My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

stepper.cpp 40KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327
  1. /*
  2. stepper.c - stepper motor driver: executes motion plans using stepper motors
  3. Part of Grbl
  4. Copyright (c) 2009-2011 Simen Svale Skogsrud
  5. Grbl is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. Grbl is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
  17. and Philipp Tiefenbacher. */
  18. #include "Marlin.h"
  19. #include "stepper.h"
  20. #include "planner.h"
  21. #include "temperature.h"
  22. #include "ultralcd.h"
  23. #include "language.h"
  24. #include "cardreader.h"
  25. #include "speed_lookuptable.h"
  26. #if HAS_DIGIPOTSS
  27. #include <SPI.h>
  28. #endif
  29. //===========================================================================
  30. //============================= public variables ============================
  31. //===========================================================================
  32. block_t *current_block; // A pointer to the block currently being traced
  33. //===========================================================================
  34. //============================= private variables ===========================
  35. //===========================================================================
  36. //static makes it impossible to be called from outside of this file by extern.!
  37. // Variables used by The Stepper Driver Interrupt
  38. static unsigned char out_bits; // The next stepping-bits to be output
  39. static unsigned int cleaning_buffer_counter;
  40. #ifdef Z_DUAL_ENDSTOPS
  41. static bool performing_homing = false,
  42. locked_z_motor = false,
  43. locked_z2_motor = false;
  44. #endif
  45. // Counter variables for the bresenham line tracer
  46. static long counter_x, counter_y, counter_z, counter_e;
  47. volatile static unsigned long step_events_completed; // The number of step events executed in the current block
  48. #ifdef ADVANCE
  49. static long advance_rate, advance, final_advance = 0;
  50. static long old_advance = 0;
  51. static long e_steps[4];
  52. #endif
  53. static long acceleration_time, deceleration_time;
  54. //static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
  55. static unsigned short acc_step_rate; // needed for deccelaration start point
  56. static char step_loops;
  57. static unsigned short OCR1A_nominal;
  58. static unsigned short step_loops_nominal;
  59. volatile long endstops_trigsteps[3] = { 0 };
  60. volatile long endstops_stepsTotal, endstops_stepsDone;
  61. static volatile bool endstop_x_hit = false;
  62. static volatile bool endstop_y_hit = false;
  63. static volatile bool endstop_z_hit = false;
  64. static volatile bool endstop_z_probe_hit = false; // Leaving this in even if Z_PROBE_ENDSTOP isn't defined, keeps code below cleaner. #ifdef it and usage below to save space.
  65. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  66. bool abort_on_endstop_hit = false;
  67. #endif
  68. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  69. int motor_current_setting[3] = DEFAULT_PWM_MOTOR_CURRENT;
  70. #endif
  71. #if HAS_X_MIN
  72. static bool old_x_min_endstop = false;
  73. #endif
  74. #if HAS_X_MAX
  75. static bool old_x_max_endstop = false;
  76. #endif
  77. #if HAS_Y_MIN
  78. static bool old_y_min_endstop = false;
  79. #endif
  80. #if HAS_Y_MAX
  81. static bool old_y_max_endstop = false;
  82. #endif
  83. static bool old_z_min_endstop = false;
  84. static bool old_z_max_endstop = false;
  85. #ifdef Z_DUAL_ENDSTOPS
  86. static bool old_z2_min_endstop = false;
  87. static bool old_z2_max_endstop = false;
  88. #endif
  89. #ifdef Z_PROBE_ENDSTOP // No need to check for valid pin, SanityCheck.h already does this.
  90. static bool old_z_probe_endstop = false;
  91. #endif
  92. static bool check_endstops = true;
  93. volatile long count_position[NUM_AXIS] = { 0 };
  94. volatile signed char count_direction[NUM_AXIS] = { 1, 1, 1, 1 };
  95. //===========================================================================
  96. //================================ functions ================================
  97. //===========================================================================
  98. #ifdef DUAL_X_CARRIAGE
  99. #define X_APPLY_DIR(v,ALWAYS) \
  100. if (extruder_duplication_enabled || ALWAYS) { \
  101. X_DIR_WRITE(v); \
  102. X2_DIR_WRITE(v); \
  103. } \
  104. else { \
  105. if (current_block->active_extruder) X2_DIR_WRITE(v); else X_DIR_WRITE(v); \
  106. }
  107. #define X_APPLY_STEP(v,ALWAYS) \
  108. if (extruder_duplication_enabled || ALWAYS) { \
  109. X_STEP_WRITE(v); \
  110. X2_STEP_WRITE(v); \
  111. } \
  112. else { \
  113. if (current_block->active_extruder != 0) X2_STEP_WRITE(v); else X_STEP_WRITE(v); \
  114. }
  115. #else
  116. #define X_APPLY_DIR(v,Q) X_DIR_WRITE(v)
  117. #define X_APPLY_STEP(v,Q) X_STEP_WRITE(v)
  118. #endif
  119. #ifdef Y_DUAL_STEPPER_DRIVERS
  120. #define Y_APPLY_DIR(v,Q) { Y_DIR_WRITE(v); Y2_DIR_WRITE((v) != INVERT_Y2_VS_Y_DIR); }
  121. #define Y_APPLY_STEP(v,Q) { Y_STEP_WRITE(v); Y2_STEP_WRITE(v); }
  122. #else
  123. #define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v)
  124. #define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v)
  125. #endif
  126. #ifdef Z_DUAL_STEPPER_DRIVERS
  127. #define Z_APPLY_DIR(v,Q) { Z_DIR_WRITE(v); Z2_DIR_WRITE(v); }
  128. #ifdef Z_DUAL_ENDSTOPS
  129. #define Z_APPLY_STEP(v,Q) \
  130. if (performing_homing) { \
  131. if (Z_HOME_DIR > 0) {\
  132. if (!(old_z_max_endstop && (count_direction[Z_AXIS] > 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
  133. if (!(old_z2_max_endstop && (count_direction[Z_AXIS] > 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
  134. } else {\
  135. if (!(old_z_min_endstop && (count_direction[Z_AXIS] < 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
  136. if (!(old_z2_min_endstop && (count_direction[Z_AXIS] < 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
  137. } \
  138. } else { \
  139. Z_STEP_WRITE(v); \
  140. Z2_STEP_WRITE(v); \
  141. }
  142. #else
  143. #define Z_APPLY_STEP(v,Q) { Z_STEP_WRITE(v); Z2_STEP_WRITE(v); }
  144. #endif
  145. #else
  146. #define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v)
  147. #define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v)
  148. #endif
  149. #define E_APPLY_STEP(v,Q) E_STEP_WRITE(v)
  150. // intRes = intIn1 * intIn2 >> 16
  151. // uses:
  152. // r26 to store 0
  153. // r27 to store the byte 1 of the 24 bit result
  154. #define MultiU16X8toH16(intRes, charIn1, intIn2) \
  155. asm volatile ( \
  156. "clr r26 \n\t" \
  157. "mul %A1, %B2 \n\t" \
  158. "movw %A0, r0 \n\t" \
  159. "mul %A1, %A2 \n\t" \
  160. "add %A0, r1 \n\t" \
  161. "adc %B0, r26 \n\t" \
  162. "lsr r0 \n\t" \
  163. "adc %A0, r26 \n\t" \
  164. "adc %B0, r26 \n\t" \
  165. "clr r1 \n\t" \
  166. : \
  167. "=&r" (intRes) \
  168. : \
  169. "d" (charIn1), \
  170. "d" (intIn2) \
  171. : \
  172. "r26" \
  173. )
  174. // intRes = longIn1 * longIn2 >> 24
  175. // uses:
  176. // r26 to store 0
  177. // r27 to store the byte 1 of the 48bit result
  178. #define MultiU24X24toH16(intRes, longIn1, longIn2) \
  179. asm volatile ( \
  180. "clr r26 \n\t" \
  181. "mul %A1, %B2 \n\t" \
  182. "mov r27, r1 \n\t" \
  183. "mul %B1, %C2 \n\t" \
  184. "movw %A0, r0 \n\t" \
  185. "mul %C1, %C2 \n\t" \
  186. "add %B0, r0 \n\t" \
  187. "mul %C1, %B2 \n\t" \
  188. "add %A0, r0 \n\t" \
  189. "adc %B0, r1 \n\t" \
  190. "mul %A1, %C2 \n\t" \
  191. "add r27, r0 \n\t" \
  192. "adc %A0, r1 \n\t" \
  193. "adc %B0, r26 \n\t" \
  194. "mul %B1, %B2 \n\t" \
  195. "add r27, r0 \n\t" \
  196. "adc %A0, r1 \n\t" \
  197. "adc %B0, r26 \n\t" \
  198. "mul %C1, %A2 \n\t" \
  199. "add r27, r0 \n\t" \
  200. "adc %A0, r1 \n\t" \
  201. "adc %B0, r26 \n\t" \
  202. "mul %B1, %A2 \n\t" \
  203. "add r27, r1 \n\t" \
  204. "adc %A0, r26 \n\t" \
  205. "adc %B0, r26 \n\t" \
  206. "lsr r27 \n\t" \
  207. "adc %A0, r26 \n\t" \
  208. "adc %B0, r26 \n\t" \
  209. "clr r1 \n\t" \
  210. : \
  211. "=&r" (intRes) \
  212. : \
  213. "d" (longIn1), \
  214. "d" (longIn2) \
  215. : \
  216. "r26" , "r27" \
  217. )
  218. // Some useful constants
  219. #define ENABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 |= BIT(OCIE1A)
  220. #define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~BIT(OCIE1A)
  221. void endstops_hit_on_purpose() {
  222. endstop_x_hit = endstop_y_hit = endstop_z_hit = endstop_z_probe_hit = false; // #ifdef endstop_z_probe_hit = to save space if needed.
  223. }
  224. void checkHitEndstops() {
  225. if (endstop_x_hit || endstop_y_hit || endstop_z_hit || endstop_z_probe_hit) { // #ifdef || endstop_z_probe_hit to save space if needed.
  226. SERIAL_ECHO_START;
  227. SERIAL_ECHOPGM(MSG_ENDSTOPS_HIT);
  228. if (endstop_x_hit) {
  229. SERIAL_ECHOPAIR(" X:", (float)endstops_trigsteps[X_AXIS] / axis_steps_per_unit[X_AXIS]);
  230. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "X");
  231. }
  232. if (endstop_y_hit) {
  233. SERIAL_ECHOPAIR(" Y:", (float)endstops_trigsteps[Y_AXIS] / axis_steps_per_unit[Y_AXIS]);
  234. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Y");
  235. }
  236. if (endstop_z_hit) {
  237. SERIAL_ECHOPAIR(" Z:", (float)endstops_trigsteps[Z_AXIS] / axis_steps_per_unit[Z_AXIS]);
  238. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Z");
  239. }
  240. #ifdef Z_PROBE_ENDSTOP
  241. if (endstop_z_probe_hit) {
  242. SERIAL_ECHOPAIR(" Z_PROBE:", (float)endstops_trigsteps[Z_AXIS] / axis_steps_per_unit[Z_AXIS]);
  243. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "ZP");
  244. }
  245. #endif
  246. SERIAL_EOL;
  247. endstops_hit_on_purpose();
  248. #if defined(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && defined(SDSUPPORT)
  249. if (abort_on_endstop_hit) {
  250. card.sdprinting = false;
  251. card.closefile();
  252. quickStop();
  253. setTargetHotend0(0);
  254. setTargetHotend1(0);
  255. setTargetHotend2(0);
  256. setTargetHotend3(0);
  257. setTargetBed(0);
  258. }
  259. #endif
  260. }
  261. }
  262. void enable_endstops(bool check) { check_endstops = check; }
  263. // __________________________
  264. // /| |\ _________________ ^
  265. // / | | \ /| |\ |
  266. // / | | \ / | | \ s
  267. // / | | | | | \ p
  268. // / | | | | | \ e
  269. // +-----+------------------------+---+--+---------------+----+ e
  270. // | BLOCK 1 | BLOCK 2 | d
  271. //
  272. // time ----->
  273. //
  274. // The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
  275. // first block->accelerate_until step_events_completed, then keeps going at constant speed until
  276. // step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
  277. // The slope of acceleration is calculated with the leib ramp alghorithm.
  278. void st_wake_up() {
  279. // TCNT1 = 0;
  280. ENABLE_STEPPER_DRIVER_INTERRUPT();
  281. }
  282. FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {
  283. unsigned short timer;
  284. if (step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY;
  285. if (step_rate > 20000) { // If steprate > 20kHz >> step 4 times
  286. step_rate = (step_rate >> 2) & 0x3fff;
  287. step_loops = 4;
  288. }
  289. else if (step_rate > 10000) { // If steprate > 10kHz >> step 2 times
  290. step_rate = (step_rate >> 1) & 0x7fff;
  291. step_loops = 2;
  292. }
  293. else {
  294. step_loops = 1;
  295. }
  296. if (step_rate < (F_CPU / 500000)) step_rate = (F_CPU / 500000);
  297. step_rate -= (F_CPU / 500000); // Correct for minimal speed
  298. if (step_rate >= (8 * 256)) { // higher step rate
  299. unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0];
  300. unsigned char tmp_step_rate = (step_rate & 0x00ff);
  301. unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2);
  302. MultiU16X8toH16(timer, tmp_step_rate, gain);
  303. timer = (unsigned short)pgm_read_word_near(table_address) - timer;
  304. }
  305. else { // lower step rates
  306. unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
  307. table_address += ((step_rate)>>1) & 0xfffc;
  308. timer = (unsigned short)pgm_read_word_near(table_address);
  309. timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3);
  310. }
  311. if (timer < 100) { timer = 100; MYSERIAL.print(MSG_STEPPER_TOO_HIGH); MYSERIAL.println(step_rate); }//(20kHz this should never happen)
  312. return timer;
  313. }
  314. // Initializes the trapezoid generator from the current block. Called whenever a new
  315. // block begins.
  316. FORCE_INLINE void trapezoid_generator_reset() {
  317. #ifdef ADVANCE
  318. advance = current_block->initial_advance;
  319. final_advance = current_block->final_advance;
  320. // Do E steps + advance steps
  321. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  322. old_advance = advance >>8;
  323. #endif
  324. deceleration_time = 0;
  325. // step_rate to timer interval
  326. OCR1A_nominal = calc_timer(current_block->nominal_rate);
  327. // make a note of the number of step loops required at nominal speed
  328. step_loops_nominal = step_loops;
  329. acc_step_rate = current_block->initial_rate;
  330. acceleration_time = calc_timer(acc_step_rate);
  331. OCR1A = acceleration_time;
  332. // SERIAL_ECHO_START;
  333. // SERIAL_ECHOPGM("advance :");
  334. // SERIAL_ECHO(current_block->advance/256.0);
  335. // SERIAL_ECHOPGM("advance rate :");
  336. // SERIAL_ECHO(current_block->advance_rate/256.0);
  337. // SERIAL_ECHOPGM("initial advance :");
  338. // SERIAL_ECHO(current_block->initial_advance/256.0);
  339. // SERIAL_ECHOPGM("final advance :");
  340. // SERIAL_ECHOLN(current_block->final_advance/256.0);
  341. }
  342. // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
  343. // It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
  344. ISR(TIMER1_COMPA_vect) {
  345. if(cleaning_buffer_counter)
  346. {
  347. current_block = NULL;
  348. plan_discard_current_block();
  349. #ifdef SD_FINISHED_RELEASECOMMAND
  350. if ((cleaning_buffer_counter == 1) && (SD_FINISHED_STEPPERRELEASE)) enqueuecommands_P(PSTR(SD_FINISHED_RELEASECOMMAND));
  351. #endif
  352. cleaning_buffer_counter--;
  353. OCR1A = 200;
  354. return;
  355. }
  356. // If there is no current block, attempt to pop one from the buffer
  357. if (!current_block) {
  358. // Anything in the buffer?
  359. current_block = plan_get_current_block();
  360. if (current_block) {
  361. current_block->busy = true;
  362. trapezoid_generator_reset();
  363. counter_x = -(current_block->step_event_count >> 1);
  364. counter_y = counter_z = counter_e = counter_x;
  365. step_events_completed = 0;
  366. #ifdef Z_LATE_ENABLE
  367. if (current_block->steps[Z_AXIS] > 0) {
  368. enable_z();
  369. OCR1A = 2000; //1ms wait
  370. return;
  371. }
  372. #endif
  373. // #ifdef ADVANCE
  374. // e_steps[current_block->active_extruder] = 0;
  375. // #endif
  376. }
  377. else {
  378. OCR1A = 2000; // 1kHz.
  379. }
  380. }
  381. if (current_block != NULL) {
  382. // Set directions TO DO This should be done once during init of trapezoid. Endstops -> interrupt
  383. out_bits = current_block->direction_bits;
  384. // Set the direction bits (X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY)
  385. if (TEST(out_bits, X_AXIS)) {
  386. X_APPLY_DIR(INVERT_X_DIR,0);
  387. count_direction[X_AXIS] = -1;
  388. }
  389. else {
  390. X_APPLY_DIR(!INVERT_X_DIR,0);
  391. count_direction[X_AXIS] = 1;
  392. }
  393. if (TEST(out_bits, Y_AXIS)) {
  394. Y_APPLY_DIR(INVERT_Y_DIR,0);
  395. count_direction[Y_AXIS] = -1;
  396. }
  397. else {
  398. Y_APPLY_DIR(!INVERT_Y_DIR,0);
  399. count_direction[Y_AXIS] = 1;
  400. }
  401. #define UPDATE_ENDSTOP(axis,AXIS,minmax,MINMAX) \
  402. bool axis ##_## minmax ##_endstop = (READ(AXIS ##_## MINMAX ##_PIN) != AXIS ##_## MINMAX ##_ENDSTOP_INVERTING); \
  403. if (axis ##_## minmax ##_endstop && old_## axis ##_## minmax ##_endstop && (current_block->steps[AXIS ##_AXIS] > 0)) { \
  404. endstops_trigsteps[AXIS ##_AXIS] = count_position[AXIS ##_AXIS]; \
  405. endstop_## axis ##_hit = true; \
  406. step_events_completed = current_block->step_event_count; \
  407. } \
  408. old_## axis ##_## minmax ##_endstop = axis ##_## minmax ##_endstop;
  409. // Check X and Y endstops
  410. if (check_endstops) {
  411. #ifdef COREXY
  412. // Head direction in -X axis for CoreXY bots.
  413. // If DeltaX == -DeltaY, the movement is only in Y axis
  414. if ((current_block->steps[A_AXIS] != current_block->steps[B_AXIS]) || (TEST(out_bits, A_AXIS) == TEST(out_bits, B_AXIS))) {
  415. if (TEST(out_bits, X_HEAD))
  416. #else
  417. if (TEST(out_bits, X_AXIS)) // stepping along -X axis (regular cartesians bot)
  418. #endif
  419. { // -direction
  420. #ifdef DUAL_X_CARRIAGE
  421. // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
  422. if ((current_block->active_extruder == 0 && X_HOME_DIR == -1) || (current_block->active_extruder != 0 && X2_HOME_DIR == -1))
  423. #endif
  424. {
  425. #if HAS_X_MIN
  426. UPDATE_ENDSTOP(x, X, min, MIN);
  427. #endif
  428. }
  429. }
  430. else { // +direction
  431. #ifdef DUAL_X_CARRIAGE
  432. // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
  433. if ((current_block->active_extruder == 0 && X_HOME_DIR == 1) || (current_block->active_extruder != 0 && X2_HOME_DIR == 1))
  434. #endif
  435. {
  436. #if HAS_X_MAX
  437. UPDATE_ENDSTOP(x, X, max, MAX);
  438. #endif
  439. }
  440. }
  441. #ifdef COREXY
  442. }
  443. // Head direction in -Y axis for CoreXY bots.
  444. // If DeltaX == DeltaY, the movement is only in X axis
  445. if ((current_block->steps[A_AXIS] != current_block->steps[B_AXIS]) || (TEST(out_bits, A_AXIS) != TEST(out_bits, B_AXIS))) {
  446. if (TEST(out_bits, Y_HEAD))
  447. #else
  448. if (TEST(out_bits, Y_AXIS)) // -direction
  449. #endif
  450. { // -direction
  451. #if HAS_Y_MIN
  452. UPDATE_ENDSTOP(y, Y, min, MIN);
  453. #endif
  454. }
  455. else { // +direction
  456. #if HAS_Y_MAX
  457. UPDATE_ENDSTOP(y, Y, max, MAX);
  458. #endif
  459. }
  460. #ifdef COREXY
  461. }
  462. #endif
  463. }
  464. if (TEST(out_bits, Z_AXIS)) { // -direction
  465. Z_APPLY_DIR(INVERT_Z_DIR,0);
  466. count_direction[Z_AXIS] = -1;
  467. if (check_endstops) {
  468. #if HAS_Z_MIN
  469. #ifdef Z_DUAL_ENDSTOPS
  470. bool z_min_endstop = READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING,
  471. z2_min_endstop =
  472. #if HAS_Z2_MIN
  473. READ(Z2_MIN_PIN) != Z2_MIN_ENDSTOP_INVERTING
  474. #else
  475. z_min_endstop
  476. #endif
  477. ;
  478. bool z_min_both = z_min_endstop && old_z_min_endstop,
  479. z2_min_both = z2_min_endstop && old_z2_min_endstop;
  480. if ((z_min_both || z2_min_both) && current_block->steps[Z_AXIS] > 0) {
  481. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  482. endstop_z_hit = true;
  483. if (!performing_homing || (performing_homing && z_min_both && z2_min_both)) //if not performing home or if both endstops were trigged during homing...
  484. step_events_completed = current_block->step_event_count;
  485. }
  486. old_z_min_endstop = z_min_endstop;
  487. old_z2_min_endstop = z2_min_endstop;
  488. #else // !Z_DUAL_ENDSTOPS
  489. UPDATE_ENDSTOP(z, Z, min, MIN);
  490. #endif // !Z_DUAL_ENDSTOPS
  491. #endif // Z_MIN_PIN
  492. #ifdef Z_PROBE_ENDSTOP
  493. UPDATE_ENDSTOP(z, Z, probe, PROBE);
  494. z_probe_endstop=(READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  495. if(z_probe_endstop && old_z_probe_endstop)
  496. {
  497. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  498. endstop_z_probe_hit=true;
  499. // if (z_probe_endstop && old_z_probe_endstop) SERIAL_ECHOLN("z_probe_endstop = true");
  500. }
  501. old_z_probe_endstop = z_probe_endstop;
  502. #endif
  503. } // check_endstops
  504. }
  505. else { // +direction
  506. Z_APPLY_DIR(!INVERT_Z_DIR,0);
  507. count_direction[Z_AXIS] = 1;
  508. if (check_endstops) {
  509. #if HAS_Z_MAX
  510. #ifdef Z_DUAL_ENDSTOPS
  511. bool z_max_endstop = READ(Z_MAX_PIN) != Z_MAX_ENDSTOP_INVERTING,
  512. z2_max_endstop =
  513. #if HAS_Z2_MAX
  514. READ(Z2_MAX_PIN) != Z2_MAX_ENDSTOP_INVERTING
  515. #else
  516. z_max_endstop
  517. #endif
  518. ;
  519. bool z_max_both = z_max_endstop && old_z_max_endstop,
  520. z2_max_both = z2_max_endstop && old_z2_max_endstop;
  521. if ((z_max_both || z2_max_both) && current_block->steps[Z_AXIS] > 0) {
  522. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  523. endstop_z_hit = true;
  524. // if (z_max_both) SERIAL_ECHOLN("z_max_endstop = true");
  525. // if (z2_max_both) SERIAL_ECHOLN("z2_max_endstop = true");
  526. if (!performing_homing || (performing_homing && z_max_both && z2_max_both)) //if not performing home or if both endstops were trigged during homing...
  527. step_events_completed = current_block->step_event_count;
  528. }
  529. old_z_max_endstop = z_max_endstop;
  530. old_z2_max_endstop = z2_max_endstop;
  531. #else // !Z_DUAL_ENDSTOPS
  532. UPDATE_ENDSTOP(z, Z, max, MAX);
  533. #endif // !Z_DUAL_ENDSTOPS
  534. #endif // Z_MAX_PIN
  535. #ifdef Z_PROBE_ENDSTOP
  536. UPDATE_ENDSTOP(z, Z, probe, PROBE);
  537. z_probe_endstop=(READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  538. if(z_probe_endstop && old_z_probe_endstop)
  539. {
  540. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  541. endstop_z_probe_hit=true;
  542. // if (z_probe_endstop && old_z_probe_endstop) SERIAL_ECHOLN("z_probe_endstop = true");
  543. }
  544. old_z_probe_endstop = z_probe_endstop;
  545. #endif
  546. } // check_endstops
  547. } // +direction
  548. #ifndef ADVANCE
  549. if (TEST(out_bits, E_AXIS)) { // -direction
  550. REV_E_DIR();
  551. count_direction[E_AXIS] = -1;
  552. }
  553. else { // +direction
  554. NORM_E_DIR();
  555. count_direction[E_AXIS] = 1;
  556. }
  557. #endif //!ADVANCE
  558. // Take multiple steps per interrupt (For high speed moves)
  559. for (int8_t i = 0; i < step_loops; i++) {
  560. #ifndef AT90USB
  561. MSerial.checkRx(); // Check for serial chars.
  562. #endif
  563. #ifdef ADVANCE
  564. counter_e += current_block->steps[E_AXIS];
  565. if (counter_e > 0) {
  566. counter_e -= current_block->step_event_count;
  567. e_steps[current_block->active_extruder] += TEST(out_bits, E_AXIS) ? -1 : 1;
  568. }
  569. #endif //ADVANCE
  570. #ifdef CONFIG_STEPPERS_TOSHIBA
  571. /**
  572. * The Toshiba stepper controller require much longer pulses.
  573. * So we 'stage' decompose the pulses between high and low
  574. * instead of doing each in turn. The extra tests add enough
  575. * lag to allow it work with without needing NOPs
  576. */
  577. #define STEP_ADD(axis, AXIS) \
  578. counter_## axis += current_block->steps[AXIS ##_AXIS]; \
  579. if (counter_## axis > 0) { AXIS ##_STEP_WRITE(HIGH); }
  580. STEP_ADD(x,X);
  581. STEP_ADD(y,Y);
  582. STEP_ADD(z,Z);
  583. #ifndef ADVANCE
  584. STEP_ADD(e,E);
  585. #endif
  586. #define STEP_IF_COUNTER(axis, AXIS) \
  587. if (counter_## axis > 0) { \
  588. counter_## axis -= current_block->step_event_count; \
  589. count_position[AXIS ##_AXIS] += count_direction[AXIS ##_AXIS]; \
  590. AXIS ##_STEP_WRITE(LOW); \
  591. }
  592. STEP_IF_COUNTER(x, X);
  593. STEP_IF_COUNTER(y, Y);
  594. STEP_IF_COUNTER(z, Z);
  595. #ifndef ADVANCE
  596. STEP_IF_COUNTER(e, E);
  597. #endif
  598. #else // !CONFIG_STEPPERS_TOSHIBA
  599. #define APPLY_MOVEMENT(axis, AXIS) \
  600. counter_## axis += current_block->steps[AXIS ##_AXIS]; \
  601. if (counter_## axis > 0) { \
  602. AXIS ##_APPLY_STEP(!INVERT_## AXIS ##_STEP_PIN,0); \
  603. counter_## axis -= current_block->step_event_count; \
  604. count_position[AXIS ##_AXIS] += count_direction[AXIS ##_AXIS]; \
  605. AXIS ##_APPLY_STEP(INVERT_## AXIS ##_STEP_PIN,0); \
  606. }
  607. APPLY_MOVEMENT(x, X);
  608. APPLY_MOVEMENT(y, Y);
  609. APPLY_MOVEMENT(z, Z);
  610. #ifndef ADVANCE
  611. APPLY_MOVEMENT(e, E);
  612. #endif
  613. #endif // CONFIG_STEPPERS_TOSHIBA
  614. step_events_completed++;
  615. if (step_events_completed >= current_block->step_event_count) break;
  616. }
  617. // Calculate new timer value
  618. unsigned short timer;
  619. unsigned short step_rate;
  620. if (step_events_completed <= (unsigned long)current_block->accelerate_until) {
  621. MultiU24X24toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
  622. acc_step_rate += current_block->initial_rate;
  623. // upper limit
  624. if (acc_step_rate > current_block->nominal_rate)
  625. acc_step_rate = current_block->nominal_rate;
  626. // step_rate to timer interval
  627. timer = calc_timer(acc_step_rate);
  628. OCR1A = timer;
  629. acceleration_time += timer;
  630. #ifdef ADVANCE
  631. for(int8_t i=0; i < step_loops; i++) {
  632. advance += advance_rate;
  633. }
  634. //if (advance > current_block->advance) advance = current_block->advance;
  635. // Do E steps + advance steps
  636. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  637. old_advance = advance >>8;
  638. #endif
  639. }
  640. else if (step_events_completed > (unsigned long)current_block->decelerate_after) {
  641. MultiU24X24toH16(step_rate, deceleration_time, current_block->acceleration_rate);
  642. if (step_rate > acc_step_rate) { // Check step_rate stays positive
  643. step_rate = current_block->final_rate;
  644. }
  645. else {
  646. step_rate = acc_step_rate - step_rate; // Decelerate from aceleration end point.
  647. }
  648. // lower limit
  649. if (step_rate < current_block->final_rate)
  650. step_rate = current_block->final_rate;
  651. // step_rate to timer interval
  652. timer = calc_timer(step_rate);
  653. OCR1A = timer;
  654. deceleration_time += timer;
  655. #ifdef ADVANCE
  656. for(int8_t i=0; i < step_loops; i++) {
  657. advance -= advance_rate;
  658. }
  659. if (advance < final_advance) advance = final_advance;
  660. // Do E steps + advance steps
  661. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  662. old_advance = advance >>8;
  663. #endif //ADVANCE
  664. }
  665. else {
  666. OCR1A = OCR1A_nominal;
  667. // ensure we're running at the correct step rate, even if we just came off an acceleration
  668. step_loops = step_loops_nominal;
  669. }
  670. // If current block is finished, reset pointer
  671. if (step_events_completed >= current_block->step_event_count) {
  672. current_block = NULL;
  673. plan_discard_current_block();
  674. }
  675. }
  676. }
  677. #ifdef ADVANCE
  678. unsigned char old_OCR0A;
  679. // Timer interrupt for E. e_steps is set in the main routine;
  680. // Timer 0 is shared with millies
  681. ISR(TIMER0_COMPA_vect)
  682. {
  683. old_OCR0A += 52; // ~10kHz interrupt (250000 / 26 = 9615kHz)
  684. OCR0A = old_OCR0A;
  685. // Set E direction (Depends on E direction + advance)
  686. for(unsigned char i=0; i<4;i++) {
  687. if (e_steps[0] != 0) {
  688. E0_STEP_WRITE(INVERT_E_STEP_PIN);
  689. if (e_steps[0] < 0) {
  690. E0_DIR_WRITE(INVERT_E0_DIR);
  691. e_steps[0]++;
  692. E0_STEP_WRITE(!INVERT_E_STEP_PIN);
  693. }
  694. else if (e_steps[0] > 0) {
  695. E0_DIR_WRITE(!INVERT_E0_DIR);
  696. e_steps[0]--;
  697. E0_STEP_WRITE(!INVERT_E_STEP_PIN);
  698. }
  699. }
  700. #if EXTRUDERS > 1
  701. if (e_steps[1] != 0) {
  702. E1_STEP_WRITE(INVERT_E_STEP_PIN);
  703. if (e_steps[1] < 0) {
  704. E1_DIR_WRITE(INVERT_E1_DIR);
  705. e_steps[1]++;
  706. E1_STEP_WRITE(!INVERT_E_STEP_PIN);
  707. }
  708. else if (e_steps[1] > 0) {
  709. E1_DIR_WRITE(!INVERT_E1_DIR);
  710. e_steps[1]--;
  711. E1_STEP_WRITE(!INVERT_E_STEP_PIN);
  712. }
  713. }
  714. #endif
  715. #if EXTRUDERS > 2
  716. if (e_steps[2] != 0) {
  717. E2_STEP_WRITE(INVERT_E_STEP_PIN);
  718. if (e_steps[2] < 0) {
  719. E2_DIR_WRITE(INVERT_E2_DIR);
  720. e_steps[2]++;
  721. E2_STEP_WRITE(!INVERT_E_STEP_PIN);
  722. }
  723. else if (e_steps[2] > 0) {
  724. E2_DIR_WRITE(!INVERT_E2_DIR);
  725. e_steps[2]--;
  726. E2_STEP_WRITE(!INVERT_E_STEP_PIN);
  727. }
  728. }
  729. #endif
  730. #if EXTRUDERS > 3
  731. if (e_steps[3] != 0) {
  732. E3_STEP_WRITE(INVERT_E_STEP_PIN);
  733. if (e_steps[3] < 0) {
  734. E3_DIR_WRITE(INVERT_E3_DIR);
  735. e_steps[3]++;
  736. E3_STEP_WRITE(!INVERT_E_STEP_PIN);
  737. }
  738. else if (e_steps[3] > 0) {
  739. E3_DIR_WRITE(!INVERT_E3_DIR);
  740. e_steps[3]--;
  741. E3_STEP_WRITE(!INVERT_E_STEP_PIN);
  742. }
  743. }
  744. #endif
  745. }
  746. }
  747. #endif // ADVANCE
  748. void st_init() {
  749. digipot_init(); //Initialize Digipot Motor Current
  750. microstep_init(); //Initialize Microstepping Pins
  751. // initialise TMC Steppers
  752. #ifdef HAVE_TMCDRIVER
  753. tmc_init();
  754. #endif
  755. // initialise L6470 Steppers
  756. #ifdef HAVE_L6470DRIVER
  757. L6470_init();
  758. #endif
  759. // Initialize Dir Pins
  760. #if HAS_X_DIR
  761. X_DIR_INIT;
  762. #endif
  763. #if HAS_X2_DIR
  764. X2_DIR_INIT;
  765. #endif
  766. #if HAS_Y_DIR
  767. Y_DIR_INIT;
  768. #if defined(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_DIR
  769. Y2_DIR_INIT;
  770. #endif
  771. #endif
  772. #if HAS_Z_DIR
  773. Z_DIR_INIT;
  774. #if defined(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_DIR
  775. Z2_DIR_INIT;
  776. #endif
  777. #endif
  778. #if HAS_E0_DIR
  779. E0_DIR_INIT;
  780. #endif
  781. #if HAS_E1_DIR
  782. E1_DIR_INIT;
  783. #endif
  784. #if HAS_E2_DIR
  785. E2_DIR_INIT;
  786. #endif
  787. #if HAS_E3_DIR
  788. E3_DIR_INIT;
  789. #endif
  790. //Initialize Enable Pins - steppers default to disabled.
  791. #if HAS_X_ENABLE
  792. X_ENABLE_INIT;
  793. if (!X_ENABLE_ON) X_ENABLE_WRITE(HIGH);
  794. #endif
  795. #if HAS_X2_ENABLE
  796. X2_ENABLE_INIT;
  797. if (!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH);
  798. #endif
  799. #if HAS_Y_ENABLE
  800. Y_ENABLE_INIT;
  801. if (!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH);
  802. #if defined(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_ENABLE
  803. Y2_ENABLE_INIT;
  804. if (!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH);
  805. #endif
  806. #endif
  807. #if HAS_Z_ENABLE
  808. Z_ENABLE_INIT;
  809. if (!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH);
  810. #if defined(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_ENABLE
  811. Z2_ENABLE_INIT;
  812. if (!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH);
  813. #endif
  814. #endif
  815. #if HAS_E0_ENABLE
  816. E0_ENABLE_INIT;
  817. if (!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH);
  818. #endif
  819. #if HAS_E1_ENABLE
  820. E1_ENABLE_INIT;
  821. if (!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH);
  822. #endif
  823. #if HAS_E2_ENABLE
  824. E2_ENABLE_INIT;
  825. if (!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH);
  826. #endif
  827. #if HAS_E3_ENABLE
  828. E3_ENABLE_INIT;
  829. if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH);
  830. #endif
  831. //endstops and pullups
  832. #if HAS_X_MIN
  833. SET_INPUT(X_MIN_PIN);
  834. #ifdef ENDSTOPPULLUP_XMIN
  835. WRITE(X_MIN_PIN,HIGH);
  836. #endif
  837. #endif
  838. #if HAS_Y_MIN
  839. SET_INPUT(Y_MIN_PIN);
  840. #ifdef ENDSTOPPULLUP_YMIN
  841. WRITE(Y_MIN_PIN,HIGH);
  842. #endif
  843. #endif
  844. #if HAS_Z_MIN
  845. SET_INPUT(Z_MIN_PIN);
  846. #ifdef ENDSTOPPULLUP_ZMIN
  847. WRITE(Z_MIN_PIN,HIGH);
  848. #endif
  849. #endif
  850. #if HAS_X_MAX
  851. SET_INPUT(X_MAX_PIN);
  852. #ifdef ENDSTOPPULLUP_XMAX
  853. WRITE(X_MAX_PIN,HIGH);
  854. #endif
  855. #endif
  856. #if HAS_Y_MAX
  857. SET_INPUT(Y_MAX_PIN);
  858. #ifdef ENDSTOPPULLUP_YMAX
  859. WRITE(Y_MAX_PIN,HIGH);
  860. #endif
  861. #endif
  862. #if HAS_Z_MAX
  863. SET_INPUT(Z_MAX_PIN);
  864. #ifdef ENDSTOPPULLUP_ZMAX
  865. WRITE(Z_MAX_PIN,HIGH);
  866. #endif
  867. #endif
  868. #if HAS_Z2_MAX
  869. SET_INPUT(Z2_MAX_PIN);
  870. #ifdef ENDSTOPPULLUP_ZMAX
  871. WRITE(Z2_MAX_PIN,HIGH);
  872. #endif
  873. #endif
  874. #if (defined(Z_PROBE_PIN) && Z_PROBE_PIN >= 0) && defined(Z_PROBE_ENDSTOP) // Check for Z_PROBE_ENDSTOP so we don't pull a pin high unless it's to be used.
  875. SET_INPUT(Z_PROBE_PIN);
  876. #ifdef ENDSTOPPULLUP_ZPROBE
  877. WRITE(Z_PROBE_PIN,HIGH);
  878. #endif
  879. #endif
  880. #define AXIS_INIT(axis, AXIS, PIN) \
  881. AXIS ##_STEP_INIT; \
  882. AXIS ##_STEP_WRITE(INVERT_## PIN ##_STEP_PIN); \
  883. disable_## axis()
  884. #define E_AXIS_INIT(NUM) AXIS_INIT(e## NUM, E## NUM, E)
  885. // Initialize Step Pins
  886. #if HAS_X_STEP
  887. AXIS_INIT(x, X, X);
  888. #endif
  889. #if HAS_X2_STEP
  890. AXIS_INIT(x, X2, X);
  891. #endif
  892. #if HAS_Y_STEP
  893. #if defined(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_STEP
  894. Y2_STEP_INIT;
  895. Y2_STEP_WRITE(INVERT_Y_STEP_PIN);
  896. #endif
  897. AXIS_INIT(y, Y, Y);
  898. #endif
  899. #if HAS_Z_STEP
  900. #if defined(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_STEP
  901. Z2_STEP_INIT;
  902. Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
  903. #endif
  904. AXIS_INIT(z, Z, Z);
  905. #endif
  906. #if HAS_E0_STEP
  907. E_AXIS_INIT(0);
  908. #endif
  909. #if HAS_E1_STEP
  910. E_AXIS_INIT(1);
  911. #endif
  912. #if HAS_E2_STEP
  913. E_AXIS_INIT(2);
  914. #endif
  915. #if HAS_E3_STEP
  916. E_AXIS_INIT(3);
  917. #endif
  918. // waveform generation = 0100 = CTC
  919. TCCR1B &= ~BIT(WGM13);
  920. TCCR1B |= BIT(WGM12);
  921. TCCR1A &= ~BIT(WGM11);
  922. TCCR1A &= ~BIT(WGM10);
  923. // output mode = 00 (disconnected)
  924. TCCR1A &= ~(3<<COM1A0);
  925. TCCR1A &= ~(3<<COM1B0);
  926. // Set the timer pre-scaler
  927. // Generally we use a divider of 8, resulting in a 2MHz timer
  928. // frequency on a 16MHz MCU. If you are going to change this, be
  929. // sure to regenerate speed_lookuptable.h with
  930. // create_speed_lookuptable.py
  931. TCCR1B = (TCCR1B & ~(0x07<<CS10)) | (2<<CS10);
  932. OCR1A = 0x4000;
  933. TCNT1 = 0;
  934. ENABLE_STEPPER_DRIVER_INTERRUPT();
  935. #ifdef ADVANCE
  936. #if defined(TCCR0A) && defined(WGM01)
  937. TCCR0A &= ~BIT(WGM01);
  938. TCCR0A &= ~BIT(WGM00);
  939. #endif
  940. e_steps[0] = e_steps[1] = e_steps[2] = e_steps[3] = 0;
  941. TIMSK0 |= BIT(OCIE0A);
  942. #endif //ADVANCE
  943. enable_endstops(true); // Start with endstops active. After homing they can be disabled
  944. sei();
  945. }
  946. // Block until all buffered steps are executed
  947. void st_synchronize() {
  948. while (blocks_queued()) {
  949. manage_heater();
  950. manage_inactivity();
  951. lcd_update();
  952. }
  953. }
  954. void st_set_position(const long &x, const long &y, const long &z, const long &e) {
  955. CRITICAL_SECTION_START;
  956. count_position[X_AXIS] = x;
  957. count_position[Y_AXIS] = y;
  958. count_position[Z_AXIS] = z;
  959. count_position[E_AXIS] = e;
  960. CRITICAL_SECTION_END;
  961. }
  962. void st_set_e_position(const long &e) {
  963. CRITICAL_SECTION_START;
  964. count_position[E_AXIS] = e;
  965. CRITICAL_SECTION_END;
  966. }
  967. long st_get_position(uint8_t axis) {
  968. long count_pos;
  969. CRITICAL_SECTION_START;
  970. count_pos = count_position[axis];
  971. CRITICAL_SECTION_END;
  972. return count_pos;
  973. }
  974. #ifdef ENABLE_AUTO_BED_LEVELING
  975. float st_get_position_mm(uint8_t axis) {
  976. float steper_position_in_steps = st_get_position(axis);
  977. return steper_position_in_steps / axis_steps_per_unit[axis];
  978. }
  979. #endif // ENABLE_AUTO_BED_LEVELING
  980. void finishAndDisableSteppers() {
  981. st_synchronize();
  982. disable_all_steppers();
  983. }
  984. void quickStop() {
  985. cleaning_buffer_counter = 5000;
  986. DISABLE_STEPPER_DRIVER_INTERRUPT();
  987. while (blocks_queued()) plan_discard_current_block();
  988. current_block = NULL;
  989. ENABLE_STEPPER_DRIVER_INTERRUPT();
  990. }
  991. #ifdef BABYSTEPPING
  992. // MUST ONLY BE CALLED BY AN ISR,
  993. // No other ISR should ever interrupt this!
  994. void babystep(const uint8_t axis, const bool direction) {
  995. #define BABYSTEP_AXIS(axis, AXIS, INVERT) { \
  996. enable_## axis(); \
  997. uint8_t old_pin = AXIS ##_DIR_READ; \
  998. AXIS ##_APPLY_DIR(INVERT_## AXIS ##_DIR^direction^INVERT, true); \
  999. AXIS ##_APPLY_STEP(!INVERT_## AXIS ##_STEP_PIN, true); \
  1000. _delay_us(1U); \
  1001. AXIS ##_APPLY_STEP(INVERT_## AXIS ##_STEP_PIN, true); \
  1002. AXIS ##_APPLY_DIR(old_pin, true); \
  1003. }
  1004. switch(axis) {
  1005. case X_AXIS:
  1006. BABYSTEP_AXIS(x, X, false);
  1007. break;
  1008. case Y_AXIS:
  1009. BABYSTEP_AXIS(y, Y, false);
  1010. break;
  1011. case Z_AXIS: {
  1012. #ifndef DELTA
  1013. BABYSTEP_AXIS(z, Z, BABYSTEP_INVERT_Z);
  1014. #else // DELTA
  1015. bool z_direction = direction ^ BABYSTEP_INVERT_Z;
  1016. enable_x();
  1017. enable_y();
  1018. enable_z();
  1019. uint8_t old_x_dir_pin = X_DIR_READ,
  1020. old_y_dir_pin = Y_DIR_READ,
  1021. old_z_dir_pin = Z_DIR_READ;
  1022. //setup new step
  1023. X_DIR_WRITE(INVERT_X_DIR^z_direction);
  1024. Y_DIR_WRITE(INVERT_Y_DIR^z_direction);
  1025. Z_DIR_WRITE(INVERT_Z_DIR^z_direction);
  1026. //perform step
  1027. X_STEP_WRITE(!INVERT_X_STEP_PIN);
  1028. Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
  1029. Z_STEP_WRITE(!INVERT_Z_STEP_PIN);
  1030. _delay_us(1U);
  1031. X_STEP_WRITE(INVERT_X_STEP_PIN);
  1032. Y_STEP_WRITE(INVERT_Y_STEP_PIN);
  1033. Z_STEP_WRITE(INVERT_Z_STEP_PIN);
  1034. //get old pin state back.
  1035. X_DIR_WRITE(old_x_dir_pin);
  1036. Y_DIR_WRITE(old_y_dir_pin);
  1037. Z_DIR_WRITE(old_z_dir_pin);
  1038. #endif
  1039. } break;
  1040. default: break;
  1041. }
  1042. }
  1043. #endif //BABYSTEPPING
  1044. // From Arduino DigitalPotControl example
  1045. void digitalPotWrite(int address, int value) {
  1046. #if HAS_DIGIPOTSS
  1047. digitalWrite(DIGIPOTSS_PIN,LOW); // take the SS pin low to select the chip
  1048. SPI.transfer(address); // send in the address and value via SPI:
  1049. SPI.transfer(value);
  1050. digitalWrite(DIGIPOTSS_PIN,HIGH); // take the SS pin high to de-select the chip:
  1051. //delay(10);
  1052. #endif
  1053. }
  1054. // Initialize Digipot Motor Current
  1055. void digipot_init() {
  1056. #if HAS_DIGIPOTSS
  1057. const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
  1058. SPI.begin();
  1059. pinMode(DIGIPOTSS_PIN, OUTPUT);
  1060. for (int i = 0; i <= 4; i++) {
  1061. //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
  1062. digipot_current(i,digipot_motor_current[i]);
  1063. }
  1064. #endif
  1065. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  1066. pinMode(MOTOR_CURRENT_PWM_XY_PIN, OUTPUT);
  1067. pinMode(MOTOR_CURRENT_PWM_Z_PIN, OUTPUT);
  1068. pinMode(MOTOR_CURRENT_PWM_E_PIN, OUTPUT);
  1069. digipot_current(0, motor_current_setting[0]);
  1070. digipot_current(1, motor_current_setting[1]);
  1071. digipot_current(2, motor_current_setting[2]);
  1072. //Set timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
  1073. TCCR5B = (TCCR5B & ~(_BV(CS50) | _BV(CS51) | _BV(CS52))) | _BV(CS50);
  1074. #endif
  1075. }
  1076. void digipot_current(uint8_t driver, int current) {
  1077. #if HAS_DIGIPOTSS
  1078. const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
  1079. digitalPotWrite(digipot_ch[driver], current);
  1080. #endif
  1081. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  1082. switch(driver) {
  1083. case 0: analogWrite(MOTOR_CURRENT_PWM_XY_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
  1084. case 1: analogWrite(MOTOR_CURRENT_PWM_Z_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
  1085. case 2: analogWrite(MOTOR_CURRENT_PWM_E_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
  1086. }
  1087. #endif
  1088. }
  1089. void microstep_init() {
  1090. #if HAS_MICROSTEPS_E1
  1091. pinMode(E1_MS1_PIN,OUTPUT);
  1092. pinMode(E1_MS2_PIN,OUTPUT);
  1093. #endif
  1094. #if HAS_MICROSTEPS
  1095. pinMode(X_MS1_PIN,OUTPUT);
  1096. pinMode(X_MS2_PIN,OUTPUT);
  1097. pinMode(Y_MS1_PIN,OUTPUT);
  1098. pinMode(Y_MS2_PIN,OUTPUT);
  1099. pinMode(Z_MS1_PIN,OUTPUT);
  1100. pinMode(Z_MS2_PIN,OUTPUT);
  1101. pinMode(E0_MS1_PIN,OUTPUT);
  1102. pinMode(E0_MS2_PIN,OUTPUT);
  1103. const uint8_t microstep_modes[] = MICROSTEP_MODES;
  1104. for (uint16_t i = 0; i < sizeof(microstep_modes) / sizeof(microstep_modes[0]); i++)
  1105. microstep_mode(i, microstep_modes[i]);
  1106. #endif
  1107. }
  1108. void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2) {
  1109. if (ms1 >= 0) switch(driver) {
  1110. case 0: digitalWrite(X_MS1_PIN, ms1); break;
  1111. case 1: digitalWrite(Y_MS1_PIN, ms1); break;
  1112. case 2: digitalWrite(Z_MS1_PIN, ms1); break;
  1113. case 3: digitalWrite(E0_MS1_PIN, ms1); break;
  1114. #if HAS_MICROSTEPS_E1
  1115. case 4: digitalWrite(E1_MS1_PIN, ms1); break;
  1116. #endif
  1117. }
  1118. if (ms2 >= 0) switch(driver) {
  1119. case 0: digitalWrite(X_MS2_PIN, ms2); break;
  1120. case 1: digitalWrite(Y_MS2_PIN, ms2); break;
  1121. case 2: digitalWrite(Z_MS2_PIN, ms2); break;
  1122. case 3: digitalWrite(E0_MS2_PIN, ms2); break;
  1123. #if defined(E1_MS2_PIN) && E1_MS2_PIN >= 0
  1124. case 4: digitalWrite(E1_MS2_PIN, ms2); break;
  1125. #endif
  1126. }
  1127. }
  1128. void microstep_mode(uint8_t driver, uint8_t stepping_mode) {
  1129. switch(stepping_mode) {
  1130. case 1: microstep_ms(driver,MICROSTEP1); break;
  1131. case 2: microstep_ms(driver,MICROSTEP2); break;
  1132. case 4: microstep_ms(driver,MICROSTEP4); break;
  1133. case 8: microstep_ms(driver,MICROSTEP8); break;
  1134. case 16: microstep_ms(driver,MICROSTEP16); break;
  1135. }
  1136. }
  1137. void microstep_readings() {
  1138. SERIAL_PROTOCOLPGM("MS1,MS2 Pins\n");
  1139. SERIAL_PROTOCOLPGM("X: ");
  1140. SERIAL_PROTOCOL(digitalRead(X_MS1_PIN));
  1141. SERIAL_PROTOCOLLN(digitalRead(X_MS2_PIN));
  1142. SERIAL_PROTOCOLPGM("Y: ");
  1143. SERIAL_PROTOCOL(digitalRead(Y_MS1_PIN));
  1144. SERIAL_PROTOCOLLN(digitalRead(Y_MS2_PIN));
  1145. SERIAL_PROTOCOLPGM("Z: ");
  1146. SERIAL_PROTOCOL(digitalRead(Z_MS1_PIN));
  1147. SERIAL_PROTOCOLLN(digitalRead(Z_MS2_PIN));
  1148. SERIAL_PROTOCOLPGM("E0: ");
  1149. SERIAL_PROTOCOL(digitalRead(E0_MS1_PIN));
  1150. SERIAL_PROTOCOLLN(digitalRead(E0_MS2_PIN));
  1151. #if HAS_MICROSTEPS_E1
  1152. SERIAL_PROTOCOLPGM("E1: ");
  1153. SERIAL_PROTOCOL(digitalRead(E1_MS1_PIN));
  1154. SERIAL_PROTOCOLLN(digitalRead(E1_MS2_PIN));
  1155. #endif
  1156. }
  1157. #ifdef Z_DUAL_ENDSTOPS
  1158. void In_Homing_Process(bool state) { performing_homing = state; }
  1159. void Lock_z_motor(bool state) { locked_z_motor = state; }
  1160. void Lock_z2_motor(bool state) { locked_z2_motor = state; }
  1161. #endif