // !AUTO_BED_LEVELING_GRID
  923. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  924. plan_bed_level_matrix.set_to_identity();
  925. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  926. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  927. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  928. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  929. if (planeNormal.z < 0) {
  930. planeNormal.x = -planeNormal.x;
  931. planeNormal.y = -planeNormal.y;
  932. planeNormal.z = -planeNormal.z;
  933. }
  934. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  935. vector_3 corrected_position = plan_get_position();
  936. current_position[X_AXIS] = corrected_position.x;
  937. current_position[Y_AXIS] = corrected_position.y;
  938. current_position[Z_AXIS] = corrected_position.z;
  939. sync_plan_position();
  940. }
  941. #endif // !AUTO_BED_LEVELING_GRID
  942. static void run_z_probe() {
  943. #ifdef DELTA
  944. float start_z = current_position[Z_AXIS];
  945. long start_steps = st_get_position(Z_AXIS);
  946. // move down slowly until you find the bed
  947. feedrate = homing_feedrate[Z_AXIS] / 4;
  948. destination[Z_AXIS] = -10;
  949. prepare_move_raw();
  950. st_synchronize();
  951. endstops_hit_on_purpose();
  952. // we have to let the planner know where we are right now as it is not where we said to go.
  953. long stop_steps = st_get_position(Z_AXIS);
  954. float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS];
  955. current_position[Z_AXIS] = mm;
  956. calculate_delta(current_position);
  957. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  958. #else // !DELTA
  959. plan_bed_level_matrix.set_to_identity();
  960. feedrate = homing_feedrate[Z_AXIS];
  961. // move down until you find the bed
  962. float zPosition = -10;
  963. line_to_z(zPosition);
  964. st_synchronize();
  965. // we have to let the planner know where we are right now as it is not where we said to go.
  966. zPosition = st_get_position_mm(Z_AXIS);
  967. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  968. // move up the retract distance
  969. zPosition += home_retract_mm(Z_AXIS);
  970. line_to_z(zPosition);
  971. st_synchronize();
  972. endstops_hit_on_purpose();
  973. // move back down slowly to find bed
  974. if (homing_bump_divisor[Z_AXIS] >= 1)
  975. feedrate = homing_feedrate[Z_AXIS] / homing_bump_divisor[Z_AXIS];
  976. else {
  977. feedrate = homing_feedrate[Z_AXIS] / 10;
  978. SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less than 1");
  979. }
  980. zPosition -= home_retract_mm(Z_AXIS) * 2;
  981. line_to_z(zPosition);
  982. st_synchronize();
  983. endstops_hit_on_purpose();
  984. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  985. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  986. sync_plan_position();
  987. #endif // !DELTA
  988. }
  989. static void do_blocking_move_to(float x, float y, float z) {
  990. float oldFeedRate = feedrate;
  991. #ifdef DELTA
  992. feedrate = XY_TRAVEL_SPEED;
  993. destination[X_AXIS] = x;
  994. destination[Y_AXIS] = y;
  995. destination[Z_AXIS] = z;
  996. prepare_move_raw();
  997. st_synchronize();
  998. #else
  999. feedrate = homing_feedrate[Z_AXIS];
  1000. current_position[Z_AXIS] = z;
  1001. line_to_current_position();
  1002. st_synchronize();
  1003. feedrate = xy_travel_speed;
  1004. current_position[X_AXIS] = x;
  1005. current_position[Y_AXIS] = y;
  1006. line_to_current_position();
  1007. st_synchronize();
  1008. #endif
  1009. feedrate = oldFeedRate;
  1010. }
  1011. static void setup_for_endstop_move() {
  1012. saved_feedrate = feedrate;
  1013. saved_feedmultiply = feedmultiply;
  1014. feedmultiply = 100;
  1015. previous_millis_cmd = millis();
  1016. enable_endstops(true);
  1017. }
  1018. static void clean_up_after_endstop_move() {
  1019. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1020. enable_endstops(false);
  1021. #endif
  1022. feedrate = saved_feedrate;
  1023. feedmultiply = saved_feedmultiply;
  1024. previous_millis_cmd = millis();
  1025. }
  1026. static void engage_z_probe() {
  1027. #ifdef SERVO_ENDSTOPS
  1028. // Engage Z Servo endstop if enabled
  1029. if (servo_endstops[Z_AXIS] >= 0) {
  1030. #if SERVO_LEVELING
  1031. servos[servo_endstops[Z_AXIS]].attach(0);
  1032. #endif
  1033. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  1034. #if SERVO_LEVELING
  1035. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1036. servos[servo_endstops[Z_AXIS]].detach();
  1037. #endif
  1038. }
  1039. #elif defined(Z_PROBE_ALLEN_KEY)
  1040. feedrate = homing_feedrate[X_AXIS];
  1041. // Move to the start position to initiate deployment
  1042. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_X;
  1043. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Y;
  1044. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Z;
  1045. prepare_move_raw();
  1046. // Home X to touch the belt
  1047. feedrate = homing_feedrate[X_AXIS]/10;
  1048. destination[X_AXIS] = 0;
  1049. prepare_move_raw();
  1050. // Home Y for safety
  1051. feedrate = homing_feedrate[X_AXIS]/2;
  1052. destination[Y_AXIS] = 0;
  1053. prepare_move_raw();
  1054. st_synchronize();
  1055. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1056. if (z_min_endstop) {
  1057. if (!Stopped) {
  1058. SERIAL_ERROR_START;
  1059. SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
  1060. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1061. }
  1062. Stop();
  1063. }
  1064. #endif // Z_PROBE_ALLEN_KEY
  1065. }
  1066. static void retract_z_probe() {
  1067. #ifdef SERVO_ENDSTOPS
  1068. // Retract Z Servo endstop if enabled
  1069. if (servo_endstops[Z_AXIS] >= 0) {
  1070. #if Z_RAISE_AFTER_PROBING > 0
  1071. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], Z_RAISE_AFTER_PROBING);
  1072. st_synchronize();
  1073. #endif
  1074. #if SERVO_LEVELING
  1075. servos[servo_endstops[Z_AXIS]].attach(0);
  1076. #endif
  1077. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  1078. #if SERVO_LEVELING
  1079. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1080. servos[servo_endstops[Z_AXIS]].detach();
  1081. #endif
  1082. }
  1083. #elif defined(Z_PROBE_ALLEN_KEY)
  1084. // Move up for safety
  1085. feedrate = homing_feedrate[X_AXIS];
  1086. destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING;
  1087. prepare_move_raw();
  1088. // Move to the start position to initiate retraction
  1089. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_X;
  1090. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_Y;
  1091. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_Z;
  1092. prepare_move_raw();
  1093. // Move the nozzle down to push the probe into retracted position
  1094. feedrate = homing_feedrate[Z_AXIS]/10;
  1095. destination[Z_AXIS] = current_position[Z_AXIS] - Z_PROBE_ALLEN_KEY_RETRACT_DEPTH;
  1096. prepare_move_raw();
  1097. // Move up for safety
  1098. feedrate = homing_feedrate[Z_AXIS]/2;
  1099. destination[Z_AXIS] = current_position[Z_AXIS] + Z_PROBE_ALLEN_KEY_RETRACT_DEPTH * 2;
  1100. prepare_move_raw();
  1101. // Home XY for safety
  1102. feedrate = homing_feedrate[X_AXIS]/2;
  1103. destination[X_AXIS] = 0;
  1104. destination[Y_AXIS] = 0;
  1105. prepare_move_raw();
  1106. st_synchronize();
  1107. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1108. if (!z_min_endstop) {
  1109. if (!Stopped) {
  1110. SERIAL_ERROR_START;
  1111. SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
  1112. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1113. }
  1114. Stop();
  1115. }
  1116. #endif
  1117. }
  1118. enum ProbeAction {
  1119. ProbeStay = 0,
  1120. ProbeEngage = BIT(0),
  1121. ProbeRetract = BIT(1),
  1122. ProbeEngageAndRetract = (ProbeEngage | ProbeRetract)
  1123. };
  1124. // Probe bed height at position (x,y), returns the measured z value
  1125. static float probe_pt(float x, float y, float z_before, ProbeAction retract_action=ProbeEngageAndRetract, int verbose_level=1) {
  1126. // move to right place
  1127. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1128. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1129. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1130. if (retract_action & ProbeEngage) engage_z_probe();
  1131. #endif
  1132. run_z_probe();
  1133. float measured_z = current_position[Z_AXIS];
  1134. #if Z_RAISE_BETWEEN_PROBINGS > 0
  1135. if (retract_action == ProbeStay) {
  1136. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], Z_RAISE_BETWEEN_PROBINGS);
  1137. st_synchronize();
  1138. }
  1139. #endif
  1140. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1141. if (retract_action & ProbeRetract) retract_z_probe();
  1142. #endif
  1143. if (verbose_level > 2) {
  1144. SERIAL_PROTOCOLPGM(MSG_BED);
  1145. SERIAL_PROTOCOLPGM(" X: ");
  1146. SERIAL_PROTOCOL_F(x, 3);
  1147. SERIAL_PROTOCOLPGM(" Y: ");
  1148. SERIAL_PROTOCOL_F(y, 3);
  1149. SERIAL_PROTOCOLPGM(" Z: ");
  1150. SERIAL_PROTOCOL_F(measured_z, 3);
  1151. SERIAL_EOL;
  1152. }
  1153. return measured_z;
  1154. }
  1155. #ifdef DELTA
  1156. /**
  1157. * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
  1158. */
  1159. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1160. if (bed_level[x][y] != 0.0) {
  1161. return; // Don't overwrite good values.
  1162. }
  1163. float a = 2*bed_level[x+xdir][y] - bed_level[x+xdir*2][y]; // Left to right.
  1164. float b = 2*bed_level[x][y+ydir] - bed_level[x][y+ydir*2]; // Front to back.
  1165. float c = 2*bed_level[x+xdir][y+ydir] - bed_level[x+xdir*2][y+ydir*2]; // Diagonal.
  1166. float median = c; // Median is robust (ignores outliers).
  1167. if (a < b) {
  1168. if (b < c) median = b;
  1169. if (c < a) median = a;
  1170. } else { // b <= a
  1171. if (c < b) median = b;
  1172. if (a < c) median = a;
  1173. }
  1174. bed_level[x][y] = median;
  1175. }
  1176. // Fill in the unprobed points (corners of circular print surface)
  1177. // using linear extrapolation, away from the center.
  1178. static void extrapolate_unprobed_bed_level() {
  1179. int half = (AUTO_BED_LEVELING_GRID_POINTS-1)/2;
  1180. for (int y = 0; y <= half; y++) {
  1181. for (int x = 0; x <= half; x++) {
  1182. if (x + y < 3) continue;
  1183. extrapolate_one_point(half-x, half-y, x>1?+1:0, y>1?+1:0);
  1184. extrapolate_one_point(half+x, half-y, x>1?-1:0, y>1?+1:0);
  1185. extrapolate_one_point(half-x, half+y, x>1?+1:0, y>1?-1:0);
  1186. extrapolate_one_point(half+x, half+y, x>1?-1:0, y>1?-1:0);
  1187. }
  1188. }
  1189. }
  1190. // Print calibration results for plotting or manual frame adjustment.
  1191. static void print_bed_level() {
  1192. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1193. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1194. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1195. SERIAL_PROTOCOLPGM(" ");
  1196. }
  1197. SERIAL_ECHOLN("");
  1198. }
  1199. }
  1200. // Reset calibration results to zero.
  1201. void reset_bed_level() {
  1202. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1203. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1204. bed_level[x][y] = 0.0;
  1205. }
  1206. }
  1207. }
  1208. #endif // DELTA
  1209. #endif // ENABLE_AUTO_BED_LEVELING
  1210. static void homeaxis(int axis) {
  1211. #define HOMEAXIS_DO(LETTER) \
  1212. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1213. if (axis == X_AXIS ? HOMEAXIS_DO(X) :
  1214. axis == Y_AXIS ? HOMEAXIS_DO(Y) :
  1215. axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0) {
  1216. int axis_home_dir;
  1217. #ifdef DUAL_X_CARRIAGE
  1218. if (axis == X_AXIS) axis_home_dir = x_home_dir(active_extruder);
  1219. #else
  1220. axis_home_dir = home_dir(axis);
  1221. #endif
  1222. current_position[axis] = 0;
  1223. sync_plan_position();
  1224. #ifndef Z_PROBE_SLED
  1225. // Engage Servo endstop if enabled
  1226. #ifdef SERVO_ENDSTOPS
  1227. #if SERVO_LEVELING
  1228. if (axis == Z_AXIS) {
  1229. engage_z_probe();
  1230. }
  1231. else
  1232. #endif // SERVO_LEVELING
  1233. if (servo_endstops[axis] > -1)
  1234. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  1235. #endif // SERVO_ENDSTOPS
  1236. #endif // Z_PROBE_SLED
  1237. #ifdef Z_DUAL_ENDSTOPS
  1238. if (axis == Z_AXIS) In_Homing_Process(true);
  1239. #endif
  1240. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1241. feedrate = homing_feedrate[axis];
  1242. line_to_destination();
  1243. st_synchronize();
  1244. current_position[axis] = 0;
  1245. sync_plan_position();
  1246. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1247. line_to_destination();
  1248. st_synchronize();
  1249. destination[axis] = 2 * home_retract_mm(axis) * axis_home_dir;
  1250. if (homing_bump_divisor[axis] >= 1)
  1251. feedrate = homing_feedrate[axis] / homing_bump_divisor[axis];
  1252. else {
  1253. feedrate = homing_feedrate[axis] / 10;
  1254. SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less than 1");
  1255. }
  1256. line_to_destination();
  1257. st_synchronize();
  1258. #ifdef Z_DUAL_ENDSTOPS
  1259. if (axis==Z_AXIS)
  1260. {
  1261. feedrate = homing_feedrate[axis];
  1262. sync_plan_position();
  1263. if (axis_home_dir > 0)
  1264. {
  1265. destination[axis] = (-1) * fabs(z_endstop_adj);
  1266. if (z_endstop_adj > 0) Lock_z_motor(true); else Lock_z2_motor(true);
  1267. } else {
  1268. destination[axis] = fabs(z_endstop_adj);
  1269. if (z_endstop_adj < 0) Lock_z_motor(true); else Lock_z2_motor(true);
  1270. }
  1271. line_to_destination();
  1272. st_synchronize();
  1273. Lock_z_motor(false);
  1274. Lock_z2_motor(false);
  1275. In_Homing_Process(false);
  1276. }
  1277. #endif
  1278. #ifdef DELTA
  1279. // retrace by the amount specified in endstop_adj
  1280. if (endstop_adj[axis] * axis_home_dir < 0) {
  1281. sync_plan_position();
  1282. destination[axis] = endstop_adj[axis];
  1283. line_to_destination();
  1284. st_synchronize();
  1285. }
  1286. #endif
  1287. axis_is_at_home(axis);
  1288. destination[axis] = current_position[axis];
  1289. feedrate = 0.0;
  1290. endstops_hit_on_purpose();
  1291. axis_known_position[axis] = true;
  1292. // Retract Servo endstop if enabled
  1293. #ifdef SERVO_ENDSTOPS
  1294. if (servo_endstops[axis] > -1) {
  1295. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  1296. }
  1297. #endif
  1298. #if SERVO_LEVELING
  1299. #ifndef Z_PROBE_SLED
  1300. if (axis==Z_AXIS) retract_z_probe();
  1301. #endif
  1302. #endif
  1303. }
  1304. }
  1305. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1306. void refresh_cmd_timeout(void)
  1307. {
  1308. previous_millis_cmd = millis();
  1309. }
  1310. #ifdef FWRETRACT
  1311. void retract(bool retracting, bool swapretract = false) {
  1312. if(retracting && !retracted[active_extruder]) {
  1313. destination[X_AXIS]=current_position[X_AXIS];
  1314. destination[Y_AXIS]=current_position[Y_AXIS];
  1315. destination[Z_AXIS]=current_position[Z_AXIS];
  1316. destination[E_AXIS]=current_position[E_AXIS];
  1317. if (swapretract) {
  1318. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1319. } else {
  1320. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1321. }
  1322. plan_set_e_position(current_position[E_AXIS]);
  1323. float oldFeedrate = feedrate;
  1324. feedrate = retract_feedrate * 60;
  1325. retracted[active_extruder]=true;
  1326. prepare_move();
  1327. if(retract_zlift > 0.01) {
  1328. current_position[Z_AXIS]-=retract_zlift;
  1329. #ifdef DELTA
  1330. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  1331. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1332. #else
  1333. sync_plan_position();
  1334. #endif
  1335. prepare_move();
  1336. }
  1337. feedrate = oldFeedrate;
  1338. } else if(!retracting && retracted[active_extruder]) {
  1339. destination[X_AXIS]=current_position[X_AXIS];
  1340. destination[Y_AXIS]=current_position[Y_AXIS];
  1341. destination[Z_AXIS]=current_position[Z_AXIS];
  1342. destination[E_AXIS]=current_position[E_AXIS];
  1343. if(retract_zlift > 0.01) {
  1344. current_position[Z_AXIS]+=retract_zlift;
  1345. #ifdef DELTA
  1346. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  1347. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1348. #else
  1349. sync_plan_position();
  1350. #endif
  1351. //prepare_move();
  1352. }
  1353. if (swapretract) {
  1354. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1355. } else {
  1356. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1357. }
  1358. plan_set_e_position(current_position[E_AXIS]);
  1359. float oldFeedrate = feedrate;
  1360. feedrate = retract_recover_feedrate * 60;
  1361. retracted[active_extruder] = false;
  1362. prepare_move();
  1363. feedrate = oldFeedrate;
  1364. }
  1365. } //retract
  1366. #endif //FWRETRACT
  1367. #ifdef Z_PROBE_SLED
  1368. #ifndef SLED_DOCKING_OFFSET
  1369. #define SLED_DOCKING_OFFSET 0
  1370. #endif
  1371. //
  1372. // Method to dock/undock a sled designed by Charles Bell.
  1373. //
  1374. // dock[in] If true, move to MAX_X and engage the electromagnet
  1375. // offset[in] The additional distance to move to adjust docking location
  1376. //
  1377. static void dock_sled(bool dock, int offset=0) {
  1378. int z_loc;
  1379. if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1380. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1381. SERIAL_ECHO_START;
  1382. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1383. return;
  1384. }
  1385. if (dock) {
  1386. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
  1387. current_position[Y_AXIS],
  1388. current_position[Z_AXIS]);
  1389. // turn off magnet
  1390. digitalWrite(SERVO0_PIN, LOW);
  1391. } else {
  1392. if (current_position[Z_AXIS] < (Z_RAISE_BEFORE_PROBING + 5))
  1393. z_loc = Z_RAISE_BEFORE_PROBING;
  1394. else
  1395. z_loc = current_position[Z_AXIS];
  1396. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
  1397. Y_PROBE_OFFSET_FROM_EXTRUDER, z_loc);
  1398. // turn on magnet
  1399. digitalWrite(SERVO0_PIN, HIGH);
  1400. }
  1401. }
  1402. #endif
  1403. /**
  1404. *
  1405. * G-Code Handler functions
  1406. *
  1407. */
  1408. /**
  1409. * G0, G1: Coordinated movement of X Y Z E axes
  1410. */
  1411. inline void gcode_G0_G1() {
  1412. if (!Stopped) {
  1413. get_coordinates(); // For X Y Z E F
  1414. #ifdef FWRETRACT
  1415. if (autoretract_enabled)
  1416. if (!(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1417. float echange = destination[E_AXIS] - current_position[E_AXIS];
  1418. // Is this move an attempt to retract or recover?
  1419. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  1420. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  1421. plan_set_e_position(current_position[E_AXIS]); // AND from the planner
  1422. retract(!retracted[active_extruder]);
  1423. return;
  1424. }
  1425. }
  1426. #endif //FWRETRACT
  1427. prepare_move();
  1428. //ClearToSend();
  1429. }
  1430. }
  1431. /**
  1432. * G2: Clockwise Arc
  1433. * G3: Counterclockwise Arc
  1434. */
  1435. inline void gcode_G2_G3(bool clockwise) {
  1436. if (!Stopped) {
  1437. get_arc_coordinates();
  1438. prepare_arc_move(clockwise);
  1439. }
  1440. }
  1441. /**
  1442. * G4: Dwell S<seconds> or P<milliseconds>
  1443. */
  1444. inline void gcode_G4() {
  1445. unsigned long codenum=0;
  1446. LCD_MESSAGEPGM(MSG_DWELL);
  1447. if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
  1448. if (code_seen('S')) codenum = code_value_long() * 1000; // seconds to wait
  1449. st_synchronize();
  1450. previous_millis_cmd = millis();
  1451. codenum += previous_millis_cmd; // keep track of when we started waiting
  1452. while(millis() < codenum) {
  1453. manage_heater();
  1454. manage_inactivity();
  1455. lcd_update();
  1456. }
  1457. }
  1458. #ifdef FWRETRACT
  1459. /**
  1460. * G10 - Retract filament according to settings of M207
  1461. * G11 - Recover filament according to settings of M208
  1462. */
  1463. inline void gcode_G10_G11(bool doRetract=false) {
  1464. #if EXTRUDERS > 1
  1465. if (doRetract) {
  1466. retracted_swap[active_extruder] = (code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  1467. }
  1468. #endif
  1469. retract(doRetract
  1470. #if EXTRUDERS > 1
  1471. , retracted_swap[active_extruder]
  1472. #endif
  1473. );
  1474. }
  1475. #endif //FWRETRACT
  1476. /**
  1477. * G28: Home all axes according to settings
  1478. *
  1479. * Parameters
  1480. *
  1481. * None Home to all axes with no parameters.
  1482. * With QUICK_HOME enabled XY will home together, then Z.
  1483. *
  1484. * Cartesian parameters
  1485. *
  1486. * X Home to the X endstop
  1487. * Y Home to the Y endstop
  1488. * Z Home to the Z endstop
  1489. *
  1490. * If numbers are included with XYZ set the position as with G92
  1491. * Currently adds the home_offset, which may be wrong and removed soon.
  1492. *
  1493. * Xn Home X, setting X to n + home_offset[X_AXIS]
  1494. * Yn Home Y, setting Y to n + home_offset[Y_AXIS]
  1495. * Zn Home Z, setting Z to n + home_offset[Z_AXIS]
  1496. */
  1497. inline void gcode_G28() {
  1498. #ifdef ENABLE_AUTO_BED_LEVELING
  1499. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1500. #ifdef DELTA
  1501. reset_bed_level();
  1502. #endif
  1503. #endif
  1504. #if defined(MESH_BED_LEVELING)
  1505. uint8_t mbl_was_active = mbl.active;
  1506. mbl.active = 0;
  1507. #endif
  1508. saved_feedrate = feedrate;
  1509. saved_feedmultiply = feedmultiply;
  1510. feedmultiply = 100;
  1511. previous_millis_cmd = millis();
  1512. enable_endstops(true);
  1513. for (int i = 0; i < NUM_AXIS; i++) destination[i] = current_position[i]; // includes E_AXIS
  1514. feedrate = 0.0;
  1515. #ifdef DELTA
  1516. // A delta can only safely home all axis at the same time
  1517. // all axis have to home at the same time
  1518. // Move all carriages up together until the first endstop is hit.
  1519. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  1520. sync_plan_position();
  1521. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * Z_MAX_LENGTH;
  1522. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1523. line_to_destination();
  1524. st_synchronize();
  1525. endstops_hit_on_purpose();
  1526. // Destination reached
  1527. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  1528. // take care of back off and rehome now we are all at the top
  1529. HOMEAXIS(X);
  1530. HOMEAXIS(Y);
  1531. HOMEAXIS(Z);
  1532. calculate_delta(current_position);
  1533. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1534. #else // NOT DELTA
  1535. bool homeX = code_seen(axis_codes[X_AXIS]),
  1536. homeY = code_seen(axis_codes[Y_AXIS]),
  1537. homeZ = code_seen(axis_codes[Z_AXIS]);
  1538. home_all_axis = !homeX && !homeY && !homeZ; // No parameters means home all axes
  1539. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1540. if (home_all_axis || homeZ) HOMEAXIS(Z);
  1541. #elif !defined(Z_SAFE_HOMING) && defined(Z_RAISE_BEFORE_HOMING) && Z_RAISE_BEFORE_HOMING > 0
  1542. // Raise Z before homing any other axes
  1543. if (home_all_axis || homeZ) {
  1544. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1545. feedrate = max_feedrate[Z_AXIS];
  1546. line_to_destination();
  1547. st_synchronize();
  1548. }
  1549. #endif
  1550. #ifdef QUICK_HOME
  1551. if (home_all_axis || (homeX && homeY)) { //first diagonal move
  1552. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  1553. #ifdef DUAL_X_CARRIAGE
  1554. int x_axis_home_dir = x_home_dir(active_extruder);
  1555. extruder_duplication_enabled = false;
  1556. #else
  1557. int x_axis_home_dir = home_dir(X_AXIS);
  1558. #endif
  1559. sync_plan_position();
  1560. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;
  1561. destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1562. feedrate = homing_feedrate[X_AXIS];
  1563. if (homing_feedrate[Y_AXIS] < feedrate) feedrate = homing_feedrate[Y_AXIS];
  1564. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  1565. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  1566. } else {
  1567. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  1568. }
  1569. line_to_destination();
  1570. st_synchronize();
  1571. axis_is_at_home(X_AXIS);
  1572. axis_is_at_home(Y_AXIS);
  1573. sync_plan_position();
  1574. destination[X_AXIS] = current_position[X_AXIS];
  1575. destination[Y_AXIS] = current_position[Y_AXIS];
  1576. line_to_destination();
  1577. feedrate = 0.0;
  1578. st_synchronize();
  1579. endstops_hit_on_purpose();
  1580. current_position[X_AXIS] = destination[X_AXIS];
  1581. current_position[Y_AXIS] = destination[Y_AXIS];
  1582. #ifndef SCARA
  1583. current_position[Z_AXIS] = destination[Z_AXIS];
  1584. #endif
  1585. }
  1586. #endif //QUICK_HOME
  1587. // Home X
  1588. if (home_all_axis || homeX) {
  1589. #ifdef DUAL_X_CARRIAGE
  1590. int tmp_extruder = active_extruder;
  1591. extruder_duplication_enabled = false;
  1592. active_extruder = !active_extruder;
  1593. HOMEAXIS(X);
  1594. inactive_extruder_x_pos = current_position[X_AXIS];
  1595. active_extruder = tmp_extruder;
  1596. HOMEAXIS(X);
  1597. // reset state used by the different modes
  1598. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1599. delayed_move_time = 0;
  1600. active_extruder_parked = true;
  1601. #else
  1602. HOMEAXIS(X);
  1603. #endif
  1604. }
  1605. // Home Y
  1606. if (home_all_axis || homeY) HOMEAXIS(Y);
  1607. // Set the X position, if included
  1608. // Adds the home_offset as well, which may be wrong
  1609. if (code_seen(axis_codes[X_AXIS])) {
  1610. float v = code_value();
  1611. if (v) current_position[X_AXIS] = v
  1612. #ifndef SCARA
  1613. + home_offset[X_AXIS]
  1614. #endif
  1615. ;
  1616. }
  1617. // Set the Y position, if included
  1618. // Adds the home_offset as well, which may be wrong
  1619. if (code_seen(axis_codes[Y_AXIS])) {
  1620. float v = code_value();
  1621. if (v) current_position[Y_AXIS] = v
  1622. #ifndef SCARA
  1623. + home_offset[Y_AXIS]
  1624. #endif
  1625. ;
  1626. }
  1627. // Home Z last if homing towards the bed
  1628. #if Z_HOME_DIR < 0
  1629. #ifndef Z_SAFE_HOMING
  1630. if (home_all_axis || homeZ) HOMEAXIS(Z);
  1631. #else // Z_SAFE_HOMING
  1632. if (home_all_axis) {
  1633. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1634. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1635. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1636. feedrate = XY_TRAVEL_SPEED;
  1637. current_position[Z_AXIS] = 0;
  1638. sync_plan_position();
  1639. line_to_destination();
  1640. st_synchronize();
  1641. current_position[X_AXIS] = destination[X_AXIS];
  1642. current_position[Y_AXIS] = destination[Y_AXIS];
  1643. HOMEAXIS(Z);
  1644. }
  1645. // Let's see if X and Y are homed and probe is inside bed area.
  1646. if (homeZ) {
  1647. if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) {
  1648. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  1649. if ( cpx >= X_MIN_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1650. && cpx <= X_MAX_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1651. && cpy >= Y_MIN_POS - Y_PROBE_OFFSET_FROM_EXTRUDER
  1652. && cpy <= Y_MAX_POS - Y_PROBE_OFFSET_FROM_EXTRUDER) {
  1653. current_position[Z_AXIS] = 0;
  1654. plan_set_position(cpx, cpy, current_position[Z_AXIS], current_position[E_AXIS]);
  1655. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1656. feedrate = max_feedrate[Z_AXIS];
  1657. line_to_destination();
  1658. st_synchronize();
  1659. HOMEAXIS(Z);
  1660. }
  1661. else {
  1662. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1663. SERIAL_ECHO_START;
  1664. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1665. }
  1666. }
  1667. else {
  1668. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1669. SERIAL_ECHO_START;
  1670. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1671. }
  1672. }
  1673. #endif // Z_SAFE_HOMING
  1674. #endif // Z_HOME_DIR < 0
  1675. // Set the Z position, if included
  1676. // Adds the home_offset as well, which may be wrong
  1677. if (code_seen(axis_codes[Z_AXIS])) {
  1678. float v = code_value();
  1679. if (v) current_position[Z_AXIS] = v + home_offset[Z_AXIS];
  1680. }
  1681. #if defined(ENABLE_AUTO_BED_LEVELING) && (Z_HOME_DIR < 0)
  1682. if (home_all_axis || homeZ) current_position[Z_AXIS] += zprobe_zoffset; // Add Z_Probe offset (the distance is negative)
  1683. #endif
  1684. sync_plan_position();
  1685. #endif // else DELTA
  1686. #ifdef SCARA
  1687. calculate_delta(current_position);
  1688. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1689. #endif
  1690. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1691. enable_endstops(false);
  1692. #endif
  1693. #if defined(MESH_BED_LEVELING)
  1694. if (mbl_was_active) {
  1695. current_position[X_AXIS] = mbl.get_x(0);
  1696. current_position[Y_AXIS] = mbl.get_y(0);
  1697. destination[X_AXIS] = current_position[X_AXIS];
  1698. destination[Y_AXIS] = current_position[Y_AXIS];
  1699. destination[Z_AXIS] = current_position[Z_AXIS];
  1700. destination[E_AXIS] = current_position[E_AXIS];
  1701. feedrate = homing_feedrate[X_AXIS];
  1702. line_to_destination();
  1703. st_synchronize();
  1704. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1705. sync_plan_position();
  1706. mbl.active = 1;
  1707. }
  1708. #endif
  1709. feedrate = saved_feedrate;
  1710. feedmultiply = saved_feedmultiply;
  1711. previous_millis_cmd = millis();
  1712. endstops_hit_on_purpose();
  1713. }
  1714. #if defined(MESH_BED_LEVELING) || defined(ENABLE_AUTO_BED_LEVELING)
  1715. // Check for known positions in X and Y
  1716. inline bool can_run_bed_leveling() {
  1717. if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) return true;
  1718. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1719. SERIAL_ECHO_START;
  1720. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1721. return false;
  1722. }
  1723. #endif // MESH_BED_LEVELING || ENABLE_AUTO_BED_LEVELING
  1724. #ifdef MESH_BED_LEVELING
  1725. /**
  1726. * G29: Mesh-based Z-Probe, probes a grid and produces a
  1727. * mesh to compensate for variable bed height
  1728. *
  1729. * Parameters With MESH_BED_LEVELING:
  1730. *
  1731. * S0 Produce a mesh report
  1732. * S1 Start probing mesh points
  1733. * S2 Probe the next mesh point
  1734. *
  1735. */
  1736. inline void gcode_G29() {
  1737. // Prevent leveling without first homing in X and Y
  1738. if (!can_run_bed_leveling()) return;
  1739. static int probe_point = -1;
  1740. int state = 0;
  1741. if (code_seen('S') || code_seen('s')) {
  1742. state = code_value_long();
  1743. if (state < 0 || state > 2) {
  1744. SERIAL_PROTOCOLPGM("S out of range (0-2).\n");
  1745. return;
  1746. }
  1747. }
  1748. if (state == 0) { // Dump mesh_bed_leveling
  1749. if (mbl.active) {
  1750. SERIAL_PROTOCOLPGM("Num X,Y: ");
  1751. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  1752. SERIAL_PROTOCOLPGM(",");
  1753. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  1754. SERIAL_PROTOCOLPGM("\nZ search height: ");
  1755. SERIAL_PROTOCOL(MESH_HOME_SEARCH_Z);
  1756. SERIAL_PROTOCOLPGM("\nMeasured points:\n");
  1757. for (int y=0; y<MESH_NUM_Y_POINTS; y++) {
  1758. for (int x=0; x<MESH_NUM_X_POINTS; x++) {
  1759. SERIAL_PROTOCOLPGM(" ");
  1760. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  1761. }
  1762. SERIAL_EOL;
  1763. }
  1764. } else {
  1765. SERIAL_PROTOCOLPGM("Mesh bed leveling not active.\n");
  1766. }
  1767. } else if (state == 1) { // Begin probing mesh points
  1768. mbl.reset();
  1769. probe_point = 0;
  1770. enquecommands_P(PSTR("G28"));
  1771. enquecommands_P(PSTR("G29 S2"));
  1772. } else if (state == 2) { // Goto next point
  1773. if (probe_point < 0) {
  1774. SERIAL_PROTOCOLPGM("Start mesh probing with \"G29 S1\" first.\n");
  1775. return;
  1776. }
  1777. int ix, iy;
  1778. if (probe_point == 0) {
  1779. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1780. sync_plan_position();
  1781. } else {
  1782. ix = (probe_point-1) % MESH_NUM_X_POINTS;
  1783. iy = (probe_point-1) / MESH_NUM_X_POINTS;
  1784. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  1785. mbl.set_z(ix, iy, current_position[Z_AXIS]);
  1786. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1787. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  1788. st_synchronize();
  1789. }
  1790. if (probe_point == MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS) {
  1791. SERIAL_PROTOCOLPGM("Mesh probing done.\n");
  1792. probe_point = -1;
  1793. mbl.active = 1;
  1794. enquecommands_P(PSTR("G28"));
  1795. return;
  1796. }
  1797. ix = probe_point % MESH_NUM_X_POINTS;
  1798. iy = probe_point / MESH_NUM_X_POINTS;
  1799. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  1800. current_position[X_AXIS] = mbl.get_x(ix);
  1801. current_position[Y_AXIS] = mbl.get_y(iy);
  1802. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  1803. st_synchronize();
  1804. probe_point++;
  1805. }
  1806. }
  1807. #elif defined(ENABLE_AUTO_BED_LEVELING)
  1808. /**
  1809. * G29: Detailed Z-Probe, probes the bed at 3 or more points.
  1810. * Will fail if the printer has not been homed with G28.
  1811. *
  1812. * Enhanced G29 Auto Bed Leveling Probe Routine
  1813. *
  1814. * Parameters With AUTO_BED_LEVELING_GRID:
  1815. *
  1816. * P Set the size of the grid that will be probed (P x P points).
  1817. * Not supported by non-linear delta printer bed leveling.
  1818. * Example: "G29 P4"
  1819. *
  1820. * S Set the XY travel speed between probe points (in mm/min)
  1821. *
  1822. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  1823. * or clean the rotation Matrix. Useful to check the topology
  1824. * after a first run of G29.
  1825. *
  1826. * V Set the verbose level (0-4). Example: "G29 V3"
  1827. *
  1828. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  1829. * This is useful for manual bed leveling and finding flaws in the bed (to
  1830. * assist with part placement).
  1831. * Not supported by non-linear delta printer bed leveling.
  1832. *
  1833. * F Set the Front limit of the probing grid
  1834. * B Set the Back limit of the probing grid
  1835. * L Set the Left limit of the probing grid
  1836. * R Set the Right limit of the probing grid
  1837. *
  1838. * Global Parameters:
  1839. *
  1840. * E/e By default G29 will engages the probe, test the bed, then disengage.
  1841. * Include "E" to engage/disengage the probe for each sample.
  1842. * There's no extra effect if you have a fixed probe.
  1843. * Usage: "G29 E" or "G29 e"
  1844. *
  1845. */
  1846. inline void gcode_G29() {
  1847. // Prevent leveling without first homing in X and Y
  1848. if (!can_run_bed_leveling()) return;
  1849. int verbose_level = 1;
  1850. if (code_seen('V') || code_seen('v')) {
  1851. verbose_level = code_value_long();
  1852. if (verbose_level < 0 || verbose_level > 4) {
  1853. SERIAL_PROTOCOLPGM("?(V)erbose Level is implausible (0-4).\n");
  1854. return;
  1855. }
  1856. }
  1857. bool dryrun = code_seen('D') || code_seen('d');
  1858. bool engage_probe_for_each_reading = code_seen('E') || code_seen('e');
  1859. #ifdef AUTO_BED_LEVELING_GRID
  1860. #ifndef DELTA
  1861. bool do_topography_map = verbose_level > 2 || code_seen('T') || code_seen('t');
  1862. #endif
  1863. if (verbose_level > 0)
  1864. {
  1865. SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
  1866. if (dryrun) SERIAL_ECHOLN("Running in DRY-RUN mode");
  1867. }
  1868. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  1869. #ifndef DELTA
  1870. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_long();
  1871. if (auto_bed_leveling_grid_points < 2) {
  1872. SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
  1873. return;
  1874. }
  1875. #endif
  1876. xy_travel_speed = code_seen('S') ? code_value_long() : XY_TRAVEL_SPEED;
  1877. int left_probe_bed_position = code_seen('L') ? code_value_long() : LEFT_PROBE_BED_POSITION,
  1878. right_probe_bed_position = code_seen('R') ? code_value_long() : RIGHT_PROBE_BED_POSITION,
  1879. front_probe_bed_position = code_seen('F') ? code_value_long() : FRONT_PROBE_BED_POSITION,
  1880. back_probe_bed_position = code_seen('B') ? code_value_long() : BACK_PROBE_BED_POSITION;
  1881. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  1882. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - MIN_PROBE_EDGE,
  1883. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  1884. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  1885. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  1886. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - MIN_PROBE_EDGE,
  1887. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  1888. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  1889. if (left_out || right_out || front_out || back_out) {
  1890. if (left_out) {
  1891. SERIAL_PROTOCOLPGM("?Probe (L)eft position out of range.\n");
  1892. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - MIN_PROBE_EDGE;
  1893. }
  1894. if (right_out) {
  1895. SERIAL_PROTOCOLPGM("?Probe (R)ight position out of range.\n");
  1896. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  1897. }
  1898. if (front_out) {
  1899. SERIAL_PROTOCOLPGM("?Probe (F)ront position out of range.\n");
  1900. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - MIN_PROBE_EDGE;
  1901. }
  1902. if (back_out) {
  1903. SERIAL_PROTOCOLPGM("?Probe (B)ack position out of range.\n");
  1904. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  1905. }
  1906. return;
  1907. }
  1908. #endif // AUTO_BED_LEVELING_GRID
  1909. #ifdef Z_PROBE_SLED
  1910. dock_sled(false); // engage (un-dock) the probe
  1911. #elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
  1912. engage_z_probe();
  1913. #endif
  1914. st_synchronize();
  1915. if (!dryrun) {
  1916. // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
  1917. plan_bed_level_matrix.set_to_identity();
  1918. #ifdef DELTA
  1919. reset_bed_level();
  1920. #else //!DELTA
  1921. //vector_3 corrected_position = plan_get_position_mm();
  1922. //corrected_position.debug("position before G29");
  1923. vector_3 uncorrected_position = plan_get_position();
  1924. //uncorrected_position.debug("position during G29");
  1925. current_position[X_AXIS] = uncorrected_position.x;
  1926. current_position[Y_AXIS] = uncorrected_position.y;
  1927. current_position[Z_AXIS] = uncorrected_position.z;
  1928. sync_plan_position();
  1929. #endif // !DELTA
  1930. }
  1931. setup_for_endstop_move();
  1932. feedrate = homing_feedrate[Z_AXIS];
  1933. #ifdef AUTO_BED_LEVELING_GRID
  1934. // probe at the points of a lattice grid
  1935. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points-1);
  1936. const int yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points-1);
  1937. #ifdef DELTA
  1938. delta_grid_spacing[0] = xGridSpacing;
  1939. delta_grid_spacing[1] = yGridSpacing;
  1940. float z_offset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  1941. if (code_seen(axis_codes[Z_AXIS])) z_offset += code_value();
  1942. #else // !DELTA
  1943. // solve the plane equation ax + by + d = z
  1944. // A is the matrix with rows [x y 1] for all the probed points
  1945. // B is the vector of the Z positions
  1946. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1947. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1948. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  1949. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  1950. eqnBVector[abl2], // "B" vector of Z points
  1951. mean = 0.0;
  1952. #endif // !DELTA
  1953. int probePointCounter = 0;
  1954. bool zig = true;
  1955. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  1956. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  1957. int xStart, xStop, xInc;
  1958. if (zig) {
  1959. xStart = 0;
  1960. xStop = auto_bed_leveling_grid_points;
  1961. xInc = 1;
  1962. }
  1963. else {
  1964. xStart = auto_bed_leveling_grid_points - 1;
  1965. xStop = -1;
  1966. xInc = -1;
  1967. }
  1968. #ifndef DELTA
  1969. // If do_topography_map is set then don't zig-zag. Just scan in one direction.
  1970. // This gets the probe points in more readable order.
  1971. if (!do_topography_map) zig = !zig;
  1972. #endif
  1973. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  1974. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  1975. // raise extruder
  1976. float measured_z,
  1977. z_before = Z_RAISE_BETWEEN_PROBINGS + (probePointCounter ? current_position[Z_AXIS] : 0);
  1978. #ifdef DELTA
  1979. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  1980. float distance_from_center = sqrt(xProbe*xProbe + yProbe*yProbe);
  1981. if (distance_from_center > DELTA_PROBABLE_RADIUS) continue;
  1982. #endif //DELTA
  1983. // Enhanced G29 - Do not retract servo between probes
  1984. ProbeAction act;
  1985. if (engage_probe_for_each_reading)
  1986. act = ProbeEngageAndRetract;
  1987. else if (yProbe == front_probe_bed_position && xCount == 0)
  1988. act = ProbeEngage;
  1989. else if (yProbe == front_probe_bed_position + (yGridSpacing * (auto_bed_leveling_grid_points - 1)) && xCount == auto_bed_leveling_grid_points - 1)
  1990. act = ProbeRetract;
  1991. else
  1992. act = ProbeStay;
  1993. measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
  1994. #ifndef DELTA
  1995. mean += measured_z;
  1996. eqnBVector[probePointCounter] = measured_z;
  1997. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  1998. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  1999. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  2000. #else
  2001. bed_level[xCount][yCount] = measured_z + z_offset;
  2002. #endif
  2003. probePointCounter++;
  2004. manage_heater();
  2005. manage_inactivity();
  2006. lcd_update();
  2007. } //xProbe
  2008. } //yProbe
  2009. clean_up_after_endstop_move();
  2010. #ifdef DELTA
  2011. if (!dryrun) extrapolate_unprobed_bed_level();
  2012. print_bed_level();
  2013. #else // !DELTA
  2014. // solve lsq problem
  2015. double *plane_equation_coefficients = qr_solve(abl2, 3, eqnAMatrix, eqnBVector);
  2016. mean /= abl2;
  2017. if (verbose_level) {
  2018. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2019. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  2020. SERIAL_PROTOCOLPGM(" b: ");
  2021. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  2022. SERIAL_PROTOCOLPGM(" d: ");
  2023. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  2024. SERIAL_EOL;
  2025. if (verbose_level > 2) {
  2026. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  2027. SERIAL_PROTOCOL_F(mean, 8);
  2028. SERIAL_EOL;
  2029. }
  2030. }
  2031. // Show the Topography map if enabled
  2032. if (do_topography_map) {
  2033. SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
  2034. SERIAL_PROTOCOLPGM("+-----------+\n");
  2035. SERIAL_PROTOCOLPGM("|...Back....|\n");
  2036. SERIAL_PROTOCOLPGM("|Left..Right|\n");
  2037. SERIAL_PROTOCOLPGM("|...Front...|\n");
  2038. SERIAL_PROTOCOLPGM("+-----------+\n");
  2039. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2040. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2041. int ind = yy * auto_bed_leveling_grid_points + xx;
  2042. float diff = eqnBVector[ind] - mean;
  2043. if (diff >= 0.0)
  2044. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  2045. else
  2046. SERIAL_PROTOCOLPGM(" ");
  2047. SERIAL_PROTOCOL_F(diff, 5);
  2048. } // xx
  2049. SERIAL_EOL;
  2050. } // yy
  2051. SERIAL_EOL;
  2052. } //do_topography_map
  2053. if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
  2054. free(plane_equation_coefficients);
  2055. #endif //!DELTA
  2056. #else // !AUTO_BED_LEVELING_GRID
  2057. // Actions for each probe
  2058. ProbeAction p1, p2, p3;
  2059. if (engage_probe_for_each_reading)
  2060. p1 = p2 = p3 = ProbeEngageAndRetract;
  2061. else
  2062. p1 = ProbeEngage, p2 = ProbeStay, p3 = ProbeRetract;
  2063. // Probe at 3 arbitrary points
  2064. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, p1, verbose_level),
  2065. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p2, verbose_level),
  2066. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p3, verbose_level);
  2067. clean_up_after_endstop_move();
  2068. if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2069. #endif // !AUTO_BED_LEVELING_GRID
  2070. #ifndef DELTA
  2071. if (verbose_level > 0)
  2072. plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
  2073. if (!dryrun) {
  2074. // Correct the Z height difference from z-probe position and hotend tip position.
  2075. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2076. // When the bed is uneven, this height must be corrected.
  2077. float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  2078. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  2079. z_tmp = current_position[Z_AXIS],
  2080. real_z = (float)st_get_position(Z_AXIS) / axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2081. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2082. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2083. sync_plan_position();
  2084. }
  2085. #endif // !DELTA
  2086. #ifdef Z_PROBE_SLED
  2087. dock_sled(true, -SLED_DOCKING_OFFSET); // dock the probe, correcting for over-travel
  2088. #elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
  2089. retract_z_probe();
  2090. #endif
  2091. #ifdef Z_PROBE_END_SCRIPT
  2092. enquecommands_P(PSTR(Z_PROBE_END_SCRIPT));
  2093. st_synchronize();
  2094. #endif
  2095. }
  2096. #ifndef Z_PROBE_SLED
  2097. inline void gcode_G30() {
  2098. engage_z_probe(); // Engage Z Servo endstop if available
  2099. st_synchronize();
  2100. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2101. setup_for_endstop_move();
  2102. feedrate = homing_feedrate[Z_AXIS];
  2103. run_z_probe();
  2104. SERIAL_PROTOCOLPGM(MSG_BED);
  2105. SERIAL_PROTOCOLPGM(" X: ");
  2106. SERIAL_PROTOCOL(current_position[X_AXIS] + 0.0001);
  2107. SERIAL_PROTOCOLPGM(" Y: ");
  2108. SERIAL_PROTOCOL(current_position[Y_AXIS] + 0.0001);
  2109. SERIAL_PROTOCOLPGM(" Z: ");
  2110. SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
  2111. SERIAL_EOL;
  2112. clean_up_after_endstop_move();
  2113. retract_z_probe(); // Retract Z Servo endstop if available
  2114. }
  2115. #endif //!Z_PROBE_SLED
  2116. #endif //ENABLE_AUTO_BED_LEVELING
  2117. /**
  2118. * G92: Set current position to given X Y Z E
  2119. */
  2120. inline void gcode_G92() {
  2121. if (!code_seen(axis_codes[E_AXIS]))
  2122. st_synchronize();
  2123. bool didXYZ = false;
  2124. for (int i = 0; i < NUM_AXIS; i++) {
  2125. if (code_seen(axis_codes[i])) {
  2126. float v = current_position[i] = code_value();
  2127. if (i == E_AXIS)
  2128. plan_set_e_position(v);
  2129. else
  2130. didXYZ = true;
  2131. }
  2132. }
  2133. if (didXYZ) sync_plan_position();
  2134. }
  2135. #ifdef ULTIPANEL
  2136. /**
  2137. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  2138. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  2139. */
  2140. inline void gcode_M0_M1() {
  2141. char *src = strchr_pointer + 2;
  2142. unsigned long codenum = 0;
  2143. bool hasP = false, hasS = false;
  2144. if (code_seen('P')) {
  2145. codenum = code_value(); // milliseconds to wait
  2146. hasP = codenum > 0;
  2147. }
  2148. if (code_seen('S')) {
  2149. codenum = code_value() * 1000; // seconds to wait
  2150. hasS = codenum > 0;
  2151. }
  2152. char* starpos = strchr(src, '*');
  2153. if (starpos != NULL) *(starpos) = '\0';
  2154. while (*src == ' ') ++src;
  2155. if (!hasP && !hasS && *src != '\0')
  2156. lcd_setstatus(src, true);
  2157. else {
  2158. LCD_MESSAGEPGM(MSG_USERWAIT);
  2159. #if defined(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  2160. dontExpireStatus();
  2161. #endif
  2162. }
  2163. lcd_ignore_click();
  2164. st_synchronize();
  2165. previous_millis_cmd = millis();
  2166. if (codenum > 0) {
  2167. codenum += previous_millis_cmd; // keep track of when we started waiting
  2168. while(millis() < codenum && !lcd_clicked()) {
  2169. manage_heater();
  2170. manage_inactivity();
  2171. lcd_update();
  2172. }
  2173. lcd_ignore_click(false);
  2174. }
  2175. else {
  2176. if (!lcd_detected()) return;
  2177. while (!lcd_clicked()) {
  2178. manage_heater();
  2179. manage_inactivity();
  2180. lcd_update();
  2181. }
  2182. }
  2183. if (IS_SD_PRINTING)
  2184. LCD_MESSAGEPGM(MSG_RESUMING);
  2185. else
  2186. LCD_MESSAGEPGM(WELCOME_MSG);
  2187. }
  2188. #endif // ULTIPANEL
  2189. /**
  2190. * M17: Enable power on all stepper motors
  2191. */
  2192. inline void gcode_M17() {
  2193. LCD_MESSAGEPGM(MSG_NO_MOVE);
  2194. enable_x();
  2195. enable_y();
  2196. enable_z();
  2197. enable_e0();
  2198. enable_e1();
  2199. enable_e2();
  2200. enable_e3();
  2201. }
  2202. #ifdef SDSUPPORT
  2203. /**
  2204. * M20: List SD card to serial output
  2205. */
  2206. inline void gcode_M20() {
  2207. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  2208. card.ls();
  2209. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  2210. }
  2211. /**
  2212. * M21: Init SD Card
  2213. */
  2214. inline void gcode_M21() {
  2215. card.initsd();
  2216. }
  2217. /**
  2218. * M22: Release SD Card
  2219. */
  2220. inline void gcode_M22() {
  2221. card.release();
  2222. }
  2223. /**
  2224. * M23: Select a file
  2225. */
  2226. inline void gcode_M23() {
  2227. char* codepos = strchr_pointer + 4;
  2228. char* starpos = strchr(codepos, '*');
  2229. if (starpos) *starpos = '\0';
  2230. card.openFile(codepos, true);
  2231. }
  2232. /**
  2233. * M24: Start SD Print
  2234. */
  2235. inline void gcode_M24() {
  2236. card.startFileprint();
  2237. starttime = millis();
  2238. }
  2239. /**
  2240. * M25: Pause SD Print
  2241. */
  2242. inline void gcode_M25() {
  2243. card.pauseSDPrint();
  2244. }
  2245. /**
  2246. * M26: Set SD Card file index
  2247. */
  2248. inline void gcode_M26() {
  2249. if (card.cardOK && code_seen('S'))
  2250. card.setIndex(code_value_long());
  2251. }
  2252. /**
  2253. * M27: Get SD Card status
  2254. */
  2255. inline void gcode_M27() {
  2256. card.getStatus();
  2257. }
  2258. /**
  2259. * M28: Start SD Write
  2260. */
  2261. inline void gcode_M28() {
  2262. char* codepos = strchr_pointer + 4;
  2263. char* starpos = strchr(codepos, '*');
  2264. if (starpos) {
  2265. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2266. strchr_pointer = strchr(npos, ' ') + 1;
  2267. *(starpos) = '\0';
  2268. }
  2269. card.openFile(codepos, false);
  2270. }
  2271. /**
  2272. * M29: Stop SD Write
  2273. * Processed in write to file routine above
  2274. */
  2275. inline void gcode_M29() {
  2276. // card.saving = false;
  2277. }
  2278. /**
  2279. * M30 <filename>: Delete SD Card file
  2280. */
  2281. inline void gcode_M30() {
  2282. if (card.cardOK) {
  2283. card.closefile();
  2284. char* starpos = strchr(strchr_pointer + 4, '*');
  2285. if (starpos) {
  2286. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2287. strchr_pointer = strchr(npos, ' ') + 1;
  2288. *(starpos) = '\0';
  2289. }
  2290. card.removeFile(strchr_pointer + 4);
  2291. }
  2292. }
  2293. #endif
  2294. /**
  2295. * M31: Get the time since the start of SD Print (or last M109)
  2296. */
  2297. inline void gcode_M31() {
  2298. stoptime = millis();
  2299. unsigned long t = (stoptime - starttime) / 1000;
  2300. int min = t / 60, sec = t % 60;
  2301. char time[30];
  2302. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  2303. SERIAL_ECHO_START;
  2304. SERIAL_ECHOLN(time);
  2305. lcd_setstatus(time);
  2306. autotempShutdown();
  2307. }
  2308. #ifdef SDSUPPORT
  2309. /**
  2310. * M32: Select file and start SD Print
  2311. */
  2312. inline void gcode_M32() {
  2313. if (card.sdprinting)
  2314. st_synchronize();
  2315. char* codepos = strchr_pointer + 4;
  2316. char* namestartpos = strchr(codepos, '!'); //find ! to indicate filename string start.
  2317. if (! namestartpos)
  2318. namestartpos = codepos; //default name position, 4 letters after the M
  2319. else
  2320. namestartpos++; //to skip the '!'
  2321. char* starpos = strchr(codepos, '*');
  2322. if (starpos) *(starpos) = '\0';
  2323. bool call_procedure = code_seen('P') && (strchr_pointer < namestartpos);
  2324. if (card.cardOK) {
  2325. card.openFile(namestartpos, true, !call_procedure);
  2326. if (code_seen('S') && strchr_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  2327. card.setIndex(code_value_long());
  2328. card.startFileprint();
  2329. if (!call_procedure)
  2330. starttime = millis(); //procedure calls count as normal print time.
  2331. }
  2332. }
  2333. /**
  2334. * M928: Start SD Write
  2335. */
  2336. inline void gcode_M928() {
  2337. char* starpos = strchr(strchr_pointer + 5, '*');
  2338. if (starpos) {
  2339. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2340. strchr_pointer = strchr(npos, ' ') + 1;
  2341. *(starpos) = '\0';
  2342. }
  2343. card.openLogFile(strchr_pointer + 5);
  2344. }
  2345. #endif // SDSUPPORT
  2346. /**
  2347. * M42: Change pin status via GCode
  2348. */
  2349. inline void gcode_M42() {
  2350. if (code_seen('S')) {
  2351. int pin_status = code_value(),
  2352. pin_number = LED_PIN;
  2353. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  2354. pin_number = code_value();
  2355. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins) / sizeof(*sensitive_pins)); i++) {
  2356. if (sensitive_pins[i] == pin_number) {
  2357. pin_number = -1;
  2358. break;
  2359. }
  2360. }
  2361. #if defined(FAN_PIN) && FAN_PIN > -1
  2362. if (pin_number == FAN_PIN) fanSpeed = pin_status;
  2363. #endif
  2364. if (pin_number > -1) {
  2365. pinMode(pin_number, OUTPUT);
  2366. digitalWrite(pin_number, pin_status);
  2367. analogWrite(pin_number, pin_status);
  2368. }
  2369. } // code_seen('S')
  2370. }
  2371. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  2372. #if Z_MIN_PIN == -1
  2373. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  2374. #endif
  2375. /**
  2376. * M48: Z-Probe repeatability measurement function.
  2377. *
  2378. * Usage:
  2379. * M48 <n#> <X#> <Y#> <V#> <E> <L#>
  2380. * P = Number of sampled points (4-50, default 10)
  2381. * X = Sample X position
  2382. * Y = Sample Y position
  2383. * V = Verbose level (0-4, default=1)
  2384. * E = Engage probe for each reading
  2385. * L = Number of legs of movement before probe
  2386. *
  2387. * This function assumes the bed has been homed. Specifically, that a G28 command
  2388. * as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  2389. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  2390. * regenerated.
  2391. *
  2392. * The number of samples will default to 10 if not specified. You can use upper or lower case
  2393. * letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  2394. * N for its communication protocol and will get horribly confused if you send it a capital N.
  2395. */
  2396. inline void gcode_M48() {
  2397. double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
  2398. int verbose_level = 1, n = 0, j, n_samples = 10, n_legs = 0, engage_probe_for_each_reading = 0;
  2399. double X_current, Y_current, Z_current;
  2400. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  2401. if (code_seen('V') || code_seen('v')) {
  2402. verbose_level = code_value();
  2403. if (verbose_level < 0 || verbose_level > 4 ) {
  2404. SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
  2405. return;
  2406. }
  2407. }
  2408. if (verbose_level > 0)
  2409. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
  2410. if (code_seen('P') || code_seen('p') || code_seen('n')) { // `n` for legacy support only - please use `P`!
  2411. n_samples = code_value();
  2412. if (n_samples < 4 || n_samples > 50) {
  2413. SERIAL_PROTOCOLPGM("?Sample size not plausible (4-50).\n");
  2414. return;
  2415. }
  2416. }
  2417. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  2418. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  2419. Z_current = st_get_position_mm(Z_AXIS);
  2420. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2421. ext_position = st_get_position_mm(E_AXIS);
  2422. if (code_seen('E') || code_seen('e'))
  2423. engage_probe_for_each_reading++;
  2424. if (code_seen('X') || code_seen('x')) {
  2425. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  2426. if (X_probe_location < X_MIN_POS || X_probe_location > X_MAX_POS) {
  2427. SERIAL_PROTOCOLPGM("?X position out of range.\n");
  2428. return;
  2429. }
  2430. }
  2431. if (code_seen('Y') || code_seen('y')) {
  2432. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  2433. if (Y_probe_location < Y_MIN_POS || Y_probe_location > Y_MAX_POS) {
  2434. SERIAL_PROTOCOLPGM("?Y position out of range.\n");
  2435. return;
  2436. }
  2437. }
  2438. if (code_seen('L') || code_seen('l')) {
  2439. n_legs = code_value();
  2440. if (n_legs == 1) n_legs = 2;
  2441. if (n_legs < 0 || n_legs > 15) {
  2442. SERIAL_PROTOCOLPGM("?Number of legs in movement not plausible (0-15).\n");
  2443. return;
  2444. }
  2445. }
  2446. //
  2447. // Do all the preliminary setup work. First raise the probe.
  2448. //
  2449. st_synchronize();
  2450. plan_bed_level_matrix.set_to_identity();
  2451. plan_buffer_line(X_current, Y_current, Z_start_location,
  2452. ext_position,
  2453. homing_feedrate[Z_AXIS] / 60,
  2454. active_extruder);
  2455. st_synchronize();
  2456. //
  2457. // Now get everything to the specified probe point So we can safely do a probe to
  2458. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  2459. // use that as a starting point for each probe.
  2460. //
  2461. if (verbose_level > 2)
  2462. SERIAL_PROTOCOL("Positioning the probe...\n");
  2463. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2464. ext_position,
  2465. homing_feedrate[X_AXIS]/60,
  2466. active_extruder);
  2467. st_synchronize();
  2468. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  2469. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  2470. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2471. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  2472. //
  2473. // OK, do the inital probe to get us close to the bed.
  2474. // Then retrace the right amount and use that in subsequent probes
  2475. //
  2476. engage_z_probe();
  2477. setup_for_endstop_move();
  2478. run_z_probe();
  2479. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2480. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2481. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2482. ext_position,
  2483. homing_feedrate[X_AXIS]/60,
  2484. active_extruder);
  2485. st_synchronize();
  2486. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2487. if (engage_probe_for_each_reading) retract_z_probe();
  2488. for (n=0; n < n_samples; n++) {
  2489. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  2490. if (n_legs) {
  2491. double radius=0.0, theta=0.0;
  2492. int l;
  2493. int rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  2494. radius = (unsigned long)millis() % (long)(X_MAX_LENGTH / 4); // limit how far out to go
  2495. theta = (float)((unsigned long)millis() % 360L) / (360. / (2 * 3.1415926)); // turn into radians
  2496. //SERIAL_ECHOPAIR("starting radius: ",radius);
  2497. //SERIAL_ECHOPAIR(" theta: ",theta);
  2498. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  2499. //SERIAL_EOL;
  2500. float dir = rotational_direction ? 1 : -1;
  2501. for (l = 0; l < n_legs - 1; l++) {
  2502. theta += dir * (float)((unsigned long)millis() % 20L) / (360.0/(2*3.1415926)); // turn into radians
  2503. radius += (float)(((long)((unsigned long) millis() % 10L)) - 5L);
  2504. if (radius < 0.0) radius = -radius;
  2505. X_current = X_probe_location + cos(theta) * radius;
  2506. Y_current = Y_probe_location + sin(theta) * radius;
  2507. // Make sure our X & Y are sane
  2508. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  2509. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  2510. if (verbose_level > 3) {
  2511. SERIAL_ECHOPAIR("x: ", X_current);
  2512. SERIAL_ECHOPAIR("y: ", Y_current);
  2513. SERIAL_EOL;
  2514. }
  2515. do_blocking_move_to( X_current, Y_current, Z_current );
  2516. }
  2517. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  2518. }
  2519. if (engage_probe_for_each_reading) {
  2520. engage_z_probe();
  2521. delay(1000);
  2522. }
  2523. setup_for_endstop_move();
  2524. run_z_probe();
  2525. sample_set[n] = current_position[Z_AXIS];
  2526. //
  2527. // Get the current mean for the data points we have so far
  2528. //
  2529. sum = 0.0;
  2530. for (j=0; j<=n; j++) sum += sample_set[j];
  2531. mean = sum / (double (n+1));
  2532. //
  2533. // Now, use that mean to calculate the standard deviation for the
  2534. // data points we have so far
  2535. //
  2536. sum = 0.0;
  2537. for (j=0; j<=n; j++) sum += (sample_set[j]-mean) * (sample_set[j]-mean);
  2538. sigma = sqrt( sum / (double (n+1)) );
  2539. if (verbose_level > 1) {
  2540. SERIAL_PROTOCOL(n+1);
  2541. SERIAL_PROTOCOL(" of ");
  2542. SERIAL_PROTOCOL(n_samples);
  2543. SERIAL_PROTOCOLPGM(" z: ");
  2544. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  2545. }
  2546. if (verbose_level > 2) {
  2547. SERIAL_PROTOCOL(" mean: ");
  2548. SERIAL_PROTOCOL_F(mean,6);
  2549. SERIAL_PROTOCOL(" sigma: ");
  2550. SERIAL_PROTOCOL_F(sigma,6);
  2551. }
  2552. if (verbose_level > 0) SERIAL_EOL;
  2553. plan_buffer_line(X_probe_location, Y_probe_location, Z_start_location,
  2554. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2555. st_synchronize();
  2556. if (engage_probe_for_each_reading) {
  2557. retract_z_probe();
  2558. delay(1000);
  2559. }
  2560. }
  2561. retract_z_probe();
  2562. delay(1000);
  2563. clean_up_after_endstop_move();
  2564. // enable_endstops(true);
  2565. if (verbose_level > 0) {
  2566. SERIAL_PROTOCOLPGM("Mean: ");
  2567. SERIAL_PROTOCOL_F(mean, 6);
  2568. SERIAL_EOL;
  2569. }
  2570. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2571. SERIAL_PROTOCOL_F(sigma, 6);
  2572. SERIAL_EOL; SERIAL_EOL;
  2573. }
  2574. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  2575. /**
  2576. * M104: Set hot end temperature
  2577. */
  2578. inline void gcode_M104() {
  2579. if (setTargetedHotend(104)) return;
  2580. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  2581. #ifdef DUAL_X_CARRIAGE
  2582. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2583. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2584. #endif
  2585. setWatch();
  2586. }
  2587. /**
  2588. * M105: Read hot end and bed temperature
  2589. */
  2590. inline void gcode_M105() {
  2591. if (setTargetedHotend(105)) return;
  2592. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  2593. SERIAL_PROTOCOLPGM("ok T:");
  2594. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2595. SERIAL_PROTOCOLPGM(" /");
  2596. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  2597. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2598. SERIAL_PROTOCOLPGM(" B:");
  2599. SERIAL_PROTOCOL_F(degBed(),1);
  2600. SERIAL_PROTOCOLPGM(" /");
  2601. SERIAL_PROTOCOL_F(degTargetBed(),1);
  2602. #endif //TEMP_BED_PIN
  2603. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2604. SERIAL_PROTOCOLPGM(" T");
  2605. SERIAL_PROTOCOL(cur_extruder);
  2606. SERIAL_PROTOCOLPGM(":");
  2607. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2608. SERIAL_PROTOCOLPGM(" /");
  2609. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  2610. }
  2611. #else
  2612. SERIAL_ERROR_START;
  2613. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  2614. #endif
  2615. SERIAL_PROTOCOLPGM(" @:");
  2616. #ifdef EXTRUDER_WATTS
  2617. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  2618. SERIAL_PROTOCOLPGM("W");
  2619. #else
  2620. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  2621. #endif
  2622. SERIAL_PROTOCOLPGM(" B@:");
  2623. #ifdef BED_WATTS
  2624. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2625. SERIAL_PROTOCOLPGM("W");
  2626. #else
  2627. SERIAL_PROTOCOL(getHeaterPower(-1));
  2628. #endif
  2629. #ifdef SHOW_TEMP_ADC_VALUES
  2630. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2631. SERIAL_PROTOCOLPGM(" ADC B:");
  2632. SERIAL_PROTOCOL_F(degBed(),1);
  2633. SERIAL_PROTOCOLPGM("C->");
  2634. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  2635. #endif
  2636. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2637. SERIAL_PROTOCOLPGM(" T");
  2638. SERIAL_PROTOCOL(cur_extruder);
  2639. SERIAL_PROTOCOLPGM(":");
  2640. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2641. SERIAL_PROTOCOLPGM("C->");
  2642. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  2643. }
  2644. #endif
  2645. SERIAL_PROTOCOLLN("");
  2646. }
  2647. #if defined(FAN_PIN) && FAN_PIN > -1
  2648. /**
  2649. * M106: Set Fan Speed
  2650. */
  2651. inline void gcode_M106() { fanSpeed = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2652. /**
  2653. * M107: Fan Off
  2654. */
  2655. inline void gcode_M107() { fanSpeed = 0; }
  2656. #endif //FAN_PIN
  2657. /**
  2658. * M109: Wait for extruder(s) to reach temperature
  2659. */
  2660. inline void gcode_M109() {
  2661. if (setTargetedHotend(109)) return;
  2662. LCD_MESSAGEPGM(MSG_HEATING);
  2663. CooldownNoWait = code_seen('S');
  2664. if (CooldownNoWait || code_seen('R')) {
  2665. setTargetHotend(code_value(), tmp_extruder);
  2666. #ifdef DUAL_X_CARRIAGE
  2667. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2668. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2669. #endif
  2670. }
  2671. #ifdef AUTOTEMP
  2672. autotemp_enabled = code_seen('F');
  2673. if (autotemp_enabled) autotemp_factor = code_value();
  2674. if (code_seen('S')) autotemp_min = code_value();
  2675. if (code_seen('B')) autotemp_max = code_value();
  2676. #endif
  2677. setWatch();
  2678. unsigned long timetemp = millis();
  2679. /* See if we are heating up or cooling down */
  2680. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  2681. cancel_heatup = false;
  2682. #ifdef TEMP_RESIDENCY_TIME
  2683. long residencyStart = -1;
  2684. /* continue to loop until we have reached the target temp
  2685. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  2686. while((!cancel_heatup)&&((residencyStart == -1) ||
  2687. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) )
  2688. #else
  2689. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) )
  2690. #endif //TEMP_RESIDENCY_TIME
  2691. { // while loop
  2692. if (millis() > timetemp + 1000UL) { //Print temp & remaining time every 1s while waiting
  2693. SERIAL_PROTOCOLPGM("T:");
  2694. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2695. SERIAL_PROTOCOLPGM(" E:");
  2696. SERIAL_PROTOCOL((int)tmp_extruder);
  2697. #ifdef TEMP_RESIDENCY_TIME
  2698. SERIAL_PROTOCOLPGM(" W:");
  2699. if (residencyStart > -1) {
  2700. timetemp = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  2701. SERIAL_PROTOCOLLN( timetemp );
  2702. }
  2703. else {
  2704. SERIAL_PROTOCOLLN( "?" );
  2705. }
  2706. #else
  2707. SERIAL_PROTOCOLLN("");
  2708. #endif
  2709. timetemp = millis();
  2710. }
  2711. manage_heater();
  2712. manage_inactivity();
  2713. lcd_update();
  2714. #ifdef TEMP_RESIDENCY_TIME
  2715. // start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  2716. // or when current temp falls outside the hysteresis after target temp was reached
  2717. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  2718. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  2719. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  2720. {
  2721. residencyStart = millis();
  2722. }
  2723. #endif //TEMP_RESIDENCY_TIME
  2724. }
  2725. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  2726. starttime = previous_millis_cmd = millis();
  2727. }
  2728. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2729. /**
  2730. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  2731. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  2732. */
  2733. inline void gcode_M190() {
  2734. LCD_MESSAGEPGM(MSG_BED_HEATING);
  2735. CooldownNoWait = code_seen('S');
  2736. if (CooldownNoWait || code_seen('R'))
  2737. setTargetBed(code_value());
  2738. unsigned long timetemp = millis();
  2739. cancel_heatup = false;
  2740. target_direction = isHeatingBed(); // true if heating, false if cooling
  2741. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) ) {
  2742. unsigned long ms = millis();
  2743. if (ms > timetemp + 1000UL) { //Print Temp Reading every 1 second while heating up.
  2744. timetemp = ms;
  2745. float tt = degHotend(active_extruder);
  2746. SERIAL_PROTOCOLPGM("T:");
  2747. SERIAL_PROTOCOL(tt);
  2748. SERIAL_PROTOCOLPGM(" E:");
  2749. SERIAL_PROTOCOL((int)active_extruder);
  2750. SERIAL_PROTOCOLPGM(" B:");
  2751. SERIAL_PROTOCOL_F(degBed(), 1);
  2752. SERIAL_PROTOCOLLN("");
  2753. }
  2754. manage_heater();
  2755. manage_inactivity();
  2756. lcd_update();
  2757. }
  2758. LCD_MESSAGEPGM(MSG_BED_DONE);
  2759. previous_millis_cmd = millis();
  2760. }
  2761. #endif // TEMP_BED_PIN > -1
  2762. /**
  2763. * M112: Emergency Stop
  2764. */
  2765. inline void gcode_M112() {
  2766. kill();
  2767. }
  2768. #ifdef BARICUDA
  2769. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  2770. /**
  2771. * M126: Heater 1 valve open
  2772. */
  2773. inline void gcode_M126() { ValvePressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2774. /**
  2775. * M127: Heater 1 valve close
  2776. */
  2777. inline void gcode_M127() { ValvePressure = 0; }
  2778. #endif
  2779. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  2780. /**
  2781. * M128: Heater 2 valve open
  2782. */
  2783. inline void gcode_M128() { EtoPPressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2784. /**
  2785. * M129: Heater 2 valve close
  2786. */
  2787. inline void gcode_M129() { EtoPPressure = 0; }
  2788. #endif
  2789. #endif //BARICUDA
  2790. /**
  2791. * M140: Set bed temperature
  2792. */
  2793. inline void gcode_M140() {
  2794. if (code_seen('S')) setTargetBed(code_value());
  2795. }
  2796. #if HAS_POWER_SWITCH
  2797. /**
  2798. * M80: Turn on Power Supply
  2799. */
  2800. inline void gcode_M80() {
  2801. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  2802. // If you have a switch on suicide pin, this is useful
  2803. // if you want to start another print with suicide feature after
  2804. // a print without suicide...
  2805. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  2806. OUT_WRITE(SUICIDE_PIN, HIGH);
  2807. #endif
  2808. #ifdef ULTIPANEL
  2809. powersupply = true;
  2810. LCD_MESSAGEPGM(WELCOME_MSG);
  2811. lcd_update();
  2812. #endif
  2813. }
  2814. #endif // HAS_POWER_SWITCH
  2815. /**
  2816. * M81: Turn off Power, including Power Supply, if there is one.
  2817. *
  2818. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  2819. */
  2820. inline void gcode_M81() {
  2821. disable_heater();
  2822. st_synchronize();
  2823. disable_e0();
  2824. disable_e1();
  2825. disable_e2();
  2826. disable_e3();
  2827. finishAndDisableSteppers();
  2828. fanSpeed = 0;
  2829. delay(1000); // Wait 1 second before switching off
  2830. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  2831. st_synchronize();
  2832. suicide();
  2833. #elif HAS_POWER_SWITCH
  2834. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  2835. #endif
  2836. #ifdef ULTIPANEL
  2837. #if HAS_POWER_SWITCH
  2838. powersupply = false;
  2839. #endif
  2840. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  2841. lcd_update();
  2842. #endif
  2843. }
  2844. /**
  2845. * M82: Set E codes absolute (default)
  2846. */
  2847. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  2848. /**
  2849. * M82: Set E codes relative while in Absolute Coordinates (G90) mode
  2850. */
  2851. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  2852. /**
  2853. * M18, M84: Disable all stepper motors
  2854. */
  2855. inline void gcode_M18_M84() {
  2856. if (code_seen('S')) {
  2857. stepper_inactive_time = code_value() * 1000;
  2858. }
  2859. else {
  2860. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  2861. if (all_axis) {
  2862. st_synchronize();
  2863. disable_e0();
  2864. disable_e1();
  2865. disable_e2();
  2866. disable_e3();
  2867. finishAndDisableSteppers();
  2868. }
  2869. else {
  2870. st_synchronize();
  2871. if (code_seen('X')) disable_x();
  2872. if (code_seen('Y')) disable_y();
  2873. if (code_seen('Z')) disable_z();
  2874. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  2875. if (code_seen('E')) {
  2876. disable_e0();
  2877. disable_e1();
  2878. disable_e2();
  2879. disable_e3();
  2880. }
  2881. #endif
  2882. }
  2883. }
  2884. }
  2885. /**
  2886. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2887. */
  2888. inline void gcode_M85() {
  2889. if (code_seen('S')) max_inactive_time = code_value() * 1000;
  2890. }
  2891. /**
  2892. * M92: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2893. */
  2894. inline void gcode_M92() {
  2895. for(int8_t i=0; i < NUM_AXIS; i++) {
  2896. if (code_seen(axis_codes[i])) {
  2897. if (i == E_AXIS) {
  2898. float value = code_value();
  2899. if (value < 20.0) {
  2900. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  2901. max_e_jerk *= factor;
  2902. max_feedrate[i] *= factor;
  2903. axis_steps_per_sqr_second[i] *= factor;
  2904. }
  2905. axis_steps_per_unit[i] = value;
  2906. }
  2907. else {
  2908. axis_steps_per_unit[i] = code_value();
  2909. }
  2910. }
  2911. }
  2912. }
  2913. /**
  2914. * M114: Output current position to serial port
  2915. */
  2916. inline void gcode_M114() {
  2917. SERIAL_PROTOCOLPGM("X:");
  2918. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2919. SERIAL_PROTOCOLPGM(" Y:");
  2920. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2921. SERIAL_PROTOCOLPGM(" Z:");
  2922. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2923. SERIAL_PROTOCOLPGM(" E:");
  2924. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2925. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  2926. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  2927. SERIAL_PROTOCOLPGM(" Y:");
  2928. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  2929. SERIAL_PROTOCOLPGM(" Z:");
  2930. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  2931. SERIAL_PROTOCOLLN("");
  2932. #ifdef SCARA
  2933. SERIAL_PROTOCOLPGM("SCARA Theta:");
  2934. SERIAL_PROTOCOL(delta[X_AXIS]);
  2935. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2936. SERIAL_PROTOCOL(delta[Y_AXIS]);
  2937. SERIAL_PROTOCOLLN("");
  2938. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  2939. SERIAL_PROTOCOL(delta[X_AXIS]+home_offset[X_AXIS]);
  2940. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  2941. SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+home_offset[Y_AXIS]);
  2942. SERIAL_PROTOCOLLN("");
  2943. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  2944. SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
  2945. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2946. SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
  2947. SERIAL_PROTOCOLLN("");
  2948. SERIAL_PROTOCOLLN("");
  2949. #endif
  2950. }
  2951. /**
  2952. * M115: Capabilities string
  2953. */
  2954. inline void gcode_M115() {
  2955. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  2956. }
  2957. /**
  2958. * M117: Set LCD Status Message
  2959. */
  2960. inline void gcode_M117() {
  2961. char* codepos = strchr_pointer + 5;
  2962. char* starpos = strchr(codepos, '*');
  2963. if (starpos) *starpos = '\0';
  2964. lcd_setstatus(codepos);
  2965. }
  2966. /**
  2967. * M119: Output endstop states to serial output
  2968. */
  2969. inline void gcode_M119() {
  2970. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  2971. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  2972. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  2973. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2974. #endif
  2975. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  2976. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  2977. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2978. #endif
  2979. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  2980. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  2981. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2982. #endif
  2983. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  2984. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  2985. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2986. #endif
  2987. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  2988. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  2989. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2990. #endif
  2991. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  2992. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  2993. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2994. #endif
  2995. #if defined(Z2_MAX_PIN) && Z2_MAX_PIN > -1
  2996. SERIAL_PROTOCOLPGM(MSG_Z2_MAX);
  2997. SERIAL_PROTOCOLLN(((READ(Z2_MAX_PIN)^Z2_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2998. #endif
  2999. }
  3000. /**
  3001. * M120: Enable endstops
  3002. */
  3003. inline void gcode_M120() { enable_endstops(false); }
  3004. /**
  3005. * M121: Disable endstops
  3006. */
  3007. inline void gcode_M121() { enable_endstops(true); }
  3008. #ifdef BLINKM
  3009. /**
  3010. * M150: Set Status LED Color - Use R-U-B for R-G-B
  3011. */
  3012. inline void gcode_M150() {
  3013. SendColors(
  3014. code_seen('R') ? (byte)code_value() : 0,
  3015. code_seen('U') ? (byte)code_value() : 0,
  3016. code_seen('B') ? (byte)code_value() : 0
  3017. );
  3018. }
  3019. #endif // BLINKM
  3020. /**
  3021. * M200: Set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3022. * T<extruder>
  3023. * D<millimeters>
  3024. */
  3025. inline void gcode_M200() {
  3026. tmp_extruder = active_extruder;
  3027. if (code_seen('T')) {
  3028. tmp_extruder = code_value();
  3029. if (tmp_extruder >= EXTRUDERS) {
  3030. SERIAL_ECHO_START;
  3031. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  3032. return;
  3033. }
  3034. }
  3035. if (code_seen('D')) {
  3036. float diameter = code_value();
  3037. // setting any extruder filament size disables volumetric on the assumption that
  3038. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3039. // for all extruders
  3040. volumetric_enabled = (diameter != 0.0);
  3041. if (volumetric_enabled) {
  3042. filament_size[tmp_extruder] = diameter;
  3043. // make sure all extruders have some sane value for the filament size
  3044. for (int i=0; i<EXTRUDERS; i++)
  3045. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  3046. }
  3047. }
  3048. else {
  3049. //reserved for setting filament diameter via UFID or filament measuring device
  3050. return;
  3051. }
  3052. calculate_volumetric_multipliers();
  3053. }
  3054. /**
  3055. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  3056. */
  3057. inline void gcode_M201() {
  3058. for (int8_t i=0; i < NUM_AXIS; i++) {
  3059. if (code_seen(axis_codes[i])) {
  3060. max_acceleration_units_per_sq_second[i] = code_value();
  3061. }
  3062. }
  3063. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3064. reset_acceleration_rates();
  3065. }
  3066. #if 0 // Not used for Sprinter/grbl gen6
  3067. inline void gcode_M202() {
  3068. for(int8_t i=0; i < NUM_AXIS; i++) {
  3069. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3070. }
  3071. }
  3072. #endif
  3073. /**
  3074. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  3075. */
  3076. inline void gcode_M203() {
  3077. for (int8_t i=0; i < NUM_AXIS; i++) {
  3078. if (code_seen(axis_codes[i])) {
  3079. max_feedrate[i] = code_value();
  3080. }
  3081. }
  3082. }
  3083. /**
  3084. * M204: Set Accelerations in mm/sec^2 (M204 P1200 R3000 T3000)
  3085. *
  3086. * P = Printing moves
  3087. * R = Retract only (no X, Y, Z) moves
  3088. * T = Travel (non printing) moves
  3089. *
  3090. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  3091. */
  3092. inline void gcode_M204() {
  3093. if (code_seen('S')) // Kept for legacy compatibility. Should NOT BE USED for new developments.
  3094. {
  3095. acceleration = code_value();
  3096. travel_acceleration = acceleration;
  3097. SERIAL_ECHOPAIR("Setting Printing and Travelling Acceleration: ", acceleration );
  3098. SERIAL_EOL;
  3099. }
  3100. if (code_seen('P'))
  3101. {
  3102. acceleration = code_value();
  3103. SERIAL_ECHOPAIR("Setting Printing Acceleration: ", acceleration );
  3104. SERIAL_EOL;
  3105. }
  3106. if (code_seen('R'))
  3107. {
  3108. retract_acceleration = code_value();
  3109. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", retract_acceleration );
  3110. SERIAL_EOL;
  3111. }
  3112. if (code_seen('T'))
  3113. {
  3114. travel_acceleration = code_value();
  3115. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", travel_acceleration );
  3116. SERIAL_EOL;
  3117. }
  3118. }
  3119. /**
  3120. * M205: Set Advanced Settings
  3121. *
  3122. * S = Min Feed Rate (mm/s)
  3123. * T = Min Travel Feed Rate (mm/s)
  3124. * B = Min Segment Time (µs)
  3125. * X = Max XY Jerk (mm/s/s)
  3126. * Z = Max Z Jerk (mm/s/s)
  3127. * E = Max E Jerk (mm/s/s)
  3128. */
  3129. inline void gcode_M205() {
  3130. if (code_seen('S')) minimumfeedrate = code_value();
  3131. if (code_seen('T')) mintravelfeedrate = code_value();
  3132. if (code_seen('B')) minsegmenttime = code_value();
  3133. if (code_seen('X')) max_xy_jerk = code_value();
  3134. if (code_seen('Z')) max_z_jerk = code_value();
  3135. if (code_seen('E')) max_e_jerk = code_value();
  3136. }
  3137. /**
  3138. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  3139. */
  3140. inline void gcode_M206() {
  3141. for (int8_t i=X_AXIS; i <= Z_AXIS; i++) {
  3142. if (code_seen(axis_codes[i])) {
  3143. home_offset[i] = code_value();
  3144. }
  3145. }
  3146. #ifdef SCARA
  3147. if (code_seen('T')) home_offset[X_AXIS] = code_value(); // Theta
  3148. if (code_seen('P')) home_offset[Y_AXIS] = code_value(); // Psi
  3149. #endif
  3150. }
  3151. #ifdef DELTA
  3152. /**
  3153. * M665: Set delta configurations
  3154. *
  3155. * L = diagonal rod
  3156. * R = delta radius
  3157. * S = segments per second
  3158. */
  3159. inline void gcode_M665() {
  3160. if (code_seen('L')) delta_diagonal_rod = code_value();
  3161. if (code_seen('R')) delta_radius = code_value();
  3162. if (code_seen('S')) delta_segments_per_second = code_value();
  3163. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  3164. }
  3165. /**
  3166. * M666: Set delta endstop adjustment
  3167. */
  3168. inline void gcode_M666() {
  3169. for (int8_t i = 0; i < 3; i++) {
  3170. if (code_seen(axis_codes[i])) {
  3171. endstop_adj[i] = code_value();
  3172. }
  3173. }
  3174. }
  3175. #elif defined(Z_DUAL_ENDSTOPS)
  3176. /**
  3177. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  3178. */
  3179. inline void gcode_M666() {
  3180. if (code_seen('Z')) z_endstop_adj = code_value();
  3181. SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj );
  3182. SERIAL_EOL;
  3183. }
  3184. #endif // DELTA
  3185. #ifdef FWRETRACT
  3186. /**
  3187. * M207: Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  3188. */
  3189. inline void gcode_M207() {
  3190. if (code_seen('S')) retract_length = code_value();
  3191. if (code_seen('F')) retract_feedrate = code_value() / 60;
  3192. if (code_seen('Z')) retract_zlift = code_value();
  3193. }
  3194. /**
  3195. * M208: Set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  3196. */
  3197. inline void gcode_M208() {
  3198. if (code_seen('S')) retract_recover_length = code_value();
  3199. if (code_seen('F')) retract_recover_feedrate = code_value() / 60;
  3200. }
  3201. /**
  3202. * M209: Enable automatic retract (M209 S1)
  3203. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3204. */
  3205. inline void gcode_M209() {
  3206. if (code_seen('S')) {
  3207. int t = code_value();
  3208. switch(t) {
  3209. case 0:
  3210. autoretract_enabled = false;
  3211. break;
  3212. case 1:
  3213. autoretract_enabled = true;
  3214. break;
  3215. default:
  3216. SERIAL_ECHO_START;
  3217. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  3218. SERIAL_ECHO(cmdbuffer[bufindr]);
  3219. SERIAL_ECHOLNPGM("\"");
  3220. return;
  3221. }
  3222. for (int i=0; i<EXTRUDERS; i++) retracted[i] = false;
  3223. }
  3224. }
  3225. #endif // FWRETRACT
  3226. #if EXTRUDERS > 1
  3227. /**
  3228. * M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3229. */
  3230. inline void gcode_M218() {
  3231. if (setTargetedHotend(218)) return;
  3232. if (code_seen('X')) extruder_offset[X_AXIS][tmp_extruder] = code_value();
  3233. if (code_seen('Y')) extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  3234. #ifdef DUAL_X_CARRIAGE
  3235. if (code_seen('Z')) extruder_offset[Z_AXIS][tmp_extruder] = code_value();
  3236. #endif
  3237. SERIAL_ECHO_START;
  3238. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3239. for (tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++) {
  3240. SERIAL_ECHO(" ");
  3241. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  3242. SERIAL_ECHO(",");
  3243. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  3244. #ifdef DUAL_X_CARRIAGE
  3245. SERIAL_ECHO(",");
  3246. SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
  3247. #endif
  3248. }
  3249. SERIAL_EOL;
  3250. }
  3251. #endif // EXTRUDERS > 1
  3252. /**
  3253. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  3254. */
  3255. inline void gcode_M220() {
  3256. if (code_seen('S')) feedmultiply = code_value();
  3257. }
  3258. /**
  3259. * M221: Set extrusion percentage (M221 T0 S95)
  3260. */
  3261. inline void gcode_M221() {
  3262. if (code_seen('S')) {
  3263. int sval = code_value();
  3264. if (code_seen('T')) {
  3265. if (setTargetedHotend(221)) return;
  3266. extruder_multiply[tmp_extruder] = sval;
  3267. }
  3268. else {
  3269. extruder_multiply[active_extruder] = sval;
  3270. }
  3271. }
  3272. }
  3273. /**
  3274. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  3275. */
  3276. inline void gcode_M226() {
  3277. if (code_seen('P')) {
  3278. int pin_number = code_value();
  3279. int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted
  3280. if (pin_state >= -1 && pin_state <= 1) {
  3281. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(*sensitive_pins)); i++) {
  3282. if (sensitive_pins[i] == pin_number) {
  3283. pin_number = -1;
  3284. break;
  3285. }
  3286. }
  3287. if (pin_number > -1) {
  3288. int target = LOW;
  3289. st_synchronize();
  3290. pinMode(pin_number, INPUT);
  3291. switch(pin_state){
  3292. case 1:
  3293. target = HIGH;
  3294. break;
  3295. case 0:
  3296. target = LOW;
  3297. break;
  3298. case -1:
  3299. target = !digitalRead(pin_number);
  3300. break;
  3301. }
  3302. while(digitalRead(pin_number) != target) {
  3303. manage_heater();
  3304. manage_inactivity();
  3305. lcd_update();
  3306. }
  3307. } // pin_number > -1
  3308. } // pin_state -1 0 1
  3309. } // code_seen('P')
  3310. }
  3311. #if NUM_SERVOS > 0
  3312. /**
  3313. * M280: Set servo position absolute. P: servo index, S: angle or microseconds
  3314. */
  3315. inline void gcode_M280() {
  3316. int servo_index = code_seen('P') ? code_value() : -1;
  3317. int servo_position = 0;
  3318. if (code_seen('S')) {
  3319. servo_position = code_value();
  3320. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  3321. #if SERVO_LEVELING
  3322. servos[servo_index].attach(0);
  3323. #endif
  3324. servos[servo_index].write(servo_position);
  3325. #if SERVO_LEVELING
  3326. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  3327. servos[servo_index].detach();
  3328. #endif
  3329. }
  3330. else {
  3331. SERIAL_ECHO_START;
  3332. SERIAL_ECHO("Servo ");
  3333. SERIAL_ECHO(servo_index);
  3334. SERIAL_ECHOLN(" out of range");
  3335. }
  3336. }
  3337. else if (servo_index >= 0) {
  3338. SERIAL_PROTOCOL(MSG_OK);
  3339. SERIAL_PROTOCOL(" Servo ");
  3340. SERIAL_PROTOCOL(servo_index);
  3341. SERIAL_PROTOCOL(": ");
  3342. SERIAL_PROTOCOL(servos[servo_index].read());
  3343. SERIAL_PROTOCOLLN("");
  3344. }
  3345. }
  3346. #endif // NUM_SERVOS > 0
  3347. #if defined(LARGE_FLASH) && (BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER))
  3348. /**
  3349. * M300: Play beep sound S<frequency Hz> P<duration ms>
  3350. */
  3351. inline void gcode_M300() {
  3352. int beepS = code_seen('S') ? code_value() : 110;
  3353. int beepP = code_seen('P') ? code_value() : 1000;
  3354. if (beepS > 0) {
  3355. #if BEEPER > 0
  3356. tone(BEEPER, beepS);
  3357. delay(beepP);
  3358. noTone(BEEPER);
  3359. #elif defined(ULTRALCD)
  3360. lcd_buzz(beepS, beepP);
  3361. #elif defined(LCD_USE_I2C_BUZZER)
  3362. lcd_buzz(beepP, beepS);
  3363. #endif
  3364. }
  3365. else {
  3366. delay(beepP);
  3367. }
  3368. }
  3369. #endif // LARGE_FLASH && (BEEPER>0 || ULTRALCD || LCD_USE_I2C_BUZZER)
  3370. #ifdef PIDTEMP
  3371. /**
  3372. * M301: Set PID parameters P I D (and optionally C)
  3373. */
  3374. inline void gcode_M301() {
  3375. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  3376. // default behaviour (omitting E parameter) is to update for extruder 0 only
  3377. int e = code_seen('E') ? code_value() : 0; // extruder being updated
  3378. if (e < EXTRUDERS) { // catch bad input value
  3379. if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
  3380. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
  3381. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
  3382. #ifdef PID_ADD_EXTRUSION_RATE
  3383. if (code_seen('C')) PID_PARAM(Kc, e) = code_value();
  3384. #endif
  3385. updatePID();
  3386. SERIAL_PROTOCOL(MSG_OK);
  3387. #ifdef PID_PARAMS_PER_EXTRUDER
  3388. SERIAL_PROTOCOL(" e:"); // specify extruder in serial output
  3389. SERIAL_PROTOCOL(e);
  3390. #endif // PID_PARAMS_PER_EXTRUDER
  3391. SERIAL_PROTOCOL(" p:");
  3392. SERIAL_PROTOCOL(PID_PARAM(Kp, e));
  3393. SERIAL_PROTOCOL(" i:");
  3394. SERIAL_PROTOCOL(unscalePID_i(PID_PARAM(Ki, e)));
  3395. SERIAL_PROTOCOL(" d:");
  3396. SERIAL_PROTOCOL(unscalePID_d(PID_PARAM(Kd, e)));
  3397. #ifdef PID_ADD_EXTRUSION_RATE
  3398. SERIAL_PROTOCOL(" c:");
  3399. //Kc does not have scaling applied above, or in resetting defaults
  3400. SERIAL_PROTOCOL(PID_PARAM(Kc, e));
  3401. #endif
  3402. SERIAL_PROTOCOLLN("");
  3403. }
  3404. else {
  3405. SERIAL_ECHO_START;
  3406. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3407. }
  3408. }
  3409. #endif // PIDTEMP
  3410. #ifdef PIDTEMPBED
  3411. inline void gcode_M304() {
  3412. if (code_seen('P')) bedKp = code_value();
  3413. if (code_seen('I')) bedKi = scalePID_i(code_value());
  3414. if (code_seen('D')) bedKd = scalePID_d(code_value());
  3415. updatePID();
  3416. SERIAL_PROTOCOL(MSG_OK);
  3417. SERIAL_PROTOCOL(" p:");
  3418. SERIAL_PROTOCOL(bedKp);
  3419. SERIAL_PROTOCOL(" i:");
  3420. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  3421. SERIAL_PROTOCOL(" d:");
  3422. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  3423. SERIAL_PROTOCOLLN("");
  3424. }
  3425. #endif // PIDTEMPBED
  3426. #if defined(CHDK) || (defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1)
  3427. /**
  3428. * M240: Trigger a camera by emulating a Canon RC-1
  3429. * See http://www.doc-diy.net/photo/rc-1_hacked/
  3430. */
  3431. inline void gcode_M240() {
  3432. #ifdef CHDK
  3433. OUT_WRITE(CHDK, HIGH);
  3434. chdkHigh = millis();
  3435. chdkActive = true;
  3436. #elif defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  3437. const uint8_t NUM_PULSES = 16;
  3438. const float PULSE_LENGTH = 0.01524;
  3439. for (int i = 0; i < NUM_PULSES; i++) {
  3440. WRITE(PHOTOGRAPH_PIN, HIGH);
  3441. _delay_ms(PULSE_LENGTH);
  3442. WRITE(PHOTOGRAPH_PIN, LOW);
  3443. _delay_ms(PULSE_LENGTH);
  3444. }
  3445. delay(7.33);
  3446. for (int i = 0; i < NUM_PULSES; i++) {
  3447. WRITE(PHOTOGRAPH_PIN, HIGH);
  3448. _delay_ms(PULSE_LENGTH);
  3449. WRITE(PHOTOGRAPH_PIN, LOW);
  3450. _delay_ms(PULSE_LENGTH);
  3451. }
  3452. #endif // !CHDK && PHOTOGRAPH_PIN > -1
  3453. }
  3454. #endif // CHDK || PHOTOGRAPH_PIN
  3455. #ifdef DOGLCD
  3456. /**
  3457. * M250: Read and optionally set the LCD contrast
  3458. */
  3459. inline void gcode_M250() {
  3460. if (code_seen('C')) lcd_setcontrast(code_value_long() & 0x3F);
  3461. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  3462. SERIAL_PROTOCOL(lcd_contrast);
  3463. SERIAL_PROTOCOLLN("");
  3464. }
  3465. #endif // DOGLCD
  3466. #ifdef PREVENT_DANGEROUS_EXTRUDE
  3467. /**
  3468. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  3469. */
  3470. inline void gcode_M302() {
  3471. set_extrude_min_temp(code_seen('S') ? code_value() : 0);
  3472. }
  3473. #endif // PREVENT_DANGEROUS_EXTRUDE
  3474. /**
  3475. * M303: PID relay autotune
  3476. * S<temperature> sets the target temperature. (default target temperature = 150C)
  3477. * E<extruder> (-1 for the bed)
  3478. * C<cycles>
  3479. */
  3480. inline void gcode_M303() {
  3481. int e = code_seen('E') ? code_value_long() : 0;
  3482. int c = code_seen('C') ? code_value_long() : 5;
  3483. float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
  3484. PID_autotune(temp, e, c);
  3485. }
  3486. #ifdef SCARA
  3487. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  3488. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3489. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3490. if (! Stopped) {
  3491. //get_coordinates(); // For X Y Z E F
  3492. delta[X_AXIS] = delta_x;
  3493. delta[Y_AXIS] = delta_y;
  3494. calculate_SCARA_forward_Transform(delta);
  3495. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3496. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3497. prepare_move();
  3498. //ClearToSend();
  3499. return true;
  3500. }
  3501. return false;
  3502. }
  3503. /**
  3504. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  3505. */
  3506. inline bool gcode_M360() {
  3507. SERIAL_ECHOLN(" Cal: Theta 0 ");
  3508. return SCARA_move_to_cal(0, 120);
  3509. }
  3510. /**
  3511. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  3512. */
  3513. inline bool gcode_M361() {
  3514. SERIAL_ECHOLN(" Cal: Theta 90 ");
  3515. return SCARA_move_to_cal(90, 130);
  3516. }
  3517. /**
  3518. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  3519. */
  3520. inline bool gcode_M362() {
  3521. SERIAL_ECHOLN(" Cal: Psi 0 ");
  3522. return SCARA_move_to_cal(60, 180);
  3523. }
  3524. /**
  3525. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  3526. */
  3527. inline bool gcode_M363() {
  3528. SERIAL_ECHOLN(" Cal: Psi 90 ");
  3529. return SCARA_move_to_cal(50, 90);
  3530. }
  3531. /**
  3532. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  3533. */
  3534. inline bool gcode_M364() {
  3535. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  3536. return SCARA_move_to_cal(45, 135);
  3537. }
  3538. /**
  3539. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  3540. */
  3541. inline void gcode_M365() {
  3542. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3543. if (code_seen(axis_codes[i])) {
  3544. axis_scaling[i] = code_value();
  3545. }
  3546. }
  3547. }
  3548. #endif // SCARA
  3549. #ifdef EXT_SOLENOID
  3550. void enable_solenoid(uint8_t num) {
  3551. switch(num) {
  3552. case 0:
  3553. OUT_WRITE(SOL0_PIN, HIGH);
  3554. break;
  3555. #if defined(SOL1_PIN) && SOL1_PIN > -1
  3556. case 1:
  3557. OUT_WRITE(SOL1_PIN, HIGH);
  3558. break;
  3559. #endif
  3560. #if defined(SOL2_PIN) && SOL2_PIN > -1
  3561. case 2:
  3562. OUT_WRITE(SOL2_PIN, HIGH);
  3563. break;
  3564. #endif
  3565. #if defined(SOL3_PIN) && SOL3_PIN > -1
  3566. case 3:
  3567. OUT_WRITE(SOL3_PIN, HIGH);
  3568. break;
  3569. #endif
  3570. default:
  3571. SERIAL_ECHO_START;
  3572. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  3573. break;
  3574. }
  3575. }
  3576. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  3577. void disable_all_solenoids() {
  3578. OUT_WRITE(SOL0_PIN, LOW);
  3579. OUT_WRITE(SOL1_PIN, LOW);
  3580. OUT_WRITE(SOL2_PIN, LOW);
  3581. OUT_WRITE(SOL3_PIN, LOW);
  3582. }
  3583. /**
  3584. * M380: Enable solenoid on the active extruder
  3585. */
  3586. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  3587. /**
  3588. * M381: Disable all solenoids
  3589. */
  3590. inline void gcode_M381() { disable_all_solenoids(); }
  3591. #endif // EXT_SOLENOID
  3592. /**
  3593. * M400: Finish all moves
  3594. */
  3595. inline void gcode_M400() { st_synchronize(); }
  3596. #if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && not defined(Z_PROBE_SLED)
  3597. /**
  3598. * M401: Engage Z Servo endstop if available
  3599. */
  3600. inline void gcode_M401() { engage_z_probe(); }
  3601. /**
  3602. * M402: Retract Z Servo endstop if enabled
  3603. */
  3604. inline void gcode_M402() { retract_z_probe(); }
  3605. #endif
  3606. #ifdef FILAMENT_SENSOR
  3607. /**
  3608. * M404: Display or set the nominal filament width (3mm, 1.75mm ) W<3.0>
  3609. */
  3610. inline void gcode_M404() {
  3611. #if FILWIDTH_PIN > -1
  3612. if (code_seen('W')) {
  3613. filament_width_nominal = code_value();
  3614. }
  3615. else {
  3616. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  3617. SERIAL_PROTOCOLLN(filament_width_nominal);
  3618. }
  3619. #endif
  3620. }
  3621. /**
  3622. * M405: Turn on filament sensor for control
  3623. */
  3624. inline void gcode_M405() {
  3625. if (code_seen('D')) meas_delay_cm = code_value();
  3626. if (meas_delay_cm > MAX_MEASUREMENT_DELAY) meas_delay_cm = MAX_MEASUREMENT_DELAY;
  3627. if (delay_index2 == -1) { //initialize the ring buffer if it has not been done since startup
  3628. int temp_ratio = widthFil_to_size_ratio();
  3629. for (delay_index1 = 0; delay_index1 < MAX_MEASUREMENT_DELAY + 1; ++delay_index1)
  3630. measurement_delay[delay_index1] = temp_ratio - 100; //subtract 100 to scale within a signed byte
  3631. delay_index1 = delay_index2 = 0;
  3632. }
  3633. filament_sensor = true;
  3634. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3635. //SERIAL_PROTOCOL(filament_width_meas);
  3636. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  3637. //SERIAL_PROTOCOL(extruder_multiply[active_extruder]);
  3638. }
  3639. /**
  3640. * M406: Turn off filament sensor for control
  3641. */
  3642. inline void gcode_M406() { filament_sensor = false; }
  3643. /**
  3644. * M407: Get measured filament diameter on serial output
  3645. */
  3646. inline void gcode_M407() {
  3647. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3648. SERIAL_PROTOCOLLN(filament_width_meas);
  3649. }
  3650. #endif // FILAMENT_SENSOR
  3651. /**
  3652. * M500: Store settings in EEPROM
  3653. */
  3654. inline void gcode_M500() {
  3655. Config_StoreSettings();
  3656. }
  3657. /**
  3658. * M501: Read settings from EEPROM
  3659. */
  3660. inline void gcode_M501() {
  3661. Config_RetrieveSettings();
  3662. }
  3663. /**
  3664. * M502: Revert to default settings
  3665. */
  3666. inline void gcode_M502() {
  3667. Config_ResetDefault();
  3668. }
  3669. /**
  3670. * M503: print settings currently in memory
  3671. */
  3672. inline void gcode_M503() {
  3673. Config_PrintSettings(code_seen('S') && code_value() == 0);
  3674. }
  3675. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3676. /**
  3677. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  3678. */
  3679. inline void gcode_M540() {
  3680. if (code_seen('S')) abort_on_endstop_hit = (code_value() > 0);
  3681. }
  3682. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3683. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3684. inline void gcode_SET_Z_PROBE_OFFSET() {
  3685. float value;
  3686. if (code_seen('Z')) {
  3687. value = code_value();
  3688. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  3689. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  3690. SERIAL_ECHO_START;
  3691. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
  3692. SERIAL_PROTOCOLLN("");
  3693. }
  3694. else {
  3695. SERIAL_ECHO_START;
  3696. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  3697. SERIAL_ECHOPGM(MSG_Z_MIN);
  3698. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  3699. SERIAL_ECHOPGM(MSG_Z_MAX);
  3700. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  3701. SERIAL_PROTOCOLLN("");
  3702. }
  3703. }
  3704. else {
  3705. SERIAL_ECHO_START;
  3706. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " : ");
  3707. SERIAL_ECHO(-zprobe_zoffset);
  3708. SERIAL_PROTOCOLLN("");
  3709. }
  3710. }
  3711. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3712. #ifdef FILAMENTCHANGEENABLE
  3713. /**
  3714. * M600: Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3715. */
  3716. inline void gcode_M600() {
  3717. float target[NUM_AXIS], lastpos[NUM_AXIS], fr60 = feedrate / 60;
  3718. for (int i=0; i<NUM_AXIS; i++)
  3719. target[i] = lastpos[i] = current_position[i];
  3720. #define BASICPLAN plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder);
  3721. #ifdef DELTA
  3722. #define RUNPLAN calculate_delta(target); BASICPLAN
  3723. #else
  3724. #define RUNPLAN BASICPLAN
  3725. #endif
  3726. //retract by E
  3727. if (code_seen('E')) target[E_AXIS] += code_value();
  3728. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  3729. else target[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
  3730. #endif
  3731. RUNPLAN;
  3732. //lift Z
  3733. if (code_seen('Z')) target[Z_AXIS] += code_value();
  3734. #ifdef FILAMENTCHANGE_ZADD
  3735. else target[Z_AXIS] += FILAMENTCHANGE_ZADD;
  3736. #endif
  3737. RUNPLAN;
  3738. //move xy
  3739. if (code_seen('X')) target[X_AXIS] = code_value();
  3740. #ifdef FILAMENTCHANGE_XPOS
  3741. else target[X_AXIS] = FILAMENTCHANGE_XPOS;
  3742. #endif
  3743. if (code_seen('Y')) target[Y_AXIS] = code_value();
  3744. #ifdef FILAMENTCHANGE_YPOS
  3745. else target[Y_AXIS] = FILAMENTCHANGE_YPOS;
  3746. #endif
  3747. RUNPLAN;
  3748. if (code_seen('L')) target[E_AXIS] += code_value();
  3749. #ifdef FILAMENTCHANGE_FINALRETRACT
  3750. else target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  3751. #endif
  3752. RUNPLAN;
  3753. //finish moves
  3754. st_synchronize();
  3755. //disable extruder steppers so filament can be removed
  3756. disable_e0();
  3757. disable_e1();
  3758. disable_e2();
  3759. disable_e3();
  3760. delay(100);
  3761. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  3762. uint8_t cnt = 0;
  3763. while (!lcd_clicked()) {
  3764. cnt++;
  3765. manage_heater();
  3766. manage_inactivity(true);
  3767. lcd_update();
  3768. if (cnt == 0) {
  3769. #if BEEPER > 0
  3770. OUT_WRITE(BEEPER,HIGH);
  3771. delay(3);
  3772. WRITE(BEEPER,LOW);
  3773. delay(3);
  3774. #else
  3775. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  3776. lcd_buzz(1000/6, 100);
  3777. #else
  3778. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
  3779. #endif
  3780. #endif
  3781. }
  3782. } // while(!lcd_clicked)
  3783. //return to normal
  3784. if (code_seen('L')) target[E_AXIS] -= code_value();
  3785. #ifdef FILAMENTCHANGE_FINALRETRACT
  3786. else target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  3787. #endif
  3788. current_position[E_AXIS] = target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3789. plan_set_e_position(current_position[E_AXIS]);
  3790. RUNPLAN; //should do nothing
  3791. lcd_reset_alert_level();
  3792. #ifdef DELTA
  3793. calculate_delta(lastpos);
  3794. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xyz back
  3795. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  3796. #else
  3797. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xy back
  3798. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move z back
  3799. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  3800. #endif
  3801. #ifdef FILAMENT_RUNOUT_SENSOR
  3802. filrunoutEnqued = false;
  3803. #endif
  3804. }
  3805. #endif // FILAMENTCHANGEENABLE
  3806. #ifdef DUAL_X_CARRIAGE
  3807. /**
  3808. * M605: Set dual x-carriage movement mode
  3809. *
  3810. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  3811. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  3812. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  3813. * millimeters x-offset and an optional differential hotend temperature of
  3814. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  3815. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  3816. *
  3817. * Note: the X axis should be homed after changing dual x-carriage mode.
  3818. */
  3819. inline void gcode_M605() {
  3820. st_synchronize();
  3821. if (code_seen('S')) dual_x_carriage_mode = code_value();
  3822. switch(dual_x_carriage_mode) {
  3823. case DXC_DUPLICATION_MODE:
  3824. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0));
  3825. if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
  3826. SERIAL_ECHO_START;
  3827. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3828. SERIAL_ECHO(" ");
  3829. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  3830. SERIAL_ECHO(",");
  3831. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  3832. SERIAL_ECHO(" ");
  3833. SERIAL_ECHO(duplicate_extruder_x_offset);
  3834. SERIAL_ECHO(",");
  3835. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  3836. break;
  3837. case DXC_FULL_CONTROL_MODE:
  3838. case DXC_AUTO_PARK_MODE:
  3839. break;
  3840. default:
  3841. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  3842. break;
  3843. }
  3844. active_extruder_parked = false;
  3845. extruder_duplication_enabled = false;
  3846. delayed_move_time = 0;
  3847. }
  3848. #endif // DUAL_X_CARRIAGE
  3849. /**
  3850. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  3851. */
  3852. inline void gcode_M907() {
  3853. #if HAS_DIGIPOTSS
  3854. for (int i=0;i<NUM_AXIS;i++)
  3855. if (code_seen(axis_codes[i])) digipot_current(i, code_value());
  3856. if (code_seen('B')) digipot_current(4, code_value());
  3857. if (code_seen('S')) for (int i=0; i<=4; i++) digipot_current(i, code_value());
  3858. #endif
  3859. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  3860. if (code_seen('X')) digipot_current(0, code_value());
  3861. #endif
  3862. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  3863. if (code_seen('Z')) digipot_current(1, code_value());
  3864. #endif
  3865. #ifdef MOTOR_CURRENT_PWM_E_PIN
  3866. if (code_seen('E')) digipot_current(2, code_value());
  3867. #endif
  3868. #ifdef DIGIPOT_I2C
  3869. // this one uses actual amps in floating point
  3870. for (int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  3871. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  3872. for (int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  3873. #endif
  3874. }
  3875. #if HAS_DIGIPOTSS
  3876. /**
  3877. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  3878. */
  3879. inline void gcode_M908() {
  3880. digitalPotWrite(
  3881. code_seen('P') ? code_value() : 0,
  3882. code_seen('S') ? code_value() : 0
  3883. );
  3884. }
  3885. #endif // HAS_DIGIPOTSS
  3886. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  3887. inline void gcode_M350() {
  3888. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3889. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  3890. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  3891. if(code_seen('B')) microstep_mode(4,code_value());
  3892. microstep_readings();
  3893. #endif
  3894. }
  3895. /**
  3896. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  3897. * S# determines MS1 or MS2, X# sets the pin high/low.
  3898. */
  3899. inline void gcode_M351() {
  3900. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3901. if (code_seen('S')) switch(code_value_long()) {
  3902. case 1:
  3903. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, code_value(), -1);
  3904. if (code_seen('B')) microstep_ms(4, code_value(), -1);
  3905. break;
  3906. case 2:
  3907. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, -1, code_value());
  3908. if (code_seen('B')) microstep_ms(4, -1, code_value());
  3909. break;
  3910. }
  3911. microstep_readings();
  3912. #endif
  3913. }
  3914. /**
  3915. * M999: Restart after being stopped
  3916. */
  3917. inline void gcode_M999() {
  3918. Stopped = false;
  3919. lcd_reset_alert_level();
  3920. gcode_LastN = Stopped_gcode_LastN;
  3921. FlushSerialRequestResend();
  3922. }
  3923. inline void gcode_T() {
  3924. tmp_extruder = code_value();
  3925. if (tmp_extruder >= EXTRUDERS) {
  3926. SERIAL_ECHO_START;
  3927. SERIAL_ECHO("T");
  3928. SERIAL_ECHO(tmp_extruder);
  3929. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3930. }
  3931. else {
  3932. #if EXTRUDERS > 1
  3933. bool make_move = false;
  3934. #endif
  3935. if (code_seen('F')) {
  3936. #if EXTRUDERS > 1
  3937. make_move = true;
  3938. #endif
  3939. next_feedrate = code_value();
  3940. if (next_feedrate > 0.0) feedrate = next_feedrate;
  3941. }
  3942. #if EXTRUDERS > 1
  3943. if (tmp_extruder != active_extruder) {
  3944. // Save current position to return to after applying extruder offset
  3945. memcpy(destination, current_position, sizeof(destination));
  3946. #ifdef DUAL_X_CARRIAGE
  3947. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
  3948. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  3949. // Park old head: 1) raise 2) move to park position 3) lower
  3950. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3951. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3952. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3953. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  3954. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  3955. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3956. st_synchronize();
  3957. }
  3958. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  3959. current_position[Y_AXIS] = current_position[Y_AXIS] -
  3960. extruder_offset[Y_AXIS][active_extruder] +
  3961. extruder_offset[Y_AXIS][tmp_extruder];
  3962. current_position[Z_AXIS] = current_position[Z_AXIS] -
  3963. extruder_offset[Z_AXIS][active_extruder] +
  3964. extruder_offset[Z_AXIS][tmp_extruder];
  3965. active_extruder = tmp_extruder;
  3966. // This function resets the max/min values - the current position may be overwritten below.
  3967. axis_is_at_home(X_AXIS);
  3968. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  3969. current_position[X_AXIS] = inactive_extruder_x_pos;
  3970. inactive_extruder_x_pos = destination[X_AXIS];
  3971. }
  3972. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  3973. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  3974. if (active_extruder == 0 || active_extruder_parked)
  3975. current_position[X_AXIS] = inactive_extruder_x_pos;
  3976. else
  3977. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  3978. inactive_extruder_x_pos = destination[X_AXIS];
  3979. extruder_duplication_enabled = false;
  3980. }
  3981. else {
  3982. // record raised toolhead position for use by unpark
  3983. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  3984. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  3985. active_extruder_parked = true;
  3986. delayed_move_time = 0;
  3987. }
  3988. #else // !DUAL_X_CARRIAGE
  3989. // Offset extruder (only by XY)
  3990. for (int i=X_AXIS; i<=Y_AXIS; i++)
  3991. current_position[i] += extruder_offset[i][tmp_extruder] - extruder_offset[i][active_extruder];
  3992. // Set the new active extruder and position
  3993. active_extruder = tmp_extruder;
  3994. #endif // !DUAL_X_CARRIAGE
  3995. #ifdef DELTA
  3996. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  3997. //sent position to plan_set_position();
  3998. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],current_position[E_AXIS]);
  3999. #else
  4000. sync_plan_position();
  4001. #endif
  4002. // Move to the old position if 'F' was in the parameters
  4003. if (make_move && !Stopped) prepare_move();
  4004. }
  4005. #ifdef EXT_SOLENOID
  4006. st_synchronize();
  4007. disable_all_solenoids();
  4008. enable_solenoid_on_active_extruder();
  4009. #endif // EXT_SOLENOID
  4010. #endif // EXTRUDERS > 1
  4011. SERIAL_ECHO_START;
  4012. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  4013. SERIAL_PROTOCOLLN((int)active_extruder);
  4014. }
  4015. }
  4016. /**
  4017. * Process Commands and dispatch them to handlers
  4018. */
  4019. void process_commands() {
  4020. if (code_seen('G')) {
  4021. int gCode = code_value_long();
  4022. switch(gCode) {
  4023. // G0, G1
  4024. case 0:
  4025. case 1:
  4026. gcode_G0_G1();
  4027. break;
  4028. // G2, G3
  4029. #ifndef SCARA
  4030. case 2: // G2 - CW ARC
  4031. case 3: // G3 - CCW ARC
  4032. gcode_G2_G3(gCode == 2);
  4033. break;
  4034. #endif
  4035. // G4 Dwell
  4036. case 4:
  4037. gcode_G4();
  4038. break;
  4039. #ifdef FWRETRACT
  4040. case 10: // G10: retract
  4041. case 11: // G11: retract_recover
  4042. gcode_G10_G11(gCode == 10);
  4043. break;
  4044. #endif //FWRETRACT
  4045. case 28: // G28: Home all axes, one at a time
  4046. gcode_G28();
  4047. break;
  4048. #if defined(ENABLE_AUTO_BED_LEVELING) || defined(MESH_BED_LEVELING)
  4049. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  4050. gcode_G29();
  4051. break;
  4052. #endif
  4053. #ifdef ENABLE_AUTO_BED_LEVELING
  4054. #ifndef Z_PROBE_SLED
  4055. case 30: // G30 Single Z Probe
  4056. gcode_G30();
  4057. break;
  4058. #else // Z_PROBE_SLED
  4059. case 31: // G31: dock the sled
  4060. case 32: // G32: undock the sled
  4061. dock_sled(gCode == 31);
  4062. break;
  4063. #endif // Z_PROBE_SLED
  4064. #endif // ENABLE_AUTO_BED_LEVELING
  4065. case 90: // G90
  4066. relative_mode = false;
  4067. break;
  4068. case 91: // G91
  4069. relative_mode = true;
  4070. break;
  4071. case 92: // G92
  4072. gcode_G92();
  4073. break;
  4074. }
  4075. }
  4076. else if (code_seen('M')) {
  4077. switch( code_value_long() ) {
  4078. #ifdef ULTIPANEL
  4079. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4080. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4081. gcode_M0_M1();
  4082. break;
  4083. #endif // ULTIPANEL
  4084. case 17:
  4085. gcode_M17();
  4086. break;
  4087. #ifdef SDSUPPORT
  4088. case 20: // M20 - list SD card
  4089. gcode_M20(); break;
  4090. case 21: // M21 - init SD card
  4091. gcode_M21(); break;
  4092. case 22: //M22 - release SD card
  4093. gcode_M22(); break;
  4094. case 23: //M23 - Select file
  4095. gcode_M23(); break;
  4096. case 24: //M24 - Start SD print
  4097. gcode_M24(); break;
  4098. case 25: //M25 - Pause SD print
  4099. gcode_M25(); break;
  4100. case 26: //M26 - Set SD index
  4101. gcode_M26(); break;
  4102. case 27: //M27 - Get SD status
  4103. gcode_M27(); break;
  4104. case 28: //M28 - Start SD write
  4105. gcode_M28(); break;
  4106. case 29: //M29 - Stop SD write
  4107. gcode_M29(); break;
  4108. case 30: //M30 <filename> Delete File
  4109. gcode_M30(); break;
  4110. case 32: //M32 - Select file and start SD print
  4111. gcode_M32(); break;
  4112. case 928: //M928 - Start SD write
  4113. gcode_M928(); break;
  4114. #endif //SDSUPPORT
  4115. case 31: //M31 take time since the start of the SD print or an M109 command
  4116. gcode_M31();
  4117. break;
  4118. case 42: //M42 -Change pin status via gcode
  4119. gcode_M42();
  4120. break;
  4121. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  4122. case 48: // M48 Z-Probe repeatability
  4123. gcode_M48();
  4124. break;
  4125. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  4126. case 104: // M104
  4127. gcode_M104();
  4128. break;
  4129. case 112: // M112 Emergency Stop
  4130. gcode_M112();
  4131. break;
  4132. case 140: // M140 Set bed temp
  4133. gcode_M140();
  4134. break;
  4135. case 105: // M105 Read current temperature
  4136. gcode_M105();
  4137. return;
  4138. break;
  4139. case 109: // M109 Wait for temperature
  4140. gcode_M109();
  4141. break;
  4142. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4143. case 190: // M190 - Wait for bed heater to reach target.
  4144. gcode_M190();
  4145. break;
  4146. #endif //TEMP_BED_PIN
  4147. #if defined(FAN_PIN) && FAN_PIN > -1
  4148. case 106: //M106 Fan On
  4149. gcode_M106();
  4150. break;
  4151. case 107: //M107 Fan Off
  4152. gcode_M107();
  4153. break;
  4154. #endif //FAN_PIN
  4155. #ifdef BARICUDA
  4156. // PWM for HEATER_1_PIN
  4157. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  4158. case 126: // M126 valve open
  4159. gcode_M126();
  4160. break;
  4161. case 127: // M127 valve closed
  4162. gcode_M127();
  4163. break;
  4164. #endif //HEATER_1_PIN
  4165. // PWM for HEATER_2_PIN
  4166. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  4167. case 128: // M128 valve open
  4168. gcode_M128();
  4169. break;
  4170. case 129: // M129 valve closed
  4171. gcode_M129();
  4172. break;
  4173. #endif //HEATER_2_PIN
  4174. #endif //BARICUDA
  4175. #if HAS_POWER_SWITCH
  4176. case 80: // M80 - Turn on Power Supply
  4177. gcode_M80();
  4178. break;
  4179. #endif // HAS_POWER_SWITCH
  4180. case 81: // M81 - Turn off Power, including Power Supply, if possible
  4181. gcode_M81();
  4182. break;
  4183. case 82:
  4184. gcode_M82();
  4185. break;
  4186. case 83:
  4187. gcode_M83();
  4188. break;
  4189. case 18: //compatibility
  4190. case 84: // M84
  4191. gcode_M18_M84();
  4192. break;
  4193. case 85: // M85
  4194. gcode_M85();
  4195. break;
  4196. case 92: // M92
  4197. gcode_M92();
  4198. break;
  4199. case 115: // M115
  4200. gcode_M115();
  4201. break;
  4202. case 117: // M117 display message
  4203. gcode_M117();
  4204. break;
  4205. case 114: // M114
  4206. gcode_M114();
  4207. break;
  4208. case 120: // M120
  4209. gcode_M120();
  4210. break;
  4211. case 121: // M121
  4212. gcode_M121();
  4213. break;
  4214. case 119: // M119
  4215. gcode_M119();
  4216. break;
  4217. //TODO: update for all axis, use for loop
  4218. #ifdef BLINKM
  4219. case 150: // M150
  4220. gcode_M150();
  4221. break;
  4222. #endif //BLINKM
  4223. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4224. gcode_M200();
  4225. break;
  4226. case 201: // M201
  4227. gcode_M201();
  4228. break;
  4229. #if 0 // Not used for Sprinter/grbl gen6
  4230. case 202: // M202
  4231. gcode_M202();
  4232. break;
  4233. #endif
  4234. case 203: // M203 max feedrate mm/sec
  4235. gcode_M203();
  4236. break;
  4237. case 204: // M204 acclereration S normal moves T filmanent only moves
  4238. gcode_M204();
  4239. break;
  4240. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4241. gcode_M205();
  4242. break;
  4243. case 206: // M206 additional homing offset
  4244. gcode_M206();
  4245. break;
  4246. #ifdef DELTA
  4247. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  4248. gcode_M665();
  4249. break;
  4250. #endif
  4251. #if defined(DELTA) || defined(Z_DUAL_ENDSTOPS)
  4252. case 666: // M666 set delta / dual endstop adjustment
  4253. gcode_M666();
  4254. break;
  4255. #endif
  4256. #ifdef FWRETRACT
  4257. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4258. gcode_M207();
  4259. break;
  4260. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4261. gcode_M208();
  4262. break;
  4263. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4264. gcode_M209();
  4265. break;
  4266. #endif // FWRETRACT
  4267. #if EXTRUDERS > 1
  4268. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4269. gcode_M218();
  4270. break;
  4271. #endif
  4272. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4273. gcode_M220();
  4274. break;
  4275. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4276. gcode_M221();
  4277. break;
  4278. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4279. gcode_M226();
  4280. break;
  4281. #if NUM_SERVOS > 0
  4282. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4283. gcode_M280();
  4284. break;
  4285. #endif // NUM_SERVOS > 0
  4286. #if defined(LARGE_FLASH) && (BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER))
  4287. case 300: // M300 - Play beep tone
  4288. gcode_M300();
  4289. break;
  4290. #endif // LARGE_FLASH && (BEEPER>0 || ULTRALCD || LCD_USE_I2C_BUZZER)
  4291. #ifdef PIDTEMP
  4292. case 301: // M301
  4293. gcode_M301();
  4294. break;
  4295. #endif // PIDTEMP
  4296. #ifdef PIDTEMPBED
  4297. case 304: // M304
  4298. gcode_M304();
  4299. break;
  4300. #endif // PIDTEMPBED
  4301. #if defined(CHDK) || (defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1)
  4302. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4303. gcode_M240();
  4304. break;
  4305. #endif // CHDK || PHOTOGRAPH_PIN
  4306. #ifdef DOGLCD
  4307. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4308. gcode_M250();
  4309. break;
  4310. #endif // DOGLCD
  4311. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4312. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4313. gcode_M302();
  4314. break;
  4315. #endif // PREVENT_DANGEROUS_EXTRUDE
  4316. case 303: // M303 PID autotune
  4317. gcode_M303();
  4318. break;
  4319. #ifdef SCARA
  4320. case 360: // M360 SCARA Theta pos1
  4321. if (gcode_M360()) return;
  4322. break;
  4323. case 361: // M361 SCARA Theta pos2
  4324. if (gcode_M361()) return;
  4325. break;
  4326. case 362: // M362 SCARA Psi pos1
  4327. if (gcode_M362()) return;
  4328. break;
  4329. case 363: // M363 SCARA Psi pos2
  4330. if (gcode_M363()) return;
  4331. break;
  4332. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  4333. if (gcode_M364()) return;
  4334. break;
  4335. case 365: // M365 Set SCARA scaling for X Y Z
  4336. gcode_M365();
  4337. break;
  4338. #endif // SCARA
  4339. case 400: // M400 finish all moves
  4340. gcode_M400();
  4341. break;
  4342. #if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && not defined(Z_PROBE_SLED)
  4343. case 401:
  4344. gcode_M401();
  4345. break;
  4346. case 402:
  4347. gcode_M402();
  4348. break;
  4349. #endif
  4350. #ifdef FILAMENT_SENSOR
  4351. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4352. gcode_M404();
  4353. break;
  4354. case 405: //M405 Turn on filament sensor for control
  4355. gcode_M405();
  4356. break;
  4357. case 406: //M406 Turn off filament sensor for control
  4358. gcode_M406();
  4359. break;
  4360. case 407: //M407 Display measured filament diameter
  4361. gcode_M407();
  4362. break;
  4363. #endif // FILAMENT_SENSOR
  4364. case 500: // M500 Store settings in EEPROM
  4365. gcode_M500();
  4366. break;
  4367. case 501: // M501 Read settings from EEPROM
  4368. gcode_M501();
  4369. break;
  4370. case 502: // M502 Revert to default settings
  4371. gcode_M502();
  4372. break;
  4373. case 503: // M503 print settings currently in memory
  4374. gcode_M503();
  4375. break;
  4376. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4377. case 540:
  4378. gcode_M540();
  4379. break;
  4380. #endif
  4381. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4382. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4383. gcode_SET_Z_PROBE_OFFSET();
  4384. break;
  4385. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4386. #ifdef FILAMENTCHANGEENABLE
  4387. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4388. gcode_M600();
  4389. break;
  4390. #endif // FILAMENTCHANGEENABLE
  4391. #ifdef DUAL_X_CARRIAGE
  4392. case 605:
  4393. gcode_M605();
  4394. break;
  4395. #endif // DUAL_X_CARRIAGE
  4396. case 907: // M907 Set digital trimpot motor current using axis codes.
  4397. gcode_M907();
  4398. break;
  4399. #if HAS_DIGIPOTSS
  4400. case 908: // M908 Control digital trimpot directly.
  4401. gcode_M908();
  4402. break;
  4403. #endif // HAS_DIGIPOTSS
  4404. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4405. gcode_M350();
  4406. break;
  4407. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4408. gcode_M351();
  4409. break;
  4410. case 999: // M999: Restart after being Stopped
  4411. gcode_M999();
  4412. break;
  4413. }
  4414. }
  4415. else if (code_seen('T')) {
  4416. gcode_T();
  4417. }
  4418. else {
  4419. SERIAL_ECHO_START;
  4420. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  4421. SERIAL_ECHO(cmdbuffer[bufindr]);
  4422. SERIAL_ECHOLNPGM("\"");
  4423. }
  4424. ClearToSend();
  4425. }
  4426. void FlushSerialRequestResend()
  4427. {
  4428. //char cmdbuffer[bufindr][100]="Resend:";
  4429. MYSERIAL.flush();
  4430. SERIAL_PROTOCOLPGM(MSG_RESEND);
  4431. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  4432. ClearToSend();
  4433. }
  4434. void ClearToSend()
  4435. {
  4436. previous_millis_cmd = millis();
  4437. #ifdef SDSUPPORT
  4438. if(fromsd[bufindr])
  4439. return;
  4440. #endif //SDSUPPORT
  4441. SERIAL_PROTOCOLLNPGM(MSG_OK);
  4442. }
  4443. void get_coordinates() {
  4444. for (int i = 0; i < NUM_AXIS; i++) {
  4445. if (code_seen(axis_codes[i]))
  4446. destination[i] = code_value() + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  4447. else
  4448. destination[i] = current_position[i];
  4449. }
  4450. if (code_seen('F')) {
  4451. next_feedrate = code_value();
  4452. if (next_feedrate > 0.0) feedrate = next_feedrate;
  4453. }
  4454. }
  4455. void get_arc_coordinates()
  4456. {
  4457. #ifdef SF_ARC_FIX
  4458. bool relative_mode_backup = relative_mode;
  4459. relative_mode = true;
  4460. #endif
  4461. get_coordinates();
  4462. #ifdef SF_ARC_FIX
  4463. relative_mode=relative_mode_backup;
  4464. #endif
  4465. if(code_seen('I')) {
  4466. offset[0] = code_value();
  4467. }
  4468. else {
  4469. offset[0] = 0.0;
  4470. }
  4471. if(code_seen('J')) {
  4472. offset[1] = code_value();
  4473. }
  4474. else {
  4475. offset[1] = 0.0;
  4476. }
  4477. }
  4478. void clamp_to_software_endstops(float target[3])
  4479. {
  4480. if (min_software_endstops) {
  4481. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  4482. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  4483. float negative_z_offset = 0;
  4484. #ifdef ENABLE_AUTO_BED_LEVELING
  4485. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  4486. if (home_offset[Z_AXIS] < 0) negative_z_offset = negative_z_offset + home_offset[Z_AXIS];
  4487. #endif
  4488. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  4489. }
  4490. if (max_software_endstops) {
  4491. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  4492. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  4493. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  4494. }
  4495. }
  4496. #ifdef DELTA
  4497. void recalc_delta_settings(float radius, float diagonal_rod)
  4498. {
  4499. delta_tower1_x= -SIN_60*radius; // front left tower
  4500. delta_tower1_y= -COS_60*radius;
  4501. delta_tower2_x= SIN_60*radius; // front right tower
  4502. delta_tower2_y= -COS_60*radius;
  4503. delta_tower3_x= 0.0; // back middle tower
  4504. delta_tower3_y= radius;
  4505. delta_diagonal_rod_2= sq(diagonal_rod);
  4506. }
  4507. void calculate_delta(float cartesian[3])
  4508. {
  4509. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  4510. - sq(delta_tower1_x-cartesian[X_AXIS])
  4511. - sq(delta_tower1_y-cartesian[Y_AXIS])
  4512. ) + cartesian[Z_AXIS];
  4513. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  4514. - sq(delta_tower2_x-cartesian[X_AXIS])
  4515. - sq(delta_tower2_y-cartesian[Y_AXIS])
  4516. ) + cartesian[Z_AXIS];
  4517. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  4518. - sq(delta_tower3_x-cartesian[X_AXIS])
  4519. - sq(delta_tower3_y-cartesian[Y_AXIS])
  4520. ) + cartesian[Z_AXIS];
  4521. /*
  4522. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4523. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4524. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4525. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4526. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4527. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4528. */
  4529. }
  4530. #ifdef ENABLE_AUTO_BED_LEVELING
  4531. // Adjust print surface height by linear interpolation over the bed_level array.
  4532. int delta_grid_spacing[2] = { 0, 0 };
  4533. void adjust_delta(float cartesian[3])
  4534. {
  4535. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0)
  4536. return; // G29 not done
  4537. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  4538. float grid_x = max(0.001-half, min(half-0.001, cartesian[X_AXIS] / delta_grid_spacing[0]));
  4539. float grid_y = max(0.001-half, min(half-0.001, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  4540. int floor_x = floor(grid_x);
  4541. int floor_y = floor(grid_y);
  4542. float ratio_x = grid_x - floor_x;
  4543. float ratio_y = grid_y - floor_y;
  4544. float z1 = bed_level[floor_x+half][floor_y+half];
  4545. float z2 = bed_level[floor_x+half][floor_y+half+1];
  4546. float z3 = bed_level[floor_x+half+1][floor_y+half];
  4547. float z4 = bed_level[floor_x+half+1][floor_y+half+1];
  4548. float left = (1-ratio_y)*z1 + ratio_y*z2;
  4549. float right = (1-ratio_y)*z3 + ratio_y*z4;
  4550. float offset = (1-ratio_x)*left + ratio_x*right;
  4551. delta[X_AXIS] += offset;
  4552. delta[Y_AXIS] += offset;
  4553. delta[Z_AXIS] += offset;
  4554. /*
  4555. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  4556. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  4557. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  4558. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  4559. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  4560. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  4561. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  4562. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  4563. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  4564. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  4565. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  4566. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  4567. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  4568. */
  4569. }
  4570. #endif //ENABLE_AUTO_BED_LEVELING
  4571. void prepare_move_raw()
  4572. {
  4573. previous_millis_cmd = millis();
  4574. calculate_delta(destination);
  4575. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  4576. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  4577. active_extruder);
  4578. for(int8_t i=0; i < NUM_AXIS; i++) {
  4579. current_position[i] = destination[i];
  4580. }
  4581. }
  4582. #endif //DELTA
  4583. #if defined(MESH_BED_LEVELING)
  4584. #if !defined(MIN)
  4585. #define MIN(_v1, _v2) (((_v1) < (_v2)) ? (_v1) : (_v2))
  4586. #endif // ! MIN
  4587. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  4588. void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t &extruder, uint8_t x_splits=0xff, uint8_t y_splits=0xff)
  4589. {
  4590. if (!mbl.active) {
  4591. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4592. for(int8_t i=0; i < NUM_AXIS; i++) {
  4593. current_position[i] = destination[i];
  4594. }
  4595. return;
  4596. }
  4597. int pix = mbl.select_x_index(current_position[X_AXIS]);
  4598. int piy = mbl.select_y_index(current_position[Y_AXIS]);
  4599. int ix = mbl.select_x_index(x);
  4600. int iy = mbl.select_y_index(y);
  4601. pix = MIN(pix, MESH_NUM_X_POINTS-2);
  4602. piy = MIN(piy, MESH_NUM_Y_POINTS-2);
  4603. ix = MIN(ix, MESH_NUM_X_POINTS-2);
  4604. iy = MIN(iy, MESH_NUM_Y_POINTS-2);
  4605. if (pix == ix && piy == iy) {
  4606. // Start and end on same mesh square
  4607. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4608. for(int8_t i=0; i < NUM_AXIS; i++) {
  4609. current_position[i] = destination[i];
  4610. }
  4611. return;
  4612. }
  4613. float nx, ny, ne, normalized_dist;
  4614. if (ix > pix && (x_splits) & BIT(ix)) {
  4615. nx = mbl.get_x(ix);
  4616. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  4617. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  4618. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4619. x_splits ^= BIT(ix);
  4620. } else if (ix < pix && (x_splits) & BIT(pix)) {
  4621. nx = mbl.get_x(pix);
  4622. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  4623. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  4624. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4625. x_splits ^= BIT(pix);
  4626. } else if (iy > piy && (y_splits) & BIT(iy)) {
  4627. ny = mbl.get_y(iy);
  4628. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  4629. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  4630. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4631. y_splits ^= BIT(iy);
  4632. } else if (iy < piy && (y_splits) & BIT(piy)) {
  4633. ny = mbl.get_y(piy);
  4634. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  4635. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  4636. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4637. y_splits ^= BIT(piy);
  4638. } else {
  4639. // Already split on a border
  4640. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4641. for(int8_t i=0; i < NUM_AXIS; i++) {
  4642. current_position[i] = destination[i];
  4643. }
  4644. return;
  4645. }
  4646. // Do the split and look for more borders
  4647. destination[X_AXIS] = nx;
  4648. destination[Y_AXIS] = ny;
  4649. destination[E_AXIS] = ne;
  4650. mesh_plan_buffer_line(nx, ny, z, ne, feed_rate, extruder, x_splits, y_splits);
  4651. destination[X_AXIS] = x;
  4652. destination[Y_AXIS] = y;
  4653. destination[E_AXIS] = e;
  4654. mesh_plan_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
  4655. }
  4656. #endif // MESH_BED_LEVELING
  4657. void prepare_move()
  4658. {
  4659. clamp_to_software_endstops(destination);
  4660. previous_millis_cmd = millis();
  4661. #ifdef SCARA //for now same as delta-code
  4662. float difference[NUM_AXIS];
  4663. for (int8_t i = 0; i < NUM_AXIS; i++) difference[i] = destination[i] - current_position[i];
  4664. float cartesian_mm = sqrt( sq(difference[X_AXIS]) +
  4665. sq(difference[Y_AXIS]) +
  4666. sq(difference[Z_AXIS]));
  4667. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  4668. if (cartesian_mm < 0.000001) { return; }
  4669. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  4670. int steps = max(1, int(scara_segments_per_second * seconds));
  4671. //SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  4672. //SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  4673. //SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  4674. for (int s = 1; s <= steps; s++) {
  4675. float fraction = float(s) / float(steps);
  4676. for(int8_t i = 0; i < NUM_AXIS; i++) {
  4677. destination[i] = current_position[i] + difference[i] * fraction;
  4678. }
  4679. calculate_delta(destination);
  4680. //SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]);
  4681. //SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]);
  4682. //SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]);
  4683. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  4684. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  4685. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4686. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  4687. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  4688. active_extruder);
  4689. }
  4690. #endif // SCARA
  4691. #ifdef DELTA
  4692. float difference[NUM_AXIS];
  4693. for (int8_t i=0; i < NUM_AXIS; i++) difference[i] = destination[i] - current_position[i];
  4694. float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
  4695. sq(difference[Y_AXIS]) +
  4696. sq(difference[Z_AXIS]));
  4697. if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
  4698. if (cartesian_mm < 0.000001) return;
  4699. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  4700. int steps = max(1, int(delta_segments_per_second * seconds));
  4701. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  4702. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  4703. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  4704. for (int s = 1; s <= steps; s++) {
  4705. float fraction = float(s) / float(steps);
  4706. for (int8_t i = 0; i < NUM_AXIS; i++) destination[i] = current_position[i] + difference[i] * fraction;
  4707. calculate_delta(destination);
  4708. #ifdef ENABLE_AUTO_BED_LEVELING
  4709. adjust_delta(destination);
  4710. #endif
  4711. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  4712. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  4713. active_extruder);
  4714. }
  4715. #endif // DELTA
  4716. #ifdef DUAL_X_CARRIAGE
  4717. if (active_extruder_parked)
  4718. {
  4719. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
  4720. {
  4721. // move duplicate extruder into correct duplication position.
  4722. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4723. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
  4724. current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  4725. sync_plan_position();
  4726. st_synchronize();
  4727. extruder_duplication_enabled = true;
  4728. active_extruder_parked = false;
  4729. }
  4730. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
  4731. {
  4732. if (current_position[E_AXIS] == destination[E_AXIS])
  4733. {
  4734. // this is a travel move - skit it but keep track of current position (so that it can later
  4735. // be used as start of first non-travel move)
  4736. if (delayed_move_time != 0xFFFFFFFFUL)
  4737. {
  4738. memcpy(current_position, destination, sizeof(current_position));
  4739. if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
  4740. raised_parked_position[Z_AXIS] = destination[Z_AXIS];
  4741. delayed_move_time = millis();
  4742. return;
  4743. }
  4744. }
  4745. delayed_move_time = 0;
  4746. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  4747. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4748. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
  4749. current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
  4750. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  4751. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4752. active_extruder_parked = false;
  4753. }
  4754. }
  4755. #endif //DUAL_X_CARRIAGE
  4756. #if ! (defined DELTA || defined SCARA)
  4757. // Do not use feedmultiply for E or Z only moves
  4758. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  4759. line_to_destination();
  4760. } else {
  4761. #if defined(MESH_BED_LEVELING)
  4762. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedmultiply/100.0), active_extruder);
  4763. return;
  4764. #else
  4765. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedmultiply/100.0), active_extruder);
  4766. #endif // MESH_BED_LEVELING
  4767. }
  4768. #endif // !(DELTA || SCARA)
  4769. for(int8_t i=0; i < NUM_AXIS; i++) {
  4770. current_position[i] = destination[i];
  4771. }
  4772. }
  4773. void prepare_arc_move(char isclockwise) {
  4774. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  4775. // Trace the arc
  4776. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  4777. // As far as the parser is concerned, the position is now == target. In reality the
  4778. // motion control system might still be processing the action and the real tool position
  4779. // in any intermediate location.
  4780. for(int8_t i=0; i < NUM_AXIS; i++) {
  4781. current_position[i] = destination[i];
  4782. }
  4783. previous_millis_cmd = millis();
  4784. }
  4785. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4786. #if defined(FAN_PIN)
  4787. #if CONTROLLERFAN_PIN == FAN_PIN
  4788. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  4789. #endif
  4790. #endif
  4791. unsigned long lastMotor = 0; // Last time a motor was turned on
  4792. unsigned long lastMotorCheck = 0; // Last time the state was checked
  4793. void controllerFan() {
  4794. uint32_t ms = millis();
  4795. if (ms >= lastMotorCheck + 2500) { // Not a time critical function, so we only check every 2500ms
  4796. lastMotorCheck = ms;
  4797. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || soft_pwm_bed > 0
  4798. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  4799. #if EXTRUDERS > 1
  4800. || E1_ENABLE_READ == E_ENABLE_ON
  4801. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  4802. || X2_ENABLE_READ == X_ENABLE_ON
  4803. #endif
  4804. #if EXTRUDERS > 2
  4805. || E2_ENABLE_READ == E_ENABLE_ON
  4806. #if EXTRUDERS > 3
  4807. || E3_ENABLE_READ == E_ENABLE_ON
  4808. #endif
  4809. #endif
  4810. #endif
  4811. ) {
  4812. lastMotor = ms; //... set time to NOW so the fan will turn on
  4813. }
  4814. uint8_t speed = (lastMotor == 0 || ms >= lastMotor + (CONTROLLERFAN_SECS * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  4815. // allows digital or PWM fan output to be used (see M42 handling)
  4816. digitalWrite(CONTROLLERFAN_PIN, speed);
  4817. analogWrite(CONTROLLERFAN_PIN, speed);
  4818. }
  4819. }
  4820. #endif
  4821. #ifdef SCARA
  4822. void calculate_SCARA_forward_Transform(float f_scara[3])
  4823. {
  4824. // Perform forward kinematics, and place results in delta[3]
  4825. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  4826. float x_sin, x_cos, y_sin, y_cos;
  4827. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  4828. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  4829. x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  4830. x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  4831. y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  4832. y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  4833. // SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  4834. // SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  4835. // SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  4836. // SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  4837. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  4838. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  4839. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  4840. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  4841. }
  4842. void calculate_delta(float cartesian[3]){
  4843. //reverse kinematics.
  4844. // Perform reversed kinematics, and place results in delta[3]
  4845. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  4846. float SCARA_pos[2];
  4847. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  4848. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  4849. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  4850. #if (Linkage_1 == Linkage_2)
  4851. SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
  4852. #else
  4853. SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000;
  4854. #endif
  4855. SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
  4856. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  4857. SCARA_K2 = Linkage_2 * SCARA_S2;
  4858. SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
  4859. SCARA_psi = atan2(SCARA_S2,SCARA_C2);
  4860. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  4861. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  4862. delta[Z_AXIS] = cartesian[Z_AXIS];
  4863. /*
  4864. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4865. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4866. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4867. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  4868. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  4869. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4870. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4871. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4872. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  4873. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  4874. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  4875. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  4876. SERIAL_ECHOLN(" ");*/
  4877. }
  4878. #endif
  4879. #ifdef TEMP_STAT_LEDS
  4880. static bool blue_led = false;
  4881. static bool red_led = false;
  4882. static uint32_t stat_update = 0;
  4883. void handle_status_leds(void) {
  4884. float max_temp = 0.0;
  4885. if(millis() > stat_update) {
  4886. stat_update += 500; // Update every 0.5s
  4887. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4888. max_temp = max(max_temp, degHotend(cur_extruder));
  4889. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  4890. }
  4891. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4892. max_temp = max(max_temp, degTargetBed());
  4893. max_temp = max(max_temp, degBed());
  4894. #endif
  4895. if((max_temp > 55.0) && (red_led == false)) {
  4896. digitalWrite(STAT_LED_RED, 1);
  4897. digitalWrite(STAT_LED_BLUE, 0);
  4898. red_led = true;
  4899. blue_led = false;
  4900. }
  4901. if((max_temp < 54.0) && (blue_led == false)) {
  4902. digitalWrite(STAT_LED_RED, 0);
  4903. digitalWrite(STAT_LED_BLUE, 1);
  4904. red_led = false;
  4905. blue_led = true;
  4906. }
  4907. }
  4908. }
  4909. #endif
  4910. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  4911. {
  4912. #if defined(KILL_PIN) && KILL_PIN > -1
  4913. static int killCount = 0; // make the inactivity button a bit less responsive
  4914. const int KILL_DELAY = 750;
  4915. #endif
  4916. #if defined(FILRUNOUT_PIN) && FILRUNOUT_PIN > -1
  4917. if(card.sdprinting) {
  4918. if(!(READ(FILRUNOUT_PIN))^FIL_RUNOUT_INVERTING)
  4919. filrunout(); }
  4920. #endif
  4921. #if defined(HOME_PIN) && HOME_PIN > -1
  4922. static int homeDebounceCount = 0; // poor man's debouncing count
  4923. const int HOME_DEBOUNCE_DELAY = 750;
  4924. #endif
  4925. if(buflen < (BUFSIZE-1))
  4926. get_command();
  4927. if( (millis() - previous_millis_cmd) > max_inactive_time )
  4928. if(max_inactive_time)
  4929. kill();
  4930. if(stepper_inactive_time) {
  4931. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  4932. {
  4933. if(blocks_queued() == false && ignore_stepper_queue == false) {
  4934. disable_x();
  4935. disable_y();
  4936. disable_z();
  4937. disable_e0();
  4938. disable_e1();
  4939. disable_e2();
  4940. disable_e3();
  4941. }
  4942. }
  4943. }
  4944. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  4945. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  4946. {
  4947. chdkActive = false;
  4948. WRITE(CHDK, LOW);
  4949. }
  4950. #endif
  4951. #if defined(KILL_PIN) && KILL_PIN > -1
  4952. // Check if the kill button was pressed and wait just in case it was an accidental
  4953. // key kill key press
  4954. // -------------------------------------------------------------------------------
  4955. if( 0 == READ(KILL_PIN) )
  4956. {
  4957. killCount++;
  4958. }
  4959. else if (killCount > 0)
  4960. {
  4961. killCount--;
  4962. }
  4963. // Exceeded threshold and we can confirm that it was not accidental
  4964. // KILL the machine
  4965. // ----------------------------------------------------------------
  4966. if ( killCount >= KILL_DELAY)
  4967. {
  4968. kill();
  4969. }
  4970. #endif
  4971. #if defined(HOME_PIN) && HOME_PIN > -1
  4972. // Check to see if we have to home, use poor man's debouncer
  4973. // ---------------------------------------------------------
  4974. if ( 0 == READ(HOME_PIN) )
  4975. {
  4976. if (homeDebounceCount == 0)
  4977. {
  4978. enquecommands_P((PSTR("G28")));
  4979. homeDebounceCount++;
  4980. LCD_ALERTMESSAGEPGM(MSG_AUTO_HOME);
  4981. }
  4982. else if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  4983. {
  4984. homeDebounceCount++;
  4985. }
  4986. else
  4987. {
  4988. homeDebounceCount = 0;
  4989. }
  4990. }
  4991. #endif
  4992. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4993. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  4994. #endif
  4995. #ifdef EXTRUDER_RUNOUT_PREVENT
  4996. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  4997. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  4998. {
  4999. bool oldstatus=E0_ENABLE_READ;
  5000. enable_e0();
  5001. float oldepos=current_position[E_AXIS];
  5002. float oldedes=destination[E_AXIS];
  5003. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  5004. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  5005. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  5006. current_position[E_AXIS]=oldepos;
  5007. destination[E_AXIS]=oldedes;
  5008. plan_set_e_position(oldepos);
  5009. previous_millis_cmd=millis();
  5010. st_synchronize();
  5011. E0_ENABLE_WRITE(oldstatus);
  5012. }
  5013. #endif
  5014. #if defined(DUAL_X_CARRIAGE)
  5015. // handle delayed move timeout
  5016. if (delayed_move_time != 0 && (millis() - delayed_move_time) > 1000 && Stopped == false)
  5017. {
  5018. // travel moves have been received so enact them
  5019. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  5020. memcpy(destination,current_position,sizeof(destination));
  5021. prepare_move();
  5022. }
  5023. #endif
  5024. #ifdef TEMP_STAT_LEDS
  5025. handle_status_leds();
  5026. #endif
  5027. check_axes_activity();
  5028. }
  5029. void kill()
  5030. {
  5031. cli(); // Stop interrupts
  5032. disable_heater();
  5033. disable_x();
  5034. disable_y();
  5035. disable_z();
  5036. disable_e0();
  5037. disable_e1();
  5038. disable_e2();
  5039. disable_e3();
  5040. #if HAS_POWER_SWITCH
  5041. pinMode(PS_ON_PIN, INPUT);
  5042. #endif
  5043. SERIAL_ERROR_START;
  5044. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  5045. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  5046. // FMC small patch to update the LCD before ending
  5047. sei(); // enable interrupts
  5048. for (int i = 5; i--; lcd_update()) delay(200); // Wait a short time
  5049. cli(); // disable interrupts
  5050. suicide();
  5051. while(1) { /* Intentionally left empty */ } // Wait for reset
  5052. }
  5053. #ifdef FILAMENT_RUNOUT_SENSOR
  5054. void filrunout()
  5055. {
  5056. if filrunoutEnqued == false {
  5057. filrunoutEnqued = true;
  5058. enquecommand("M600");
  5059. }
  5060. }
  5061. #endif
  5062. void Stop()
  5063. {
  5064. disable_heater();
  5065. if(Stopped == false) {
  5066. Stopped = true;
  5067. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5068. SERIAL_ERROR_START;
  5069. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  5070. LCD_MESSAGEPGM(MSG_STOPPED);
  5071. }
  5072. }
  5073. bool IsStopped() { return Stopped; };
  5074. #ifdef FAST_PWM_FAN
  5075. void setPwmFrequency(uint8_t pin, int val)
  5076. {
  5077. val &= 0x07;
  5078. switch(digitalPinToTimer(pin))
  5079. {
  5080. #if defined(TCCR0A)
  5081. case TIMER0A:
  5082. case TIMER0B:
  5083. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5084. // TCCR0B |= val;
  5085. break;
  5086. #endif
  5087. #if defined(TCCR1A)
  5088. case TIMER1A:
  5089. case TIMER1B:
  5090. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5091. // TCCR1B |= val;
  5092. break;
  5093. #endif
  5094. #if defined(TCCR2)
  5095. case TIMER2:
  5096. case TIMER2:
  5097. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5098. TCCR2 |= val;
  5099. break;
  5100. #endif
  5101. #if defined(TCCR2A)
  5102. case TIMER2A:
  5103. case TIMER2B:
  5104. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5105. TCCR2B |= val;
  5106. break;
  5107. #endif
  5108. #if defined(TCCR3A)
  5109. case TIMER3A:
  5110. case TIMER3B:
  5111. case TIMER3C:
  5112. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5113. TCCR3B |= val;
  5114. break;
  5115. #endif
  5116. #if defined(TCCR4A)
  5117. case TIMER4A:
  5118. case TIMER4B:
  5119. case TIMER4C:
  5120. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5121. TCCR4B |= val;
  5122. break;
  5123. #endif
  5124. #if defined(TCCR5A)
  5125. case TIMER5A:
  5126. case TIMER5B:
  5127. case TIMER5C:
  5128. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5129. TCCR5B |= val;
  5130. break;
  5131. #endif
  5132. }
  5133. }
  5134. #endif //FAST_PWM_FAN
  5135. bool setTargetedHotend(int code){
  5136. tmp_extruder = active_extruder;
  5137. if(code_seen('T')) {
  5138. tmp_extruder = code_value();
  5139. if(tmp_extruder >= EXTRUDERS) {
  5140. SERIAL_ECHO_START;
  5141. switch(code){
  5142. case 104:
  5143. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  5144. break;
  5145. case 105:
  5146. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5147. break;
  5148. case 109:
  5149. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5150. break;
  5151. case 218:
  5152. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5153. break;
  5154. case 221:
  5155. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5156. break;
  5157. }
  5158. SERIAL_ECHOLN(tmp_extruder);
  5159. return true;
  5160. }
  5161. }
  5162. return false;
  5163. }
  5164. float calculate_volumetric_multiplier(float diameter) {
  5165. if (!volumetric_enabled || diameter == 0) return 1.0;
  5166. float d2 = diameter * 0.5;
  5167. return 1.0 / (M_PI * d2 * d2);
  5168. }
  5169. void calculate_volumetric_multipliers() {
  5170. for (int i=0; i<EXTRUDERS; i++)
  5171. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  5172. }