My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Вы не можете выбрать более 25 тем Темы должны начинаться с буквы или цифры, могут содержать дефисы(-) и должны содержать не более 35 символов.

Marlin_main.cpp 187KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #define SERVO_LEVELING defined(ENABLE_AUTO_BED_LEVELING) && PROBE_SERVO_DEACTIVATION_DELAY > 0
  31. #if defined(MESH_BED_LEVELING)
  32. #include "mesh_bed_leveling.h"
  33. #endif // MESH_BED_LEVELING
  34. #include "ultralcd.h"
  35. #include "planner.h"
  36. #include "stepper.h"
  37. #include "temperature.h"
  38. #include "motion_control.h"
  39. #include "cardreader.h"
  40. #include "watchdog.h"
  41. #include "ConfigurationStore.h"
  42. #include "language.h"
  43. #include "pins_arduino.h"
  44. #include "math.h"
  45. #ifdef BLINKM
  46. #include "BlinkM.h"
  47. #include "Wire.h"
  48. #endif
  49. #if NUM_SERVOS > 0
  50. #include "Servo.h"
  51. #endif
  52. #if HAS_DIGIPOTSS
  53. #include <SPI.h>
  54. #endif
  55. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  56. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  57. //Implemented Codes
  58. //-------------------
  59. // G0 -> G1
  60. // G1 - Coordinated Movement X Y Z E
  61. // G2 - CW ARC
  62. // G3 - CCW ARC
  63. // G4 - Dwell S<seconds> or P<milliseconds>
  64. // G10 - retract filament according to settings of M207
  65. // G11 - retract recover filament according to settings of M208
  66. // G28 - Home all Axis
  67. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  68. // G30 - Single Z Probe, probes bed at current XY location.
  69. // G31 - Dock sled (Z_PROBE_SLED only)
  70. // G32 - Undock sled (Z_PROBE_SLED only)
  71. // G90 - Use Absolute Coordinates
  72. // G91 - Use Relative Coordinates
  73. // G92 - Set current position to coordinates given
  74. // M Codes
  75. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  76. // M1 - Same as M0
  77. // M17 - Enable/Power all stepper motors
  78. // M18 - Disable all stepper motors; same as M84
  79. // M20 - List SD card
  80. // M21 - Init SD card
  81. // M22 - Release SD card
  82. // M23 - Select SD file (M23 filename.g)
  83. // M24 - Start/resume SD print
  84. // M25 - Pause SD print
  85. // M26 - Set SD position in bytes (M26 S12345)
  86. // M27 - Report SD print status
  87. // M28 - Start SD write (M28 filename.g)
  88. // M29 - Stop SD write
  89. // M30 - Delete file from SD (M30 filename.g)
  90. // M31 - Output time since last M109 or SD card start to serial
  91. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  92. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  93. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  94. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  95. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  96. // M80 - Turn on Power Supply
  97. // M81 - Turn off Power Supply
  98. // M82 - Set E codes absolute (default)
  99. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  100. // M84 - Disable steppers until next move,
  101. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  102. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  103. // M92 - Set axis_steps_per_unit - same syntax as G92
  104. // M104 - Set extruder target temp
  105. // M105 - Read current temp
  106. // M106 - Fan on
  107. // M107 - Fan off
  108. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  109. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  110. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  111. // M112 - Emergency stop
  112. // M114 - Output current position to serial port
  113. // M115 - Capabilities string
  114. // M117 - display message
  115. // M119 - Output Endstop status to serial port
  116. // M120 - Enable endstop detection
  117. // M121 - Disable endstop detection
  118. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  119. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  120. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  121. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  122. // M140 - Set bed target temp
  123. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  124. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  125. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  126. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  127. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  128. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  129. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  130. // M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in mm/sec^2
  131. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  132. // M206 - Set additional homing offset
  133. // M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  134. // M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  135. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  136. // M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  137. // M220 S<factor in percent>- set speed factor override percentage
  138. // M221 S<factor in percent>- set extrude factor override percentage
  139. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  140. // M240 - Trigger a camera to take a photograph
  141. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  142. // M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  143. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  144. // M301 - Set PID parameters P I and D
  145. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  146. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  147. // M304 - Set bed PID parameters P I and D
  148. // M380 - Activate solenoid on active extruder
  149. // M381 - Disable all solenoids
  150. // M400 - Finish all moves
  151. // M401 - Lower z-probe if present
  152. // M402 - Raise z-probe if present
  153. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  154. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  155. // M406 - Turn off Filament Sensor extrusion control
  156. // M407 - Displays measured filament diameter
  157. // M500 - Store parameters in EEPROM
  158. // M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  159. // M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  160. // M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  161. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  162. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  163. // M665 - Set delta configurations
  164. // M666 - Set delta endstop adjustment
  165. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  166. // M907 - Set digital trimpot motor current using axis codes.
  167. // M908 - Control digital trimpot directly.
  168. // M350 - Set microstepping mode.
  169. // M351 - Toggle MS1 MS2 pins directly.
  170. // ************ SCARA Specific - This can change to suit future G-code regulations
  171. // M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  172. // M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  173. // M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  174. // M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  175. // M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  176. // M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  177. //************* SCARA End ***************
  178. // M928 - Start SD logging (M928 filename.g) - ended by M29
  179. // M999 - Restart after being stopped by error
  180. #ifdef SDSUPPORT
  181. CardReader card;
  182. #endif
  183. float homing_feedrate[] = HOMING_FEEDRATE;
  184. #ifdef ENABLE_AUTO_BED_LEVELING
  185. int xy_travel_speed = XY_TRAVEL_SPEED;
  186. #endif
  187. int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  188. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  189. int feedmultiply = 100; //100->1 200->2
  190. int saved_feedmultiply;
  191. int extrudemultiply = 100; //100->1 200->2
  192. int extruder_multiply[EXTRUDERS] = { 100
  193. #if EXTRUDERS > 1
  194. , 100
  195. #if EXTRUDERS > 2
  196. , 100
  197. #if EXTRUDERS > 3
  198. , 100
  199. #endif
  200. #endif
  201. #endif
  202. };
  203. bool volumetric_enabled = false;
  204. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  205. #if EXTRUDERS > 1
  206. , DEFAULT_NOMINAL_FILAMENT_DIA
  207. #if EXTRUDERS > 2
  208. , DEFAULT_NOMINAL_FILAMENT_DIA
  209. #if EXTRUDERS > 3
  210. , DEFAULT_NOMINAL_FILAMENT_DIA
  211. #endif
  212. #endif
  213. #endif
  214. };
  215. float volumetric_multiplier[EXTRUDERS] = {1.0
  216. #if EXTRUDERS > 1
  217. , 1.0
  218. #if EXTRUDERS > 2
  219. , 1.0
  220. #if EXTRUDERS > 3
  221. , 1.0
  222. #endif
  223. #endif
  224. #endif
  225. };
  226. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  227. float home_offset[3] = { 0, 0, 0 };
  228. #ifdef DELTA
  229. float endstop_adj[3] = { 0, 0, 0 };
  230. #elif defined(Z_DUAL_ENDSTOPS)
  231. float z_endstop_adj = 0;
  232. #endif
  233. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  234. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  235. bool axis_known_position[3] = { false, false, false };
  236. float zprobe_zoffset;
  237. // Extruder offset
  238. #if EXTRUDERS > 1
  239. #ifndef DUAL_X_CARRIAGE
  240. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  241. #else
  242. #define NUM_EXTRUDER_OFFSETS 3 // supports offsets in XYZ plane
  243. #endif
  244. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  245. #if defined(EXTRUDER_OFFSET_X)
  246. EXTRUDER_OFFSET_X
  247. #else
  248. 0
  249. #endif
  250. ,
  251. #if defined(EXTRUDER_OFFSET_Y)
  252. EXTRUDER_OFFSET_Y
  253. #else
  254. 0
  255. #endif
  256. };
  257. #endif
  258. uint8_t active_extruder = 0;
  259. int fanSpeed = 0;
  260. #ifdef SERVO_ENDSTOPS
  261. int servo_endstops[] = SERVO_ENDSTOPS;
  262. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  263. #endif
  264. #ifdef BARICUDA
  265. int ValvePressure = 0;
  266. int EtoPPressure = 0;
  267. #endif
  268. #ifdef FWRETRACT
  269. bool autoretract_enabled = false;
  270. bool retracted[EXTRUDERS] = { false
  271. #if EXTRUDERS > 1
  272. , false
  273. #if EXTRUDERS > 2
  274. , false
  275. #if EXTRUDERS > 3
  276. , false
  277. #endif
  278. #endif
  279. #endif
  280. };
  281. bool retracted_swap[EXTRUDERS] = { false
  282. #if EXTRUDERS > 1
  283. , false
  284. #if EXTRUDERS > 2
  285. , false
  286. #if EXTRUDERS > 3
  287. , false
  288. #endif
  289. #endif
  290. #endif
  291. };
  292. float retract_length = RETRACT_LENGTH;
  293. float retract_length_swap = RETRACT_LENGTH_SWAP;
  294. float retract_feedrate = RETRACT_FEEDRATE;
  295. float retract_zlift = RETRACT_ZLIFT;
  296. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  297. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  298. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  299. #endif // FWRETRACT
  300. #ifdef ULTIPANEL
  301. bool powersupply =
  302. #ifdef PS_DEFAULT_OFF
  303. false
  304. #else
  305. true
  306. #endif
  307. ;
  308. #endif
  309. #ifdef DELTA
  310. float delta[3] = { 0, 0, 0 };
  311. #define SIN_60 0.8660254037844386
  312. #define COS_60 0.5
  313. // these are the default values, can be overriden with M665
  314. float delta_radius = DELTA_RADIUS;
  315. float delta_tower1_x = -SIN_60 * delta_radius; // front left tower
  316. float delta_tower1_y = -COS_60 * delta_radius;
  317. float delta_tower2_x = SIN_60 * delta_radius; // front right tower
  318. float delta_tower2_y = -COS_60 * delta_radius;
  319. float delta_tower3_x = 0; // back middle tower
  320. float delta_tower3_y = delta_radius;
  321. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  322. float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  323. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  324. #ifdef ENABLE_AUTO_BED_LEVELING
  325. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  326. #endif
  327. #endif
  328. #ifdef SCARA
  329. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  330. static float delta[3] = { 0, 0, 0 };
  331. #endif
  332. bool cancel_heatup = false;
  333. #ifdef FILAMENT_SENSOR
  334. //Variables for Filament Sensor input
  335. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  336. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  337. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  338. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  339. int delay_index1=0; //index into ring buffer
  340. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  341. float delay_dist=0; //delay distance counter
  342. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  343. #endif
  344. #ifdef FILAMENT_RUNOUT_SENSOR
  345. static bool filrunoutEnqued = false;
  346. #endif
  347. const char errormagic[] PROGMEM = "Error:";
  348. const char echomagic[] PROGMEM = "echo:";
  349. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  350. static float destination[NUM_AXIS] = { 0, 0, 0, 0 };
  351. static float offset[3] = { 0, 0, 0 };
  352. static bool home_all_axis = true;
  353. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  354. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  355. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  356. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  357. #ifdef SDSUPPORT
  358. static bool fromsd[BUFSIZE];
  359. #endif //!SDSUPPORT
  360. static int bufindr = 0;
  361. static int bufindw = 0;
  362. static int buflen = 0;
  363. static char serial_char;
  364. static int serial_count = 0;
  365. static boolean comment_mode = false;
  366. static char *strchr_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.)
  367. const char* queued_commands_P= NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */
  368. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  369. // Inactivity shutdown
  370. static unsigned long previous_millis_cmd = 0;
  371. static unsigned long max_inactive_time = 0;
  372. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  373. unsigned long starttime = 0; ///< Print job start time
  374. unsigned long stoptime = 0; ///< Print job stop time
  375. static uint8_t tmp_extruder;
  376. bool Stopped = false;
  377. #if NUM_SERVOS > 0
  378. Servo servos[NUM_SERVOS];
  379. #endif
  380. bool CooldownNoWait = true;
  381. bool target_direction;
  382. #ifdef CHDK
  383. unsigned long chdkHigh = 0;
  384. boolean chdkActive = false;
  385. #endif
  386. //===========================================================================
  387. //=============================Routines======================================
  388. //===========================================================================
  389. void get_arc_coordinates();
  390. bool setTargetedHotend(int code);
  391. void serial_echopair_P(const char *s_P, float v)
  392. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  393. void serial_echopair_P(const char *s_P, double v)
  394. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  395. void serial_echopair_P(const char *s_P, unsigned long v)
  396. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  397. #ifdef SDSUPPORT
  398. #include "SdFatUtil.h"
  399. int freeMemory() { return SdFatUtil::FreeRam(); }
  400. #else
  401. extern "C" {
  402. extern unsigned int __bss_end;
  403. extern unsigned int __heap_start;
  404. extern void *__brkval;
  405. int freeMemory() {
  406. int free_memory;
  407. if ((int)__brkval == 0)
  408. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  409. else
  410. free_memory = ((int)&free_memory) - ((int)__brkval);
  411. return free_memory;
  412. }
  413. }
  414. #endif //!SDSUPPORT
  415. //Injects the next command from the pending sequence of commands, when possible
  416. //Return false if and only if no command was pending
  417. static bool drain_queued_commands_P()
  418. {
  419. char cmd[30];
  420. if(!queued_commands_P)
  421. return false;
  422. // Get the next 30 chars from the sequence of gcodes to run
  423. strncpy_P(cmd, queued_commands_P, sizeof(cmd)-1);
  424. cmd[sizeof(cmd)-1]= 0;
  425. // Look for the end of line, or the end of sequence
  426. size_t i= 0;
  427. char c;
  428. while( (c= cmd[i]) && c!='\n' )
  429. ++i; // look for the end of this gcode command
  430. cmd[i]= 0;
  431. if(enquecommand(cmd)) // buffer was not full (else we will retry later)
  432. {
  433. if(c)
  434. queued_commands_P+= i+1; // move to next command
  435. else
  436. queued_commands_P= NULL; // will have no more commands in the sequence
  437. }
  438. return true;
  439. }
  440. //Record one or many commands to run from program memory.
  441. //Aborts the current queue, if any.
  442. //Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  443. void enquecommands_P(const char* pgcode)
  444. {
  445. queued_commands_P= pgcode;
  446. drain_queued_commands_P(); // first command exectuted asap (when possible)
  447. }
  448. //adds a single command to the main command buffer, from RAM
  449. //that is really done in a non-safe way.
  450. //needs overworking someday
  451. //Returns false if it failed to do so
  452. bool enquecommand(const char *cmd)
  453. {
  454. if(*cmd==';')
  455. return false;
  456. if(buflen >= BUFSIZE)
  457. return false;
  458. //this is dangerous if a mixing of serial and this happens
  459. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  460. SERIAL_ECHO_START;
  461. SERIAL_ECHOPGM(MSG_Enqueing);
  462. SERIAL_ECHO(cmdbuffer[bufindw]);
  463. SERIAL_ECHOLNPGM("\"");
  464. bufindw= (bufindw + 1)%BUFSIZE;
  465. buflen += 1;
  466. return true;
  467. }
  468. void setup_killpin()
  469. {
  470. #if defined(KILL_PIN) && KILL_PIN > -1
  471. SET_INPUT(KILL_PIN);
  472. WRITE(KILL_PIN,HIGH);
  473. #endif
  474. }
  475. void setup_filrunoutpin()
  476. {
  477. #if defined(FILRUNOUT_PIN) && FILRUNOUT_PIN > -1
  478. pinMode(FILRUNOUT_PIN,INPUT);
  479. #if defined(ENDSTOPPULLUP_FIL_RUNOUT)
  480. WRITE(FILLRUNOUT_PIN,HIGH);
  481. #endif
  482. #endif
  483. }
  484. // Set home pin
  485. void setup_homepin(void)
  486. {
  487. #if defined(HOME_PIN) && HOME_PIN > -1
  488. SET_INPUT(HOME_PIN);
  489. WRITE(HOME_PIN,HIGH);
  490. #endif
  491. }
  492. void setup_photpin()
  493. {
  494. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  495. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  496. #endif
  497. }
  498. void setup_powerhold()
  499. {
  500. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  501. OUT_WRITE(SUICIDE_PIN, HIGH);
  502. #endif
  503. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  504. #if defined(PS_DEFAULT_OFF)
  505. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  506. #else
  507. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  508. #endif
  509. #endif
  510. }
  511. void suicide()
  512. {
  513. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  514. OUT_WRITE(SUICIDE_PIN, LOW);
  515. #endif
  516. }
  517. void servo_init()
  518. {
  519. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  520. servos[0].attach(SERVO0_PIN);
  521. #endif
  522. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  523. servos[1].attach(SERVO1_PIN);
  524. #endif
  525. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  526. servos[2].attach(SERVO2_PIN);
  527. #endif
  528. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  529. servos[3].attach(SERVO3_PIN);
  530. #endif
  531. #if (NUM_SERVOS >= 5)
  532. #error "TODO: enter initalisation code for more servos"
  533. #endif
  534. // Set position of Servo Endstops that are defined
  535. #ifdef SERVO_ENDSTOPS
  536. for(int8_t i = 0; i < 3; i++)
  537. {
  538. if(servo_endstops[i] > -1) {
  539. servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  540. }
  541. }
  542. #endif
  543. #if SERVO_LEVELING
  544. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  545. servos[servo_endstops[Z_AXIS]].detach();
  546. #endif
  547. }
  548. void setup()
  549. {
  550. setup_killpin();
  551. setup_filrunoutpin();
  552. setup_powerhold();
  553. MYSERIAL.begin(BAUDRATE);
  554. SERIAL_PROTOCOLLNPGM("start");
  555. SERIAL_ECHO_START;
  556. // Check startup - does nothing if bootloader sets MCUSR to 0
  557. byte mcu = MCUSR;
  558. if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  559. if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  560. if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  561. if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  562. if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  563. MCUSR=0;
  564. SERIAL_ECHOPGM(MSG_MARLIN);
  565. SERIAL_ECHOLNPGM(STRING_VERSION);
  566. #ifdef STRING_VERSION_CONFIG_H
  567. #ifdef STRING_CONFIG_H_AUTHOR
  568. SERIAL_ECHO_START;
  569. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  570. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  571. SERIAL_ECHOPGM(MSG_AUTHOR);
  572. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  573. SERIAL_ECHOPGM("Compiled: ");
  574. SERIAL_ECHOLNPGM(__DATE__);
  575. #endif // STRING_CONFIG_H_AUTHOR
  576. #endif // STRING_VERSION_CONFIG_H
  577. SERIAL_ECHO_START;
  578. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  579. SERIAL_ECHO(freeMemory());
  580. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  581. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  582. #ifdef SDSUPPORT
  583. for(int8_t i = 0; i < BUFSIZE; i++)
  584. {
  585. fromsd[i] = false;
  586. }
  587. #endif //!SDSUPPORT
  588. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  589. Config_RetrieveSettings();
  590. tp_init(); // Initialize temperature loop
  591. plan_init(); // Initialize planner;
  592. watchdog_init();
  593. st_init(); // Initialize stepper, this enables interrupts!
  594. setup_photpin();
  595. servo_init();
  596. lcd_init();
  597. _delay_ms(1000); // wait 1sec to display the splash screen
  598. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  599. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  600. #endif
  601. #ifdef DIGIPOT_I2C
  602. digipot_i2c_init();
  603. #endif
  604. #ifdef Z_PROBE_SLED
  605. pinMode(SERVO0_PIN, OUTPUT);
  606. digitalWrite(SERVO0_PIN, LOW); // turn it off
  607. #endif // Z_PROBE_SLED
  608. setup_homepin();
  609. #ifdef STAT_LED_RED
  610. pinMode(STAT_LED_RED, OUTPUT);
  611. digitalWrite(STAT_LED_RED, LOW); // turn it off
  612. #endif
  613. #ifdef STAT_LED_BLUE
  614. pinMode(STAT_LED_BLUE, OUTPUT);
  615. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  616. #endif
  617. }
  618. void loop()
  619. {
  620. if(buflen < (BUFSIZE-1))
  621. get_command();
  622. #ifdef SDSUPPORT
  623. card.checkautostart(false);
  624. #endif
  625. if(buflen)
  626. {
  627. #ifdef SDSUPPORT
  628. if(card.saving)
  629. {
  630. if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
  631. {
  632. card.write_command(cmdbuffer[bufindr]);
  633. if(card.logging)
  634. {
  635. process_commands();
  636. }
  637. else
  638. {
  639. SERIAL_PROTOCOLLNPGM(MSG_OK);
  640. }
  641. }
  642. else
  643. {
  644. card.closefile();
  645. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  646. }
  647. }
  648. else
  649. {
  650. process_commands();
  651. }
  652. #else
  653. process_commands();
  654. #endif //SDSUPPORT
  655. buflen = (buflen-1);
  656. bufindr = (bufindr + 1)%BUFSIZE;
  657. }
  658. //check heater every n milliseconds
  659. manage_heater();
  660. manage_inactivity();
  661. checkHitEndstops();
  662. lcd_update();
  663. }
  664. void get_command()
  665. {
  666. if(drain_queued_commands_P()) // priority is given to non-serial commands
  667. return;
  668. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  669. serial_char = MYSERIAL.read();
  670. if(serial_char == '\n' ||
  671. serial_char == '\r' ||
  672. serial_count >= (MAX_CMD_SIZE - 1) )
  673. {
  674. // end of line == end of comment
  675. comment_mode = false;
  676. if(!serial_count) {
  677. // short cut for empty lines
  678. return;
  679. }
  680. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  681. #ifdef SDSUPPORT
  682. fromsd[bufindw] = false;
  683. #endif //!SDSUPPORT
  684. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  685. {
  686. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  687. gcode_N = (strtol(strchr_pointer + 1, NULL, 10));
  688. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  689. SERIAL_ERROR_START;
  690. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  691. SERIAL_ERRORLN(gcode_LastN);
  692. //Serial.println(gcode_N);
  693. FlushSerialRequestResend();
  694. serial_count = 0;
  695. return;
  696. }
  697. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  698. {
  699. byte checksum = 0;
  700. byte count = 0;
  701. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  702. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  703. if(strtol(strchr_pointer + 1, NULL, 10) != checksum) {
  704. SERIAL_ERROR_START;
  705. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  706. SERIAL_ERRORLN(gcode_LastN);
  707. FlushSerialRequestResend();
  708. serial_count = 0;
  709. return;
  710. }
  711. //if no errors, continue parsing
  712. }
  713. else
  714. {
  715. SERIAL_ERROR_START;
  716. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  717. SERIAL_ERRORLN(gcode_LastN);
  718. FlushSerialRequestResend();
  719. serial_count = 0;
  720. return;
  721. }
  722. gcode_LastN = gcode_N;
  723. //if no errors, continue parsing
  724. }
  725. else // if we don't receive 'N' but still see '*'
  726. {
  727. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  728. {
  729. SERIAL_ERROR_START;
  730. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  731. SERIAL_ERRORLN(gcode_LastN);
  732. serial_count = 0;
  733. return;
  734. }
  735. }
  736. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  737. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  738. switch(strtol(strchr_pointer + 1, NULL, 10)){
  739. case 0:
  740. case 1:
  741. case 2:
  742. case 3:
  743. if (Stopped == true) {
  744. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  745. LCD_MESSAGEPGM(MSG_STOPPED);
  746. }
  747. break;
  748. default:
  749. break;
  750. }
  751. }
  752. //If command was e-stop process now
  753. if(strcmp(cmdbuffer[bufindw], "M112") == 0)
  754. kill();
  755. bufindw = (bufindw + 1)%BUFSIZE;
  756. buflen += 1;
  757. serial_count = 0; //clear buffer
  758. }
  759. else if(serial_char == '\\') { //Handle escapes
  760. if(MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  761. // if we have one more character, copy it over
  762. serial_char = MYSERIAL.read();
  763. cmdbuffer[bufindw][serial_count++] = serial_char;
  764. }
  765. //otherwise do nothing
  766. }
  767. else { // its not a newline, carriage return or escape char
  768. if(serial_char == ';') comment_mode = true;
  769. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  770. }
  771. }
  772. #ifdef SDSUPPORT
  773. if(!card.sdprinting || serial_count!=0){
  774. return;
  775. }
  776. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  777. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  778. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  779. static bool stop_buffering=false;
  780. if(buflen==0) stop_buffering=false;
  781. while( !card.eof() && buflen < BUFSIZE && !stop_buffering) {
  782. int16_t n=card.get();
  783. serial_char = (char)n;
  784. if(serial_char == '\n' ||
  785. serial_char == '\r' ||
  786. (serial_char == '#' && comment_mode == false) ||
  787. (serial_char == ':' && comment_mode == false) ||
  788. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  789. {
  790. if(card.eof()){
  791. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  792. stoptime=millis();
  793. char time[30];
  794. unsigned long t=(stoptime-starttime)/1000;
  795. int hours, minutes;
  796. minutes=(t/60)%60;
  797. hours=t/60/60;
  798. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  799. SERIAL_ECHO_START;
  800. SERIAL_ECHOLN(time);
  801. lcd_setstatus(time);
  802. card.printingHasFinished();
  803. card.checkautostart(true);
  804. }
  805. if(serial_char=='#')
  806. stop_buffering=true;
  807. if(!serial_count)
  808. {
  809. comment_mode = false; //for new command
  810. return; //if empty line
  811. }
  812. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  813. // if(!comment_mode){
  814. fromsd[bufindw] = true;
  815. buflen += 1;
  816. bufindw = (bufindw + 1)%BUFSIZE;
  817. // }
  818. comment_mode = false; //for new command
  819. serial_count = 0; //clear buffer
  820. }
  821. else
  822. {
  823. if(serial_char == ';') comment_mode = true;
  824. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  825. }
  826. }
  827. #endif //SDSUPPORT
  828. }
  829. float code_value()
  830. {
  831. return (strtod(strchr_pointer + 1, NULL));
  832. }
  833. long code_value_long()
  834. {
  835. return (strtol(strchr_pointer + 1, NULL, 10));
  836. }
  837. bool code_seen(char code)
  838. {
  839. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  840. return (strchr_pointer != NULL); //Return True if a character was found
  841. }
  842. #define DEFINE_PGM_READ_ANY(type, reader) \
  843. static inline type pgm_read_any(const type *p) \
  844. { return pgm_read_##reader##_near(p); }
  845. DEFINE_PGM_READ_ANY(float, float);
  846. DEFINE_PGM_READ_ANY(signed char, byte);
  847. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  848. static const PROGMEM type array##_P[3] = \
  849. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  850. static inline type array(int axis) \
  851. { return pgm_read_any(&array##_P[axis]); }
  852. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  853. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  854. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  855. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  856. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  857. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  858. #ifdef DUAL_X_CARRIAGE
  859. #define DXC_FULL_CONTROL_MODE 0
  860. #define DXC_AUTO_PARK_MODE 1
  861. #define DXC_DUPLICATION_MODE 2
  862. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  863. static float x_home_pos(int extruder) {
  864. if (extruder == 0)
  865. return base_home_pos(X_AXIS) + home_offset[X_AXIS];
  866. else
  867. // In dual carriage mode the extruder offset provides an override of the
  868. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  869. // This allow soft recalibration of the second extruder offset position without firmware reflash
  870. // (through the M218 command).
  871. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  872. }
  873. static int x_home_dir(int extruder) {
  874. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  875. }
  876. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  877. static bool active_extruder_parked = false; // used in mode 1 & 2
  878. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  879. static unsigned long delayed_move_time = 0; // used in mode 1
  880. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  881. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  882. bool extruder_duplication_enabled = false; // used in mode 2
  883. #endif //DUAL_X_CARRIAGE
  884. static void axis_is_at_home(int axis) {
  885. #ifdef DUAL_X_CARRIAGE
  886. if (axis == X_AXIS) {
  887. if (active_extruder != 0) {
  888. current_position[X_AXIS] = x_home_pos(active_extruder);
  889. min_pos[X_AXIS] = X2_MIN_POS;
  890. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  891. return;
  892. }
  893. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  894. current_position[X_AXIS] = base_home_pos(X_AXIS) + home_offset[X_AXIS];
  895. min_pos[X_AXIS] = base_min_pos(X_AXIS) + home_offset[X_AXIS];
  896. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + home_offset[X_AXIS],
  897. max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  898. return;
  899. }
  900. }
  901. #endif
  902. #ifdef SCARA
  903. float homeposition[3];
  904. char i;
  905. if (axis < 2)
  906. {
  907. for (i=0; i<3; i++)
  908. {
  909. homeposition[i] = base_home_pos(i);
  910. }
  911. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  912. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  913. // Works out real Homeposition angles using inverse kinematics,
  914. // and calculates homing offset using forward kinematics
  915. calculate_delta(homeposition);
  916. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  917. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  918. for (i=0; i<2; i++)
  919. {
  920. delta[i] -= home_offset[i];
  921. }
  922. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
  923. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
  924. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  925. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  926. calculate_SCARA_forward_Transform(delta);
  927. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  928. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  929. current_position[axis] = delta[axis];
  930. // SCARA home positions are based on configuration since the actual limits are determined by the
  931. // inverse kinematic transform.
  932. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  933. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  934. }
  935. else
  936. {
  937. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  938. min_pos[axis] = base_min_pos(axis) + home_offset[axis];
  939. max_pos[axis] = base_max_pos(axis) + home_offset[axis];
  940. }
  941. #else
  942. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  943. min_pos[axis] = base_min_pos(axis) + home_offset[axis];
  944. max_pos[axis] = base_max_pos(axis) + home_offset[axis];
  945. #endif
  946. }
  947. #ifdef ENABLE_AUTO_BED_LEVELING
  948. #ifdef AUTO_BED_LEVELING_GRID
  949. #ifndef DELTA
  950. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  951. {
  952. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  953. planeNormal.debug("planeNormal");
  954. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  955. //bedLevel.debug("bedLevel");
  956. //plan_bed_level_matrix.debug("bed level before");
  957. //vector_3 uncorrected_position = plan_get_position_mm();
  958. //uncorrected_position.debug("position before");
  959. vector_3 corrected_position = plan_get_position();
  960. // corrected_position.debug("position after");
  961. current_position[X_AXIS] = corrected_position.x;
  962. current_position[Y_AXIS] = corrected_position.y;
  963. current_position[Z_AXIS] = corrected_position.z;
  964. // put the bed at 0 so we don't go below it.
  965. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  966. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  967. }
  968. #endif
  969. #else // not AUTO_BED_LEVELING_GRID
  970. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  971. plan_bed_level_matrix.set_to_identity();
  972. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  973. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  974. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  975. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  976. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  977. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  978. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  979. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  980. vector_3 corrected_position = plan_get_position();
  981. current_position[X_AXIS] = corrected_position.x;
  982. current_position[Y_AXIS] = corrected_position.y;
  983. current_position[Z_AXIS] = corrected_position.z;
  984. // put the bed at 0 so we don't go below it.
  985. current_position[Z_AXIS] = zprobe_zoffset;
  986. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  987. }
  988. #endif // AUTO_BED_LEVELING_GRID
  989. static void run_z_probe() {
  990. #ifdef DELTA
  991. float start_z = current_position[Z_AXIS];
  992. long start_steps = st_get_position(Z_AXIS);
  993. // move down slowly until you find the bed
  994. feedrate = homing_feedrate[Z_AXIS] / 4;
  995. destination[Z_AXIS] = -10;
  996. prepare_move_raw();
  997. st_synchronize();
  998. endstops_hit_on_purpose();
  999. // we have to let the planner know where we are right now as it is not where we said to go.
  1000. long stop_steps = st_get_position(Z_AXIS);
  1001. float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS];
  1002. current_position[Z_AXIS] = mm;
  1003. calculate_delta(current_position);
  1004. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1005. #else
  1006. plan_bed_level_matrix.set_to_identity();
  1007. feedrate = homing_feedrate[Z_AXIS];
  1008. // move down until you find the bed
  1009. float zPosition = -10;
  1010. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1011. st_synchronize();
  1012. // we have to let the planner know where we are right now as it is not where we said to go.
  1013. zPosition = st_get_position_mm(Z_AXIS);
  1014. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1015. // move up the retract distance
  1016. zPosition += home_retract_mm(Z_AXIS);
  1017. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1018. st_synchronize();
  1019. endstops_hit_on_purpose();
  1020. // move back down slowly to find bed
  1021. if (homing_bump_divisor[Z_AXIS] >= 1)
  1022. {
  1023. feedrate = homing_feedrate[Z_AXIS]/homing_bump_divisor[Z_AXIS];
  1024. }
  1025. else
  1026. {
  1027. feedrate = homing_feedrate[Z_AXIS]/10;
  1028. SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less then 1");
  1029. }
  1030. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1031. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1032. st_synchronize();
  1033. endstops_hit_on_purpose();
  1034. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1035. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1036. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1037. #endif
  1038. }
  1039. static void do_blocking_move_to(float x, float y, float z) {
  1040. float oldFeedRate = feedrate;
  1041. #ifdef DELTA
  1042. feedrate = XY_TRAVEL_SPEED;
  1043. destination[X_AXIS] = x;
  1044. destination[Y_AXIS] = y;
  1045. destination[Z_AXIS] = z;
  1046. prepare_move_raw();
  1047. st_synchronize();
  1048. #else
  1049. feedrate = homing_feedrate[Z_AXIS];
  1050. current_position[Z_AXIS] = z;
  1051. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1052. st_synchronize();
  1053. feedrate = xy_travel_speed;
  1054. current_position[X_AXIS] = x;
  1055. current_position[Y_AXIS] = y;
  1056. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1057. st_synchronize();
  1058. #endif
  1059. feedrate = oldFeedRate;
  1060. }
  1061. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1062. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1063. }
  1064. static void setup_for_endstop_move() {
  1065. saved_feedrate = feedrate;
  1066. saved_feedmultiply = feedmultiply;
  1067. feedmultiply = 100;
  1068. previous_millis_cmd = millis();
  1069. enable_endstops(true);
  1070. }
  1071. static void clean_up_after_endstop_move() {
  1072. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1073. enable_endstops(false);
  1074. #endif
  1075. feedrate = saved_feedrate;
  1076. feedmultiply = saved_feedmultiply;
  1077. previous_millis_cmd = millis();
  1078. }
  1079. static void engage_z_probe() {
  1080. // Engage Z Servo endstop if enabled
  1081. #ifdef SERVO_ENDSTOPS
  1082. if (servo_endstops[Z_AXIS] > -1) {
  1083. #if SERVO_LEVELING
  1084. servos[servo_endstops[Z_AXIS]].attach(0);
  1085. #endif
  1086. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  1087. #if SERVO_LEVELING
  1088. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1089. servos[servo_endstops[Z_AXIS]].detach();
  1090. #endif
  1091. }
  1092. #elif defined(Z_PROBE_ALLEN_KEY)
  1093. feedrate = homing_feedrate[X_AXIS];
  1094. // Move to the start position to initiate deployment
  1095. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_X;
  1096. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Y;
  1097. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Z;
  1098. prepare_move_raw();
  1099. // Home X to touch the belt
  1100. feedrate = homing_feedrate[X_AXIS]/10;
  1101. destination[X_AXIS] = 0;
  1102. prepare_move_raw();
  1103. // Home Y for safety
  1104. feedrate = homing_feedrate[X_AXIS]/2;
  1105. destination[Y_AXIS] = 0;
  1106. prepare_move_raw();
  1107. st_synchronize();
  1108. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1109. if (z_min_endstop)
  1110. {
  1111. if (!Stopped)
  1112. {
  1113. SERIAL_ERROR_START;
  1114. SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
  1115. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1116. }
  1117. Stop();
  1118. }
  1119. #endif
  1120. }
  1121. static void retract_z_probe() {
  1122. // Retract Z Servo endstop if enabled
  1123. #ifdef SERVO_ENDSTOPS
  1124. if (servo_endstops[Z_AXIS] > -1)
  1125. {
  1126. #if Z_RAISE_AFTER_PROBING > 0
  1127. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], Z_RAISE_AFTER_PROBING);
  1128. st_synchronize();
  1129. #endif
  1130. #if SERVO_LEVELING
  1131. servos[servo_endstops[Z_AXIS]].attach(0);
  1132. #endif
  1133. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  1134. #if SERVO_LEVELING
  1135. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1136. servos[servo_endstops[Z_AXIS]].detach();
  1137. #endif
  1138. }
  1139. #elif defined(Z_PROBE_ALLEN_KEY)
  1140. // Move up for safety
  1141. feedrate = homing_feedrate[X_AXIS];
  1142. destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING;
  1143. prepare_move_raw();
  1144. // Move to the start position to initiate retraction
  1145. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_X;
  1146. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_Y;
  1147. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_Z;
  1148. prepare_move_raw();
  1149. // Move the nozzle down to push the probe into retracted position
  1150. feedrate = homing_feedrate[Z_AXIS]/10;
  1151. destination[Z_AXIS] = current_position[Z_AXIS] - Z_PROBE_ALLEN_KEY_RETRACT_DEPTH;
  1152. prepare_move_raw();
  1153. // Move up for safety
  1154. feedrate = homing_feedrate[Z_AXIS]/2;
  1155. destination[Z_AXIS] = current_position[Z_AXIS] + Z_PROBE_ALLEN_KEY_RETRACT_DEPTH * 2;
  1156. prepare_move_raw();
  1157. // Home XY for safety
  1158. feedrate = homing_feedrate[X_AXIS]/2;
  1159. destination[X_AXIS] = 0;
  1160. destination[Y_AXIS] = 0;
  1161. prepare_move_raw();
  1162. st_synchronize();
  1163. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1164. if (!z_min_endstop)
  1165. {
  1166. if (!Stopped)
  1167. {
  1168. SERIAL_ERROR_START;
  1169. SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
  1170. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1171. }
  1172. Stop();
  1173. }
  1174. #endif
  1175. }
  1176. enum ProbeAction {
  1177. ProbeStay = 0,
  1178. ProbeEngage = BIT(0),
  1179. ProbeRetract = BIT(1),
  1180. ProbeEngageAndRetract = (ProbeEngage | ProbeRetract)
  1181. };
  1182. /// Probe bed height at position (x,y), returns the measured z value
  1183. static float probe_pt(float x, float y, float z_before, ProbeAction retract_action=ProbeEngageAndRetract, int verbose_level=1) {
  1184. // move to right place
  1185. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1186. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1187. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1188. if (retract_action & ProbeEngage) engage_z_probe();
  1189. #endif
  1190. run_z_probe();
  1191. float measured_z = current_position[Z_AXIS];
  1192. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1193. if (retract_action & ProbeRetract) retract_z_probe();
  1194. #endif
  1195. if (verbose_level > 2) {
  1196. SERIAL_PROTOCOLPGM(MSG_BED);
  1197. SERIAL_PROTOCOLPGM(" X: ");
  1198. SERIAL_PROTOCOL_F(x, 3);
  1199. SERIAL_PROTOCOLPGM(" Y: ");
  1200. SERIAL_PROTOCOL_F(y, 3);
  1201. SERIAL_PROTOCOLPGM(" Z: ");
  1202. SERIAL_PROTOCOL_F(measured_z, 3);
  1203. SERIAL_EOL;
  1204. }
  1205. return measured_z;
  1206. }
  1207. #ifdef DELTA
  1208. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1209. if (bed_level[x][y] != 0.0) {
  1210. return; // Don't overwrite good values.
  1211. }
  1212. float a = 2*bed_level[x+xdir][y] - bed_level[x+xdir*2][y]; // Left to right.
  1213. float b = 2*bed_level[x][y+ydir] - bed_level[x][y+ydir*2]; // Front to back.
  1214. float c = 2*bed_level[x+xdir][y+ydir] - bed_level[x+xdir*2][y+ydir*2]; // Diagonal.
  1215. float median = c; // Median is robust (ignores outliers).
  1216. if (a < b) {
  1217. if (b < c) median = b;
  1218. if (c < a) median = a;
  1219. } else { // b <= a
  1220. if (c < b) median = b;
  1221. if (a < c) median = a;
  1222. }
  1223. bed_level[x][y] = median;
  1224. }
  1225. // Fill in the unprobed points (corners of circular print surface)
  1226. // using linear extrapolation, away from the center.
  1227. static void extrapolate_unprobed_bed_level() {
  1228. int half = (AUTO_BED_LEVELING_GRID_POINTS-1)/2;
  1229. for (int y = 0; y <= half; y++) {
  1230. for (int x = 0; x <= half; x++) {
  1231. if (x + y < 3) continue;
  1232. extrapolate_one_point(half-x, half-y, x>1?+1:0, y>1?+1:0);
  1233. extrapolate_one_point(half+x, half-y, x>1?-1:0, y>1?+1:0);
  1234. extrapolate_one_point(half-x, half+y, x>1?+1:0, y>1?-1:0);
  1235. extrapolate_one_point(half+x, half+y, x>1?-1:0, y>1?-1:0);
  1236. }
  1237. }
  1238. }
  1239. // Print calibration results for plotting or manual frame adjustment.
  1240. static void print_bed_level() {
  1241. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1242. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1243. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1244. SERIAL_PROTOCOLPGM(" ");
  1245. }
  1246. SERIAL_ECHOLN("");
  1247. }
  1248. }
  1249. // Reset calibration results to zero.
  1250. void reset_bed_level() {
  1251. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1252. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1253. bed_level[x][y] = 0.0;
  1254. }
  1255. }
  1256. }
  1257. #endif // DELTA
  1258. #endif // ENABLE_AUTO_BED_LEVELING
  1259. static void homeaxis(int axis) {
  1260. #define HOMEAXIS_DO(LETTER) \
  1261. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1262. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  1263. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  1264. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  1265. 0) {
  1266. int axis_home_dir = home_dir(axis);
  1267. #ifdef DUAL_X_CARRIAGE
  1268. if (axis == X_AXIS)
  1269. axis_home_dir = x_home_dir(active_extruder);
  1270. #endif
  1271. current_position[axis] = 0;
  1272. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1273. #ifndef Z_PROBE_SLED
  1274. // Engage Servo endstop if enabled
  1275. #ifdef SERVO_ENDSTOPS
  1276. #if SERVO_LEVELING
  1277. if (axis==Z_AXIS) {
  1278. engage_z_probe();
  1279. }
  1280. else
  1281. #endif
  1282. if (servo_endstops[axis] > -1) {
  1283. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  1284. }
  1285. #endif
  1286. #endif // Z_PROBE_SLED
  1287. #ifdef Z_DUAL_ENDSTOPS
  1288. if (axis==Z_AXIS) In_Homing_Process(true);
  1289. #endif
  1290. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1291. feedrate = homing_feedrate[axis];
  1292. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1293. st_synchronize();
  1294. current_position[axis] = 0;
  1295. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1296. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1297. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1298. st_synchronize();
  1299. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1300. if (homing_bump_divisor[axis] >= 1)
  1301. {
  1302. feedrate = homing_feedrate[axis]/homing_bump_divisor[axis];
  1303. }
  1304. else
  1305. {
  1306. feedrate = homing_feedrate[axis]/10;
  1307. SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less then 1");
  1308. }
  1309. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1310. st_synchronize();
  1311. #ifdef Z_DUAL_ENDSTOPS
  1312. if (axis==Z_AXIS)
  1313. {
  1314. feedrate = homing_feedrate[axis];
  1315. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1316. if (axis_home_dir > 0)
  1317. {
  1318. destination[axis] = (-1) * fabs(z_endstop_adj);
  1319. if (z_endstop_adj > 0) Lock_z_motor(true); else Lock_z2_motor(true);
  1320. } else {
  1321. destination[axis] = fabs(z_endstop_adj);
  1322. if (z_endstop_adj < 0) Lock_z_motor(true); else Lock_z2_motor(true);
  1323. }
  1324. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1325. st_synchronize();
  1326. Lock_z_motor(false);
  1327. Lock_z2_motor(false);
  1328. In_Homing_Process(false);
  1329. }
  1330. #endif
  1331. #ifdef DELTA
  1332. // retrace by the amount specified in endstop_adj
  1333. if (endstop_adj[axis] * axis_home_dir < 0) {
  1334. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1335. destination[axis] = endstop_adj[axis];
  1336. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1337. st_synchronize();
  1338. }
  1339. #endif
  1340. axis_is_at_home(axis);
  1341. destination[axis] = current_position[axis];
  1342. feedrate = 0.0;
  1343. endstops_hit_on_purpose();
  1344. axis_known_position[axis] = true;
  1345. // Retract Servo endstop if enabled
  1346. #ifdef SERVO_ENDSTOPS
  1347. if (servo_endstops[axis] > -1) {
  1348. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  1349. }
  1350. #endif
  1351. #if SERVO_LEVELING
  1352. #ifndef Z_PROBE_SLED
  1353. if (axis==Z_AXIS) retract_z_probe();
  1354. #endif
  1355. #endif
  1356. }
  1357. }
  1358. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1359. void refresh_cmd_timeout(void)
  1360. {
  1361. previous_millis_cmd = millis();
  1362. }
  1363. #ifdef FWRETRACT
  1364. void retract(bool retracting, bool swapretract = false) {
  1365. if(retracting && !retracted[active_extruder]) {
  1366. destination[X_AXIS]=current_position[X_AXIS];
  1367. destination[Y_AXIS]=current_position[Y_AXIS];
  1368. destination[Z_AXIS]=current_position[Z_AXIS];
  1369. destination[E_AXIS]=current_position[E_AXIS];
  1370. if (swapretract) {
  1371. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1372. } else {
  1373. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1374. }
  1375. plan_set_e_position(current_position[E_AXIS]);
  1376. float oldFeedrate = feedrate;
  1377. feedrate=retract_feedrate*60;
  1378. retracted[active_extruder]=true;
  1379. prepare_move();
  1380. if(retract_zlift > 0.01) {
  1381. current_position[Z_AXIS]-=retract_zlift;
  1382. #ifdef DELTA
  1383. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  1384. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1385. #else
  1386. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1387. #endif
  1388. prepare_move();
  1389. }
  1390. feedrate = oldFeedrate;
  1391. } else if(!retracting && retracted[active_extruder]) {
  1392. destination[X_AXIS]=current_position[X_AXIS];
  1393. destination[Y_AXIS]=current_position[Y_AXIS];
  1394. destination[Z_AXIS]=current_position[Z_AXIS];
  1395. destination[E_AXIS]=current_position[E_AXIS];
  1396. if(retract_zlift > 0.01) {
  1397. current_position[Z_AXIS]+=retract_zlift;
  1398. #ifdef DELTA
  1399. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  1400. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1401. #else
  1402. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1403. #endif
  1404. //prepare_move();
  1405. }
  1406. if (swapretract) {
  1407. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1408. } else {
  1409. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1410. }
  1411. plan_set_e_position(current_position[E_AXIS]);
  1412. float oldFeedrate = feedrate;
  1413. feedrate=retract_recover_feedrate*60;
  1414. retracted[active_extruder]=false;
  1415. prepare_move();
  1416. feedrate = oldFeedrate;
  1417. }
  1418. } //retract
  1419. #endif //FWRETRACT
  1420. #ifdef Z_PROBE_SLED
  1421. #ifndef SLED_DOCKING_OFFSET
  1422. #define SLED_DOCKING_OFFSET 0
  1423. #endif
  1424. //
  1425. // Method to dock/undock a sled designed by Charles Bell.
  1426. //
  1427. // dock[in] If true, move to MAX_X and engage the electromagnet
  1428. // offset[in] The additional distance to move to adjust docking location
  1429. //
  1430. static void dock_sled(bool dock, int offset=0) {
  1431. int z_loc;
  1432. if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1433. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1434. SERIAL_ECHO_START;
  1435. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1436. return;
  1437. }
  1438. if (dock) {
  1439. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
  1440. current_position[Y_AXIS],
  1441. current_position[Z_AXIS]);
  1442. // turn off magnet
  1443. digitalWrite(SERVO0_PIN, LOW);
  1444. } else {
  1445. if (current_position[Z_AXIS] < (Z_RAISE_BEFORE_PROBING + 5))
  1446. z_loc = Z_RAISE_BEFORE_PROBING;
  1447. else
  1448. z_loc = current_position[Z_AXIS];
  1449. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
  1450. Y_PROBE_OFFSET_FROM_EXTRUDER, z_loc);
  1451. // turn on magnet
  1452. digitalWrite(SERVO0_PIN, HIGH);
  1453. }
  1454. }
  1455. #endif
  1456. /**
  1457. *
  1458. * G-Code Handler functions
  1459. *
  1460. */
  1461. /**
  1462. * G0, G1: Coordinated movement of X Y Z E axes
  1463. */
  1464. inline void gcode_G0_G1() {
  1465. if (!Stopped) {
  1466. get_coordinates(); // For X Y Z E F
  1467. #ifdef FWRETRACT
  1468. if (autoretract_enabled)
  1469. if (!(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1470. float echange = destination[E_AXIS] - current_position[E_AXIS];
  1471. // Is this move an attempt to retract or recover?
  1472. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  1473. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  1474. plan_set_e_position(current_position[E_AXIS]); // AND from the planner
  1475. retract(!retracted[active_extruder]);
  1476. return;
  1477. }
  1478. }
  1479. #endif //FWRETRACT
  1480. prepare_move();
  1481. //ClearToSend();
  1482. }
  1483. }
  1484. /**
  1485. * G2: Clockwise Arc
  1486. * G3: Counterclockwise Arc
  1487. */
  1488. inline void gcode_G2_G3(bool clockwise) {
  1489. if (!Stopped) {
  1490. get_arc_coordinates();
  1491. prepare_arc_move(clockwise);
  1492. }
  1493. }
  1494. /**
  1495. * G4: Dwell S<seconds> or P<milliseconds>
  1496. */
  1497. inline void gcode_G4() {
  1498. unsigned long codenum=0;
  1499. LCD_MESSAGEPGM(MSG_DWELL);
  1500. if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
  1501. if (code_seen('S')) codenum = code_value_long() * 1000; // seconds to wait
  1502. st_synchronize();
  1503. previous_millis_cmd = millis();
  1504. codenum += previous_millis_cmd; // keep track of when we started waiting
  1505. while(millis() < codenum) {
  1506. manage_heater();
  1507. manage_inactivity();
  1508. lcd_update();
  1509. }
  1510. }
  1511. #ifdef FWRETRACT
  1512. /**
  1513. * G10 - Retract filament according to settings of M207
  1514. * G11 - Recover filament according to settings of M208
  1515. */
  1516. inline void gcode_G10_G11(bool doRetract=false) {
  1517. #if EXTRUDERS > 1
  1518. if (doRetract) {
  1519. retracted_swap[active_extruder] = (code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  1520. }
  1521. #endif
  1522. retract(doRetract
  1523. #if EXTRUDERS > 1
  1524. , retracted_swap[active_extruder]
  1525. #endif
  1526. );
  1527. }
  1528. #endif //FWRETRACT
  1529. /**
  1530. * G28: Home all axes, one at a time
  1531. */
  1532. inline void gcode_G28() {
  1533. #ifdef ENABLE_AUTO_BED_LEVELING
  1534. #ifdef DELTA
  1535. reset_bed_level();
  1536. #else
  1537. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1538. #endif
  1539. #endif
  1540. #if defined(MESH_BED_LEVELING)
  1541. uint8_t mbl_was_active = mbl.active;
  1542. mbl.active = 0;
  1543. #endif // MESH_BED_LEVELING
  1544. saved_feedrate = feedrate;
  1545. saved_feedmultiply = feedmultiply;
  1546. feedmultiply = 100;
  1547. previous_millis_cmd = millis();
  1548. enable_endstops(true);
  1549. for (int i = X_AXIS; i < NUM_AXIS; i++) destination[i] = current_position[i];
  1550. feedrate = 0.0;
  1551. #ifdef DELTA
  1552. // A delta can only safely home all axis at the same time
  1553. // all axis have to home at the same time
  1554. // Move all carriages up together until the first endstop is hit.
  1555. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  1556. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1557. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * Z_MAX_LENGTH;
  1558. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1559. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1560. st_synchronize();
  1561. endstops_hit_on_purpose();
  1562. // Destination reached
  1563. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  1564. // take care of back off and rehome now we are all at the top
  1565. HOMEAXIS(X);
  1566. HOMEAXIS(Y);
  1567. HOMEAXIS(Z);
  1568. calculate_delta(current_position);
  1569. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1570. #else // NOT DELTA
  1571. home_all_axis = !(code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen(axis_codes[Z_AXIS]));
  1572. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1573. if (home_all_axis || code_seen(axis_codes[Z_AXIS])) {
  1574. HOMEAXIS(Z);
  1575. }
  1576. #endif
  1577. #ifdef QUICK_HOME
  1578. if (home_all_axis || code_seen(axis_codes[X_AXIS] && code_seen(axis_codes[Y_AXIS]))) { //first diagonal move
  1579. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  1580. #ifndef DUAL_X_CARRIAGE
  1581. int x_axis_home_dir = home_dir(X_AXIS);
  1582. #else
  1583. int x_axis_home_dir = x_home_dir(active_extruder);
  1584. extruder_duplication_enabled = false;
  1585. #endif
  1586. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1587. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;
  1588. destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1589. feedrate = homing_feedrate[X_AXIS];
  1590. if (homing_feedrate[Y_AXIS] < feedrate) feedrate = homing_feedrate[Y_AXIS];
  1591. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  1592. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  1593. } else {
  1594. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  1595. }
  1596. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1597. st_synchronize();
  1598. axis_is_at_home(X_AXIS);
  1599. axis_is_at_home(Y_AXIS);
  1600. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1601. destination[X_AXIS] = current_position[X_AXIS];
  1602. destination[Y_AXIS] = current_position[Y_AXIS];
  1603. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1604. feedrate = 0.0;
  1605. st_synchronize();
  1606. endstops_hit_on_purpose();
  1607. current_position[X_AXIS] = destination[X_AXIS];
  1608. current_position[Y_AXIS] = destination[Y_AXIS];
  1609. #ifndef SCARA
  1610. current_position[Z_AXIS] = destination[Z_AXIS];
  1611. #endif
  1612. }
  1613. #endif //QUICK_HOME
  1614. if ((home_all_axis) || (code_seen(axis_codes[X_AXIS]))) {
  1615. #ifdef DUAL_X_CARRIAGE
  1616. int tmp_extruder = active_extruder;
  1617. extruder_duplication_enabled = false;
  1618. active_extruder = !active_extruder;
  1619. HOMEAXIS(X);
  1620. inactive_extruder_x_pos = current_position[X_AXIS];
  1621. active_extruder = tmp_extruder;
  1622. HOMEAXIS(X);
  1623. // reset state used by the different modes
  1624. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1625. delayed_move_time = 0;
  1626. active_extruder_parked = true;
  1627. #else
  1628. HOMEAXIS(X);
  1629. #endif
  1630. }
  1631. if (home_all_axis || code_seen(axis_codes[Y_AXIS])) HOMEAXIS(Y);
  1632. if (code_seen(axis_codes[X_AXIS])) {
  1633. if (code_value_long() != 0) {
  1634. current_position[X_AXIS] = code_value()
  1635. #ifndef SCARA
  1636. + home_offset[X_AXIS]
  1637. #endif
  1638. ;
  1639. }
  1640. }
  1641. if (code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0) {
  1642. current_position[Y_AXIS] = code_value()
  1643. #ifndef SCARA
  1644. + home_offset[Y_AXIS]
  1645. #endif
  1646. ;
  1647. }
  1648. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1649. #ifndef Z_SAFE_HOMING
  1650. if (home_all_axis || code_seen(axis_codes[Z_AXIS])) {
  1651. #if defined(Z_RAISE_BEFORE_HOMING) && Z_RAISE_BEFORE_HOMING > 0
  1652. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1653. feedrate = max_feedrate[Z_AXIS];
  1654. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1655. st_synchronize();
  1656. #endif
  1657. HOMEAXIS(Z);
  1658. }
  1659. #else // Z_SAFE_HOMING
  1660. if (home_all_axis) {
  1661. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1662. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1663. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1664. feedrate = XY_TRAVEL_SPEED / 60;
  1665. current_position[Z_AXIS] = 0;
  1666. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1667. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1668. st_synchronize();
  1669. current_position[X_AXIS] = destination[X_AXIS];
  1670. current_position[Y_AXIS] = destination[Y_AXIS];
  1671. HOMEAXIS(Z);
  1672. }
  1673. // Let's see if X and Y are homed and probe is inside bed area.
  1674. if (code_seen(axis_codes[Z_AXIS])) {
  1675. if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) {
  1676. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  1677. if ( cpx >= X_MIN_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1678. && cpx <= X_MAX_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1679. && cpy >= Y_MIN_POS - Y_PROBE_OFFSET_FROM_EXTRUDER
  1680. && cpy <= Y_MAX_POS - Y_PROBE_OFFSET_FROM_EXTRUDER) {
  1681. current_position[Z_AXIS] = 0;
  1682. plan_set_position(cpx, cpy, current_position[Z_AXIS], current_position[E_AXIS]);
  1683. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1684. feedrate = max_feedrate[Z_AXIS];
  1685. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1686. st_synchronize();
  1687. HOMEAXIS(Z);
  1688. }
  1689. else {
  1690. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1691. SERIAL_ECHO_START;
  1692. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1693. }
  1694. }
  1695. else {
  1696. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1697. SERIAL_ECHO_START;
  1698. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1699. }
  1700. }
  1701. #endif // Z_SAFE_HOMING
  1702. #endif // Z_HOME_DIR < 0
  1703. if (code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
  1704. current_position[Z_AXIS] = code_value() + home_offset[Z_AXIS];
  1705. #if defined(ENABLE_AUTO_BED_LEVELING) && (Z_HOME_DIR < 0)
  1706. if (home_all_axis || code_seen(axis_codes[Z_AXIS]))
  1707. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  1708. #endif
  1709. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1710. #endif // else DELTA
  1711. #ifdef SCARA
  1712. calculate_delta(current_position);
  1713. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1714. #endif
  1715. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1716. enable_endstops(false);
  1717. #endif
  1718. #if defined(MESH_BED_LEVELING)
  1719. if (mbl_was_active) {
  1720. current_position[X_AXIS] = mbl.get_x(0);
  1721. current_position[Y_AXIS] = mbl.get_y(0);
  1722. destination[X_AXIS] = current_position[X_AXIS];
  1723. destination[Y_AXIS] = current_position[Y_AXIS];
  1724. destination[Z_AXIS] = current_position[Z_AXIS];
  1725. destination[E_AXIS] = current_position[E_AXIS];
  1726. feedrate = homing_feedrate[X_AXIS];
  1727. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1728. st_synchronize();
  1729. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1730. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1731. mbl.active = 1;
  1732. }
  1733. #endif
  1734. feedrate = saved_feedrate;
  1735. feedmultiply = saved_feedmultiply;
  1736. previous_millis_cmd = millis();
  1737. endstops_hit_on_purpose();
  1738. }
  1739. #if defined(MESH_BED_LEVELING)
  1740. inline void gcode_G29() {
  1741. static int probe_point = -1;
  1742. int state = 0;
  1743. if (code_seen('S') || code_seen('s')) {
  1744. state = code_value_long();
  1745. if (state < 0 || state > 2) {
  1746. SERIAL_PROTOCOLPGM("S out of range (0-2).\n");
  1747. return;
  1748. }
  1749. }
  1750. if (state == 0) { // Dump mesh_bed_leveling
  1751. if (mbl.active) {
  1752. SERIAL_PROTOCOLPGM("Num X,Y: ");
  1753. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  1754. SERIAL_PROTOCOLPGM(",");
  1755. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  1756. SERIAL_PROTOCOLPGM("\nZ search height: ");
  1757. SERIAL_PROTOCOL(MESH_HOME_SEARCH_Z);
  1758. SERIAL_PROTOCOLPGM("\nMeasured points:\n");
  1759. for (int y=0; y<MESH_NUM_Y_POINTS; y++) {
  1760. for (int x=0; x<MESH_NUM_X_POINTS; x++) {
  1761. SERIAL_PROTOCOLPGM(" ");
  1762. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  1763. }
  1764. SERIAL_EOL;
  1765. }
  1766. } else {
  1767. SERIAL_PROTOCOLPGM("Mesh bed leveling not active.\n");
  1768. }
  1769. } else if (state == 1) { // Begin probing mesh points
  1770. mbl.reset();
  1771. probe_point = 0;
  1772. enquecommands_P(PSTR("G28"));
  1773. enquecommands_P(PSTR("G29 S2"));
  1774. } else if (state == 2) { // Goto next point
  1775. if (probe_point < 0) {
  1776. SERIAL_PROTOCOLPGM("Mesh probing not started.\n");
  1777. return;
  1778. }
  1779. int ix, iy;
  1780. if (probe_point == 0) {
  1781. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1782. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1783. } else {
  1784. ix = (probe_point-1) % MESH_NUM_X_POINTS;
  1785. iy = (probe_point-1) / MESH_NUM_X_POINTS;
  1786. if (iy&1) { // Zig zag
  1787. ix = (MESH_NUM_X_POINTS - 1) - ix;
  1788. }
  1789. mbl.set_z(ix, iy, current_position[Z_AXIS]);
  1790. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1791. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  1792. st_synchronize();
  1793. }
  1794. if (probe_point == MESH_NUM_X_POINTS*MESH_NUM_Y_POINTS) {
  1795. SERIAL_PROTOCOLPGM("Mesh done.\n");
  1796. probe_point = -1;
  1797. mbl.active = 1;
  1798. enquecommands_P(PSTR("G28"));
  1799. return;
  1800. }
  1801. ix = probe_point % MESH_NUM_X_POINTS;
  1802. iy = probe_point / MESH_NUM_X_POINTS;
  1803. if (iy&1) { // Zig zag
  1804. ix = (MESH_NUM_X_POINTS - 1) - ix;
  1805. }
  1806. current_position[X_AXIS] = mbl.get_x(ix);
  1807. current_position[Y_AXIS] = mbl.get_y(iy);
  1808. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  1809. st_synchronize();
  1810. probe_point++;
  1811. }
  1812. }
  1813. #endif
  1814. #ifdef ENABLE_AUTO_BED_LEVELING
  1815. /**
  1816. * G29: Detailed Z-Probe, probes the bed at 3 or more points.
  1817. * Will fail if the printer has not been homed with G28.
  1818. *
  1819. * Enhanced G29 Auto Bed Leveling Probe Routine
  1820. *
  1821. * Parameters With AUTO_BED_LEVELING_GRID:
  1822. *
  1823. * P Set the size of the grid that will be probed (P x P points).
  1824. * Not supported by non-linear delta printer bed leveling.
  1825. * Example: "G29 P4"
  1826. *
  1827. * S Set the XY travel speed between probe points (in mm/min)
  1828. *
  1829. * D Dry-Run mode. Just evaluate the bed Topology - It does not apply or clean the rotation Matrix
  1830. * Useful to check the topology after a first run of G29.
  1831. *
  1832. * V Set the verbose level (0-4). Example: "G29 V3"
  1833. *
  1834. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  1835. * This is useful for manual bed leveling and finding flaws in the bed (to
  1836. * assist with part placement).
  1837. * Not supported by non-linear delta printer bed leveling.
  1838. *
  1839. * F Set the Front limit of the probing grid
  1840. * B Set the Back limit of the probing grid
  1841. * L Set the Left limit of the probing grid
  1842. * R Set the Right limit of the probing grid
  1843. *
  1844. * Global Parameters:
  1845. *
  1846. * E/e By default G29 engages / disengages the probe for each point.
  1847. * Include "E" to engage and disengage the probe just once.
  1848. * There's no extra effect if you have a fixed probe.
  1849. * Usage: "G29 E" or "G29 e"
  1850. *
  1851. */
  1852. inline void gcode_G29() {
  1853. // Prevent user from running a G29 without first homing in X and Y
  1854. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  1855. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1856. SERIAL_ECHO_START;
  1857. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1858. return;
  1859. }
  1860. int verbose_level = 1;
  1861. float x_tmp, y_tmp, z_tmp, real_z;
  1862. if (code_seen('V') || code_seen('v')) {
  1863. verbose_level = code_value_long();
  1864. if (verbose_level < 0 || verbose_level > 4) {
  1865. SERIAL_PROTOCOLPGM("?(V)erbose Level is implausible (0-4).\n");
  1866. return;
  1867. }
  1868. }
  1869. bool dryrun = code_seen('D') || code_seen('d');
  1870. bool enhanced_g29 = code_seen('E') || code_seen('e');
  1871. #ifdef AUTO_BED_LEVELING_GRID
  1872. #ifndef DELTA
  1873. bool do_topography_map = verbose_level > 2 || code_seen('T') || code_seen('t');
  1874. #endif
  1875. if (verbose_level > 0)
  1876. {
  1877. SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
  1878. if (dryrun) SERIAL_ECHOLN("Running in DRY-RUN mode");
  1879. }
  1880. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  1881. #ifndef DELTA
  1882. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_long();
  1883. if (auto_bed_leveling_grid_points < 2) {
  1884. SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
  1885. return;
  1886. }
  1887. #endif
  1888. xy_travel_speed = code_seen('S') ? code_value_long() : XY_TRAVEL_SPEED;
  1889. int left_probe_bed_position = code_seen('L') ? code_value_long() : LEFT_PROBE_BED_POSITION,
  1890. right_probe_bed_position = code_seen('R') ? code_value_long() : RIGHT_PROBE_BED_POSITION,
  1891. front_probe_bed_position = code_seen('F') ? code_value_long() : FRONT_PROBE_BED_POSITION,
  1892. back_probe_bed_position = code_seen('B') ? code_value_long() : BACK_PROBE_BED_POSITION;
  1893. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  1894. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - MIN_PROBE_EDGE,
  1895. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  1896. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  1897. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  1898. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - MIN_PROBE_EDGE,
  1899. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  1900. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  1901. if (left_out || right_out || front_out || back_out) {
  1902. if (left_out) {
  1903. SERIAL_PROTOCOLPGM("?Probe (L)eft position out of range.\n");
  1904. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - MIN_PROBE_EDGE;
  1905. }
  1906. if (right_out) {
  1907. SERIAL_PROTOCOLPGM("?Probe (R)ight position out of range.\n");
  1908. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  1909. }
  1910. if (front_out) {
  1911. SERIAL_PROTOCOLPGM("?Probe (F)ront position out of range.\n");
  1912. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - MIN_PROBE_EDGE;
  1913. }
  1914. if (back_out) {
  1915. SERIAL_PROTOCOLPGM("?Probe (B)ack position out of range.\n");
  1916. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  1917. }
  1918. return;
  1919. }
  1920. #endif // AUTO_BED_LEVELING_GRID
  1921. #ifdef Z_PROBE_SLED
  1922. dock_sled(false); // engage (un-dock) the probe
  1923. #elif defined(Z_PROBE_ALLEN_KEY)
  1924. engage_z_probe();
  1925. #endif
  1926. st_synchronize();
  1927. if (!dryrun)
  1928. {
  1929. #ifdef DELTA
  1930. reset_bed_level();
  1931. #else
  1932. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  1933. //vector_3 corrected_position = plan_get_position_mm();
  1934. //corrected_position.debug("position before G29");
  1935. plan_bed_level_matrix.set_to_identity();
  1936. vector_3 uncorrected_position = plan_get_position();
  1937. // uncorrected_position.debug("position during G29");
  1938. current_position[X_AXIS] = uncorrected_position.x;
  1939. current_position[Y_AXIS] = uncorrected_position.y;
  1940. current_position[Z_AXIS] = uncorrected_position.z;
  1941. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1942. #endif
  1943. }
  1944. setup_for_endstop_move();
  1945. feedrate = homing_feedrate[Z_AXIS];
  1946. #ifdef AUTO_BED_LEVELING_GRID
  1947. // probe at the points of a lattice grid
  1948. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points-1);
  1949. const int yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points-1);
  1950. #ifndef DELTA
  1951. // solve the plane equation ax + by + d = z
  1952. // A is the matrix with rows [x y 1] for all the probed points
  1953. // B is the vector of the Z positions
  1954. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1955. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1956. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  1957. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  1958. eqnBVector[abl2], // "B" vector of Z points
  1959. mean = 0.0;
  1960. #else
  1961. delta_grid_spacing[0] = xGridSpacing;
  1962. delta_grid_spacing[1] = yGridSpacing;
  1963. float z_offset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  1964. if (code_seen(axis_codes[Z_AXIS])) z_offset += code_value();
  1965. #endif
  1966. int probePointCounter = 0;
  1967. bool zig = true;
  1968. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  1969. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  1970. int xStart, xStop, xInc;
  1971. if (zig) {
  1972. xStart = 0;
  1973. xStop = auto_bed_leveling_grid_points;
  1974. xInc = 1;
  1975. }
  1976. else {
  1977. xStart = auto_bed_leveling_grid_points - 1;
  1978. xStop = -1;
  1979. xInc = -1;
  1980. }
  1981. #ifndef DELTA
  1982. // If do_topography_map is set then don't zig-zag. Just scan in one direction.
  1983. // This gets the probe points in more readable order.
  1984. if (!do_topography_map) zig = !zig;
  1985. #endif
  1986. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  1987. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  1988. // raise extruder
  1989. float measured_z,
  1990. z_before = probePointCounter == 0 ? Z_RAISE_BEFORE_PROBING : current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  1991. #ifdef DELTA
  1992. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  1993. float distance_from_center = sqrt(xProbe*xProbe + yProbe*yProbe);
  1994. if (distance_from_center > DELTA_PROBABLE_RADIUS)
  1995. continue;
  1996. #endif //DELTA
  1997. // Enhanced G29 - Do not retract servo between probes
  1998. ProbeAction act;
  1999. if (enhanced_g29) {
  2000. if (yProbe == front_probe_bed_position && xCount == 0)
  2001. act = ProbeEngage;
  2002. else if (yProbe == front_probe_bed_position + (yGridSpacing * (auto_bed_leveling_grid_points - 1)) && xCount == auto_bed_leveling_grid_points - 1)
  2003. act = ProbeRetract;
  2004. else
  2005. act = ProbeStay;
  2006. }
  2007. else
  2008. act = ProbeEngageAndRetract;
  2009. measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
  2010. #ifndef DELTA
  2011. mean += measured_z;
  2012. eqnBVector[probePointCounter] = measured_z;
  2013. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  2014. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  2015. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  2016. #else
  2017. bed_level[xCount][yCount] = measured_z + z_offset;
  2018. #endif
  2019. probePointCounter++;
  2020. } //xProbe
  2021. } //yProbe
  2022. clean_up_after_endstop_move();
  2023. #ifndef DELTA
  2024. // solve lsq problem
  2025. double *plane_equation_coefficients = qr_solve(abl2, 3, eqnAMatrix, eqnBVector);
  2026. mean /= abl2;
  2027. if (verbose_level) {
  2028. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2029. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  2030. SERIAL_PROTOCOLPGM(" b: ");
  2031. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  2032. SERIAL_PROTOCOLPGM(" d: ");
  2033. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  2034. SERIAL_EOL;
  2035. if (verbose_level > 2) {
  2036. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  2037. SERIAL_PROTOCOL_F(mean, 8);
  2038. SERIAL_EOL;
  2039. }
  2040. }
  2041. // Show the Topography map if enabled
  2042. if (do_topography_map) {
  2043. SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
  2044. SERIAL_PROTOCOLPGM("+-----------+\n");
  2045. SERIAL_PROTOCOLPGM("|...Back....|\n");
  2046. SERIAL_PROTOCOLPGM("|Left..Right|\n");
  2047. SERIAL_PROTOCOLPGM("|...Front...|\n");
  2048. SERIAL_PROTOCOLPGM("+-----------+\n");
  2049. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2050. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2051. int ind = yy * auto_bed_leveling_grid_points + xx;
  2052. float diff = eqnBVector[ind] - mean;
  2053. if (diff >= 0.0)
  2054. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  2055. else
  2056. SERIAL_PROTOCOLPGM(" ");
  2057. SERIAL_PROTOCOL_F(diff, 5);
  2058. } // xx
  2059. SERIAL_EOL;
  2060. } // yy
  2061. SERIAL_EOL;
  2062. } //do_topography_map
  2063. if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
  2064. free(plane_equation_coefficients);
  2065. #else //Delta
  2066. if (!dryrun) extrapolate_unprobed_bed_level();
  2067. print_bed_level();
  2068. #endif //Delta
  2069. #else // !AUTO_BED_LEVELING_GRID
  2070. // Probe at 3 arbitrary points
  2071. float z_at_pt_1, z_at_pt_2, z_at_pt_3;
  2072. if (enhanced_g29) {
  2073. // Basic Enhanced G29
  2074. z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, ProbeEngage, verbose_level);
  2075. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, ProbeStay, verbose_level);
  2076. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, ProbeRetract, verbose_level);
  2077. }
  2078. else {
  2079. z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, ProbeEngageAndRetract, verbose_level);
  2080. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, ProbeEngageAndRetract, verbose_level);
  2081. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, ProbeEngageAndRetract, verbose_level);
  2082. }
  2083. clean_up_after_endstop_move();
  2084. if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2085. #endif // !AUTO_BED_LEVELING_GRID
  2086. #ifndef DELTA
  2087. if (verbose_level > 0) plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
  2088. // Correct the Z height difference from z-probe position and hotend tip position.
  2089. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2090. // When the bed is uneven, this height must be corrected.
  2091. if (!dryrun)
  2092. {
  2093. real_z = float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2094. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  2095. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  2096. z_tmp = current_position[Z_AXIS];
  2097. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2098. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2099. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2100. }
  2101. #endif
  2102. #ifdef Z_PROBE_SLED
  2103. dock_sled(true, -SLED_DOCKING_OFFSET); // dock the probe, correcting for over-travel
  2104. #elif defined(Z_PROBE_ALLEN_KEY)
  2105. retract_z_probe();
  2106. #endif
  2107. #ifdef Z_PROBE_END_SCRIPT
  2108. enquecommands_P(PSTR(Z_PROBE_END_SCRIPT));
  2109. st_synchronize();
  2110. #endif
  2111. }
  2112. #ifndef Z_PROBE_SLED
  2113. inline void gcode_G30() {
  2114. engage_z_probe(); // Engage Z Servo endstop if available
  2115. st_synchronize();
  2116. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2117. setup_for_endstop_move();
  2118. feedrate = homing_feedrate[Z_AXIS];
  2119. run_z_probe();
  2120. SERIAL_PROTOCOLPGM(MSG_BED);
  2121. SERIAL_PROTOCOLPGM(" X: ");
  2122. SERIAL_PROTOCOL(current_position[X_AXIS] + 0.0001);
  2123. SERIAL_PROTOCOLPGM(" Y: ");
  2124. SERIAL_PROTOCOL(current_position[Y_AXIS] + 0.0001);
  2125. SERIAL_PROTOCOLPGM(" Z: ");
  2126. SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
  2127. SERIAL_EOL;
  2128. clean_up_after_endstop_move();
  2129. retract_z_probe(); // Retract Z Servo endstop if available
  2130. }
  2131. #endif //!Z_PROBE_SLED
  2132. #endif //ENABLE_AUTO_BED_LEVELING
  2133. /**
  2134. * G92: Set current position to given X Y Z E
  2135. */
  2136. inline void gcode_G92() {
  2137. if (!code_seen(axis_codes[E_AXIS]))
  2138. st_synchronize();
  2139. for (int i = 0; i < NUM_AXIS; i++) {
  2140. if (code_seen(axis_codes[i])) {
  2141. current_position[i] = code_value();
  2142. if (i == E_AXIS)
  2143. plan_set_e_position(current_position[E_AXIS]);
  2144. else
  2145. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2146. }
  2147. }
  2148. }
  2149. #ifdef ULTIPANEL
  2150. /**
  2151. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  2152. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  2153. */
  2154. inline void gcode_M0_M1() {
  2155. char *src = strchr_pointer + 2;
  2156. unsigned long codenum = 0;
  2157. bool hasP = false, hasS = false;
  2158. if (code_seen('P')) {
  2159. codenum = code_value(); // milliseconds to wait
  2160. hasP = codenum > 0;
  2161. }
  2162. if (code_seen('S')) {
  2163. codenum = code_value() * 1000; // seconds to wait
  2164. hasS = codenum > 0;
  2165. }
  2166. char* starpos = strchr(src, '*');
  2167. if (starpos != NULL) *(starpos) = '\0';
  2168. while (*src == ' ') ++src;
  2169. if (!hasP && !hasS && *src != '\0')
  2170. lcd_setstatus(src);
  2171. else
  2172. LCD_MESSAGEPGM(MSG_USERWAIT);
  2173. lcd_ignore_click();
  2174. st_synchronize();
  2175. previous_millis_cmd = millis();
  2176. if (codenum > 0) {
  2177. codenum += previous_millis_cmd; // keep track of when we started waiting
  2178. while(millis() < codenum && !lcd_clicked()) {
  2179. manage_heater();
  2180. manage_inactivity();
  2181. lcd_update();
  2182. }
  2183. lcd_ignore_click(false);
  2184. }
  2185. else {
  2186. if (!lcd_detected()) return;
  2187. while (!lcd_clicked()) {
  2188. manage_heater();
  2189. manage_inactivity();
  2190. lcd_update();
  2191. }
  2192. }
  2193. if (IS_SD_PRINTING)
  2194. LCD_MESSAGEPGM(MSG_RESUMING);
  2195. else
  2196. LCD_MESSAGEPGM(WELCOME_MSG);
  2197. }
  2198. #endif // ULTIPANEL
  2199. /**
  2200. * M17: Enable power on all stepper motors
  2201. */
  2202. inline void gcode_M17() {
  2203. LCD_MESSAGEPGM(MSG_NO_MOVE);
  2204. enable_x();
  2205. enable_y();
  2206. enable_z();
  2207. enable_e0();
  2208. enable_e1();
  2209. enable_e2();
  2210. enable_e3();
  2211. }
  2212. #ifdef SDSUPPORT
  2213. /**
  2214. * M20: List SD card to serial output
  2215. */
  2216. inline void gcode_M20() {
  2217. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  2218. card.ls();
  2219. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  2220. }
  2221. /**
  2222. * M21: Init SD Card
  2223. */
  2224. inline void gcode_M21() {
  2225. card.initsd();
  2226. }
  2227. /**
  2228. * M22: Release SD Card
  2229. */
  2230. inline void gcode_M22() {
  2231. card.release();
  2232. }
  2233. /**
  2234. * M23: Select a file
  2235. */
  2236. inline void gcode_M23() {
  2237. char* codepos = strchr_pointer + 4;
  2238. char* starpos = strchr(codepos, '*');
  2239. if (starpos) *starpos = '\0';
  2240. card.openFile(codepos, true);
  2241. }
  2242. /**
  2243. * M24: Start SD Print
  2244. */
  2245. inline void gcode_M24() {
  2246. card.startFileprint();
  2247. starttime = millis();
  2248. }
  2249. /**
  2250. * M25: Pause SD Print
  2251. */
  2252. inline void gcode_M25() {
  2253. card.pauseSDPrint();
  2254. }
  2255. /**
  2256. * M26: Set SD Card file index
  2257. */
  2258. inline void gcode_M26() {
  2259. if (card.cardOK && code_seen('S'))
  2260. card.setIndex(code_value_long());
  2261. }
  2262. /**
  2263. * M27: Get SD Card status
  2264. */
  2265. inline void gcode_M27() {
  2266. card.getStatus();
  2267. }
  2268. /**
  2269. * M28: Start SD Write
  2270. */
  2271. inline void gcode_M28() {
  2272. char* codepos = strchr_pointer + 4;
  2273. char* starpos = strchr(codepos, '*');
  2274. if (starpos) {
  2275. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2276. strchr_pointer = strchr(npos, ' ') + 1;
  2277. *(starpos) = '\0';
  2278. }
  2279. card.openFile(codepos, false);
  2280. }
  2281. /**
  2282. * M29: Stop SD Write
  2283. * Processed in write to file routine above
  2284. */
  2285. inline void gcode_M29() {
  2286. // card.saving = false;
  2287. }
  2288. /**
  2289. * M30 <filename>: Delete SD Card file
  2290. */
  2291. inline void gcode_M30() {
  2292. if (card.cardOK) {
  2293. card.closefile();
  2294. char* starpos = strchr(strchr_pointer + 4, '*');
  2295. if (starpos) {
  2296. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2297. strchr_pointer = strchr(npos, ' ') + 1;
  2298. *(starpos) = '\0';
  2299. }
  2300. card.removeFile(strchr_pointer + 4);
  2301. }
  2302. }
  2303. #endif
  2304. /**
  2305. * M31: Get the time since the start of SD Print (or last M109)
  2306. */
  2307. inline void gcode_M31() {
  2308. stoptime = millis();
  2309. unsigned long t = (stoptime - starttime) / 1000;
  2310. int min = t / 60, sec = t % 60;
  2311. char time[30];
  2312. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  2313. SERIAL_ECHO_START;
  2314. SERIAL_ECHOLN(time);
  2315. lcd_setstatus(time);
  2316. autotempShutdown();
  2317. }
  2318. #ifdef SDSUPPORT
  2319. /**
  2320. * M32: Select file and start SD Print
  2321. */
  2322. inline void gcode_M32() {
  2323. if (card.sdprinting)
  2324. st_synchronize();
  2325. char* codepos = strchr_pointer + 4;
  2326. char* namestartpos = strchr(codepos, '!'); //find ! to indicate filename string start.
  2327. if (! namestartpos)
  2328. namestartpos = codepos; //default name position, 4 letters after the M
  2329. else
  2330. namestartpos++; //to skip the '!'
  2331. char* starpos = strchr(codepos, '*');
  2332. if (starpos) *(starpos) = '\0';
  2333. bool call_procedure = code_seen('P') && (strchr_pointer < namestartpos);
  2334. if (card.cardOK) {
  2335. card.openFile(namestartpos, true, !call_procedure);
  2336. if (code_seen('S') && strchr_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  2337. card.setIndex(code_value_long());
  2338. card.startFileprint();
  2339. if (!call_procedure)
  2340. starttime = millis(); //procedure calls count as normal print time.
  2341. }
  2342. }
  2343. /**
  2344. * M928: Start SD Write
  2345. */
  2346. inline void gcode_M928() {
  2347. char* starpos = strchr(strchr_pointer + 5, '*');
  2348. if (starpos) {
  2349. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2350. strchr_pointer = strchr(npos, ' ') + 1;
  2351. *(starpos) = '\0';
  2352. }
  2353. card.openLogFile(strchr_pointer + 5);
  2354. }
  2355. #endif // SDSUPPORT
  2356. /**
  2357. * M42: Change pin status via GCode
  2358. */
  2359. inline void gcode_M42() {
  2360. if (code_seen('S')) {
  2361. int pin_status = code_value(),
  2362. pin_number = LED_PIN;
  2363. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  2364. pin_number = code_value();
  2365. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins) / sizeof(*sensitive_pins)); i++) {
  2366. if (sensitive_pins[i] == pin_number) {
  2367. pin_number = -1;
  2368. break;
  2369. }
  2370. }
  2371. #if defined(FAN_PIN) && FAN_PIN > -1
  2372. if (pin_number == FAN_PIN) fanSpeed = pin_status;
  2373. #endif
  2374. if (pin_number > -1) {
  2375. pinMode(pin_number, OUTPUT);
  2376. digitalWrite(pin_number, pin_status);
  2377. analogWrite(pin_number, pin_status);
  2378. }
  2379. } // code_seen('S')
  2380. }
  2381. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  2382. #if Z_MIN_PIN == -1
  2383. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  2384. #endif
  2385. /**
  2386. * M48: Z-Probe repeatability measurement function.
  2387. *
  2388. * Usage:
  2389. * M48 <n#> <X#> <Y#> <V#> <E> <L#>
  2390. * n = Number of samples (4-50, default 10)
  2391. * X = Sample X position
  2392. * Y = Sample Y position
  2393. * V = Verbose level (0-4, default=1)
  2394. * E = Engage probe for each reading
  2395. * L = Number of legs of movement before probe
  2396. *
  2397. * This function assumes the bed has been homed. Specificaly, that a G28 command
  2398. * as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  2399. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  2400. * regenerated.
  2401. *
  2402. * The number of samples will default to 10 if not specified. You can use upper or lower case
  2403. * letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  2404. * N for its communication protocol and will get horribly confused if you send it a capital N.
  2405. */
  2406. inline void gcode_M48() {
  2407. double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
  2408. int verbose_level = 1, n = 0, j, n_samples = 10, n_legs = 0, engage_probe_for_each_reading = 0;
  2409. double X_current, Y_current, Z_current;
  2410. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  2411. if (code_seen('V') || code_seen('v')) {
  2412. verbose_level = code_value();
  2413. if (verbose_level < 0 || verbose_level > 4 ) {
  2414. SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
  2415. return;
  2416. }
  2417. }
  2418. if (verbose_level > 0)
  2419. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
  2420. if (code_seen('n')) {
  2421. n_samples = code_value();
  2422. if (n_samples < 4 || n_samples > 50) {
  2423. SERIAL_PROTOCOLPGM("?Specified sample size not plausible (4-50).\n");
  2424. return;
  2425. }
  2426. }
  2427. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  2428. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  2429. Z_current = st_get_position_mm(Z_AXIS);
  2430. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2431. ext_position = st_get_position_mm(E_AXIS);
  2432. if (code_seen('E') || code_seen('e'))
  2433. engage_probe_for_each_reading++;
  2434. if (code_seen('X') || code_seen('x')) {
  2435. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  2436. if (X_probe_location < X_MIN_POS || X_probe_location > X_MAX_POS) {
  2437. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  2438. return;
  2439. }
  2440. }
  2441. if (code_seen('Y') || code_seen('y')) {
  2442. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  2443. if (Y_probe_location < Y_MIN_POS || Y_probe_location > Y_MAX_POS) {
  2444. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  2445. return;
  2446. }
  2447. }
  2448. if (code_seen('L') || code_seen('l')) {
  2449. n_legs = code_value();
  2450. if (n_legs == 1) n_legs = 2;
  2451. if (n_legs < 0 || n_legs > 15) {
  2452. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausible (0-15).\n");
  2453. return;
  2454. }
  2455. }
  2456. //
  2457. // Do all the preliminary setup work. First raise the probe.
  2458. //
  2459. st_synchronize();
  2460. plan_bed_level_matrix.set_to_identity();
  2461. plan_buffer_line(X_current, Y_current, Z_start_location,
  2462. ext_position,
  2463. homing_feedrate[Z_AXIS] / 60,
  2464. active_extruder);
  2465. st_synchronize();
  2466. //
  2467. // Now get everything to the specified probe point So we can safely do a probe to
  2468. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  2469. // use that as a starting point for each probe.
  2470. //
  2471. if (verbose_level > 2)
  2472. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  2473. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2474. ext_position,
  2475. homing_feedrate[X_AXIS]/60,
  2476. active_extruder);
  2477. st_synchronize();
  2478. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  2479. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  2480. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2481. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  2482. //
  2483. // OK, do the inital probe to get us close to the bed.
  2484. // Then retrace the right amount and use that in subsequent probes
  2485. //
  2486. engage_z_probe();
  2487. setup_for_endstop_move();
  2488. run_z_probe();
  2489. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2490. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2491. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2492. ext_position,
  2493. homing_feedrate[X_AXIS]/60,
  2494. active_extruder);
  2495. st_synchronize();
  2496. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2497. if (engage_probe_for_each_reading) retract_z_probe();
  2498. for (n=0; n < n_samples; n++) {
  2499. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  2500. if (n_legs) {
  2501. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  2502. int l;
  2503. int rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  2504. radius = (unsigned long)millis() % (long)(X_MAX_LENGTH / 4); // limit how far out to go
  2505. theta = (float)((unsigned long)millis() % 360L) / (360. / (2 * 3.1415926)); // turn into radians
  2506. //SERIAL_ECHOPAIR("starting radius: ",radius);
  2507. //SERIAL_ECHOPAIR(" theta: ",theta);
  2508. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  2509. //SERIAL_PROTOCOLLNPGM("");
  2510. float dir = rotational_direction ? 1 : -1;
  2511. for (l = 0; l < n_legs - 1; l++) {
  2512. theta += dir * (float)((unsigned long)millis() % 20L) / (360.0/(2*3.1415926)); // turn into radians
  2513. radius += (float)(((long)((unsigned long) millis() % 10L)) - 5L);
  2514. if (radius < 0.0) radius = -radius;
  2515. X_current = X_probe_location + cos(theta) * radius;
  2516. Y_current = Y_probe_location + sin(theta) * radius;
  2517. // Make sure our X & Y are sane
  2518. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  2519. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  2520. if (verbose_level > 3) {
  2521. SERIAL_ECHOPAIR("x: ", X_current);
  2522. SERIAL_ECHOPAIR("y: ", Y_current);
  2523. SERIAL_PROTOCOLLNPGM("");
  2524. }
  2525. do_blocking_move_to( X_current, Y_current, Z_current );
  2526. }
  2527. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  2528. }
  2529. if (engage_probe_for_each_reading) {
  2530. engage_z_probe();
  2531. delay(1000);
  2532. }
  2533. setup_for_endstop_move();
  2534. run_z_probe();
  2535. sample_set[n] = current_position[Z_AXIS];
  2536. //
  2537. // Get the current mean for the data points we have so far
  2538. //
  2539. sum = 0.0;
  2540. for (j=0; j<=n; j++) sum += sample_set[j];
  2541. mean = sum / (double (n+1));
  2542. //
  2543. // Now, use that mean to calculate the standard deviation for the
  2544. // data points we have so far
  2545. //
  2546. sum = 0.0;
  2547. for (j=0; j<=n; j++) sum += (sample_set[j]-mean) * (sample_set[j]-mean);
  2548. sigma = sqrt( sum / (double (n+1)) );
  2549. if (verbose_level > 1) {
  2550. SERIAL_PROTOCOL(n+1);
  2551. SERIAL_PROTOCOL(" of ");
  2552. SERIAL_PROTOCOL(n_samples);
  2553. SERIAL_PROTOCOLPGM(" z: ");
  2554. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  2555. }
  2556. if (verbose_level > 2) {
  2557. SERIAL_PROTOCOL(" mean: ");
  2558. SERIAL_PROTOCOL_F(mean,6);
  2559. SERIAL_PROTOCOL(" sigma: ");
  2560. SERIAL_PROTOCOL_F(sigma,6);
  2561. }
  2562. if (verbose_level > 0) SERIAL_EOL;
  2563. plan_buffer_line(X_probe_location, Y_probe_location, Z_start_location,
  2564. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2565. st_synchronize();
  2566. if (engage_probe_for_each_reading) {
  2567. retract_z_probe();
  2568. delay(1000);
  2569. }
  2570. }
  2571. retract_z_probe();
  2572. delay(1000);
  2573. clean_up_after_endstop_move();
  2574. // enable_endstops(true);
  2575. if (verbose_level > 0) {
  2576. SERIAL_PROTOCOLPGM("Mean: ");
  2577. SERIAL_PROTOCOL_F(mean, 6);
  2578. SERIAL_EOL;
  2579. }
  2580. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2581. SERIAL_PROTOCOL_F(sigma, 6);
  2582. SERIAL_EOL; SERIAL_EOL;
  2583. }
  2584. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  2585. /**
  2586. * M104: Set hot end temperature
  2587. */
  2588. inline void gcode_M104() {
  2589. if (setTargetedHotend(104)) return;
  2590. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  2591. #ifdef DUAL_X_CARRIAGE
  2592. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2593. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2594. #endif
  2595. setWatch();
  2596. }
  2597. /**
  2598. * M105: Read hot end and bed temperature
  2599. */
  2600. inline void gcode_M105() {
  2601. if (setTargetedHotend(105)) return;
  2602. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  2603. SERIAL_PROTOCOLPGM("ok T:");
  2604. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2605. SERIAL_PROTOCOLPGM(" /");
  2606. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  2607. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2608. SERIAL_PROTOCOLPGM(" B:");
  2609. SERIAL_PROTOCOL_F(degBed(),1);
  2610. SERIAL_PROTOCOLPGM(" /");
  2611. SERIAL_PROTOCOL_F(degTargetBed(),1);
  2612. #endif //TEMP_BED_PIN
  2613. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2614. SERIAL_PROTOCOLPGM(" T");
  2615. SERIAL_PROTOCOL(cur_extruder);
  2616. SERIAL_PROTOCOLPGM(":");
  2617. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2618. SERIAL_PROTOCOLPGM(" /");
  2619. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  2620. }
  2621. #else
  2622. SERIAL_ERROR_START;
  2623. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  2624. #endif
  2625. SERIAL_PROTOCOLPGM(" @:");
  2626. #ifdef EXTRUDER_WATTS
  2627. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  2628. SERIAL_PROTOCOLPGM("W");
  2629. #else
  2630. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  2631. #endif
  2632. SERIAL_PROTOCOLPGM(" B@:");
  2633. #ifdef BED_WATTS
  2634. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2635. SERIAL_PROTOCOLPGM("W");
  2636. #else
  2637. SERIAL_PROTOCOL(getHeaterPower(-1));
  2638. #endif
  2639. #ifdef SHOW_TEMP_ADC_VALUES
  2640. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2641. SERIAL_PROTOCOLPGM(" ADC B:");
  2642. SERIAL_PROTOCOL_F(degBed(),1);
  2643. SERIAL_PROTOCOLPGM("C->");
  2644. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  2645. #endif
  2646. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2647. SERIAL_PROTOCOLPGM(" T");
  2648. SERIAL_PROTOCOL(cur_extruder);
  2649. SERIAL_PROTOCOLPGM(":");
  2650. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2651. SERIAL_PROTOCOLPGM("C->");
  2652. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  2653. }
  2654. #endif
  2655. SERIAL_PROTOCOLLN("");
  2656. }
  2657. #if defined(FAN_PIN) && FAN_PIN > -1
  2658. /**
  2659. * M106: Set Fan Speed
  2660. */
  2661. inline void gcode_M106() { fanSpeed = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2662. /**
  2663. * M107: Fan Off
  2664. */
  2665. inline void gcode_M107() { fanSpeed = 0; }
  2666. #endif //FAN_PIN
  2667. /**
  2668. * M109: Wait for extruder(s) to reach temperature
  2669. */
  2670. inline void gcode_M109() {
  2671. if (setTargetedHotend(109)) return;
  2672. LCD_MESSAGEPGM(MSG_HEATING);
  2673. CooldownNoWait = code_seen('S');
  2674. if (CooldownNoWait || code_seen('R')) {
  2675. setTargetHotend(code_value(), tmp_extruder);
  2676. #ifdef DUAL_X_CARRIAGE
  2677. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2678. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2679. #endif
  2680. }
  2681. #ifdef AUTOTEMP
  2682. autotemp_enabled = code_seen('F');
  2683. if (autotemp_enabled) autotemp_factor = code_value();
  2684. if (code_seen('S')) autotemp_min = code_value();
  2685. if (code_seen('B')) autotemp_max = code_value();
  2686. #endif
  2687. setWatch();
  2688. unsigned long timetemp = millis();
  2689. /* See if we are heating up or cooling down */
  2690. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  2691. cancel_heatup = false;
  2692. #ifdef TEMP_RESIDENCY_TIME
  2693. long residencyStart = -1;
  2694. /* continue to loop until we have reached the target temp
  2695. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  2696. while((!cancel_heatup)&&((residencyStart == -1) ||
  2697. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) )
  2698. #else
  2699. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) )
  2700. #endif //TEMP_RESIDENCY_TIME
  2701. { // while loop
  2702. if (millis() > timetemp + 1000UL) { //Print temp & remaining time every 1s while waiting
  2703. SERIAL_PROTOCOLPGM("T:");
  2704. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2705. SERIAL_PROTOCOLPGM(" E:");
  2706. SERIAL_PROTOCOL((int)tmp_extruder);
  2707. #ifdef TEMP_RESIDENCY_TIME
  2708. SERIAL_PROTOCOLPGM(" W:");
  2709. if (residencyStart > -1) {
  2710. timetemp = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  2711. SERIAL_PROTOCOLLN( timetemp );
  2712. }
  2713. else {
  2714. SERIAL_PROTOCOLLN( "?" );
  2715. }
  2716. #else
  2717. SERIAL_PROTOCOLLN("");
  2718. #endif
  2719. timetemp = millis();
  2720. }
  2721. manage_heater();
  2722. manage_inactivity();
  2723. lcd_update();
  2724. #ifdef TEMP_RESIDENCY_TIME
  2725. // start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  2726. // or when current temp falls outside the hysteresis after target temp was reached
  2727. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  2728. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  2729. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  2730. {
  2731. residencyStart = millis();
  2732. }
  2733. #endif //TEMP_RESIDENCY_TIME
  2734. }
  2735. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  2736. starttime = previous_millis_cmd = millis();
  2737. }
  2738. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2739. /**
  2740. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  2741. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  2742. */
  2743. inline void gcode_M190() {
  2744. LCD_MESSAGEPGM(MSG_BED_HEATING);
  2745. CooldownNoWait = code_seen('S');
  2746. if (CooldownNoWait || code_seen('R'))
  2747. setTargetBed(code_value());
  2748. unsigned long timetemp = millis();
  2749. cancel_heatup = false;
  2750. target_direction = isHeatingBed(); // true if heating, false if cooling
  2751. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) ) {
  2752. unsigned long ms = millis();
  2753. if (ms > timetemp + 1000UL) { //Print Temp Reading every 1 second while heating up.
  2754. timetemp = ms;
  2755. float tt = degHotend(active_extruder);
  2756. SERIAL_PROTOCOLPGM("T:");
  2757. SERIAL_PROTOCOL(tt);
  2758. SERIAL_PROTOCOLPGM(" E:");
  2759. SERIAL_PROTOCOL((int)active_extruder);
  2760. SERIAL_PROTOCOLPGM(" B:");
  2761. SERIAL_PROTOCOL_F(degBed(), 1);
  2762. SERIAL_PROTOCOLLN("");
  2763. }
  2764. manage_heater();
  2765. manage_inactivity();
  2766. lcd_update();
  2767. }
  2768. LCD_MESSAGEPGM(MSG_BED_DONE);
  2769. previous_millis_cmd = millis();
  2770. }
  2771. #endif // TEMP_BED_PIN > -1
  2772. /**
  2773. * M112: Emergency Stop
  2774. */
  2775. inline void gcode_M112() {
  2776. kill();
  2777. }
  2778. #ifdef BARICUDA
  2779. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  2780. /**
  2781. * M126: Heater 1 valve open
  2782. */
  2783. inline void gcode_M126() { ValvePressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2784. /**
  2785. * M127: Heater 1 valve close
  2786. */
  2787. inline void gcode_M127() { ValvePressure = 0; }
  2788. #endif
  2789. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  2790. /**
  2791. * M128: Heater 2 valve open
  2792. */
  2793. inline void gcode_M128() { EtoPPressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2794. /**
  2795. * M129: Heater 2 valve close
  2796. */
  2797. inline void gcode_M129() { EtoPPressure = 0; }
  2798. #endif
  2799. #endif //BARICUDA
  2800. /**
  2801. * M140: Set bed temperature
  2802. */
  2803. inline void gcode_M140() {
  2804. if (code_seen('S')) setTargetBed(code_value());
  2805. }
  2806. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  2807. /**
  2808. * M80: Turn on Power Supply
  2809. */
  2810. inline void gcode_M80() {
  2811. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  2812. // If you have a switch on suicide pin, this is useful
  2813. // if you want to start another print with suicide feature after
  2814. // a print without suicide...
  2815. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  2816. OUT_WRITE(SUICIDE_PIN, HIGH);
  2817. #endif
  2818. #ifdef ULTIPANEL
  2819. powersupply = true;
  2820. LCD_MESSAGEPGM(WELCOME_MSG);
  2821. lcd_update();
  2822. #endif
  2823. }
  2824. #endif // PS_ON_PIN
  2825. /**
  2826. * M81: Turn off Power Supply
  2827. */
  2828. inline void gcode_M81() {
  2829. disable_heater();
  2830. st_synchronize();
  2831. disable_e0();
  2832. disable_e1();
  2833. disable_e2();
  2834. disable_e3();
  2835. finishAndDisableSteppers();
  2836. fanSpeed = 0;
  2837. delay(1000); // Wait 1 second before switching off
  2838. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  2839. st_synchronize();
  2840. suicide();
  2841. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  2842. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  2843. #endif
  2844. #ifdef ULTIPANEL
  2845. powersupply = false;
  2846. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  2847. lcd_update();
  2848. #endif
  2849. }
  2850. /**
  2851. * M82: Set E codes absolute (default)
  2852. */
  2853. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  2854. /**
  2855. * M82: Set E codes relative while in Absolute Coordinates (G90) mode
  2856. */
  2857. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  2858. /**
  2859. * M18, M84: Disable all stepper motors
  2860. */
  2861. inline void gcode_M18_M84() {
  2862. if (code_seen('S')) {
  2863. stepper_inactive_time = code_value() * 1000;
  2864. }
  2865. else {
  2866. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  2867. if (all_axis) {
  2868. st_synchronize();
  2869. disable_e0();
  2870. disable_e1();
  2871. disable_e2();
  2872. disable_e3();
  2873. finishAndDisableSteppers();
  2874. }
  2875. else {
  2876. st_synchronize();
  2877. if (code_seen('X')) disable_x();
  2878. if (code_seen('Y')) disable_y();
  2879. if (code_seen('Z')) disable_z();
  2880. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  2881. if (code_seen('E')) {
  2882. disable_e0();
  2883. disable_e1();
  2884. disable_e2();
  2885. disable_e3();
  2886. }
  2887. #endif
  2888. }
  2889. }
  2890. }
  2891. /**
  2892. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2893. */
  2894. inline void gcode_M85() {
  2895. if (code_seen('S')) max_inactive_time = code_value() * 1000;
  2896. }
  2897. /**
  2898. * M92: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2899. */
  2900. inline void gcode_M92() {
  2901. for(int8_t i=0; i < NUM_AXIS; i++) {
  2902. if (code_seen(axis_codes[i])) {
  2903. if (i == E_AXIS) {
  2904. float value = code_value();
  2905. if (value < 20.0) {
  2906. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  2907. max_e_jerk *= factor;
  2908. max_feedrate[i] *= factor;
  2909. axis_steps_per_sqr_second[i] *= factor;
  2910. }
  2911. axis_steps_per_unit[i] = value;
  2912. }
  2913. else {
  2914. axis_steps_per_unit[i] = code_value();
  2915. }
  2916. }
  2917. }
  2918. }
  2919. /**
  2920. * M114: Output current position to serial port
  2921. */
  2922. inline void gcode_M114() {
  2923. SERIAL_PROTOCOLPGM("X:");
  2924. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2925. SERIAL_PROTOCOLPGM(" Y:");
  2926. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2927. SERIAL_PROTOCOLPGM(" Z:");
  2928. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2929. SERIAL_PROTOCOLPGM(" E:");
  2930. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2931. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  2932. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  2933. SERIAL_PROTOCOLPGM(" Y:");
  2934. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  2935. SERIAL_PROTOCOLPGM(" Z:");
  2936. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  2937. SERIAL_PROTOCOLLN("");
  2938. #ifdef SCARA
  2939. SERIAL_PROTOCOLPGM("SCARA Theta:");
  2940. SERIAL_PROTOCOL(delta[X_AXIS]);
  2941. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2942. SERIAL_PROTOCOL(delta[Y_AXIS]);
  2943. SERIAL_PROTOCOLLN("");
  2944. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  2945. SERIAL_PROTOCOL(delta[X_AXIS]+home_offset[X_AXIS]);
  2946. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  2947. SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+home_offset[Y_AXIS]);
  2948. SERIAL_PROTOCOLLN("");
  2949. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  2950. SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
  2951. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2952. SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
  2953. SERIAL_PROTOCOLLN("");
  2954. SERIAL_PROTOCOLLN("");
  2955. #endif
  2956. }
  2957. /**
  2958. * M115: Capabilities string
  2959. */
  2960. inline void gcode_M115() {
  2961. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  2962. }
  2963. /**
  2964. * M117: Set LCD Status Message
  2965. */
  2966. inline void gcode_M117() {
  2967. char* codepos = strchr_pointer + 5;
  2968. char* starpos = strchr(codepos, '*');
  2969. if (starpos) *starpos = '\0';
  2970. lcd_setstatus(codepos);
  2971. }
  2972. /**
  2973. * M119: Output endstop states to serial output
  2974. */
  2975. inline void gcode_M119() {
  2976. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  2977. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  2978. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  2979. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2980. #endif
  2981. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  2982. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  2983. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2984. #endif
  2985. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  2986. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  2987. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2988. #endif
  2989. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  2990. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  2991. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2992. #endif
  2993. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  2994. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  2995. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2996. #endif
  2997. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  2998. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  2999. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3000. #endif
  3001. #if defined(Z2_MAX_PIN) && Z2_MAX_PIN > -1
  3002. SERIAL_PROTOCOLPGM(MSG_Z2_MAX);
  3003. SERIAL_PROTOCOLLN(((READ(Z2_MAX_PIN)^Z2_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3004. #endif
  3005. }
  3006. /**
  3007. * M120: Enable endstops
  3008. */
  3009. inline void gcode_M120() { enable_endstops(false); }
  3010. /**
  3011. * M121: Disable endstops
  3012. */
  3013. inline void gcode_M121() { enable_endstops(true); }
  3014. #ifdef BLINKM
  3015. /**
  3016. * M150: Set Status LED Color - Use R-U-B for R-G-B
  3017. */
  3018. inline void gcode_M150() {
  3019. SendColors(
  3020. code_seen('R') ? (byte)code_value() : 0,
  3021. code_seen('U') ? (byte)code_value() : 0,
  3022. code_seen('B') ? (byte)code_value() : 0
  3023. );
  3024. }
  3025. #endif // BLINKM
  3026. /**
  3027. * M200: Set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3028. * T<extruder>
  3029. * D<millimeters>
  3030. */
  3031. inline void gcode_M200() {
  3032. tmp_extruder = active_extruder;
  3033. if (code_seen('T')) {
  3034. tmp_extruder = code_value();
  3035. if (tmp_extruder >= EXTRUDERS) {
  3036. SERIAL_ECHO_START;
  3037. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  3038. return;
  3039. }
  3040. }
  3041. float area = .0;
  3042. if (code_seen('D')) {
  3043. float diameter = code_value();
  3044. // setting any extruder filament size disables volumetric on the assumption that
  3045. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3046. // for all extruders
  3047. volumetric_enabled = (diameter != 0.0);
  3048. if (volumetric_enabled) {
  3049. filament_size[tmp_extruder] = diameter;
  3050. // make sure all extruders have some sane value for the filament size
  3051. for (int i=0; i<EXTRUDERS; i++)
  3052. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  3053. }
  3054. }
  3055. else {
  3056. //reserved for setting filament diameter via UFID or filament measuring device
  3057. return;
  3058. }
  3059. calculate_volumetric_multipliers();
  3060. }
  3061. /**
  3062. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  3063. */
  3064. inline void gcode_M201() {
  3065. for (int8_t i=0; i < NUM_AXIS; i++) {
  3066. if (code_seen(axis_codes[i])) {
  3067. max_acceleration_units_per_sq_second[i] = code_value();
  3068. }
  3069. }
  3070. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3071. reset_acceleration_rates();
  3072. }
  3073. #if 0 // Not used for Sprinter/grbl gen6
  3074. inline void gcode_M202() {
  3075. for(int8_t i=0; i < NUM_AXIS; i++) {
  3076. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3077. }
  3078. }
  3079. #endif
  3080. /**
  3081. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  3082. */
  3083. inline void gcode_M203() {
  3084. for (int8_t i=0; i < NUM_AXIS; i++) {
  3085. if (code_seen(axis_codes[i])) {
  3086. max_feedrate[i] = code_value();
  3087. }
  3088. }
  3089. }
  3090. /**
  3091. * M204: Set Accelerations in mm/sec^2 (M204 P1200 R3000 T3000)
  3092. *
  3093. * P = Printing moves
  3094. * R = Retract only (no X, Y, Z) moves
  3095. * T = Travel (non printing) moves
  3096. *
  3097. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  3098. */
  3099. inline void gcode_M204() {
  3100. if (code_seen('S')) // Kept for legacy compatibility. Should NOT BE USED for new developments.
  3101. {
  3102. acceleration = code_value();
  3103. travel_acceleration = acceleration;
  3104. SERIAL_ECHOPAIR("Setting Printing and Travelling Acceleration: ", acceleration );
  3105. SERIAL_EOL;
  3106. }
  3107. if (code_seen('P'))
  3108. {
  3109. acceleration = code_value();
  3110. SERIAL_ECHOPAIR("Setting Printing Acceleration: ", acceleration );
  3111. SERIAL_EOL;
  3112. }
  3113. if (code_seen('R'))
  3114. {
  3115. retract_acceleration = code_value();
  3116. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", retract_acceleration );
  3117. SERIAL_EOL;
  3118. }
  3119. if (code_seen('T'))
  3120. {
  3121. travel_acceleration = code_value();
  3122. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", travel_acceleration );
  3123. SERIAL_EOL;
  3124. }
  3125. }
  3126. /**
  3127. * M205: Set Advanced Settings
  3128. *
  3129. * S = Min Feed Rate (mm/s)
  3130. * T = Min Travel Feed Rate (mm/s)
  3131. * B = Min Segment Time (µs)
  3132. * X = Max XY Jerk (mm/s/s)
  3133. * Z = Max Z Jerk (mm/s/s)
  3134. * E = Max E Jerk (mm/s/s)
  3135. */
  3136. inline void gcode_M205() {
  3137. if (code_seen('S')) minimumfeedrate = code_value();
  3138. if (code_seen('T')) mintravelfeedrate = code_value();
  3139. if (code_seen('B')) minsegmenttime = code_value();
  3140. if (code_seen('X')) max_xy_jerk = code_value();
  3141. if (code_seen('Z')) max_z_jerk = code_value();
  3142. if (code_seen('E')) max_e_jerk = code_value();
  3143. }
  3144. /**
  3145. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  3146. */
  3147. inline void gcode_M206() {
  3148. for (int8_t i=X_AXIS; i <= Z_AXIS; i++) {
  3149. if (code_seen(axis_codes[i])) {
  3150. home_offset[i] = code_value();
  3151. }
  3152. }
  3153. #ifdef SCARA
  3154. if (code_seen('T')) home_offset[X_AXIS] = code_value(); // Theta
  3155. if (code_seen('P')) home_offset[Y_AXIS] = code_value(); // Psi
  3156. #endif
  3157. }
  3158. #ifdef DELTA
  3159. /**
  3160. * M665: Set delta configurations
  3161. *
  3162. * L = diagonal rod
  3163. * R = delta radius
  3164. * S = segments per second
  3165. */
  3166. inline void gcode_M665() {
  3167. if (code_seen('L')) delta_diagonal_rod = code_value();
  3168. if (code_seen('R')) delta_radius = code_value();
  3169. if (code_seen('S')) delta_segments_per_second = code_value();
  3170. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  3171. }
  3172. /**
  3173. * M666: Set delta endstop adjustment
  3174. */
  3175. inline void gcode_M666() {
  3176. for (int8_t i = 0; i < 3; i++) {
  3177. if (code_seen(axis_codes[i])) {
  3178. endstop_adj[i] = code_value();
  3179. }
  3180. }
  3181. }
  3182. #elif defined(Z_DUAL_ENDSTOPS)
  3183. /**
  3184. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  3185. */
  3186. inline void gcode_M666() {
  3187. if (code_seen('Z')) z_endstop_adj = code_value();
  3188. SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj );
  3189. SERIAL_EOL;
  3190. }
  3191. #endif // DELTA
  3192. #ifdef FWRETRACT
  3193. /**
  3194. * M207: Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  3195. */
  3196. inline void gcode_M207() {
  3197. if (code_seen('S')) retract_length = code_value();
  3198. if (code_seen('F')) retract_feedrate = code_value() / 60;
  3199. if (code_seen('Z')) retract_zlift = code_value();
  3200. }
  3201. /**
  3202. * M208: Set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  3203. */
  3204. inline void gcode_M208() {
  3205. if (code_seen('S')) retract_recover_length = code_value();
  3206. if (code_seen('F')) retract_recover_feedrate = code_value() / 60;
  3207. }
  3208. /**
  3209. * M209: Enable automatic retract (M209 S1)
  3210. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3211. */
  3212. inline void gcode_M209() {
  3213. if (code_seen('S')) {
  3214. int t = code_value();
  3215. switch(t) {
  3216. case 0:
  3217. autoretract_enabled = false;
  3218. break;
  3219. case 1:
  3220. autoretract_enabled = true;
  3221. break;
  3222. default:
  3223. SERIAL_ECHO_START;
  3224. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  3225. SERIAL_ECHO(cmdbuffer[bufindr]);
  3226. SERIAL_ECHOLNPGM("\"");
  3227. return;
  3228. }
  3229. for (int i=0; i<EXTRUDERS; i++) retracted[i] = false;
  3230. }
  3231. }
  3232. #endif // FWRETRACT
  3233. #if EXTRUDERS > 1
  3234. /**
  3235. * M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3236. */
  3237. inline void gcode_M218() {
  3238. if (setTargetedHotend(218)) return;
  3239. if (code_seen('X')) extruder_offset[X_AXIS][tmp_extruder] = code_value();
  3240. if (code_seen('Y')) extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  3241. #ifdef DUAL_X_CARRIAGE
  3242. if (code_seen('Z')) extruder_offset[Z_AXIS][tmp_extruder] = code_value();
  3243. #endif
  3244. SERIAL_ECHO_START;
  3245. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3246. for (tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++) {
  3247. SERIAL_ECHO(" ");
  3248. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  3249. SERIAL_ECHO(",");
  3250. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  3251. #ifdef DUAL_X_CARRIAGE
  3252. SERIAL_ECHO(",");
  3253. SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
  3254. #endif
  3255. }
  3256. SERIAL_EOL;
  3257. }
  3258. #endif // EXTRUDERS > 1
  3259. /**
  3260. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  3261. */
  3262. inline void gcode_M220() {
  3263. if (code_seen('S')) feedmultiply = code_value();
  3264. }
  3265. /**
  3266. * M221: Set extrusion percentage (M221 T0 S95)
  3267. */
  3268. inline void gcode_M221() {
  3269. if (code_seen('S')) {
  3270. int sval = code_value();
  3271. if (code_seen('T')) {
  3272. if (setTargetedHotend(221)) return;
  3273. extruder_multiply[tmp_extruder] = sval;
  3274. }
  3275. else {
  3276. extrudemultiply = sval;
  3277. }
  3278. }
  3279. }
  3280. /**
  3281. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  3282. */
  3283. inline void gcode_M226() {
  3284. if (code_seen('P')) {
  3285. int pin_number = code_value();
  3286. int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted
  3287. if (pin_state >= -1 && pin_state <= 1) {
  3288. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(*sensitive_pins)); i++) {
  3289. if (sensitive_pins[i] == pin_number) {
  3290. pin_number = -1;
  3291. break;
  3292. }
  3293. }
  3294. if (pin_number > -1) {
  3295. int target = LOW;
  3296. st_synchronize();
  3297. pinMode(pin_number, INPUT);
  3298. switch(pin_state){
  3299. case 1:
  3300. target = HIGH;
  3301. break;
  3302. case 0:
  3303. target = LOW;
  3304. break;
  3305. case -1:
  3306. target = !digitalRead(pin_number);
  3307. break;
  3308. }
  3309. while(digitalRead(pin_number) != target) {
  3310. manage_heater();
  3311. manage_inactivity();
  3312. lcd_update();
  3313. }
  3314. } // pin_number > -1
  3315. } // pin_state -1 0 1
  3316. } // code_seen('P')
  3317. }
  3318. #if NUM_SERVOS > 0
  3319. /**
  3320. * M280: Set servo position absolute. P: servo index, S: angle or microseconds
  3321. */
  3322. inline void gcode_M280() {
  3323. int servo_index = code_seen('P') ? code_value() : -1;
  3324. int servo_position = 0;
  3325. if (code_seen('S')) {
  3326. servo_position = code_value();
  3327. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  3328. #if SERVO_LEVELING
  3329. servos[servo_index].attach(0);
  3330. #endif
  3331. servos[servo_index].write(servo_position);
  3332. #if SERVO_LEVELING
  3333. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  3334. servos[servo_index].detach();
  3335. #endif
  3336. }
  3337. else {
  3338. SERIAL_ECHO_START;
  3339. SERIAL_ECHO("Servo ");
  3340. SERIAL_ECHO(servo_index);
  3341. SERIAL_ECHOLN(" out of range");
  3342. }
  3343. }
  3344. else if (servo_index >= 0) {
  3345. SERIAL_PROTOCOL(MSG_OK);
  3346. SERIAL_PROTOCOL(" Servo ");
  3347. SERIAL_PROTOCOL(servo_index);
  3348. SERIAL_PROTOCOL(": ");
  3349. SERIAL_PROTOCOL(servos[servo_index].read());
  3350. SERIAL_PROTOCOLLN("");
  3351. }
  3352. }
  3353. #endif // NUM_SERVOS > 0
  3354. #if defined(LARGE_FLASH) && (BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER))
  3355. /**
  3356. * M300: Play beep sound S<frequency Hz> P<duration ms>
  3357. */
  3358. inline void gcode_M300() {
  3359. int beepS = code_seen('S') ? code_value() : 110;
  3360. int beepP = code_seen('P') ? code_value() : 1000;
  3361. if (beepS > 0) {
  3362. #if BEEPER > 0
  3363. tone(BEEPER, beepS);
  3364. delay(beepP);
  3365. noTone(BEEPER);
  3366. #elif defined(ULTRALCD)
  3367. lcd_buzz(beepS, beepP);
  3368. #elif defined(LCD_USE_I2C_BUZZER)
  3369. lcd_buzz(beepP, beepS);
  3370. #endif
  3371. }
  3372. else {
  3373. delay(beepP);
  3374. }
  3375. }
  3376. #endif // LARGE_FLASH && (BEEPER>0 || ULTRALCD || LCD_USE_I2C_BUZZER)
  3377. #ifdef PIDTEMP
  3378. /**
  3379. * M301: Set PID parameters P I D (and optionally C)
  3380. */
  3381. inline void gcode_M301() {
  3382. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  3383. // default behaviour (omitting E parameter) is to update for extruder 0 only
  3384. int e = code_seen('E') ? code_value() : 0; // extruder being updated
  3385. if (e < EXTRUDERS) { // catch bad input value
  3386. if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
  3387. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
  3388. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
  3389. #ifdef PID_ADD_EXTRUSION_RATE
  3390. if (code_seen('C')) PID_PARAM(Kc, e) = code_value();
  3391. #endif
  3392. updatePID();
  3393. SERIAL_PROTOCOL(MSG_OK);
  3394. #ifdef PID_PARAMS_PER_EXTRUDER
  3395. SERIAL_PROTOCOL(" e:"); // specify extruder in serial output
  3396. SERIAL_PROTOCOL(e);
  3397. #endif // PID_PARAMS_PER_EXTRUDER
  3398. SERIAL_PROTOCOL(" p:");
  3399. SERIAL_PROTOCOL(PID_PARAM(Kp, e));
  3400. SERIAL_PROTOCOL(" i:");
  3401. SERIAL_PROTOCOL(unscalePID_i(PID_PARAM(Ki, e)));
  3402. SERIAL_PROTOCOL(" d:");
  3403. SERIAL_PROTOCOL(unscalePID_d(PID_PARAM(Kd, e)));
  3404. #ifdef PID_ADD_EXTRUSION_RATE
  3405. SERIAL_PROTOCOL(" c:");
  3406. //Kc does not have scaling applied above, or in resetting defaults
  3407. SERIAL_PROTOCOL(PID_PARAM(Kc, e));
  3408. #endif
  3409. SERIAL_PROTOCOLLN("");
  3410. }
  3411. else {
  3412. SERIAL_ECHO_START;
  3413. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3414. }
  3415. }
  3416. #endif // PIDTEMP
  3417. #ifdef PIDTEMPBED
  3418. inline void gcode_M304() {
  3419. if (code_seen('P')) bedKp = code_value();
  3420. if (code_seen('I')) bedKi = scalePID_i(code_value());
  3421. if (code_seen('D')) bedKd = scalePID_d(code_value());
  3422. updatePID();
  3423. SERIAL_PROTOCOL(MSG_OK);
  3424. SERIAL_PROTOCOL(" p:");
  3425. SERIAL_PROTOCOL(bedKp);
  3426. SERIAL_PROTOCOL(" i:");
  3427. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  3428. SERIAL_PROTOCOL(" d:");
  3429. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  3430. SERIAL_PROTOCOLLN("");
  3431. }
  3432. #endif // PIDTEMPBED
  3433. #if defined(CHDK) || (defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1)
  3434. /**
  3435. * M240: Trigger a camera by emulating a Canon RC-1
  3436. * See http://www.doc-diy.net/photo/rc-1_hacked/
  3437. */
  3438. inline void gcode_M240() {
  3439. #ifdef CHDK
  3440. OUT_WRITE(CHDK, HIGH);
  3441. chdkHigh = millis();
  3442. chdkActive = true;
  3443. #elif defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  3444. const uint8_t NUM_PULSES = 16;
  3445. const float PULSE_LENGTH = 0.01524;
  3446. for (int i = 0; i < NUM_PULSES; i++) {
  3447. WRITE(PHOTOGRAPH_PIN, HIGH);
  3448. _delay_ms(PULSE_LENGTH);
  3449. WRITE(PHOTOGRAPH_PIN, LOW);
  3450. _delay_ms(PULSE_LENGTH);
  3451. }
  3452. delay(7.33);
  3453. for (int i = 0; i < NUM_PULSES; i++) {
  3454. WRITE(PHOTOGRAPH_PIN, HIGH);
  3455. _delay_ms(PULSE_LENGTH);
  3456. WRITE(PHOTOGRAPH_PIN, LOW);
  3457. _delay_ms(PULSE_LENGTH);
  3458. }
  3459. #endif // !CHDK && PHOTOGRAPH_PIN > -1
  3460. }
  3461. #endif // CHDK || PHOTOGRAPH_PIN
  3462. #ifdef DOGLCD
  3463. /**
  3464. * M250: Read and optionally set the LCD contrast
  3465. */
  3466. inline void gcode_M250() {
  3467. if (code_seen('C')) lcd_setcontrast(code_value_long() & 0x3F);
  3468. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  3469. SERIAL_PROTOCOL(lcd_contrast);
  3470. SERIAL_PROTOCOLLN("");
  3471. }
  3472. #endif // DOGLCD
  3473. #ifdef PREVENT_DANGEROUS_EXTRUDE
  3474. /**
  3475. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  3476. */
  3477. inline void gcode_M302() {
  3478. set_extrude_min_temp(code_seen('S') ? code_value() : 0);
  3479. }
  3480. #endif // PREVENT_DANGEROUS_EXTRUDE
  3481. /**
  3482. * M303: PID relay autotune
  3483. * S<temperature> sets the target temperature. (default target temperature = 150C)
  3484. * E<extruder> (-1 for the bed)
  3485. * C<cycles>
  3486. */
  3487. inline void gcode_M303() {
  3488. int e = code_seen('E') ? code_value_long() : 0;
  3489. int c = code_seen('C') ? code_value_long() : 5;
  3490. float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
  3491. PID_autotune(temp, e, c);
  3492. }
  3493. #ifdef SCARA
  3494. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  3495. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3496. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3497. if (! Stopped) {
  3498. //get_coordinates(); // For X Y Z E F
  3499. delta[X_AXIS] = delta_x;
  3500. delta[Y_AXIS] = delta_y;
  3501. calculate_SCARA_forward_Transform(delta);
  3502. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3503. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3504. prepare_move();
  3505. //ClearToSend();
  3506. return true;
  3507. }
  3508. return false;
  3509. }
  3510. /**
  3511. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  3512. */
  3513. inline bool gcode_M360() {
  3514. SERIAL_ECHOLN(" Cal: Theta 0 ");
  3515. return SCARA_move_to_cal(0, 120);
  3516. }
  3517. /**
  3518. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  3519. */
  3520. inline bool gcode_M361() {
  3521. SERIAL_ECHOLN(" Cal: Theta 90 ");
  3522. return SCARA_move_to_cal(90, 130);
  3523. }
  3524. /**
  3525. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  3526. */
  3527. inline bool gcode_M362() {
  3528. SERIAL_ECHOLN(" Cal: Psi 0 ");
  3529. return SCARA_move_to_cal(60, 180);
  3530. }
  3531. /**
  3532. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  3533. */
  3534. inline bool gcode_M363() {
  3535. SERIAL_ECHOLN(" Cal: Psi 90 ");
  3536. return SCARA_move_to_cal(50, 90);
  3537. }
  3538. /**
  3539. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  3540. */
  3541. inline bool gcode_M364() {
  3542. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  3543. return SCARA_move_to_cal(45, 135);
  3544. }
  3545. /**
  3546. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  3547. */
  3548. inline void gcode_M365() {
  3549. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3550. if (code_seen(axis_codes[i])) {
  3551. axis_scaling[i] = code_value();
  3552. }
  3553. }
  3554. }
  3555. #endif // SCARA
  3556. #ifdef EXT_SOLENOID
  3557. void enable_solenoid(uint8_t num) {
  3558. switch(num) {
  3559. case 0:
  3560. OUT_WRITE(SOL0_PIN, HIGH);
  3561. break;
  3562. #if defined(SOL1_PIN) && SOL1_PIN > -1
  3563. case 1:
  3564. OUT_WRITE(SOL1_PIN, HIGH);
  3565. break;
  3566. #endif
  3567. #if defined(SOL2_PIN) && SOL2_PIN > -1
  3568. case 2:
  3569. OUT_WRITE(SOL2_PIN, HIGH);
  3570. break;
  3571. #endif
  3572. #if defined(SOL3_PIN) && SOL3_PIN > -1
  3573. case 3:
  3574. OUT_WRITE(SOL3_PIN, HIGH);
  3575. break;
  3576. #endif
  3577. default:
  3578. SERIAL_ECHO_START;
  3579. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  3580. break;
  3581. }
  3582. }
  3583. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  3584. void disable_all_solenoids() {
  3585. OUT_WRITE(SOL0_PIN, LOW);
  3586. OUT_WRITE(SOL1_PIN, LOW);
  3587. OUT_WRITE(SOL2_PIN, LOW);
  3588. OUT_WRITE(SOL3_PIN, LOW);
  3589. }
  3590. /**
  3591. * M380: Enable solenoid on the active extruder
  3592. */
  3593. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  3594. /**
  3595. * M381: Disable all solenoids
  3596. */
  3597. inline void gcode_M381() { disable_all_solenoids(); }
  3598. #endif // EXT_SOLENOID
  3599. /**
  3600. * M400: Finish all moves
  3601. */
  3602. inline void gcode_M400() { st_synchronize(); }
  3603. #if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && not defined(Z_PROBE_SLED)
  3604. /**
  3605. * M401: Engage Z Servo endstop if available
  3606. */
  3607. inline void gcode_M401() { engage_z_probe(); }
  3608. /**
  3609. * M402: Retract Z Servo endstop if enabled
  3610. */
  3611. inline void gcode_M402() { retract_z_probe(); }
  3612. #endif
  3613. #ifdef FILAMENT_SENSOR
  3614. /**
  3615. * M404: Display or set the nominal filament width (3mm, 1.75mm ) W<3.0>
  3616. */
  3617. inline void gcode_M404() {
  3618. #if FILWIDTH_PIN > -1
  3619. if (code_seen('W')) {
  3620. filament_width_nominal = code_value();
  3621. }
  3622. else {
  3623. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  3624. SERIAL_PROTOCOLLN(filament_width_nominal);
  3625. }
  3626. #endif
  3627. }
  3628. /**
  3629. * M405: Turn on filament sensor for control
  3630. */
  3631. inline void gcode_M405() {
  3632. if (code_seen('D')) meas_delay_cm = code_value();
  3633. if (meas_delay_cm > MAX_MEASUREMENT_DELAY) meas_delay_cm = MAX_MEASUREMENT_DELAY;
  3634. if (delay_index2 == -1) { //initialize the ring buffer if it has not been done since startup
  3635. int temp_ratio = widthFil_to_size_ratio();
  3636. for (delay_index1 = 0; delay_index1 < MAX_MEASUREMENT_DELAY + 1; ++delay_index1)
  3637. measurement_delay[delay_index1] = temp_ratio - 100; //subtract 100 to scale within a signed byte
  3638. delay_index1 = delay_index2 = 0;
  3639. }
  3640. filament_sensor = true;
  3641. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3642. //SERIAL_PROTOCOL(filament_width_meas);
  3643. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  3644. //SERIAL_PROTOCOL(extrudemultiply);
  3645. }
  3646. /**
  3647. * M406: Turn off filament sensor for control
  3648. */
  3649. inline void gcode_M406() { filament_sensor = false; }
  3650. /**
  3651. * M407: Get measured filament diameter on serial output
  3652. */
  3653. inline void gcode_M407() {
  3654. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3655. SERIAL_PROTOCOLLN(filament_width_meas);
  3656. }
  3657. #endif // FILAMENT_SENSOR
  3658. /**
  3659. * M500: Store settings in EEPROM
  3660. */
  3661. inline void gcode_M500() {
  3662. Config_StoreSettings();
  3663. }
  3664. /**
  3665. * M501: Read settings from EEPROM
  3666. */
  3667. inline void gcode_M501() {
  3668. Config_RetrieveSettings();
  3669. }
  3670. /**
  3671. * M502: Revert to default settings
  3672. */
  3673. inline void gcode_M502() {
  3674. Config_ResetDefault();
  3675. }
  3676. /**
  3677. * M503: print settings currently in memory
  3678. */
  3679. inline void gcode_M503() {
  3680. Config_PrintSettings(code_seen('S') && code_value == 0);
  3681. }
  3682. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3683. /**
  3684. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  3685. */
  3686. inline void gcode_M540() {
  3687. if (code_seen('S')) abort_on_endstop_hit = (code_value() > 0);
  3688. }
  3689. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3690. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3691. inline void gcode_SET_Z_PROBE_OFFSET() {
  3692. float value;
  3693. if (code_seen('Z')) {
  3694. value = code_value();
  3695. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  3696. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  3697. SERIAL_ECHO_START;
  3698. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
  3699. SERIAL_PROTOCOLLN("");
  3700. }
  3701. else {
  3702. SERIAL_ECHO_START;
  3703. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  3704. SERIAL_ECHOPGM(MSG_Z_MIN);
  3705. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  3706. SERIAL_ECHOPGM(MSG_Z_MAX);
  3707. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  3708. SERIAL_PROTOCOLLN("");
  3709. }
  3710. }
  3711. else {
  3712. SERIAL_ECHO_START;
  3713. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " : ");
  3714. SERIAL_ECHO(-zprobe_zoffset);
  3715. SERIAL_PROTOCOLLN("");
  3716. }
  3717. }
  3718. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3719. #ifdef FILAMENTCHANGEENABLE
  3720. /**
  3721. * M600: Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3722. */
  3723. inline void gcode_M600() {
  3724. float target[NUM_AXIS], lastpos[NUM_AXIS], fr60 = feedrate / 60;
  3725. for (int i=0; i<NUM_AXIS; i++)
  3726. target[i] = lastpos[i] = current_position[i];
  3727. #define BASICPLAN plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder);
  3728. #ifdef DELTA
  3729. #define RUNPLAN calculate_delta(target); BASICPLAN
  3730. #else
  3731. #define RUNPLAN BASICPLAN
  3732. #endif
  3733. //retract by E
  3734. if (code_seen('E')) target[E_AXIS] += code_value();
  3735. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  3736. else target[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
  3737. #endif
  3738. RUNPLAN;
  3739. //lift Z
  3740. if (code_seen('Z')) target[Z_AXIS] += code_value();
  3741. #ifdef FILAMENTCHANGE_ZADD
  3742. else target[Z_AXIS] += FILAMENTCHANGE_ZADD;
  3743. #endif
  3744. RUNPLAN;
  3745. //move xy
  3746. if (code_seen('X')) target[X_AXIS] = code_value();
  3747. #ifdef FILAMENTCHANGE_XPOS
  3748. else target[X_AXIS] = FILAMENTCHANGE_XPOS;
  3749. #endif
  3750. if (code_seen('Y')) target[Y_AXIS] = code_value();
  3751. #ifdef FILAMENTCHANGE_YPOS
  3752. else target[Y_AXIS] = FILAMENTCHANGE_YPOS;
  3753. #endif
  3754. RUNPLAN;
  3755. if (code_seen('L')) target[E_AXIS] += code_value();
  3756. #ifdef FILAMENTCHANGE_FINALRETRACT
  3757. else target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  3758. #endif
  3759. RUNPLAN;
  3760. //finish moves
  3761. st_synchronize();
  3762. //disable extruder steppers so filament can be removed
  3763. disable_e0();
  3764. disable_e1();
  3765. disable_e2();
  3766. disable_e3();
  3767. delay(100);
  3768. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  3769. uint8_t cnt = 0;
  3770. while (!lcd_clicked()) {
  3771. cnt++;
  3772. manage_heater();
  3773. manage_inactivity(true);
  3774. lcd_update();
  3775. if (cnt == 0) {
  3776. #if BEEPER > 0
  3777. OUT_WRITE(BEEPER,HIGH);
  3778. delay(3);
  3779. WRITE(BEEPER,LOW);
  3780. delay(3);
  3781. #else
  3782. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  3783. lcd_buzz(1000/6, 100);
  3784. #else
  3785. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
  3786. #endif
  3787. #endif
  3788. }
  3789. } // while(!lcd_clicked)
  3790. //return to normal
  3791. if (code_seen('L')) target[E_AXIS] -= code_value();
  3792. #ifdef FILAMENTCHANGE_FINALRETRACT
  3793. else target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  3794. #endif
  3795. current_position[E_AXIS] = target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3796. plan_set_e_position(current_position[E_AXIS]);
  3797. RUNPLAN; //should do nothing
  3798. lcd_reset_alert_level();
  3799. #ifdef DELTA
  3800. calculate_delta(lastpos);
  3801. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xyz back
  3802. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  3803. #else
  3804. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xy back
  3805. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move z back
  3806. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  3807. #endif
  3808. #ifdef FILAMENT_RUNOUT_SENSOR
  3809. filrunoutEnqued = false;
  3810. #endif
  3811. }
  3812. #endif // FILAMENTCHANGEENABLE
  3813. #ifdef DUAL_X_CARRIAGE
  3814. /**
  3815. * M605: Set dual x-carriage movement mode
  3816. *
  3817. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  3818. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  3819. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  3820. * millimeters x-offset and an optional differential hotend temperature of
  3821. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  3822. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  3823. *
  3824. * Note: the X axis should be homed after changing dual x-carriage mode.
  3825. */
  3826. inline void gcode_M605() {
  3827. st_synchronize();
  3828. if (code_seen('S')) dual_x_carriage_mode = code_value();
  3829. switch(dual_x_carriage_mode) {
  3830. case DXC_DUPLICATION_MODE:
  3831. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0));
  3832. if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
  3833. SERIAL_ECHO_START;
  3834. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3835. SERIAL_ECHO(" ");
  3836. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  3837. SERIAL_ECHO(",");
  3838. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  3839. SERIAL_ECHO(" ");
  3840. SERIAL_ECHO(duplicate_extruder_x_offset);
  3841. SERIAL_ECHO(",");
  3842. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  3843. break;
  3844. case DXC_FULL_CONTROL_MODE:
  3845. case DXC_AUTO_PARK_MODE:
  3846. break;
  3847. default:
  3848. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  3849. break;
  3850. }
  3851. active_extruder_parked = false;
  3852. extruder_duplication_enabled = false;
  3853. delayed_move_time = 0;
  3854. }
  3855. #endif // DUAL_X_CARRIAGE
  3856. /**
  3857. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  3858. */
  3859. inline void gcode_M907() {
  3860. #if HAS_DIGIPOTSS
  3861. for (int i=0;i<NUM_AXIS;i++)
  3862. if (code_seen(axis_codes[i])) digipot_current(i, code_value());
  3863. if (code_seen('B')) digipot_current(4, code_value());
  3864. if (code_seen('S')) for (int i=0; i<=4; i++) digipot_current(i, code_value());
  3865. #endif
  3866. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  3867. if (code_seen('X')) digipot_current(0, code_value());
  3868. #endif
  3869. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  3870. if (code_seen('Z')) digipot_current(1, code_value());
  3871. #endif
  3872. #ifdef MOTOR_CURRENT_PWM_E_PIN
  3873. if (code_seen('E')) digipot_current(2, code_value());
  3874. #endif
  3875. #ifdef DIGIPOT_I2C
  3876. // this one uses actual amps in floating point
  3877. for (int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  3878. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  3879. for (int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  3880. #endif
  3881. }
  3882. #if HAS_DIGIPOTSS
  3883. /**
  3884. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  3885. */
  3886. inline void gcode_M908() {
  3887. digitalPotWrite(
  3888. code_seen('P') ? code_value() : 0,
  3889. code_seen('S') ? code_value() : 0
  3890. );
  3891. }
  3892. #endif // HAS_DIGIPOTSS
  3893. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  3894. inline void gcode_M350() {
  3895. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3896. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  3897. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  3898. if(code_seen('B')) microstep_mode(4,code_value());
  3899. microstep_readings();
  3900. #endif
  3901. }
  3902. /**
  3903. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  3904. * S# determines MS1 or MS2, X# sets the pin high/low.
  3905. */
  3906. inline void gcode_M351() {
  3907. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3908. if (code_seen('S')) switch(code_value_long()) {
  3909. case 1:
  3910. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, code_value(), -1);
  3911. if (code_seen('B')) microstep_ms(4, code_value(), -1);
  3912. break;
  3913. case 2:
  3914. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, -1, code_value());
  3915. if (code_seen('B')) microstep_ms(4, -1, code_value());
  3916. break;
  3917. }
  3918. microstep_readings();
  3919. #endif
  3920. }
  3921. /**
  3922. * M999: Restart after being stopped
  3923. */
  3924. inline void gcode_M999() {
  3925. Stopped = false;
  3926. lcd_reset_alert_level();
  3927. gcode_LastN = Stopped_gcode_LastN;
  3928. FlushSerialRequestResend();
  3929. }
  3930. inline void gcode_T() {
  3931. tmp_extruder = code_value();
  3932. if (tmp_extruder >= EXTRUDERS) {
  3933. SERIAL_ECHO_START;
  3934. SERIAL_ECHO("T");
  3935. SERIAL_ECHO(tmp_extruder);
  3936. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3937. }
  3938. else {
  3939. boolean make_move = false;
  3940. if (code_seen('F')) {
  3941. make_move = true;
  3942. next_feedrate = code_value();
  3943. if (next_feedrate > 0.0) feedrate = next_feedrate;
  3944. }
  3945. #if EXTRUDERS > 1
  3946. if (tmp_extruder != active_extruder) {
  3947. // Save current position to return to after applying extruder offset
  3948. memcpy(destination, current_position, sizeof(destination));
  3949. #ifdef DUAL_X_CARRIAGE
  3950. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
  3951. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  3952. // Park old head: 1) raise 2) move to park position 3) lower
  3953. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3954. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3955. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3956. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  3957. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  3958. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3959. st_synchronize();
  3960. }
  3961. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  3962. current_position[Y_AXIS] = current_position[Y_AXIS] -
  3963. extruder_offset[Y_AXIS][active_extruder] +
  3964. extruder_offset[Y_AXIS][tmp_extruder];
  3965. current_position[Z_AXIS] = current_position[Z_AXIS] -
  3966. extruder_offset[Z_AXIS][active_extruder] +
  3967. extruder_offset[Z_AXIS][tmp_extruder];
  3968. active_extruder = tmp_extruder;
  3969. // This function resets the max/min values - the current position may be overwritten below.
  3970. axis_is_at_home(X_AXIS);
  3971. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  3972. current_position[X_AXIS] = inactive_extruder_x_pos;
  3973. inactive_extruder_x_pos = destination[X_AXIS];
  3974. }
  3975. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  3976. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  3977. if (active_extruder == 0 || active_extruder_parked)
  3978. current_position[X_AXIS] = inactive_extruder_x_pos;
  3979. else
  3980. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  3981. inactive_extruder_x_pos = destination[X_AXIS];
  3982. extruder_duplication_enabled = false;
  3983. }
  3984. else {
  3985. // record raised toolhead position for use by unpark
  3986. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  3987. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  3988. active_extruder_parked = true;
  3989. delayed_move_time = 0;
  3990. }
  3991. #else // !DUAL_X_CARRIAGE
  3992. // Offset extruder (only by XY)
  3993. for (int i=X_AXIS; i<=Y_AXIS; i++)
  3994. current_position[i] += extruder_offset[i][tmp_extruder] - extruder_offset[i][active_extruder];
  3995. // Set the new active extruder and position
  3996. active_extruder = tmp_extruder;
  3997. #endif // !DUAL_X_CARRIAGE
  3998. #ifdef DELTA
  3999. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  4000. //sent position to plan_set_position();
  4001. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],current_position[E_AXIS]);
  4002. #else
  4003. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4004. #endif
  4005. // Move to the old position if 'F' was in the parameters
  4006. if (make_move && !Stopped) prepare_move();
  4007. }
  4008. #ifdef EXT_SOLENOID
  4009. st_synchronize();
  4010. disable_all_solenoids();
  4011. enable_solenoid_on_active_extruder();
  4012. #endif // EXT_SOLENOID
  4013. #endif // EXTRUDERS > 1
  4014. SERIAL_ECHO_START;
  4015. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  4016. SERIAL_PROTOCOLLN((int)active_extruder);
  4017. }
  4018. }
  4019. /**
  4020. * Process Commands and dispatch them to handlers
  4021. */
  4022. void process_commands() {
  4023. if (code_seen('G')) {
  4024. int gCode = code_value_long();
  4025. switch(gCode) {
  4026. // G0, G1
  4027. case 0:
  4028. case 1:
  4029. gcode_G0_G1();
  4030. break;
  4031. // G2, G3
  4032. #ifndef SCARA
  4033. case 2: // G2 - CW ARC
  4034. case 3: // G3 - CCW ARC
  4035. gcode_G2_G3(gCode == 2);
  4036. break;
  4037. #endif
  4038. // G4 Dwell
  4039. case 4:
  4040. gcode_G4();
  4041. break;
  4042. #ifdef FWRETRACT
  4043. case 10: // G10: retract
  4044. case 11: // G11: retract_recover
  4045. gcode_G10_G11(gCode == 10);
  4046. break;
  4047. #endif //FWRETRACT
  4048. case 28: // G28: Home all axes, one at a time
  4049. gcode_G28();
  4050. break;
  4051. #if defined(MESH_BED_LEVELING)
  4052. case 29: // G29 Handle mesh based leveling
  4053. gcode_G29();
  4054. break;
  4055. #endif
  4056. #ifdef ENABLE_AUTO_BED_LEVELING
  4057. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  4058. gcode_G29();
  4059. break;
  4060. #ifndef Z_PROBE_SLED
  4061. case 30: // G30 Single Z Probe
  4062. gcode_G30();
  4063. break;
  4064. #else // Z_PROBE_SLED
  4065. case 31: // G31: dock the sled
  4066. case 32: // G32: undock the sled
  4067. dock_sled(gCode == 31);
  4068. break;
  4069. #endif // Z_PROBE_SLED
  4070. #endif // ENABLE_AUTO_BED_LEVELING
  4071. case 90: // G90
  4072. relative_mode = false;
  4073. break;
  4074. case 91: // G91
  4075. relative_mode = true;
  4076. break;
  4077. case 92: // G92
  4078. gcode_G92();
  4079. break;
  4080. }
  4081. }
  4082. else if (code_seen('M')) {
  4083. switch( code_value_long() ) {
  4084. #ifdef ULTIPANEL
  4085. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4086. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4087. gcode_M0_M1();
  4088. break;
  4089. #endif // ULTIPANEL
  4090. case 17:
  4091. gcode_M17();
  4092. break;
  4093. #ifdef SDSUPPORT
  4094. case 20: // M20 - list SD card
  4095. gcode_M20(); break;
  4096. case 21: // M21 - init SD card
  4097. gcode_M21(); break;
  4098. case 22: //M22 - release SD card
  4099. gcode_M22(); break;
  4100. case 23: //M23 - Select file
  4101. gcode_M23(); break;
  4102. case 24: //M24 - Start SD print
  4103. gcode_M24(); break;
  4104. case 25: //M25 - Pause SD print
  4105. gcode_M25(); break;
  4106. case 26: //M26 - Set SD index
  4107. gcode_M26(); break;
  4108. case 27: //M27 - Get SD status
  4109. gcode_M27(); break;
  4110. case 28: //M28 - Start SD write
  4111. gcode_M28(); break;
  4112. case 29: //M29 - Stop SD write
  4113. gcode_M29(); break;
  4114. case 30: //M30 <filename> Delete File
  4115. gcode_M30(); break;
  4116. case 32: //M32 - Select file and start SD print
  4117. gcode_M32(); break;
  4118. case 928: //M928 - Start SD write
  4119. gcode_M928(); break;
  4120. #endif //SDSUPPORT
  4121. case 31: //M31 take time since the start of the SD print or an M109 command
  4122. gcode_M31();
  4123. break;
  4124. case 42: //M42 -Change pin status via gcode
  4125. gcode_M42();
  4126. break;
  4127. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  4128. case 48: // M48 Z-Probe repeatability
  4129. gcode_M48();
  4130. break;
  4131. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  4132. case 104: // M104
  4133. gcode_M104();
  4134. break;
  4135. case 112: // M112 Emergency Stop
  4136. gcode_M112();
  4137. break;
  4138. case 140: // M140 Set bed temp
  4139. gcode_M140();
  4140. break;
  4141. case 105: // M105 Read current temperature
  4142. gcode_M105();
  4143. return;
  4144. break;
  4145. case 109: // M109 Wait for temperature
  4146. gcode_M109();
  4147. break;
  4148. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4149. case 190: // M190 - Wait for bed heater to reach target.
  4150. gcode_M190();
  4151. break;
  4152. #endif //TEMP_BED_PIN
  4153. #if defined(FAN_PIN) && FAN_PIN > -1
  4154. case 106: //M106 Fan On
  4155. gcode_M106();
  4156. break;
  4157. case 107: //M107 Fan Off
  4158. gcode_M107();
  4159. break;
  4160. #endif //FAN_PIN
  4161. #ifdef BARICUDA
  4162. // PWM for HEATER_1_PIN
  4163. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  4164. case 126: // M126 valve open
  4165. gcode_M126();
  4166. break;
  4167. case 127: // M127 valve closed
  4168. gcode_M127();
  4169. break;
  4170. #endif //HEATER_1_PIN
  4171. // PWM for HEATER_2_PIN
  4172. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  4173. case 128: // M128 valve open
  4174. gcode_M128();
  4175. break;
  4176. case 129: // M129 valve closed
  4177. gcode_M129();
  4178. break;
  4179. #endif //HEATER_2_PIN
  4180. #endif //BARICUDA
  4181. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4182. case 80: // M80 - Turn on Power Supply
  4183. gcode_M80();
  4184. break;
  4185. #endif // PS_ON_PIN
  4186. case 81: // M81 - Turn off Power Supply
  4187. gcode_M81();
  4188. break;
  4189. case 82:
  4190. gcode_M82();
  4191. break;
  4192. case 83:
  4193. gcode_M83();
  4194. break;
  4195. case 18: //compatibility
  4196. case 84: // M84
  4197. gcode_M18_M84();
  4198. break;
  4199. case 85: // M85
  4200. gcode_M85();
  4201. break;
  4202. case 92: // M92
  4203. gcode_M92();
  4204. break;
  4205. case 115: // M115
  4206. gcode_M115();
  4207. break;
  4208. case 117: // M117 display message
  4209. gcode_M117();
  4210. break;
  4211. case 114: // M114
  4212. gcode_M114();
  4213. break;
  4214. case 120: // M120
  4215. gcode_M120();
  4216. break;
  4217. case 121: // M121
  4218. gcode_M121();
  4219. break;
  4220. case 119: // M119
  4221. gcode_M119();
  4222. break;
  4223. //TODO: update for all axis, use for loop
  4224. #ifdef BLINKM
  4225. case 150: // M150
  4226. gcode_M150();
  4227. break;
  4228. #endif //BLINKM
  4229. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4230. gcode_M200();
  4231. break;
  4232. case 201: // M201
  4233. gcode_M201();
  4234. break;
  4235. #if 0 // Not used for Sprinter/grbl gen6
  4236. case 202: // M202
  4237. gcode_M202();
  4238. break;
  4239. #endif
  4240. case 203: // M203 max feedrate mm/sec
  4241. gcode_M203();
  4242. break;
  4243. case 204: // M204 acclereration S normal moves T filmanent only moves
  4244. gcode_M204();
  4245. break;
  4246. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4247. gcode_M205();
  4248. break;
  4249. case 206: // M206 additional homing offset
  4250. gcode_M206();
  4251. break;
  4252. #ifdef DELTA
  4253. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  4254. gcode_M665();
  4255. break;
  4256. case 666: // M666 set delta endstop adjustment
  4257. gcode_M666();
  4258. break;
  4259. #elif defined(Z_DUAL_ENDSTOPS)
  4260. case 666: // M666 set delta endstop adjustment
  4261. gcode_M666();
  4262. break;
  4263. #endif // DELTA
  4264. #ifdef FWRETRACT
  4265. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4266. gcode_M207();
  4267. break;
  4268. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4269. gcode_M208();
  4270. break;
  4271. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4272. gcode_M209();
  4273. break;
  4274. #endif // FWRETRACT
  4275. #if EXTRUDERS > 1
  4276. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4277. gcode_M218();
  4278. break;
  4279. #endif
  4280. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4281. gcode_M220();
  4282. break;
  4283. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4284. gcode_M221();
  4285. break;
  4286. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4287. gcode_M226();
  4288. break;
  4289. #if NUM_SERVOS > 0
  4290. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4291. gcode_M280();
  4292. break;
  4293. #endif // NUM_SERVOS > 0
  4294. #if defined(LARGE_FLASH) && (BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER))
  4295. case 300: // M300 - Play beep tone
  4296. gcode_M300();
  4297. break;
  4298. #endif // LARGE_FLASH && (BEEPER>0 || ULTRALCD || LCD_USE_I2C_BUZZER)
  4299. #ifdef PIDTEMP
  4300. case 301: // M301
  4301. gcode_M301();
  4302. break;
  4303. #endif // PIDTEMP
  4304. #ifdef PIDTEMPBED
  4305. case 304: // M304
  4306. gcode_M304();
  4307. break;
  4308. #endif // PIDTEMPBED
  4309. #if defined(CHDK) || (defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1)
  4310. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4311. gcode_M240();
  4312. break;
  4313. #endif // CHDK || PHOTOGRAPH_PIN
  4314. #ifdef DOGLCD
  4315. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4316. gcode_M250();
  4317. break;
  4318. #endif // DOGLCD
  4319. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4320. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4321. gcode_M302();
  4322. break;
  4323. #endif // PREVENT_DANGEROUS_EXTRUDE
  4324. case 303: // M303 PID autotune
  4325. gcode_M303();
  4326. break;
  4327. #ifdef SCARA
  4328. case 360: // M360 SCARA Theta pos1
  4329. if (gcode_M360()) return;
  4330. break;
  4331. case 361: // M361 SCARA Theta pos2
  4332. if (gcode_M361()) return;
  4333. break;
  4334. case 362: // M362 SCARA Psi pos1
  4335. if (gcode_M362()) return;
  4336. break;
  4337. case 363: // M363 SCARA Psi pos2
  4338. if (gcode_M363()) return;
  4339. break;
  4340. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  4341. if (gcode_M364()) return;
  4342. break;
  4343. case 365: // M365 Set SCARA scaling for X Y Z
  4344. gcode_M365();
  4345. break;
  4346. #endif // SCARA
  4347. case 400: // M400 finish all moves
  4348. gcode_M400();
  4349. break;
  4350. #if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && not defined(Z_PROBE_SLED)
  4351. case 401:
  4352. gcode_M401();
  4353. break;
  4354. case 402:
  4355. gcode_M402();
  4356. break;
  4357. #endif
  4358. #ifdef FILAMENT_SENSOR
  4359. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4360. gcode_M404();
  4361. break;
  4362. case 405: //M405 Turn on filament sensor for control
  4363. gcode_M405();
  4364. break;
  4365. case 406: //M406 Turn off filament sensor for control
  4366. gcode_M406();
  4367. break;
  4368. case 407: //M407 Display measured filament diameter
  4369. gcode_M407();
  4370. break;
  4371. #endif // FILAMENT_SENSOR
  4372. case 500: // M500 Store settings in EEPROM
  4373. gcode_M500();
  4374. break;
  4375. case 501: // M501 Read settings from EEPROM
  4376. gcode_M501();
  4377. break;
  4378. case 502: // M502 Revert to default settings
  4379. gcode_M502();
  4380. break;
  4381. case 503: // M503 print settings currently in memory
  4382. gcode_M503();
  4383. break;
  4384. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4385. case 540:
  4386. gcode_M540();
  4387. break;
  4388. #endif
  4389. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4390. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4391. gcode_SET_Z_PROBE_OFFSET();
  4392. break;
  4393. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4394. #ifdef FILAMENTCHANGEENABLE
  4395. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4396. gcode_M600();
  4397. break;
  4398. #endif // FILAMENTCHANGEENABLE
  4399. #ifdef DUAL_X_CARRIAGE
  4400. case 605:
  4401. gcode_M605();
  4402. break;
  4403. #endif // DUAL_X_CARRIAGE
  4404. case 907: // M907 Set digital trimpot motor current using axis codes.
  4405. gcode_M907();
  4406. break;
  4407. #if HAS_DIGIPOTSS
  4408. case 908: // M908 Control digital trimpot directly.
  4409. gcode_M908();
  4410. break;
  4411. #endif // HAS_DIGIPOTSS
  4412. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4413. gcode_M350();
  4414. break;
  4415. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4416. gcode_M351();
  4417. break;
  4418. case 999: // M999: Restart after being Stopped
  4419. gcode_M999();
  4420. break;
  4421. }
  4422. }
  4423. else if (code_seen('T')) {
  4424. gcode_T();
  4425. }
  4426. else {
  4427. SERIAL_ECHO_START;
  4428. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  4429. SERIAL_ECHO(cmdbuffer[bufindr]);
  4430. SERIAL_ECHOLNPGM("\"");
  4431. }
  4432. ClearToSend();
  4433. }
  4434. void FlushSerialRequestResend()
  4435. {
  4436. //char cmdbuffer[bufindr][100]="Resend:";
  4437. MYSERIAL.flush();
  4438. SERIAL_PROTOCOLPGM(MSG_RESEND);
  4439. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  4440. ClearToSend();
  4441. }
  4442. void ClearToSend()
  4443. {
  4444. previous_millis_cmd = millis();
  4445. #ifdef SDSUPPORT
  4446. if(fromsd[bufindr])
  4447. return;
  4448. #endif //SDSUPPORT
  4449. SERIAL_PROTOCOLLNPGM(MSG_OK);
  4450. }
  4451. void get_coordinates()
  4452. {
  4453. bool seen[4]={false,false,false,false};
  4454. for(int8_t i=0; i < NUM_AXIS; i++) {
  4455. if(code_seen(axis_codes[i]))
  4456. {
  4457. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  4458. seen[i]=true;
  4459. }
  4460. else destination[i] = current_position[i]; //Are these else lines really needed?
  4461. }
  4462. if(code_seen('F')) {
  4463. next_feedrate = code_value();
  4464. if(next_feedrate > 0.0) feedrate = next_feedrate;
  4465. }
  4466. }
  4467. void get_arc_coordinates()
  4468. {
  4469. #ifdef SF_ARC_FIX
  4470. bool relative_mode_backup = relative_mode;
  4471. relative_mode = true;
  4472. #endif
  4473. get_coordinates();
  4474. #ifdef SF_ARC_FIX
  4475. relative_mode=relative_mode_backup;
  4476. #endif
  4477. if(code_seen('I')) {
  4478. offset[0] = code_value();
  4479. }
  4480. else {
  4481. offset[0] = 0.0;
  4482. }
  4483. if(code_seen('J')) {
  4484. offset[1] = code_value();
  4485. }
  4486. else {
  4487. offset[1] = 0.0;
  4488. }
  4489. }
  4490. void clamp_to_software_endstops(float target[3])
  4491. {
  4492. if (min_software_endstops) {
  4493. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  4494. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  4495. float negative_z_offset = 0;
  4496. #ifdef ENABLE_AUTO_BED_LEVELING
  4497. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  4498. if (home_offset[Z_AXIS] < 0) negative_z_offset = negative_z_offset + home_offset[Z_AXIS];
  4499. #endif
  4500. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  4501. }
  4502. if (max_software_endstops) {
  4503. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  4504. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  4505. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  4506. }
  4507. }
  4508. #ifdef DELTA
  4509. void recalc_delta_settings(float radius, float diagonal_rod)
  4510. {
  4511. delta_tower1_x= -SIN_60*radius; // front left tower
  4512. delta_tower1_y= -COS_60*radius;
  4513. delta_tower2_x= SIN_60*radius; // front right tower
  4514. delta_tower2_y= -COS_60*radius;
  4515. delta_tower3_x= 0.0; // back middle tower
  4516. delta_tower3_y= radius;
  4517. delta_diagonal_rod_2= sq(diagonal_rod);
  4518. }
  4519. void calculate_delta(float cartesian[3])
  4520. {
  4521. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  4522. - sq(delta_tower1_x-cartesian[X_AXIS])
  4523. - sq(delta_tower1_y-cartesian[Y_AXIS])
  4524. ) + cartesian[Z_AXIS];
  4525. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  4526. - sq(delta_tower2_x-cartesian[X_AXIS])
  4527. - sq(delta_tower2_y-cartesian[Y_AXIS])
  4528. ) + cartesian[Z_AXIS];
  4529. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  4530. - sq(delta_tower3_x-cartesian[X_AXIS])
  4531. - sq(delta_tower3_y-cartesian[Y_AXIS])
  4532. ) + cartesian[Z_AXIS];
  4533. /*
  4534. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4535. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4536. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4537. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4538. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4539. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4540. */
  4541. }
  4542. #ifdef ENABLE_AUTO_BED_LEVELING
  4543. // Adjust print surface height by linear interpolation over the bed_level array.
  4544. int delta_grid_spacing[2] = { 0, 0 };
  4545. void adjust_delta(float cartesian[3])
  4546. {
  4547. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0)
  4548. return; // G29 not done
  4549. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  4550. float grid_x = max(0.001-half, min(half-0.001, cartesian[X_AXIS] / delta_grid_spacing[0]));
  4551. float grid_y = max(0.001-half, min(half-0.001, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  4552. int floor_x = floor(grid_x);
  4553. int floor_y = floor(grid_y);
  4554. float ratio_x = grid_x - floor_x;
  4555. float ratio_y = grid_y - floor_y;
  4556. float z1 = bed_level[floor_x+half][floor_y+half];
  4557. float z2 = bed_level[floor_x+half][floor_y+half+1];
  4558. float z3 = bed_level[floor_x+half+1][floor_y+half];
  4559. float z4 = bed_level[floor_x+half+1][floor_y+half+1];
  4560. float left = (1-ratio_y)*z1 + ratio_y*z2;
  4561. float right = (1-ratio_y)*z3 + ratio_y*z4;
  4562. float offset = (1-ratio_x)*left + ratio_x*right;
  4563. delta[X_AXIS] += offset;
  4564. delta[Y_AXIS] += offset;
  4565. delta[Z_AXIS] += offset;
  4566. /*
  4567. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  4568. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  4569. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  4570. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  4571. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  4572. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  4573. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  4574. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  4575. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  4576. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  4577. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  4578. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  4579. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  4580. */
  4581. }
  4582. #endif //ENABLE_AUTO_BED_LEVELING
  4583. void prepare_move_raw()
  4584. {
  4585. previous_millis_cmd = millis();
  4586. calculate_delta(destination);
  4587. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  4588. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  4589. active_extruder);
  4590. for(int8_t i=0; i < NUM_AXIS; i++) {
  4591. current_position[i] = destination[i];
  4592. }
  4593. }
  4594. #endif //DELTA
  4595. #if defined(MESH_BED_LEVELING)
  4596. #if !defined(MIN)
  4597. #define MIN(_v1, _v2) (((_v1) < (_v2)) ? (_v1) : (_v2))
  4598. #endif // ! MIN
  4599. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  4600. void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t &extruder, uint8_t x_splits=0xff, uint8_t y_splits=0xff)
  4601. {
  4602. if (!mbl.active) {
  4603. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4604. for(int8_t i=0; i < NUM_AXIS; i++) {
  4605. current_position[i] = destination[i];
  4606. }
  4607. return;
  4608. }
  4609. int pix = mbl.select_x_index(current_position[X_AXIS]);
  4610. int piy = mbl.select_y_index(current_position[Y_AXIS]);
  4611. int ix = mbl.select_x_index(x);
  4612. int iy = mbl.select_y_index(y);
  4613. pix = MIN(pix, MESH_NUM_X_POINTS-2);
  4614. piy = MIN(piy, MESH_NUM_Y_POINTS-2);
  4615. ix = MIN(ix, MESH_NUM_X_POINTS-2);
  4616. iy = MIN(iy, MESH_NUM_Y_POINTS-2);
  4617. if (pix == ix && piy == iy) {
  4618. // Start and end on same mesh square
  4619. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4620. for(int8_t i=0; i < NUM_AXIS; i++) {
  4621. current_position[i] = destination[i];
  4622. }
  4623. return;
  4624. }
  4625. float nx, ny, ne, normalized_dist;
  4626. if (ix > pix && (x_splits) & BIT(ix)) {
  4627. nx = mbl.get_x(ix);
  4628. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  4629. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  4630. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4631. x_splits ^= BIT(ix);
  4632. } else if (ix < pix && (x_splits) & BIT(pix)) {
  4633. nx = mbl.get_x(pix);
  4634. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  4635. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  4636. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4637. x_splits ^= BIT(pix);
  4638. } else if (iy > piy && (y_splits) & BIT(iy)) {
  4639. ny = mbl.get_y(iy);
  4640. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  4641. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  4642. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4643. y_splits ^= BIT(iy);
  4644. } else if (iy < piy && (y_splits) & BIT(piy)) {
  4645. ny = mbl.get_y(piy);
  4646. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  4647. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  4648. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4649. y_splits ^= BIT(piy);
  4650. } else {
  4651. // Already split on a border
  4652. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4653. for(int8_t i=0; i < NUM_AXIS; i++) {
  4654. current_position[i] = destination[i];
  4655. }
  4656. return;
  4657. }
  4658. // Do the split and look for more borders
  4659. destination[X_AXIS] = nx;
  4660. destination[Y_AXIS] = ny;
  4661. destination[E_AXIS] = ne;
  4662. mesh_plan_buffer_line(nx, ny, z, ne, feed_rate, extruder, x_splits, y_splits);
  4663. destination[X_AXIS] = x;
  4664. destination[Y_AXIS] = y;
  4665. destination[E_AXIS] = e;
  4666. mesh_plan_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
  4667. }
  4668. #endif // MESH_BED_LEVELING
  4669. void prepare_move()
  4670. {
  4671. clamp_to_software_endstops(destination);
  4672. previous_millis_cmd = millis();
  4673. #ifdef SCARA //for now same as delta-code
  4674. float difference[NUM_AXIS];
  4675. for (int8_t i=0; i < NUM_AXIS; i++) {
  4676. difference[i] = destination[i] - current_position[i];
  4677. }
  4678. float cartesian_mm = sqrt( sq(difference[X_AXIS]) +
  4679. sq(difference[Y_AXIS]) +
  4680. sq(difference[Z_AXIS]));
  4681. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  4682. if (cartesian_mm < 0.000001) { return; }
  4683. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  4684. int steps = max(1, int(scara_segments_per_second * seconds));
  4685. //SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  4686. //SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  4687. //SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  4688. for (int s = 1; s <= steps; s++) {
  4689. float fraction = float(s) / float(steps);
  4690. for(int8_t i=0; i < NUM_AXIS; i++) {
  4691. destination[i] = current_position[i] + difference[i] * fraction;
  4692. }
  4693. calculate_delta(destination);
  4694. //SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]);
  4695. //SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]);
  4696. //SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]);
  4697. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  4698. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  4699. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4700. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  4701. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  4702. active_extruder);
  4703. }
  4704. #endif // SCARA
  4705. #ifdef DELTA
  4706. float difference[NUM_AXIS];
  4707. for (int8_t i=0; i < NUM_AXIS; i++) {
  4708. difference[i] = destination[i] - current_position[i];
  4709. }
  4710. float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
  4711. sq(difference[Y_AXIS]) +
  4712. sq(difference[Z_AXIS]));
  4713. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  4714. if (cartesian_mm < 0.000001) { return; }
  4715. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  4716. int steps = max(1, int(delta_segments_per_second * seconds));
  4717. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  4718. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  4719. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  4720. for (int s = 1; s <= steps; s++) {
  4721. float fraction = float(s) / float(steps);
  4722. for(int8_t i=0; i < NUM_AXIS; i++) {
  4723. destination[i] = current_position[i] + difference[i] * fraction;
  4724. }
  4725. calculate_delta(destination);
  4726. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  4727. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  4728. active_extruder);
  4729. }
  4730. #endif // DELTA
  4731. #ifdef DUAL_X_CARRIAGE
  4732. if (active_extruder_parked)
  4733. {
  4734. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
  4735. {
  4736. // move duplicate extruder into correct duplication position.
  4737. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4738. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
  4739. current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  4740. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4741. st_synchronize();
  4742. extruder_duplication_enabled = true;
  4743. active_extruder_parked = false;
  4744. }
  4745. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
  4746. {
  4747. if (current_position[E_AXIS] == destination[E_AXIS])
  4748. {
  4749. // this is a travel move - skit it but keep track of current position (so that it can later
  4750. // be used as start of first non-travel move)
  4751. if (delayed_move_time != 0xFFFFFFFFUL)
  4752. {
  4753. memcpy(current_position, destination, sizeof(current_position));
  4754. if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
  4755. raised_parked_position[Z_AXIS] = destination[Z_AXIS];
  4756. delayed_move_time = millis();
  4757. return;
  4758. }
  4759. }
  4760. delayed_move_time = 0;
  4761. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  4762. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4763. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
  4764. current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
  4765. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  4766. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4767. active_extruder_parked = false;
  4768. }
  4769. }
  4770. #endif //DUAL_X_CARRIAGE
  4771. #if ! (defined DELTA || defined SCARA)
  4772. // Do not use feedmultiply for E or Z only moves
  4773. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  4774. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  4775. } else {
  4776. #if defined(MESH_BED_LEVELING)
  4777. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  4778. return;
  4779. #else
  4780. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  4781. #endif // MESH_BED_LEVELING
  4782. }
  4783. #endif // !(DELTA || SCARA)
  4784. for(int8_t i=0; i < NUM_AXIS; i++) {
  4785. current_position[i] = destination[i];
  4786. }
  4787. }
  4788. void prepare_arc_move(char isclockwise) {
  4789. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  4790. // Trace the arc
  4791. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  4792. // As far as the parser is concerned, the position is now == target. In reality the
  4793. // motion control system might still be processing the action and the real tool position
  4794. // in any intermediate location.
  4795. for(int8_t i=0; i < NUM_AXIS; i++) {
  4796. current_position[i] = destination[i];
  4797. }
  4798. previous_millis_cmd = millis();
  4799. }
  4800. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4801. #if defined(FAN_PIN)
  4802. #if CONTROLLERFAN_PIN == FAN_PIN
  4803. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  4804. #endif
  4805. #endif
  4806. unsigned long lastMotor = 0; // Last time a motor was turned on
  4807. unsigned long lastMotorCheck = 0; // Last time the state was checked
  4808. void controllerFan() {
  4809. uint32_t ms = millis();
  4810. if (ms >= lastMotorCheck + 2500) { // Not a time critical function, so we only check every 2500ms
  4811. lastMotorCheck = ms;
  4812. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || soft_pwm_bed > 0
  4813. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  4814. #if EXTRUDERS > 1
  4815. || E1_ENABLE_READ == E_ENABLE_ON
  4816. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  4817. || X2_ENABLE_READ == X_ENABLE_ON
  4818. #endif
  4819. #if EXTRUDERS > 2
  4820. || E2_ENABLE_READ == E_ENABLE_ON
  4821. #if EXTRUDERS > 3
  4822. || E3_ENABLE_READ == E_ENABLE_ON
  4823. #endif
  4824. #endif
  4825. #endif
  4826. ) {
  4827. lastMotor = ms; //... set time to NOW so the fan will turn on
  4828. }
  4829. uint8_t speed = (lastMotor == 0 || ms >= lastMotor + (CONTROLLERFAN_SECS * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  4830. // allows digital or PWM fan output to be used (see M42 handling)
  4831. digitalWrite(CONTROLLERFAN_PIN, speed);
  4832. analogWrite(CONTROLLERFAN_PIN, speed);
  4833. }
  4834. }
  4835. #endif
  4836. #ifdef SCARA
  4837. void calculate_SCARA_forward_Transform(float f_scara[3])
  4838. {
  4839. // Perform forward kinematics, and place results in delta[3]
  4840. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  4841. float x_sin, x_cos, y_sin, y_cos;
  4842. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  4843. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  4844. x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  4845. x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  4846. y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  4847. y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  4848. // SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  4849. // SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  4850. // SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  4851. // SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  4852. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  4853. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  4854. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  4855. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  4856. }
  4857. void calculate_delta(float cartesian[3]){
  4858. //reverse kinematics.
  4859. // Perform reversed kinematics, and place results in delta[3]
  4860. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  4861. float SCARA_pos[2];
  4862. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  4863. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  4864. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  4865. #if (Linkage_1 == Linkage_2)
  4866. SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
  4867. #else
  4868. SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000;
  4869. #endif
  4870. SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
  4871. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  4872. SCARA_K2 = Linkage_2 * SCARA_S2;
  4873. SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
  4874. SCARA_psi = atan2(SCARA_S2,SCARA_C2);
  4875. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  4876. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  4877. delta[Z_AXIS] = cartesian[Z_AXIS];
  4878. /*
  4879. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4880. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4881. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4882. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  4883. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  4884. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4885. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4886. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4887. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  4888. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  4889. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  4890. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  4891. SERIAL_ECHOLN(" ");*/
  4892. }
  4893. #endif
  4894. #ifdef TEMP_STAT_LEDS
  4895. static bool blue_led = false;
  4896. static bool red_led = false;
  4897. static uint32_t stat_update = 0;
  4898. void handle_status_leds(void) {
  4899. float max_temp = 0.0;
  4900. if(millis() > stat_update) {
  4901. stat_update += 500; // Update every 0.5s
  4902. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4903. max_temp = max(max_temp, degHotend(cur_extruder));
  4904. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  4905. }
  4906. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4907. max_temp = max(max_temp, degTargetBed());
  4908. max_temp = max(max_temp, degBed());
  4909. #endif
  4910. if((max_temp > 55.0) && (red_led == false)) {
  4911. digitalWrite(STAT_LED_RED, 1);
  4912. digitalWrite(STAT_LED_BLUE, 0);
  4913. red_led = true;
  4914. blue_led = false;
  4915. }
  4916. if((max_temp < 54.0) && (blue_led == false)) {
  4917. digitalWrite(STAT_LED_RED, 0);
  4918. digitalWrite(STAT_LED_BLUE, 1);
  4919. red_led = false;
  4920. blue_led = true;
  4921. }
  4922. }
  4923. }
  4924. #endif
  4925. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  4926. {
  4927. #if defined(KILL_PIN) && KILL_PIN > -1
  4928. static int killCount = 0; // make the inactivity button a bit less responsive
  4929. const int KILL_DELAY = 750;
  4930. #endif
  4931. #if defined(FILRUNOUT_PIN) && FILRUNOUT_PIN > -1
  4932. if(card.sdprinting) {
  4933. if(!(READ(FILRUNOUT_PIN))^FIL_RUNOUT_INVERTING)
  4934. filrunout(); }
  4935. #endif
  4936. #if defined(HOME_PIN) && HOME_PIN > -1
  4937. static int homeDebounceCount = 0; // poor man's debouncing count
  4938. const int HOME_DEBOUNCE_DELAY = 750;
  4939. #endif
  4940. if(buflen < (BUFSIZE-1))
  4941. get_command();
  4942. if( (millis() - previous_millis_cmd) > max_inactive_time )
  4943. if(max_inactive_time)
  4944. kill();
  4945. if(stepper_inactive_time) {
  4946. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  4947. {
  4948. if(blocks_queued() == false && ignore_stepper_queue == false) {
  4949. disable_x();
  4950. disable_y();
  4951. disable_z();
  4952. disable_e0();
  4953. disable_e1();
  4954. disable_e2();
  4955. disable_e3();
  4956. }
  4957. }
  4958. }
  4959. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  4960. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  4961. {
  4962. chdkActive = false;
  4963. WRITE(CHDK, LOW);
  4964. }
  4965. #endif
  4966. #if defined(KILL_PIN) && KILL_PIN > -1
  4967. // Check if the kill button was pressed and wait just in case it was an accidental
  4968. // key kill key press
  4969. // -------------------------------------------------------------------------------
  4970. if( 0 == READ(KILL_PIN) )
  4971. {
  4972. killCount++;
  4973. }
  4974. else if (killCount > 0)
  4975. {
  4976. killCount--;
  4977. }
  4978. // Exceeded threshold and we can confirm that it was not accidental
  4979. // KILL the machine
  4980. // ----------------------------------------------------------------
  4981. if ( killCount >= KILL_DELAY)
  4982. {
  4983. kill();
  4984. }
  4985. #endif
  4986. #if defined(HOME_PIN) && HOME_PIN > -1
  4987. // Check to see if we have to home, use poor man's debouncer
  4988. // ---------------------------------------------------------
  4989. if ( 0 == READ(HOME_PIN) )
  4990. {
  4991. if (homeDebounceCount == 0)
  4992. {
  4993. enquecommands_P((PSTR("G28")));
  4994. homeDebounceCount++;
  4995. LCD_ALERTMESSAGEPGM(MSG_AUTO_HOME);
  4996. }
  4997. else if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  4998. {
  4999. homeDebounceCount++;
  5000. }
  5001. else
  5002. {
  5003. homeDebounceCount = 0;
  5004. }
  5005. }
  5006. #endif
  5007. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5008. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  5009. #endif
  5010. #ifdef EXTRUDER_RUNOUT_PREVENT
  5011. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  5012. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  5013. {
  5014. bool oldstatus=E0_ENABLE_READ;
  5015. enable_e0();
  5016. float oldepos=current_position[E_AXIS];
  5017. float oldedes=destination[E_AXIS];
  5018. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  5019. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  5020. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  5021. current_position[E_AXIS]=oldepos;
  5022. destination[E_AXIS]=oldedes;
  5023. plan_set_e_position(oldepos);
  5024. previous_millis_cmd=millis();
  5025. st_synchronize();
  5026. E0_ENABLE_WRITE(oldstatus);
  5027. }
  5028. #endif
  5029. #if defined(DUAL_X_CARRIAGE)
  5030. // handle delayed move timeout
  5031. if (delayed_move_time != 0 && (millis() - delayed_move_time) > 1000 && Stopped == false)
  5032. {
  5033. // travel moves have been received so enact them
  5034. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  5035. memcpy(destination,current_position,sizeof(destination));
  5036. prepare_move();
  5037. }
  5038. #endif
  5039. #ifdef TEMP_STAT_LEDS
  5040. handle_status_leds();
  5041. #endif
  5042. check_axes_activity();
  5043. }
  5044. void kill()
  5045. {
  5046. cli(); // Stop interrupts
  5047. disable_heater();
  5048. disable_x();
  5049. disable_y();
  5050. disable_z();
  5051. disable_e0();
  5052. disable_e1();
  5053. disable_e2();
  5054. disable_e3();
  5055. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5056. pinMode(PS_ON_PIN,INPUT);
  5057. #endif
  5058. SERIAL_ERROR_START;
  5059. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  5060. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  5061. // FMC small patch to update the LCD before ending
  5062. sei(); // enable interrupts
  5063. for ( int i=5; i--; lcd_update())
  5064. {
  5065. delay(200);
  5066. }
  5067. cli(); // disable interrupts
  5068. suicide();
  5069. while(1) { /* Intentionally left empty */ } // Wait for reset
  5070. }
  5071. #ifdef FILAMENT_RUNOUT_SENSOR
  5072. void filrunout()
  5073. {
  5074. if filrunoutEnqued == false {
  5075. filrunoutEnqued = true;
  5076. enquecommand("M600");
  5077. }
  5078. }
  5079. #endif
  5080. void Stop()
  5081. {
  5082. disable_heater();
  5083. if(Stopped == false) {
  5084. Stopped = true;
  5085. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5086. SERIAL_ERROR_START;
  5087. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  5088. LCD_MESSAGEPGM(MSG_STOPPED);
  5089. }
  5090. }
  5091. bool IsStopped() { return Stopped; };
  5092. #ifdef FAST_PWM_FAN
  5093. void setPwmFrequency(uint8_t pin, int val)
  5094. {
  5095. val &= 0x07;
  5096. switch(digitalPinToTimer(pin))
  5097. {
  5098. #if defined(TCCR0A)
  5099. case TIMER0A:
  5100. case TIMER0B:
  5101. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5102. // TCCR0B |= val;
  5103. break;
  5104. #endif
  5105. #if defined(TCCR1A)
  5106. case TIMER1A:
  5107. case TIMER1B:
  5108. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5109. // TCCR1B |= val;
  5110. break;
  5111. #endif
  5112. #if defined(TCCR2)
  5113. case TIMER2:
  5114. case TIMER2:
  5115. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5116. TCCR2 |= val;
  5117. break;
  5118. #endif
  5119. #if defined(TCCR2A)
  5120. case TIMER2A:
  5121. case TIMER2B:
  5122. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5123. TCCR2B |= val;
  5124. break;
  5125. #endif
  5126. #if defined(TCCR3A)
  5127. case TIMER3A:
  5128. case TIMER3B:
  5129. case TIMER3C:
  5130. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5131. TCCR3B |= val;
  5132. break;
  5133. #endif
  5134. #if defined(TCCR4A)
  5135. case TIMER4A:
  5136. case TIMER4B:
  5137. case TIMER4C:
  5138. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5139. TCCR4B |= val;
  5140. break;
  5141. #endif
  5142. #if defined(TCCR5A)
  5143. case TIMER5A:
  5144. case TIMER5B:
  5145. case TIMER5C:
  5146. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5147. TCCR5B |= val;
  5148. break;
  5149. #endif
  5150. }
  5151. }
  5152. #endif //FAST_PWM_FAN
  5153. bool setTargetedHotend(int code){
  5154. tmp_extruder = active_extruder;
  5155. if(code_seen('T')) {
  5156. tmp_extruder = code_value();
  5157. if(tmp_extruder >= EXTRUDERS) {
  5158. SERIAL_ECHO_START;
  5159. switch(code){
  5160. case 104:
  5161. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  5162. break;
  5163. case 105:
  5164. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5165. break;
  5166. case 109:
  5167. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5168. break;
  5169. case 218:
  5170. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5171. break;
  5172. case 221:
  5173. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5174. break;
  5175. }
  5176. SERIAL_ECHOLN(tmp_extruder);
  5177. return true;
  5178. }
  5179. }
  5180. return false;
  5181. }
  5182. float calculate_volumetric_multiplier(float diameter) {
  5183. if (!volumetric_enabled || diameter == 0) return 1.0;
  5184. float d2 = diameter * 0.5;
  5185. return 1.0 / (M_PI * d2 * d2);
  5186. }
  5187. void calculate_volumetric_multipliers() {
  5188. for (int i=0; i<EXTRUDERS; i++)
  5189. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  5190. }