My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 304KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * About Marlin
  24. *
  25. * This firmware is a mashup between Sprinter and grbl.
  26. * - https://github.com/kliment/Sprinter
  27. * - https://github.com/simen/grbl/tree
  28. *
  29. * It has preliminary support for Matthew Roberts advance algorithm
  30. * - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  31. */
  32. #include "Marlin.h"
  33. #include "ultralcd.h"
  34. #include "planner.h"
  35. #include "stepper.h"
  36. #include "endstops.h"
  37. #include "temperature.h"
  38. #include "cardreader.h"
  39. #include "configuration_store.h"
  40. #include "language.h"
  41. #include "pins_arduino.h"
  42. #include "math.h"
  43. #include "nozzle.h"
  44. #include "duration_t.h"
  45. #include "types.h"
  46. #if HAS_ABL
  47. #include "vector_3.h"
  48. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  49. #include "qr_solve.h"
  50. #endif
  51. #elif ENABLED(MESH_BED_LEVELING)
  52. #include "mesh_bed_leveling.h"
  53. #endif
  54. #if ENABLED(BEZIER_CURVE_SUPPORT)
  55. #include "planner_bezier.h"
  56. #endif
  57. #if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
  58. #include "buzzer.h"
  59. #endif
  60. #if ENABLED(USE_WATCHDOG)
  61. #include "watchdog.h"
  62. #endif
  63. #if ENABLED(BLINKM)
  64. #include "blinkm.h"
  65. #include "Wire.h"
  66. #endif
  67. #if HAS_SERVOS
  68. #include "servo.h"
  69. #endif
  70. #if HAS_DIGIPOTSS
  71. #include <SPI.h>
  72. #endif
  73. #if ENABLED(DAC_STEPPER_CURRENT)
  74. #include "stepper_dac.h"
  75. #endif
  76. #if ENABLED(EXPERIMENTAL_I2CBUS)
  77. #include "twibus.h"
  78. #endif
  79. /**
  80. * Look here for descriptions of G-codes:
  81. * - http://linuxcnc.org/handbook/gcode/g-code.html
  82. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  83. *
  84. * Help us document these G-codes online:
  85. * - https://github.com/MarlinFirmware/Marlin/wiki/G-Code-in-Marlin
  86. * - http://reprap.org/wiki/G-code
  87. *
  88. * -----------------
  89. * Implemented Codes
  90. * -----------------
  91. *
  92. * "G" Codes
  93. *
  94. * G0 -> G1
  95. * G1 - Coordinated Movement X Y Z E
  96. * G2 - CW ARC
  97. * G3 - CCW ARC
  98. * G4 - Dwell S<seconds> or P<milliseconds>
  99. * G5 - Cubic B-spline with XYZE destination and IJPQ offsets
  100. * G10 - Retract filament according to settings of M207
  101. * G11 - Retract recover filament according to settings of M208
  102. * G12 - Clean tool
  103. * G20 - Set input units to inches
  104. * G21 - Set input units to millimeters
  105. * G28 - Home one or more axes
  106. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  107. * G30 - Single Z probe, probes bed at current XY location.
  108. * G31 - Dock sled (Z_PROBE_SLED only)
  109. * G32 - Undock sled (Z_PROBE_SLED only)
  110. * G38 - Probe target - similar to G28 except it uses the Z_MIN endstop for all three axes
  111. * G90 - Use Absolute Coordinates
  112. * G91 - Use Relative Coordinates
  113. * G92 - Set current position to coordinates given
  114. *
  115. * "M" Codes
  116. *
  117. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  118. * M1 - Same as M0
  119. * M17 - Enable/Power all stepper motors
  120. * M18 - Disable all stepper motors; same as M84
  121. * M20 - List SD card. (Requires SDSUPPORT)
  122. * M21 - Init SD card. (Requires SDSUPPORT)
  123. * M22 - Release SD card. (Requires SDSUPPORT)
  124. * M23 - Select SD file: "M23 /path/file.gco". (Requires SDSUPPORT)
  125. * M24 - Start/resume SD print. (Requires SDSUPPORT)
  126. * M25 - Pause SD print. (Requires SDSUPPORT)
  127. * M26 - Set SD position in bytes: "M26 S12345". (Requires SDSUPPORT)
  128. * M27 - Report SD print status. (Requires SDSUPPORT)
  129. * M28 - Start SD write: "M28 /path/file.gco". (Requires SDSUPPORT)
  130. * M29 - Stop SD write. (Requires SDSUPPORT)
  131. * M30 - Delete file from SD: "M30 /path/file.gco"
  132. * M31 - Report time since last M109 or SD card start to serial.
  133. * M32 - Select file and start SD print: "M32 [S<bytepos>] !/path/file.gco#". (Requires SDSUPPORT)
  134. * Use P to run other files as sub-programs: "M32 P !filename#"
  135. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  136. * M33 - Get the longname version of a path. (Requires LONG_FILENAME_HOST_SUPPORT)
  137. * M42 - Change pin status via gcode: M42 P<pin> S<value>. LED pin assumed if P is omitted.
  138. * M48 - Measure Z Probe repeatability: M48 P<points> X<pos> Y<pos> V<level> E<engage> L<legs>. (Requires Z_MIN_PROBE_REPEATABILITY_TEST)
  139. * M75 - Start the print job timer.
  140. * M76 - Pause the print job timer.
  141. * M77 - Stop the print job timer.
  142. * M78 - Show statistical information about the print jobs. (Requires PRINTCOUNTER)
  143. * M80 - Turn on Power Supply. (Requires POWER_SUPPLY)
  144. * M81 - Turn off Power Supply. (Requires POWER_SUPPLY)
  145. * M82 - Set E codes absolute (default).
  146. * M83 - Set E codes relative while in Absolute (G90) mode.
  147. * M84 - Disable steppers until next move, or use S<seconds> to specify an idle
  148. * duration after which steppers should turn off. S0 disables the timeout.
  149. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  150. * M92 - Set planner.axis_steps_per_mm for one or more axes.
  151. * M104 - Set extruder target temp.
  152. * M105 - Report current temperatures.
  153. * M106 - Fan on.
  154. * M107 - Fan off.
  155. * M108 - Break out of heating loops (M109, M190, M303). With no controller, breaks out of M0/M1. (Requires EMERGENCY_PARSER)
  156. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  157. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  158. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  159. * M110 - Set the current line number. (Used by host printing)
  160. * M111 - Set debug flags: "M111 S<flagbits>". See flag bits defined in enum.h.
  161. * M112 - Emergency stop.
  162. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages. (Requires HOST_KEEPALIVE_FEATURE)
  163. * M114 - Report current position.
  164. * M115 - Report capabilities.
  165. * M117 - Display a message on the controller screen. (Requires an LCD)
  166. * M119 - Report endstops status.
  167. * M120 - Enable endstops detection.
  168. * M121 - Disable endstops detection.
  169. * M126 - Solenoid Air Valve Open. (Requires BARICUDA)
  170. * M127 - Solenoid Air Valve Closed. (Requires BARICUDA)
  171. * M128 - EtoP Open. (Requires BARICUDA)
  172. * M129 - EtoP Closed. (Requires BARICUDA)
  173. * M140 - Set bed target temp. S<temp>
  174. * M145 - Set heatup values for materials on the LCD. H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  175. * M149 - Set temperature units. (Requires TEMPERATURE_UNITS_SUPPORT)
  176. * M150 - Set BlinkM Color R<red> U<green> B<blue>. Values 0-255. (Requires BLINKM)
  177. * M163 - Set a single proportion for a mixing extruder. (Requires MIXING_EXTRUDER)
  178. * M164 - Save the mix as a virtual extruder. (Requires MIXING_EXTRUDER and MIXING_VIRTUAL_TOOLS)
  179. * M165 - Set the proportions for a mixing extruder. Use parameters ABCDHI to set the mixing factors. (Requires MIXING_EXTRUDER)
  180. * M190 - Sxxx Wait for bed current temp to reach target temp. ** Waits only when heating! **
  181. * Rxxx Wait for bed current temp to reach target temp. ** Waits for heating or cooling. **
  182. * M200 - Set filament diameter, D<diameter>, setting E axis units to cubic. (Use S0 to revert to linear units.)
  183. * M201 - Set max acceleration in units/s^2 for print moves: "M201 X<accel> Y<accel> Z<accel> E<accel>"
  184. * M202 - Set max acceleration in units/s^2 for travel moves: "M202 X<accel> Y<accel> Z<accel> E<accel>" ** UNUSED IN MARLIN! **
  185. * M203 - Set maximum feedrate: "M203 X<fr> Y<fr> Z<fr> E<fr>" in units/sec.
  186. * M204 - Set default acceleration in units/sec^2: P<printing> R<extruder_only> T<travel>
  187. * M205 - Set advanced settings. Current units apply:
  188. S<print> T<travel> minimum speeds
  189. B<minimum segment time>
  190. X<max X jerk>, Y<max Y jerk>, Z<max Z jerk>, E<max E jerk>
  191. * M206 - Set additional homing offset.
  192. * M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>. (Requires FWRETRACT)
  193. * M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>. (Requires FWRETRACT)
  194. * M209 - Turn Automatic Retract Detection on/off: S<0|1> (For slicers that don't support G10/11). (Requires FWRETRACT)
  195. Every normal extrude-only move will be classified as retract depending on the direction.
  196. * M211 - Enable, Disable, and/or Report software endstops: S<0|1>
  197. * M218 - Set a tool offset: "M218 T<index> X<offset> Y<offset>". (Requires 2 or more extruders)
  198. * M220 - Set Feedrate Percentage: "M220 S<percent>" (i.e., "FR" on the LCD)
  199. * M221 - Set Flow Percentage: "M221 S<percent>"
  200. * M226 - Wait until a pin is in a given state: "M226 P<pin> S<state>"
  201. * M240 - Trigger a camera to take a photograph. (Requires CHDK or PHOTOGRAPH_PIN)
  202. * M250 - Set LCD contrast: "M250 C<contrast>" (0-63). (Requires LCD support)
  203. * M280 - Set servo position absolute: "M280 P<index> S<angle|µs>". (Requires servos)
  204. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  205. * M301 - Set PID parameters P I and D. (Requires PIDTEMP)
  206. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>. (Requires PREVENT_COLD_EXTRUSION)
  207. * M303 - PID relay autotune S<temperature> sets the target temperature. Default 150C. (Requires PIDTEMP)
  208. * M304 - Set bed PID parameters P I and D. (Requires PIDTEMPBED)
  209. * M380 - Activate solenoid on active extruder. (Requires EXT_SOLENOID)
  210. * M381 - Disable all solenoids. (Requires EXT_SOLENOID)
  211. * M400 - Finish all moves.
  212. * M401 - Lower Z probe. (Requires a probe)
  213. * M402 - Raise Z probe. (Requires a probe)
  214. * M404 - Display or set the Nominal Filament Width: "W<diameter>". (Requires FILAMENT_WIDTH_SENSOR)
  215. * M405 - Enable Filament Sensor flow control. "M405 D<delay_cm>". (Requires FILAMENT_WIDTH_SENSOR)
  216. * M406 - Disable Filament Sensor flow control. (Requires FILAMENT_WIDTH_SENSOR)
  217. * M407 - Display measured filament diameter in millimeters. (Requires FILAMENT_WIDTH_SENSOR)
  218. * M410 - Quickstop. Abort all planned moves.
  219. * M420 - Enable/Disable Leveling (with current values) S1=enable S0=disable (Requires MESH_BED_LEVELING or ABL)
  220. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<units> Y<units> Z<units> (Requires MESH_BED_LEVELING)
  221. * M428 - Set the home_offset based on the current_position. Nearest edge applies.
  222. * M500 - Store parameters in EEPROM. (Requires EEPROM_SETTINGS)
  223. * M501 - Restore parameters from EEPROM. (Requires EEPROM_SETTINGS)
  224. * M502 - Revert to the default "factory settings". ** Does not write them to EEPROM! **
  225. * M503 - Print the current settings (in memory): "M503 S<verbose>". S0 specifies compact output.
  226. * M540 - Enable/disable SD card abort on endstop hit: "M540 S<state>". (Requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  227. * M600 - Pause for filament change: "M600 X<pos> Y<pos> Z<raise> E<first_retract> L<later_retract>". (Requires FILAMENT_CHANGE_FEATURE)
  228. * M665 - Set delta configurations: "M665 L<diagonal rod> R<delta radius> S<segments/s>" (Requires DELTA)
  229. * M666 - Set delta endstop adjustment. (Requires DELTA)
  230. * M605 - Set dual x-carriage movement mode: "M605 S<mode> [X<x_offset>] [R<temp_offset>]". (Requires DUAL_X_CARRIAGE)
  231. * M851 - Set Z probe's Z offset in current units. (Negative = below the nozzle.)
  232. * M907 - Set digital trimpot motor current using axis codes. (Requires a board with digital trimpots)
  233. * M908 - Control digital trimpot directly. (Requires DAC_STEPPER_CURRENT or DIGIPOTSS_PIN)
  234. * M909 - Print digipot/DAC current value. (Requires DAC_STEPPER_CURRENT)
  235. * M910 - Commit digipot/DAC value to external EEPROM via I2C. (Requires DAC_STEPPER_CURRENT)
  236. * M350 - Set microstepping mode. (Requires digital microstepping pins.)
  237. * M351 - Toggle MS1 MS2 pins directly. (Requires digital microstepping pins.)
  238. *
  239. * ************ SCARA Specific - This can change to suit future G-code regulations
  240. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  241. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  242. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  243. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  244. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  245. * ************* SCARA End ***************
  246. *
  247. * ************ Custom codes - This can change to suit future G-code regulations
  248. * M100 - Watch Free Memory (For Debugging). (Requires M100_FREE_MEMORY_WATCHER)
  249. * M928 - Start SD logging: "M928 filename.gco". Stop with M29. (Requires SDSUPPORT)
  250. * M999 - Restart after being stopped by error
  251. *
  252. * "T" Codes
  253. *
  254. * T0-T3 - Select an extruder (tool) by index: "T<n> F<units/min>"
  255. *
  256. */
  257. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  258. void gcode_M100();
  259. #endif
  260. #if ENABLED(SDSUPPORT)
  261. CardReader card;
  262. #endif
  263. #if ENABLED(EXPERIMENTAL_I2CBUS)
  264. TWIBus i2c;
  265. #endif
  266. #if ENABLED(G38_PROBE_TARGET)
  267. bool G38_move = false,
  268. G38_endstop_hit = false;
  269. #endif
  270. bool Running = true;
  271. uint8_t marlin_debug_flags = DEBUG_NONE;
  272. /**
  273. * Cartesian Current Position
  274. * Used to track the logical position as moves are queued.
  275. * Used by 'line_to_current_position' to do a move after changing it.
  276. * Used by 'SYNC_PLAN_POSITION_KINEMATIC' to update 'planner.position'.
  277. */
  278. float current_position[XYZE] = { 0.0 };
  279. /**
  280. * Cartesian Destination
  281. * A temporary position, usually applied to 'current_position'.
  282. * Set with 'gcode_get_destination' or 'set_destination_to_current'.
  283. * 'line_to_destination' sets 'current_position' to 'destination'.
  284. */
  285. static float destination[XYZE] = { 0.0 };
  286. /**
  287. * axis_homed
  288. * Flags that each linear axis was homed.
  289. * XYZ on cartesian, ABC on delta, ABZ on SCARA.
  290. *
  291. * axis_known_position
  292. * Flags that the position is known in each linear axis. Set when homed.
  293. * Cleared whenever a stepper powers off, potentially losing its position.
  294. */
  295. bool axis_homed[XYZ] = { false }, axis_known_position[XYZ] = { false };
  296. /**
  297. * GCode line number handling. Hosts may opt to include line numbers when
  298. * sending commands to Marlin, and lines will be checked for sequentiality.
  299. * M110 S<int> sets the current line number.
  300. */
  301. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  302. /**
  303. * GCode Command Queue
  304. * A simple ring buffer of BUFSIZE command strings.
  305. *
  306. * Commands are copied into this buffer by the command injectors
  307. * (immediate, serial, sd card) and they are processed sequentially by
  308. * the main loop. The process_next_command function parses the next
  309. * command and hands off execution to individual handler functions.
  310. */
  311. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  312. static uint8_t cmd_queue_index_r = 0, // Ring buffer read position
  313. cmd_queue_index_w = 0, // Ring buffer write position
  314. commands_in_queue = 0; // Count of commands in the queue
  315. /**
  316. * Current GCode Command
  317. * When a GCode handler is running, these will be set
  318. */
  319. static char *current_command, // The command currently being executed
  320. *current_command_args, // The address where arguments begin
  321. *seen_pointer; // Set by code_seen(), used by the code_value functions
  322. /**
  323. * Next Injected Command pointer. NULL if no commands are being injected.
  324. * Used by Marlin internally to ensure that commands initiated from within
  325. * are enqueued ahead of any pending serial or sd card commands.
  326. */
  327. static const char *injected_commands_P = NULL;
  328. #if ENABLED(INCH_MODE_SUPPORT)
  329. float linear_unit_factor = 1.0, volumetric_unit_factor = 1.0;
  330. #endif
  331. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  332. TempUnit input_temp_units = TEMPUNIT_C;
  333. #endif
  334. /**
  335. * Feed rates are often configured with mm/m
  336. * but the planner and stepper like mm/s units.
  337. */
  338. float constexpr homing_feedrate_mm_s[] = {
  339. #if ENABLED(DELTA)
  340. MMM_TO_MMS(HOMING_FEEDRATE_Z), MMM_TO_MMS(HOMING_FEEDRATE_Z),
  341. #else
  342. MMM_TO_MMS(HOMING_FEEDRATE_XY), MMM_TO_MMS(HOMING_FEEDRATE_XY),
  343. #endif
  344. MMM_TO_MMS(HOMING_FEEDRATE_Z), 0
  345. };
  346. static float feedrate_mm_s = MMM_TO_MMS(1500.0), saved_feedrate_mm_s;
  347. int feedrate_percentage = 100, saved_feedrate_percentage,
  348. flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  349. bool axis_relative_modes[] = AXIS_RELATIVE_MODES,
  350. volumetric_enabled = false;
  351. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA),
  352. volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  353. // The distance that XYZ has been offset by G92. Reset by G28.
  354. float position_shift[XYZ] = { 0 };
  355. // This offset is added to the configured home position.
  356. // Set by M206, M428, or menu item. Saved to EEPROM.
  357. float home_offset[XYZ] = { 0 };
  358. // Software Endstops are based on the configured limits.
  359. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  360. bool soft_endstops_enabled = true;
  361. #endif
  362. float soft_endstop_min[XYZ] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS },
  363. soft_endstop_max[XYZ] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  364. #if FAN_COUNT > 0
  365. int fanSpeeds[FAN_COUNT] = { 0 };
  366. #endif
  367. // The active extruder (tool). Set with T<extruder> command.
  368. uint8_t active_extruder = 0;
  369. // Relative Mode. Enable with G91, disable with G90.
  370. static bool relative_mode = false;
  371. // For M109 and M190, this flag may be cleared (by M108) to exit the wait loop
  372. volatile bool wait_for_heatup = true;
  373. // For M0/M1, this flag may be cleared (by M108) to exit the wait-for-user loop
  374. #if ENABLED(EMERGENCY_PARSER) || ENABLED(ULTIPANEL)
  375. volatile bool wait_for_user = false;
  376. #endif
  377. const char errormagic[] PROGMEM = "Error:";
  378. const char echomagic[] PROGMEM = "echo:";
  379. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  380. // Number of characters read in the current line of serial input
  381. static int serial_count = 0;
  382. // Inactivity shutdown
  383. millis_t previous_cmd_ms = 0;
  384. static millis_t max_inactive_time = 0;
  385. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
  386. // Print Job Timer
  387. #if ENABLED(PRINTCOUNTER)
  388. PrintCounter print_job_timer = PrintCounter();
  389. #else
  390. Stopwatch print_job_timer = Stopwatch();
  391. #endif
  392. // Buzzer - I2C on the LCD or a BEEPER_PIN
  393. #if ENABLED(LCD_USE_I2C_BUZZER)
  394. #define BUZZ(d,f) lcd_buzz(d, f)
  395. #elif PIN_EXISTS(BEEPER)
  396. Buzzer buzzer;
  397. #define BUZZ(d,f) buzzer.tone(d, f)
  398. #else
  399. #define BUZZ(d,f) NOOP
  400. #endif
  401. static uint8_t target_extruder;
  402. #if HAS_BED_PROBE
  403. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  404. #endif
  405. #define PLANNER_XY_FEEDRATE() (min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS]))
  406. #if HAS_ABL
  407. float xy_probe_feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  408. #define XY_PROBE_FEEDRATE_MM_S xy_probe_feedrate_mm_s
  409. #elif defined(XY_PROBE_SPEED)
  410. #define XY_PROBE_FEEDRATE_MM_S MMM_TO_MMS(XY_PROBE_SPEED)
  411. #else
  412. #define XY_PROBE_FEEDRATE_MM_S PLANNER_XY_FEEDRATE()
  413. #endif
  414. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  415. #if ENABLED(DELTA)
  416. #define ADJUST_DELTA(V) \
  417. if (planner.abl_enabled) { \
  418. const float zadj = bilinear_z_offset(V); \
  419. delta[A_AXIS] += zadj; \
  420. delta[B_AXIS] += zadj; \
  421. delta[C_AXIS] += zadj; \
  422. }
  423. #else
  424. #define ADJUST_DELTA(V) if (planner.abl_enabled) { delta[Z_AXIS] += bilinear_z_offset(V); }
  425. #endif
  426. #elif IS_KINEMATIC
  427. #define ADJUST_DELTA(V) NOOP
  428. #endif
  429. #if ENABLED(Z_DUAL_ENDSTOPS)
  430. float z_endstop_adj = 0;
  431. #endif
  432. // Extruder offsets
  433. #if HOTENDS > 1
  434. float hotend_offset[XYZ][HOTENDS];
  435. #endif
  436. #if HAS_Z_SERVO_ENDSTOP
  437. const int z_servo_angle[2] = Z_SERVO_ANGLES;
  438. #endif
  439. #if ENABLED(BARICUDA)
  440. int baricuda_valve_pressure = 0;
  441. int baricuda_e_to_p_pressure = 0;
  442. #endif
  443. #if ENABLED(FWRETRACT)
  444. bool autoretract_enabled = false;
  445. bool retracted[EXTRUDERS] = { false };
  446. bool retracted_swap[EXTRUDERS] = { false };
  447. float retract_length = RETRACT_LENGTH;
  448. float retract_length_swap = RETRACT_LENGTH_SWAP;
  449. float retract_feedrate_mm_s = RETRACT_FEEDRATE;
  450. float retract_zlift = RETRACT_ZLIFT;
  451. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  452. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  453. float retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE;
  454. #endif // FWRETRACT
  455. #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
  456. bool powersupply =
  457. #if ENABLED(PS_DEFAULT_OFF)
  458. false
  459. #else
  460. true
  461. #endif
  462. ;
  463. #endif
  464. #if ENABLED(DELTA)
  465. #define SIN_60 0.8660254037844386
  466. #define COS_60 0.5
  467. float delta[ABC],
  468. endstop_adj[ABC] = { 0 };
  469. // these are the default values, can be overriden with M665
  470. float delta_radius = DELTA_RADIUS,
  471. delta_tower1_x = -SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1), // front left tower
  472. delta_tower1_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1),
  473. delta_tower2_x = SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2), // front right tower
  474. delta_tower2_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2),
  475. delta_tower3_x = 0, // back middle tower
  476. delta_tower3_y = (delta_radius + DELTA_RADIUS_TRIM_TOWER_3),
  477. delta_diagonal_rod = DELTA_DIAGONAL_ROD,
  478. delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1,
  479. delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2,
  480. delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3,
  481. delta_diagonal_rod_2_tower_1 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_1),
  482. delta_diagonal_rod_2_tower_2 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_2),
  483. delta_diagonal_rod_2_tower_3 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_3),
  484. delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND,
  485. delta_clip_start_height = Z_MAX_POS;
  486. float delta_safe_distance_from_top();
  487. #else
  488. static bool home_all_axis = true;
  489. #endif
  490. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  491. int bilinear_grid_spacing[2] = { 0 }, bilinear_start[2] = { 0 };
  492. float bed_level_grid[ABL_GRID_POINTS_X][ABL_GRID_POINTS_Y];
  493. #endif
  494. #if IS_SCARA
  495. // Float constants for SCARA calculations
  496. const float L1 = SCARA_LINKAGE_1, L2 = SCARA_LINKAGE_2,
  497. L1_2 = sq(float(L1)), L1_2_2 = 2.0 * L1_2,
  498. L2_2 = sq(float(L2));
  499. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND,
  500. delta[ABC];
  501. #endif
  502. float cartes[XYZ] = { 0 };
  503. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  504. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  505. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA, // Nominal filament width. Change with M404
  506. filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; // Measured filament diameter
  507. int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; // Ring buffer to delayed measurement. Store extruder factor after subtracting 100
  508. int filwidth_delay_index[2] = { 0, -1 }; // Indexes into ring buffer
  509. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  510. #endif
  511. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  512. static bool filament_ran_out = false;
  513. #endif
  514. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  515. FilamentChangeMenuResponse filament_change_menu_response;
  516. #endif
  517. #if ENABLED(MIXING_EXTRUDER)
  518. float mixing_factor[MIXING_STEPPERS];
  519. #if MIXING_VIRTUAL_TOOLS > 1
  520. float mixing_virtual_tool_mix[MIXING_VIRTUAL_TOOLS][MIXING_STEPPERS];
  521. #endif
  522. #endif
  523. static bool send_ok[BUFSIZE];
  524. #if HAS_SERVOS
  525. Servo servo[NUM_SERVOS];
  526. #define MOVE_SERVO(I, P) servo[I].move(P)
  527. #if HAS_Z_SERVO_ENDSTOP
  528. #define DEPLOY_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[0])
  529. #define STOW_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[1])
  530. #endif
  531. #endif
  532. #ifdef CHDK
  533. millis_t chdkHigh = 0;
  534. boolean chdkActive = false;
  535. #endif
  536. #if ENABLED(PID_EXTRUSION_SCALING)
  537. int lpq_len = 20;
  538. #endif
  539. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  540. static MarlinBusyState busy_state = NOT_BUSY;
  541. static millis_t next_busy_signal_ms = 0;
  542. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  543. #define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0)
  544. #else
  545. #define host_keepalive() ;
  546. #define KEEPALIVE_STATE(n) ;
  547. #endif // HOST_KEEPALIVE_FEATURE
  548. #define DEFINE_PGM_READ_ANY(type, reader) \
  549. static inline type pgm_read_any(const type *p) \
  550. { return pgm_read_##reader##_near(p); }
  551. DEFINE_PGM_READ_ANY(float, float)
  552. DEFINE_PGM_READ_ANY(signed char, byte)
  553. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  554. static const PROGMEM type array##_P[XYZ] = \
  555. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  556. static inline type array(int axis) \
  557. { return pgm_read_any(&array##_P[axis]); }
  558. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS)
  559. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS)
  560. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS)
  561. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH)
  562. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM)
  563. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR)
  564. /**
  565. * ***************************************************************************
  566. * ******************************** FUNCTIONS ********************************
  567. * ***************************************************************************
  568. */
  569. void stop();
  570. void get_available_commands();
  571. void process_next_command();
  572. void prepare_move_to_destination();
  573. void get_cartesian_from_steppers();
  574. void set_current_from_steppers_for_axis(const AxisEnum axis);
  575. #if ENABLED(ARC_SUPPORT)
  576. void plan_arc(float target[NUM_AXIS], float* offset, uint8_t clockwise);
  577. #endif
  578. #if ENABLED(BEZIER_CURVE_SUPPORT)
  579. void plan_cubic_move(const float offset[4]);
  580. #endif
  581. void serial_echopair_P(const char* s_P, const char *v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  582. void serial_echopair_P(const char* s_P, char v) { serialprintPGM(s_P); SERIAL_CHAR(v); }
  583. void serial_echopair_P(const char* s_P, int v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  584. void serial_echopair_P(const char* s_P, long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  585. void serial_echopair_P(const char* s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  586. void serial_echopair_P(const char* s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  587. void serial_echopair_P(const char* s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  588. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s=0.0, bool no_move=false);
  589. static void report_current_position();
  590. #if ENABLED(DEBUG_LEVELING_FEATURE)
  591. void print_xyz(const char* prefix, const char* suffix, const float x, const float y, const float z) {
  592. serialprintPGM(prefix);
  593. SERIAL_ECHOPAIR("(", x);
  594. SERIAL_ECHOPAIR(", ", y);
  595. SERIAL_ECHOPAIR(", ", z);
  596. SERIAL_ECHOPGM(")");
  597. if (suffix) serialprintPGM(suffix);
  598. else SERIAL_EOL;
  599. }
  600. void print_xyz(const char* prefix, const char* suffix, const float xyz[]) {
  601. print_xyz(prefix, suffix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  602. }
  603. #if HAS_ABL
  604. void print_xyz(const char* prefix, const char* suffix, const vector_3 &xyz) {
  605. print_xyz(prefix, suffix, xyz.x, xyz.y, xyz.z);
  606. }
  607. #endif
  608. #define DEBUG_POS(SUFFIX,VAR) do { \
  609. print_xyz(PSTR(" " STRINGIFY(VAR) "="), PSTR(" : " SUFFIX "\n"), VAR); } while(0)
  610. #endif
  611. /**
  612. * sync_plan_position
  613. *
  614. * Set the planner/stepper positions directly from current_position with
  615. * no kinematic translation. Used for homing axes and cartesian/core syncing.
  616. */
  617. inline void sync_plan_position() {
  618. #if ENABLED(DEBUG_LEVELING_FEATURE)
  619. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  620. #endif
  621. planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  622. }
  623. inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
  624. #if IS_KINEMATIC
  625. inline void sync_plan_position_kinematic() {
  626. #if ENABLED(DEBUG_LEVELING_FEATURE)
  627. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_kinematic", current_position);
  628. #endif
  629. planner.set_position_mm_kinematic(current_position);
  630. }
  631. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_kinematic()
  632. #else
  633. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position()
  634. #endif
  635. #if ENABLED(SDSUPPORT)
  636. #include "SdFatUtil.h"
  637. int freeMemory() { return SdFatUtil::FreeRam(); }
  638. #else
  639. extern "C" {
  640. extern unsigned int __bss_end;
  641. extern unsigned int __heap_start;
  642. extern void* __brkval;
  643. int freeMemory() {
  644. int free_memory;
  645. if ((int)__brkval == 0)
  646. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  647. else
  648. free_memory = ((int)&free_memory) - ((int)__brkval);
  649. return free_memory;
  650. }
  651. }
  652. #endif //!SDSUPPORT
  653. #if ENABLED(DIGIPOT_I2C)
  654. extern void digipot_i2c_set_current(int channel, float current);
  655. extern void digipot_i2c_init();
  656. #endif
  657. /**
  658. * Inject the next "immediate" command, when possible.
  659. * Return true if any immediate commands remain to inject.
  660. */
  661. static bool drain_injected_commands_P() {
  662. if (injected_commands_P != NULL) {
  663. size_t i = 0;
  664. char c, cmd[30];
  665. strncpy_P(cmd, injected_commands_P, sizeof(cmd) - 1);
  666. cmd[sizeof(cmd) - 1] = '\0';
  667. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  668. cmd[i] = '\0';
  669. if (enqueue_and_echo_command(cmd)) { // success?
  670. if (c) // newline char?
  671. injected_commands_P += i + 1; // advance to the next command
  672. else
  673. injected_commands_P = NULL; // nul char? no more commands
  674. }
  675. }
  676. return (injected_commands_P != NULL); // return whether any more remain
  677. }
  678. /**
  679. * Record one or many commands to run from program memory.
  680. * Aborts the current queue, if any.
  681. * Note: drain_injected_commands_P() must be called repeatedly to drain the commands afterwards
  682. */
  683. void enqueue_and_echo_commands_P(const char* pgcode) {
  684. injected_commands_P = pgcode;
  685. drain_injected_commands_P(); // first command executed asap (when possible)
  686. }
  687. void clear_command_queue() {
  688. cmd_queue_index_r = cmd_queue_index_w;
  689. commands_in_queue = 0;
  690. }
  691. /**
  692. * Once a new command is in the ring buffer, call this to commit it
  693. */
  694. inline void _commit_command(bool say_ok) {
  695. send_ok[cmd_queue_index_w] = say_ok;
  696. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  697. commands_in_queue++;
  698. }
  699. /**
  700. * Copy a command directly into the main command buffer, from RAM.
  701. * Returns true if successfully adds the command
  702. */
  703. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  704. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  705. strcpy(command_queue[cmd_queue_index_w], cmd);
  706. _commit_command(say_ok);
  707. return true;
  708. }
  709. void enqueue_and_echo_command_now(const char* cmd) {
  710. while (!enqueue_and_echo_command(cmd)) idle();
  711. }
  712. /**
  713. * Enqueue with Serial Echo
  714. */
  715. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  716. if (_enqueuecommand(cmd, say_ok)) {
  717. SERIAL_ECHO_START;
  718. SERIAL_ECHOPAIR(MSG_Enqueueing, cmd);
  719. SERIAL_CHAR('"');
  720. SERIAL_EOL;
  721. return true;
  722. }
  723. return false;
  724. }
  725. void setup_killpin() {
  726. #if HAS_KILL
  727. SET_INPUT(KILL_PIN);
  728. WRITE(KILL_PIN, HIGH);
  729. #endif
  730. }
  731. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  732. void setup_filrunoutpin() {
  733. SET_INPUT(FIL_RUNOUT_PIN);
  734. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  735. WRITE(FIL_RUNOUT_PIN, HIGH);
  736. #endif
  737. }
  738. #endif
  739. // Set home pin
  740. void setup_homepin(void) {
  741. #if HAS_HOME
  742. SET_INPUT(HOME_PIN);
  743. WRITE(HOME_PIN, HIGH);
  744. #endif
  745. }
  746. void setup_photpin() {
  747. #if HAS_PHOTOGRAPH
  748. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  749. #endif
  750. }
  751. void setup_powerhold() {
  752. #if HAS_SUICIDE
  753. OUT_WRITE(SUICIDE_PIN, HIGH);
  754. #endif
  755. #if HAS_POWER_SWITCH
  756. #if ENABLED(PS_DEFAULT_OFF)
  757. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  758. #else
  759. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  760. #endif
  761. #endif
  762. }
  763. void suicide() {
  764. #if HAS_SUICIDE
  765. OUT_WRITE(SUICIDE_PIN, LOW);
  766. #endif
  767. }
  768. void servo_init() {
  769. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  770. servo[0].attach(SERVO0_PIN);
  771. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  772. #endif
  773. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  774. servo[1].attach(SERVO1_PIN);
  775. servo[1].detach();
  776. #endif
  777. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  778. servo[2].attach(SERVO2_PIN);
  779. servo[2].detach();
  780. #endif
  781. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  782. servo[3].attach(SERVO3_PIN);
  783. servo[3].detach();
  784. #endif
  785. #if HAS_Z_SERVO_ENDSTOP
  786. /**
  787. * Set position of Z Servo Endstop
  788. *
  789. * The servo might be deployed and positioned too low to stow
  790. * when starting up the machine or rebooting the board.
  791. * There's no way to know where the nozzle is positioned until
  792. * homing has been done - no homing with z-probe without init!
  793. *
  794. */
  795. STOW_Z_SERVO();
  796. #endif
  797. }
  798. /**
  799. * Stepper Reset (RigidBoard, et.al.)
  800. */
  801. #if HAS_STEPPER_RESET
  802. void disableStepperDrivers() {
  803. OUT_WRITE(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  804. }
  805. void enableStepperDrivers() { SET_INPUT(STEPPER_RESET_PIN); } // set to input, which allows it to be pulled high by pullups
  806. #endif
  807. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  808. void i2c_on_receive(int bytes) { // just echo all bytes received to serial
  809. i2c.receive(bytes);
  810. }
  811. void i2c_on_request() { // just send dummy data for now
  812. i2c.reply("Hello World!\n");
  813. }
  814. #endif
  815. void gcode_line_error(const char* err, bool doFlush = true) {
  816. SERIAL_ERROR_START;
  817. serialprintPGM(err);
  818. SERIAL_ERRORLN(gcode_LastN);
  819. //Serial.println(gcode_N);
  820. if (doFlush) FlushSerialRequestResend();
  821. serial_count = 0;
  822. }
  823. inline void get_serial_commands() {
  824. static char serial_line_buffer[MAX_CMD_SIZE];
  825. static boolean serial_comment_mode = false;
  826. // If the command buffer is empty for too long,
  827. // send "wait" to indicate Marlin is still waiting.
  828. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  829. static millis_t last_command_time = 0;
  830. millis_t ms = millis();
  831. if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
  832. SERIAL_ECHOLNPGM(MSG_WAIT);
  833. last_command_time = ms;
  834. }
  835. #endif
  836. /**
  837. * Loop while serial characters are incoming and the queue is not full
  838. */
  839. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  840. char serial_char = MYSERIAL.read();
  841. /**
  842. * If the character ends the line
  843. */
  844. if (serial_char == '\n' || serial_char == '\r') {
  845. serial_comment_mode = false; // end of line == end of comment
  846. if (!serial_count) continue; // skip empty lines
  847. serial_line_buffer[serial_count] = 0; // terminate string
  848. serial_count = 0; //reset buffer
  849. char* command = serial_line_buffer;
  850. while (*command == ' ') command++; // skip any leading spaces
  851. char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  852. char* apos = strchr(command, '*');
  853. if (npos) {
  854. boolean M110 = strstr_P(command, PSTR("M110")) != NULL;
  855. if (M110) {
  856. char* n2pos = strchr(command + 4, 'N');
  857. if (n2pos) npos = n2pos;
  858. }
  859. gcode_N = strtol(npos + 1, NULL, 10);
  860. if (gcode_N != gcode_LastN + 1 && !M110) {
  861. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  862. return;
  863. }
  864. if (apos) {
  865. byte checksum = 0, count = 0;
  866. while (command[count] != '*') checksum ^= command[count++];
  867. if (strtol(apos + 1, NULL, 10) != checksum) {
  868. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  869. return;
  870. }
  871. // if no errors, continue parsing
  872. }
  873. else {
  874. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  875. return;
  876. }
  877. gcode_LastN = gcode_N;
  878. // if no errors, continue parsing
  879. }
  880. else if (apos) { // No '*' without 'N'
  881. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  882. return;
  883. }
  884. // Movement commands alert when stopped
  885. if (IsStopped()) {
  886. char* gpos = strchr(command, 'G');
  887. if (gpos) {
  888. int codenum = strtol(gpos + 1, NULL, 10);
  889. switch (codenum) {
  890. case 0:
  891. case 1:
  892. case 2:
  893. case 3:
  894. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  895. LCD_MESSAGEPGM(MSG_STOPPED);
  896. break;
  897. }
  898. }
  899. }
  900. #if DISABLED(EMERGENCY_PARSER)
  901. // If command was e-stop process now
  902. if (strcmp(command, "M108") == 0) {
  903. wait_for_heatup = false;
  904. #if ENABLED(ULTIPANEL)
  905. wait_for_user = false;
  906. #endif
  907. }
  908. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  909. if (strcmp(command, "M410") == 0) { quickstop_stepper(); }
  910. #endif
  911. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  912. last_command_time = ms;
  913. #endif
  914. // Add the command to the queue
  915. _enqueuecommand(serial_line_buffer, true);
  916. }
  917. else if (serial_count >= MAX_CMD_SIZE - 1) {
  918. // Keep fetching, but ignore normal characters beyond the max length
  919. // The command will be injected when EOL is reached
  920. }
  921. else if (serial_char == '\\') { // Handle escapes
  922. if (MYSERIAL.available() > 0) {
  923. // if we have one more character, copy it over
  924. serial_char = MYSERIAL.read();
  925. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  926. }
  927. // otherwise do nothing
  928. }
  929. else { // it's not a newline, carriage return or escape char
  930. if (serial_char == ';') serial_comment_mode = true;
  931. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  932. }
  933. } // queue has space, serial has data
  934. }
  935. #if ENABLED(SDSUPPORT)
  936. inline void get_sdcard_commands() {
  937. static bool stop_buffering = false,
  938. sd_comment_mode = false;
  939. if (!card.sdprinting) return;
  940. /**
  941. * '#' stops reading from SD to the buffer prematurely, so procedural
  942. * macro calls are possible. If it occurs, stop_buffering is triggered
  943. * and the buffer is run dry; this character _can_ occur in serial com
  944. * due to checksums, however, no checksums are used in SD printing.
  945. */
  946. if (commands_in_queue == 0) stop_buffering = false;
  947. uint16_t sd_count = 0;
  948. bool card_eof = card.eof();
  949. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  950. int16_t n = card.get();
  951. char sd_char = (char)n;
  952. card_eof = card.eof();
  953. if (card_eof || n == -1
  954. || sd_char == '\n' || sd_char == '\r'
  955. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  956. ) {
  957. if (card_eof) {
  958. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  959. card.printingHasFinished();
  960. card.checkautostart(true);
  961. }
  962. else if (n == -1) {
  963. SERIAL_ERROR_START;
  964. SERIAL_ECHOLNPGM(MSG_SD_ERR_READ);
  965. }
  966. if (sd_char == '#') stop_buffering = true;
  967. sd_comment_mode = false; //for new command
  968. if (!sd_count) continue; //skip empty lines
  969. command_queue[cmd_queue_index_w][sd_count] = '\0'; //terminate string
  970. sd_count = 0; //clear buffer
  971. _commit_command(false);
  972. }
  973. else if (sd_count >= MAX_CMD_SIZE - 1) {
  974. /**
  975. * Keep fetching, but ignore normal characters beyond the max length
  976. * The command will be injected when EOL is reached
  977. */
  978. }
  979. else {
  980. if (sd_char == ';') sd_comment_mode = true;
  981. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  982. }
  983. }
  984. }
  985. #endif // SDSUPPORT
  986. /**
  987. * Add to the circular command queue the next command from:
  988. * - The command-injection queue (injected_commands_P)
  989. * - The active serial input (usually USB)
  990. * - The SD card file being actively printed
  991. */
  992. void get_available_commands() {
  993. // if any immediate commands remain, don't get other commands yet
  994. if (drain_injected_commands_P()) return;
  995. get_serial_commands();
  996. #if ENABLED(SDSUPPORT)
  997. get_sdcard_commands();
  998. #endif
  999. }
  1000. inline bool code_has_value() {
  1001. int i = 1;
  1002. char c = seen_pointer[i];
  1003. while (c == ' ') c = seen_pointer[++i];
  1004. if (c == '-' || c == '+') c = seen_pointer[++i];
  1005. if (c == '.') c = seen_pointer[++i];
  1006. return NUMERIC(c);
  1007. }
  1008. inline float code_value_float() {
  1009. float ret;
  1010. char* e = strchr(seen_pointer, 'E');
  1011. if (e) {
  1012. *e = 0;
  1013. ret = strtod(seen_pointer + 1, NULL);
  1014. *e = 'E';
  1015. }
  1016. else
  1017. ret = strtod(seen_pointer + 1, NULL);
  1018. return ret;
  1019. }
  1020. inline unsigned long code_value_ulong() { return strtoul(seen_pointer + 1, NULL, 10); }
  1021. inline long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  1022. inline int code_value_int() { return (int)strtol(seen_pointer + 1, NULL, 10); }
  1023. inline uint16_t code_value_ushort() { return (uint16_t)strtoul(seen_pointer + 1, NULL, 10); }
  1024. inline uint8_t code_value_byte() { return (uint8_t)(constrain(strtol(seen_pointer + 1, NULL, 10), 0, 255)); }
  1025. inline bool code_value_bool() { return !code_has_value() || code_value_byte() > 0; }
  1026. #if ENABLED(INCH_MODE_SUPPORT)
  1027. inline void set_input_linear_units(LinearUnit units) {
  1028. switch (units) {
  1029. case LINEARUNIT_INCH:
  1030. linear_unit_factor = 25.4;
  1031. break;
  1032. case LINEARUNIT_MM:
  1033. default:
  1034. linear_unit_factor = 1.0;
  1035. break;
  1036. }
  1037. volumetric_unit_factor = pow(linear_unit_factor, 3.0);
  1038. }
  1039. inline float axis_unit_factor(int axis) {
  1040. return (axis == E_AXIS && volumetric_enabled ? volumetric_unit_factor : linear_unit_factor);
  1041. }
  1042. inline float code_value_linear_units() { return code_value_float() * linear_unit_factor; }
  1043. inline float code_value_axis_units(int axis) { return code_value_float() * axis_unit_factor(axis); }
  1044. inline float code_value_per_axis_unit(int axis) { return code_value_float() / axis_unit_factor(axis); }
  1045. #else
  1046. inline float code_value_linear_units() { return code_value_float(); }
  1047. inline float code_value_axis_units(int axis) { UNUSED(axis); return code_value_float(); }
  1048. inline float code_value_per_axis_unit(int axis) { UNUSED(axis); return code_value_float(); }
  1049. #endif
  1050. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  1051. inline void set_input_temp_units(TempUnit units) { input_temp_units = units; }
  1052. float code_value_temp_abs() {
  1053. switch (input_temp_units) {
  1054. case TEMPUNIT_C:
  1055. return code_value_float();
  1056. case TEMPUNIT_F:
  1057. return (code_value_float() - 32) * 0.5555555556;
  1058. case TEMPUNIT_K:
  1059. return code_value_float() - 272.15;
  1060. default:
  1061. return code_value_float();
  1062. }
  1063. }
  1064. float code_value_temp_diff() {
  1065. switch (input_temp_units) {
  1066. case TEMPUNIT_C:
  1067. case TEMPUNIT_K:
  1068. return code_value_float();
  1069. case TEMPUNIT_F:
  1070. return code_value_float() * 0.5555555556;
  1071. default:
  1072. return code_value_float();
  1073. }
  1074. }
  1075. #else
  1076. float code_value_temp_abs() { return code_value_float(); }
  1077. float code_value_temp_diff() { return code_value_float(); }
  1078. #endif
  1079. FORCE_INLINE millis_t code_value_millis() { return code_value_ulong(); }
  1080. inline millis_t code_value_millis_from_seconds() { return code_value_float() * 1000; }
  1081. bool code_seen(char code) {
  1082. seen_pointer = strchr(current_command_args, code);
  1083. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  1084. }
  1085. /**
  1086. * Set target_extruder from the T parameter or the active_extruder
  1087. *
  1088. * Returns TRUE if the target is invalid
  1089. */
  1090. bool get_target_extruder_from_command(int code) {
  1091. if (code_seen('T')) {
  1092. if (code_value_byte() >= EXTRUDERS) {
  1093. SERIAL_ECHO_START;
  1094. SERIAL_CHAR('M');
  1095. SERIAL_ECHO(code);
  1096. SERIAL_ECHOLNPAIR(" " MSG_INVALID_EXTRUDER " ", code_value_byte());
  1097. return true;
  1098. }
  1099. target_extruder = code_value_byte();
  1100. }
  1101. else
  1102. target_extruder = active_extruder;
  1103. return false;
  1104. }
  1105. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  1106. bool extruder_duplication_enabled = false; // Used in Dual X mode 2
  1107. #endif
  1108. #if ENABLED(DUAL_X_CARRIAGE)
  1109. #define DXC_FULL_CONTROL_MODE 0
  1110. #define DXC_AUTO_PARK_MODE 1
  1111. #define DXC_DUPLICATION_MODE 2
  1112. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1113. static float x_home_pos(int extruder) {
  1114. if (extruder == 0)
  1115. return LOGICAL_X_POSITION(base_home_pos(X_AXIS));
  1116. else
  1117. /**
  1118. * In dual carriage mode the extruder offset provides an override of the
  1119. * second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  1120. * This allow soft recalibration of the second extruder offset position
  1121. * without firmware reflash (through the M218 command).
  1122. */
  1123. return (hotend_offset[X_AXIS][1] > 0) ? hotend_offset[X_AXIS][1] : X2_HOME_POS;
  1124. }
  1125. static int x_home_dir(int extruder) {
  1126. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  1127. }
  1128. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1129. static bool active_extruder_parked = false; // used in mode 1 & 2
  1130. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  1131. static millis_t delayed_move_time = 0; // used in mode 1
  1132. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1133. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  1134. #endif // DUAL_X_CARRIAGE
  1135. /**
  1136. * Software endstops can be used to monitor the open end of
  1137. * an axis that has a hardware endstop on the other end. Or
  1138. * they can prevent axes from moving past endstops and grinding.
  1139. *
  1140. * To keep doing their job as the coordinate system changes,
  1141. * the software endstop positions must be refreshed to remain
  1142. * at the same positions relative to the machine.
  1143. */
  1144. void update_software_endstops(AxisEnum axis) {
  1145. float offs = LOGICAL_POSITION(0, axis);
  1146. #if ENABLED(DUAL_X_CARRIAGE)
  1147. if (axis == X_AXIS) {
  1148. float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS);
  1149. if (active_extruder != 0) {
  1150. soft_endstop_min[X_AXIS] = X2_MIN_POS + offs;
  1151. soft_endstop_max[X_AXIS] = dual_max_x + offs;
  1152. return;
  1153. }
  1154. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1155. soft_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
  1156. soft_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
  1157. return;
  1158. }
  1159. }
  1160. else
  1161. #endif
  1162. {
  1163. soft_endstop_min[axis] = base_min_pos(axis) + offs;
  1164. soft_endstop_max[axis] = base_max_pos(axis) + offs;
  1165. }
  1166. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1167. if (DEBUGGING(LEVELING)) {
  1168. SERIAL_ECHOPAIR("For ", axis_codes[axis]);
  1169. SERIAL_ECHOPAIR(" axis:\n home_offset = ", home_offset[axis]);
  1170. SERIAL_ECHOPAIR("\n position_shift = ", position_shift[axis]);
  1171. SERIAL_ECHOPAIR("\n soft_endstop_min = ", soft_endstop_min[axis]);
  1172. SERIAL_ECHOLNPAIR("\n soft_endstop_max = ", soft_endstop_max[axis]);
  1173. }
  1174. #endif
  1175. #if ENABLED(DELTA)
  1176. if (axis == Z_AXIS)
  1177. delta_clip_start_height = soft_endstop_max[axis] - delta_safe_distance_from_top();
  1178. #endif
  1179. }
  1180. /**
  1181. * Change the home offset for an axis, update the current
  1182. * position and the software endstops to retain the same
  1183. * relative distance to the new home.
  1184. *
  1185. * Since this changes the current_position, code should
  1186. * call sync_plan_position soon after this.
  1187. */
  1188. static void set_home_offset(AxisEnum axis, float v) {
  1189. current_position[axis] += v - home_offset[axis];
  1190. home_offset[axis] = v;
  1191. update_software_endstops(axis);
  1192. }
  1193. /**
  1194. * Set an axis' current position to its home position (after homing).
  1195. *
  1196. * For Core and Cartesian robots this applies one-to-one when an
  1197. * individual axis has been homed.
  1198. *
  1199. * DELTA should wait until all homing is done before setting the XYZ
  1200. * current_position to home, because homing is a single operation.
  1201. * In the case where the axis positions are already known and previously
  1202. * homed, DELTA could home to X or Y individually by moving either one
  1203. * to the center. However, homing Z always homes XY and Z.
  1204. *
  1205. * SCARA should wait until all XY homing is done before setting the XY
  1206. * current_position to home, because neither X nor Y is at home until
  1207. * both are at home. Z can however be homed individually.
  1208. *
  1209. */
  1210. static void set_axis_is_at_home(AxisEnum axis) {
  1211. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1212. if (DEBUGGING(LEVELING)) {
  1213. SERIAL_ECHOPAIR(">>> set_axis_is_at_home(", axis_codes[axis]);
  1214. SERIAL_CHAR(')');
  1215. SERIAL_EOL;
  1216. }
  1217. #endif
  1218. axis_known_position[axis] = axis_homed[axis] = true;
  1219. position_shift[axis] = 0;
  1220. update_software_endstops(axis);
  1221. #if ENABLED(DUAL_X_CARRIAGE)
  1222. if (axis == X_AXIS && (active_extruder != 0 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
  1223. if (active_extruder != 0)
  1224. current_position[X_AXIS] = x_home_pos(active_extruder);
  1225. else
  1226. current_position[X_AXIS] = LOGICAL_X_POSITION(base_home_pos(X_AXIS));
  1227. update_software_endstops(X_AXIS);
  1228. return;
  1229. }
  1230. #endif
  1231. #if ENABLED(MORGAN_SCARA)
  1232. /**
  1233. * Morgan SCARA homes XY at the same time
  1234. */
  1235. if (axis == X_AXIS || axis == Y_AXIS) {
  1236. float homeposition[XYZ];
  1237. LOOP_XYZ(i) homeposition[i] = LOGICAL_POSITION(base_home_pos(i), i);
  1238. // SERIAL_ECHOPAIR("homeposition X:", homeposition[X_AXIS]);
  1239. // SERIAL_ECHOLNPAIR(" Y:", homeposition[Y_AXIS]);
  1240. /**
  1241. * Get Home position SCARA arm angles using inverse kinematics,
  1242. * and calculate homing offset using forward kinematics
  1243. */
  1244. inverse_kinematics(homeposition);
  1245. forward_kinematics_SCARA(delta[A_AXIS], delta[B_AXIS]);
  1246. // SERIAL_ECHOPAIR("Cartesian X:", cartes[X_AXIS]);
  1247. // SERIAL_ECHOLNPAIR(" Y:", cartes[Y_AXIS]);
  1248. current_position[axis] = LOGICAL_POSITION(cartes[axis], axis);
  1249. /**
  1250. * SCARA home positions are based on configuration since the actual
  1251. * limits are determined by the inverse kinematic transform.
  1252. */
  1253. soft_endstop_min[axis] = base_min_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1254. soft_endstop_max[axis] = base_max_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1255. }
  1256. else
  1257. #endif
  1258. {
  1259. current_position[axis] = LOGICAL_POSITION(base_home_pos(axis), axis);
  1260. }
  1261. /**
  1262. * Z Probe Z Homing? Account for the probe's Z offset.
  1263. */
  1264. #if HAS_BED_PROBE && Z_HOME_DIR < 0
  1265. if (axis == Z_AXIS) {
  1266. #if HOMING_Z_WITH_PROBE
  1267. current_position[Z_AXIS] -= zprobe_zoffset;
  1268. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1269. if (DEBUGGING(LEVELING)) {
  1270. SERIAL_ECHOLNPGM("*** Z HOMED WITH PROBE (Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) ***");
  1271. SERIAL_ECHOLNPAIR("> zprobe_zoffset = ", zprobe_zoffset);
  1272. }
  1273. #endif
  1274. #elif ENABLED(DEBUG_LEVELING_FEATURE)
  1275. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("*** Z HOMED TO ENDSTOP (Z_MIN_PROBE_ENDSTOP) ***");
  1276. #endif
  1277. }
  1278. #endif
  1279. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1280. if (DEBUGGING(LEVELING)) {
  1281. SERIAL_ECHOPAIR("> home_offset[", axis_codes[axis]);
  1282. SERIAL_ECHOLNPAIR("] = ", home_offset[axis]);
  1283. DEBUG_POS("", current_position);
  1284. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis_codes[axis]);
  1285. SERIAL_CHAR(')');
  1286. SERIAL_EOL;
  1287. }
  1288. #endif
  1289. }
  1290. /**
  1291. * Some planner shorthand inline functions
  1292. */
  1293. inline float get_homing_bump_feedrate(AxisEnum axis) {
  1294. int constexpr homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  1295. int hbd = homing_bump_divisor[axis];
  1296. if (hbd < 1) {
  1297. hbd = 10;
  1298. SERIAL_ECHO_START;
  1299. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1300. }
  1301. return homing_feedrate_mm_s[axis] / hbd;
  1302. }
  1303. //
  1304. // line_to_current_position
  1305. // Move the planner to the current position from wherever it last moved
  1306. // (or from wherever it has been told it is located).
  1307. //
  1308. inline void line_to_current_position() {
  1309. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate_mm_s, active_extruder);
  1310. }
  1311. //
  1312. // line_to_destination
  1313. // Move the planner, not necessarily synced with current_position
  1314. //
  1315. inline void line_to_destination(float fr_mm_s) {
  1316. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], fr_mm_s, active_extruder);
  1317. }
  1318. inline void line_to_destination() { line_to_destination(feedrate_mm_s); }
  1319. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1320. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1321. #if IS_KINEMATIC
  1322. /**
  1323. * Calculate delta, start a line, and set current_position to destination
  1324. */
  1325. void prepare_uninterpolated_move_to_destination(const float fr_mm_s=0.0) {
  1326. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1327. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_uninterpolated_move_to_destination", destination);
  1328. #endif
  1329. if ( current_position[X_AXIS] == destination[X_AXIS]
  1330. && current_position[Y_AXIS] == destination[Y_AXIS]
  1331. && current_position[Z_AXIS] == destination[Z_AXIS]
  1332. && current_position[E_AXIS] == destination[E_AXIS]
  1333. ) return;
  1334. refresh_cmd_timeout();
  1335. planner.buffer_line_kinematic(destination, MMS_SCALED(fr_mm_s ? fr_mm_s : feedrate_mm_s), active_extruder);
  1336. set_current_to_destination();
  1337. }
  1338. #endif // IS_KINEMATIC
  1339. /**
  1340. * Plan a move to (X, Y, Z) and set the current_position
  1341. * The final current_position may not be the one that was requested
  1342. */
  1343. void do_blocking_move_to(const float &x, const float &y, const float &z, const float &fr_mm_s /*=0.0*/) {
  1344. float old_feedrate_mm_s = feedrate_mm_s;
  1345. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1346. if (DEBUGGING(LEVELING)) print_xyz(PSTR(">>> do_blocking_move_to"), NULL, x, y, z);
  1347. #endif
  1348. #if ENABLED(DELTA)
  1349. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1350. set_destination_to_current(); // sync destination at the start
  1351. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1352. if (DEBUGGING(LEVELING)) DEBUG_POS("set_destination_to_current", destination);
  1353. #endif
  1354. // when in the danger zone
  1355. if (current_position[Z_AXIS] > delta_clip_start_height) {
  1356. if (z > delta_clip_start_height) { // staying in the danger zone
  1357. destination[X_AXIS] = x; // move directly (uninterpolated)
  1358. destination[Y_AXIS] = y;
  1359. destination[Z_AXIS] = z;
  1360. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1361. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1362. if (DEBUGGING(LEVELING)) DEBUG_POS("danger zone move", current_position);
  1363. #endif
  1364. return;
  1365. }
  1366. else {
  1367. destination[Z_AXIS] = delta_clip_start_height;
  1368. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1369. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1370. if (DEBUGGING(LEVELING)) DEBUG_POS("zone border move", current_position);
  1371. #endif
  1372. }
  1373. }
  1374. if (z > current_position[Z_AXIS]) { // raising?
  1375. destination[Z_AXIS] = z;
  1376. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1377. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1378. if (DEBUGGING(LEVELING)) DEBUG_POS("z raise move", current_position);
  1379. #endif
  1380. }
  1381. destination[X_AXIS] = x;
  1382. destination[Y_AXIS] = y;
  1383. prepare_move_to_destination(); // set_current_to_destination
  1384. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1385. if (DEBUGGING(LEVELING)) DEBUG_POS("xy move", current_position);
  1386. #endif
  1387. if (z < current_position[Z_AXIS]) { // lowering?
  1388. destination[Z_AXIS] = z;
  1389. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1390. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1391. if (DEBUGGING(LEVELING)) DEBUG_POS("z lower move", current_position);
  1392. #endif
  1393. }
  1394. #elif IS_SCARA
  1395. set_destination_to_current();
  1396. // If Z needs to raise, do it before moving XY
  1397. if (destination[Z_AXIS] < z) {
  1398. destination[Z_AXIS] = z;
  1399. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS]);
  1400. }
  1401. destination[X_AXIS] = x;
  1402. destination[Y_AXIS] = y;
  1403. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S);
  1404. // If Z needs to lower, do it after moving XY
  1405. if (destination[Z_AXIS] > z) {
  1406. destination[Z_AXIS] = z;
  1407. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS]);
  1408. }
  1409. #else
  1410. // If Z needs to raise, do it before moving XY
  1411. if (current_position[Z_AXIS] < z) {
  1412. feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1413. current_position[Z_AXIS] = z;
  1414. line_to_current_position();
  1415. }
  1416. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1417. current_position[X_AXIS] = x;
  1418. current_position[Y_AXIS] = y;
  1419. line_to_current_position();
  1420. // If Z needs to lower, do it after moving XY
  1421. if (current_position[Z_AXIS] > z) {
  1422. feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1423. current_position[Z_AXIS] = z;
  1424. line_to_current_position();
  1425. }
  1426. #endif
  1427. stepper.synchronize();
  1428. feedrate_mm_s = old_feedrate_mm_s;
  1429. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1430. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< do_blocking_move_to");
  1431. #endif
  1432. }
  1433. void do_blocking_move_to_x(const float &x, const float &fr_mm_s/*=0.0*/) {
  1434. do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS], fr_mm_s);
  1435. }
  1436. void do_blocking_move_to_z(const float &z, const float &fr_mm_s/*=0.0*/) {
  1437. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z, fr_mm_s);
  1438. }
  1439. void do_blocking_move_to_xy(const float &x, const float &y, const float &fr_mm_s/*=0.0*/) {
  1440. do_blocking_move_to(x, y, current_position[Z_AXIS], fr_mm_s);
  1441. }
  1442. //
  1443. // Prepare to do endstop or probe moves
  1444. // with custom feedrates.
  1445. //
  1446. // - Save current feedrates
  1447. // - Reset the rate multiplier
  1448. // - Reset the command timeout
  1449. // - Enable the endstops (for endstop moves)
  1450. //
  1451. static void setup_for_endstop_or_probe_move() {
  1452. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1453. if (DEBUGGING(LEVELING)) DEBUG_POS("setup_for_endstop_or_probe_move", current_position);
  1454. #endif
  1455. saved_feedrate_mm_s = feedrate_mm_s;
  1456. saved_feedrate_percentage = feedrate_percentage;
  1457. feedrate_percentage = 100;
  1458. refresh_cmd_timeout();
  1459. }
  1460. static void clean_up_after_endstop_or_probe_move() {
  1461. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1462. if (DEBUGGING(LEVELING)) DEBUG_POS("clean_up_after_endstop_or_probe_move", current_position);
  1463. #endif
  1464. feedrate_mm_s = saved_feedrate_mm_s;
  1465. feedrate_percentage = saved_feedrate_percentage;
  1466. refresh_cmd_timeout();
  1467. }
  1468. #if HAS_BED_PROBE
  1469. /**
  1470. * Raise Z to a minimum height to make room for a probe to move
  1471. */
  1472. inline void do_probe_raise(float z_raise) {
  1473. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1474. if (DEBUGGING(LEVELING)) {
  1475. SERIAL_ECHOPAIR("do_probe_raise(", z_raise);
  1476. SERIAL_CHAR(')');
  1477. SERIAL_EOL;
  1478. }
  1479. #endif
  1480. float z_dest = LOGICAL_Z_POSITION(z_raise);
  1481. if (zprobe_zoffset < 0) z_dest -= zprobe_zoffset;
  1482. if (z_dest > current_position[Z_AXIS])
  1483. do_blocking_move_to_z(z_dest);
  1484. }
  1485. #endif //HAS_BED_PROBE
  1486. #if ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED) || HAS_PROBING_PROCEDURE || HOTENDS > 1 || ENABLED(NOZZLE_CLEAN_FEATURE) || ENABLED(NOZZLE_PARK_FEATURE)
  1487. static bool axis_unhomed_error(const bool x, const bool y, const bool z) {
  1488. const bool xx = x && !axis_homed[X_AXIS],
  1489. yy = y && !axis_homed[Y_AXIS],
  1490. zz = z && !axis_homed[Z_AXIS];
  1491. if (xx || yy || zz) {
  1492. SERIAL_ECHO_START;
  1493. SERIAL_ECHOPGM(MSG_HOME " ");
  1494. if (xx) SERIAL_ECHOPGM(MSG_X);
  1495. if (yy) SERIAL_ECHOPGM(MSG_Y);
  1496. if (zz) SERIAL_ECHOPGM(MSG_Z);
  1497. SERIAL_ECHOLNPGM(" " MSG_FIRST);
  1498. #if ENABLED(ULTRA_LCD)
  1499. char message[3 * (LCD_WIDTH) + 1] = ""; // worst case is kana.utf with up to 3*LCD_WIDTH+1
  1500. strcat_P(message, PSTR(MSG_HOME " "));
  1501. if (xx) strcat_P(message, PSTR(MSG_X));
  1502. if (yy) strcat_P(message, PSTR(MSG_Y));
  1503. if (zz) strcat_P(message, PSTR(MSG_Z));
  1504. strcat_P(message, PSTR(" " MSG_FIRST));
  1505. lcd_setstatus(message);
  1506. #endif
  1507. return true;
  1508. }
  1509. return false;
  1510. }
  1511. #endif
  1512. #if ENABLED(Z_PROBE_SLED)
  1513. #ifndef SLED_DOCKING_OFFSET
  1514. #define SLED_DOCKING_OFFSET 0
  1515. #endif
  1516. /**
  1517. * Method to dock/undock a sled designed by Charles Bell.
  1518. *
  1519. * stow[in] If false, move to MAX_X and engage the solenoid
  1520. * If true, move to MAX_X and release the solenoid
  1521. */
  1522. static void dock_sled(bool stow) {
  1523. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1524. if (DEBUGGING(LEVELING)) {
  1525. SERIAL_ECHOPAIR("dock_sled(", stow);
  1526. SERIAL_CHAR(')');
  1527. SERIAL_EOL;
  1528. }
  1529. #endif
  1530. // Dock sled a bit closer to ensure proper capturing
  1531. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET - ((stow) ? 1 : 0));
  1532. #if PIN_EXISTS(SLED)
  1533. digitalWrite(SLED_PIN, !stow); // switch solenoid
  1534. #endif
  1535. }
  1536. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1537. void run_deploy_moves_script() {
  1538. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1539. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_X
  1540. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_X current_position[X_AXIS]
  1541. #endif
  1542. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Y
  1543. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Y current_position[Y_AXIS]
  1544. #endif
  1545. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Z
  1546. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Z current_position[Z_AXIS]
  1547. #endif
  1548. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE
  1549. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE 0.0
  1550. #endif
  1551. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_1_X, Z_PROBE_ALLEN_KEY_DEPLOY_1_Y, Z_PROBE_ALLEN_KEY_DEPLOY_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE));
  1552. #endif
  1553. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1554. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_X
  1555. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_X current_position[X_AXIS]
  1556. #endif
  1557. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Y
  1558. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Y current_position[Y_AXIS]
  1559. #endif
  1560. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Z
  1561. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Z current_position[Z_AXIS]
  1562. #endif
  1563. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE
  1564. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE 0.0
  1565. #endif
  1566. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_2_X, Z_PROBE_ALLEN_KEY_DEPLOY_2_Y, Z_PROBE_ALLEN_KEY_DEPLOY_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE));
  1567. #endif
  1568. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Z)
  1569. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1570. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_X current_position[X_AXIS]
  1571. #endif
  1572. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Y
  1573. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Y current_position[Y_AXIS]
  1574. #endif
  1575. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Z
  1576. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Z current_position[Z_AXIS]
  1577. #endif
  1578. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE
  1579. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE 0.0
  1580. #endif
  1581. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_3_X, Z_PROBE_ALLEN_KEY_DEPLOY_3_Y, Z_PROBE_ALLEN_KEY_DEPLOY_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE));
  1582. #endif
  1583. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Z)
  1584. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_X
  1585. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_X current_position[X_AXIS]
  1586. #endif
  1587. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Y
  1588. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Y current_position[Y_AXIS]
  1589. #endif
  1590. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Z
  1591. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Z current_position[Z_AXIS]
  1592. #endif
  1593. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE
  1594. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE 0.0
  1595. #endif
  1596. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_4_X, Z_PROBE_ALLEN_KEY_DEPLOY_4_Y, Z_PROBE_ALLEN_KEY_DEPLOY_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE));
  1597. #endif
  1598. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Z)
  1599. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_X
  1600. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_X current_position[X_AXIS]
  1601. #endif
  1602. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Y
  1603. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Y current_position[Y_AXIS]
  1604. #endif
  1605. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Z
  1606. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Z current_position[Z_AXIS]
  1607. #endif
  1608. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE
  1609. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE 0.0
  1610. #endif
  1611. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_5_X, Z_PROBE_ALLEN_KEY_DEPLOY_5_Y, Z_PROBE_ALLEN_KEY_DEPLOY_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE));
  1612. #endif
  1613. }
  1614. void run_stow_moves_script() {
  1615. #if defined(Z_PROBE_ALLEN_KEY_STOW_1_X) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Z)
  1616. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_X
  1617. #define Z_PROBE_ALLEN_KEY_STOW_1_X current_position[X_AXIS]
  1618. #endif
  1619. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Y
  1620. #define Z_PROBE_ALLEN_KEY_STOW_1_Y current_position[Y_AXIS]
  1621. #endif
  1622. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Z
  1623. #define Z_PROBE_ALLEN_KEY_STOW_1_Z current_position[Z_AXIS]
  1624. #endif
  1625. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE
  1626. #define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE 0.0
  1627. #endif
  1628. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_1_X, Z_PROBE_ALLEN_KEY_STOW_1_Y, Z_PROBE_ALLEN_KEY_STOW_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE));
  1629. #endif
  1630. #if defined(Z_PROBE_ALLEN_KEY_STOW_2_X) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Z)
  1631. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_X
  1632. #define Z_PROBE_ALLEN_KEY_STOW_2_X current_position[X_AXIS]
  1633. #endif
  1634. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Y
  1635. #define Z_PROBE_ALLEN_KEY_STOW_2_Y current_position[Y_AXIS]
  1636. #endif
  1637. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Z
  1638. #define Z_PROBE_ALLEN_KEY_STOW_2_Z current_position[Z_AXIS]
  1639. #endif
  1640. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE
  1641. #define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE 0.0
  1642. #endif
  1643. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_2_X, Z_PROBE_ALLEN_KEY_STOW_2_Y, Z_PROBE_ALLEN_KEY_STOW_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE));
  1644. #endif
  1645. #if defined(Z_PROBE_ALLEN_KEY_STOW_3_X) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Z)
  1646. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_X
  1647. #define Z_PROBE_ALLEN_KEY_STOW_3_X current_position[X_AXIS]
  1648. #endif
  1649. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Y
  1650. #define Z_PROBE_ALLEN_KEY_STOW_3_Y current_position[Y_AXIS]
  1651. #endif
  1652. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Z
  1653. #define Z_PROBE_ALLEN_KEY_STOW_3_Z current_position[Z_AXIS]
  1654. #endif
  1655. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE
  1656. #define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE 0.0
  1657. #endif
  1658. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_3_X, Z_PROBE_ALLEN_KEY_STOW_3_Y, Z_PROBE_ALLEN_KEY_STOW_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE));
  1659. #endif
  1660. #if defined(Z_PROBE_ALLEN_KEY_STOW_4_X) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Z)
  1661. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_X
  1662. #define Z_PROBE_ALLEN_KEY_STOW_4_X current_position[X_AXIS]
  1663. #endif
  1664. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Y
  1665. #define Z_PROBE_ALLEN_KEY_STOW_4_Y current_position[Y_AXIS]
  1666. #endif
  1667. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Z
  1668. #define Z_PROBE_ALLEN_KEY_STOW_4_Z current_position[Z_AXIS]
  1669. #endif
  1670. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE
  1671. #define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE 0.0
  1672. #endif
  1673. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_4_X, Z_PROBE_ALLEN_KEY_STOW_4_Y, Z_PROBE_ALLEN_KEY_STOW_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE));
  1674. #endif
  1675. #if defined(Z_PROBE_ALLEN_KEY_STOW_5_X) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Z)
  1676. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_X
  1677. #define Z_PROBE_ALLEN_KEY_STOW_5_X current_position[X_AXIS]
  1678. #endif
  1679. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Y
  1680. #define Z_PROBE_ALLEN_KEY_STOW_5_Y current_position[Y_AXIS]
  1681. #endif
  1682. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Z
  1683. #define Z_PROBE_ALLEN_KEY_STOW_5_Z current_position[Z_AXIS]
  1684. #endif
  1685. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE
  1686. #define Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE 0.0
  1687. #endif
  1688. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_5_X, Z_PROBE_ALLEN_KEY_STOW_5_Y, Z_PROBE_ALLEN_KEY_STOW_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE));
  1689. #endif
  1690. }
  1691. #endif
  1692. #if HAS_BED_PROBE
  1693. // TRIGGERED_WHEN_STOWED_TEST can easily be extended to servo probes, ... if needed.
  1694. #if ENABLED(PROBE_IS_TRIGGERED_WHEN_STOWED_TEST)
  1695. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1696. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING)
  1697. #else
  1698. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)
  1699. #endif
  1700. #endif
  1701. #define DEPLOY_PROBE() set_probe_deployed(true)
  1702. #define STOW_PROBE() set_probe_deployed(false)
  1703. #if ENABLED(BLTOUCH)
  1704. FORCE_INLINE void set_bltouch_deployed(const bool &deploy) {
  1705. servo[Z_ENDSTOP_SERVO_NR].move(deploy ? BLTOUCH_DEPLOY : BLTOUCH_STOW);
  1706. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1707. if (DEBUGGING(LEVELING)) {
  1708. SERIAL_ECHOPAIR("set_bltouch_deployed(", deploy);
  1709. SERIAL_CHAR(')');
  1710. SERIAL_EOL;
  1711. }
  1712. #endif
  1713. }
  1714. #endif
  1715. // returns false for ok and true for failure
  1716. static bool set_probe_deployed(bool deploy) {
  1717. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1718. if (DEBUGGING(LEVELING)) {
  1719. DEBUG_POS("set_probe_deployed", current_position);
  1720. SERIAL_ECHOLNPAIR("deploy: ", deploy);
  1721. }
  1722. #endif
  1723. if (endstops.z_probe_enabled == deploy) return false;
  1724. // Make room for probe
  1725. do_probe_raise(_Z_CLEARANCE_DEPLOY_PROBE);
  1726. // When deploying make sure BLTOUCH is not already triggered
  1727. #if ENABLED(BLTOUCH)
  1728. if (deploy && TEST_BLTOUCH()) { stop(); return true; }
  1729. #endif
  1730. #if ENABLED(Z_PROBE_SLED)
  1731. if (axis_unhomed_error(true, false, false)) { stop(); return true; }
  1732. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1733. if (axis_unhomed_error(true, true, true )) { stop(); return true; }
  1734. #endif
  1735. float oldXpos = current_position[X_AXIS],
  1736. oldYpos = current_position[Y_AXIS];
  1737. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1738. // If endstop is already false, the Z probe is deployed
  1739. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // closed after the probe specific actions.
  1740. // Would a goto be less ugly?
  1741. //while (!_TRIGGERED_WHEN_STOWED_TEST) idle(); // would offer the opportunity
  1742. // for a triggered when stowed manual probe.
  1743. if (!deploy) endstops.enable_z_probe(false); // Switch off triggered when stowed probes early
  1744. // otherwise an Allen-Key probe can't be stowed.
  1745. #endif
  1746. #if ENABLED(Z_PROBE_SLED)
  1747. dock_sled(!deploy);
  1748. #elif HAS_Z_SERVO_ENDSTOP && DISABLED(BLTOUCH)
  1749. servo[Z_ENDSTOP_SERVO_NR].move(z_servo_angle[deploy ? 0 : 1]);
  1750. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1751. deploy ? run_deploy_moves_script() : run_stow_moves_script();
  1752. #endif
  1753. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1754. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1755. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // State hasn't changed?
  1756. if (IsRunning()) {
  1757. SERIAL_ERROR_START;
  1758. SERIAL_ERRORLNPGM("Z-Probe failed");
  1759. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1760. }
  1761. stop();
  1762. return true;
  1763. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1764. #endif
  1765. do_blocking_move_to(oldXpos, oldYpos, current_position[Z_AXIS]); // return to position before deploy
  1766. endstops.enable_z_probe(deploy);
  1767. return false;
  1768. }
  1769. static void do_probe_move(float z, float fr_mm_m) {
  1770. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1771. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> do_probe_move", current_position);
  1772. #endif
  1773. // Deploy BLTouch at the start of any probe
  1774. #if ENABLED(BLTOUCH)
  1775. set_bltouch_deployed(true);
  1776. #endif
  1777. // Move down until probe triggered
  1778. do_blocking_move_to_z(LOGICAL_Z_POSITION(z), MMM_TO_MMS(fr_mm_m));
  1779. // Retract BLTouch immediately after a probe
  1780. #if ENABLED(BLTOUCH)
  1781. set_bltouch_deployed(false);
  1782. #endif
  1783. // Clear endstop flags
  1784. endstops.hit_on_purpose();
  1785. // Get Z where the steppers were interrupted
  1786. set_current_from_steppers_for_axis(Z_AXIS);
  1787. // Tell the planner where we actually are
  1788. SYNC_PLAN_POSITION_KINEMATIC();
  1789. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1790. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< do_probe_move", current_position);
  1791. #endif
  1792. }
  1793. // Do a single Z probe and return with current_position[Z_AXIS]
  1794. // at the height where the probe triggered.
  1795. static float run_z_probe() {
  1796. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1797. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> run_z_probe", current_position);
  1798. #endif
  1799. // Prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
  1800. refresh_cmd_timeout();
  1801. #if ENABLED(PROBE_DOUBLE_TOUCH)
  1802. // Do a first probe at the fast speed
  1803. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_FAST);
  1804. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1805. float first_probe_z = current_position[Z_AXIS];
  1806. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("1st Probe Z:", first_probe_z);
  1807. #endif
  1808. // move up by the bump distance
  1809. do_blocking_move_to_z(current_position[Z_AXIS] + home_bump_mm(Z_AXIS), MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1810. #else
  1811. // If the nozzle is above the travel height then
  1812. // move down quickly before doing the slow probe
  1813. float z = LOGICAL_Z_POSITION(Z_CLEARANCE_BETWEEN_PROBES);
  1814. if (zprobe_zoffset < 0) z -= zprobe_zoffset;
  1815. if (z < current_position[Z_AXIS])
  1816. do_blocking_move_to_z(z, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1817. #endif
  1818. // move down slowly to find bed
  1819. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_SLOW);
  1820. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1821. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< run_z_probe", current_position);
  1822. #endif
  1823. // Debug: compare probe heights
  1824. #if ENABLED(PROBE_DOUBLE_TOUCH) && ENABLED(DEBUG_LEVELING_FEATURE)
  1825. if (DEBUGGING(LEVELING)) {
  1826. SERIAL_ECHOPAIR("2nd Probe Z:", current_position[Z_AXIS]);
  1827. SERIAL_ECHOLNPAIR(" Discrepancy:", first_probe_z - current_position[Z_AXIS]);
  1828. }
  1829. #endif
  1830. return current_position[Z_AXIS];
  1831. }
  1832. //
  1833. // - Move to the given XY
  1834. // - Deploy the probe, if not already deployed
  1835. // - Probe the bed, get the Z position
  1836. // - Depending on the 'stow' flag
  1837. // - Stow the probe, or
  1838. // - Raise to the BETWEEN height
  1839. // - Return the probed Z position
  1840. //
  1841. static float probe_pt(const float &x, const float &y, bool stow = true, int verbose_level = 1) {
  1842. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1843. if (DEBUGGING(LEVELING)) {
  1844. SERIAL_ECHOPAIR(">>> probe_pt(", x);
  1845. SERIAL_ECHOPAIR(", ", y);
  1846. SERIAL_ECHOPAIR(", ", stow ? "" : "no ");
  1847. SERIAL_ECHOLNPGM("stow)");
  1848. DEBUG_POS("", current_position);
  1849. }
  1850. #endif
  1851. float old_feedrate_mm_s = feedrate_mm_s;
  1852. // Ensure a minimum height before moving the probe
  1853. do_probe_raise(Z_CLEARANCE_BETWEEN_PROBES);
  1854. feedrate_mm_s = XY_PROBE_FEEDRATE_MM_S;
  1855. // Move the probe to the given XY
  1856. do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1857. if (DEPLOY_PROBE()) return NAN;
  1858. float measured_z = run_z_probe();
  1859. if (!stow)
  1860. do_probe_raise(Z_CLEARANCE_BETWEEN_PROBES);
  1861. else
  1862. if (STOW_PROBE()) return NAN;
  1863. if (verbose_level > 2) {
  1864. SERIAL_PROTOCOLPGM("Bed X: ");
  1865. SERIAL_PROTOCOL_F(x, 3);
  1866. SERIAL_PROTOCOLPGM(" Y: ");
  1867. SERIAL_PROTOCOL_F(y, 3);
  1868. SERIAL_PROTOCOLPGM(" Z: ");
  1869. SERIAL_PROTOCOL_F(measured_z, 3);
  1870. SERIAL_EOL;
  1871. }
  1872. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1873. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  1874. #endif
  1875. feedrate_mm_s = old_feedrate_mm_s;
  1876. return measured_z;
  1877. }
  1878. #endif // HAS_BED_PROBE
  1879. #if PLANNER_LEVELING
  1880. /**
  1881. * Turn bed leveling on or off, fixing the current
  1882. * position as-needed.
  1883. *
  1884. * Disable: Current position = physical position
  1885. * Enable: Current position = "unleveled" physical position
  1886. */
  1887. void set_bed_leveling_enabled(bool enable=true) {
  1888. #if ENABLED(MESH_BED_LEVELING)
  1889. if (!enable && mbl.active())
  1890. current_position[Z_AXIS] +=
  1891. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS)) - (MESH_HOME_SEARCH_Z);
  1892. mbl.set_active(enable && mbl.has_mesh()); // was set_has_mesh(). Is this not correct?
  1893. #elif HAS_ABL
  1894. if (enable != planner.abl_enabled) {
  1895. planner.abl_enabled = enable;
  1896. if (!enable)
  1897. set_current_from_steppers_for_axis(
  1898. #if ABL_PLANAR
  1899. ALL_AXES
  1900. #else
  1901. Z_AXIS
  1902. #endif
  1903. );
  1904. else
  1905. planner.unapply_leveling(current_position);
  1906. }
  1907. #endif
  1908. }
  1909. /**
  1910. * Reset calibration results to zero.
  1911. */
  1912. void reset_bed_level() {
  1913. #if ENABLED(MESH_BED_LEVELING)
  1914. if (mbl.has_mesh()) {
  1915. set_bed_leveling_enabled(false);
  1916. mbl.reset();
  1917. mbl.set_has_mesh(false);
  1918. }
  1919. #else
  1920. planner.abl_enabled = false;
  1921. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1922. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  1923. #endif
  1924. #if ABL_PLANAR
  1925. planner.bed_level_matrix.set_to_identity();
  1926. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  1927. for (uint8_t x = 0; x < ABL_GRID_POINTS_X; x++)
  1928. for (uint8_t y = 0; y < ABL_GRID_POINTS_Y; y++)
  1929. bed_level_grid[x][y] = 1000.0;
  1930. #endif
  1931. #endif
  1932. }
  1933. #endif // PLANNER_LEVELING
  1934. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  1935. /**
  1936. * Extrapolate a single point from its neighbors
  1937. */
  1938. static void extrapolate_one_point(uint8_t x, uint8_t y, int8_t xdir, int8_t ydir) {
  1939. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1940. if (DEBUGGING(LEVELING)) {
  1941. SERIAL_ECHOPGM("Extrapolate [");
  1942. if (x < 10) SERIAL_CHAR(' ');
  1943. SERIAL_ECHO((int)x);
  1944. SERIAL_CHAR(xdir ? (xdir > 0 ? '+' : '-') : ' ');
  1945. SERIAL_CHAR(' ');
  1946. if (y < 10) SERIAL_CHAR(' ');
  1947. SERIAL_ECHO((int)y);
  1948. SERIAL_CHAR(ydir ? (ydir > 0 ? '+' : '-') : ' ');
  1949. SERIAL_CHAR(']');
  1950. }
  1951. #endif
  1952. if (bed_level_grid[x][y] < 999.0) {
  1953. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1954. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM(" (done)");
  1955. #endif
  1956. return; // Don't overwrite good values.
  1957. }
  1958. SERIAL_EOL;
  1959. // Get X neighbors, Y neighbors, and XY neighbors
  1960. float a1 = bed_level_grid[x + xdir][y], a2 = bed_level_grid[x + xdir * 2][y],
  1961. b1 = bed_level_grid[x][y + ydir], b2 = bed_level_grid[x][y + ydir * 2],
  1962. c1 = bed_level_grid[x + xdir][y + ydir], c2 = bed_level_grid[x + xdir * 2][y + ydir * 2];
  1963. // Treat far unprobed points as zero, near as equal to far
  1964. if (a2 > 999.0) a2 = 0.0; if (a1 > 999.0) a1 = a2;
  1965. if (b2 > 999.0) b2 = 0.0; if (b1 > 999.0) b1 = b2;
  1966. if (c2 > 999.0) c2 = 0.0; if (c1 > 999.0) c1 = c2;
  1967. float a = 2 * a1 - a2, b = 2 * b1 - b2, c = 2 * c1 - c2;
  1968. // Take the average intstead of the median
  1969. bed_level_grid[x][y] = (a + b + c) / 3.0;
  1970. // Median is robust (ignores outliers).
  1971. // bed_level_grid[x][y] = (a < b) ? ((b < c) ? b : (c < a) ? a : c)
  1972. // : ((c < b) ? b : (a < c) ? a : c);
  1973. }
  1974. //Enable this if your SCARA uses 180° of total area
  1975. //#define EXTRAPOLATE_FROM_EDGE
  1976. #if ENABLED(EXTRAPOLATE_FROM_EDGE)
  1977. #if ABL_GRID_POINTS_X < ABL_GRID_POINTS_Y
  1978. #define HALF_IN_X
  1979. #elif ABL_GRID_POINTS_Y < ABL_GRID_POINTS_X
  1980. #define HALF_IN_Y
  1981. #endif
  1982. #endif
  1983. /**
  1984. * Fill in the unprobed points (corners of circular print surface)
  1985. * using linear extrapolation, away from the center.
  1986. */
  1987. static void extrapolate_unprobed_bed_level() {
  1988. #ifdef HALF_IN_X
  1989. const uint8_t ctrx2 = 0, xlen = ABL_GRID_POINTS_X - 1;
  1990. #else
  1991. const uint8_t ctrx1 = (ABL_GRID_POINTS_X - 1) / 2, // left-of-center
  1992. ctrx2 = ABL_GRID_POINTS_X / 2, // right-of-center
  1993. xlen = ctrx1;
  1994. #endif
  1995. #ifdef HALF_IN_Y
  1996. const uint8_t ctry2 = 0, ylen = ABL_GRID_POINTS_Y - 1;
  1997. #else
  1998. const uint8_t ctry1 = (ABL_GRID_POINTS_Y - 1) / 2, // top-of-center
  1999. ctry2 = ABL_GRID_POINTS_Y / 2, // bottom-of-center
  2000. ylen = ctry1;
  2001. #endif
  2002. for (uint8_t xo = 0; xo <= xlen; xo++)
  2003. for (uint8_t yo = 0; yo <= ylen; yo++) {
  2004. uint8_t x2 = ctrx2 + xo, y2 = ctry2 + yo;
  2005. #ifndef HALF_IN_X
  2006. uint8_t x1 = ctrx1 - xo;
  2007. #endif
  2008. #ifndef HALF_IN_Y
  2009. uint8_t y1 = ctry1 - yo;
  2010. #ifndef HALF_IN_X
  2011. extrapolate_one_point(x1, y1, +1, +1); // left-below + +
  2012. #endif
  2013. extrapolate_one_point(x2, y1, -1, +1); // right-below - +
  2014. #endif
  2015. #ifndef HALF_IN_X
  2016. extrapolate_one_point(x1, y2, +1, -1); // left-above + -
  2017. #endif
  2018. extrapolate_one_point(x2, y2, -1, -1); // right-above - -
  2019. }
  2020. }
  2021. /**
  2022. * Print calibration results for plotting or manual frame adjustment.
  2023. */
  2024. static void print_bed_level() {
  2025. SERIAL_ECHOPGM("Bilinear Leveling Grid:\n ");
  2026. for (uint8_t x = 0; x < ABL_GRID_POINTS_X; x++) {
  2027. SERIAL_PROTOCOLPGM(" ");
  2028. if (x < 10) SERIAL_PROTOCOLCHAR(' ');
  2029. SERIAL_PROTOCOL((int)x);
  2030. }
  2031. SERIAL_EOL;
  2032. for (uint8_t y = 0; y < ABL_GRID_POINTS_Y; y++) {
  2033. if (y < 9) SERIAL_PROTOCOLCHAR(' ');
  2034. SERIAL_PROTOCOL((int)y);
  2035. for (uint8_t x = 0; x < ABL_GRID_POINTS_X; x++) {
  2036. SERIAL_PROTOCOLCHAR(' ');
  2037. float offset = bed_level_grid[x][y];
  2038. if (offset < 999.0) {
  2039. if (offset > 0) SERIAL_CHAR('+');
  2040. SERIAL_PROTOCOL_F(offset, 2);
  2041. }
  2042. else
  2043. SERIAL_PROTOCOLPGM(" ====");
  2044. }
  2045. SERIAL_EOL;
  2046. }
  2047. SERIAL_EOL;
  2048. }
  2049. #endif // AUTO_BED_LEVELING_BILINEAR
  2050. /**
  2051. * Home an individual linear axis
  2052. */
  2053. static void do_homing_move(const AxisEnum axis, float distance, float fr_mm_s=0.0) {
  2054. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2055. if (DEBUGGING(LEVELING)) {
  2056. SERIAL_ECHOPAIR(">>> do_homing_move(", axis_codes[axis]);
  2057. SERIAL_ECHOPAIR(", ", distance);
  2058. SERIAL_ECHOPAIR(", ", fr_mm_s);
  2059. SERIAL_CHAR(')');
  2060. SERIAL_EOL;
  2061. }
  2062. #endif
  2063. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  2064. bool deploy_bltouch = (axis == Z_AXIS && distance < 0);
  2065. if (deploy_bltouch) set_bltouch_deployed(true);
  2066. #endif
  2067. // Tell the planner we're at Z=0
  2068. current_position[axis] = 0;
  2069. #if IS_SCARA
  2070. SYNC_PLAN_POSITION_KINEMATIC();
  2071. current_position[axis] = distance;
  2072. inverse_kinematics(current_position);
  2073. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[axis], active_extruder);
  2074. #else
  2075. sync_plan_position();
  2076. current_position[axis] = distance;
  2077. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[axis], active_extruder);
  2078. #endif
  2079. stepper.synchronize();
  2080. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  2081. if (deploy_bltouch) set_bltouch_deployed(false);
  2082. #endif
  2083. endstops.hit_on_purpose();
  2084. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2085. if (DEBUGGING(LEVELING)) {
  2086. SERIAL_ECHOPAIR("<<< do_homing_move(", axis_codes[axis]);
  2087. SERIAL_CHAR(')');
  2088. SERIAL_EOL;
  2089. }
  2090. #endif
  2091. }
  2092. /**
  2093. * Home an individual "raw axis" to its endstop.
  2094. * This applies to XYZ on Cartesian and Core robots, and
  2095. * to the individual ABC steppers on DELTA and SCARA.
  2096. *
  2097. * At the end of the procedure the axis is marked as
  2098. * homed and the current position of that axis is updated.
  2099. * Kinematic robots should wait till all axes are homed
  2100. * before updating the current position.
  2101. */
  2102. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  2103. static void homeaxis(AxisEnum axis) {
  2104. #if IS_SCARA
  2105. // Only Z homing (with probe) is permitted
  2106. if (axis != Z_AXIS) { BUZZ(100, 880); return; }
  2107. #else
  2108. #define CAN_HOME(A) \
  2109. (axis == A##_AXIS && ((A##_MIN_PIN > -1 && A##_HOME_DIR < 0) || (A##_MAX_PIN > -1 && A##_HOME_DIR > 0)))
  2110. if (!CAN_HOME(X) && !CAN_HOME(Y) && !CAN_HOME(Z)) return;
  2111. #endif
  2112. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2113. if (DEBUGGING(LEVELING)) {
  2114. SERIAL_ECHOPAIR(">>> homeaxis(", axis_codes[axis]);
  2115. SERIAL_CHAR(')');
  2116. SERIAL_EOL;
  2117. }
  2118. #endif
  2119. int axis_home_dir =
  2120. #if ENABLED(DUAL_X_CARRIAGE)
  2121. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  2122. #endif
  2123. home_dir(axis);
  2124. // Homing Z towards the bed? Deploy the Z probe or endstop.
  2125. #if HOMING_Z_WITH_PROBE
  2126. if (axis == Z_AXIS && DEPLOY_PROBE()) return;
  2127. #endif
  2128. // Set a flag for Z motor locking
  2129. #if ENABLED(Z_DUAL_ENDSTOPS)
  2130. if (axis == Z_AXIS) stepper.set_homing_flag(true);
  2131. #endif
  2132. // Fast move towards endstop until triggered
  2133. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2134. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 1 Fast:");
  2135. #endif
  2136. do_homing_move(axis, 1.5 * max_length(axis) * axis_home_dir);
  2137. // When homing Z with probe respect probe clearance
  2138. const float bump = axis_home_dir * (
  2139. #if HOMING_Z_WITH_PROBE
  2140. (axis == Z_AXIS) ? max(Z_CLEARANCE_BETWEEN_PROBES, home_bump_mm(Z_AXIS)) :
  2141. #endif
  2142. home_bump_mm(axis)
  2143. );
  2144. // If a second homing move is configured...
  2145. if (bump) {
  2146. // Move away from the endstop by the axis HOME_BUMP_MM
  2147. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2148. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Move Away:");
  2149. #endif
  2150. do_homing_move(axis, -bump);
  2151. // Slow move towards endstop until triggered
  2152. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2153. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 2 Slow:");
  2154. #endif
  2155. do_homing_move(axis, 2 * bump, get_homing_bump_feedrate(axis));
  2156. }
  2157. #if ENABLED(Z_DUAL_ENDSTOPS)
  2158. if (axis == Z_AXIS) {
  2159. float adj = fabs(z_endstop_adj);
  2160. bool lockZ1;
  2161. if (axis_home_dir > 0) {
  2162. adj = -adj;
  2163. lockZ1 = (z_endstop_adj > 0);
  2164. }
  2165. else
  2166. lockZ1 = (z_endstop_adj < 0);
  2167. if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
  2168. // Move to the adjusted endstop height
  2169. do_homing_move(axis, adj);
  2170. if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
  2171. stepper.set_homing_flag(false);
  2172. } // Z_AXIS
  2173. #endif
  2174. #if IS_SCARA
  2175. set_axis_is_at_home(axis);
  2176. SYNC_PLAN_POSITION_KINEMATIC();
  2177. #elif ENABLED(DELTA)
  2178. // Delta has already moved all three towers up in G28
  2179. // so here it re-homes each tower in turn.
  2180. // Delta homing treats the axes as normal linear axes.
  2181. // retrace by the amount specified in endstop_adj
  2182. if (endstop_adj[axis] * Z_HOME_DIR < 0) {
  2183. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2184. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("endstop_adj:");
  2185. #endif
  2186. do_homing_move(axis, endstop_adj[axis]);
  2187. }
  2188. #else
  2189. // For cartesian/core machines,
  2190. // set the axis to its home position
  2191. set_axis_is_at_home(axis);
  2192. sync_plan_position();
  2193. destination[axis] = current_position[axis];
  2194. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2195. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  2196. #endif
  2197. #endif
  2198. // Put away the Z probe
  2199. #if HOMING_Z_WITH_PROBE
  2200. if (axis == Z_AXIS && STOW_PROBE()) return;
  2201. #endif
  2202. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2203. if (DEBUGGING(LEVELING)) {
  2204. SERIAL_ECHOPAIR("<<< homeaxis(", axis_codes[axis]);
  2205. SERIAL_CHAR(')');
  2206. SERIAL_EOL;
  2207. }
  2208. #endif
  2209. } // homeaxis()
  2210. #if ENABLED(FWRETRACT)
  2211. void retract(bool retracting, bool swapping = false) {
  2212. if (retracting == retracted[active_extruder]) return;
  2213. float old_feedrate_mm_s = feedrate_mm_s;
  2214. set_destination_to_current();
  2215. if (retracting) {
  2216. feedrate_mm_s = retract_feedrate_mm_s;
  2217. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  2218. sync_plan_position_e();
  2219. prepare_move_to_destination();
  2220. if (retract_zlift > 0.01) {
  2221. current_position[Z_AXIS] -= retract_zlift;
  2222. SYNC_PLAN_POSITION_KINEMATIC();
  2223. prepare_move_to_destination();
  2224. }
  2225. }
  2226. else {
  2227. if (retract_zlift > 0.01) {
  2228. current_position[Z_AXIS] += retract_zlift;
  2229. SYNC_PLAN_POSITION_KINEMATIC();
  2230. }
  2231. feedrate_mm_s = retract_recover_feedrate_mm_s;
  2232. float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  2233. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  2234. sync_plan_position_e();
  2235. prepare_move_to_destination();
  2236. }
  2237. feedrate_mm_s = old_feedrate_mm_s;
  2238. retracted[active_extruder] = retracting;
  2239. } // retract()
  2240. #endif // FWRETRACT
  2241. #if ENABLED(MIXING_EXTRUDER)
  2242. void normalize_mix() {
  2243. float mix_total = 0.0;
  2244. for (int i = 0; i < MIXING_STEPPERS; i++) {
  2245. float v = mixing_factor[i];
  2246. if (v < 0) v = mixing_factor[i] = 0;
  2247. mix_total += v;
  2248. }
  2249. // Scale all values if they don't add up to ~1.0
  2250. if (mix_total < 0.9999 || mix_total > 1.0001) {
  2251. SERIAL_PROTOCOLLNPGM("Warning: Mix factors must add up to 1.0. Scaling.");
  2252. float mix_scale = 1.0 / mix_total;
  2253. for (int i = 0; i < MIXING_STEPPERS; i++)
  2254. mixing_factor[i] *= mix_scale;
  2255. }
  2256. }
  2257. #if ENABLED(DIRECT_MIXING_IN_G1)
  2258. // Get mixing parameters from the GCode
  2259. // Factors that are left out are set to 0
  2260. // The total "must" be 1.0 (but it will be normalized)
  2261. void gcode_get_mix() {
  2262. const char* mixing_codes = "ABCDHI";
  2263. for (int i = 0; i < MIXING_STEPPERS; i++)
  2264. mixing_factor[i] = code_seen(mixing_codes[i]) ? code_value_float() : 0;
  2265. normalize_mix();
  2266. }
  2267. #endif
  2268. #endif
  2269. /**
  2270. * ***************************************************************************
  2271. * ***************************** G-CODE HANDLING *****************************
  2272. * ***************************************************************************
  2273. */
  2274. /**
  2275. * Set XYZE destination and feedrate from the current GCode command
  2276. *
  2277. * - Set destination from included axis codes
  2278. * - Set to current for missing axis codes
  2279. * - Set the feedrate, if included
  2280. */
  2281. void gcode_get_destination() {
  2282. LOOP_XYZE(i) {
  2283. if (code_seen(axis_codes[i]))
  2284. destination[i] = code_value_axis_units(i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  2285. else
  2286. destination[i] = current_position[i];
  2287. }
  2288. if (code_seen('F') && code_value_linear_units() > 0.0)
  2289. feedrate_mm_s = MMM_TO_MMS(code_value_linear_units());
  2290. #if ENABLED(PRINTCOUNTER)
  2291. if (!DEBUGGING(DRYRUN))
  2292. print_job_timer.incFilamentUsed(destination[E_AXIS] - current_position[E_AXIS]);
  2293. #endif
  2294. // Get ABCDHI mixing factors
  2295. #if ENABLED(MIXING_EXTRUDER) && ENABLED(DIRECT_MIXING_IN_G1)
  2296. gcode_get_mix();
  2297. #endif
  2298. }
  2299. void unknown_command_error() {
  2300. SERIAL_ECHO_START;
  2301. SERIAL_ECHOPAIR(MSG_UNKNOWN_COMMAND, current_command);
  2302. SERIAL_CHAR('"');
  2303. SERIAL_EOL;
  2304. }
  2305. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  2306. /**
  2307. * Output a "busy" message at regular intervals
  2308. * while the machine is not accepting commands.
  2309. */
  2310. void host_keepalive() {
  2311. millis_t ms = millis();
  2312. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  2313. if (PENDING(ms, next_busy_signal_ms)) return;
  2314. switch (busy_state) {
  2315. case IN_HANDLER:
  2316. case IN_PROCESS:
  2317. SERIAL_ECHO_START;
  2318. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  2319. break;
  2320. case PAUSED_FOR_USER:
  2321. SERIAL_ECHO_START;
  2322. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  2323. break;
  2324. case PAUSED_FOR_INPUT:
  2325. SERIAL_ECHO_START;
  2326. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  2327. break;
  2328. default:
  2329. break;
  2330. }
  2331. }
  2332. next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
  2333. }
  2334. #endif //HOST_KEEPALIVE_FEATURE
  2335. bool position_is_reachable(float target[XYZ]
  2336. #if HAS_BED_PROBE
  2337. , bool by_probe=false
  2338. #endif
  2339. ) {
  2340. float dx = RAW_X_POSITION(target[X_AXIS]),
  2341. dy = RAW_Y_POSITION(target[Y_AXIS]);
  2342. #if HAS_BED_PROBE
  2343. if (by_probe) {
  2344. dx -= X_PROBE_OFFSET_FROM_EXTRUDER;
  2345. dy -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  2346. }
  2347. #endif
  2348. #if IS_SCARA
  2349. #if MIDDLE_DEAD_ZONE_R > 0
  2350. const float R2 = HYPOT2(dx - SCARA_OFFSET_X, dy - SCARA_OFFSET_Y);
  2351. return R2 >= sq(float(MIDDLE_DEAD_ZONE_R)) && R2 <= sq(L1 + L2);
  2352. #else
  2353. return HYPOT2(dx - SCARA_OFFSET_X, dy - SCARA_OFFSET_Y) <= sq(L1 + L2);
  2354. #endif
  2355. #elif ENABLED(DELTA)
  2356. return HYPOT2(dx, dy) <= sq(DELTA_PRINTABLE_RADIUS);
  2357. #else
  2358. const float dz = RAW_Z_POSITION(target[Z_AXIS]);
  2359. return dx >= X_MIN_POS - 0.0001 && dx <= X_MAX_POS + 0.0001
  2360. && dy >= Y_MIN_POS - 0.0001 && dy <= Y_MAX_POS + 0.0001
  2361. && dz >= Z_MIN_POS - 0.0001 && dz <= Z_MAX_POS + 0.0001;
  2362. #endif
  2363. }
  2364. /**************************************************
  2365. ***************** GCode Handlers *****************
  2366. **************************************************/
  2367. /**
  2368. * G0, G1: Coordinated movement of X Y Z E axes
  2369. */
  2370. inline void gcode_G0_G1(
  2371. #if IS_SCARA
  2372. bool fast_move=false
  2373. #endif
  2374. ) {
  2375. if (IsRunning()) {
  2376. gcode_get_destination(); // For X Y Z E F
  2377. #if ENABLED(FWRETRACT)
  2378. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2379. float echange = destination[E_AXIS] - current_position[E_AXIS];
  2380. // Is this move an attempt to retract or recover?
  2381. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  2382. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  2383. sync_plan_position_e(); // AND from the planner
  2384. retract(!retracted[active_extruder]);
  2385. return;
  2386. }
  2387. }
  2388. #endif //FWRETRACT
  2389. #if IS_SCARA
  2390. fast_move ? prepare_uninterpolated_move_to_destination() : prepare_move_to_destination();
  2391. #else
  2392. prepare_move_to_destination();
  2393. #endif
  2394. }
  2395. }
  2396. /**
  2397. * G2: Clockwise Arc
  2398. * G3: Counterclockwise Arc
  2399. *
  2400. * This command has two forms: IJ-form and R-form.
  2401. *
  2402. * - I specifies an X offset. J specifies a Y offset.
  2403. * At least one of the IJ parameters is required.
  2404. * X and Y can be omitted to do a complete circle.
  2405. * The given XY is not error-checked. The arc ends
  2406. * based on the angle of the destination.
  2407. * Mixing I or J with R will throw an error.
  2408. *
  2409. * - R specifies the radius. X or Y is required.
  2410. * Omitting both X and Y will throw an error.
  2411. * X or Y must differ from the current XY.
  2412. * Mixing R with I or J will throw an error.
  2413. *
  2414. * Examples:
  2415. *
  2416. * G2 I10 ; CW circle centered at X+10
  2417. * G3 X20 Y12 R14 ; CCW circle with r=14 ending at X20 Y12
  2418. */
  2419. #if ENABLED(ARC_SUPPORT)
  2420. inline void gcode_G2_G3(bool clockwise) {
  2421. if (IsRunning()) {
  2422. #if ENABLED(SF_ARC_FIX)
  2423. bool relative_mode_backup = relative_mode;
  2424. relative_mode = true;
  2425. #endif
  2426. gcode_get_destination();
  2427. #if ENABLED(SF_ARC_FIX)
  2428. relative_mode = relative_mode_backup;
  2429. #endif
  2430. float arc_offset[2] = { 0.0, 0.0 };
  2431. if (code_seen('R')) {
  2432. const float r = code_value_axis_units(X_AXIS),
  2433. x1 = current_position[X_AXIS], y1 = current_position[Y_AXIS],
  2434. x2 = destination[X_AXIS], y2 = destination[Y_AXIS];
  2435. if (r && (x2 != x1 || y2 != y1)) {
  2436. const float e = clockwise ^ (r < 0) ? -1 : 1, // clockwise -1/1, counterclockwise 1/-1
  2437. dx = x2 - x1, dy = y2 - y1, // X and Y differences
  2438. d = HYPOT(dx, dy), // Linear distance between the points
  2439. h = sqrt(sq(r) - sq(d * 0.5)), // Distance to the arc pivot-point
  2440. mx = (x1 + x2) * 0.5, my = (y1 + y2) * 0.5, // Point between the two points
  2441. sx = -dy / d, sy = dx / d, // Slope of the perpendicular bisector
  2442. cx = mx + e * h * sx, cy = my + e * h * sy; // Pivot-point of the arc
  2443. arc_offset[X_AXIS] = cx - x1;
  2444. arc_offset[Y_AXIS] = cy - y1;
  2445. }
  2446. }
  2447. else {
  2448. if (code_seen('I')) arc_offset[X_AXIS] = code_value_axis_units(X_AXIS);
  2449. if (code_seen('J')) arc_offset[Y_AXIS] = code_value_axis_units(Y_AXIS);
  2450. }
  2451. if (arc_offset[0] || arc_offset[1]) {
  2452. // Send an arc to the planner
  2453. plan_arc(destination, arc_offset, clockwise);
  2454. refresh_cmd_timeout();
  2455. }
  2456. else {
  2457. // Bad arguments
  2458. SERIAL_ERROR_START;
  2459. SERIAL_ERRORLNPGM(MSG_ERR_ARC_ARGS);
  2460. }
  2461. }
  2462. }
  2463. #endif
  2464. /**
  2465. * G4: Dwell S<seconds> or P<milliseconds>
  2466. */
  2467. inline void gcode_G4() {
  2468. millis_t dwell_ms = 0;
  2469. if (code_seen('P')) dwell_ms = code_value_millis(); // milliseconds to wait
  2470. if (code_seen('S')) dwell_ms = code_value_millis_from_seconds(); // seconds to wait
  2471. stepper.synchronize();
  2472. refresh_cmd_timeout();
  2473. dwell_ms += previous_cmd_ms; // keep track of when we started waiting
  2474. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  2475. while (PENDING(millis(), dwell_ms)) idle();
  2476. }
  2477. #if ENABLED(BEZIER_CURVE_SUPPORT)
  2478. /**
  2479. * Parameters interpreted according to:
  2480. * http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline
  2481. * However I, J omission is not supported at this point; all
  2482. * parameters can be omitted and default to zero.
  2483. */
  2484. /**
  2485. * G5: Cubic B-spline
  2486. */
  2487. inline void gcode_G5() {
  2488. if (IsRunning()) {
  2489. gcode_get_destination();
  2490. float offset[] = {
  2491. code_seen('I') ? code_value_axis_units(X_AXIS) : 0.0,
  2492. code_seen('J') ? code_value_axis_units(Y_AXIS) : 0.0,
  2493. code_seen('P') ? code_value_axis_units(X_AXIS) : 0.0,
  2494. code_seen('Q') ? code_value_axis_units(Y_AXIS) : 0.0
  2495. };
  2496. plan_cubic_move(offset);
  2497. }
  2498. }
  2499. #endif // BEZIER_CURVE_SUPPORT
  2500. #if ENABLED(FWRETRACT)
  2501. /**
  2502. * G10 - Retract filament according to settings of M207
  2503. * G11 - Recover filament according to settings of M208
  2504. */
  2505. inline void gcode_G10_G11(bool doRetract=false) {
  2506. #if EXTRUDERS > 1
  2507. if (doRetract) {
  2508. retracted_swap[active_extruder] = (code_seen('S') && code_value_bool()); // checks for swap retract argument
  2509. }
  2510. #endif
  2511. retract(doRetract
  2512. #if EXTRUDERS > 1
  2513. , retracted_swap[active_extruder]
  2514. #endif
  2515. );
  2516. }
  2517. #endif //FWRETRACT
  2518. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  2519. /**
  2520. * G12: Clean the nozzle
  2521. */
  2522. inline void gcode_G12() {
  2523. // Don't allow nozzle cleaning without homing first
  2524. if (axis_unhomed_error(true, true, true)) { return; }
  2525. uint8_t const pattern = code_seen('P') ? code_value_ushort() : 0;
  2526. uint8_t const strokes = code_seen('S') ? code_value_ushort() : NOZZLE_CLEAN_STROKES;
  2527. uint8_t const objects = code_seen('T') ? code_value_ushort() : 3;
  2528. Nozzle::clean(pattern, strokes, objects);
  2529. }
  2530. #endif
  2531. #if ENABLED(INCH_MODE_SUPPORT)
  2532. /**
  2533. * G20: Set input mode to inches
  2534. */
  2535. inline void gcode_G20() { set_input_linear_units(LINEARUNIT_INCH); }
  2536. /**
  2537. * G21: Set input mode to millimeters
  2538. */
  2539. inline void gcode_G21() { set_input_linear_units(LINEARUNIT_MM); }
  2540. #endif
  2541. #if ENABLED(NOZZLE_PARK_FEATURE)
  2542. /**
  2543. * G27: Park the nozzle
  2544. */
  2545. inline void gcode_G27() {
  2546. // Don't allow nozzle parking without homing first
  2547. if (axis_unhomed_error(true, true, true)) { return; }
  2548. uint8_t const z_action = code_seen('P') ? code_value_ushort() : 0;
  2549. Nozzle::park(z_action);
  2550. }
  2551. #endif // NOZZLE_PARK_FEATURE
  2552. #if ENABLED(QUICK_HOME)
  2553. static void quick_home_xy() {
  2554. // Pretend the current position is 0,0
  2555. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2556. sync_plan_position();
  2557. int x_axis_home_dir =
  2558. #if ENABLED(DUAL_X_CARRIAGE)
  2559. x_home_dir(active_extruder)
  2560. #else
  2561. home_dir(X_AXIS)
  2562. #endif
  2563. ;
  2564. float mlx = max_length(X_AXIS),
  2565. mly = max_length(Y_AXIS),
  2566. mlratio = mlx > mly ? mly / mlx : mlx / mly,
  2567. fr_mm_s = min(homing_feedrate_mm_s[X_AXIS], homing_feedrate_mm_s[Y_AXIS]) * sqrt(sq(mlratio) + 1.0);
  2568. do_blocking_move_to_xy(1.5 * mlx * x_axis_home_dir, 1.5 * mly * home_dir(Y_AXIS), fr_mm_s);
  2569. endstops.hit_on_purpose(); // clear endstop hit flags
  2570. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2571. }
  2572. #endif // QUICK_HOME
  2573. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2574. void log_machine_info() {
  2575. SERIAL_ECHOPGM("Machine Type: ");
  2576. #if ENABLED(DELTA)
  2577. SERIAL_ECHOLNPGM("Delta");
  2578. #elif IS_SCARA
  2579. SERIAL_ECHOLNPGM("SCARA");
  2580. #elif ENABLED(COREXY) || ENABLED(COREXZ) || ENABLED(COREYZ)
  2581. SERIAL_ECHOLNPGM("Core");
  2582. #else
  2583. SERIAL_ECHOLNPGM("Cartesian");
  2584. #endif
  2585. SERIAL_ECHOPGM("Probe: ");
  2586. #if ENABLED(FIX_MOUNTED_PROBE)
  2587. SERIAL_ECHOLNPGM("FIX_MOUNTED_PROBE");
  2588. #elif ENABLED(BLTOUCH)
  2589. SERIAL_ECHOLNPGM("BLTOUCH");
  2590. #elif HAS_Z_SERVO_ENDSTOP
  2591. SERIAL_ECHOLNPGM("SERVO PROBE");
  2592. #elif ENABLED(Z_PROBE_SLED)
  2593. SERIAL_ECHOLNPGM("Z_PROBE_SLED");
  2594. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  2595. SERIAL_ECHOLNPGM("Z_PROBE_ALLEN_KEY");
  2596. #else
  2597. SERIAL_ECHOLNPGM("NONE");
  2598. #endif
  2599. #if HAS_BED_PROBE
  2600. SERIAL_ECHOPAIR("Probe Offset X:", X_PROBE_OFFSET_FROM_EXTRUDER);
  2601. SERIAL_ECHOPAIR(" Y:", Y_PROBE_OFFSET_FROM_EXTRUDER);
  2602. SERIAL_ECHOPAIR(" Z:", zprobe_zoffset);
  2603. #if (X_PROBE_OFFSET_FROM_EXTRUDER > 0)
  2604. SERIAL_ECHOPGM(" (Right");
  2605. #elif (X_PROBE_OFFSET_FROM_EXTRUDER < 0)
  2606. SERIAL_ECHOPGM(" (Left");
  2607. #elif (Y_PROBE_OFFSET_FROM_EXTRUDER != 0)
  2608. SERIAL_ECHOPGM(" (Middle");
  2609. #else
  2610. SERIAL_ECHOPGM(" (Aligned With");
  2611. #endif
  2612. #if (Y_PROBE_OFFSET_FROM_EXTRUDER > 0)
  2613. SERIAL_ECHOPGM("-Back");
  2614. #elif (Y_PROBE_OFFSET_FROM_EXTRUDER < 0)
  2615. SERIAL_ECHOPGM("-Front");
  2616. #elif (X_PROBE_OFFSET_FROM_EXTRUDER != 0)
  2617. SERIAL_ECHOPGM("-Center");
  2618. #endif
  2619. if (zprobe_zoffset < 0)
  2620. SERIAL_ECHOPGM(" & Below");
  2621. else if (zprobe_zoffset > 0)
  2622. SERIAL_ECHOPGM(" & Above");
  2623. else
  2624. SERIAL_ECHOPGM(" & Same Z as");
  2625. SERIAL_ECHOLNPGM(" Nozzle)");
  2626. #endif
  2627. #if HAS_ABL
  2628. SERIAL_ECHOPGM("Auto Bed Leveling: ");
  2629. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  2630. SERIAL_ECHOPGM("LINEAR");
  2631. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2632. SERIAL_ECHOPGM("BILINEAR");
  2633. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  2634. SERIAL_ECHOPGM("3POINT");
  2635. #endif
  2636. if (planner.abl_enabled) {
  2637. SERIAL_ECHOLNPGM(" (enabled)");
  2638. #if ENABLED(AUTO_BED_LEVELING_LINEAR) || ENABLED(AUTO_BED_LEVELING_3POINT)
  2639. float diff[XYZ] = {
  2640. stepper.get_axis_position_mm(X_AXIS) - current_position[X_AXIS],
  2641. stepper.get_axis_position_mm(Y_AXIS) - current_position[Y_AXIS],
  2642. stepper.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS]
  2643. };
  2644. SERIAL_ECHOPGM("ABL Adjustment X");
  2645. if (diff[X_AXIS] > 0) SERIAL_CHAR('+');
  2646. SERIAL_ECHO(diff[X_AXIS]);
  2647. SERIAL_ECHOPGM(" Y");
  2648. if (diff[Y_AXIS] > 0) SERIAL_CHAR('+');
  2649. SERIAL_ECHO(diff[Y_AXIS]);
  2650. SERIAL_ECHOPGM(" Z");
  2651. if (diff[Z_AXIS] > 0) SERIAL_CHAR('+');
  2652. SERIAL_ECHO(diff[Z_AXIS]);
  2653. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2654. SERIAL_ECHOPAIR("ABL Adjustment Z", bilinear_z_offset(current_position));
  2655. #endif
  2656. }
  2657. SERIAL_EOL;
  2658. #elif ENABLED(MESH_BED_LEVELING)
  2659. SERIAL_ECHOPGM("Mesh Bed Leveling");
  2660. if (mbl.active()) {
  2661. SERIAL_ECHOLNPGM(" (enabled)");
  2662. SERIAL_ECHOPAIR("MBL Adjustment Z", mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS)));
  2663. }
  2664. SERIAL_EOL;
  2665. #endif
  2666. }
  2667. #endif // DEBUG_LEVELING_FEATURE
  2668. #if ENABLED(DELTA)
  2669. /**
  2670. * A delta can only safely home all axes at the same time
  2671. * This is like quick_home_xy() but for 3 towers.
  2672. */
  2673. inline void home_delta() {
  2674. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2675. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> home_delta", current_position);
  2676. #endif
  2677. // Init the current position of all carriages to 0,0,0
  2678. ZERO(current_position);
  2679. sync_plan_position();
  2680. // Move all carriages together linearly until an endstop is hit.
  2681. current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = (Z_MAX_LENGTH + 10);
  2682. feedrate_mm_s = homing_feedrate_mm_s[X_AXIS];
  2683. line_to_current_position();
  2684. stepper.synchronize();
  2685. endstops.hit_on_purpose(); // clear endstop hit flags
  2686. // At least one carriage has reached the top.
  2687. // Now re-home each carriage separately.
  2688. HOMEAXIS(A);
  2689. HOMEAXIS(B);
  2690. HOMEAXIS(C);
  2691. // Set all carriages to their home positions
  2692. // Do this here all at once for Delta, because
  2693. // XYZ isn't ABC. Applying this per-tower would
  2694. // give the impression that they are the same.
  2695. LOOP_XYZ(i) set_axis_is_at_home((AxisEnum)i);
  2696. SYNC_PLAN_POSITION_KINEMATIC();
  2697. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2698. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< home_delta", current_position);
  2699. #endif
  2700. }
  2701. #endif // DELTA
  2702. #if ENABLED(Z_SAFE_HOMING)
  2703. inline void home_z_safely() {
  2704. // Disallow Z homing if X or Y are unknown
  2705. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  2706. LCD_MESSAGEPGM(MSG_ERR_Z_HOMING);
  2707. SERIAL_ECHO_START;
  2708. SERIAL_ECHOLNPGM(MSG_ERR_Z_HOMING);
  2709. return;
  2710. }
  2711. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2712. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Z_SAFE_HOMING >>>");
  2713. #endif
  2714. SYNC_PLAN_POSITION_KINEMATIC();
  2715. /**
  2716. * Move the Z probe (or just the nozzle) to the safe homing point
  2717. */
  2718. destination[X_AXIS] = LOGICAL_X_POSITION(Z_SAFE_HOMING_X_POINT);
  2719. destination[Y_AXIS] = LOGICAL_Y_POSITION(Z_SAFE_HOMING_Y_POINT);
  2720. destination[Z_AXIS] = current_position[Z_AXIS]; // Z is already at the right height
  2721. if (position_is_reachable(
  2722. destination
  2723. #if HOMING_Z_WITH_PROBE
  2724. , true
  2725. #endif
  2726. )
  2727. ) {
  2728. #if HOMING_Z_WITH_PROBE
  2729. destination[X_AXIS] -= X_PROBE_OFFSET_FROM_EXTRUDER;
  2730. destination[Y_AXIS] -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  2731. #endif
  2732. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2733. if (DEBUGGING(LEVELING)) DEBUG_POS("Z_SAFE_HOMING", destination);
  2734. #endif
  2735. do_blocking_move_to_xy(destination[X_AXIS], destination[Y_AXIS]);
  2736. HOMEAXIS(Z);
  2737. }
  2738. else {
  2739. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  2740. SERIAL_ECHO_START;
  2741. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  2742. }
  2743. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2744. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  2745. #endif
  2746. }
  2747. #endif // Z_SAFE_HOMING
  2748. /**
  2749. * G28: Home all axes according to settings
  2750. *
  2751. * Parameters
  2752. *
  2753. * None Home to all axes with no parameters.
  2754. * With QUICK_HOME enabled XY will home together, then Z.
  2755. *
  2756. * Cartesian parameters
  2757. *
  2758. * X Home to the X endstop
  2759. * Y Home to the Y endstop
  2760. * Z Home to the Z endstop
  2761. *
  2762. */
  2763. inline void gcode_G28() {
  2764. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2765. if (DEBUGGING(LEVELING)) {
  2766. SERIAL_ECHOLNPGM(">>> gcode_G28");
  2767. log_machine_info();
  2768. }
  2769. #endif
  2770. // Wait for planner moves to finish!
  2771. stepper.synchronize();
  2772. // For auto bed leveling, clear the level matrix
  2773. #if HAS_ABL
  2774. reset_bed_level();
  2775. #endif
  2776. // Always home with tool 0 active
  2777. #if HOTENDS > 1
  2778. uint8_t old_tool_index = active_extruder;
  2779. tool_change(0, 0, true);
  2780. #endif
  2781. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  2782. extruder_duplication_enabled = false;
  2783. #endif
  2784. /**
  2785. * For mesh bed leveling deactivate the mesh calculations, will be turned
  2786. * on again when homing all axis
  2787. */
  2788. #if ENABLED(MESH_BED_LEVELING)
  2789. float pre_home_z = MESH_HOME_SEARCH_Z;
  2790. if (mbl.active()) {
  2791. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2792. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL was active");
  2793. #endif
  2794. // Save known Z position if already homed
  2795. if (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) {
  2796. pre_home_z = current_position[Z_AXIS];
  2797. pre_home_z += mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS));
  2798. }
  2799. mbl.set_active(false);
  2800. current_position[Z_AXIS] = pre_home_z;
  2801. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2802. if (DEBUGGING(LEVELING)) DEBUG_POS("Set Z to pre_home_z", current_position);
  2803. #endif
  2804. }
  2805. #endif
  2806. setup_for_endstop_or_probe_move();
  2807. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2808. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  2809. #endif
  2810. endstops.enable(true); // Enable endstops for next homing move
  2811. #if ENABLED(DELTA)
  2812. home_delta();
  2813. #else // NOT DELTA
  2814. bool homeX = code_seen('X'), homeY = code_seen('Y'), homeZ = code_seen('Z');
  2815. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  2816. set_destination_to_current();
  2817. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2818. if (home_all_axis || homeZ) {
  2819. HOMEAXIS(Z);
  2820. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2821. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  2822. #endif
  2823. }
  2824. #else
  2825. if (home_all_axis || homeX || homeY) {
  2826. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  2827. destination[Z_AXIS] = LOGICAL_Z_POSITION(Z_HOMING_HEIGHT);
  2828. if (destination[Z_AXIS] > current_position[Z_AXIS]) {
  2829. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2830. if (DEBUGGING(LEVELING))
  2831. SERIAL_ECHOLNPAIR("Raise Z (before homing) to ", destination[Z_AXIS]);
  2832. #endif
  2833. do_blocking_move_to_z(destination[Z_AXIS]);
  2834. }
  2835. }
  2836. #endif
  2837. #if ENABLED(QUICK_HOME)
  2838. if (home_all_axis || (homeX && homeY)) quick_home_xy();
  2839. #endif
  2840. #if ENABLED(HOME_Y_BEFORE_X)
  2841. // Home Y
  2842. if (home_all_axis || homeY) {
  2843. HOMEAXIS(Y);
  2844. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2845. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2846. #endif
  2847. }
  2848. #endif
  2849. // Home X
  2850. if (home_all_axis || homeX) {
  2851. #if ENABLED(DUAL_X_CARRIAGE)
  2852. int tmp_extruder = active_extruder;
  2853. active_extruder = !active_extruder;
  2854. HOMEAXIS(X);
  2855. inactive_extruder_x_pos = RAW_X_POSITION(current_position[X_AXIS]);
  2856. active_extruder = tmp_extruder;
  2857. HOMEAXIS(X);
  2858. // reset state used by the different modes
  2859. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2860. delayed_move_time = 0;
  2861. active_extruder_parked = true;
  2862. #else
  2863. HOMEAXIS(X);
  2864. #endif
  2865. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2866. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  2867. #endif
  2868. }
  2869. #if DISABLED(HOME_Y_BEFORE_X)
  2870. // Home Y
  2871. if (home_all_axis || homeY) {
  2872. HOMEAXIS(Y);
  2873. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2874. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2875. #endif
  2876. }
  2877. #endif
  2878. // Home Z last if homing towards the bed
  2879. #if Z_HOME_DIR < 0
  2880. if (home_all_axis || homeZ) {
  2881. #if ENABLED(Z_SAFE_HOMING)
  2882. home_z_safely();
  2883. #else
  2884. HOMEAXIS(Z);
  2885. #endif
  2886. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2887. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all_axis || homeZ) > final", current_position);
  2888. #endif
  2889. } // home_all_axis || homeZ
  2890. #endif // Z_HOME_DIR < 0
  2891. SYNC_PLAN_POSITION_KINEMATIC();
  2892. #endif // !DELTA (gcode_G28)
  2893. endstops.not_homing();
  2894. #if ENABLED(DELTA)
  2895. // move to a height where we can use the full xy-area
  2896. do_blocking_move_to_z(delta_clip_start_height);
  2897. #endif
  2898. // Enable mesh leveling again
  2899. #if ENABLED(MESH_BED_LEVELING)
  2900. if (mbl.has_mesh()) {
  2901. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2902. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL has mesh");
  2903. #endif
  2904. if (home_all_axis || (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && homeZ)) {
  2905. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2906. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL Z homing");
  2907. #endif
  2908. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2909. #if Z_HOME_DIR > 0
  2910. + Z_MAX_POS
  2911. #endif
  2912. ;
  2913. SYNC_PLAN_POSITION_KINEMATIC();
  2914. mbl.set_active(true);
  2915. #if ENABLED(MESH_G28_REST_ORIGIN)
  2916. current_position[Z_AXIS] = 0.0;
  2917. set_destination_to_current();
  2918. line_to_destination(homing_feedrate_mm_s[Z_AXIS]);
  2919. stepper.synchronize();
  2920. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2921. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL Rest Origin", current_position);
  2922. #endif
  2923. #else
  2924. planner.unapply_leveling(current_position);
  2925. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2926. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL adjusted MESH_HOME_SEARCH_Z", current_position);
  2927. #endif
  2928. #endif
  2929. }
  2930. else if ((axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) && (homeX || homeY)) {
  2931. current_position[Z_AXIS] = pre_home_z;
  2932. SYNC_PLAN_POSITION_KINEMATIC();
  2933. mbl.set_active(true);
  2934. planner.unapply_leveling(current_position);
  2935. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2936. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL Home X or Y", current_position);
  2937. #endif
  2938. }
  2939. }
  2940. #endif
  2941. clean_up_after_endstop_or_probe_move();
  2942. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2943. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G28");
  2944. #endif
  2945. // Restore the active tool after homing
  2946. #if HOTENDS > 1
  2947. tool_change(old_tool_index, 0, true);
  2948. #endif
  2949. report_current_position();
  2950. }
  2951. #if HAS_PROBING_PROCEDURE
  2952. void out_of_range_error(const char* p_edge) {
  2953. SERIAL_PROTOCOLPGM("?Probe ");
  2954. serialprintPGM(p_edge);
  2955. SERIAL_PROTOCOLLNPGM(" position out of range.");
  2956. }
  2957. #endif
  2958. #if ENABLED(MESH_BED_LEVELING)
  2959. inline void _mbl_goto_xy(float x, float y) {
  2960. float old_feedrate_mm_s = feedrate_mm_s;
  2961. feedrate_mm_s = homing_feedrate_mm_s[X_AXIS];
  2962. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2963. #if Z_CLEARANCE_BETWEEN_PROBES > Z_HOMING_HEIGHT
  2964. + Z_CLEARANCE_BETWEEN_PROBES
  2965. #elif Z_HOMING_HEIGHT > 0
  2966. + Z_HOMING_HEIGHT
  2967. #endif
  2968. ;
  2969. line_to_current_position();
  2970. current_position[X_AXIS] = LOGICAL_X_POSITION(x);
  2971. current_position[Y_AXIS] = LOGICAL_Y_POSITION(y);
  2972. line_to_current_position();
  2973. #if Z_CLEARANCE_BETWEEN_PROBES > 0 || Z_HOMING_HEIGHT > 0
  2974. current_position[Z_AXIS] = LOGICAL_Z_POSITION(MESH_HOME_SEARCH_Z);
  2975. line_to_current_position();
  2976. #endif
  2977. feedrate_mm_s = old_feedrate_mm_s;
  2978. stepper.synchronize();
  2979. }
  2980. /**
  2981. * G29: Mesh-based Z probe, probes a grid and produces a
  2982. * mesh to compensate for variable bed height
  2983. *
  2984. * Parameters With MESH_BED_LEVELING:
  2985. *
  2986. * S0 Produce a mesh report
  2987. * S1 Start probing mesh points
  2988. * S2 Probe the next mesh point
  2989. * S3 Xn Yn Zn.nn Manually modify a single point
  2990. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  2991. * S5 Reset and disable mesh
  2992. *
  2993. * The S0 report the points as below
  2994. *
  2995. * +----> X-axis 1-n
  2996. * |
  2997. * |
  2998. * v Y-axis 1-n
  2999. *
  3000. */
  3001. inline void gcode_G29() {
  3002. static int probe_point = -1;
  3003. MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_byte() : MeshReport;
  3004. if (state < 0 || state > 5) {
  3005. SERIAL_PROTOCOLLNPGM("S out of range (0-5).");
  3006. return;
  3007. }
  3008. int8_t px, py;
  3009. switch (state) {
  3010. case MeshReport:
  3011. if (mbl.has_mesh()) {
  3012. SERIAL_PROTOCOLPAIR("State: ", mbl.active() ? MSG_ON : MSG_OFF);
  3013. SERIAL_PROTOCOLLNPGM("\nNum X,Y: " STRINGIFY(MESH_NUM_X_POINTS) "," STRINGIFY(MESH_NUM_Y_POINTS));
  3014. SERIAL_PROTOCOLLNPGM("Z search height: " STRINGIFY(MESH_HOME_SEARCH_Z));
  3015. SERIAL_PROTOCOLPGM("Z offset: "); SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  3016. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3017. for (py = 0; py < MESH_NUM_Y_POINTS; py++) {
  3018. for (px = 0; px < MESH_NUM_X_POINTS; px++) {
  3019. SERIAL_PROTOCOLPGM(" ");
  3020. SERIAL_PROTOCOL_F(mbl.z_values[py][px], 5);
  3021. }
  3022. SERIAL_EOL;
  3023. }
  3024. }
  3025. else
  3026. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  3027. break;
  3028. case MeshStart:
  3029. mbl.reset();
  3030. probe_point = 0;
  3031. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  3032. break;
  3033. case MeshNext:
  3034. if (probe_point < 0) {
  3035. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  3036. return;
  3037. }
  3038. // For each G29 S2...
  3039. if (probe_point == 0) {
  3040. // For the initial G29 S2 make Z a positive value (e.g., 4.0)
  3041. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  3042. #if Z_HOME_DIR > 0
  3043. + Z_MAX_POS
  3044. #endif
  3045. ;
  3046. SYNC_PLAN_POSITION_KINEMATIC();
  3047. }
  3048. else {
  3049. // For G29 S2 after adjusting Z.
  3050. mbl.set_zigzag_z(probe_point - 1, current_position[Z_AXIS]);
  3051. }
  3052. // If there's another point to sample, move there with optional lift.
  3053. if (probe_point < (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)) {
  3054. mbl.zigzag(probe_point, px, py);
  3055. _mbl_goto_xy(mbl.get_probe_x(px), mbl.get_probe_y(py));
  3056. probe_point++;
  3057. }
  3058. else {
  3059. // One last "return to the bed" (as originally coded) at completion
  3060. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  3061. #if Z_CLEARANCE_BETWEEN_PROBES > Z_HOMING_HEIGHT
  3062. + Z_CLEARANCE_BETWEEN_PROBES
  3063. #elif Z_HOMING_HEIGHT > 0
  3064. + Z_HOMING_HEIGHT
  3065. #endif
  3066. ;
  3067. line_to_current_position();
  3068. stepper.synchronize();
  3069. // After recording the last point, activate the mbl and home
  3070. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  3071. probe_point = -1;
  3072. mbl.set_has_mesh(true);
  3073. enqueue_and_echo_commands_P(PSTR("G28"));
  3074. }
  3075. break;
  3076. case MeshSet:
  3077. if (code_seen('X')) {
  3078. px = code_value_int() - 1;
  3079. if (px < 0 || px >= MESH_NUM_X_POINTS) {
  3080. SERIAL_PROTOCOLLNPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").");
  3081. return;
  3082. }
  3083. }
  3084. else {
  3085. SERIAL_CHAR('X'); SERIAL_PROTOCOLLNPGM(" not entered.");
  3086. return;
  3087. }
  3088. if (code_seen('Y')) {
  3089. py = code_value_int() - 1;
  3090. if (py < 0 || py >= MESH_NUM_Y_POINTS) {
  3091. SERIAL_PROTOCOLLNPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").");
  3092. return;
  3093. }
  3094. }
  3095. else {
  3096. SERIAL_CHAR('Y'); SERIAL_PROTOCOLLNPGM(" not entered.");
  3097. return;
  3098. }
  3099. if (code_seen('Z')) {
  3100. mbl.z_values[py][px] = code_value_axis_units(Z_AXIS);
  3101. }
  3102. else {
  3103. SERIAL_CHAR('Z'); SERIAL_PROTOCOLLNPGM(" not entered.");
  3104. return;
  3105. }
  3106. break;
  3107. case MeshSetZOffset:
  3108. if (code_seen('Z')) {
  3109. mbl.z_offset = code_value_axis_units(Z_AXIS);
  3110. }
  3111. else {
  3112. SERIAL_CHAR('Z'); SERIAL_PROTOCOLLNPGM(" not entered.");
  3113. return;
  3114. }
  3115. break;
  3116. case MeshReset:
  3117. if (mbl.active()) {
  3118. current_position[Z_AXIS] +=
  3119. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS)) - MESH_HOME_SEARCH_Z;
  3120. mbl.reset();
  3121. SYNC_PLAN_POSITION_KINEMATIC();
  3122. }
  3123. else
  3124. mbl.reset();
  3125. } // switch(state)
  3126. report_current_position();
  3127. }
  3128. #elif HAS_ABL
  3129. /**
  3130. * G29: Detailed Z probe, probes the bed at 3 or more points.
  3131. * Will fail if the printer has not been homed with G28.
  3132. *
  3133. * Enhanced G29 Auto Bed Leveling Probe Routine
  3134. *
  3135. * Parameters With ABL_GRID:
  3136. *
  3137. * P Set the size of the grid that will be probed (P x P points).
  3138. * Not supported by non-linear delta printer bed leveling.
  3139. * Example: "G29 P4"
  3140. *
  3141. * S Set the XY travel speed between probe points (in units/min)
  3142. *
  3143. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  3144. * or clean the rotation Matrix. Useful to check the topology
  3145. * after a first run of G29.
  3146. *
  3147. * V Set the verbose level (0-4). Example: "G29 V3"
  3148. *
  3149. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  3150. * This is useful for manual bed leveling and finding flaws in the bed (to
  3151. * assist with part placement).
  3152. * Not supported by non-linear delta printer bed leveling.
  3153. *
  3154. * F Set the Front limit of the probing grid
  3155. * B Set the Back limit of the probing grid
  3156. * L Set the Left limit of the probing grid
  3157. * R Set the Right limit of the probing grid
  3158. *
  3159. * Global Parameters:
  3160. *
  3161. * E/e By default G29 will engage the Z probe, test the bed, then disengage.
  3162. * Include "E" to engage/disengage the Z probe for each sample.
  3163. * There's no extra effect if you have a fixed Z probe.
  3164. * Usage: "G29 E" or "G29 e"
  3165. *
  3166. */
  3167. inline void gcode_G29() {
  3168. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3169. bool query = code_seen('Q');
  3170. uint8_t old_debug_flags = marlin_debug_flags;
  3171. if (query) marlin_debug_flags |= DEBUG_LEVELING;
  3172. if (DEBUGGING(LEVELING)) {
  3173. DEBUG_POS(">>> gcode_G29", current_position);
  3174. log_machine_info();
  3175. }
  3176. marlin_debug_flags = old_debug_flags;
  3177. if (query) return;
  3178. #endif
  3179. // Don't allow auto-leveling without homing first
  3180. if (axis_unhomed_error(true, true, true)) return;
  3181. int verbose_level = code_seen('V') ? code_value_int() : 1;
  3182. if (verbose_level < 0 || verbose_level > 4) {
  3183. SERIAL_PROTOCOLLNPGM("?(V)erbose Level is implausible (0-4).");
  3184. return;
  3185. }
  3186. bool dryrun = code_seen('D'),
  3187. stow_probe_after_each = code_seen('E');
  3188. #if ABL_GRID
  3189. if (verbose_level > 0) {
  3190. SERIAL_PROTOCOLLNPGM("G29 Auto Bed Leveling");
  3191. if (dryrun) SERIAL_PROTOCOLLNPGM("Running in DRY-RUN mode");
  3192. }
  3193. #if ABL_PLANAR
  3194. bool do_topography_map = verbose_level > 2 || code_seen('T');
  3195. // X and Y specify points in each direction, overriding the default
  3196. // These values may be saved with the completed mesh
  3197. int abl_grid_points_x = code_seen('X') ? code_value_int() : ABL_GRID_POINTS_X,
  3198. abl_grid_points_y = code_seen('Y') ? code_value_int() : ABL_GRID_POINTS_Y;
  3199. if (code_seen('P')) abl_grid_points_x = abl_grid_points_y = code_value_int();
  3200. if (abl_grid_points_x < 2 || abl_grid_points_y < 2) {
  3201. SERIAL_PROTOCOLLNPGM("?Number of probe points is implausible (2 minimum).");
  3202. return;
  3203. }
  3204. #else
  3205. const int abl_grid_points_x = ABL_GRID_POINTS_X, abl_grid_points_y = ABL_GRID_POINTS_Y;
  3206. #endif
  3207. xy_probe_feedrate_mm_s = MMM_TO_MMS(code_seen('S') ? code_value_linear_units() : XY_PROBE_SPEED);
  3208. int left_probe_bed_position = code_seen('L') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(LEFT_PROBE_BED_POSITION),
  3209. right_probe_bed_position = code_seen('R') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(RIGHT_PROBE_BED_POSITION),
  3210. front_probe_bed_position = code_seen('F') ? (int)code_value_axis_units(Y_AXIS) : LOGICAL_Y_POSITION(FRONT_PROBE_BED_POSITION),
  3211. back_probe_bed_position = code_seen('B') ? (int)code_value_axis_units(Y_AXIS) : LOGICAL_Y_POSITION(BACK_PROBE_BED_POSITION);
  3212. bool left_out_l = left_probe_bed_position < LOGICAL_X_POSITION(MIN_PROBE_X),
  3213. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  3214. right_out_r = right_probe_bed_position > LOGICAL_X_POSITION(MAX_PROBE_X),
  3215. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  3216. front_out_f = front_probe_bed_position < LOGICAL_Y_POSITION(MIN_PROBE_Y),
  3217. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  3218. back_out_b = back_probe_bed_position > LOGICAL_Y_POSITION(MAX_PROBE_Y),
  3219. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  3220. if (left_out || right_out || front_out || back_out) {
  3221. if (left_out) {
  3222. out_of_range_error(PSTR("(L)eft"));
  3223. left_probe_bed_position = left_out_l ? LOGICAL_X_POSITION(MIN_PROBE_X) : right_probe_bed_position - (MIN_PROBE_EDGE);
  3224. }
  3225. if (right_out) {
  3226. out_of_range_error(PSTR("(R)ight"));
  3227. right_probe_bed_position = right_out_r ? LOGICAL_Y_POSITION(MAX_PROBE_X) : left_probe_bed_position + MIN_PROBE_EDGE;
  3228. }
  3229. if (front_out) {
  3230. out_of_range_error(PSTR("(F)ront"));
  3231. front_probe_bed_position = front_out_f ? LOGICAL_Y_POSITION(MIN_PROBE_Y) : back_probe_bed_position - (MIN_PROBE_EDGE);
  3232. }
  3233. if (back_out) {
  3234. out_of_range_error(PSTR("(B)ack"));
  3235. back_probe_bed_position = back_out_b ? LOGICAL_Y_POSITION(MAX_PROBE_Y) : front_probe_bed_position + MIN_PROBE_EDGE;
  3236. }
  3237. return;
  3238. }
  3239. #endif // ABL_GRID
  3240. stepper.synchronize();
  3241. // Disable auto bed leveling during G29
  3242. bool abl_should_enable = planner.abl_enabled;
  3243. planner.abl_enabled = false;
  3244. if (!dryrun) {
  3245. // Re-orient the current position without leveling
  3246. // based on where the steppers are positioned.
  3247. set_current_from_steppers_for_axis(ALL_AXES);
  3248. // Sync the planner to where the steppers stopped
  3249. SYNC_PLAN_POSITION_KINEMATIC();
  3250. }
  3251. setup_for_endstop_or_probe_move();
  3252. // Deploy the probe. Probe will raise if needed.
  3253. if (DEPLOY_PROBE()) {
  3254. planner.abl_enabled = abl_should_enable;
  3255. return;
  3256. }
  3257. float xProbe = 0, yProbe = 0, measured_z = 0;
  3258. #if ABL_GRID
  3259. // probe at the points of a lattice grid
  3260. const float xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (abl_grid_points_x - 1),
  3261. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (abl_grid_points_y - 1);
  3262. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3263. float zoffset = zprobe_zoffset;
  3264. if (code_seen('Z')) zoffset += code_value_axis_units(Z_AXIS);
  3265. if ( xGridSpacing != bilinear_grid_spacing[X_AXIS]
  3266. || yGridSpacing != bilinear_grid_spacing[Y_AXIS]
  3267. || left_probe_bed_position != bilinear_start[X_AXIS]
  3268. || front_probe_bed_position != bilinear_start[Y_AXIS]
  3269. ) {
  3270. reset_bed_level();
  3271. bilinear_grid_spacing[X_AXIS] = xGridSpacing;
  3272. bilinear_grid_spacing[Y_AXIS] = yGridSpacing;
  3273. bilinear_start[X_AXIS] = RAW_X_POSITION(left_probe_bed_position);
  3274. bilinear_start[Y_AXIS] = RAW_Y_POSITION(front_probe_bed_position);
  3275. // Can't re-enable (on error) until the new grid is written
  3276. abl_should_enable = false;
  3277. }
  3278. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3279. /**
  3280. * solve the plane equation ax + by + d = z
  3281. * A is the matrix with rows [x y 1] for all the probed points
  3282. * B is the vector of the Z positions
  3283. * the normal vector to the plane is formed by the coefficients of the
  3284. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3285. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3286. */
  3287. int abl2 = abl_grid_points_x * abl_grid_points_y,
  3288. indexIntoAB[abl_grid_points_x][abl_grid_points_y],
  3289. probePointCounter = -1;
  3290. float eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  3291. eqnBVector[abl2], // "B" vector of Z points
  3292. mean = 0.0;
  3293. #endif // AUTO_BED_LEVELING_LINEAR
  3294. #if ENABLED(PROBE_Y_FIRST)
  3295. #define PR_OUTER_VAR xCount
  3296. #define PR_OUTER_END abl_grid_points_x
  3297. #define PR_INNER_VAR yCount
  3298. #define PR_INNER_END abl_grid_points_y
  3299. #else
  3300. #define PR_OUTER_VAR yCount
  3301. #define PR_OUTER_END abl_grid_points_y
  3302. #define PR_INNER_VAR xCount
  3303. #define PR_INNER_END abl_grid_points_x
  3304. #endif
  3305. bool zig = PR_OUTER_END & 1; // Always end at RIGHT and BACK_PROBE_BED_POSITION
  3306. // Outer loop is Y with PROBE_Y_FIRST disabled
  3307. for (uint8_t PR_OUTER_VAR = 0; PR_OUTER_VAR < PR_OUTER_END; PR_OUTER_VAR++) {
  3308. int8_t inStart, inStop, inInc;
  3309. if (zig) { // away from origin
  3310. inStart = 0;
  3311. inStop = PR_INNER_END;
  3312. inInc = 1;
  3313. }
  3314. else { // towards origin
  3315. inStart = PR_INNER_END - 1;
  3316. inStop = -1;
  3317. inInc = -1;
  3318. }
  3319. zig = !zig; // zag
  3320. // Inner loop is Y with PROBE_Y_FIRST enabled
  3321. for (int8_t PR_INNER_VAR = inStart; PR_INNER_VAR != inStop; PR_INNER_VAR += inInc) {
  3322. float xBase = left_probe_bed_position + xGridSpacing * xCount,
  3323. yBase = front_probe_bed_position + yGridSpacing * yCount;
  3324. xProbe = floor(xBase + (xBase < 0 ? 0 : 0.5));
  3325. yProbe = floor(yBase + (yBase < 0 ? 0 : 0.5));
  3326. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3327. indexIntoAB[xCount][yCount] = ++probePointCounter;
  3328. #endif
  3329. #if IS_KINEMATIC
  3330. // Avoid probing outside the round or hexagonal area
  3331. float pos[XYZ] = { xProbe, yProbe, 0 };
  3332. if (!position_is_reachable(pos, true)) continue;
  3333. #endif
  3334. measured_z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  3335. if (measured_z == NAN) {
  3336. planner.abl_enabled = abl_should_enable;
  3337. return;
  3338. }
  3339. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3340. mean += measured_z;
  3341. eqnBVector[probePointCounter] = measured_z;
  3342. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  3343. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  3344. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  3345. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3346. bed_level_grid[xCount][yCount] = measured_z + zoffset;
  3347. #endif
  3348. idle();
  3349. } //xProbe
  3350. } //yProbe
  3351. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3352. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3353. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> 3-point Leveling");
  3354. #endif
  3355. // Probe at 3 arbitrary points
  3356. vector_3 points[3] = {
  3357. vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, 0),
  3358. vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, 0),
  3359. vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, 0)
  3360. };
  3361. for (uint8_t i = 0; i < 3; ++i) {
  3362. // Retain the last probe position
  3363. xProbe = LOGICAL_X_POSITION(points[i].x);
  3364. yProbe = LOGICAL_Y_POSITION(points[i].y);
  3365. measured_z = points[i].z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  3366. }
  3367. if (measured_z == NAN) {
  3368. planner.abl_enabled = abl_should_enable;
  3369. return;
  3370. }
  3371. if (!dryrun) {
  3372. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  3373. if (planeNormal.z < 0) {
  3374. planeNormal.x *= -1;
  3375. planeNormal.y *= -1;
  3376. planeNormal.z *= -1;
  3377. }
  3378. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  3379. // Can't re-enable (on error) until the new grid is written
  3380. abl_should_enable = false;
  3381. }
  3382. #endif // AUTO_BED_LEVELING_3POINT
  3383. // Raise to _Z_CLEARANCE_DEPLOY_PROBE. Stow the probe.
  3384. if (STOW_PROBE()) {
  3385. planner.abl_enabled = abl_should_enable;
  3386. return;
  3387. }
  3388. //
  3389. // Unless this is a dry run, auto bed leveling will
  3390. // definitely be enabled after this point
  3391. //
  3392. // Restore state after probing
  3393. clean_up_after_endstop_or_probe_move();
  3394. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3395. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  3396. #endif
  3397. // Calculate leveling, print reports, correct the position
  3398. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3399. if (!dryrun) extrapolate_unprobed_bed_level();
  3400. print_bed_level();
  3401. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3402. // For LINEAR leveling calculate matrix, print reports, correct the position
  3403. // solve lsq problem
  3404. float plane_equation_coefficients[3];
  3405. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  3406. mean /= abl2;
  3407. if (verbose_level) {
  3408. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3409. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  3410. SERIAL_PROTOCOLPGM(" b: ");
  3411. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  3412. SERIAL_PROTOCOLPGM(" d: ");
  3413. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  3414. SERIAL_EOL;
  3415. if (verbose_level > 2) {
  3416. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  3417. SERIAL_PROTOCOL_F(mean, 8);
  3418. SERIAL_EOL;
  3419. }
  3420. }
  3421. // Create the matrix but don't correct the position yet
  3422. if (!dryrun) {
  3423. planner.bed_level_matrix = matrix_3x3::create_look_at(
  3424. vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1)
  3425. );
  3426. }
  3427. // Show the Topography map if enabled
  3428. if (do_topography_map) {
  3429. SERIAL_PROTOCOLLNPGM("\nBed Height Topography:\n"
  3430. " +--- BACK --+\n"
  3431. " | |\n"
  3432. " L | (+) | R\n"
  3433. " E | | I\n"
  3434. " F | (-) N (+) | G\n"
  3435. " T | | H\n"
  3436. " | (-) | T\n"
  3437. " | |\n"
  3438. " O-- FRONT --+\n"
  3439. " (0,0)");
  3440. float min_diff = 999;
  3441. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  3442. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  3443. int ind = indexIntoAB[xx][yy];
  3444. float diff = eqnBVector[ind] - mean,
  3445. x_tmp = eqnAMatrix[ind + 0 * abl2],
  3446. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3447. z_tmp = 0;
  3448. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3449. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  3450. if (diff >= 0.0)
  3451. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  3452. else
  3453. SERIAL_PROTOCOLCHAR(' ');
  3454. SERIAL_PROTOCOL_F(diff, 5);
  3455. } // xx
  3456. SERIAL_EOL;
  3457. } // yy
  3458. SERIAL_EOL;
  3459. if (verbose_level > 3) {
  3460. SERIAL_PROTOCOLLNPGM("\nCorrected Bed Height vs. Bed Topology:");
  3461. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  3462. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  3463. int ind = indexIntoAB[xx][yy];
  3464. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  3465. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3466. z_tmp = 0;
  3467. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3468. float diff = eqnBVector[ind] - z_tmp - min_diff;
  3469. if (diff >= 0.0)
  3470. SERIAL_PROTOCOLPGM(" +");
  3471. // Include + for column alignment
  3472. else
  3473. SERIAL_PROTOCOLCHAR(' ');
  3474. SERIAL_PROTOCOL_F(diff, 5);
  3475. } // xx
  3476. SERIAL_EOL;
  3477. } // yy
  3478. SERIAL_EOL;
  3479. }
  3480. } //do_topography_map
  3481. #endif // AUTO_BED_LEVELING_LINEAR
  3482. #if ABL_PLANAR
  3483. // For LINEAR and 3POINT leveling correct the current position
  3484. if (verbose_level > 0)
  3485. planner.bed_level_matrix.debug("\n\nBed Level Correction Matrix:");
  3486. if (!dryrun) {
  3487. //
  3488. // Correct the current XYZ position based on the tilted plane.
  3489. //
  3490. // 1. Get the distance from the current position to the reference point.
  3491. float x_dist = RAW_CURRENT_POSITION(X_AXIS) - X_TILT_FULCRUM,
  3492. y_dist = RAW_CURRENT_POSITION(Y_AXIS) - Y_TILT_FULCRUM,
  3493. z_real = current_position[Z_AXIS],
  3494. z_zero = 0;
  3495. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3496. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 uncorrected XYZ", current_position);
  3497. #endif
  3498. matrix_3x3 inverse = matrix_3x3::transpose(planner.bed_level_matrix);
  3499. // 2. Apply the inverse matrix to the distance
  3500. // from the reference point to X, Y, and zero.
  3501. apply_rotation_xyz(inverse, x_dist, y_dist, z_zero);
  3502. // 3. Get the matrix-based corrected Z.
  3503. // (Even if not used, get it for comparison.)
  3504. float new_z = z_real + z_zero;
  3505. // 4. Use the last measured distance to the bed, if possible
  3506. if ( NEAR(current_position[X_AXIS], xProbe - (X_PROBE_OFFSET_FROM_EXTRUDER))
  3507. && NEAR(current_position[Y_AXIS], yProbe - (Y_PROBE_OFFSET_FROM_EXTRUDER))
  3508. ) {
  3509. float simple_z = z_real - (measured_z - (-zprobe_zoffset));
  3510. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3511. if (DEBUGGING(LEVELING)) {
  3512. SERIAL_ECHOPAIR("Z from Probe:", simple_z);
  3513. SERIAL_ECHOPAIR(" Matrix:", new_z);
  3514. SERIAL_ECHOLNPAIR(" Discrepancy:", simple_z - new_z);
  3515. }
  3516. #endif
  3517. new_z = simple_z;
  3518. }
  3519. // 5. The rotated XY and corrected Z are now current_position
  3520. current_position[X_AXIS] = LOGICAL_X_POSITION(x_dist) + X_TILT_FULCRUM;
  3521. current_position[Y_AXIS] = LOGICAL_Y_POSITION(y_dist) + Y_TILT_FULCRUM;
  3522. current_position[Z_AXIS] = new_z;
  3523. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3524. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 corrected XYZ", current_position);
  3525. #endif
  3526. }
  3527. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3528. if (!dryrun) {
  3529. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3530. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("G29 uncorrected Z:", current_position[Z_AXIS]);
  3531. #endif
  3532. // Unapply the offset because it is going to be immediately applied
  3533. // and cause compensation movement in Z
  3534. current_position[Z_AXIS] -= bilinear_z_offset(current_position);
  3535. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3536. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR(" corrected Z:", current_position[Z_AXIS]);
  3537. #endif
  3538. }
  3539. #endif // ABL_PLANAR
  3540. #ifdef Z_PROBE_END_SCRIPT
  3541. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3542. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("Z Probe End Script: ", Z_PROBE_END_SCRIPT);
  3543. #endif
  3544. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  3545. stepper.synchronize();
  3546. #endif
  3547. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3548. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G29");
  3549. #endif
  3550. report_current_position();
  3551. KEEPALIVE_STATE(IN_HANDLER);
  3552. // Auto Bed Leveling is complete! Enable if possible.
  3553. planner.abl_enabled = dryrun ? abl_should_enable : true;
  3554. if (planner.abl_enabled)
  3555. SYNC_PLAN_POSITION_KINEMATIC();
  3556. }
  3557. #endif // HAS_ABL
  3558. #if HAS_BED_PROBE
  3559. /**
  3560. * G30: Do a single Z probe at the current XY
  3561. */
  3562. inline void gcode_G30() {
  3563. // Disable leveling so the planner won't mess with us
  3564. #if PLANNER_LEVELING
  3565. set_bed_leveling_enabled(false);
  3566. #endif
  3567. setup_for_endstop_or_probe_move();
  3568. float measured_z = probe_pt(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  3569. current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  3570. true, 1);
  3571. SERIAL_PROTOCOLPGM("Bed X: ");
  3572. SERIAL_PROTOCOL(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3573. SERIAL_PROTOCOLPGM(" Y: ");
  3574. SERIAL_PROTOCOL(current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3575. SERIAL_PROTOCOLPGM(" Z: ");
  3576. SERIAL_PROTOCOL(measured_z + 0.0001);
  3577. SERIAL_EOL;
  3578. clean_up_after_endstop_or_probe_move();
  3579. report_current_position();
  3580. }
  3581. #if ENABLED(Z_PROBE_SLED)
  3582. /**
  3583. * G31: Deploy the Z probe
  3584. */
  3585. inline void gcode_G31() { DEPLOY_PROBE(); }
  3586. /**
  3587. * G32: Stow the Z probe
  3588. */
  3589. inline void gcode_G32() { STOW_PROBE(); }
  3590. #endif // Z_PROBE_SLED
  3591. #endif // HAS_BED_PROBE
  3592. #if ENABLED(G38_PROBE_TARGET)
  3593. static bool G38_run_probe() {
  3594. bool G38_pass_fail = false;
  3595. // Get direction of move and retract
  3596. float retract_mm[XYZ];
  3597. LOOP_XYZ(i) {
  3598. float dist = destination[i] - current_position[i];
  3599. retract_mm[i] = fabs(dist) < G38_MINIMUM_MOVE ? 0 : home_bump_mm(i) * (dist > 0 ? -1 : 1);
  3600. }
  3601. stepper.synchronize(); // wait until the machine is idle
  3602. // Move until destination reached or target hit
  3603. endstops.enable(true);
  3604. G38_move = true;
  3605. G38_endstop_hit = false;
  3606. prepare_move_to_destination();
  3607. stepper.synchronize();
  3608. G38_move = false;
  3609. endstops.hit_on_purpose();
  3610. set_current_from_steppers_for_axis(ALL_AXES);
  3611. SYNC_PLAN_POSITION_KINEMATIC();
  3612. // Only do remaining moves if target was hit
  3613. if (G38_endstop_hit) {
  3614. G38_pass_fail = true;
  3615. // Move away by the retract distance
  3616. set_destination_to_current();
  3617. LOOP_XYZ(i) destination[i] += retract_mm[i];
  3618. endstops.enable(false);
  3619. prepare_move_to_destination();
  3620. stepper.synchronize();
  3621. feedrate_mm_s /= 4;
  3622. // Bump the target more slowly
  3623. LOOP_XYZ(i) destination[i] -= retract_mm[i] * 2;
  3624. endstops.enable(true);
  3625. G38_move = true;
  3626. prepare_move_to_destination();
  3627. stepper.synchronize();
  3628. G38_move = false;
  3629. set_current_from_steppers_for_axis(ALL_AXES);
  3630. SYNC_PLAN_POSITION_KINEMATIC();
  3631. }
  3632. endstops.hit_on_purpose();
  3633. endstops.not_homing();
  3634. return G38_pass_fail;
  3635. }
  3636. /**
  3637. * G38.2 - probe toward workpiece, stop on contact, signal error if failure
  3638. * G38.3 - probe toward workpiece, stop on contact
  3639. *
  3640. * Like G28 except uses Z min endstop for all axes
  3641. */
  3642. inline void gcode_G38(bool is_38_2) {
  3643. // Get X Y Z E F
  3644. gcode_get_destination();
  3645. setup_for_endstop_or_probe_move();
  3646. // If any axis has enough movement, do the move
  3647. LOOP_XYZ(i)
  3648. if (fabs(destination[i] - current_position[i]) >= G38_MINIMUM_MOVE) {
  3649. if (!code_seen('F')) feedrate_mm_s = homing_feedrate_mm_s[i];
  3650. // If G38.2 fails throw an error
  3651. if (!G38_run_probe() && is_38_2) {
  3652. SERIAL_ERROR_START;
  3653. SERIAL_ERRORLNPGM("Failed to reach target");
  3654. }
  3655. break;
  3656. }
  3657. clean_up_after_endstop_or_probe_move();
  3658. }
  3659. #endif // G38_PROBE_TARGET
  3660. /**
  3661. * G92: Set current position to given X Y Z E
  3662. */
  3663. inline void gcode_G92() {
  3664. bool didXYZ = false,
  3665. didE = code_seen('E');
  3666. if (!didE) stepper.synchronize();
  3667. LOOP_XYZE(i) {
  3668. if (code_seen(axis_codes[i])) {
  3669. #if IS_SCARA
  3670. current_position[i] = code_value_axis_units(i);
  3671. if (i != E_AXIS) didXYZ = true;
  3672. #else
  3673. float p = current_position[i],
  3674. v = code_value_axis_units(i);
  3675. current_position[i] = v;
  3676. if (i != E_AXIS) {
  3677. didXYZ = true;
  3678. position_shift[i] += v - p; // Offset the coordinate space
  3679. update_software_endstops((AxisEnum)i);
  3680. }
  3681. #endif
  3682. }
  3683. }
  3684. if (didXYZ)
  3685. SYNC_PLAN_POSITION_KINEMATIC();
  3686. else if (didE)
  3687. sync_plan_position_e();
  3688. report_current_position();
  3689. }
  3690. #if ENABLED(EMERGENCY_PARSER) || ENABLED(ULTIPANEL)
  3691. /**
  3692. * M0: Unconditional stop - Wait for user button press on LCD
  3693. * M1: Conditional stop - Wait for user button press on LCD
  3694. */
  3695. inline void gcode_M0_M1() {
  3696. char* args = current_command_args;
  3697. millis_t codenum = 0;
  3698. bool hasP = false, hasS = false;
  3699. if (code_seen('P')) {
  3700. codenum = code_value_millis(); // milliseconds to wait
  3701. hasP = codenum > 0;
  3702. }
  3703. if (code_seen('S')) {
  3704. codenum = code_value_millis_from_seconds(); // seconds to wait
  3705. hasS = codenum > 0;
  3706. }
  3707. #if ENABLED(ULTIPANEL)
  3708. if (!hasP && !hasS && *args != '\0')
  3709. lcd_setstatus(args, true);
  3710. else {
  3711. LCD_MESSAGEPGM(MSG_USERWAIT);
  3712. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  3713. dontExpireStatus();
  3714. #endif
  3715. }
  3716. #else
  3717. if (!hasP && !hasS && *args != '\0') {
  3718. SERIAL_ECHO_START;
  3719. SERIAL_ECHOLN(args);
  3720. }
  3721. #endif
  3722. wait_for_user = true;
  3723. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3724. stepper.synchronize();
  3725. refresh_cmd_timeout();
  3726. if (codenum > 0) {
  3727. codenum += previous_cmd_ms; // wait until this time for a click
  3728. while (PENDING(millis(), codenum) && wait_for_user) idle();
  3729. }
  3730. else {
  3731. #if ENABLED(ULTIPANEL)
  3732. if (lcd_detected()) {
  3733. while (wait_for_user) idle();
  3734. IS_SD_PRINTING ? LCD_MESSAGEPGM(MSG_RESUMING) : LCD_MESSAGEPGM(WELCOME_MSG);
  3735. }
  3736. #else
  3737. while (wait_for_user) idle();
  3738. #endif
  3739. }
  3740. wait_for_user = false;
  3741. KEEPALIVE_STATE(IN_HANDLER);
  3742. }
  3743. #endif // EMERGENCY_PARSER || ULTIPANEL
  3744. /**
  3745. * M17: Enable power on all stepper motors
  3746. */
  3747. inline void gcode_M17() {
  3748. LCD_MESSAGEPGM(MSG_NO_MOVE);
  3749. enable_all_steppers();
  3750. }
  3751. #if ENABLED(SDSUPPORT)
  3752. /**
  3753. * M20: List SD card to serial output
  3754. */
  3755. inline void gcode_M20() {
  3756. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  3757. card.ls();
  3758. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  3759. }
  3760. /**
  3761. * M21: Init SD Card
  3762. */
  3763. inline void gcode_M21() { card.initsd(); }
  3764. /**
  3765. * M22: Release SD Card
  3766. */
  3767. inline void gcode_M22() { card.release(); }
  3768. /**
  3769. * M23: Open a file
  3770. */
  3771. inline void gcode_M23() { card.openFile(current_command_args, true); }
  3772. /**
  3773. * M24: Start SD Print
  3774. */
  3775. inline void gcode_M24() {
  3776. card.startFileprint();
  3777. print_job_timer.start();
  3778. }
  3779. /**
  3780. * M25: Pause SD Print
  3781. */
  3782. inline void gcode_M25() { card.pauseSDPrint(); }
  3783. /**
  3784. * M26: Set SD Card file index
  3785. */
  3786. inline void gcode_M26() {
  3787. if (card.cardOK && code_seen('S'))
  3788. card.setIndex(code_value_long());
  3789. }
  3790. /**
  3791. * M27: Get SD Card status
  3792. */
  3793. inline void gcode_M27() { card.getStatus(); }
  3794. /**
  3795. * M28: Start SD Write
  3796. */
  3797. inline void gcode_M28() { card.openFile(current_command_args, false); }
  3798. /**
  3799. * M29: Stop SD Write
  3800. * Processed in write to file routine above
  3801. */
  3802. inline void gcode_M29() {
  3803. // card.saving = false;
  3804. }
  3805. /**
  3806. * M30 <filename>: Delete SD Card file
  3807. */
  3808. inline void gcode_M30() {
  3809. if (card.cardOK) {
  3810. card.closefile();
  3811. card.removeFile(current_command_args);
  3812. }
  3813. }
  3814. #endif // SDSUPPORT
  3815. /**
  3816. * M31: Get the time since the start of SD Print (or last M109)
  3817. */
  3818. inline void gcode_M31() {
  3819. char buffer[21];
  3820. duration_t elapsed = print_job_timer.duration();
  3821. elapsed.toString(buffer);
  3822. lcd_setstatus(buffer);
  3823. SERIAL_ECHO_START;
  3824. SERIAL_ECHOLNPAIR("Print time: ", buffer);
  3825. #if ENABLED(AUTOTEMP)
  3826. thermalManager.autotempShutdown();
  3827. #endif
  3828. }
  3829. #if ENABLED(SDSUPPORT)
  3830. /**
  3831. * M32: Select file and start SD Print
  3832. */
  3833. inline void gcode_M32() {
  3834. if (card.sdprinting)
  3835. stepper.synchronize();
  3836. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  3837. if (!namestartpos)
  3838. namestartpos = current_command_args; // Default name position, 4 letters after the M
  3839. else
  3840. namestartpos++; //to skip the '!'
  3841. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  3842. if (card.cardOK) {
  3843. card.openFile(namestartpos, true, call_procedure);
  3844. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  3845. card.setIndex(code_value_long());
  3846. card.startFileprint();
  3847. // Procedure calls count as normal print time.
  3848. if (!call_procedure) print_job_timer.start();
  3849. }
  3850. }
  3851. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  3852. /**
  3853. * M33: Get the long full path of a file or folder
  3854. *
  3855. * Parameters:
  3856. * <dospath> Case-insensitive DOS-style path to a file or folder
  3857. *
  3858. * Example:
  3859. * M33 miscel~1/armchair/armcha~1.gco
  3860. *
  3861. * Output:
  3862. * /Miscellaneous/Armchair/Armchair.gcode
  3863. */
  3864. inline void gcode_M33() {
  3865. card.printLongPath(current_command_args);
  3866. }
  3867. #endif
  3868. /**
  3869. * M928: Start SD Write
  3870. */
  3871. inline void gcode_M928() {
  3872. card.openLogFile(current_command_args);
  3873. }
  3874. #endif // SDSUPPORT
  3875. /**
  3876. * Sensitive pin test for M42, M226
  3877. */
  3878. static bool pin_is_protected(uint8_t pin) {
  3879. static const int sensitive_pins[] = SENSITIVE_PINS;
  3880. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  3881. if (sensitive_pins[i] == pin) return true;
  3882. return false;
  3883. }
  3884. /**
  3885. * M42: Change pin status via GCode
  3886. *
  3887. * P<pin> Pin number (LED if omitted)
  3888. * S<byte> Pin status from 0 - 255
  3889. */
  3890. inline void gcode_M42() {
  3891. if (!code_seen('S')) return;
  3892. int pin_status = code_value_int();
  3893. if (pin_status < 0 || pin_status > 255) return;
  3894. int pin_number = code_seen('P') ? code_value_int() : LED_PIN;
  3895. if (pin_number < 0) return;
  3896. if (pin_is_protected(pin_number)) {
  3897. SERIAL_ERROR_START;
  3898. SERIAL_ERRORLNPGM(MSG_ERR_PROTECTED_PIN);
  3899. return;
  3900. }
  3901. pinMode(pin_number, OUTPUT);
  3902. digitalWrite(pin_number, pin_status);
  3903. analogWrite(pin_number, pin_status);
  3904. #if FAN_COUNT > 0
  3905. switch (pin_number) {
  3906. #if HAS_FAN0
  3907. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  3908. #endif
  3909. #if HAS_FAN1
  3910. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  3911. #endif
  3912. #if HAS_FAN2
  3913. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  3914. #endif
  3915. }
  3916. #endif
  3917. }
  3918. #if ENABLED(PINS_DEBUGGING)
  3919. #include "pinsDebug.h"
  3920. /**
  3921. * M43: Pin report and debug
  3922. *
  3923. * P<pin> Will read/watch a single pin
  3924. * W Watch pins for changes until reboot
  3925. */
  3926. inline void gcode_M43() {
  3927. int first_pin = 0, last_pin = DIO_COUNT - 1;
  3928. if (code_seen('P')) {
  3929. first_pin = last_pin = code_value_byte();
  3930. if (first_pin > DIO_COUNT - 1) return;
  3931. }
  3932. if (code_seen('W') && code_value_bool()) { // watch digital pins
  3933. byte pin_state[last_pin - first_pin + 1];
  3934. for (int8_t pin = first_pin; pin <= last_pin; pin++) {
  3935. if (pin_is_protected(pin)) continue;
  3936. pinMode(pin, INPUT_PULLUP);
  3937. // if (IS_ANALOG(pin))
  3938. // pin_state[pin - first_pin] = analogRead(pin - analogInputToDigitalPin(0)); // int16_t pin_state[...]
  3939. // else
  3940. pin_state[pin - first_pin] = digitalRead(pin);
  3941. }
  3942. #if ENABLED(EMERGENCY_PARSER) || ENABLED(ULTIPANEL)
  3943. wait_for_user = true;
  3944. #endif
  3945. for(;;) {
  3946. for (int8_t pin = first_pin; pin <= last_pin; pin++) {
  3947. if (pin_is_protected(pin)) continue;
  3948. byte val;
  3949. // if (IS_ANALOG(pin))
  3950. // val = analogRead(pin - analogInputToDigitalPin(0)); // int16_t val
  3951. // else
  3952. val = digitalRead(pin);
  3953. if (val != pin_state[pin - first_pin]) {
  3954. report_pin_state(pin);
  3955. pin_state[pin - first_pin] = val;
  3956. }
  3957. }
  3958. #if ENABLED(EMERGENCY_PARSER) || ENABLED(ULTIPANEL)
  3959. if (!wait_for_user) break;
  3960. #endif
  3961. safe_delay(500);
  3962. }
  3963. }
  3964. else // single pins report
  3965. for (int8_t pin = first_pin; pin <= last_pin; pin++)
  3966. report_pin_state(pin);
  3967. }
  3968. #endif // PINS_DEBUGGING
  3969. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  3970. /**
  3971. * M48: Z probe repeatability measurement function.
  3972. *
  3973. * Usage:
  3974. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  3975. * P = Number of sampled points (4-50, default 10)
  3976. * X = Sample X position
  3977. * Y = Sample Y position
  3978. * V = Verbose level (0-4, default=1)
  3979. * E = Engage Z probe for each reading
  3980. * L = Number of legs of movement before probe
  3981. * S = Schizoid (Or Star if you prefer)
  3982. *
  3983. * This function assumes the bed has been homed. Specifically, that a G28 command
  3984. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  3985. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3986. * regenerated.
  3987. */
  3988. inline void gcode_M48() {
  3989. if (axis_unhomed_error(true, true, true)) return;
  3990. int8_t verbose_level = code_seen('V') ? code_value_byte() : 1;
  3991. if (verbose_level < 0 || verbose_level > 4) {
  3992. SERIAL_PROTOCOLLNPGM("?Verbose Level not plausible (0-4).");
  3993. return;
  3994. }
  3995. if (verbose_level > 0)
  3996. SERIAL_PROTOCOLLNPGM("M48 Z-Probe Repeatability Test");
  3997. int8_t n_samples = code_seen('P') ? code_value_byte() : 10;
  3998. if (n_samples < 4 || n_samples > 50) {
  3999. SERIAL_PROTOCOLLNPGM("?Sample size not plausible (4-50).");
  4000. return;
  4001. }
  4002. float X_current = current_position[X_AXIS],
  4003. Y_current = current_position[Y_AXIS];
  4004. bool stow_probe_after_each = code_seen('E');
  4005. float X_probe_location = code_seen('X') ? code_value_axis_units(X_AXIS) : X_current + X_PROBE_OFFSET_FROM_EXTRUDER;
  4006. #if DISABLED(DELTA)
  4007. if (X_probe_location < LOGICAL_X_POSITION(MIN_PROBE_X) || X_probe_location > LOGICAL_X_POSITION(MAX_PROBE_X)) {
  4008. out_of_range_error(PSTR("X"));
  4009. return;
  4010. }
  4011. #endif
  4012. float Y_probe_location = code_seen('Y') ? code_value_axis_units(Y_AXIS) : Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER;
  4013. #if DISABLED(DELTA)
  4014. if (Y_probe_location < LOGICAL_Y_POSITION(MIN_PROBE_Y) || Y_probe_location > LOGICAL_Y_POSITION(MAX_PROBE_Y)) {
  4015. out_of_range_error(PSTR("Y"));
  4016. return;
  4017. }
  4018. #else
  4019. float pos[XYZ] = { X_probe_location, Y_probe_location, 0 };
  4020. if (!position_is_reachable(pos, true)) {
  4021. SERIAL_PROTOCOLLNPGM("? (X,Y) location outside of probeable radius.");
  4022. return;
  4023. }
  4024. #endif
  4025. bool seen_L = code_seen('L');
  4026. uint8_t n_legs = seen_L ? code_value_byte() : 0;
  4027. if (n_legs > 15) {
  4028. SERIAL_PROTOCOLLNPGM("?Number of legs in movement not plausible (0-15).");
  4029. return;
  4030. }
  4031. if (n_legs == 1) n_legs = 2;
  4032. bool schizoid_flag = code_seen('S');
  4033. if (schizoid_flag && !seen_L) n_legs = 7;
  4034. /**
  4035. * Now get everything to the specified probe point So we can safely do a
  4036. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  4037. * we don't want to use that as a starting point for each probe.
  4038. */
  4039. if (verbose_level > 2)
  4040. SERIAL_PROTOCOLLNPGM("Positioning the probe...");
  4041. // Disable bed level correction in M48 because we want the raw data when we probe
  4042. #if HAS_ABL
  4043. reset_bed_level();
  4044. #endif
  4045. setup_for_endstop_or_probe_move();
  4046. // Move to the first point, deploy, and probe
  4047. probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  4048. randomSeed(millis());
  4049. double mean = 0.0, sigma = 0.0, min = 99999.9, max = -99999.9, sample_set[n_samples];
  4050. for (uint8_t n = 0; n < n_samples; n++) {
  4051. if (n_legs) {
  4052. int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  4053. float angle = random(0.0, 360.0),
  4054. radius = random(
  4055. #if ENABLED(DELTA)
  4056. DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
  4057. #else
  4058. 5, X_MAX_LENGTH / 8
  4059. #endif
  4060. );
  4061. if (verbose_level > 3) {
  4062. SERIAL_ECHOPAIR("Starting radius: ", radius);
  4063. SERIAL_ECHOPAIR(" angle: ", angle);
  4064. SERIAL_ECHOPGM(" Direction: ");
  4065. if (dir > 0) SERIAL_ECHOPGM("Counter-");
  4066. SERIAL_ECHOLNPGM("Clockwise");
  4067. }
  4068. for (uint8_t l = 0; l < n_legs - 1; l++) {
  4069. double delta_angle;
  4070. if (schizoid_flag)
  4071. // The points of a 5 point star are 72 degrees apart. We need to
  4072. // skip a point and go to the next one on the star.
  4073. delta_angle = dir * 2.0 * 72.0;
  4074. else
  4075. // If we do this line, we are just trying to move further
  4076. // around the circle.
  4077. delta_angle = dir * (float) random(25, 45);
  4078. angle += delta_angle;
  4079. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  4080. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  4081. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  4082. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  4083. X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
  4084. Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
  4085. #if DISABLED(DELTA)
  4086. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  4087. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  4088. #else
  4089. // If we have gone out too far, we can do a simple fix and scale the numbers
  4090. // back in closer to the origin.
  4091. while (HYPOT(X_current, Y_current) > DELTA_PROBEABLE_RADIUS) {
  4092. X_current /= 1.25;
  4093. Y_current /= 1.25;
  4094. if (verbose_level > 3) {
  4095. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  4096. SERIAL_ECHOLNPAIR(", ", Y_current);
  4097. }
  4098. }
  4099. #endif
  4100. if (verbose_level > 3) {
  4101. SERIAL_PROTOCOLPGM("Going to:");
  4102. SERIAL_ECHOPAIR(" X", X_current);
  4103. SERIAL_ECHOPAIR(" Y", Y_current);
  4104. SERIAL_ECHOLNPAIR(" Z", current_position[Z_AXIS]);
  4105. }
  4106. do_blocking_move_to_xy(X_current, Y_current);
  4107. } // n_legs loop
  4108. } // n_legs
  4109. // Probe a single point
  4110. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, 0);
  4111. /**
  4112. * Get the current mean for the data points we have so far
  4113. */
  4114. double sum = 0.0;
  4115. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  4116. mean = sum / (n + 1);
  4117. NOMORE(min, sample_set[n]);
  4118. NOLESS(max, sample_set[n]);
  4119. /**
  4120. * Now, use that mean to calculate the standard deviation for the
  4121. * data points we have so far
  4122. */
  4123. sum = 0.0;
  4124. for (uint8_t j = 0; j <= n; j++)
  4125. sum += sq(sample_set[j] - mean);
  4126. sigma = sqrt(sum / (n + 1));
  4127. if (verbose_level > 0) {
  4128. if (verbose_level > 1) {
  4129. SERIAL_PROTOCOL(n + 1);
  4130. SERIAL_PROTOCOLPGM(" of ");
  4131. SERIAL_PROTOCOL((int)n_samples);
  4132. SERIAL_PROTOCOLPGM(": z: ");
  4133. SERIAL_PROTOCOL_F(sample_set[n], 3);
  4134. if (verbose_level > 2) {
  4135. SERIAL_PROTOCOLPGM(" mean: ");
  4136. SERIAL_PROTOCOL_F(mean, 4);
  4137. SERIAL_PROTOCOLPGM(" sigma: ");
  4138. SERIAL_PROTOCOL_F(sigma, 6);
  4139. SERIAL_PROTOCOLPGM(" min: ");
  4140. SERIAL_PROTOCOL_F(min, 3);
  4141. SERIAL_PROTOCOLPGM(" max: ");
  4142. SERIAL_PROTOCOL_F(max, 3);
  4143. SERIAL_PROTOCOLPGM(" range: ");
  4144. SERIAL_PROTOCOL_F(max-min, 3);
  4145. }
  4146. }
  4147. SERIAL_EOL;
  4148. }
  4149. } // End of probe loop
  4150. if (STOW_PROBE()) return;
  4151. SERIAL_PROTOCOLPGM("Finished!");
  4152. SERIAL_EOL;
  4153. if (verbose_level > 0) {
  4154. SERIAL_PROTOCOLPGM("Mean: ");
  4155. SERIAL_PROTOCOL_F(mean, 6);
  4156. SERIAL_PROTOCOLPGM(" Min: ");
  4157. SERIAL_PROTOCOL_F(min, 3);
  4158. SERIAL_PROTOCOLPGM(" Max: ");
  4159. SERIAL_PROTOCOL_F(max, 3);
  4160. SERIAL_PROTOCOLPGM(" Range: ");
  4161. SERIAL_PROTOCOL_F(max-min, 3);
  4162. SERIAL_EOL;
  4163. }
  4164. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4165. SERIAL_PROTOCOL_F(sigma, 6);
  4166. SERIAL_EOL;
  4167. SERIAL_EOL;
  4168. clean_up_after_endstop_or_probe_move();
  4169. report_current_position();
  4170. }
  4171. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  4172. /**
  4173. * M75: Start print timer
  4174. */
  4175. inline void gcode_M75() { print_job_timer.start(); }
  4176. /**
  4177. * M76: Pause print timer
  4178. */
  4179. inline void gcode_M76() { print_job_timer.pause(); }
  4180. /**
  4181. * M77: Stop print timer
  4182. */
  4183. inline void gcode_M77() { print_job_timer.stop(); }
  4184. #if ENABLED(PRINTCOUNTER)
  4185. /**
  4186. * M78: Show print statistics
  4187. */
  4188. inline void gcode_M78() {
  4189. // "M78 S78" will reset the statistics
  4190. if (code_seen('S') && code_value_int() == 78)
  4191. print_job_timer.initStats();
  4192. else
  4193. print_job_timer.showStats();
  4194. }
  4195. #endif
  4196. /**
  4197. * M104: Set hot end temperature
  4198. */
  4199. inline void gcode_M104() {
  4200. if (get_target_extruder_from_command(104)) return;
  4201. if (DEBUGGING(DRYRUN)) return;
  4202. #if ENABLED(SINGLENOZZLE)
  4203. if (target_extruder != active_extruder) return;
  4204. #endif
  4205. if (code_seen('S')) {
  4206. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  4207. #if ENABLED(DUAL_X_CARRIAGE)
  4208. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  4209. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  4210. #endif
  4211. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  4212. /**
  4213. * Stop the timer at the end of print, starting is managed by
  4214. * 'heat and wait' M109.
  4215. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  4216. * stand by mode, for instance in a dual extruder setup, without affecting
  4217. * the running print timer.
  4218. */
  4219. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  4220. print_job_timer.stop();
  4221. LCD_MESSAGEPGM(WELCOME_MSG);
  4222. }
  4223. #endif
  4224. if (code_value_temp_abs() > thermalManager.degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  4225. }
  4226. }
  4227. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  4228. void print_heaterstates() {
  4229. #if HAS_TEMP_HOTEND
  4230. SERIAL_PROTOCOLPGM(" T:");
  4231. SERIAL_PROTOCOL_F(thermalManager.degHotend(target_extruder), 1);
  4232. SERIAL_PROTOCOLPGM(" /");
  4233. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(target_extruder), 1);
  4234. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  4235. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[target_extruder] / OVERSAMPLENR);
  4236. SERIAL_CHAR(')');
  4237. #endif
  4238. #endif
  4239. #if HAS_TEMP_BED
  4240. SERIAL_PROTOCOLPGM(" B:");
  4241. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  4242. SERIAL_PROTOCOLPGM(" /");
  4243. SERIAL_PROTOCOL_F(thermalManager.degTargetBed(), 1);
  4244. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  4245. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_bed_raw / OVERSAMPLENR);
  4246. SERIAL_CHAR(')');
  4247. #endif
  4248. #endif
  4249. #if HOTENDS > 1
  4250. HOTEND_LOOP() {
  4251. SERIAL_PROTOCOLPAIR(" T", e);
  4252. SERIAL_PROTOCOLCHAR(':');
  4253. SERIAL_PROTOCOL_F(thermalManager.degHotend(e), 1);
  4254. SERIAL_PROTOCOLPGM(" /");
  4255. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(e), 1);
  4256. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  4257. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[e] / OVERSAMPLENR);
  4258. SERIAL_CHAR(')');
  4259. #endif
  4260. }
  4261. #endif
  4262. SERIAL_PROTOCOLPGM(" @:");
  4263. SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder));
  4264. #if HAS_TEMP_BED
  4265. SERIAL_PROTOCOLPGM(" B@:");
  4266. SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1));
  4267. #endif
  4268. #if HOTENDS > 1
  4269. HOTEND_LOOP() {
  4270. SERIAL_PROTOCOLPAIR(" @", e);
  4271. SERIAL_PROTOCOLCHAR(':');
  4272. SERIAL_PROTOCOL(thermalManager.getHeaterPower(e));
  4273. }
  4274. #endif
  4275. }
  4276. #endif
  4277. /**
  4278. * M105: Read hot end and bed temperature
  4279. */
  4280. inline void gcode_M105() {
  4281. if (get_target_extruder_from_command(105)) return;
  4282. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  4283. SERIAL_PROTOCOLPGM(MSG_OK);
  4284. print_heaterstates();
  4285. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  4286. SERIAL_ERROR_START;
  4287. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  4288. #endif
  4289. SERIAL_EOL;
  4290. }
  4291. #if FAN_COUNT > 0
  4292. /**
  4293. * M106: Set Fan Speed
  4294. *
  4295. * S<int> Speed between 0-255
  4296. * P<index> Fan index, if more than one fan
  4297. */
  4298. inline void gcode_M106() {
  4299. uint16_t s = code_seen('S') ? code_value_ushort() : 255,
  4300. p = code_seen('P') ? code_value_ushort() : 0;
  4301. NOMORE(s, 255);
  4302. if (p < FAN_COUNT) fanSpeeds[p] = s;
  4303. }
  4304. /**
  4305. * M107: Fan Off
  4306. */
  4307. inline void gcode_M107() {
  4308. uint16_t p = code_seen('P') ? code_value_ushort() : 0;
  4309. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  4310. }
  4311. #endif // FAN_COUNT > 0
  4312. #if DISABLED(EMERGENCY_PARSER)
  4313. /**
  4314. * M108: Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  4315. */
  4316. inline void gcode_M108() { wait_for_heatup = false; }
  4317. /**
  4318. * M112: Emergency Stop
  4319. */
  4320. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  4321. /**
  4322. * M410: Quickstop - Abort all planned moves
  4323. *
  4324. * This will stop the carriages mid-move, so most likely they
  4325. * will be out of sync with the stepper position after this.
  4326. */
  4327. inline void gcode_M410() { quickstop_stepper(); }
  4328. #endif
  4329. #ifndef MIN_COOLING_SLOPE_DEG
  4330. #define MIN_COOLING_SLOPE_DEG 1.50
  4331. #endif
  4332. #ifndef MIN_COOLING_SLOPE_TIME
  4333. #define MIN_COOLING_SLOPE_TIME 60
  4334. #endif
  4335. /**
  4336. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  4337. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  4338. */
  4339. inline void gcode_M109() {
  4340. if (get_target_extruder_from_command(109)) return;
  4341. if (DEBUGGING(DRYRUN)) return;
  4342. #if ENABLED(SINGLENOZZLE)
  4343. if (target_extruder != active_extruder) return;
  4344. #endif
  4345. bool no_wait_for_cooling = code_seen('S');
  4346. if (no_wait_for_cooling || code_seen('R')) {
  4347. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  4348. #if ENABLED(DUAL_X_CARRIAGE)
  4349. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  4350. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  4351. #endif
  4352. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  4353. /**
  4354. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  4355. * stand by mode, for instance in a dual extruder setup, without affecting
  4356. * the running print timer.
  4357. */
  4358. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  4359. print_job_timer.stop();
  4360. LCD_MESSAGEPGM(WELCOME_MSG);
  4361. }
  4362. /**
  4363. * We do not check if the timer is already running because this check will
  4364. * be done for us inside the Stopwatch::start() method thus a running timer
  4365. * will not restart.
  4366. */
  4367. else print_job_timer.start();
  4368. #endif
  4369. if (thermalManager.isHeatingHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  4370. }
  4371. #if ENABLED(AUTOTEMP)
  4372. planner.autotemp_M109();
  4373. #endif
  4374. #if TEMP_RESIDENCY_TIME > 0
  4375. millis_t residency_start_ms = 0;
  4376. // Loop until the temperature has stabilized
  4377. #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  4378. #else
  4379. // Loop until the temperature is very close target
  4380. #define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
  4381. #endif //TEMP_RESIDENCY_TIME > 0
  4382. float theTarget = -1.0, old_temp = 9999.0;
  4383. bool wants_to_cool = false;
  4384. wait_for_heatup = true;
  4385. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  4386. KEEPALIVE_STATE(NOT_BUSY);
  4387. do {
  4388. // Target temperature might be changed during the loop
  4389. if (theTarget != thermalManager.degTargetHotend(target_extruder)) {
  4390. wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
  4391. theTarget = thermalManager.degTargetHotend(target_extruder);
  4392. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  4393. if (no_wait_for_cooling && wants_to_cool) break;
  4394. }
  4395. now = millis();
  4396. if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
  4397. next_temp_ms = now + 1000UL;
  4398. print_heaterstates();
  4399. #if TEMP_RESIDENCY_TIME > 0
  4400. SERIAL_PROTOCOLPGM(" W:");
  4401. if (residency_start_ms) {
  4402. long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  4403. SERIAL_PROTOCOLLN(rem);
  4404. }
  4405. else {
  4406. SERIAL_PROTOCOLLNPGM("?");
  4407. }
  4408. #else
  4409. SERIAL_EOL;
  4410. #endif
  4411. }
  4412. idle();
  4413. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  4414. float temp = thermalManager.degHotend(target_extruder);
  4415. #if TEMP_RESIDENCY_TIME > 0
  4416. float temp_diff = fabs(theTarget - temp);
  4417. if (!residency_start_ms) {
  4418. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  4419. if (temp_diff < TEMP_WINDOW) residency_start_ms = now;
  4420. }
  4421. else if (temp_diff > TEMP_HYSTERESIS) {
  4422. // Restart the timer whenever the temperature falls outside the hysteresis.
  4423. residency_start_ms = now;
  4424. }
  4425. #endif //TEMP_RESIDENCY_TIME > 0
  4426. // Prevent a wait-forever situation if R is misused i.e. M109 R0
  4427. if (wants_to_cool) {
  4428. // break after MIN_COOLING_SLOPE_TIME seconds
  4429. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG
  4430. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  4431. if (old_temp - temp < MIN_COOLING_SLOPE_DEG) break;
  4432. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME;
  4433. old_temp = temp;
  4434. }
  4435. }
  4436. } while (wait_for_heatup && TEMP_CONDITIONS);
  4437. if (wait_for_heatup) LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  4438. KEEPALIVE_STATE(IN_HANDLER);
  4439. }
  4440. #if HAS_TEMP_BED
  4441. #ifndef MIN_COOLING_SLOPE_DEG_BED
  4442. #define MIN_COOLING_SLOPE_DEG_BED 1.50
  4443. #endif
  4444. #ifndef MIN_COOLING_SLOPE_TIME_BED
  4445. #define MIN_COOLING_SLOPE_TIME_BED 60
  4446. #endif
  4447. /**
  4448. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  4449. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  4450. */
  4451. inline void gcode_M190() {
  4452. if (DEBUGGING(DRYRUN)) return;
  4453. LCD_MESSAGEPGM(MSG_BED_HEATING);
  4454. bool no_wait_for_cooling = code_seen('S');
  4455. if (no_wait_for_cooling || code_seen('R')) {
  4456. thermalManager.setTargetBed(code_value_temp_abs());
  4457. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  4458. if (code_value_temp_abs() > BED_MINTEMP) {
  4459. /**
  4460. * We start the timer when 'heating and waiting' command arrives, LCD
  4461. * functions never wait. Cooling down managed by extruders.
  4462. *
  4463. * We do not check if the timer is already running because this check will
  4464. * be done for us inside the Stopwatch::start() method thus a running timer
  4465. * will not restart.
  4466. */
  4467. print_job_timer.start();
  4468. }
  4469. #endif
  4470. }
  4471. #if TEMP_BED_RESIDENCY_TIME > 0
  4472. millis_t residency_start_ms = 0;
  4473. // Loop until the temperature has stabilized
  4474. #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
  4475. #else
  4476. // Loop until the temperature is very close target
  4477. #define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
  4478. #endif //TEMP_BED_RESIDENCY_TIME > 0
  4479. float theTarget = -1.0, old_temp = 9999.0;
  4480. bool wants_to_cool = false;
  4481. wait_for_heatup = true;
  4482. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  4483. KEEPALIVE_STATE(NOT_BUSY);
  4484. target_extruder = active_extruder; // for print_heaterstates
  4485. do {
  4486. // Target temperature might be changed during the loop
  4487. if (theTarget != thermalManager.degTargetBed()) {
  4488. wants_to_cool = thermalManager.isCoolingBed();
  4489. theTarget = thermalManager.degTargetBed();
  4490. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  4491. if (no_wait_for_cooling && wants_to_cool) break;
  4492. }
  4493. now = millis();
  4494. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
  4495. next_temp_ms = now + 1000UL;
  4496. print_heaterstates();
  4497. #if TEMP_BED_RESIDENCY_TIME > 0
  4498. SERIAL_PROTOCOLPGM(" W:");
  4499. if (residency_start_ms) {
  4500. long rem = (((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  4501. SERIAL_PROTOCOLLN(rem);
  4502. }
  4503. else {
  4504. SERIAL_PROTOCOLLNPGM("?");
  4505. }
  4506. #else
  4507. SERIAL_EOL;
  4508. #endif
  4509. }
  4510. idle();
  4511. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  4512. float temp = thermalManager.degBed();
  4513. #if TEMP_BED_RESIDENCY_TIME > 0
  4514. float temp_diff = fabs(theTarget - temp);
  4515. if (!residency_start_ms) {
  4516. // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
  4517. if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = now;
  4518. }
  4519. else if (temp_diff > TEMP_BED_HYSTERESIS) {
  4520. // Restart the timer whenever the temperature falls outside the hysteresis.
  4521. residency_start_ms = now;
  4522. }
  4523. #endif //TEMP_BED_RESIDENCY_TIME > 0
  4524. // Prevent a wait-forever situation if R is misused i.e. M190 R0
  4525. if (wants_to_cool) {
  4526. // break after MIN_COOLING_SLOPE_TIME_BED seconds
  4527. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_BED
  4528. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  4529. if (old_temp - temp < MIN_COOLING_SLOPE_DEG_BED) break;
  4530. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_BED;
  4531. old_temp = temp;
  4532. }
  4533. }
  4534. } while (wait_for_heatup && TEMP_BED_CONDITIONS);
  4535. if (wait_for_heatup) LCD_MESSAGEPGM(MSG_BED_DONE);
  4536. KEEPALIVE_STATE(IN_HANDLER);
  4537. }
  4538. #endif // HAS_TEMP_BED
  4539. /**
  4540. * M110: Set Current Line Number
  4541. */
  4542. inline void gcode_M110() {
  4543. if (code_seen('N')) gcode_N = code_value_long();
  4544. }
  4545. /**
  4546. * M111: Set the debug level
  4547. */
  4548. inline void gcode_M111() {
  4549. marlin_debug_flags = code_seen('S') ? code_value_byte() : (uint8_t) DEBUG_NONE;
  4550. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
  4551. const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
  4552. const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
  4553. const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
  4554. const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
  4555. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4556. const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
  4557. #endif
  4558. const static char* const debug_strings[] PROGMEM = {
  4559. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16,
  4560. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4561. str_debug_32
  4562. #endif
  4563. };
  4564. SERIAL_ECHO_START;
  4565. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  4566. if (marlin_debug_flags) {
  4567. uint8_t comma = 0;
  4568. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  4569. if (TEST(marlin_debug_flags, i)) {
  4570. if (comma++) SERIAL_CHAR(',');
  4571. serialprintPGM((char*)pgm_read_word(&(debug_strings[i])));
  4572. }
  4573. }
  4574. }
  4575. else {
  4576. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  4577. }
  4578. SERIAL_EOL;
  4579. }
  4580. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  4581. /**
  4582. * M113: Get or set Host Keepalive interval (0 to disable)
  4583. *
  4584. * S<seconds> Optional. Set the keepalive interval.
  4585. */
  4586. inline void gcode_M113() {
  4587. if (code_seen('S')) {
  4588. host_keepalive_interval = code_value_byte();
  4589. NOMORE(host_keepalive_interval, 60);
  4590. }
  4591. else {
  4592. SERIAL_ECHO_START;
  4593. SERIAL_ECHOLNPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4594. }
  4595. }
  4596. #endif
  4597. #if ENABLED(BARICUDA)
  4598. #if HAS_HEATER_1
  4599. /**
  4600. * M126: Heater 1 valve open
  4601. */
  4602. inline void gcode_M126() { baricuda_valve_pressure = code_seen('S') ? code_value_byte() : 255; }
  4603. /**
  4604. * M127: Heater 1 valve close
  4605. */
  4606. inline void gcode_M127() { baricuda_valve_pressure = 0; }
  4607. #endif
  4608. #if HAS_HEATER_2
  4609. /**
  4610. * M128: Heater 2 valve open
  4611. */
  4612. inline void gcode_M128() { baricuda_e_to_p_pressure = code_seen('S') ? code_value_byte() : 255; }
  4613. /**
  4614. * M129: Heater 2 valve close
  4615. */
  4616. inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
  4617. #endif
  4618. #endif //BARICUDA
  4619. /**
  4620. * M140: Set bed temperature
  4621. */
  4622. inline void gcode_M140() {
  4623. if (DEBUGGING(DRYRUN)) return;
  4624. if (code_seen('S')) thermalManager.setTargetBed(code_value_temp_abs());
  4625. }
  4626. #if ENABLED(ULTIPANEL)
  4627. /**
  4628. * M145: Set the heatup state for a material in the LCD menu
  4629. * S<material> (0=PLA, 1=ABS)
  4630. * H<hotend temp>
  4631. * B<bed temp>
  4632. * F<fan speed>
  4633. */
  4634. inline void gcode_M145() {
  4635. uint8_t material = code_seen('S') ? (uint8_t)code_value_int() : 0;
  4636. if (material >= COUNT(lcd_preheat_hotend_temp)) {
  4637. SERIAL_ERROR_START;
  4638. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  4639. }
  4640. else {
  4641. int v;
  4642. if (code_seen('H')) {
  4643. v = code_value_int();
  4644. lcd_preheat_hotend_temp[material] = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4645. }
  4646. if (code_seen('F')) {
  4647. v = code_value_int();
  4648. lcd_preheat_fan_speed[material] = constrain(v, 0, 255);
  4649. }
  4650. #if TEMP_SENSOR_BED != 0
  4651. if (code_seen('B')) {
  4652. v = code_value_int();
  4653. lcd_preheat_bed_temp[material] = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4654. }
  4655. #endif
  4656. }
  4657. }
  4658. #endif // ULTIPANEL
  4659. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  4660. /**
  4661. * M149: Set temperature units
  4662. */
  4663. inline void gcode_M149() {
  4664. if (code_seen('C')) set_input_temp_units(TEMPUNIT_C);
  4665. else if (code_seen('K')) set_input_temp_units(TEMPUNIT_K);
  4666. else if (code_seen('F')) set_input_temp_units(TEMPUNIT_F);
  4667. }
  4668. #endif
  4669. #if HAS_POWER_SWITCH
  4670. /**
  4671. * M80: Turn on Power Supply
  4672. */
  4673. inline void gcode_M80() {
  4674. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  4675. /**
  4676. * If you have a switch on suicide pin, this is useful
  4677. * if you want to start another print with suicide feature after
  4678. * a print without suicide...
  4679. */
  4680. #if HAS_SUICIDE
  4681. OUT_WRITE(SUICIDE_PIN, HIGH);
  4682. #endif
  4683. #if ENABLED(ULTIPANEL)
  4684. powersupply = true;
  4685. LCD_MESSAGEPGM(WELCOME_MSG);
  4686. lcd_update();
  4687. #endif
  4688. }
  4689. #endif // HAS_POWER_SWITCH
  4690. /**
  4691. * M81: Turn off Power, including Power Supply, if there is one.
  4692. *
  4693. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  4694. */
  4695. inline void gcode_M81() {
  4696. thermalManager.disable_all_heaters();
  4697. stepper.finish_and_disable();
  4698. #if FAN_COUNT > 0
  4699. #if FAN_COUNT > 1
  4700. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  4701. #else
  4702. fanSpeeds[0] = 0;
  4703. #endif
  4704. #endif
  4705. delay(1000); // Wait 1 second before switching off
  4706. #if HAS_SUICIDE
  4707. stepper.synchronize();
  4708. suicide();
  4709. #elif HAS_POWER_SWITCH
  4710. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4711. #endif
  4712. #if ENABLED(ULTIPANEL)
  4713. #if HAS_POWER_SWITCH
  4714. powersupply = false;
  4715. #endif
  4716. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  4717. lcd_update();
  4718. #endif
  4719. }
  4720. /**
  4721. * M82: Set E codes absolute (default)
  4722. */
  4723. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  4724. /**
  4725. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  4726. */
  4727. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  4728. /**
  4729. * M18, M84: Disable all stepper motors
  4730. */
  4731. inline void gcode_M18_M84() {
  4732. if (code_seen('S')) {
  4733. stepper_inactive_time = code_value_millis_from_seconds();
  4734. }
  4735. else {
  4736. bool all_axis = !((code_seen('X')) || (code_seen('Y')) || (code_seen('Z')) || (code_seen('E')));
  4737. if (all_axis) {
  4738. stepper.finish_and_disable();
  4739. }
  4740. else {
  4741. stepper.synchronize();
  4742. if (code_seen('X')) disable_x();
  4743. if (code_seen('Y')) disable_y();
  4744. if (code_seen('Z')) disable_z();
  4745. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4746. if (code_seen('E')) {
  4747. disable_e0();
  4748. disable_e1();
  4749. disable_e2();
  4750. disable_e3();
  4751. }
  4752. #endif
  4753. }
  4754. }
  4755. }
  4756. /**
  4757. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  4758. */
  4759. inline void gcode_M85() {
  4760. if (code_seen('S')) max_inactive_time = code_value_millis_from_seconds();
  4761. }
  4762. /**
  4763. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  4764. * (Follows the same syntax as G92)
  4765. */
  4766. inline void gcode_M92() {
  4767. LOOP_XYZE(i) {
  4768. if (code_seen(axis_codes[i])) {
  4769. if (i == E_AXIS) {
  4770. float value = code_value_per_axis_unit(i);
  4771. if (value < 20.0) {
  4772. float factor = planner.axis_steps_per_mm[i] / value; // increase e constants if M92 E14 is given for netfab.
  4773. planner.max_jerk[E_AXIS] *= factor;
  4774. planner.max_feedrate_mm_s[E_AXIS] *= factor;
  4775. planner.max_acceleration_steps_per_s2[E_AXIS] *= factor;
  4776. }
  4777. planner.axis_steps_per_mm[E_AXIS] = value;
  4778. }
  4779. else {
  4780. planner.axis_steps_per_mm[i] = code_value_per_axis_unit(i);
  4781. }
  4782. }
  4783. }
  4784. planner.refresh_positioning();
  4785. }
  4786. /**
  4787. * Output the current position to serial
  4788. */
  4789. static void report_current_position() {
  4790. SERIAL_PROTOCOLPGM("X:");
  4791. SERIAL_PROTOCOL(current_position[X_AXIS]);
  4792. SERIAL_PROTOCOLPGM(" Y:");
  4793. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  4794. SERIAL_PROTOCOLPGM(" Z:");
  4795. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  4796. SERIAL_PROTOCOLPGM(" E:");
  4797. SERIAL_PROTOCOL(current_position[E_AXIS]);
  4798. stepper.report_positions();
  4799. #if IS_SCARA
  4800. SERIAL_PROTOCOLPAIR("SCARA Theta:", stepper.get_axis_position_degrees(A_AXIS));
  4801. SERIAL_PROTOCOLLNPAIR(" Psi+Theta:", stepper.get_axis_position_degrees(B_AXIS));
  4802. SERIAL_EOL;
  4803. #endif
  4804. }
  4805. /**
  4806. * M114: Output current position to serial port
  4807. */
  4808. inline void gcode_M114() { report_current_position(); }
  4809. /**
  4810. * M115: Capabilities string
  4811. */
  4812. inline void gcode_M115() {
  4813. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  4814. }
  4815. /**
  4816. * M117: Set LCD Status Message
  4817. */
  4818. inline void gcode_M117() {
  4819. lcd_setstatus(current_command_args);
  4820. }
  4821. /**
  4822. * M119: Output endstop states to serial output
  4823. */
  4824. inline void gcode_M119() { endstops.M119(); }
  4825. /**
  4826. * M120: Enable endstops and set non-homing endstop state to "enabled"
  4827. */
  4828. inline void gcode_M120() { endstops.enable_globally(true); }
  4829. /**
  4830. * M121: Disable endstops and set non-homing endstop state to "disabled"
  4831. */
  4832. inline void gcode_M121() { endstops.enable_globally(false); }
  4833. #if ENABLED(BLINKM)
  4834. /**
  4835. * M150: Set Status LED Color - Use R-U-B for R-G-B
  4836. */
  4837. inline void gcode_M150() {
  4838. SendColors(
  4839. code_seen('R') ? code_value_byte() : 0,
  4840. code_seen('U') ? code_value_byte() : 0,
  4841. code_seen('B') ? code_value_byte() : 0
  4842. );
  4843. }
  4844. #endif // BLINKM
  4845. #if ENABLED(EXPERIMENTAL_I2CBUS)
  4846. /**
  4847. * M155: Send data to a I2C slave device
  4848. *
  4849. * This is a PoC, the formating and arguments for the GCODE will
  4850. * change to be more compatible, the current proposal is:
  4851. *
  4852. * M155 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  4853. *
  4854. * M155 B<byte-1 value in base 10>
  4855. * M155 B<byte-2 value in base 10>
  4856. * M155 B<byte-3 value in base 10>
  4857. *
  4858. * M155 S1 ; Send the buffered data and reset the buffer
  4859. * M155 R1 ; Reset the buffer without sending data
  4860. *
  4861. */
  4862. inline void gcode_M155() {
  4863. // Set the target address
  4864. if (code_seen('A')) i2c.address(code_value_byte());
  4865. // Add a new byte to the buffer
  4866. if (code_seen('B')) i2c.addbyte(code_value_byte());
  4867. // Flush the buffer to the bus
  4868. if (code_seen('S')) i2c.send();
  4869. // Reset and rewind the buffer
  4870. else if (code_seen('R')) i2c.reset();
  4871. }
  4872. /**
  4873. * M156: Request X bytes from I2C slave device
  4874. *
  4875. * Usage: M156 A<slave device address base 10> B<number of bytes>
  4876. */
  4877. inline void gcode_M156() {
  4878. if (code_seen('A')) i2c.address(code_value_byte());
  4879. uint8_t bytes = code_seen('B') ? code_value_byte() : 1;
  4880. if (i2c.addr && bytes && bytes <= TWIBUS_BUFFER_SIZE) {
  4881. i2c.relay(bytes);
  4882. }
  4883. else {
  4884. SERIAL_ERROR_START;
  4885. SERIAL_ERRORLN("Bad i2c request");
  4886. }
  4887. }
  4888. #endif // EXPERIMENTAL_I2CBUS
  4889. /**
  4890. * M200: Set filament diameter and set E axis units to cubic units
  4891. *
  4892. * T<extruder> - Optional extruder number. Current extruder if omitted.
  4893. * D<linear> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.
  4894. */
  4895. inline void gcode_M200() {
  4896. if (get_target_extruder_from_command(200)) return;
  4897. if (code_seen('D')) {
  4898. // setting any extruder filament size disables volumetric on the assumption that
  4899. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4900. // for all extruders
  4901. volumetric_enabled = (code_value_linear_units() != 0.0);
  4902. if (volumetric_enabled) {
  4903. filament_size[target_extruder] = code_value_linear_units();
  4904. // make sure all extruders have some sane value for the filament size
  4905. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  4906. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  4907. }
  4908. }
  4909. else {
  4910. //reserved for setting filament diameter via UFID or filament measuring device
  4911. return;
  4912. }
  4913. calculate_volumetric_multipliers();
  4914. }
  4915. /**
  4916. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  4917. */
  4918. inline void gcode_M201() {
  4919. LOOP_XYZE(i) {
  4920. if (code_seen(axis_codes[i])) {
  4921. planner.max_acceleration_mm_per_s2[i] = code_value_axis_units(i);
  4922. }
  4923. }
  4924. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4925. planner.reset_acceleration_rates();
  4926. }
  4927. #if 0 // Not used for Sprinter/grbl gen6
  4928. inline void gcode_M202() {
  4929. LOOP_XYZE(i) {
  4930. if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value_axis_units(i) * planner.axis_steps_per_mm[i];
  4931. }
  4932. }
  4933. #endif
  4934. /**
  4935. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  4936. */
  4937. inline void gcode_M203() {
  4938. LOOP_XYZE(i)
  4939. if (code_seen(axis_codes[i]))
  4940. planner.max_feedrate_mm_s[i] = code_value_axis_units(i);
  4941. }
  4942. /**
  4943. * M204: Set Accelerations in units/sec^2 (M204 P1200 R3000 T3000)
  4944. *
  4945. * P = Printing moves
  4946. * R = Retract only (no X, Y, Z) moves
  4947. * T = Travel (non printing) moves
  4948. *
  4949. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  4950. */
  4951. inline void gcode_M204() {
  4952. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  4953. planner.travel_acceleration = planner.acceleration = code_value_linear_units();
  4954. SERIAL_ECHOLNPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
  4955. }
  4956. if (code_seen('P')) {
  4957. planner.acceleration = code_value_linear_units();
  4958. SERIAL_ECHOLNPAIR("Setting Print Acceleration: ", planner.acceleration);
  4959. }
  4960. if (code_seen('R')) {
  4961. planner.retract_acceleration = code_value_linear_units();
  4962. SERIAL_ECHOLNPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
  4963. }
  4964. if (code_seen('T')) {
  4965. planner.travel_acceleration = code_value_linear_units();
  4966. SERIAL_ECHOLNPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
  4967. }
  4968. }
  4969. /**
  4970. * M205: Set Advanced Settings
  4971. *
  4972. * S = Min Feed Rate (units/s)
  4973. * T = Min Travel Feed Rate (units/s)
  4974. * B = Min Segment Time (µs)
  4975. * X = Max X Jerk (units/sec^2)
  4976. * Y = Max Y Jerk (units/sec^2)
  4977. * Z = Max Z Jerk (units/sec^2)
  4978. * E = Max E Jerk (units/sec^2)
  4979. */
  4980. inline void gcode_M205() {
  4981. if (code_seen('S')) planner.min_feedrate_mm_s = code_value_linear_units();
  4982. if (code_seen('T')) planner.min_travel_feedrate_mm_s = code_value_linear_units();
  4983. if (code_seen('B')) planner.min_segment_time = code_value_millis();
  4984. if (code_seen('X')) planner.max_jerk[X_AXIS] = code_value_axis_units(X_AXIS);
  4985. if (code_seen('Y')) planner.max_jerk[Y_AXIS] = code_value_axis_units(Y_AXIS);
  4986. if (code_seen('Z')) planner.max_jerk[Z_AXIS] = code_value_axis_units(Z_AXIS);
  4987. if (code_seen('E')) planner.max_jerk[E_AXIS] = code_value_axis_units(E_AXIS);
  4988. }
  4989. /**
  4990. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  4991. */
  4992. inline void gcode_M206() {
  4993. LOOP_XYZ(i)
  4994. if (code_seen(axis_codes[i]))
  4995. set_home_offset((AxisEnum)i, code_value_axis_units(i));
  4996. #if ENABLED(MORGAN_SCARA)
  4997. if (code_seen('T')) set_home_offset(A_AXIS, code_value_axis_units(A_AXIS)); // Theta
  4998. if (code_seen('P')) set_home_offset(B_AXIS, code_value_axis_units(B_AXIS)); // Psi
  4999. #endif
  5000. SYNC_PLAN_POSITION_KINEMATIC();
  5001. report_current_position();
  5002. }
  5003. #if ENABLED(DELTA)
  5004. /**
  5005. * M665: Set delta configurations
  5006. *
  5007. * L = diagonal rod
  5008. * R = delta radius
  5009. * S = segments per second
  5010. * A = Alpha (Tower 1) diagonal rod trim
  5011. * B = Beta (Tower 2) diagonal rod trim
  5012. * C = Gamma (Tower 3) diagonal rod trim
  5013. */
  5014. inline void gcode_M665() {
  5015. if (code_seen('L')) delta_diagonal_rod = code_value_linear_units();
  5016. if (code_seen('R')) delta_radius = code_value_linear_units();
  5017. if (code_seen('S')) delta_segments_per_second = code_value_float();
  5018. if (code_seen('A')) delta_diagonal_rod_trim_tower_1 = code_value_linear_units();
  5019. if (code_seen('B')) delta_diagonal_rod_trim_tower_2 = code_value_linear_units();
  5020. if (code_seen('C')) delta_diagonal_rod_trim_tower_3 = code_value_linear_units();
  5021. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  5022. }
  5023. /**
  5024. * M666: Set delta endstop adjustment
  5025. */
  5026. inline void gcode_M666() {
  5027. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5028. if (DEBUGGING(LEVELING)) {
  5029. SERIAL_ECHOLNPGM(">>> gcode_M666");
  5030. }
  5031. #endif
  5032. LOOP_XYZ(i) {
  5033. if (code_seen(axis_codes[i])) {
  5034. endstop_adj[i] = code_value_axis_units(i);
  5035. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5036. if (DEBUGGING(LEVELING)) {
  5037. SERIAL_ECHOPAIR("endstop_adj[", axis_codes[i]);
  5038. SERIAL_ECHOLNPAIR("] = ", endstop_adj[i]);
  5039. }
  5040. #endif
  5041. }
  5042. }
  5043. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5044. if (DEBUGGING(LEVELING)) {
  5045. SERIAL_ECHOLNPGM("<<< gcode_M666");
  5046. }
  5047. #endif
  5048. }
  5049. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  5050. /**
  5051. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  5052. */
  5053. inline void gcode_M666() {
  5054. if (code_seen('Z')) z_endstop_adj = code_value_axis_units(Z_AXIS);
  5055. SERIAL_ECHOLNPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  5056. }
  5057. #endif // !DELTA && Z_DUAL_ENDSTOPS
  5058. #if ENABLED(FWRETRACT)
  5059. /**
  5060. * M207: Set firmware retraction values
  5061. *
  5062. * S[+units] retract_length
  5063. * W[+units] retract_length_swap (multi-extruder)
  5064. * F[units/min] retract_feedrate_mm_s
  5065. * Z[units] retract_zlift
  5066. */
  5067. inline void gcode_M207() {
  5068. if (code_seen('S')) retract_length = code_value_axis_units(E_AXIS);
  5069. if (code_seen('F')) retract_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  5070. if (code_seen('Z')) retract_zlift = code_value_axis_units(Z_AXIS);
  5071. #if EXTRUDERS > 1
  5072. if (code_seen('W')) retract_length_swap = code_value_axis_units(E_AXIS);
  5073. #endif
  5074. }
  5075. /**
  5076. * M208: Set firmware un-retraction values
  5077. *
  5078. * S[+units] retract_recover_length (in addition to M207 S*)
  5079. * W[+units] retract_recover_length_swap (multi-extruder)
  5080. * F[units/min] retract_recover_feedrate_mm_s
  5081. */
  5082. inline void gcode_M208() {
  5083. if (code_seen('S')) retract_recover_length = code_value_axis_units(E_AXIS);
  5084. if (code_seen('F')) retract_recover_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  5085. #if EXTRUDERS > 1
  5086. if (code_seen('W')) retract_recover_length_swap = code_value_axis_units(E_AXIS);
  5087. #endif
  5088. }
  5089. /**
  5090. * M209: Enable automatic retract (M209 S1)
  5091. * For slicers that don't support G10/11, reversed extrude-only
  5092. * moves will be classified as retraction.
  5093. */
  5094. inline void gcode_M209() {
  5095. if (code_seen('S')) {
  5096. autoretract_enabled = code_value_bool();
  5097. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  5098. }
  5099. }
  5100. #endif // FWRETRACT
  5101. /**
  5102. * M211: Enable, Disable, and/or Report software endstops
  5103. *
  5104. * Usage: M211 S1 to enable, M211 S0 to disable, M211 alone for report
  5105. */
  5106. inline void gcode_M211() {
  5107. SERIAL_ECHO_START;
  5108. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  5109. if (code_seen('S')) soft_endstops_enabled = code_value_bool();
  5110. #endif
  5111. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  5112. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  5113. serialprintPGM(soft_endstops_enabled ? PSTR(MSG_ON) : PSTR(MSG_OFF));
  5114. #else
  5115. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  5116. SERIAL_ECHOPGM(MSG_OFF);
  5117. #endif
  5118. SERIAL_ECHOPGM(MSG_SOFT_MIN);
  5119. SERIAL_ECHOPAIR( MSG_X, soft_endstop_min[X_AXIS]);
  5120. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_min[Y_AXIS]);
  5121. SERIAL_ECHOPAIR(" " MSG_Z, soft_endstop_min[Z_AXIS]);
  5122. SERIAL_ECHOPGM(MSG_SOFT_MAX);
  5123. SERIAL_ECHOPAIR( MSG_X, soft_endstop_max[X_AXIS]);
  5124. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_max[Y_AXIS]);
  5125. SERIAL_ECHOLNPAIR(" " MSG_Z, soft_endstop_max[Z_AXIS]);
  5126. }
  5127. #if HOTENDS > 1
  5128. /**
  5129. * M218 - set hotend offset (in linear units)
  5130. *
  5131. * T<tool>
  5132. * X<xoffset>
  5133. * Y<yoffset>
  5134. * Z<zoffset> - Available with DUAL_X_CARRIAGE and SWITCHING_EXTRUDER
  5135. */
  5136. inline void gcode_M218() {
  5137. if (get_target_extruder_from_command(218) || target_extruder == 0) return;
  5138. if (code_seen('X')) hotend_offset[X_AXIS][target_extruder] = code_value_axis_units(X_AXIS);
  5139. if (code_seen('Y')) hotend_offset[Y_AXIS][target_extruder] = code_value_axis_units(Y_AXIS);
  5140. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  5141. if (code_seen('Z')) hotend_offset[Z_AXIS][target_extruder] = code_value_axis_units(Z_AXIS);
  5142. #endif
  5143. SERIAL_ECHO_START;
  5144. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  5145. HOTEND_LOOP() {
  5146. SERIAL_CHAR(' ');
  5147. SERIAL_ECHO(hotend_offset[X_AXIS][e]);
  5148. SERIAL_CHAR(',');
  5149. SERIAL_ECHO(hotend_offset[Y_AXIS][e]);
  5150. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  5151. SERIAL_CHAR(',');
  5152. SERIAL_ECHO(hotend_offset[Z_AXIS][e]);
  5153. #endif
  5154. }
  5155. SERIAL_EOL;
  5156. }
  5157. #endif // HOTENDS > 1
  5158. /**
  5159. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  5160. */
  5161. inline void gcode_M220() {
  5162. if (code_seen('S')) feedrate_percentage = code_value_int();
  5163. }
  5164. /**
  5165. * M221: Set extrusion percentage (M221 T0 S95)
  5166. */
  5167. inline void gcode_M221() {
  5168. if (get_target_extruder_from_command(221)) return;
  5169. if (code_seen('S'))
  5170. flow_percentage[target_extruder] = code_value_int();
  5171. }
  5172. /**
  5173. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  5174. */
  5175. inline void gcode_M226() {
  5176. if (code_seen('P')) {
  5177. int pin_number = code_value_int(),
  5178. pin_state = code_seen('S') ? code_value_int() : -1; // required pin state - default is inverted
  5179. if (pin_state >= -1 && pin_state <= 1 && pin_number > -1 && !pin_is_protected(pin_number)) {
  5180. int target = LOW;
  5181. stepper.synchronize();
  5182. pinMode(pin_number, INPUT);
  5183. switch (pin_state) {
  5184. case 1:
  5185. target = HIGH;
  5186. break;
  5187. case 0:
  5188. target = LOW;
  5189. break;
  5190. case -1:
  5191. target = !digitalRead(pin_number);
  5192. break;
  5193. }
  5194. while (digitalRead(pin_number) != target) idle();
  5195. } // pin_state -1 0 1 && pin_number > -1
  5196. } // code_seen('P')
  5197. }
  5198. #if HAS_SERVOS
  5199. /**
  5200. * M280: Get or set servo position. P<index> [S<angle>]
  5201. */
  5202. inline void gcode_M280() {
  5203. if (!code_seen('P')) return;
  5204. int servo_index = code_value_int();
  5205. if (servo_index >= 0 && servo_index < NUM_SERVOS) {
  5206. if (code_seen('S'))
  5207. MOVE_SERVO(servo_index, code_value_int());
  5208. else {
  5209. SERIAL_ECHO_START;
  5210. SERIAL_ECHOPAIR(" Servo ", servo_index);
  5211. SERIAL_ECHOLNPAIR(": ", servo[servo_index].read());
  5212. }
  5213. }
  5214. else {
  5215. SERIAL_ERROR_START;
  5216. SERIAL_ECHOPAIR("Servo ", servo_index);
  5217. SERIAL_ECHOLNPGM(" out of range");
  5218. }
  5219. }
  5220. #endif // HAS_SERVOS
  5221. #if HAS_BUZZER
  5222. /**
  5223. * M300: Play beep sound S<frequency Hz> P<duration ms>
  5224. */
  5225. inline void gcode_M300() {
  5226. uint16_t const frequency = code_seen('S') ? code_value_ushort() : 260;
  5227. uint16_t duration = code_seen('P') ? code_value_ushort() : 1000;
  5228. // Limits the tone duration to 0-5 seconds.
  5229. NOMORE(duration, 5000);
  5230. BUZZ(duration, frequency);
  5231. }
  5232. #endif // HAS_BUZZER
  5233. #if ENABLED(PIDTEMP)
  5234. /**
  5235. * M301: Set PID parameters P I D (and optionally C, L)
  5236. *
  5237. * P[float] Kp term
  5238. * I[float] Ki term (unscaled)
  5239. * D[float] Kd term (unscaled)
  5240. *
  5241. * With PID_EXTRUSION_SCALING:
  5242. *
  5243. * C[float] Kc term
  5244. * L[float] LPQ length
  5245. */
  5246. inline void gcode_M301() {
  5247. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  5248. // default behaviour (omitting E parameter) is to update for extruder 0 only
  5249. int e = code_seen('E') ? code_value_int() : 0; // extruder being updated
  5250. if (e < HOTENDS) { // catch bad input value
  5251. if (code_seen('P')) PID_PARAM(Kp, e) = code_value_float();
  5252. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value_float());
  5253. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value_float());
  5254. #if ENABLED(PID_EXTRUSION_SCALING)
  5255. if (code_seen('C')) PID_PARAM(Kc, e) = code_value_float();
  5256. if (code_seen('L')) lpq_len = code_value_float();
  5257. NOMORE(lpq_len, LPQ_MAX_LEN);
  5258. #endif
  5259. thermalManager.updatePID();
  5260. SERIAL_ECHO_START;
  5261. #if ENABLED(PID_PARAMS_PER_HOTEND)
  5262. SERIAL_ECHOPAIR(" e:", e); // specify extruder in serial output
  5263. #endif // PID_PARAMS_PER_HOTEND
  5264. SERIAL_ECHOPAIR(" p:", PID_PARAM(Kp, e));
  5265. SERIAL_ECHOPAIR(" i:", unscalePID_i(PID_PARAM(Ki, e)));
  5266. SERIAL_ECHOPAIR(" d:", unscalePID_d(PID_PARAM(Kd, e)));
  5267. #if ENABLED(PID_EXTRUSION_SCALING)
  5268. //Kc does not have scaling applied above, or in resetting defaults
  5269. SERIAL_ECHOPAIR(" c:", PID_PARAM(Kc, e));
  5270. #endif
  5271. SERIAL_EOL;
  5272. }
  5273. else {
  5274. SERIAL_ERROR_START;
  5275. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  5276. }
  5277. }
  5278. #endif // PIDTEMP
  5279. #if ENABLED(PIDTEMPBED)
  5280. inline void gcode_M304() {
  5281. if (code_seen('P')) thermalManager.bedKp = code_value_float();
  5282. if (code_seen('I')) thermalManager.bedKi = scalePID_i(code_value_float());
  5283. if (code_seen('D')) thermalManager.bedKd = scalePID_d(code_value_float());
  5284. thermalManager.updatePID();
  5285. SERIAL_ECHO_START;
  5286. SERIAL_ECHOPAIR(" p:", thermalManager.bedKp);
  5287. SERIAL_ECHOPAIR(" i:", unscalePID_i(thermalManager.bedKi));
  5288. SERIAL_ECHOLNPAIR(" d:", unscalePID_d(thermalManager.bedKd));
  5289. }
  5290. #endif // PIDTEMPBED
  5291. #if defined(CHDK) || HAS_PHOTOGRAPH
  5292. /**
  5293. * M240: Trigger a camera by emulating a Canon RC-1
  5294. * See http://www.doc-diy.net/photo/rc-1_hacked/
  5295. */
  5296. inline void gcode_M240() {
  5297. #ifdef CHDK
  5298. OUT_WRITE(CHDK, HIGH);
  5299. chdkHigh = millis();
  5300. chdkActive = true;
  5301. #elif HAS_PHOTOGRAPH
  5302. const uint8_t NUM_PULSES = 16;
  5303. const float PULSE_LENGTH = 0.01524;
  5304. for (int i = 0; i < NUM_PULSES; i++) {
  5305. WRITE(PHOTOGRAPH_PIN, HIGH);
  5306. _delay_ms(PULSE_LENGTH);
  5307. WRITE(PHOTOGRAPH_PIN, LOW);
  5308. _delay_ms(PULSE_LENGTH);
  5309. }
  5310. delay(7.33);
  5311. for (int i = 0; i < NUM_PULSES; i++) {
  5312. WRITE(PHOTOGRAPH_PIN, HIGH);
  5313. _delay_ms(PULSE_LENGTH);
  5314. WRITE(PHOTOGRAPH_PIN, LOW);
  5315. _delay_ms(PULSE_LENGTH);
  5316. }
  5317. #endif // !CHDK && HAS_PHOTOGRAPH
  5318. }
  5319. #endif // CHDK || PHOTOGRAPH_PIN
  5320. #if HAS_LCD_CONTRAST
  5321. /**
  5322. * M250: Read and optionally set the LCD contrast
  5323. */
  5324. inline void gcode_M250() {
  5325. if (code_seen('C')) set_lcd_contrast(code_value_int());
  5326. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  5327. SERIAL_PROTOCOL(lcd_contrast);
  5328. SERIAL_EOL;
  5329. }
  5330. #endif // HAS_LCD_CONTRAST
  5331. #if ENABLED(PREVENT_COLD_EXTRUSION)
  5332. /**
  5333. * M302: Allow cold extrudes, or set the minimum extrude temperature
  5334. *
  5335. * S<temperature> sets the minimum extrude temperature
  5336. * P<bool> enables (1) or disables (0) cold extrusion
  5337. *
  5338. * Examples:
  5339. *
  5340. * M302 ; report current cold extrusion state
  5341. * M302 P0 ; enable cold extrusion checking
  5342. * M302 P1 ; disables cold extrusion checking
  5343. * M302 S0 ; always allow extrusion (disables checking)
  5344. * M302 S170 ; only allow extrusion above 170
  5345. * M302 S170 P1 ; set min extrude temp to 170 but leave disabled
  5346. */
  5347. inline void gcode_M302() {
  5348. bool seen_S = code_seen('S');
  5349. if (seen_S) {
  5350. thermalManager.extrude_min_temp = code_value_temp_abs();
  5351. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0);
  5352. }
  5353. if (code_seen('P'))
  5354. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0) || code_value_bool();
  5355. else if (!seen_S) {
  5356. // Report current state
  5357. SERIAL_ECHO_START;
  5358. SERIAL_ECHOPAIR("Cold extrudes are ", (thermalManager.allow_cold_extrude ? "en" : "dis"));
  5359. SERIAL_ECHOPAIR("abled (min temp ", int(thermalManager.extrude_min_temp + 0.5));
  5360. SERIAL_ECHOLNPGM("C)");
  5361. }
  5362. }
  5363. #endif // PREVENT_COLD_EXTRUSION
  5364. /**
  5365. * M303: PID relay autotune
  5366. *
  5367. * S<temperature> sets the target temperature. (default 150C)
  5368. * E<extruder> (-1 for the bed) (default 0)
  5369. * C<cycles>
  5370. * U<bool> with a non-zero value will apply the result to current settings
  5371. */
  5372. inline void gcode_M303() {
  5373. #if HAS_PID_HEATING
  5374. int e = code_seen('E') ? code_value_int() : 0;
  5375. int c = code_seen('C') ? code_value_int() : 5;
  5376. bool u = code_seen('U') && code_value_bool();
  5377. float temp = code_seen('S') ? code_value_temp_abs() : (e < 0 ? 70.0 : 150.0);
  5378. if (e >= 0 && e < HOTENDS)
  5379. target_extruder = e;
  5380. KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
  5381. thermalManager.PID_autotune(temp, e, c, u);
  5382. KEEPALIVE_STATE(IN_HANDLER);
  5383. #else
  5384. SERIAL_ERROR_START;
  5385. SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
  5386. #endif
  5387. }
  5388. #if ENABLED(MORGAN_SCARA)
  5389. bool SCARA_move_to_cal(uint8_t delta_a, uint8_t delta_b) {
  5390. if (IsRunning()) {
  5391. forward_kinematics_SCARA(delta_a, delta_b);
  5392. destination[X_AXIS] = LOGICAL_X_POSITION(cartes[X_AXIS]);
  5393. destination[Y_AXIS] = LOGICAL_Y_POSITION(cartes[Y_AXIS]);
  5394. destination[Z_AXIS] = current_position[Z_AXIS];
  5395. prepare_move_to_destination();
  5396. return true;
  5397. }
  5398. return false;
  5399. }
  5400. /**
  5401. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  5402. */
  5403. inline bool gcode_M360() {
  5404. SERIAL_ECHOLNPGM(" Cal: Theta 0");
  5405. return SCARA_move_to_cal(0, 120);
  5406. }
  5407. /**
  5408. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  5409. */
  5410. inline bool gcode_M361() {
  5411. SERIAL_ECHOLNPGM(" Cal: Theta 90");
  5412. return SCARA_move_to_cal(90, 130);
  5413. }
  5414. /**
  5415. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  5416. */
  5417. inline bool gcode_M362() {
  5418. SERIAL_ECHOLNPGM(" Cal: Psi 0");
  5419. return SCARA_move_to_cal(60, 180);
  5420. }
  5421. /**
  5422. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  5423. */
  5424. inline bool gcode_M363() {
  5425. SERIAL_ECHOLNPGM(" Cal: Psi 90");
  5426. return SCARA_move_to_cal(50, 90);
  5427. }
  5428. /**
  5429. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  5430. */
  5431. inline bool gcode_M364() {
  5432. SERIAL_ECHOLNPGM(" Cal: Theta-Psi 90");
  5433. return SCARA_move_to_cal(45, 135);
  5434. }
  5435. #endif // SCARA
  5436. #if ENABLED(EXT_SOLENOID)
  5437. void enable_solenoid(uint8_t num) {
  5438. switch (num) {
  5439. case 0:
  5440. OUT_WRITE(SOL0_PIN, HIGH);
  5441. break;
  5442. #if HAS_SOLENOID_1
  5443. case 1:
  5444. OUT_WRITE(SOL1_PIN, HIGH);
  5445. break;
  5446. #endif
  5447. #if HAS_SOLENOID_2
  5448. case 2:
  5449. OUT_WRITE(SOL2_PIN, HIGH);
  5450. break;
  5451. #endif
  5452. #if HAS_SOLENOID_3
  5453. case 3:
  5454. OUT_WRITE(SOL3_PIN, HIGH);
  5455. break;
  5456. #endif
  5457. default:
  5458. SERIAL_ECHO_START;
  5459. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  5460. break;
  5461. }
  5462. }
  5463. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  5464. void disable_all_solenoids() {
  5465. OUT_WRITE(SOL0_PIN, LOW);
  5466. OUT_WRITE(SOL1_PIN, LOW);
  5467. OUT_WRITE(SOL2_PIN, LOW);
  5468. OUT_WRITE(SOL3_PIN, LOW);
  5469. }
  5470. /**
  5471. * M380: Enable solenoid on the active extruder
  5472. */
  5473. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  5474. /**
  5475. * M381: Disable all solenoids
  5476. */
  5477. inline void gcode_M381() { disable_all_solenoids(); }
  5478. #endif // EXT_SOLENOID
  5479. /**
  5480. * M400: Finish all moves
  5481. */
  5482. inline void gcode_M400() { stepper.synchronize(); }
  5483. #if HAS_BED_PROBE
  5484. /**
  5485. * M401: Engage Z Servo endstop if available
  5486. */
  5487. inline void gcode_M401() { DEPLOY_PROBE(); }
  5488. /**
  5489. * M402: Retract Z Servo endstop if enabled
  5490. */
  5491. inline void gcode_M402() { STOW_PROBE(); }
  5492. #endif // HAS_BED_PROBE
  5493. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  5494. /**
  5495. * M404: Display or set (in current units) the nominal filament width (3mm, 1.75mm ) W<3.0>
  5496. */
  5497. inline void gcode_M404() {
  5498. if (code_seen('W')) {
  5499. filament_width_nominal = code_value_linear_units();
  5500. }
  5501. else {
  5502. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  5503. SERIAL_PROTOCOLLN(filament_width_nominal);
  5504. }
  5505. }
  5506. /**
  5507. * M405: Turn on filament sensor for control
  5508. */
  5509. inline void gcode_M405() {
  5510. // This is technically a linear measurement, but since it's quantized to centimeters and is a different unit than
  5511. // everything else, it uses code_value_int() instead of code_value_linear_units().
  5512. if (code_seen('D')) meas_delay_cm = code_value_int();
  5513. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  5514. if (filwidth_delay_index[1] == -1) { // Initialize the ring buffer if not done since startup
  5515. int temp_ratio = thermalManager.widthFil_to_size_ratio();
  5516. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  5517. measurement_delay[i] = temp_ratio - 100; // Subtract 100 to scale within a signed byte
  5518. filwidth_delay_index[0] = filwidth_delay_index[1] = 0;
  5519. }
  5520. filament_sensor = true;
  5521. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5522. //SERIAL_PROTOCOL(filament_width_meas);
  5523. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  5524. //SERIAL_PROTOCOL(flow_percentage[active_extruder]);
  5525. }
  5526. /**
  5527. * M406: Turn off filament sensor for control
  5528. */
  5529. inline void gcode_M406() { filament_sensor = false; }
  5530. /**
  5531. * M407: Get measured filament diameter on serial output
  5532. */
  5533. inline void gcode_M407() {
  5534. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5535. SERIAL_PROTOCOLLN(filament_width_meas);
  5536. }
  5537. #endif // FILAMENT_WIDTH_SENSOR
  5538. void quickstop_stepper() {
  5539. stepper.quick_stop();
  5540. stepper.synchronize();
  5541. set_current_from_steppers_for_axis(ALL_AXES);
  5542. SYNC_PLAN_POSITION_KINEMATIC();
  5543. }
  5544. #if PLANNER_LEVELING
  5545. /**
  5546. * M420: Enable/Disable Bed Leveling
  5547. */
  5548. inline void gcode_M420() { if (code_seen('S')) set_bed_leveling_enabled(code_value_bool()); }
  5549. #endif
  5550. #if ENABLED(MESH_BED_LEVELING)
  5551. /**
  5552. * M421: Set a single Mesh Bed Leveling Z coordinate
  5553. * Use either 'M421 X<linear> Y<linear> Z<linear>' or 'M421 I<xindex> J<yindex> Z<linear>'
  5554. */
  5555. inline void gcode_M421() {
  5556. int8_t px = 0, py = 0;
  5557. float z = 0;
  5558. bool hasX, hasY, hasZ, hasI, hasJ;
  5559. if ((hasX = code_seen('X'))) px = mbl.probe_index_x(code_value_axis_units(X_AXIS));
  5560. if ((hasY = code_seen('Y'))) py = mbl.probe_index_y(code_value_axis_units(Y_AXIS));
  5561. if ((hasI = code_seen('I'))) px = code_value_axis_units(X_AXIS);
  5562. if ((hasJ = code_seen('J'))) py = code_value_axis_units(Y_AXIS);
  5563. if ((hasZ = code_seen('Z'))) z = code_value_axis_units(Z_AXIS);
  5564. if (hasX && hasY && hasZ) {
  5565. if (px >= 0 && py >= 0)
  5566. mbl.set_z(px, py, z);
  5567. else {
  5568. SERIAL_ERROR_START;
  5569. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5570. }
  5571. }
  5572. else if (hasI && hasJ && hasZ) {
  5573. if (px >= 0 && px < MESH_NUM_X_POINTS && py >= 0 && py < MESH_NUM_Y_POINTS)
  5574. mbl.set_z(px, py, z);
  5575. else {
  5576. SERIAL_ERROR_START;
  5577. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5578. }
  5579. }
  5580. else {
  5581. SERIAL_ERROR_START;
  5582. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  5583. }
  5584. }
  5585. #endif
  5586. /**
  5587. * M428: Set home_offset based on the distance between the
  5588. * current_position and the nearest "reference point."
  5589. * If an axis is past center its endstop position
  5590. * is the reference-point. Otherwise it uses 0. This allows
  5591. * the Z offset to be set near the bed when using a max endstop.
  5592. *
  5593. * M428 can't be used more than 2cm away from 0 or an endstop.
  5594. *
  5595. * Use M206 to set these values directly.
  5596. */
  5597. inline void gcode_M428() {
  5598. bool err = false;
  5599. LOOP_XYZ(i) {
  5600. if (axis_homed[i]) {
  5601. float base = (current_position[i] > (soft_endstop_min[i] + soft_endstop_max[i]) * 0.5) ? base_home_pos(i) : 0,
  5602. diff = current_position[i] - LOGICAL_POSITION(base, i);
  5603. if (diff > -20 && diff < 20) {
  5604. set_home_offset((AxisEnum)i, home_offset[i] - diff);
  5605. }
  5606. else {
  5607. SERIAL_ERROR_START;
  5608. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  5609. LCD_ALERTMESSAGEPGM("Err: Too far!");
  5610. BUZZ(200, 40);
  5611. err = true;
  5612. break;
  5613. }
  5614. }
  5615. }
  5616. if (!err) {
  5617. SYNC_PLAN_POSITION_KINEMATIC();
  5618. report_current_position();
  5619. LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  5620. BUZZ(200, 659);
  5621. BUZZ(200, 698);
  5622. }
  5623. }
  5624. /**
  5625. * M500: Store settings in EEPROM
  5626. */
  5627. inline void gcode_M500() {
  5628. Config_StoreSettings();
  5629. }
  5630. /**
  5631. * M501: Read settings from EEPROM
  5632. */
  5633. inline void gcode_M501() {
  5634. Config_RetrieveSettings();
  5635. }
  5636. /**
  5637. * M502: Revert to default settings
  5638. */
  5639. inline void gcode_M502() {
  5640. Config_ResetDefault();
  5641. }
  5642. /**
  5643. * M503: print settings currently in memory
  5644. */
  5645. inline void gcode_M503() {
  5646. Config_PrintSettings(code_seen('S') && !code_value_bool());
  5647. }
  5648. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  5649. /**
  5650. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  5651. */
  5652. inline void gcode_M540() {
  5653. if (code_seen('S')) stepper.abort_on_endstop_hit = code_value_bool();
  5654. }
  5655. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5656. #if HAS_BED_PROBE
  5657. inline void gcode_M851() {
  5658. SERIAL_ECHO_START;
  5659. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  5660. SERIAL_CHAR(' ');
  5661. if (code_seen('Z')) {
  5662. float value = code_value_axis_units(Z_AXIS);
  5663. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  5664. zprobe_zoffset = value;
  5665. SERIAL_ECHO(zprobe_zoffset);
  5666. }
  5667. else {
  5668. SERIAL_ECHOPAIR(MSG_Z_MIN, Z_PROBE_OFFSET_RANGE_MIN);
  5669. SERIAL_CHAR(' ');
  5670. SERIAL_ECHOPAIR(MSG_Z_MAX, Z_PROBE_OFFSET_RANGE_MAX);
  5671. }
  5672. }
  5673. else {
  5674. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  5675. }
  5676. SERIAL_EOL;
  5677. }
  5678. #endif // HAS_BED_PROBE
  5679. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  5680. /**
  5681. * M600: Pause for filament change
  5682. *
  5683. * E[distance] - Retract the filament this far (negative value)
  5684. * Z[distance] - Move the Z axis by this distance
  5685. * X[position] - Move to this X position, with Y
  5686. * Y[position] - Move to this Y position, with X
  5687. * L[distance] - Retract distance for removal (manual reload)
  5688. *
  5689. * Default values are used for omitted arguments.
  5690. *
  5691. */
  5692. inline void gcode_M600() {
  5693. if (thermalManager.tooColdToExtrude(active_extruder)) {
  5694. SERIAL_ERROR_START;
  5695. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  5696. return;
  5697. }
  5698. // Show initial message and wait for synchronize steppers
  5699. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INIT);
  5700. stepper.synchronize();
  5701. float lastpos[NUM_AXIS];
  5702. // Save current position of all axes
  5703. LOOP_XYZE(i)
  5704. lastpos[i] = destination[i] = current_position[i];
  5705. // Define runplan for move axes
  5706. #if IS_KINEMATIC
  5707. #define RUNPLAN(RATE_MM_S) planner.buffer_line_kinematic(destination, RATE_MM_S, active_extruder);
  5708. #else
  5709. #define RUNPLAN(RATE_MM_S) line_to_destination(RATE_MM_S);
  5710. #endif
  5711. KEEPALIVE_STATE(IN_HANDLER);
  5712. // Initial retract before move to filament change position
  5713. if (code_seen('E')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  5714. #if defined(FILAMENT_CHANGE_RETRACT_LENGTH) && FILAMENT_CHANGE_RETRACT_LENGTH > 0
  5715. else destination[E_AXIS] -= FILAMENT_CHANGE_RETRACT_LENGTH;
  5716. #endif
  5717. RUNPLAN(FILAMENT_CHANGE_RETRACT_FEEDRATE);
  5718. // Lift Z axis
  5719. float z_lift = code_seen('Z') ? code_value_axis_units(Z_AXIS) :
  5720. #if defined(FILAMENT_CHANGE_Z_ADD) && FILAMENT_CHANGE_Z_ADD > 0
  5721. FILAMENT_CHANGE_Z_ADD
  5722. #else
  5723. 0
  5724. #endif
  5725. ;
  5726. if (z_lift > 0) {
  5727. destination[Z_AXIS] += z_lift;
  5728. NOMORE(destination[Z_AXIS], Z_MAX_POS);
  5729. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  5730. }
  5731. // Move XY axes to filament exchange position
  5732. if (code_seen('X')) destination[X_AXIS] = code_value_axis_units(X_AXIS);
  5733. #ifdef FILAMENT_CHANGE_X_POS
  5734. else destination[X_AXIS] = FILAMENT_CHANGE_X_POS;
  5735. #endif
  5736. if (code_seen('Y')) destination[Y_AXIS] = code_value_axis_units(Y_AXIS);
  5737. #ifdef FILAMENT_CHANGE_Y_POS
  5738. else destination[Y_AXIS] = FILAMENT_CHANGE_Y_POS;
  5739. #endif
  5740. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  5741. stepper.synchronize();
  5742. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_UNLOAD);
  5743. // Unload filament
  5744. if (code_seen('L')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  5745. #if defined(FILAMENT_CHANGE_UNLOAD_LENGTH) && FILAMENT_CHANGE_UNLOAD_LENGTH > 0
  5746. else destination[E_AXIS] -= FILAMENT_CHANGE_UNLOAD_LENGTH;
  5747. #endif
  5748. RUNPLAN(FILAMENT_CHANGE_UNLOAD_FEEDRATE);
  5749. // Synchronize steppers and then disable extruders steppers for manual filament changing
  5750. stepper.synchronize();
  5751. disable_e0();
  5752. disable_e1();
  5753. disable_e2();
  5754. disable_e3();
  5755. delay(100);
  5756. #if HAS_BUZZER
  5757. millis_t next_buzz = 0;
  5758. #endif
  5759. // Wait for filament insert by user and press button
  5760. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INSERT);
  5761. // LCD click or M108 will clear this
  5762. wait_for_user = true;
  5763. while (wait_for_user) {
  5764. #if HAS_BUZZER
  5765. millis_t ms = millis();
  5766. if (ms >= next_buzz) {
  5767. BUZZ(300, 2000);
  5768. next_buzz = ms + 2500; // Beep every 2.5s while waiting
  5769. }
  5770. #endif
  5771. idle(true);
  5772. }
  5773. // Show load message
  5774. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_LOAD);
  5775. // Load filament
  5776. if (code_seen('L')) destination[E_AXIS] -= code_value_axis_units(E_AXIS);
  5777. #if defined(FILAMENT_CHANGE_LOAD_LENGTH) && FILAMENT_CHANGE_LOAD_LENGTH > 0
  5778. else destination[E_AXIS] += FILAMENT_CHANGE_LOAD_LENGTH;
  5779. #endif
  5780. RUNPLAN(FILAMENT_CHANGE_LOAD_FEEDRATE);
  5781. stepper.synchronize();
  5782. #if defined(FILAMENT_CHANGE_EXTRUDE_LENGTH) && FILAMENT_CHANGE_EXTRUDE_LENGTH > 0
  5783. do {
  5784. // Extrude filament to get into hotend
  5785. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_EXTRUDE);
  5786. destination[E_AXIS] += FILAMENT_CHANGE_EXTRUDE_LENGTH;
  5787. RUNPLAN(FILAMENT_CHANGE_EXTRUDE_FEEDRATE);
  5788. stepper.synchronize();
  5789. // Ask user if more filament should be extruded
  5790. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5791. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_OPTION);
  5792. while (filament_change_menu_response == FILAMENT_CHANGE_RESPONSE_WAIT_FOR) idle(true);
  5793. KEEPALIVE_STATE(IN_HANDLER);
  5794. } while (filament_change_menu_response != FILAMENT_CHANGE_RESPONSE_RESUME_PRINT);
  5795. #endif
  5796. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_RESUME);
  5797. KEEPALIVE_STATE(IN_HANDLER);
  5798. // Set extruder to saved position
  5799. destination[E_AXIS] = current_position[E_AXIS] = lastpos[E_AXIS];
  5800. planner.set_e_position_mm(current_position[E_AXIS]);
  5801. #if IS_KINEMATIC
  5802. // Move XYZ to starting position
  5803. planner.buffer_line_kinematic(lastpos, FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  5804. #else
  5805. // Move XY to starting position, then Z
  5806. destination[X_AXIS] = lastpos[X_AXIS];
  5807. destination[Y_AXIS] = lastpos[Y_AXIS];
  5808. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  5809. destination[Z_AXIS] = lastpos[Z_AXIS];
  5810. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  5811. #endif
  5812. stepper.synchronize();
  5813. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  5814. filament_ran_out = false;
  5815. #endif
  5816. // Show status screen
  5817. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_STATUS);
  5818. }
  5819. #endif // FILAMENT_CHANGE_FEATURE
  5820. #if ENABLED(DUAL_X_CARRIAGE)
  5821. /**
  5822. * M605: Set dual x-carriage movement mode
  5823. *
  5824. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  5825. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  5826. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  5827. * units x-offset and an optional differential hotend temperature of
  5828. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  5829. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  5830. *
  5831. * Note: the X axis should be homed after changing dual x-carriage mode.
  5832. */
  5833. inline void gcode_M605() {
  5834. stepper.synchronize();
  5835. if (code_seen('S')) dual_x_carriage_mode = code_value_byte();
  5836. switch (dual_x_carriage_mode) {
  5837. case DXC_DUPLICATION_MODE:
  5838. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value_axis_units(X_AXIS), X2_MIN_POS - x_home_pos(0));
  5839. if (code_seen('R')) duplicate_extruder_temp_offset = code_value_temp_diff();
  5840. SERIAL_ECHO_START;
  5841. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  5842. SERIAL_CHAR(' ');
  5843. SERIAL_ECHO(hotend_offset[X_AXIS][0]);
  5844. SERIAL_CHAR(',');
  5845. SERIAL_ECHO(hotend_offset[Y_AXIS][0]);
  5846. SERIAL_CHAR(' ');
  5847. SERIAL_ECHO(duplicate_extruder_x_offset);
  5848. SERIAL_CHAR(',');
  5849. SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]);
  5850. break;
  5851. case DXC_FULL_CONTROL_MODE:
  5852. case DXC_AUTO_PARK_MODE:
  5853. break;
  5854. default:
  5855. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  5856. break;
  5857. }
  5858. active_extruder_parked = false;
  5859. extruder_duplication_enabled = false;
  5860. delayed_move_time = 0;
  5861. }
  5862. #elif ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  5863. inline void gcode_M605() {
  5864. stepper.synchronize();
  5865. extruder_duplication_enabled = code_seen('S') && code_value_int() == 2;
  5866. SERIAL_ECHO_START;
  5867. SERIAL_ECHOLNPAIR(MSG_DUPLICATION_MODE, extruder_duplication_enabled ? MSG_ON : MSG_OFF);
  5868. }
  5869. #endif // M605
  5870. #if ENABLED(LIN_ADVANCE)
  5871. /**
  5872. * M905: Set advance factor
  5873. */
  5874. inline void gcode_M905() {
  5875. stepper.synchronize();
  5876. stepper.advance_M905(code_seen('K') ? code_value_float() : -1.0);
  5877. }
  5878. #endif
  5879. /**
  5880. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  5881. */
  5882. inline void gcode_M907() {
  5883. #if HAS_DIGIPOTSS
  5884. LOOP_XYZE(i)
  5885. if (code_seen(axis_codes[i])) stepper.digipot_current(i, code_value_int());
  5886. if (code_seen('B')) stepper.digipot_current(4, code_value_int());
  5887. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.digipot_current(i, code_value_int());
  5888. #elif HAS_MOTOR_CURRENT_PWM
  5889. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  5890. if (code_seen('X')) stepper.digipot_current(0, code_value_int());
  5891. #endif
  5892. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  5893. if (code_seen('Z')) stepper.digipot_current(1, code_value_int());
  5894. #endif
  5895. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  5896. if (code_seen('E')) stepper.digipot_current(2, code_value_int());
  5897. #endif
  5898. #endif
  5899. #if ENABLED(DIGIPOT_I2C)
  5900. // this one uses actual amps in floating point
  5901. LOOP_XYZE(i) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value_float());
  5902. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  5903. for (int i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value_float());
  5904. #endif
  5905. #if ENABLED(DAC_STEPPER_CURRENT)
  5906. if (code_seen('S')) {
  5907. float dac_percent = code_value_float();
  5908. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  5909. }
  5910. LOOP_XYZE(i) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value_float());
  5911. #endif
  5912. }
  5913. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  5914. /**
  5915. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  5916. */
  5917. inline void gcode_M908() {
  5918. #if HAS_DIGIPOTSS
  5919. stepper.digitalPotWrite(
  5920. code_seen('P') ? code_value_int() : 0,
  5921. code_seen('S') ? code_value_int() : 0
  5922. );
  5923. #endif
  5924. #ifdef DAC_STEPPER_CURRENT
  5925. dac_current_raw(
  5926. code_seen('P') ? code_value_byte() : -1,
  5927. code_seen('S') ? code_value_ushort() : 0
  5928. );
  5929. #endif
  5930. }
  5931. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  5932. inline void gcode_M909() { dac_print_values(); }
  5933. inline void gcode_M910() { dac_commit_eeprom(); }
  5934. #endif
  5935. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  5936. #if HAS_MICROSTEPS
  5937. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5938. inline void gcode_M350() {
  5939. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, code_value_byte());
  5940. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_mode(i, code_value_byte());
  5941. if (code_seen('B')) stepper.microstep_mode(4, code_value_byte());
  5942. stepper.microstep_readings();
  5943. }
  5944. /**
  5945. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  5946. * S# determines MS1 or MS2, X# sets the pin high/low.
  5947. */
  5948. inline void gcode_M351() {
  5949. if (code_seen('S')) switch (code_value_byte()) {
  5950. case 1:
  5951. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, code_value_byte(), -1);
  5952. if (code_seen('B')) stepper.microstep_ms(4, code_value_byte(), -1);
  5953. break;
  5954. case 2:
  5955. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, -1, code_value_byte());
  5956. if (code_seen('B')) stepper.microstep_ms(4, -1, code_value_byte());
  5957. break;
  5958. }
  5959. stepper.microstep_readings();
  5960. }
  5961. #endif // HAS_MICROSTEPS
  5962. #if ENABLED(MIXING_EXTRUDER)
  5963. /**
  5964. * M163: Set a single mix factor for a mixing extruder
  5965. * This is called "weight" by some systems.
  5966. *
  5967. * S[index] The channel index to set
  5968. * P[float] The mix value
  5969. *
  5970. */
  5971. inline void gcode_M163() {
  5972. int mix_index = code_seen('S') ? code_value_int() : 0;
  5973. float mix_value = code_seen('P') ? code_value_float() : 0.0;
  5974. if (mix_index < MIXING_STEPPERS) mixing_factor[mix_index] = mix_value;
  5975. }
  5976. #if MIXING_VIRTUAL_TOOLS > 1
  5977. /**
  5978. * M164: Store the current mix factors as a virtual tool.
  5979. *
  5980. * S[index] The virtual tool to store
  5981. *
  5982. */
  5983. inline void gcode_M164() {
  5984. int tool_index = code_seen('S') ? code_value_int() : 0;
  5985. if (tool_index < MIXING_VIRTUAL_TOOLS) {
  5986. normalize_mix();
  5987. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  5988. mixing_virtual_tool_mix[tool_index][i] = mixing_factor[i];
  5989. }
  5990. }
  5991. #endif
  5992. #if ENABLED(DIRECT_MIXING_IN_G1)
  5993. /**
  5994. * M165: Set multiple mix factors for a mixing extruder.
  5995. * Factors that are left out will be set to 0.
  5996. * All factors together must add up to 1.0.
  5997. *
  5998. * A[factor] Mix factor for extruder stepper 1
  5999. * B[factor] Mix factor for extruder stepper 2
  6000. * C[factor] Mix factor for extruder stepper 3
  6001. * D[factor] Mix factor for extruder stepper 4
  6002. * H[factor] Mix factor for extruder stepper 5
  6003. * I[factor] Mix factor for extruder stepper 6
  6004. *
  6005. */
  6006. inline void gcode_M165() { gcode_get_mix(); }
  6007. #endif
  6008. #endif // MIXING_EXTRUDER
  6009. /**
  6010. * M999: Restart after being stopped
  6011. *
  6012. * Default behaviour is to flush the serial buffer and request
  6013. * a resend to the host starting on the last N line received.
  6014. *
  6015. * Sending "M999 S1" will resume printing without flushing the
  6016. * existing command buffer.
  6017. *
  6018. */
  6019. inline void gcode_M999() {
  6020. Running = true;
  6021. lcd_reset_alert_level();
  6022. if (code_seen('S') && code_value_bool()) return;
  6023. // gcode_LastN = Stopped_gcode_LastN;
  6024. FlushSerialRequestResend();
  6025. }
  6026. #if ENABLED(SWITCHING_EXTRUDER)
  6027. inline void move_extruder_servo(uint8_t e) {
  6028. const int angles[2] = SWITCHING_EXTRUDER_SERVO_ANGLES;
  6029. MOVE_SERVO(SWITCHING_EXTRUDER_SERVO_NR, angles[e]);
  6030. }
  6031. #endif
  6032. inline void invalid_extruder_error(const uint8_t &e) {
  6033. SERIAL_ECHO_START;
  6034. SERIAL_CHAR('T');
  6035. SERIAL_PROTOCOL_F(e, DEC);
  6036. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  6037. }
  6038. /**
  6039. * Perform a tool-change, which may result in moving the
  6040. * previous tool out of the way and the new tool into place.
  6041. */
  6042. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s/*=0.0*/, bool no_move/*=false*/) {
  6043. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  6044. if (tmp_extruder >= MIXING_VIRTUAL_TOOLS) {
  6045. invalid_extruder_error(tmp_extruder);
  6046. return;
  6047. }
  6048. // T0-Tnnn: Switch virtual tool by changing the mix
  6049. for (uint8_t j = 0; j < MIXING_STEPPERS; j++)
  6050. mixing_factor[j] = mixing_virtual_tool_mix[tmp_extruder][j];
  6051. #else //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  6052. #if HOTENDS > 1
  6053. if (tmp_extruder >= EXTRUDERS) {
  6054. invalid_extruder_error(tmp_extruder);
  6055. return;
  6056. }
  6057. float old_feedrate_mm_s = feedrate_mm_s;
  6058. feedrate_mm_s = fr_mm_s > 0.0 ? (old_feedrate_mm_s = fr_mm_s) : XY_PROBE_FEEDRATE_MM_S;
  6059. if (tmp_extruder != active_extruder) {
  6060. if (!no_move && axis_unhomed_error(true, true, true)) {
  6061. SERIAL_ECHOLNPGM("No move on toolchange");
  6062. no_move = true;
  6063. }
  6064. // Save current position to destination, for use later
  6065. set_destination_to_current();
  6066. #if ENABLED(DUAL_X_CARRIAGE)
  6067. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6068. if (DEBUGGING(LEVELING)) {
  6069. SERIAL_ECHOPGM("Dual X Carriage Mode ");
  6070. switch (dual_x_carriage_mode) {
  6071. case DXC_DUPLICATION_MODE: SERIAL_ECHOLNPGM("DXC_DUPLICATION_MODE"); break;
  6072. case DXC_AUTO_PARK_MODE: SERIAL_ECHOLNPGM("DXC_AUTO_PARK_MODE"); break;
  6073. case DXC_FULL_CONTROL_MODE: SERIAL_ECHOLNPGM("DXC_FULL_CONTROL_MODE"); break;
  6074. }
  6075. }
  6076. #endif
  6077. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  6078. (delayed_move_time || current_position[X_AXIS] != x_home_pos(active_extruder))
  6079. ) {
  6080. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6081. if (DEBUGGING(LEVELING)) {
  6082. SERIAL_ECHOPAIR("Raise to ", current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT); SERIAL_EOL;
  6083. SERIAL_ECHOPAIR("MoveX to ", x_home_pos(active_extruder)); SERIAL_EOL;
  6084. SERIAL_ECHOPAIR("Lower to ", current_position[Z_AXIS]); SERIAL_EOL;
  6085. }
  6086. #endif
  6087. // Park old head: 1) raise 2) move to park position 3) lower
  6088. for (uint8_t i = 0; i < 3; i++)
  6089. planner.buffer_line(
  6090. i == 0 ? current_position[X_AXIS] : x_home_pos(active_extruder),
  6091. current_position[Y_AXIS],
  6092. current_position[Z_AXIS] + (i == 2 ? 0 : TOOLCHANGE_PARK_ZLIFT),
  6093. current_position[E_AXIS],
  6094. planner.max_feedrate_mm_s[i == 1 ? X_AXIS : Z_AXIS],
  6095. active_extruder
  6096. );
  6097. stepper.synchronize();
  6098. }
  6099. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  6100. current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
  6101. current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
  6102. active_extruder = tmp_extruder;
  6103. // This function resets the max/min values - the current position may be overwritten below.
  6104. set_axis_is_at_home(X_AXIS);
  6105. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6106. if (DEBUGGING(LEVELING)) DEBUG_POS("New Extruder", current_position);
  6107. #endif
  6108. switch (dual_x_carriage_mode) {
  6109. case DXC_FULL_CONTROL_MODE:
  6110. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  6111. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  6112. break;
  6113. case DXC_DUPLICATION_MODE:
  6114. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  6115. if (active_extruder_parked)
  6116. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  6117. else
  6118. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  6119. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  6120. extruder_duplication_enabled = false;
  6121. break;
  6122. default:
  6123. // record raised toolhead position for use by unpark
  6124. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  6125. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  6126. active_extruder_parked = true;
  6127. delayed_move_time = 0;
  6128. break;
  6129. }
  6130. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6131. if (DEBUGGING(LEVELING)) {
  6132. SERIAL_ECHOLNPAIR("Active extruder parked: ", active_extruder_parked ? "yes" : "no");
  6133. DEBUG_POS("New extruder (parked)", current_position);
  6134. }
  6135. #endif
  6136. // No extra case for HAS_ABL in DUAL_X_CARRIAGE. Does that mean they don't work together?
  6137. #else // !DUAL_X_CARRIAGE
  6138. #if ENABLED(SWITCHING_EXTRUDER)
  6139. // <0 if the new nozzle is higher, >0 if lower. A bigger raise when lower.
  6140. float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder],
  6141. z_raise = 0.3 + (z_diff > 0.0 ? z_diff : 0.0);
  6142. set_destination_to_current();
  6143. // Always raise by some amount
  6144. destination[Z_AXIS] += z_raise;
  6145. planner.buffer_line_kinematic(destination, planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  6146. stepper.synchronize();
  6147. move_extruder_servo(active_extruder);
  6148. delay(500);
  6149. // Move back down, if needed
  6150. if (z_raise != z_diff) {
  6151. destination[Z_AXIS] = current_position[Z_AXIS] + z_diff;
  6152. planner.buffer_line_kinematic(destination, planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  6153. stepper.synchronize();
  6154. }
  6155. #endif
  6156. /**
  6157. * Set current_position to the position of the new nozzle.
  6158. * Offsets are based on linear distance, so we need to get
  6159. * the resulting position in coordinate space.
  6160. *
  6161. * - With grid or 3-point leveling, offset XYZ by a tilted vector
  6162. * - With mesh leveling, update Z for the new position
  6163. * - Otherwise, just use the raw linear distance
  6164. *
  6165. * Software endstops are altered here too. Consider a case where:
  6166. * E0 at X=0 ... E1 at X=10
  6167. * When we switch to E1 now X=10, but E1 can't move left.
  6168. * To express this we apply the change in XY to the software endstops.
  6169. * E1 can move farther right than E0, so the right limit is extended.
  6170. *
  6171. * Note that we don't adjust the Z software endstops. Why not?
  6172. * Consider a case where Z=0 (here) and switching to E1 makes Z=1
  6173. * because the bed is 1mm lower at the new position. As long as
  6174. * the first nozzle is out of the way, the carriage should be
  6175. * allowed to move 1mm lower. This technically "breaks" the
  6176. * Z software endstop. But this is technically correct (and
  6177. * there is no viable alternative).
  6178. */
  6179. #if ABL_PLANAR
  6180. // Offset extruder, make sure to apply the bed level rotation matrix
  6181. vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder],
  6182. hotend_offset[Y_AXIS][tmp_extruder],
  6183. 0),
  6184. act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder],
  6185. hotend_offset[Y_AXIS][active_extruder],
  6186. 0),
  6187. offset_vec = tmp_offset_vec - act_offset_vec;
  6188. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6189. if (DEBUGGING(LEVELING)) {
  6190. tmp_offset_vec.debug("tmp_offset_vec");
  6191. act_offset_vec.debug("act_offset_vec");
  6192. offset_vec.debug("offset_vec (BEFORE)");
  6193. }
  6194. #endif
  6195. offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
  6196. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6197. if (DEBUGGING(LEVELING)) offset_vec.debug("offset_vec (AFTER)");
  6198. #endif
  6199. // Adjustments to the current position
  6200. float xydiff[2] = { offset_vec.x, offset_vec.y };
  6201. current_position[Z_AXIS] += offset_vec.z;
  6202. #else // !ABL_PLANAR
  6203. float xydiff[2] = {
  6204. hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder],
  6205. hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder]
  6206. };
  6207. #if ENABLED(MESH_BED_LEVELING)
  6208. if (mbl.active()) {
  6209. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6210. if (DEBUGGING(LEVELING)) SERIAL_ECHOPAIR("Z before MBL: ", current_position[Z_AXIS]);
  6211. #endif
  6212. float xpos = RAW_CURRENT_POSITION(X_AXIS),
  6213. ypos = RAW_CURRENT_POSITION(Y_AXIS);
  6214. current_position[Z_AXIS] += mbl.get_z(xpos + xydiff[X_AXIS], ypos + xydiff[Y_AXIS]) - mbl.get_z(xpos, ypos);
  6215. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6216. if (DEBUGGING(LEVELING))
  6217. SERIAL_ECHOLNPAIR(" after: ", current_position[Z_AXIS]);
  6218. #endif
  6219. }
  6220. #endif // MESH_BED_LEVELING
  6221. #endif // !HAS_ABL
  6222. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6223. if (DEBUGGING(LEVELING)) {
  6224. SERIAL_ECHOPAIR("Offset Tool XY by { ", xydiff[X_AXIS]);
  6225. SERIAL_ECHOPAIR(", ", xydiff[Y_AXIS]);
  6226. SERIAL_ECHOLNPGM(" }");
  6227. }
  6228. #endif
  6229. // The newly-selected extruder XY is actually at...
  6230. current_position[X_AXIS] += xydiff[X_AXIS];
  6231. current_position[Y_AXIS] += xydiff[Y_AXIS];
  6232. for (uint8_t i = X_AXIS; i <= Y_AXIS; i++) {
  6233. position_shift[i] += xydiff[i];
  6234. update_software_endstops((AxisEnum)i);
  6235. }
  6236. // Set the new active extruder
  6237. active_extruder = tmp_extruder;
  6238. #endif // !DUAL_X_CARRIAGE
  6239. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6240. if (DEBUGGING(LEVELING)) DEBUG_POS("Sync After Toolchange", current_position);
  6241. #endif
  6242. // Tell the planner the new "current position"
  6243. SYNC_PLAN_POSITION_KINEMATIC();
  6244. // Move to the "old position" (move the extruder into place)
  6245. if (!no_move && IsRunning()) {
  6246. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6247. if (DEBUGGING(LEVELING)) DEBUG_POS("Move back", destination);
  6248. #endif
  6249. prepare_move_to_destination();
  6250. }
  6251. } // (tmp_extruder != active_extruder)
  6252. stepper.synchronize();
  6253. #if ENABLED(EXT_SOLENOID)
  6254. disable_all_solenoids();
  6255. enable_solenoid_on_active_extruder();
  6256. #endif // EXT_SOLENOID
  6257. feedrate_mm_s = old_feedrate_mm_s;
  6258. #else // HOTENDS <= 1
  6259. // Set the new active extruder
  6260. active_extruder = tmp_extruder;
  6261. UNUSED(fr_mm_s);
  6262. UNUSED(no_move);
  6263. #endif // HOTENDS <= 1
  6264. SERIAL_ECHO_START;
  6265. SERIAL_ECHOLNPAIR(MSG_ACTIVE_EXTRUDER, (int)active_extruder);
  6266. #endif //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  6267. }
  6268. /**
  6269. * T0-T3: Switch tool, usually switching extruders
  6270. *
  6271. * F[units/min] Set the movement feedrate
  6272. * S1 Don't move the tool in XY after change
  6273. */
  6274. inline void gcode_T(uint8_t tmp_extruder) {
  6275. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6276. if (DEBUGGING(LEVELING)) {
  6277. SERIAL_ECHOPAIR(">>> gcode_T(", tmp_extruder);
  6278. SERIAL_CHAR(')');
  6279. SERIAL_EOL;
  6280. DEBUG_POS("BEFORE", current_position);
  6281. }
  6282. #endif
  6283. #if HOTENDS == 1 || (ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1)
  6284. tool_change(tmp_extruder);
  6285. #elif HOTENDS > 1
  6286. tool_change(
  6287. tmp_extruder,
  6288. code_seen('F') ? MMM_TO_MMS(code_value_axis_units(X_AXIS)) : 0.0,
  6289. (tmp_extruder == active_extruder) || (code_seen('S') && code_value_bool())
  6290. );
  6291. #endif
  6292. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6293. if (DEBUGGING(LEVELING)) {
  6294. DEBUG_POS("AFTER", current_position);
  6295. SERIAL_ECHOLNPGM("<<< gcode_T");
  6296. }
  6297. #endif
  6298. }
  6299. /**
  6300. * Process a single command and dispatch it to its handler
  6301. * This is called from the main loop()
  6302. */
  6303. void process_next_command() {
  6304. current_command = command_queue[cmd_queue_index_r];
  6305. if (DEBUGGING(ECHO)) {
  6306. SERIAL_ECHO_START;
  6307. SERIAL_ECHOLN(current_command);
  6308. }
  6309. // Sanitize the current command:
  6310. // - Skip leading spaces
  6311. // - Bypass N[-0-9][0-9]*[ ]*
  6312. // - Overwrite * with nul to mark the end
  6313. while (*current_command == ' ') ++current_command;
  6314. if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) {
  6315. current_command += 2; // skip N[-0-9]
  6316. while (NUMERIC(*current_command)) ++current_command; // skip [0-9]*
  6317. while (*current_command == ' ') ++current_command; // skip [ ]*
  6318. }
  6319. char* starpos = strchr(current_command, '*'); // * should always be the last parameter
  6320. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  6321. char *cmd_ptr = current_command;
  6322. // Get the command code, which must be G, M, or T
  6323. char command_code = *cmd_ptr++;
  6324. // Skip spaces to get the numeric part
  6325. while (*cmd_ptr == ' ') cmd_ptr++;
  6326. // Allow for decimal point in command
  6327. #if ENABLED(G38_PROBE_TARGET)
  6328. uint8_t subcode = 0;
  6329. #endif
  6330. uint16_t codenum = 0; // define ahead of goto
  6331. // Bail early if there's no code
  6332. bool code_is_good = NUMERIC(*cmd_ptr);
  6333. if (!code_is_good) goto ExitUnknownCommand;
  6334. // Get and skip the code number
  6335. do {
  6336. codenum = (codenum * 10) + (*cmd_ptr - '0');
  6337. cmd_ptr++;
  6338. } while (NUMERIC(*cmd_ptr));
  6339. // Allow for decimal point in command
  6340. #if ENABLED(G38_PROBE_TARGET)
  6341. if (*cmd_ptr == '.') {
  6342. cmd_ptr++;
  6343. while (NUMERIC(*cmd_ptr))
  6344. subcode = (subcode * 10) + (*cmd_ptr++ - '0');
  6345. }
  6346. #endif
  6347. // Skip all spaces to get to the first argument, or nul
  6348. while (*cmd_ptr == ' ') cmd_ptr++;
  6349. // The command's arguments (if any) start here, for sure!
  6350. current_command_args = cmd_ptr;
  6351. KEEPALIVE_STATE(IN_HANDLER);
  6352. // Handle a known G, M, or T
  6353. switch (command_code) {
  6354. case 'G': switch (codenum) {
  6355. // G0, G1
  6356. case 0:
  6357. case 1:
  6358. #if IS_SCARA
  6359. gcode_G0_G1(codenum == 0);
  6360. #else
  6361. gcode_G0_G1();
  6362. #endif
  6363. break;
  6364. // G2, G3
  6365. #if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
  6366. case 2: // G2 - CW ARC
  6367. case 3: // G3 - CCW ARC
  6368. gcode_G2_G3(codenum == 2);
  6369. break;
  6370. #endif
  6371. // G4 Dwell
  6372. case 4:
  6373. gcode_G4();
  6374. break;
  6375. #if ENABLED(BEZIER_CURVE_SUPPORT)
  6376. // G5
  6377. case 5: // G5 - Cubic B_spline
  6378. gcode_G5();
  6379. break;
  6380. #endif // BEZIER_CURVE_SUPPORT
  6381. #if ENABLED(FWRETRACT)
  6382. case 10: // G10: retract
  6383. case 11: // G11: retract_recover
  6384. gcode_G10_G11(codenum == 10);
  6385. break;
  6386. #endif // FWRETRACT
  6387. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  6388. case 12:
  6389. gcode_G12(); // G12: Nozzle Clean
  6390. break;
  6391. #endif // NOZZLE_CLEAN_FEATURE
  6392. #if ENABLED(INCH_MODE_SUPPORT)
  6393. case 20: //G20: Inch Mode
  6394. gcode_G20();
  6395. break;
  6396. case 21: //G21: MM Mode
  6397. gcode_G21();
  6398. break;
  6399. #endif // INCH_MODE_SUPPORT
  6400. #if ENABLED(NOZZLE_PARK_FEATURE)
  6401. case 27: // G27: Nozzle Park
  6402. gcode_G27();
  6403. break;
  6404. #endif // NOZZLE_PARK_FEATURE
  6405. case 28: // G28: Home all axes, one at a time
  6406. gcode_G28();
  6407. break;
  6408. #if PLANNER_LEVELING
  6409. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points.
  6410. gcode_G29();
  6411. break;
  6412. #endif // PLANNER_LEVELING
  6413. #if HAS_BED_PROBE
  6414. case 30: // G30 Single Z probe
  6415. gcode_G30();
  6416. break;
  6417. #if ENABLED(Z_PROBE_SLED)
  6418. case 31: // G31: dock the sled
  6419. gcode_G31();
  6420. break;
  6421. case 32: // G32: undock the sled
  6422. gcode_G32();
  6423. break;
  6424. #endif // Z_PROBE_SLED
  6425. #endif // HAS_BED_PROBE
  6426. #if ENABLED(G38_PROBE_TARGET)
  6427. case 38: // G38.2 & G38.3
  6428. if (subcode == 2 || subcode == 3)
  6429. gcode_G38(subcode == 2);
  6430. break;
  6431. #endif
  6432. case 90: // G90
  6433. relative_mode = false;
  6434. break;
  6435. case 91: // G91
  6436. relative_mode = true;
  6437. break;
  6438. case 92: // G92
  6439. gcode_G92();
  6440. break;
  6441. }
  6442. break;
  6443. case 'M': switch (codenum) {
  6444. #if ENABLED(ULTIPANEL) || ENABLED(EMERGENCY_PARSER)
  6445. case 0: // M0: Unconditional stop - Wait for user button press on LCD
  6446. case 1: // M1: Conditional stop - Wait for user button press on LCD
  6447. gcode_M0_M1();
  6448. break;
  6449. #endif // ULTIPANEL
  6450. case 17: // M17: Enable all stepper motors
  6451. gcode_M17();
  6452. break;
  6453. #if ENABLED(SDSUPPORT)
  6454. case 20: // M20: list SD card
  6455. gcode_M20(); break;
  6456. case 21: // M21: init SD card
  6457. gcode_M21(); break;
  6458. case 22: // M22: release SD card
  6459. gcode_M22(); break;
  6460. case 23: // M23: Select file
  6461. gcode_M23(); break;
  6462. case 24: // M24: Start SD print
  6463. gcode_M24(); break;
  6464. case 25: // M25: Pause SD print
  6465. gcode_M25(); break;
  6466. case 26: // M26: Set SD index
  6467. gcode_M26(); break;
  6468. case 27: // M27: Get SD status
  6469. gcode_M27(); break;
  6470. case 28: // M28: Start SD write
  6471. gcode_M28(); break;
  6472. case 29: // M29: Stop SD write
  6473. gcode_M29(); break;
  6474. case 30: // M30 <filename> Delete File
  6475. gcode_M30(); break;
  6476. case 32: // M32: Select file and start SD print
  6477. gcode_M32(); break;
  6478. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  6479. case 33: // M33: Get the long full path to a file or folder
  6480. gcode_M33(); break;
  6481. #endif
  6482. case 928: // M928: Start SD write
  6483. gcode_M928(); break;
  6484. #endif //SDSUPPORT
  6485. case 31: // M31: Report time since the start of SD print or last M109
  6486. gcode_M31(); break;
  6487. case 42: // M42: Change pin state
  6488. gcode_M42(); break;
  6489. #if ENABLED(PINS_DEBUGGING)
  6490. case 43: // M43: Read pin state
  6491. gcode_M43(); break;
  6492. #endif
  6493. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  6494. case 48: // M48: Z probe repeatability test
  6495. gcode_M48();
  6496. break;
  6497. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  6498. case 75: // M75: Start print timer
  6499. gcode_M75(); break;
  6500. case 76: // M76: Pause print timer
  6501. gcode_M76(); break;
  6502. case 77: // M77: Stop print timer
  6503. gcode_M77(); break;
  6504. #if ENABLED(PRINTCOUNTER)
  6505. case 78: // M78: Show print statistics
  6506. gcode_M78(); break;
  6507. #endif
  6508. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  6509. case 100: // M100: Free Memory Report
  6510. gcode_M100();
  6511. break;
  6512. #endif
  6513. case 104: // M104: Set hot end temperature
  6514. gcode_M104();
  6515. break;
  6516. case 110: // M110: Set Current Line Number
  6517. gcode_M110();
  6518. break;
  6519. case 111: // M111: Set debug level
  6520. gcode_M111();
  6521. break;
  6522. #if DISABLED(EMERGENCY_PARSER)
  6523. case 108: // M108: Cancel Waiting
  6524. gcode_M108();
  6525. break;
  6526. case 112: // M112: Emergency Stop
  6527. gcode_M112();
  6528. break;
  6529. case 410: // M410 quickstop - Abort all the planned moves.
  6530. gcode_M410();
  6531. break;
  6532. #endif
  6533. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  6534. case 113: // M113: Set Host Keepalive interval
  6535. gcode_M113();
  6536. break;
  6537. #endif
  6538. case 140: // M140: Set bed temperature
  6539. gcode_M140();
  6540. break;
  6541. case 105: // M105: Report current temperature
  6542. gcode_M105();
  6543. KEEPALIVE_STATE(NOT_BUSY);
  6544. return; // "ok" already printed
  6545. case 109: // M109: Wait for hotend temperature to reach target
  6546. gcode_M109();
  6547. break;
  6548. #if HAS_TEMP_BED
  6549. case 190: // M190: Wait for bed temperature to reach target
  6550. gcode_M190();
  6551. break;
  6552. #endif // HAS_TEMP_BED
  6553. #if FAN_COUNT > 0
  6554. case 106: // M106: Fan On
  6555. gcode_M106();
  6556. break;
  6557. case 107: // M107: Fan Off
  6558. gcode_M107();
  6559. break;
  6560. #endif // FAN_COUNT > 0
  6561. #if ENABLED(BARICUDA)
  6562. // PWM for HEATER_1_PIN
  6563. #if HAS_HEATER_1
  6564. case 126: // M126: valve open
  6565. gcode_M126();
  6566. break;
  6567. case 127: // M127: valve closed
  6568. gcode_M127();
  6569. break;
  6570. #endif // HAS_HEATER_1
  6571. // PWM for HEATER_2_PIN
  6572. #if HAS_HEATER_2
  6573. case 128: // M128: valve open
  6574. gcode_M128();
  6575. break;
  6576. case 129: // M129: valve closed
  6577. gcode_M129();
  6578. break;
  6579. #endif // HAS_HEATER_2
  6580. #endif // BARICUDA
  6581. #if HAS_POWER_SWITCH
  6582. case 80: // M80: Turn on Power Supply
  6583. gcode_M80();
  6584. break;
  6585. #endif // HAS_POWER_SWITCH
  6586. case 81: // M81: Turn off Power, including Power Supply, if possible
  6587. gcode_M81();
  6588. break;
  6589. case 82: // M83: Set E axis normal mode (same as other axes)
  6590. gcode_M82();
  6591. break;
  6592. case 83: // M83: Set E axis relative mode
  6593. gcode_M83();
  6594. break;
  6595. case 18: // M18 => M84
  6596. case 84: // M84: Disable all steppers or set timeout
  6597. gcode_M18_M84();
  6598. break;
  6599. case 85: // M85: Set inactivity stepper shutdown timeout
  6600. gcode_M85();
  6601. break;
  6602. case 92: // M92: Set the steps-per-unit for one or more axes
  6603. gcode_M92();
  6604. break;
  6605. case 115: // M115: Report capabilities
  6606. gcode_M115();
  6607. break;
  6608. case 117: // M117: Set LCD message text, if possible
  6609. gcode_M117();
  6610. break;
  6611. case 114: // M114: Report current position
  6612. gcode_M114();
  6613. break;
  6614. case 120: // M120: Enable endstops
  6615. gcode_M120();
  6616. break;
  6617. case 121: // M121: Disable endstops
  6618. gcode_M121();
  6619. break;
  6620. case 119: // M119: Report endstop states
  6621. gcode_M119();
  6622. break;
  6623. #if ENABLED(ULTIPANEL)
  6624. case 145: // M145: Set material heatup parameters
  6625. gcode_M145();
  6626. break;
  6627. #endif
  6628. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  6629. case 149: // M149: Set temperature units
  6630. gcode_M149();
  6631. break;
  6632. #endif
  6633. #if ENABLED(BLINKM)
  6634. case 150: // M150: Set the BlinkM LCD color
  6635. gcode_M150();
  6636. break;
  6637. #endif // BLINKM
  6638. #if ENABLED(EXPERIMENTAL_I2CBUS)
  6639. case 155: // M155: Send data to an i2c slave
  6640. gcode_M155();
  6641. break;
  6642. case 156: // M156: Request data from an i2c slave
  6643. gcode_M156();
  6644. break;
  6645. #endif //EXPERIMENTAL_I2CBUS
  6646. #if ENABLED(MIXING_EXTRUDER)
  6647. case 163: // M163: Set a component weight for mixing extruder
  6648. gcode_M163();
  6649. break;
  6650. #if MIXING_VIRTUAL_TOOLS > 1
  6651. case 164: // M164: Save current mix as a virtual extruder
  6652. gcode_M164();
  6653. break;
  6654. #endif
  6655. #if ENABLED(DIRECT_MIXING_IN_G1)
  6656. case 165: // M165: Set multiple mix weights
  6657. gcode_M165();
  6658. break;
  6659. #endif
  6660. #endif
  6661. case 200: // M200: Set filament diameter, E to cubic units
  6662. gcode_M200();
  6663. break;
  6664. case 201: // M201: Set max acceleration for print moves (units/s^2)
  6665. gcode_M201();
  6666. break;
  6667. #if 0 // Not used for Sprinter/grbl gen6
  6668. case 202: // M202
  6669. gcode_M202();
  6670. break;
  6671. #endif
  6672. case 203: // M203: Set max feedrate (units/sec)
  6673. gcode_M203();
  6674. break;
  6675. case 204: // M204: Set acceleration
  6676. gcode_M204();
  6677. break;
  6678. case 205: //M205: Set advanced settings
  6679. gcode_M205();
  6680. break;
  6681. case 206: // M206: Set home offsets
  6682. gcode_M206();
  6683. break;
  6684. #if ENABLED(DELTA)
  6685. case 665: // M665: Set delta configurations
  6686. gcode_M665();
  6687. break;
  6688. #endif
  6689. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  6690. case 666: // M666: Set delta or dual endstop adjustment
  6691. gcode_M666();
  6692. break;
  6693. #endif
  6694. #if ENABLED(FWRETRACT)
  6695. case 207: // M207: Set Retract Length, Feedrate, and Z lift
  6696. gcode_M207();
  6697. break;
  6698. case 208: // M208: Set Recover (unretract) Additional Length and Feedrate
  6699. gcode_M208();
  6700. break;
  6701. case 209: // M209: Turn Automatic Retract Detection on/off
  6702. gcode_M209();
  6703. break;
  6704. #endif // FWRETRACT
  6705. case 211: // M211: Enable, Disable, and/or Report software endstops
  6706. gcode_M211();
  6707. break;
  6708. #if HOTENDS > 1
  6709. case 218: // M218: Set a tool offset
  6710. gcode_M218();
  6711. break;
  6712. #endif
  6713. case 220: // M220: Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  6714. gcode_M220();
  6715. break;
  6716. case 221: // M221: Set Flow Percentage
  6717. gcode_M221();
  6718. break;
  6719. case 226: // M226: Wait until a pin reaches a state
  6720. gcode_M226();
  6721. break;
  6722. #if HAS_SERVOS
  6723. case 280: // M280: Set servo position absolute
  6724. gcode_M280();
  6725. break;
  6726. #endif // HAS_SERVOS
  6727. #if HAS_BUZZER
  6728. case 300: // M300: Play beep tone
  6729. gcode_M300();
  6730. break;
  6731. #endif // HAS_BUZZER
  6732. #if ENABLED(PIDTEMP)
  6733. case 301: // M301: Set hotend PID parameters
  6734. gcode_M301();
  6735. break;
  6736. #endif // PIDTEMP
  6737. #if ENABLED(PIDTEMPBED)
  6738. case 304: // M304: Set bed PID parameters
  6739. gcode_M304();
  6740. break;
  6741. #endif // PIDTEMPBED
  6742. #if defined(CHDK) || HAS_PHOTOGRAPH
  6743. case 240: // M240: Trigger a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  6744. gcode_M240();
  6745. break;
  6746. #endif // CHDK || PHOTOGRAPH_PIN
  6747. #if HAS_LCD_CONTRAST
  6748. case 250: // M250: Set LCD contrast
  6749. gcode_M250();
  6750. break;
  6751. #endif // HAS_LCD_CONTRAST
  6752. #if ENABLED(PREVENT_COLD_EXTRUSION)
  6753. case 302: // M302: Allow cold extrudes (set the minimum extrude temperature)
  6754. gcode_M302();
  6755. break;
  6756. #endif // PREVENT_COLD_EXTRUSION
  6757. case 303: // M303: PID autotune
  6758. gcode_M303();
  6759. break;
  6760. #if ENABLED(MORGAN_SCARA)
  6761. case 360: // M360: SCARA Theta pos1
  6762. if (gcode_M360()) return;
  6763. break;
  6764. case 361: // M361: SCARA Theta pos2
  6765. if (gcode_M361()) return;
  6766. break;
  6767. case 362: // M362: SCARA Psi pos1
  6768. if (gcode_M362()) return;
  6769. break;
  6770. case 363: // M363: SCARA Psi pos2
  6771. if (gcode_M363()) return;
  6772. break;
  6773. case 364: // M364: SCARA Psi pos3 (90 deg to Theta)
  6774. if (gcode_M364()) return;
  6775. break;
  6776. #endif // SCARA
  6777. case 400: // M400: Finish all moves
  6778. gcode_M400();
  6779. break;
  6780. #if HAS_BED_PROBE
  6781. case 401: // M401: Deploy probe
  6782. gcode_M401();
  6783. break;
  6784. case 402: // M402: Stow probe
  6785. gcode_M402();
  6786. break;
  6787. #endif // HAS_BED_PROBE
  6788. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  6789. case 404: // M404: Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  6790. gcode_M404();
  6791. break;
  6792. case 405: // M405: Turn on filament sensor for control
  6793. gcode_M405();
  6794. break;
  6795. case 406: // M406: Turn off filament sensor for control
  6796. gcode_M406();
  6797. break;
  6798. case 407: // M407: Display measured filament diameter
  6799. gcode_M407();
  6800. break;
  6801. #endif // ENABLED(FILAMENT_WIDTH_SENSOR)
  6802. #if PLANNER_LEVELING
  6803. case 420: // M420: Enable/Disable Bed Leveling
  6804. gcode_M420();
  6805. break;
  6806. #endif
  6807. #if ENABLED(MESH_BED_LEVELING)
  6808. case 421: // M421: Set a Mesh Bed Leveling Z coordinate
  6809. gcode_M421();
  6810. break;
  6811. #endif
  6812. case 428: // M428: Apply current_position to home_offset
  6813. gcode_M428();
  6814. break;
  6815. case 500: // M500: Store settings in EEPROM
  6816. gcode_M500();
  6817. break;
  6818. case 501: // M501: Read settings from EEPROM
  6819. gcode_M501();
  6820. break;
  6821. case 502: // M502: Revert to default settings
  6822. gcode_M502();
  6823. break;
  6824. case 503: // M503: print settings currently in memory
  6825. gcode_M503();
  6826. break;
  6827. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  6828. case 540:
  6829. gcode_M540();
  6830. break;
  6831. #endif
  6832. #if HAS_BED_PROBE
  6833. case 851: // M851: Set Z Probe Z Offset
  6834. gcode_M851();
  6835. break;
  6836. #endif // HAS_BED_PROBE
  6837. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  6838. case 600: // M600: Pause for filament change
  6839. gcode_M600();
  6840. break;
  6841. #endif // FILAMENT_CHANGE_FEATURE
  6842. #if ENABLED(DUAL_X_CARRIAGE)
  6843. case 605: // M605: Set Dual X Carriage movement mode
  6844. gcode_M605();
  6845. break;
  6846. #endif // DUAL_X_CARRIAGE
  6847. #if ENABLED(LIN_ADVANCE)
  6848. case 905: // M905: Set advance K factor.
  6849. gcode_M905();
  6850. break;
  6851. #endif
  6852. case 907: // M907: Set digital trimpot motor current using axis codes.
  6853. gcode_M907();
  6854. break;
  6855. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  6856. case 908: // M908: Control digital trimpot directly.
  6857. gcode_M908();
  6858. break;
  6859. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  6860. case 909: // M909: Print digipot/DAC current value
  6861. gcode_M909();
  6862. break;
  6863. case 910: // M910: Commit digipot/DAC value to external EEPROM
  6864. gcode_M910();
  6865. break;
  6866. #endif
  6867. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  6868. #if HAS_MICROSTEPS
  6869. case 350: // M350: Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  6870. gcode_M350();
  6871. break;
  6872. case 351: // M351: Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  6873. gcode_M351();
  6874. break;
  6875. #endif // HAS_MICROSTEPS
  6876. case 999: // M999: Restart after being Stopped
  6877. gcode_M999();
  6878. break;
  6879. }
  6880. break;
  6881. case 'T':
  6882. gcode_T(codenum);
  6883. break;
  6884. default: code_is_good = false;
  6885. }
  6886. KEEPALIVE_STATE(NOT_BUSY);
  6887. ExitUnknownCommand:
  6888. // Still unknown command? Throw an error
  6889. if (!code_is_good) unknown_command_error();
  6890. ok_to_send();
  6891. }
  6892. /**
  6893. * Send a "Resend: nnn" message to the host to
  6894. * indicate that a command needs to be re-sent.
  6895. */
  6896. void FlushSerialRequestResend() {
  6897. //char command_queue[cmd_queue_index_r][100]="Resend:";
  6898. MYSERIAL.flush();
  6899. SERIAL_PROTOCOLPGM(MSG_RESEND);
  6900. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  6901. ok_to_send();
  6902. }
  6903. /**
  6904. * Send an "ok" message to the host, indicating
  6905. * that a command was successfully processed.
  6906. *
  6907. * If ADVANCED_OK is enabled also include:
  6908. * N<int> Line number of the command, if any
  6909. * P<int> Planner space remaining
  6910. * B<int> Block queue space remaining
  6911. */
  6912. void ok_to_send() {
  6913. refresh_cmd_timeout();
  6914. if (!send_ok[cmd_queue_index_r]) return;
  6915. SERIAL_PROTOCOLPGM(MSG_OK);
  6916. #if ENABLED(ADVANCED_OK)
  6917. char* p = command_queue[cmd_queue_index_r];
  6918. if (*p == 'N') {
  6919. SERIAL_PROTOCOL(' ');
  6920. SERIAL_ECHO(*p++);
  6921. while (NUMERIC_SIGNED(*p))
  6922. SERIAL_ECHO(*p++);
  6923. }
  6924. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
  6925. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  6926. #endif
  6927. SERIAL_EOL;
  6928. }
  6929. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  6930. /**
  6931. * Constrain the given coordinates to the software endstops.
  6932. */
  6933. void clamp_to_software_endstops(float target[XYZ]) {
  6934. #if ENABLED(min_software_endstops)
  6935. NOLESS(target[X_AXIS], soft_endstop_min[X_AXIS]);
  6936. NOLESS(target[Y_AXIS], soft_endstop_min[Y_AXIS]);
  6937. NOLESS(target[Z_AXIS], soft_endstop_min[Z_AXIS]);
  6938. #endif
  6939. #if ENABLED(max_software_endstops)
  6940. NOMORE(target[X_AXIS], soft_endstop_max[X_AXIS]);
  6941. NOMORE(target[Y_AXIS], soft_endstop_max[Y_AXIS]);
  6942. NOMORE(target[Z_AXIS], soft_endstop_max[Z_AXIS]);
  6943. #endif
  6944. }
  6945. #endif
  6946. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  6947. // Get the Z adjustment for non-linear bed leveling
  6948. float bilinear_z_offset(float cartesian[XYZ]) {
  6949. // XY relative to the probed area
  6950. const float x = RAW_X_POSITION(cartesian[X_AXIS]) - bilinear_start[X_AXIS],
  6951. y = RAW_Y_POSITION(cartesian[Y_AXIS]) - bilinear_start[Y_AXIS];
  6952. // Convert to grid box units
  6953. float ratio_x = x / bilinear_grid_spacing[X_AXIS],
  6954. ratio_y = y / bilinear_grid_spacing[Y_AXIS];
  6955. // Whole units for the grid line indices. Constrained within bounds.
  6956. const int gridx = constrain(floor(ratio_x), 0, ABL_GRID_POINTS_X - 1),
  6957. gridy = constrain(floor(ratio_y), 0, ABL_GRID_POINTS_Y - 1),
  6958. nextx = min(gridx + 1, ABL_GRID_POINTS_X - 1),
  6959. nexty = min(gridy + 1, ABL_GRID_POINTS_Y - 1);
  6960. // Subtract whole to get the ratio within the grid box
  6961. ratio_x -= gridx; ratio_y -= gridy;
  6962. // Never less than 0.0. (Over 1.0 is fine due to previous contraints.)
  6963. NOLESS(ratio_x, 0); NOLESS(ratio_y, 0);
  6964. // Z at the box corners
  6965. const float z1 = bed_level_grid[gridx][gridy], // left-front
  6966. z2 = bed_level_grid[gridx][nexty], // left-back
  6967. z3 = bed_level_grid[nextx][gridy], // right-front
  6968. z4 = bed_level_grid[nextx][nexty], // right-back
  6969. // Bilinear interpolate
  6970. L = z1 + (z2 - z1) * ratio_y, // Linear interp. LF -> LB
  6971. R = z3 + (z4 - z3) * ratio_y, // Linear interp. RF -> RB
  6972. offset = L + ratio_x * (R - L);
  6973. /*
  6974. static float last_offset = 0;
  6975. if (fabs(last_offset - offset) > 0.2) {
  6976. SERIAL_ECHOPGM("Sudden Shift at ");
  6977. SERIAL_ECHOPAIR("x=", x);
  6978. SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[X_AXIS]);
  6979. SERIAL_ECHOLNPAIR(" -> gridx=", gridx);
  6980. SERIAL_ECHOPAIR(" y=", y);
  6981. SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[Y_AXIS]);
  6982. SERIAL_ECHOLNPAIR(" -> gridy=", gridy);
  6983. SERIAL_ECHOPAIR(" ratio_x=", ratio_x);
  6984. SERIAL_ECHOLNPAIR(" ratio_y=", ratio_y);
  6985. SERIAL_ECHOPAIR(" z1=", z1);
  6986. SERIAL_ECHOPAIR(" z2=", z2);
  6987. SERIAL_ECHOPAIR(" z3=", z3);
  6988. SERIAL_ECHOLNPAIR(" z4=", z4);
  6989. SERIAL_ECHOPAIR(" L=", L);
  6990. SERIAL_ECHOPAIR(" R=", R);
  6991. SERIAL_ECHOLNPAIR(" offset=", offset);
  6992. }
  6993. last_offset = offset;
  6994. //*/
  6995. return offset;
  6996. }
  6997. #endif // AUTO_BED_LEVELING_BILINEAR
  6998. #if ENABLED(DELTA)
  6999. /**
  7000. * Recalculate factors used for delta kinematics whenever
  7001. * settings have been changed (e.g., by M665).
  7002. */
  7003. void recalc_delta_settings(float radius, float diagonal_rod) {
  7004. delta_tower1_x = -SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  7005. delta_tower1_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1);
  7006. delta_tower2_x = SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  7007. delta_tower2_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2);
  7008. delta_tower3_x = 0.0; // back middle tower
  7009. delta_tower3_y = (radius + DELTA_RADIUS_TRIM_TOWER_3);
  7010. delta_diagonal_rod_2_tower_1 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_1);
  7011. delta_diagonal_rod_2_tower_2 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_2);
  7012. delta_diagonal_rod_2_tower_3 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_3);
  7013. }
  7014. #if ENABLED(DELTA_FAST_SQRT)
  7015. /**
  7016. * Fast inverse sqrt from Quake III Arena
  7017. * See: https://en.wikipedia.org/wiki/Fast_inverse_square_root
  7018. */
  7019. float Q_rsqrt(float number) {
  7020. long i;
  7021. float x2, y;
  7022. const float threehalfs = 1.5f;
  7023. x2 = number * 0.5f;
  7024. y = number;
  7025. i = * ( long * ) &y; // evil floating point bit level hacking
  7026. i = 0x5f3759df - ( i >> 1 ); // what the f***?
  7027. y = * ( float * ) &i;
  7028. y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
  7029. // y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed
  7030. return y;
  7031. }
  7032. #define _SQRT(n) (1.0f / Q_rsqrt(n))
  7033. #else
  7034. #define _SQRT(n) sqrt(n)
  7035. #endif
  7036. /**
  7037. * Delta Inverse Kinematics
  7038. *
  7039. * Calculate the tower positions for a given logical
  7040. * position, storing the result in the delta[] array.
  7041. *
  7042. * This is an expensive calculation, requiring 3 square
  7043. * roots per segmented linear move, and strains the limits
  7044. * of a Mega2560 with a Graphical Display.
  7045. *
  7046. * Suggested optimizations include:
  7047. *
  7048. * - Disable the home_offset (M206) and/or position_shift (G92)
  7049. * features to remove up to 12 float additions.
  7050. *
  7051. * - Use a fast-inverse-sqrt function and add the reciprocal.
  7052. * (see above)
  7053. */
  7054. // Macro to obtain the Z position of an individual tower
  7055. #define DELTA_Z(T) raw[Z_AXIS] + _SQRT( \
  7056. delta_diagonal_rod_2_tower_##T - HYPOT2( \
  7057. delta_tower##T##_x - raw[X_AXIS], \
  7058. delta_tower##T##_y - raw[Y_AXIS] \
  7059. ) \
  7060. )
  7061. #define DELTA_RAW_IK() do { \
  7062. delta[A_AXIS] = DELTA_Z(1); \
  7063. delta[B_AXIS] = DELTA_Z(2); \
  7064. delta[C_AXIS] = DELTA_Z(3); \
  7065. } while(0)
  7066. #define DELTA_LOGICAL_IK() do { \
  7067. const float raw[XYZ] = { \
  7068. RAW_X_POSITION(logical[X_AXIS]), \
  7069. RAW_Y_POSITION(logical[Y_AXIS]), \
  7070. RAW_Z_POSITION(logical[Z_AXIS]) \
  7071. }; \
  7072. DELTA_RAW_IK(); \
  7073. } while(0)
  7074. #define DELTA_DEBUG() do { \
  7075. SERIAL_ECHOPAIR("cartesian X:", raw[X_AXIS]); \
  7076. SERIAL_ECHOPAIR(" Y:", raw[Y_AXIS]); \
  7077. SERIAL_ECHOLNPAIR(" Z:", raw[Z_AXIS]); \
  7078. SERIAL_ECHOPAIR("delta A:", delta[A_AXIS]); \
  7079. SERIAL_ECHOPAIR(" B:", delta[B_AXIS]); \
  7080. SERIAL_ECHOLNPAIR(" C:", delta[C_AXIS]); \
  7081. } while(0)
  7082. void inverse_kinematics(const float logical[XYZ]) {
  7083. DELTA_LOGICAL_IK();
  7084. // DELTA_DEBUG();
  7085. }
  7086. /**
  7087. * Calculate the highest Z position where the
  7088. * effector has the full range of XY motion.
  7089. */
  7090. float delta_safe_distance_from_top() {
  7091. float cartesian[XYZ] = {
  7092. LOGICAL_X_POSITION(0),
  7093. LOGICAL_Y_POSITION(0),
  7094. LOGICAL_Z_POSITION(0)
  7095. };
  7096. inverse_kinematics(cartesian);
  7097. float distance = delta[A_AXIS];
  7098. cartesian[Y_AXIS] = LOGICAL_Y_POSITION(DELTA_PRINTABLE_RADIUS);
  7099. inverse_kinematics(cartesian);
  7100. return abs(distance - delta[A_AXIS]);
  7101. }
  7102. /**
  7103. * Delta Forward Kinematics
  7104. *
  7105. * See the Wikipedia article "Trilateration"
  7106. * https://en.wikipedia.org/wiki/Trilateration
  7107. *
  7108. * Establish a new coordinate system in the plane of the
  7109. * three carriage points. This system has its origin at
  7110. * tower1, with tower2 on the X axis. Tower3 is in the X-Y
  7111. * plane with a Z component of zero.
  7112. * We will define unit vectors in this coordinate system
  7113. * in our original coordinate system. Then when we calculate
  7114. * the Xnew, Ynew and Znew values, we can translate back into
  7115. * the original system by moving along those unit vectors
  7116. * by the corresponding values.
  7117. *
  7118. * Variable names matched to Marlin, c-version, and avoid the
  7119. * use of any vector library.
  7120. *
  7121. * by Andreas Hardtung 2016-06-07
  7122. * based on a Java function from "Delta Robot Kinematics V3"
  7123. * by Steve Graves
  7124. *
  7125. * The result is stored in the cartes[] array.
  7126. */
  7127. void forward_kinematics_DELTA(float z1, float z2, float z3) {
  7128. // Create a vector in old coordinates along x axis of new coordinate
  7129. float p12[3] = { delta_tower2_x - delta_tower1_x, delta_tower2_y - delta_tower1_y, z2 - z1 };
  7130. // Get the Magnitude of vector.
  7131. float d = sqrt( sq(p12[0]) + sq(p12[1]) + sq(p12[2]) );
  7132. // Create unit vector by dividing by magnitude.
  7133. float ex[3] = { p12[0] / d, p12[1] / d, p12[2] / d };
  7134. // Get the vector from the origin of the new system to the third point.
  7135. float p13[3] = { delta_tower3_x - delta_tower1_x, delta_tower3_y - delta_tower1_y, z3 - z1 };
  7136. // Use the dot product to find the component of this vector on the X axis.
  7137. float i = ex[0] * p13[0] + ex[1] * p13[1] + ex[2] * p13[2];
  7138. // Create a vector along the x axis that represents the x component of p13.
  7139. float iex[3] = { ex[0] * i, ex[1] * i, ex[2] * i };
  7140. // Subtract the X component from the original vector leaving only Y. We use the
  7141. // variable that will be the unit vector after we scale it.
  7142. float ey[3] = { p13[0] - iex[0], p13[1] - iex[1], p13[2] - iex[2] };
  7143. // The magnitude of Y component
  7144. float j = sqrt( sq(ey[0]) + sq(ey[1]) + sq(ey[2]) );
  7145. // Convert to a unit vector
  7146. ey[0] /= j; ey[1] /= j; ey[2] /= j;
  7147. // The cross product of the unit x and y is the unit z
  7148. // float[] ez = vectorCrossProd(ex, ey);
  7149. float ez[3] = {
  7150. ex[1] * ey[2] - ex[2] * ey[1],
  7151. ex[2] * ey[0] - ex[0] * ey[2],
  7152. ex[0] * ey[1] - ex[1] * ey[0]
  7153. };
  7154. // We now have the d, i and j values defined in Wikipedia.
  7155. // Plug them into the equations defined in Wikipedia for Xnew, Ynew and Znew
  7156. float Xnew = (delta_diagonal_rod_2_tower_1 - delta_diagonal_rod_2_tower_2 + sq(d)) / (d * 2),
  7157. Ynew = ((delta_diagonal_rod_2_tower_1 - delta_diagonal_rod_2_tower_3 + HYPOT2(i, j)) / 2 - i * Xnew) / j,
  7158. Znew = sqrt(delta_diagonal_rod_2_tower_1 - HYPOT2(Xnew, Ynew));
  7159. // Start from the origin of the old coordinates and add vectors in the
  7160. // old coords that represent the Xnew, Ynew and Znew to find the point
  7161. // in the old system.
  7162. cartes[X_AXIS] = delta_tower1_x + ex[0] * Xnew + ey[0] * Ynew - ez[0] * Znew;
  7163. cartes[Y_AXIS] = delta_tower1_y + ex[1] * Xnew + ey[1] * Ynew - ez[1] * Znew;
  7164. cartes[Z_AXIS] = z1 + ex[2] * Xnew + ey[2] * Ynew - ez[2] * Znew;
  7165. }
  7166. void forward_kinematics_DELTA(float point[ABC]) {
  7167. forward_kinematics_DELTA(point[A_AXIS], point[B_AXIS], point[C_AXIS]);
  7168. }
  7169. #endif // DELTA
  7170. /**
  7171. * Get the stepper positions in the cartes[] array.
  7172. * Forward kinematics are applied for DELTA and SCARA.
  7173. *
  7174. * The result is in the current coordinate space with
  7175. * leveling applied. The coordinates need to be run through
  7176. * unapply_leveling to obtain the "ideal" coordinates
  7177. * suitable for current_position, etc.
  7178. */
  7179. void get_cartesian_from_steppers() {
  7180. #if ENABLED(DELTA)
  7181. forward_kinematics_DELTA(
  7182. stepper.get_axis_position_mm(A_AXIS),
  7183. stepper.get_axis_position_mm(B_AXIS),
  7184. stepper.get_axis_position_mm(C_AXIS)
  7185. );
  7186. cartes[X_AXIS] += LOGICAL_X_POSITION(0);
  7187. cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
  7188. cartes[Z_AXIS] += LOGICAL_Z_POSITION(0);
  7189. #elif IS_SCARA
  7190. forward_kinematics_SCARA(
  7191. stepper.get_axis_position_degrees(A_AXIS),
  7192. stepper.get_axis_position_degrees(B_AXIS)
  7193. );
  7194. cartes[X_AXIS] += LOGICAL_X_POSITION(0);
  7195. cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
  7196. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  7197. #else
  7198. cartes[X_AXIS] = stepper.get_axis_position_mm(X_AXIS);
  7199. cartes[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS);
  7200. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  7201. #endif
  7202. }
  7203. /**
  7204. * Set the current_position for an axis based on
  7205. * the stepper positions, removing any leveling that
  7206. * may have been applied.
  7207. */
  7208. void set_current_from_steppers_for_axis(const AxisEnum axis) {
  7209. get_cartesian_from_steppers();
  7210. #if PLANNER_LEVELING
  7211. planner.unapply_leveling(cartes);
  7212. #endif
  7213. if (axis == ALL_AXES)
  7214. memcpy(current_position, cartes, sizeof(cartes));
  7215. else
  7216. current_position[axis] = cartes[axis];
  7217. }
  7218. #if ENABLED(MESH_BED_LEVELING)
  7219. /**
  7220. * Prepare a mesh-leveled linear move in a Cartesian setup,
  7221. * splitting the move where it crosses mesh borders.
  7222. */
  7223. void mesh_line_to_destination(float fr_mm_s, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
  7224. int cx1 = mbl.cell_index_x(RAW_CURRENT_POSITION(X_AXIS)),
  7225. cy1 = mbl.cell_index_y(RAW_CURRENT_POSITION(Y_AXIS)),
  7226. cx2 = mbl.cell_index_x(RAW_X_POSITION(destination[X_AXIS])),
  7227. cy2 = mbl.cell_index_y(RAW_Y_POSITION(destination[Y_AXIS]));
  7228. NOMORE(cx1, MESH_NUM_X_POINTS - 2);
  7229. NOMORE(cy1, MESH_NUM_Y_POINTS - 2);
  7230. NOMORE(cx2, MESH_NUM_X_POINTS - 2);
  7231. NOMORE(cy2, MESH_NUM_Y_POINTS - 2);
  7232. if (cx1 == cx2 && cy1 == cy2) {
  7233. // Start and end on same mesh square
  7234. line_to_destination(fr_mm_s);
  7235. set_current_to_destination();
  7236. return;
  7237. }
  7238. #define MBL_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  7239. float normalized_dist, end[NUM_AXIS];
  7240. // Split at the left/front border of the right/top square
  7241. int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  7242. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  7243. memcpy(end, destination, sizeof(end));
  7244. destination[X_AXIS] = LOGICAL_X_POSITION(mbl.get_probe_x(gcx));
  7245. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  7246. destination[Y_AXIS] = MBL_SEGMENT_END(Y);
  7247. CBI(x_splits, gcx);
  7248. }
  7249. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  7250. memcpy(end, destination, sizeof(end));
  7251. destination[Y_AXIS] = LOGICAL_Y_POSITION(mbl.get_probe_y(gcy));
  7252. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  7253. destination[X_AXIS] = MBL_SEGMENT_END(X);
  7254. CBI(y_splits, gcy);
  7255. }
  7256. else {
  7257. // Already split on a border
  7258. line_to_destination(fr_mm_s);
  7259. set_current_to_destination();
  7260. return;
  7261. }
  7262. destination[Z_AXIS] = MBL_SEGMENT_END(Z);
  7263. destination[E_AXIS] = MBL_SEGMENT_END(E);
  7264. // Do the split and look for more borders
  7265. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  7266. // Restore destination from stack
  7267. memcpy(destination, end, sizeof(end));
  7268. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  7269. }
  7270. #endif // MESH_BED_LEVELING
  7271. #if IS_KINEMATIC
  7272. /**
  7273. * Prepare a linear move in a DELTA or SCARA setup.
  7274. *
  7275. * This calls planner.buffer_line several times, adding
  7276. * small incremental moves for DELTA or SCARA.
  7277. */
  7278. inline bool prepare_kinematic_move_to(float ltarget[NUM_AXIS]) {
  7279. // Get the top feedrate of the move in the XY plane
  7280. float _feedrate_mm_s = MMS_SCALED(feedrate_mm_s);
  7281. // If the move is only in Z/E don't split up the move
  7282. if (ltarget[X_AXIS] == current_position[X_AXIS] && ltarget[Y_AXIS] == current_position[Y_AXIS]) {
  7283. planner.buffer_line_kinematic(ltarget, _feedrate_mm_s, active_extruder);
  7284. return true;
  7285. }
  7286. // Get the cartesian distances moved in XYZE
  7287. float difference[NUM_AXIS];
  7288. LOOP_XYZE(i) difference[i] = ltarget[i] - current_position[i];
  7289. // Get the linear distance in XYZ
  7290. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  7291. // If the move is very short, check the E move distance
  7292. if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = abs(difference[E_AXIS]);
  7293. // No E move either? Game over.
  7294. if (UNEAR_ZERO(cartesian_mm)) return false;
  7295. // Minimum number of seconds to move the given distance
  7296. float seconds = cartesian_mm / _feedrate_mm_s;
  7297. // The number of segments-per-second times the duration
  7298. // gives the number of segments
  7299. uint16_t segments = delta_segments_per_second * seconds;
  7300. // For SCARA minimum segment size is 0.5mm
  7301. #if IS_SCARA
  7302. NOMORE(segments, cartesian_mm * 2);
  7303. #endif
  7304. // At least one segment is required
  7305. NOLESS(segments, 1);
  7306. // The approximate length of each segment
  7307. float segment_distance[XYZE] = {
  7308. difference[X_AXIS] / segments,
  7309. difference[Y_AXIS] / segments,
  7310. difference[Z_AXIS] / segments,
  7311. difference[E_AXIS] / segments
  7312. };
  7313. // SERIAL_ECHOPAIR("mm=", cartesian_mm);
  7314. // SERIAL_ECHOPAIR(" seconds=", seconds);
  7315. // SERIAL_ECHOLNPAIR(" segments=", segments);
  7316. // Drop one segment so the last move is to the exact target.
  7317. // If there's only 1 segment, loops will be skipped entirely.
  7318. --segments;
  7319. // Using "raw" coordinates saves 6 float subtractions
  7320. // per segment, saving valuable CPU cycles
  7321. #if ENABLED(USE_RAW_KINEMATICS)
  7322. // Get the raw current position as starting point
  7323. float raw[XYZE] = {
  7324. RAW_CURRENT_POSITION(X_AXIS),
  7325. RAW_CURRENT_POSITION(Y_AXIS),
  7326. RAW_CURRENT_POSITION(Z_AXIS),
  7327. current_position[E_AXIS]
  7328. };
  7329. #define DELTA_VAR raw
  7330. // Delta can inline its kinematics
  7331. #if ENABLED(DELTA)
  7332. #define DELTA_IK() DELTA_RAW_IK()
  7333. #else
  7334. #define DELTA_IK() inverse_kinematics(raw)
  7335. #endif
  7336. #else
  7337. // Get the logical current position as starting point
  7338. float logical[XYZE];
  7339. memcpy(logical, current_position, sizeof(logical));
  7340. #define DELTA_VAR logical
  7341. // Delta can inline its kinematics
  7342. #if ENABLED(DELTA)
  7343. #define DELTA_IK() DELTA_LOGICAL_IK()
  7344. #else
  7345. #define DELTA_IK() inverse_kinematics(logical)
  7346. #endif
  7347. #endif
  7348. #if ENABLED(USE_DELTA_IK_INTERPOLATION)
  7349. // Only interpolate XYZ. Advance E normally.
  7350. #define DELTA_NEXT(ADDEND) LOOP_XYZ(i) DELTA_VAR[i] += ADDEND;
  7351. // Get the starting delta if interpolation is possible
  7352. if (segments >= 2) {
  7353. DELTA_IK();
  7354. ADJUST_DELTA(DELTA_VAR); // Adjust Z if bed leveling is enabled
  7355. }
  7356. // Loop using decrement
  7357. for (uint16_t s = segments + 1; --s;) {
  7358. // Are there at least 2 moves left?
  7359. if (s >= 2) {
  7360. // Save the previous delta for interpolation
  7361. float prev_delta[ABC] = { delta[A_AXIS], delta[B_AXIS], delta[C_AXIS] };
  7362. // Get the delta 2 segments ahead (rather than the next)
  7363. DELTA_NEXT(segment_distance[i] + segment_distance[i]);
  7364. // Advance E normally
  7365. DELTA_VAR[E_AXIS] += segment_distance[E_AXIS];
  7366. // Get the exact delta for the move after this
  7367. DELTA_IK();
  7368. ADJUST_DELTA(DELTA_VAR); // Adjust Z if bed leveling is enabled
  7369. // Move to the interpolated delta position first
  7370. planner.buffer_line(
  7371. (prev_delta[A_AXIS] + delta[A_AXIS]) * 0.5,
  7372. (prev_delta[B_AXIS] + delta[B_AXIS]) * 0.5,
  7373. (prev_delta[C_AXIS] + delta[C_AXIS]) * 0.5,
  7374. DELTA_VAR[E_AXIS], _feedrate_mm_s, active_extruder
  7375. );
  7376. // Advance E once more for the next move
  7377. DELTA_VAR[E_AXIS] += segment_distance[E_AXIS];
  7378. // Do an extra decrement of the loop
  7379. --s;
  7380. }
  7381. else {
  7382. // Get the last segment delta. (Used when segments is odd)
  7383. DELTA_NEXT(segment_distance[i]);
  7384. DELTA_VAR[E_AXIS] += segment_distance[E_AXIS];
  7385. DELTA_IK();
  7386. ADJUST_DELTA(DELTA_VAR); // Adjust Z if bed leveling is enabled
  7387. }
  7388. // Move to the non-interpolated position
  7389. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], DELTA_VAR[E_AXIS], _feedrate_mm_s, active_extruder);
  7390. }
  7391. #else
  7392. #define DELTA_NEXT(ADDEND) LOOP_XYZE(i) DELTA_VAR[i] += ADDEND;
  7393. // For non-interpolated delta calculate every segment
  7394. for (uint16_t s = segments + 1; --s;) {
  7395. DELTA_NEXT(segment_distance[i]);
  7396. planner.buffer_line_kinematic(DELTA_VAR, _feedrate_mm_s, active_extruder);
  7397. }
  7398. #endif
  7399. // Since segment_distance is only approximate,
  7400. // the final move must be to the exact destination.
  7401. planner.buffer_line_kinematic(ltarget, _feedrate_mm_s, active_extruder);
  7402. return true;
  7403. }
  7404. #else
  7405. /**
  7406. * Prepare a linear move in a Cartesian setup.
  7407. * If Mesh Bed Leveling is enabled, perform a mesh move.
  7408. */
  7409. inline bool prepare_move_to_destination_cartesian() {
  7410. // Do not use feedrate_percentage for E or Z only moves
  7411. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  7412. line_to_destination();
  7413. }
  7414. else {
  7415. #if ENABLED(MESH_BED_LEVELING)
  7416. if (mbl.active()) {
  7417. mesh_line_to_destination(MMS_SCALED(feedrate_mm_s));
  7418. return false;
  7419. }
  7420. else
  7421. #endif
  7422. line_to_destination(MMS_SCALED(feedrate_mm_s));
  7423. }
  7424. return true;
  7425. }
  7426. #endif // !IS_KINEMATIC
  7427. #if ENABLED(DUAL_X_CARRIAGE)
  7428. /**
  7429. * Prepare a linear move in a dual X axis setup
  7430. */
  7431. inline bool prepare_move_to_destination_dualx() {
  7432. if (active_extruder_parked) {
  7433. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  7434. // move duplicate extruder into correct duplication position.
  7435. planner.set_position_mm(
  7436. LOGICAL_X_POSITION(inactive_extruder_x_pos),
  7437. current_position[Y_AXIS],
  7438. current_position[Z_AXIS],
  7439. current_position[E_AXIS]
  7440. );
  7441. planner.buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  7442. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[X_AXIS], 1);
  7443. SYNC_PLAN_POSITION_KINEMATIC();
  7444. stepper.synchronize();
  7445. extruder_duplication_enabled = true;
  7446. active_extruder_parked = false;
  7447. }
  7448. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  7449. if (current_position[E_AXIS] == destination[E_AXIS]) {
  7450. // This is a travel move (with no extrusion)
  7451. // Skip it, but keep track of the current position
  7452. // (so it can be used as the start of the next non-travel move)
  7453. if (delayed_move_time != 0xFFFFFFFFUL) {
  7454. set_current_to_destination();
  7455. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  7456. delayed_move_time = millis();
  7457. return false;
  7458. }
  7459. }
  7460. delayed_move_time = 0;
  7461. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  7462. planner.buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  7463. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], PLANNER_XY_FEEDRATE(), active_extruder);
  7464. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  7465. active_extruder_parked = false;
  7466. }
  7467. }
  7468. return true;
  7469. }
  7470. #endif // DUAL_X_CARRIAGE
  7471. /**
  7472. * Prepare a single move and get ready for the next one
  7473. *
  7474. * This may result in several calls to planner.buffer_line to
  7475. * do smaller moves for DELTA, SCARA, mesh moves, etc.
  7476. */
  7477. void prepare_move_to_destination() {
  7478. clamp_to_software_endstops(destination);
  7479. refresh_cmd_timeout();
  7480. #if ENABLED(PREVENT_COLD_EXTRUSION)
  7481. if (!DEBUGGING(DRYRUN)) {
  7482. if (destination[E_AXIS] != current_position[E_AXIS]) {
  7483. if (thermalManager.tooColdToExtrude(active_extruder)) {
  7484. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  7485. SERIAL_ECHO_START;
  7486. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  7487. }
  7488. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  7489. if (labs(destination[E_AXIS] - current_position[E_AXIS]) > EXTRUDE_MAXLENGTH) {
  7490. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  7491. SERIAL_ECHO_START;
  7492. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  7493. }
  7494. #endif
  7495. }
  7496. }
  7497. #endif
  7498. #if IS_KINEMATIC
  7499. if (!prepare_kinematic_move_to(destination)) return;
  7500. #else
  7501. #if ENABLED(DUAL_X_CARRIAGE)
  7502. if (!prepare_move_to_destination_dualx()) return;
  7503. #endif
  7504. if (!prepare_move_to_destination_cartesian()) return;
  7505. #endif
  7506. set_current_to_destination();
  7507. }
  7508. #if ENABLED(ARC_SUPPORT)
  7509. /**
  7510. * Plan an arc in 2 dimensions
  7511. *
  7512. * The arc is approximated by generating many small linear segments.
  7513. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  7514. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  7515. * larger segments will tend to be more efficient. Your slicer should have
  7516. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  7517. */
  7518. void plan_arc(
  7519. float logical[NUM_AXIS], // Destination position
  7520. float* offset, // Center of rotation relative to current_position
  7521. uint8_t clockwise // Clockwise?
  7522. ) {
  7523. float radius = HYPOT(offset[X_AXIS], offset[Y_AXIS]),
  7524. center_X = current_position[X_AXIS] + offset[X_AXIS],
  7525. center_Y = current_position[Y_AXIS] + offset[Y_AXIS],
  7526. linear_travel = logical[Z_AXIS] - current_position[Z_AXIS],
  7527. extruder_travel = logical[E_AXIS] - current_position[E_AXIS],
  7528. r_X = -offset[X_AXIS], // Radius vector from center to current location
  7529. r_Y = -offset[Y_AXIS],
  7530. rt_X = logical[X_AXIS] - center_X,
  7531. rt_Y = logical[Y_AXIS] - center_Y;
  7532. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  7533. float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
  7534. if (angular_travel < 0) angular_travel += RADIANS(360);
  7535. if (clockwise) angular_travel -= RADIANS(360);
  7536. // Make a circle if the angular rotation is 0
  7537. if (angular_travel == 0 && current_position[X_AXIS] == logical[X_AXIS] && current_position[Y_AXIS] == logical[Y_AXIS])
  7538. angular_travel += RADIANS(360);
  7539. float mm_of_travel = HYPOT(angular_travel * radius, fabs(linear_travel));
  7540. if (mm_of_travel < 0.001) return;
  7541. uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
  7542. if (segments == 0) segments = 1;
  7543. /**
  7544. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  7545. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  7546. * r_T = [cos(phi) -sin(phi);
  7547. * sin(phi) cos(phi)] * r ;
  7548. *
  7549. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  7550. * defined from the circle center to the initial position. Each line segment is formed by successive
  7551. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  7552. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  7553. * all double numbers are single precision on the Arduino. (True double precision will not have
  7554. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  7555. * tool precision in some cases. Therefore, arc path correction is implemented.
  7556. *
  7557. * Small angle approximation may be used to reduce computation overhead further. This approximation
  7558. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  7559. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  7560. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  7561. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  7562. * issue for CNC machines with the single precision Arduino calculations.
  7563. *
  7564. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  7565. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  7566. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  7567. * This is important when there are successive arc motions.
  7568. */
  7569. // Vector rotation matrix values
  7570. float arc_target[XYZE],
  7571. theta_per_segment = angular_travel / segments,
  7572. linear_per_segment = linear_travel / segments,
  7573. extruder_per_segment = extruder_travel / segments,
  7574. sin_T = theta_per_segment,
  7575. cos_T = 1 - 0.5 * sq(theta_per_segment); // Small angle approximation
  7576. // Initialize the linear axis
  7577. arc_target[Z_AXIS] = current_position[Z_AXIS];
  7578. // Initialize the extruder axis
  7579. arc_target[E_AXIS] = current_position[E_AXIS];
  7580. float fr_mm_s = MMS_SCALED(feedrate_mm_s);
  7581. millis_t next_idle_ms = millis() + 200UL;
  7582. int8_t count = 0;
  7583. for (uint16_t i = 1; i < segments; i++) { // Iterate (segments-1) times
  7584. thermalManager.manage_heater();
  7585. if (ELAPSED(millis(), next_idle_ms)) {
  7586. next_idle_ms = millis() + 200UL;
  7587. idle();
  7588. }
  7589. if (++count < N_ARC_CORRECTION) {
  7590. // Apply vector rotation matrix to previous r_X / 1
  7591. float r_new_Y = r_X * sin_T + r_Y * cos_T;
  7592. r_X = r_X * cos_T - r_Y * sin_T;
  7593. r_Y = r_new_Y;
  7594. }
  7595. else {
  7596. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  7597. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  7598. // To reduce stuttering, the sin and cos could be computed at different times.
  7599. // For now, compute both at the same time.
  7600. float cos_Ti = cos(i * theta_per_segment),
  7601. sin_Ti = sin(i * theta_per_segment);
  7602. r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
  7603. r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
  7604. count = 0;
  7605. }
  7606. // Update arc_target location
  7607. arc_target[X_AXIS] = center_X + r_X;
  7608. arc_target[Y_AXIS] = center_Y + r_Y;
  7609. arc_target[Z_AXIS] += linear_per_segment;
  7610. arc_target[E_AXIS] += extruder_per_segment;
  7611. clamp_to_software_endstops(arc_target);
  7612. planner.buffer_line_kinematic(arc_target, fr_mm_s, active_extruder);
  7613. }
  7614. // Ensure last segment arrives at target location.
  7615. planner.buffer_line_kinematic(logical, fr_mm_s, active_extruder);
  7616. // As far as the parser is concerned, the position is now == target. In reality the
  7617. // motion control system might still be processing the action and the real tool position
  7618. // in any intermediate location.
  7619. set_current_to_destination();
  7620. }
  7621. #endif
  7622. #if ENABLED(BEZIER_CURVE_SUPPORT)
  7623. void plan_cubic_move(const float offset[4]) {
  7624. cubic_b_spline(current_position, destination, offset, MMS_SCALED(feedrate_mm_s), active_extruder);
  7625. // As far as the parser is concerned, the position is now == destination. In reality the
  7626. // motion control system might still be processing the action and the real tool position
  7627. // in any intermediate location.
  7628. set_current_to_destination();
  7629. }
  7630. #endif // BEZIER_CURVE_SUPPORT
  7631. #if HAS_CONTROLLERFAN
  7632. void controllerFan() {
  7633. static millis_t lastMotorOn = 0; // Last time a motor was turned on
  7634. static millis_t nextMotorCheck = 0; // Last time the state was checked
  7635. millis_t ms = millis();
  7636. if (ELAPSED(ms, nextMotorCheck)) {
  7637. nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
  7638. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_bed > 0
  7639. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  7640. #if E_STEPPERS > 1
  7641. || E1_ENABLE_READ == E_ENABLE_ON
  7642. #if HAS_X2_ENABLE
  7643. || X2_ENABLE_READ == X_ENABLE_ON
  7644. #endif
  7645. #if E_STEPPERS > 2
  7646. || E2_ENABLE_READ == E_ENABLE_ON
  7647. #if E_STEPPERS > 3
  7648. || E3_ENABLE_READ == E_ENABLE_ON
  7649. #endif
  7650. #endif
  7651. #endif
  7652. ) {
  7653. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  7654. }
  7655. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  7656. uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  7657. // allows digital or PWM fan output to be used (see M42 handling)
  7658. digitalWrite(CONTROLLERFAN_PIN, speed);
  7659. analogWrite(CONTROLLERFAN_PIN, speed);
  7660. }
  7661. }
  7662. #endif // HAS_CONTROLLERFAN
  7663. #if ENABLED(MORGAN_SCARA)
  7664. /**
  7665. * Morgan SCARA Forward Kinematics. Results in cartes[].
  7666. * Maths and first version by QHARLEY.
  7667. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  7668. */
  7669. void forward_kinematics_SCARA(const float &a, const float &b) {
  7670. float a_sin = sin(RADIANS(a)) * L1,
  7671. a_cos = cos(RADIANS(a)) * L1,
  7672. b_sin = sin(RADIANS(b)) * L2,
  7673. b_cos = cos(RADIANS(b)) * L2;
  7674. cartes[X_AXIS] = a_cos + b_cos + SCARA_OFFSET_X; //theta
  7675. cartes[Y_AXIS] = a_sin + b_sin + SCARA_OFFSET_Y; //theta+phi
  7676. /*
  7677. SERIAL_ECHOPAIR("SCARA FK Angle a=", a);
  7678. SERIAL_ECHOPAIR(" b=", b);
  7679. SERIAL_ECHOPAIR(" a_sin=", a_sin);
  7680. SERIAL_ECHOPAIR(" a_cos=", a_cos);
  7681. SERIAL_ECHOPAIR(" b_sin=", b_sin);
  7682. SERIAL_ECHOLNPAIR(" b_cos=", b_cos);
  7683. SERIAL_ECHOPAIR(" cartes[X_AXIS]=", cartes[X_AXIS]);
  7684. SERIAL_ECHOLNPAIR(" cartes[Y_AXIS]=", cartes[Y_AXIS]);
  7685. //*/
  7686. }
  7687. /**
  7688. * Morgan SCARA Inverse Kinematics. Results in delta[].
  7689. *
  7690. * See http://forums.reprap.org/read.php?185,283327
  7691. *
  7692. * Maths and first version by QHARLEY.
  7693. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  7694. */
  7695. void inverse_kinematics(const float logical[XYZ]) {
  7696. static float C2, S2, SK1, SK2, THETA, PSI;
  7697. float sx = RAW_X_POSITION(logical[X_AXIS]) - SCARA_OFFSET_X, // Translate SCARA to standard X Y
  7698. sy = RAW_Y_POSITION(logical[Y_AXIS]) - SCARA_OFFSET_Y; // With scaling factor.
  7699. if (L1 == L2)
  7700. C2 = HYPOT2(sx, sy) / L1_2_2 - 1;
  7701. else
  7702. C2 = (HYPOT2(sx, sy) - (L1_2 + L2_2)) / (2.0 * L1 * L2);
  7703. S2 = sqrt(sq(C2) - 1);
  7704. // Unrotated Arm1 plus rotated Arm2 gives the distance from Center to End
  7705. SK1 = L1 + L2 * C2;
  7706. // Rotated Arm2 gives the distance from Arm1 to Arm2
  7707. SK2 = L2 * S2;
  7708. // Angle of Arm1 is the difference between Center-to-End angle and the Center-to-Elbow
  7709. THETA = atan2(SK1, SK2) - atan2(sx, sy);
  7710. // Angle of Arm2
  7711. PSI = atan2(S2, C2);
  7712. delta[A_AXIS] = DEGREES(THETA); // theta is support arm angle
  7713. delta[B_AXIS] = DEGREES(THETA + PSI); // equal to sub arm angle (inverted motor)
  7714. delta[C_AXIS] = logical[Z_AXIS];
  7715. /*
  7716. DEBUG_POS("SCARA IK", logical);
  7717. DEBUG_POS("SCARA IK", delta);
  7718. SERIAL_ECHOPAIR(" SCARA (x,y) ", sx);
  7719. SERIAL_ECHOPAIR(",", sy);
  7720. SERIAL_ECHOPAIR(" C2=", C2);
  7721. SERIAL_ECHOPAIR(" S2=", S2);
  7722. SERIAL_ECHOPAIR(" Theta=", THETA);
  7723. SERIAL_ECHOLNPAIR(" Phi=", PHI);
  7724. //*/
  7725. }
  7726. #endif // MORGAN_SCARA
  7727. #if ENABLED(TEMP_STAT_LEDS)
  7728. static bool red_led = false;
  7729. static millis_t next_status_led_update_ms = 0;
  7730. void handle_status_leds(void) {
  7731. if (ELAPSED(millis(), next_status_led_update_ms)) {
  7732. next_status_led_update_ms += 500; // Update every 0.5s
  7733. float max_temp = 0.0;
  7734. #if HAS_TEMP_BED
  7735. max_temp = MAX3(max_temp, thermalManager.degTargetBed(), thermalManager.degBed());
  7736. #endif
  7737. HOTEND_LOOP() {
  7738. max_temp = MAX3(max_temp, thermalManager.degHotend(e), thermalManager.degTargetHotend(e));
  7739. }
  7740. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  7741. if (new_led != red_led) {
  7742. red_led = new_led;
  7743. #if PIN_EXISTS(STAT_LED_RED)
  7744. WRITE(STAT_LED_RED_PIN, new_led ? HIGH : LOW);
  7745. #if PIN_EXISTS(STAT_LED_BLUE)
  7746. WRITE(STAT_LED_BLUE_PIN, new_led ? LOW : HIGH);
  7747. #endif
  7748. #else
  7749. WRITE(STAT_LED_BLUE_PIN, new_led ? HIGH : LOW);
  7750. #endif
  7751. }
  7752. }
  7753. }
  7754. #endif
  7755. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  7756. void handle_filament_runout() {
  7757. if (!filament_ran_out) {
  7758. filament_ran_out = true;
  7759. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  7760. stepper.synchronize();
  7761. }
  7762. }
  7763. #endif // FILAMENT_RUNOUT_SENSOR
  7764. #if ENABLED(FAST_PWM_FAN)
  7765. void setPwmFrequency(uint8_t pin, int val) {
  7766. val &= 0x07;
  7767. switch (digitalPinToTimer(pin)) {
  7768. #if defined(TCCR0A)
  7769. case TIMER0A:
  7770. case TIMER0B:
  7771. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  7772. // TCCR0B |= val;
  7773. break;
  7774. #endif
  7775. #if defined(TCCR1A)
  7776. case TIMER1A:
  7777. case TIMER1B:
  7778. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7779. // TCCR1B |= val;
  7780. break;
  7781. #endif
  7782. #if defined(TCCR2)
  7783. case TIMER2:
  7784. case TIMER2:
  7785. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7786. TCCR2 |= val;
  7787. break;
  7788. #endif
  7789. #if defined(TCCR2A)
  7790. case TIMER2A:
  7791. case TIMER2B:
  7792. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  7793. TCCR2B |= val;
  7794. break;
  7795. #endif
  7796. #if defined(TCCR3A)
  7797. case TIMER3A:
  7798. case TIMER3B:
  7799. case TIMER3C:
  7800. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  7801. TCCR3B |= val;
  7802. break;
  7803. #endif
  7804. #if defined(TCCR4A)
  7805. case TIMER4A:
  7806. case TIMER4B:
  7807. case TIMER4C:
  7808. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  7809. TCCR4B |= val;
  7810. break;
  7811. #endif
  7812. #if defined(TCCR5A)
  7813. case TIMER5A:
  7814. case TIMER5B:
  7815. case TIMER5C:
  7816. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  7817. TCCR5B |= val;
  7818. break;
  7819. #endif
  7820. }
  7821. }
  7822. #endif // FAST_PWM_FAN
  7823. float calculate_volumetric_multiplier(float diameter) {
  7824. if (!volumetric_enabled || diameter == 0) return 1.0;
  7825. return 1.0 / (M_PI * diameter * 0.5 * diameter * 0.5);
  7826. }
  7827. void calculate_volumetric_multipliers() {
  7828. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  7829. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  7830. }
  7831. void enable_all_steppers() {
  7832. enable_x();
  7833. enable_y();
  7834. enable_z();
  7835. enable_e0();
  7836. enable_e1();
  7837. enable_e2();
  7838. enable_e3();
  7839. }
  7840. void disable_all_steppers() {
  7841. disable_x();
  7842. disable_y();
  7843. disable_z();
  7844. disable_e0();
  7845. disable_e1();
  7846. disable_e2();
  7847. disable_e3();
  7848. }
  7849. /**
  7850. * Manage several activities:
  7851. * - Check for Filament Runout
  7852. * - Keep the command buffer full
  7853. * - Check for maximum inactive time between commands
  7854. * - Check for maximum inactive time between stepper commands
  7855. * - Check if pin CHDK needs to go LOW
  7856. * - Check for KILL button held down
  7857. * - Check for HOME button held down
  7858. * - Check if cooling fan needs to be switched on
  7859. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  7860. */
  7861. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  7862. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  7863. if ((IS_SD_PRINTING || print_job_timer.isRunning()) && !(READ(FIL_RUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  7864. handle_filament_runout();
  7865. #endif
  7866. if (commands_in_queue < BUFSIZE) get_available_commands();
  7867. millis_t ms = millis();
  7868. if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) kill(PSTR(MSG_KILLED));
  7869. if (stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
  7870. && !ignore_stepper_queue && !planner.blocks_queued()) {
  7871. #if ENABLED(DISABLE_INACTIVE_X)
  7872. disable_x();
  7873. #endif
  7874. #if ENABLED(DISABLE_INACTIVE_Y)
  7875. disable_y();
  7876. #endif
  7877. #if ENABLED(DISABLE_INACTIVE_Z)
  7878. disable_z();
  7879. #endif
  7880. #if ENABLED(DISABLE_INACTIVE_E)
  7881. disable_e0();
  7882. disable_e1();
  7883. disable_e2();
  7884. disable_e3();
  7885. #endif
  7886. }
  7887. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  7888. if (chdkActive && PENDING(ms, chdkHigh + CHDK_DELAY)) {
  7889. chdkActive = false;
  7890. WRITE(CHDK, LOW);
  7891. }
  7892. #endif
  7893. #if HAS_KILL
  7894. // Check if the kill button was pressed and wait just in case it was an accidental
  7895. // key kill key press
  7896. // -------------------------------------------------------------------------------
  7897. static int killCount = 0; // make the inactivity button a bit less responsive
  7898. const int KILL_DELAY = 750;
  7899. if (!READ(KILL_PIN))
  7900. killCount++;
  7901. else if (killCount > 0)
  7902. killCount--;
  7903. // Exceeded threshold and we can confirm that it was not accidental
  7904. // KILL the machine
  7905. // ----------------------------------------------------------------
  7906. if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED));
  7907. #endif
  7908. #if HAS_HOME
  7909. // Check to see if we have to home, use poor man's debouncer
  7910. // ---------------------------------------------------------
  7911. static int homeDebounceCount = 0; // poor man's debouncing count
  7912. const int HOME_DEBOUNCE_DELAY = 2500;
  7913. if (!READ(HOME_PIN)) {
  7914. if (!homeDebounceCount) {
  7915. enqueue_and_echo_commands_P(PSTR("G28"));
  7916. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  7917. }
  7918. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  7919. homeDebounceCount++;
  7920. else
  7921. homeDebounceCount = 0;
  7922. }
  7923. #endif
  7924. #if HAS_CONTROLLERFAN
  7925. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  7926. #endif
  7927. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  7928. if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL)
  7929. && thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  7930. bool oldstatus;
  7931. #if ENABLED(SWITCHING_EXTRUDER)
  7932. oldstatus = E0_ENABLE_READ;
  7933. enable_e0();
  7934. #else // !SWITCHING_EXTRUDER
  7935. switch (active_extruder) {
  7936. case 0:
  7937. oldstatus = E0_ENABLE_READ;
  7938. enable_e0();
  7939. break;
  7940. #if E_STEPPERS > 1
  7941. case 1:
  7942. oldstatus = E1_ENABLE_READ;
  7943. enable_e1();
  7944. break;
  7945. #if E_STEPPERS > 2
  7946. case 2:
  7947. oldstatus = E2_ENABLE_READ;
  7948. enable_e2();
  7949. break;
  7950. #if E_STEPPERS > 3
  7951. case 3:
  7952. oldstatus = E3_ENABLE_READ;
  7953. enable_e3();
  7954. break;
  7955. #endif
  7956. #endif
  7957. #endif
  7958. }
  7959. #endif // !SWITCHING_EXTRUDER
  7960. previous_cmd_ms = ms; // refresh_cmd_timeout()
  7961. #if IS_KINEMATIC
  7962. inverse_kinematics(current_position);
  7963. ADJUST_DELTA(current_position);
  7964. planner.buffer_line(
  7965. delta[A_AXIS], delta[B_AXIS], delta[C_AXIS],
  7966. current_position[E_AXIS] + EXTRUDER_RUNOUT_EXTRUDE,
  7967. MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED), active_extruder
  7968. );
  7969. #else
  7970. planner.buffer_line(
  7971. current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  7972. current_position[E_AXIS] + EXTRUDER_RUNOUT_EXTRUDE,
  7973. MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED), active_extruder
  7974. );
  7975. #endif
  7976. stepper.synchronize();
  7977. planner.set_e_position_mm(current_position[E_AXIS]);
  7978. #if ENABLED(SWITCHING_EXTRUDER)
  7979. E0_ENABLE_WRITE(oldstatus);
  7980. #else
  7981. switch (active_extruder) {
  7982. case 0:
  7983. E0_ENABLE_WRITE(oldstatus);
  7984. break;
  7985. #if E_STEPPERS > 1
  7986. case 1:
  7987. E1_ENABLE_WRITE(oldstatus);
  7988. break;
  7989. #if E_STEPPERS > 2
  7990. case 2:
  7991. E2_ENABLE_WRITE(oldstatus);
  7992. break;
  7993. #if E_STEPPERS > 3
  7994. case 3:
  7995. E3_ENABLE_WRITE(oldstatus);
  7996. break;
  7997. #endif
  7998. #endif
  7999. #endif
  8000. }
  8001. #endif // !SWITCHING_EXTRUDER
  8002. }
  8003. #endif // EXTRUDER_RUNOUT_PREVENT
  8004. #if ENABLED(DUAL_X_CARRIAGE)
  8005. // handle delayed move timeout
  8006. if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
  8007. // travel moves have been received so enact them
  8008. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  8009. set_destination_to_current();
  8010. prepare_move_to_destination();
  8011. }
  8012. #endif
  8013. #if ENABLED(TEMP_STAT_LEDS)
  8014. handle_status_leds();
  8015. #endif
  8016. planner.check_axes_activity();
  8017. }
  8018. /**
  8019. * Standard idle routine keeps the machine alive
  8020. */
  8021. void idle(
  8022. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  8023. bool no_stepper_sleep/*=false*/
  8024. #endif
  8025. ) {
  8026. lcd_update();
  8027. host_keepalive();
  8028. manage_inactivity(
  8029. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  8030. no_stepper_sleep
  8031. #endif
  8032. );
  8033. thermalManager.manage_heater();
  8034. #if ENABLED(PRINTCOUNTER)
  8035. print_job_timer.tick();
  8036. #endif
  8037. #if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
  8038. buzzer.tick();
  8039. #endif
  8040. }
  8041. /**
  8042. * Kill all activity and lock the machine.
  8043. * After this the machine will need to be reset.
  8044. */
  8045. void kill(const char* lcd_msg) {
  8046. SERIAL_ERROR_START;
  8047. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  8048. #if ENABLED(ULTRA_LCD)
  8049. kill_screen(lcd_msg);
  8050. #else
  8051. UNUSED(lcd_msg);
  8052. #endif
  8053. delay(500); // Wait a short time
  8054. cli(); // Stop interrupts
  8055. thermalManager.disable_all_heaters();
  8056. disable_all_steppers();
  8057. #if HAS_POWER_SWITCH
  8058. pinMode(PS_ON_PIN, INPUT);
  8059. #endif
  8060. suicide();
  8061. while (1) {
  8062. #if ENABLED(USE_WATCHDOG)
  8063. watchdog_reset();
  8064. #endif
  8065. } // Wait for reset
  8066. }
  8067. /**
  8068. * Turn off heaters and stop the print in progress
  8069. * After a stop the machine may be resumed with M999
  8070. */
  8071. void stop() {
  8072. thermalManager.disable_all_heaters();
  8073. if (IsRunning()) {
  8074. Running = false;
  8075. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  8076. SERIAL_ERROR_START;
  8077. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  8078. LCD_MESSAGEPGM(MSG_STOPPED);
  8079. }
  8080. }
  8081. /**
  8082. * Marlin entry-point: Set up before the program loop
  8083. * - Set up the kill pin, filament runout, power hold
  8084. * - Start the serial port
  8085. * - Print startup messages and diagnostics
  8086. * - Get EEPROM or default settings
  8087. * - Initialize managers for:
  8088. * • temperature
  8089. * • planner
  8090. * • watchdog
  8091. * • stepper
  8092. * • photo pin
  8093. * • servos
  8094. * • LCD controller
  8095. * • Digipot I2C
  8096. * • Z probe sled
  8097. * • status LEDs
  8098. */
  8099. void setup() {
  8100. #ifdef DISABLE_JTAG
  8101. // Disable JTAG on AT90USB chips to free up pins for IO
  8102. MCUCR = 0x80;
  8103. MCUCR = 0x80;
  8104. #endif
  8105. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  8106. setup_filrunoutpin();
  8107. #endif
  8108. setup_killpin();
  8109. setup_powerhold();
  8110. #if HAS_STEPPER_RESET
  8111. disableStepperDrivers();
  8112. #endif
  8113. MYSERIAL.begin(BAUDRATE);
  8114. SERIAL_PROTOCOLLNPGM("start");
  8115. SERIAL_ECHO_START;
  8116. // Check startup - does nothing if bootloader sets MCUSR to 0
  8117. byte mcu = MCUSR;
  8118. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  8119. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  8120. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  8121. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  8122. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  8123. MCUSR = 0;
  8124. SERIAL_ECHOPGM(MSG_MARLIN);
  8125. SERIAL_CHAR(' ');
  8126. SERIAL_ECHOLNPGM(SHORT_BUILD_VERSION);
  8127. SERIAL_EOL;
  8128. #if defined(STRING_DISTRIBUTION_DATE) && defined(STRING_CONFIG_H_AUTHOR)
  8129. SERIAL_ECHO_START;
  8130. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  8131. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  8132. SERIAL_ECHOLNPGM(MSG_AUTHOR STRING_CONFIG_H_AUTHOR);
  8133. SERIAL_ECHOLNPGM("Compiled: " __DATE__);
  8134. #endif
  8135. SERIAL_ECHO_START;
  8136. SERIAL_ECHOPAIR(MSG_FREE_MEMORY, freeMemory());
  8137. SERIAL_ECHOLNPAIR(MSG_PLANNER_BUFFER_BYTES, (int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  8138. // Send "ok" after commands by default
  8139. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  8140. // Load data from EEPROM if available (or use defaults)
  8141. // This also updates variables in the planner, elsewhere
  8142. Config_RetrieveSettings();
  8143. // Initialize current position based on home_offset
  8144. memcpy(current_position, home_offset, sizeof(home_offset));
  8145. // Vital to init stepper/planner equivalent for current_position
  8146. SYNC_PLAN_POSITION_KINEMATIC();
  8147. thermalManager.init(); // Initialize temperature loop
  8148. #if ENABLED(USE_WATCHDOG)
  8149. watchdog_init();
  8150. #endif
  8151. stepper.init(); // Initialize stepper, this enables interrupts!
  8152. setup_photpin();
  8153. servo_init();
  8154. #if HAS_BED_PROBE
  8155. endstops.enable_z_probe(false);
  8156. #endif
  8157. #if HAS_CONTROLLERFAN
  8158. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  8159. #endif
  8160. #if HAS_STEPPER_RESET
  8161. enableStepperDrivers();
  8162. #endif
  8163. #if ENABLED(DIGIPOT_I2C)
  8164. digipot_i2c_init();
  8165. #endif
  8166. #if ENABLED(DAC_STEPPER_CURRENT)
  8167. dac_init();
  8168. #endif
  8169. #if ENABLED(Z_PROBE_SLED) && PIN_EXISTS(SLED)
  8170. OUT_WRITE(SLED_PIN, LOW); // turn it off
  8171. #endif // Z_PROBE_SLED
  8172. setup_homepin();
  8173. #if PIN_EXISTS(STAT_LED_RED)
  8174. OUT_WRITE(STAT_LED_RED_PIN, LOW); // turn it off
  8175. #endif
  8176. #if PIN_EXISTS(STAT_LED_BLUE)
  8177. OUT_WRITE(STAT_LED_BLUE_PIN, LOW); // turn it off
  8178. #endif
  8179. lcd_init();
  8180. #if ENABLED(SHOW_BOOTSCREEN)
  8181. #if ENABLED(DOGLCD)
  8182. safe_delay(BOOTSCREEN_TIMEOUT);
  8183. #elif ENABLED(ULTRA_LCD)
  8184. bootscreen();
  8185. #if DISABLED(SDSUPPORT)
  8186. lcd_init();
  8187. #endif
  8188. #endif
  8189. #endif
  8190. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  8191. // Initialize mixing to 100% color 1
  8192. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  8193. mixing_factor[i] = (i == 0) ? 1 : 0;
  8194. for (uint8_t t = 0; t < MIXING_VIRTUAL_TOOLS; t++)
  8195. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  8196. mixing_virtual_tool_mix[t][i] = mixing_factor[i];
  8197. #endif
  8198. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  8199. i2c.onReceive(i2c_on_receive);
  8200. i2c.onRequest(i2c_on_request);
  8201. #endif
  8202. }
  8203. /**
  8204. * The main Marlin program loop
  8205. *
  8206. * - Save or log commands to SD
  8207. * - Process available commands (if not saving)
  8208. * - Call heater manager
  8209. * - Call inactivity manager
  8210. * - Call endstop manager
  8211. * - Call LCD update
  8212. */
  8213. void loop() {
  8214. if (commands_in_queue < BUFSIZE) get_available_commands();
  8215. #if ENABLED(SDSUPPORT)
  8216. card.checkautostart(false);
  8217. #endif
  8218. if (commands_in_queue) {
  8219. #if ENABLED(SDSUPPORT)
  8220. if (card.saving) {
  8221. char* command = command_queue[cmd_queue_index_r];
  8222. if (strstr_P(command, PSTR("M29"))) {
  8223. // M29 closes the file
  8224. card.closefile();
  8225. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  8226. ok_to_send();
  8227. }
  8228. else {
  8229. // Write the string from the read buffer to SD
  8230. card.write_command(command);
  8231. if (card.logging)
  8232. process_next_command(); // The card is saving because it's logging
  8233. else
  8234. ok_to_send();
  8235. }
  8236. }
  8237. else
  8238. process_next_command();
  8239. #else
  8240. process_next_command();
  8241. #endif // SDSUPPORT
  8242. // The queue may be reset by a command handler or by code invoked by idle() within a handler
  8243. if (commands_in_queue) {
  8244. --commands_in_queue;
  8245. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  8246. }
  8247. }
  8248. endstops.report_state();
  8249. idle();
  8250. }