My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Você não pode selecionar mais de 25 tópicos Os tópicos devem começar com uma letra ou um número, podem incluir traços ('-') e podem ter até 35 caracteres.

Marlin_main.cpp 172KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #if Z_MIN_PIN == -1
  26. #error "You must have a Z_MIN endstop to enable Auto Bed Leveling feature. Z_MIN_PIN must point to a valid hardware pin."
  27. #endif
  28. #include "vector_3.h"
  29. #ifdef AUTO_BED_LEVELING_GRID
  30. #include "qr_solve.h"
  31. #endif
  32. #endif // ENABLE_AUTO_BED_LEVELING
  33. #define SERVO_LEVELING defined(ENABLE_AUTO_BED_LEVELING) && PROBE_SERVO_DEACTIVATION_DELAY > 0
  34. #include "ultralcd.h"
  35. #include "planner.h"
  36. #include "stepper.h"
  37. #include "temperature.h"
  38. #include "motion_control.h"
  39. #include "cardreader.h"
  40. #include "watchdog.h"
  41. #include "ConfigurationStore.h"
  42. #include "language.h"
  43. #include "pins_arduino.h"
  44. #include "math.h"
  45. #ifdef BLINKM
  46. #include "BlinkM.h"
  47. #include "Wire.h"
  48. #endif
  49. #if NUM_SERVOS > 0
  50. #include "Servo.h"
  51. #endif
  52. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  53. #include <SPI.h>
  54. #endif
  55. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  56. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  57. //Implemented Codes
  58. //-------------------
  59. // G0 -> G1
  60. // G1 - Coordinated Movement X Y Z E
  61. // G2 - CW ARC
  62. // G3 - CCW ARC
  63. // G4 - Dwell S<seconds> or P<milliseconds>
  64. // G10 - retract filament according to settings of M207
  65. // G11 - retract recover filament according to settings of M208
  66. // G28 - Home all Axis
  67. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  68. // G30 - Single Z Probe, probes bed at current XY location.
  69. // G31 - Dock sled (Z_PROBE_SLED only)
  70. // G32 - Undock sled (Z_PROBE_SLED only)
  71. // G90 - Use Absolute Coordinates
  72. // G91 - Use Relative Coordinates
  73. // G92 - Set current position to coordinates given
  74. // M Codes
  75. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  76. // M1 - Same as M0
  77. // M17 - Enable/Power all stepper motors
  78. // M18 - Disable all stepper motors; same as M84
  79. // M20 - List SD card
  80. // M21 - Init SD card
  81. // M22 - Release SD card
  82. // M23 - Select SD file (M23 filename.g)
  83. // M24 - Start/resume SD print
  84. // M25 - Pause SD print
  85. // M26 - Set SD position in bytes (M26 S12345)
  86. // M27 - Report SD print status
  87. // M28 - Start SD write (M28 filename.g)
  88. // M29 - Stop SD write
  89. // M30 - Delete file from SD (M30 filename.g)
  90. // M31 - Output time since last M109 or SD card start to serial
  91. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  92. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  93. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  94. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  95. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  96. // M80 - Turn on Power Supply
  97. // M81 - Turn off Power Supply
  98. // M82 - Set E codes absolute (default)
  99. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  100. // M84 - Disable steppers until next move,
  101. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  102. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  103. // M92 - Set axis_steps_per_unit - same syntax as G92
  104. // M104 - Set extruder target temp
  105. // M105 - Read current temp
  106. // M106 - Fan on
  107. // M107 - Fan off
  108. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  109. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  110. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  111. // M112 - Emergency stop
  112. // M114 - Output current position to serial port
  113. // M115 - Capabilities string
  114. // M117 - display message
  115. // M119 - Output Endstop status to serial port
  116. // M120 - Enable endstop detection
  117. // M121 - Disable endstop detection
  118. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  119. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  120. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  121. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  122. // M140 - Set bed target temp
  123. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  124. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  125. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  126. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  127. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  128. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  129. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  130. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  131. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  132. // M206 - Set additional homing offset
  133. // M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  134. // M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  135. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  136. // M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  137. // M220 S<factor in percent>- set speed factor override percentage
  138. // M221 S<factor in percent>- set extrude factor override percentage
  139. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  140. // M240 - Trigger a camera to take a photograph
  141. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  142. // M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  143. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  144. // M301 - Set PID parameters P I and D
  145. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  146. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  147. // M304 - Set bed PID parameters P I and D
  148. // M380 - Activate solenoid on active extruder
  149. // M381 - Disable all solenoids
  150. // M400 - Finish all moves
  151. // M401 - Lower z-probe if present
  152. // M402 - Raise z-probe if present
  153. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  154. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  155. // M406 - Turn off Filament Sensor extrusion control
  156. // M407 - Displays measured filament diameter
  157. // M500 - Store parameters in EEPROM
  158. // M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  159. // M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  160. // M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  161. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  162. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  163. // M665 - Set delta configurations
  164. // M666 - Set delta endstop adjustment
  165. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  166. // M907 - Set digital trimpot motor current using axis codes.
  167. // M908 - Control digital trimpot directly.
  168. // M350 - Set microstepping mode.
  169. // M351 - Toggle MS1 MS2 pins directly.
  170. // ************ SCARA Specific - This can change to suit future G-code regulations
  171. // M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  172. // M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  173. // M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  174. // M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  175. // M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  176. // M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  177. //************* SCARA End ***************
  178. // M928 - Start SD logging (M928 filename.g) - ended by M29
  179. // M999 - Restart after being stopped by error
  180. #ifdef SDSUPPORT
  181. CardReader card;
  182. #endif
  183. float homing_feedrate[] = HOMING_FEEDRATE;
  184. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  185. int feedmultiply = 100; //100->1 200->2
  186. int saved_feedmultiply;
  187. int extrudemultiply = 100; //100->1 200->2
  188. int extruder_multiply[EXTRUDERS] = { 100
  189. #if EXTRUDERS > 1
  190. , 100
  191. #if EXTRUDERS > 2
  192. , 100
  193. #if EXTRUDERS > 3
  194. , 100
  195. #endif
  196. #endif
  197. #endif
  198. };
  199. bool volumetric_enabled = false;
  200. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  201. #if EXTRUDERS > 1
  202. , DEFAULT_NOMINAL_FILAMENT_DIA
  203. #if EXTRUDERS > 2
  204. , DEFAULT_NOMINAL_FILAMENT_DIA
  205. #if EXTRUDERS > 3
  206. , DEFAULT_NOMINAL_FILAMENT_DIA
  207. #endif
  208. #endif
  209. #endif
  210. };
  211. float volumetric_multiplier[EXTRUDERS] = {1.0
  212. #if EXTRUDERS > 1
  213. , 1.0
  214. #if EXTRUDERS > 2
  215. , 1.0
  216. #if EXTRUDERS > 3
  217. , 1.0
  218. #endif
  219. #endif
  220. #endif
  221. };
  222. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  223. float add_homing[3] = { 0, 0, 0 };
  224. #ifdef DELTA
  225. float endstop_adj[3] = { 0, 0, 0 };
  226. #endif
  227. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  228. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  229. bool axis_known_position[3] = { false, false, false };
  230. float zprobe_zoffset;
  231. // Extruder offset
  232. #if EXTRUDERS > 1
  233. #ifndef DUAL_X_CARRIAGE
  234. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  235. #else
  236. #define NUM_EXTRUDER_OFFSETS 3 // supports offsets in XYZ plane
  237. #endif
  238. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  239. #if defined(EXTRUDER_OFFSET_X)
  240. EXTRUDER_OFFSET_X
  241. #else
  242. 0
  243. #endif
  244. ,
  245. #if defined(EXTRUDER_OFFSET_Y)
  246. EXTRUDER_OFFSET_Y
  247. #else
  248. 0
  249. #endif
  250. };
  251. #endif
  252. uint8_t active_extruder = 0;
  253. int fanSpeed = 0;
  254. #ifdef SERVO_ENDSTOPS
  255. int servo_endstops[] = SERVO_ENDSTOPS;
  256. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  257. #endif
  258. #ifdef BARICUDA
  259. int ValvePressure = 0;
  260. int EtoPPressure = 0;
  261. #endif
  262. #ifdef FWRETRACT
  263. bool autoretract_enabled = false;
  264. bool retracted[EXTRUDERS] = { false
  265. #if EXTRUDERS > 1
  266. , false
  267. #if EXTRUDERS > 2
  268. , false
  269. #if EXTRUDERS > 3
  270. , false
  271. #endif
  272. #endif
  273. #endif
  274. };
  275. bool retracted_swap[EXTRUDERS] = { false
  276. #if EXTRUDERS > 1
  277. , false
  278. #if EXTRUDERS > 2
  279. , false
  280. #if EXTRUDERS > 3
  281. , false
  282. #endif
  283. #endif
  284. #endif
  285. };
  286. float retract_length = RETRACT_LENGTH;
  287. float retract_length_swap = RETRACT_LENGTH_SWAP;
  288. float retract_feedrate = RETRACT_FEEDRATE;
  289. float retract_zlift = RETRACT_ZLIFT;
  290. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  291. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  292. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  293. #endif // FWRETRACT
  294. #ifdef ULTIPANEL
  295. bool powersupply =
  296. #ifdef PS_DEFAULT_OFF
  297. false
  298. #else
  299. true
  300. #endif
  301. ;
  302. #endif
  303. #ifdef DELTA
  304. float delta[3] = { 0, 0, 0 };
  305. #define SIN_60 0.8660254037844386
  306. #define COS_60 0.5
  307. // these are the default values, can be overriden with M665
  308. float delta_radius = DELTA_RADIUS;
  309. float delta_tower1_x = -SIN_60 * delta_radius; // front left tower
  310. float delta_tower1_y = -COS_60 * delta_radius;
  311. float delta_tower2_x = SIN_60 * delta_radius; // front right tower
  312. float delta_tower2_y = -COS_60 * delta_radius;
  313. float delta_tower3_x = 0; // back middle tower
  314. float delta_tower3_y = delta_radius;
  315. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  316. float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  317. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  318. #endif
  319. #ifdef SCARA
  320. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  321. #endif
  322. bool cancel_heatup = false;
  323. #ifdef FILAMENT_SENSOR
  324. //Variables for Filament Sensor input
  325. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  326. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  327. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  328. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  329. int delay_index1=0; //index into ring buffer
  330. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  331. float delay_dist=0; //delay distance counter
  332. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  333. #endif
  334. const char errormagic[] PROGMEM = "Error:";
  335. const char echomagic[] PROGMEM = "echo:";
  336. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  337. static float destination[NUM_AXIS] = { 0, 0, 0, 0 };
  338. #ifndef DELTA
  339. static float delta[3] = { 0, 0, 0 };
  340. #endif
  341. static float offset[3] = { 0, 0, 0 };
  342. static bool home_all_axis = true;
  343. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  344. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  345. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  346. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  347. static bool fromsd[BUFSIZE];
  348. static int bufindr = 0;
  349. static int bufindw = 0;
  350. static int buflen = 0;
  351. static char serial_char;
  352. static int serial_count = 0;
  353. static boolean comment_mode = false;
  354. static char *strchr_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.)
  355. const char* queued_commands_P= NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */
  356. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  357. // Inactivity shutdown
  358. static unsigned long previous_millis_cmd = 0;
  359. static unsigned long max_inactive_time = 0;
  360. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  361. unsigned long starttime = 0; ///< Print job start time
  362. unsigned long stoptime = 0; ///< Print job stop time
  363. static uint8_t tmp_extruder;
  364. bool Stopped = false;
  365. #if NUM_SERVOS > 0
  366. Servo servos[NUM_SERVOS];
  367. #endif
  368. bool CooldownNoWait = true;
  369. bool target_direction;
  370. #ifdef CHDK
  371. unsigned long chdkHigh = 0;
  372. boolean chdkActive = false;
  373. #endif
  374. //===========================================================================
  375. //=============================Routines======================================
  376. //===========================================================================
  377. void get_arc_coordinates();
  378. bool setTargetedHotend(int code);
  379. void serial_echopair_P(const char *s_P, float v)
  380. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  381. void serial_echopair_P(const char *s_P, double v)
  382. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  383. void serial_echopair_P(const char *s_P, unsigned long v)
  384. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  385. #ifdef SDSUPPORT
  386. #include "SdFatUtil.h"
  387. int freeMemory() { return SdFatUtil::FreeRam(); }
  388. #else
  389. extern "C" {
  390. extern unsigned int __bss_end;
  391. extern unsigned int __heap_start;
  392. extern void *__brkval;
  393. int freeMemory() {
  394. int free_memory;
  395. if ((int)__brkval == 0)
  396. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  397. else
  398. free_memory = ((int)&free_memory) - ((int)__brkval);
  399. return free_memory;
  400. }
  401. }
  402. #endif //!SDSUPPORT
  403. //Injects the next command from the pending sequence of commands, when possible
  404. //Return false if and only if no command was pending
  405. static bool drain_queued_commands_P()
  406. {
  407. char cmd[30];
  408. if(!queued_commands_P)
  409. return false;
  410. // Get the next 30 chars from the sequence of gcodes to run
  411. strncpy_P(cmd, queued_commands_P, sizeof(cmd)-1);
  412. cmd[sizeof(cmd)-1]= 0;
  413. // Look for the end of line, or the end of sequence
  414. size_t i= 0;
  415. char c;
  416. while( (c= cmd[i]) && c!='\n' )
  417. ++i; // look for the end of this gcode command
  418. cmd[i]= 0;
  419. if(enquecommand(cmd)) // buffer was not full (else we will retry later)
  420. {
  421. if(c)
  422. queued_commands_P+= i+1; // move to next command
  423. else
  424. queued_commands_P= NULL; // will have no more commands in the sequence
  425. }
  426. return true;
  427. }
  428. //Record one or many commands to run from program memory.
  429. //Aborts the current queue, if any.
  430. //Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  431. void enquecommands_P(const char* pgcode)
  432. {
  433. queued_commands_P= pgcode;
  434. drain_queued_commands_P(); // first command exectuted asap (when possible)
  435. }
  436. //adds a single command to the main command buffer, from RAM
  437. //that is really done in a non-safe way.
  438. //needs overworking someday
  439. //Returns false if it failed to do so
  440. bool enquecommand(const char *cmd)
  441. {
  442. if(*cmd==';')
  443. return false;
  444. if(buflen >= BUFSIZE)
  445. return false;
  446. //this is dangerous if a mixing of serial and this happens
  447. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  448. SERIAL_ECHO_START;
  449. SERIAL_ECHOPGM(MSG_Enqueing);
  450. SERIAL_ECHO(cmdbuffer[bufindw]);
  451. SERIAL_ECHOLNPGM("\"");
  452. bufindw= (bufindw + 1)%BUFSIZE;
  453. buflen += 1;
  454. return true;
  455. }
  456. void setup_killpin()
  457. {
  458. #if defined(KILL_PIN) && KILL_PIN > -1
  459. SET_INPUT(KILL_PIN);
  460. WRITE(KILL_PIN,HIGH);
  461. #endif
  462. }
  463. // Set home pin
  464. void setup_homepin(void)
  465. {
  466. #if defined(HOME_PIN) && HOME_PIN > -1
  467. SET_INPUT(HOME_PIN);
  468. WRITE(HOME_PIN,HIGH);
  469. #endif
  470. }
  471. void setup_photpin()
  472. {
  473. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  474. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  475. #endif
  476. }
  477. void setup_powerhold()
  478. {
  479. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  480. OUT_WRITE(SUICIDE_PIN, HIGH);
  481. #endif
  482. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  483. #if defined(PS_DEFAULT_OFF)
  484. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  485. #else
  486. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  487. #endif
  488. #endif
  489. }
  490. void suicide()
  491. {
  492. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  493. OUT_WRITE(SUICIDE_PIN, LOW);
  494. #endif
  495. }
  496. void servo_init()
  497. {
  498. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  499. servos[0].attach(SERVO0_PIN);
  500. #endif
  501. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  502. servos[1].attach(SERVO1_PIN);
  503. #endif
  504. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  505. servos[2].attach(SERVO2_PIN);
  506. #endif
  507. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  508. servos[3].attach(SERVO3_PIN);
  509. #endif
  510. #if (NUM_SERVOS >= 5)
  511. #error "TODO: enter initalisation code for more servos"
  512. #endif
  513. // Set position of Servo Endstops that are defined
  514. #ifdef SERVO_ENDSTOPS
  515. for(int8_t i = 0; i < 3; i++)
  516. {
  517. if(servo_endstops[i] > -1) {
  518. servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  519. }
  520. }
  521. #endif
  522. #if SERVO_LEVELING
  523. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  524. servos[servo_endstops[Z_AXIS]].detach();
  525. #endif
  526. }
  527. void setup()
  528. {
  529. setup_killpin();
  530. setup_powerhold();
  531. MYSERIAL.begin(BAUDRATE);
  532. SERIAL_PROTOCOLLNPGM("start");
  533. SERIAL_ECHO_START;
  534. // Check startup - does nothing if bootloader sets MCUSR to 0
  535. byte mcu = MCUSR;
  536. if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  537. if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  538. if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  539. if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  540. if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  541. MCUSR=0;
  542. SERIAL_ECHOPGM(MSG_MARLIN);
  543. SERIAL_ECHOLNPGM(STRING_VERSION);
  544. #ifdef STRING_VERSION_CONFIG_H
  545. #ifdef STRING_CONFIG_H_AUTHOR
  546. SERIAL_ECHO_START;
  547. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  548. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  549. SERIAL_ECHOPGM(MSG_AUTHOR);
  550. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  551. SERIAL_ECHOPGM("Compiled: ");
  552. SERIAL_ECHOLNPGM(__DATE__);
  553. #endif // STRING_CONFIG_H_AUTHOR
  554. #endif // STRING_VERSION_CONFIG_H
  555. SERIAL_ECHO_START;
  556. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  557. SERIAL_ECHO(freeMemory());
  558. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  559. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  560. for(int8_t i = 0; i < BUFSIZE; i++)
  561. {
  562. fromsd[i] = false;
  563. }
  564. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  565. Config_RetrieveSettings();
  566. tp_init(); // Initialize temperature loop
  567. plan_init(); // Initialize planner;
  568. watchdog_init();
  569. st_init(); // Initialize stepper, this enables interrupts!
  570. setup_photpin();
  571. servo_init();
  572. lcd_init();
  573. _delay_ms(1000); // wait 1sec to display the splash screen
  574. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  575. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  576. #endif
  577. #ifdef DIGIPOT_I2C
  578. digipot_i2c_init();
  579. #endif
  580. #ifdef Z_PROBE_SLED
  581. pinMode(SERVO0_PIN, OUTPUT);
  582. digitalWrite(SERVO0_PIN, LOW); // turn it off
  583. #endif // Z_PROBE_SLED
  584. setup_homepin();
  585. #ifdef STAT_LED_RED
  586. pinMode(STAT_LED_RED, OUTPUT);
  587. digitalWrite(STAT_LED_RED, LOW); // turn it off
  588. #endif
  589. #ifdef STAT_LED_BLUE
  590. pinMode(STAT_LED_BLUE, OUTPUT);
  591. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  592. #endif
  593. }
  594. void loop()
  595. {
  596. if(buflen < (BUFSIZE-1))
  597. get_command();
  598. #ifdef SDSUPPORT
  599. card.checkautostart(false);
  600. #endif
  601. if(buflen)
  602. {
  603. #ifdef SDSUPPORT
  604. if(card.saving)
  605. {
  606. if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
  607. {
  608. card.write_command(cmdbuffer[bufindr]);
  609. if(card.logging)
  610. {
  611. process_commands();
  612. }
  613. else
  614. {
  615. SERIAL_PROTOCOLLNPGM(MSG_OK);
  616. }
  617. }
  618. else
  619. {
  620. card.closefile();
  621. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  622. }
  623. }
  624. else
  625. {
  626. process_commands();
  627. }
  628. #else
  629. process_commands();
  630. #endif //SDSUPPORT
  631. buflen = (buflen-1);
  632. bufindr = (bufindr + 1)%BUFSIZE;
  633. }
  634. //check heater every n milliseconds
  635. manage_heater();
  636. manage_inactivity();
  637. checkHitEndstops();
  638. lcd_update();
  639. }
  640. void get_command()
  641. {
  642. if(drain_queued_commands_P()) // priority is given to non-serial commands
  643. return;
  644. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  645. serial_char = MYSERIAL.read();
  646. if(serial_char == '\n' ||
  647. serial_char == '\r' ||
  648. serial_count >= (MAX_CMD_SIZE - 1) )
  649. {
  650. // end of line == end of comment
  651. comment_mode = false;
  652. if(!serial_count) {
  653. // short cut for empty lines
  654. return;
  655. }
  656. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  657. fromsd[bufindw] = false;
  658. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  659. {
  660. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  661. gcode_N = (strtol(strchr_pointer + 1, NULL, 10));
  662. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  663. SERIAL_ERROR_START;
  664. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  665. SERIAL_ERRORLN(gcode_LastN);
  666. //Serial.println(gcode_N);
  667. FlushSerialRequestResend();
  668. serial_count = 0;
  669. return;
  670. }
  671. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  672. {
  673. byte checksum = 0;
  674. byte count = 0;
  675. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  676. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  677. if(strtol(strchr_pointer + 1, NULL, 10) != checksum) {
  678. SERIAL_ERROR_START;
  679. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  680. SERIAL_ERRORLN(gcode_LastN);
  681. FlushSerialRequestResend();
  682. serial_count = 0;
  683. return;
  684. }
  685. //if no errors, continue parsing
  686. }
  687. else
  688. {
  689. SERIAL_ERROR_START;
  690. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  691. SERIAL_ERRORLN(gcode_LastN);
  692. FlushSerialRequestResend();
  693. serial_count = 0;
  694. return;
  695. }
  696. gcode_LastN = gcode_N;
  697. //if no errors, continue parsing
  698. }
  699. else // if we don't receive 'N' but still see '*'
  700. {
  701. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  702. {
  703. SERIAL_ERROR_START;
  704. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  705. SERIAL_ERRORLN(gcode_LastN);
  706. serial_count = 0;
  707. return;
  708. }
  709. }
  710. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  711. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  712. switch(strtol(strchr_pointer + 1, NULL, 10)){
  713. case 0:
  714. case 1:
  715. case 2:
  716. case 3:
  717. if (Stopped == true) {
  718. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  719. LCD_MESSAGEPGM(MSG_STOPPED);
  720. }
  721. break;
  722. default:
  723. break;
  724. }
  725. }
  726. //If command was e-stop process now
  727. if(strcmp(cmdbuffer[bufindw], "M112") == 0)
  728. kill();
  729. bufindw = (bufindw + 1)%BUFSIZE;
  730. buflen += 1;
  731. serial_count = 0; //clear buffer
  732. }
  733. else if(serial_char == '\\') { //Handle escapes
  734. if(MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  735. // if we have one more character, copy it over
  736. serial_char = MYSERIAL.read();
  737. cmdbuffer[bufindw][serial_count++] = serial_char;
  738. }
  739. //otherwise do nothing
  740. }
  741. else { // its not a newline, carriage return or escape char
  742. if(serial_char == ';') comment_mode = true;
  743. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  744. }
  745. }
  746. #ifdef SDSUPPORT
  747. if(!card.sdprinting || serial_count!=0){
  748. return;
  749. }
  750. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  751. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  752. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  753. static bool stop_buffering=false;
  754. if(buflen==0) stop_buffering=false;
  755. while( !card.eof() && buflen < BUFSIZE && !stop_buffering) {
  756. int16_t n=card.get();
  757. serial_char = (char)n;
  758. if(serial_char == '\n' ||
  759. serial_char == '\r' ||
  760. (serial_char == '#' && comment_mode == false) ||
  761. (serial_char == ':' && comment_mode == false) ||
  762. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  763. {
  764. if(card.eof()){
  765. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  766. stoptime=millis();
  767. char time[30];
  768. unsigned long t=(stoptime-starttime)/1000;
  769. int hours, minutes;
  770. minutes=(t/60)%60;
  771. hours=t/60/60;
  772. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  773. SERIAL_ECHO_START;
  774. SERIAL_ECHOLN(time);
  775. lcd_setstatus(time);
  776. card.printingHasFinished();
  777. card.checkautostart(true);
  778. }
  779. if(serial_char=='#')
  780. stop_buffering=true;
  781. if(!serial_count)
  782. {
  783. comment_mode = false; //for new command
  784. return; //if empty line
  785. }
  786. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  787. // if(!comment_mode){
  788. fromsd[bufindw] = true;
  789. buflen += 1;
  790. bufindw = (bufindw + 1)%BUFSIZE;
  791. // }
  792. comment_mode = false; //for new command
  793. serial_count = 0; //clear buffer
  794. }
  795. else
  796. {
  797. if(serial_char == ';') comment_mode = true;
  798. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  799. }
  800. }
  801. #endif //SDSUPPORT
  802. }
  803. float code_value()
  804. {
  805. return (strtod(strchr_pointer + 1, NULL));
  806. }
  807. long code_value_long()
  808. {
  809. return (strtol(strchr_pointer + 1, NULL, 10));
  810. }
  811. bool code_seen(char code)
  812. {
  813. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  814. return (strchr_pointer != NULL); //Return True if a character was found
  815. }
  816. #define DEFINE_PGM_READ_ANY(type, reader) \
  817. static inline type pgm_read_any(const type *p) \
  818. { return pgm_read_##reader##_near(p); }
  819. DEFINE_PGM_READ_ANY(float, float);
  820. DEFINE_PGM_READ_ANY(signed char, byte);
  821. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  822. static const PROGMEM type array##_P[3] = \
  823. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  824. static inline type array(int axis) \
  825. { return pgm_read_any(&array##_P[axis]); }
  826. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  827. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  828. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  829. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  830. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  831. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  832. #ifdef DUAL_X_CARRIAGE
  833. #if EXTRUDERS == 1 || defined(COREXY) \
  834. || !defined(X2_ENABLE_PIN) || !defined(X2_STEP_PIN) || !defined(X2_DIR_PIN) \
  835. || !defined(X2_HOME_POS) || !defined(X2_MIN_POS) || !defined(X2_MAX_POS) \
  836. || !defined(X_MAX_PIN) || X_MAX_PIN < 0
  837. #error "Missing or invalid definitions for DUAL_X_CARRIAGE mode."
  838. #endif
  839. #if X_HOME_DIR != -1 || X2_HOME_DIR != 1
  840. #error "Please use canonical x-carriage assignment" // the x-carriages are defined by their homing directions
  841. #endif
  842. #define DXC_FULL_CONTROL_MODE 0
  843. #define DXC_AUTO_PARK_MODE 1
  844. #define DXC_DUPLICATION_MODE 2
  845. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  846. static float x_home_pos(int extruder) {
  847. if (extruder == 0)
  848. return base_home_pos(X_AXIS) + add_homing[X_AXIS];
  849. else
  850. // In dual carriage mode the extruder offset provides an override of the
  851. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  852. // This allow soft recalibration of the second extruder offset position without firmware reflash
  853. // (through the M218 command).
  854. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  855. }
  856. static int x_home_dir(int extruder) {
  857. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  858. }
  859. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  860. static bool active_extruder_parked = false; // used in mode 1 & 2
  861. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  862. static unsigned long delayed_move_time = 0; // used in mode 1
  863. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  864. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  865. bool extruder_duplication_enabled = false; // used in mode 2
  866. #endif //DUAL_X_CARRIAGE
  867. static void axis_is_at_home(int axis) {
  868. #ifdef DUAL_X_CARRIAGE
  869. if (axis == X_AXIS) {
  870. if (active_extruder != 0) {
  871. current_position[X_AXIS] = x_home_pos(active_extruder);
  872. min_pos[X_AXIS] = X2_MIN_POS;
  873. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  874. return;
  875. }
  876. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  877. current_position[X_AXIS] = base_home_pos(X_AXIS) + add_homing[X_AXIS];
  878. min_pos[X_AXIS] = base_min_pos(X_AXIS) + add_homing[X_AXIS];
  879. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + add_homing[X_AXIS],
  880. max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  881. return;
  882. }
  883. }
  884. #endif
  885. #ifdef SCARA
  886. float homeposition[3];
  887. char i;
  888. if (axis < 2)
  889. {
  890. for (i=0; i<3; i++)
  891. {
  892. homeposition[i] = base_home_pos(i);
  893. }
  894. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  895. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  896. // Works out real Homeposition angles using inverse kinematics,
  897. // and calculates homing offset using forward kinematics
  898. calculate_delta(homeposition);
  899. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  900. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  901. for (i=0; i<2; i++)
  902. {
  903. delta[i] -= add_homing[i];
  904. }
  905. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(add_homing[X_AXIS]);
  906. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(add_homing[Y_AXIS]);
  907. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  908. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  909. calculate_SCARA_forward_Transform(delta);
  910. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  911. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  912. current_position[axis] = delta[axis];
  913. // SCARA home positions are based on configuration since the actual limits are determined by the
  914. // inverse kinematic transform.
  915. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  916. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  917. }
  918. else
  919. {
  920. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  921. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  922. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  923. }
  924. #else
  925. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  926. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  927. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  928. #endif
  929. }
  930. #ifdef ENABLE_AUTO_BED_LEVELING
  931. #ifdef AUTO_BED_LEVELING_GRID
  932. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  933. {
  934. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  935. planeNormal.debug("planeNormal");
  936. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  937. //bedLevel.debug("bedLevel");
  938. //plan_bed_level_matrix.debug("bed level before");
  939. //vector_3 uncorrected_position = plan_get_position_mm();
  940. //uncorrected_position.debug("position before");
  941. vector_3 corrected_position = plan_get_position();
  942. // corrected_position.debug("position after");
  943. current_position[X_AXIS] = corrected_position.x;
  944. current_position[Y_AXIS] = corrected_position.y;
  945. current_position[Z_AXIS] = corrected_position.z;
  946. // put the bed at 0 so we don't go below it.
  947. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  948. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  949. }
  950. #else // not AUTO_BED_LEVELING_GRID
  951. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  952. plan_bed_level_matrix.set_to_identity();
  953. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  954. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  955. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  956. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  957. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  958. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  959. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  960. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  961. vector_3 corrected_position = plan_get_position();
  962. current_position[X_AXIS] = corrected_position.x;
  963. current_position[Y_AXIS] = corrected_position.y;
  964. current_position[Z_AXIS] = corrected_position.z;
  965. // put the bed at 0 so we don't go below it.
  966. current_position[Z_AXIS] = zprobe_zoffset;
  967. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  968. }
  969. #endif // AUTO_BED_LEVELING_GRID
  970. static void run_z_probe() {
  971. plan_bed_level_matrix.set_to_identity();
  972. feedrate = homing_feedrate[Z_AXIS];
  973. // move down until you find the bed
  974. float zPosition = -10;
  975. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  976. st_synchronize();
  977. // we have to let the planner know where we are right now as it is not where we said to go.
  978. zPosition = st_get_position_mm(Z_AXIS);
  979. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  980. // move up the retract distance
  981. zPosition += home_retract_mm(Z_AXIS);
  982. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  983. st_synchronize();
  984. // move back down slowly to find bed
  985. feedrate = homing_feedrate[Z_AXIS]/4;
  986. zPosition -= home_retract_mm(Z_AXIS) * 2;
  987. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  988. st_synchronize();
  989. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  990. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  991. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  992. }
  993. static void do_blocking_move_to(float x, float y, float z) {
  994. float oldFeedRate = feedrate;
  995. feedrate = homing_feedrate[Z_AXIS];
  996. current_position[Z_AXIS] = z;
  997. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  998. st_synchronize();
  999. feedrate = XY_TRAVEL_SPEED;
  1000. current_position[X_AXIS] = x;
  1001. current_position[Y_AXIS] = y;
  1002. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1003. st_synchronize();
  1004. feedrate = oldFeedRate;
  1005. }
  1006. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1007. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1008. }
  1009. static void setup_for_endstop_move() {
  1010. saved_feedrate = feedrate;
  1011. saved_feedmultiply = feedmultiply;
  1012. feedmultiply = 100;
  1013. previous_millis_cmd = millis();
  1014. enable_endstops(true);
  1015. }
  1016. static void clean_up_after_endstop_move() {
  1017. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1018. enable_endstops(false);
  1019. #endif
  1020. feedrate = saved_feedrate;
  1021. feedmultiply = saved_feedmultiply;
  1022. previous_millis_cmd = millis();
  1023. }
  1024. static void engage_z_probe() {
  1025. // Engage Z Servo endstop if enabled
  1026. #ifdef SERVO_ENDSTOPS
  1027. if (servo_endstops[Z_AXIS] > -1) {
  1028. #if SERVO_LEVELING
  1029. servos[servo_endstops[Z_AXIS]].attach(0);
  1030. #endif
  1031. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  1032. #if SERVO_LEVELING
  1033. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1034. servos[servo_endstops[Z_AXIS]].detach();
  1035. #endif
  1036. }
  1037. #endif
  1038. }
  1039. static void retract_z_probe() {
  1040. // Retract Z Servo endstop if enabled
  1041. #ifdef SERVO_ENDSTOPS
  1042. if (servo_endstops[Z_AXIS] > -1) {
  1043. #if SERVO_LEVELING
  1044. servos[servo_endstops[Z_AXIS]].attach(0);
  1045. #endif
  1046. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  1047. #if SERVO_LEVELING
  1048. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1049. servos[servo_endstops[Z_AXIS]].detach();
  1050. #endif
  1051. }
  1052. #endif
  1053. }
  1054. enum ProbeAction { ProbeStay, ProbeEngage, ProbeRetract, ProbeEngageRetract };
  1055. /// Probe bed height at position (x,y), returns the measured z value
  1056. static float probe_pt(float x, float y, float z_before, ProbeAction retract_action=ProbeEngageRetract, int verbose_level=1) {
  1057. // move to right place
  1058. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1059. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1060. #ifndef Z_PROBE_SLED
  1061. if (retract_action & ProbeEngage) engage_z_probe();
  1062. #endif
  1063. run_z_probe();
  1064. float measured_z = current_position[Z_AXIS];
  1065. #ifndef Z_PROBE_SLED
  1066. if (retract_action & ProbeRetract) retract_z_probe();
  1067. #endif
  1068. if (verbose_level > 2) {
  1069. SERIAL_PROTOCOLPGM(MSG_BED);
  1070. SERIAL_PROTOCOLPGM(" X: ");
  1071. SERIAL_PROTOCOL(x + 0.0001);
  1072. SERIAL_PROTOCOLPGM(" Y: ");
  1073. SERIAL_PROTOCOL(y + 0.0001);
  1074. SERIAL_PROTOCOLPGM(" Z: ");
  1075. SERIAL_PROTOCOL(measured_z + 0.0001);
  1076. SERIAL_EOL;
  1077. }
  1078. return measured_z;
  1079. }
  1080. #endif // ENABLE_AUTO_BED_LEVELING
  1081. static void homeaxis(int axis) {
  1082. #define HOMEAXIS_DO(LETTER) \
  1083. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1084. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  1085. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  1086. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  1087. 0) {
  1088. int axis_home_dir = home_dir(axis);
  1089. #ifdef DUAL_X_CARRIAGE
  1090. if (axis == X_AXIS)
  1091. axis_home_dir = x_home_dir(active_extruder);
  1092. #endif
  1093. current_position[axis] = 0;
  1094. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1095. #ifndef Z_PROBE_SLED
  1096. // Engage Servo endstop if enabled
  1097. #ifdef SERVO_ENDSTOPS
  1098. #if SERVO_LEVELING
  1099. if (axis==Z_AXIS) {
  1100. engage_z_probe();
  1101. }
  1102. else
  1103. #endif
  1104. if (servo_endstops[axis] > -1) {
  1105. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  1106. }
  1107. #endif
  1108. #endif // Z_PROBE_SLED
  1109. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1110. feedrate = homing_feedrate[axis];
  1111. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1112. st_synchronize();
  1113. current_position[axis] = 0;
  1114. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1115. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1116. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1117. st_synchronize();
  1118. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1119. #ifdef DELTA
  1120. feedrate = homing_feedrate[axis]/10;
  1121. #else
  1122. feedrate = homing_feedrate[axis]/2 ;
  1123. #endif
  1124. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1125. st_synchronize();
  1126. #ifdef DELTA
  1127. // retrace by the amount specified in endstop_adj
  1128. if (endstop_adj[axis] * axis_home_dir < 0) {
  1129. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1130. destination[axis] = endstop_adj[axis];
  1131. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1132. st_synchronize();
  1133. }
  1134. #endif
  1135. axis_is_at_home(axis);
  1136. destination[axis] = current_position[axis];
  1137. feedrate = 0.0;
  1138. endstops_hit_on_purpose();
  1139. axis_known_position[axis] = true;
  1140. // Retract Servo endstop if enabled
  1141. #ifdef SERVO_ENDSTOPS
  1142. if (servo_endstops[axis] > -1) {
  1143. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  1144. }
  1145. #endif
  1146. #if SERVO_LEVELING
  1147. #ifndef Z_PROBE_SLED
  1148. if (axis==Z_AXIS) retract_z_probe();
  1149. #endif
  1150. #endif
  1151. }
  1152. }
  1153. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1154. void refresh_cmd_timeout(void)
  1155. {
  1156. previous_millis_cmd = millis();
  1157. }
  1158. #ifdef FWRETRACT
  1159. void retract(bool retracting, bool swapretract = false) {
  1160. if(retracting && !retracted[active_extruder]) {
  1161. destination[X_AXIS]=current_position[X_AXIS];
  1162. destination[Y_AXIS]=current_position[Y_AXIS];
  1163. destination[Z_AXIS]=current_position[Z_AXIS];
  1164. destination[E_AXIS]=current_position[E_AXIS];
  1165. if (swapretract) {
  1166. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1167. } else {
  1168. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1169. }
  1170. plan_set_e_position(current_position[E_AXIS]);
  1171. float oldFeedrate = feedrate;
  1172. feedrate=retract_feedrate*60;
  1173. retracted[active_extruder]=true;
  1174. prepare_move();
  1175. if(retract_zlift > 0.01) {
  1176. current_position[Z_AXIS]-=retract_zlift;
  1177. #ifdef DELTA
  1178. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  1179. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1180. #else
  1181. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1182. #endif
  1183. prepare_move();
  1184. }
  1185. feedrate = oldFeedrate;
  1186. } else if(!retracting && retracted[active_extruder]) {
  1187. destination[X_AXIS]=current_position[X_AXIS];
  1188. destination[Y_AXIS]=current_position[Y_AXIS];
  1189. destination[Z_AXIS]=current_position[Z_AXIS];
  1190. destination[E_AXIS]=current_position[E_AXIS];
  1191. if(retract_zlift > 0.01) {
  1192. current_position[Z_AXIS]+=retract_zlift;
  1193. #ifdef DELTA
  1194. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  1195. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1196. #else
  1197. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1198. #endif
  1199. //prepare_move();
  1200. }
  1201. if (swapretract) {
  1202. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1203. } else {
  1204. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1205. }
  1206. plan_set_e_position(current_position[E_AXIS]);
  1207. float oldFeedrate = feedrate;
  1208. feedrate=retract_recover_feedrate*60;
  1209. retracted[active_extruder]=false;
  1210. prepare_move();
  1211. feedrate = oldFeedrate;
  1212. }
  1213. } //retract
  1214. #endif //FWRETRACT
  1215. #ifdef Z_PROBE_SLED
  1216. #ifndef SLED_DOCKING_OFFSET
  1217. #define SLED_DOCKING_OFFSET 0
  1218. #endif
  1219. //
  1220. // Method to dock/undock a sled designed by Charles Bell.
  1221. //
  1222. // dock[in] If true, move to MAX_X and engage the electromagnet
  1223. // offset[in] The additional distance to move to adjust docking location
  1224. //
  1225. static void dock_sled(bool dock, int offset=0) {
  1226. int z_loc;
  1227. if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1228. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1229. SERIAL_ECHO_START;
  1230. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1231. return;
  1232. }
  1233. if (dock) {
  1234. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
  1235. current_position[Y_AXIS],
  1236. current_position[Z_AXIS]);
  1237. // turn off magnet
  1238. digitalWrite(SERVO0_PIN, LOW);
  1239. } else {
  1240. if (current_position[Z_AXIS] < (Z_RAISE_BEFORE_PROBING + 5))
  1241. z_loc = Z_RAISE_BEFORE_PROBING;
  1242. else
  1243. z_loc = current_position[Z_AXIS];
  1244. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
  1245. Y_PROBE_OFFSET_FROM_EXTRUDER, z_loc);
  1246. // turn on magnet
  1247. digitalWrite(SERVO0_PIN, HIGH);
  1248. }
  1249. }
  1250. #endif
  1251. /**
  1252. *
  1253. * G-Code Handler functions
  1254. *
  1255. */
  1256. /**
  1257. * G0, G1: Coordinated movement of X Y Z E axes
  1258. */
  1259. inline void gcode_G0_G1() {
  1260. if (!Stopped) {
  1261. get_coordinates(); // For X Y Z E F
  1262. #ifdef FWRETRACT
  1263. if (autoretract_enabled)
  1264. if (!(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1265. float echange = destination[E_AXIS] - current_position[E_AXIS];
  1266. // Is this move an attempt to retract or recover?
  1267. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  1268. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  1269. plan_set_e_position(current_position[E_AXIS]); // AND from the planner
  1270. retract(!retracted[active_extruder]);
  1271. return;
  1272. }
  1273. }
  1274. #endif //FWRETRACT
  1275. prepare_move();
  1276. //ClearToSend();
  1277. }
  1278. }
  1279. /**
  1280. * G2: Clockwise Arc
  1281. * G3: Counterclockwise Arc
  1282. */
  1283. inline void gcode_G2_G3(bool clockwise) {
  1284. if (!Stopped) {
  1285. get_arc_coordinates();
  1286. prepare_arc_move(clockwise);
  1287. }
  1288. }
  1289. /**
  1290. * G4: Dwell S<seconds> or P<milliseconds>
  1291. */
  1292. inline void gcode_G4() {
  1293. unsigned long codenum;
  1294. LCD_MESSAGEPGM(MSG_DWELL);
  1295. if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
  1296. if (code_seen('S')) codenum = code_value_long() * 1000; // seconds to wait
  1297. st_synchronize();
  1298. previous_millis_cmd = millis();
  1299. codenum += previous_millis_cmd; // keep track of when we started waiting
  1300. while(millis() < codenum) {
  1301. manage_heater();
  1302. manage_inactivity();
  1303. lcd_update();
  1304. }
  1305. }
  1306. #ifdef FWRETRACT
  1307. /**
  1308. * G10 - Retract filament according to settings of M207
  1309. * G11 - Recover filament according to settings of M208
  1310. */
  1311. inline void gcode_G10_G11(bool doRetract=false) {
  1312. #if EXTRUDERS > 1
  1313. if (doRetract) {
  1314. retracted_swap[active_extruder] = (code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  1315. }
  1316. #endif
  1317. retract(doRetract
  1318. #if EXTRUDERS > 1
  1319. , retracted_swap[active_extruder]
  1320. #endif
  1321. );
  1322. }
  1323. #endif //FWRETRACT
  1324. /**
  1325. * G28: Home all axes, one at a time
  1326. */
  1327. inline void gcode_G28() {
  1328. #ifdef ENABLE_AUTO_BED_LEVELING
  1329. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1330. #endif
  1331. saved_feedrate = feedrate;
  1332. saved_feedmultiply = feedmultiply;
  1333. feedmultiply = 100;
  1334. previous_millis_cmd = millis();
  1335. enable_endstops(true);
  1336. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = current_position[i];
  1337. feedrate = 0.0;
  1338. #ifdef DELTA
  1339. // A delta can only safely home all axis at the same time
  1340. // all axis have to home at the same time
  1341. // Move all carriages up together until the first endstop is hit.
  1342. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  1343. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1344. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * Z_MAX_LENGTH;
  1345. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1346. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1347. st_synchronize();
  1348. endstops_hit_on_purpose();
  1349. // Destination reached
  1350. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  1351. // take care of back off and rehome now we are all at the top
  1352. HOMEAXIS(X);
  1353. HOMEAXIS(Y);
  1354. HOMEAXIS(Z);
  1355. calculate_delta(current_position);
  1356. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1357. #else // NOT DELTA
  1358. home_all_axis = !(code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen(axis_codes[Z_AXIS]));
  1359. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1360. if (home_all_axis || code_seen(axis_codes[Z_AXIS])) {
  1361. HOMEAXIS(Z);
  1362. }
  1363. #endif
  1364. #ifdef QUICK_HOME
  1365. if (home_all_axis || code_seen(axis_codes[X_AXIS] && code_seen(axis_codes[Y_AXIS]))) { //first diagonal move
  1366. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  1367. #ifndef DUAL_X_CARRIAGE
  1368. int x_axis_home_dir = home_dir(X_AXIS);
  1369. #else
  1370. int x_axis_home_dir = x_home_dir(active_extruder);
  1371. extruder_duplication_enabled = false;
  1372. #endif
  1373. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1374. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;
  1375. destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1376. feedrate = homing_feedrate[X_AXIS];
  1377. if (homing_feedrate[Y_AXIS] < feedrate) feedrate = homing_feedrate[Y_AXIS];
  1378. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  1379. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  1380. } else {
  1381. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  1382. }
  1383. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1384. st_synchronize();
  1385. axis_is_at_home(X_AXIS);
  1386. axis_is_at_home(Y_AXIS);
  1387. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1388. destination[X_AXIS] = current_position[X_AXIS];
  1389. destination[Y_AXIS] = current_position[Y_AXIS];
  1390. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1391. feedrate = 0.0;
  1392. st_synchronize();
  1393. endstops_hit_on_purpose();
  1394. current_position[X_AXIS] = destination[X_AXIS];
  1395. current_position[Y_AXIS] = destination[Y_AXIS];
  1396. #ifndef SCARA
  1397. current_position[Z_AXIS] = destination[Z_AXIS];
  1398. #endif
  1399. }
  1400. #endif //QUICK_HOME
  1401. if ((home_all_axis) || (code_seen(axis_codes[X_AXIS]))) {
  1402. #ifdef DUAL_X_CARRIAGE
  1403. int tmp_extruder = active_extruder;
  1404. extruder_duplication_enabled = false;
  1405. active_extruder = !active_extruder;
  1406. HOMEAXIS(X);
  1407. inactive_extruder_x_pos = current_position[X_AXIS];
  1408. active_extruder = tmp_extruder;
  1409. HOMEAXIS(X);
  1410. // reset state used by the different modes
  1411. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1412. delayed_move_time = 0;
  1413. active_extruder_parked = true;
  1414. #else
  1415. HOMEAXIS(X);
  1416. #endif
  1417. }
  1418. if (home_all_axis || code_seen(axis_codes[Y_AXIS])) HOMEAXIS(Y);
  1419. if (code_seen(axis_codes[X_AXIS])) {
  1420. if (code_value_long() != 0) {
  1421. current_position[X_AXIS] = code_value()
  1422. #ifndef SCARA
  1423. + add_homing[X_AXIS]
  1424. #endif
  1425. ;
  1426. }
  1427. }
  1428. if (code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0) {
  1429. current_position[Y_AXIS] = code_value()
  1430. #ifndef SCARA
  1431. + add_homing[Y_AXIS]
  1432. #endif
  1433. ;
  1434. }
  1435. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1436. #ifndef Z_SAFE_HOMING
  1437. if (home_all_axis || code_seen(axis_codes[Z_AXIS])) {
  1438. #if defined(Z_RAISE_BEFORE_HOMING) && Z_RAISE_BEFORE_HOMING > 0
  1439. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1440. feedrate = max_feedrate[Z_AXIS];
  1441. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1442. st_synchronize();
  1443. #endif
  1444. HOMEAXIS(Z);
  1445. }
  1446. #else // Z_SAFE_HOMING
  1447. if (home_all_axis) {
  1448. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1449. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1450. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1451. feedrate = XY_TRAVEL_SPEED / 60;
  1452. current_position[Z_AXIS] = 0;
  1453. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1454. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1455. st_synchronize();
  1456. current_position[X_AXIS] = destination[X_AXIS];
  1457. current_position[Y_AXIS] = destination[Y_AXIS];
  1458. HOMEAXIS(Z);
  1459. }
  1460. // Let's see if X and Y are homed and probe is inside bed area.
  1461. if (code_seen(axis_codes[Z_AXIS])) {
  1462. if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) {
  1463. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  1464. if ( cpx >= X_MIN_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1465. && cpx <= X_MAX_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1466. && cpy >= Y_MIN_POS - Y_PROBE_OFFSET_FROM_EXTRUDER
  1467. && cpy <= Y_MAX_POS - Y_PROBE_OFFSET_FROM_EXTRUDER) {
  1468. current_position[Z_AXIS] = 0;
  1469. plan_set_position(cpx, cpy, current_position[Z_AXIS], current_position[E_AXIS]);
  1470. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1471. feedrate = max_feedrate[Z_AXIS];
  1472. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1473. st_synchronize();
  1474. HOMEAXIS(Z);
  1475. }
  1476. else {
  1477. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1478. SERIAL_ECHO_START;
  1479. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1480. }
  1481. }
  1482. else {
  1483. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1484. SERIAL_ECHO_START;
  1485. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1486. }
  1487. }
  1488. #endif // Z_SAFE_HOMING
  1489. #endif // Z_HOME_DIR < 0
  1490. if (code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
  1491. current_position[Z_AXIS] = code_value() + add_homing[Z_AXIS];
  1492. #ifdef ENABLE_AUTO_BED_LEVELING
  1493. if (home_all_axis || code_seen(axis_codes[Z_AXIS]))
  1494. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  1495. #endif
  1496. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1497. #endif // else DELTA
  1498. #ifdef SCARA
  1499. calculate_delta(current_position);
  1500. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1501. #endif
  1502. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1503. enable_endstops(false);
  1504. #endif
  1505. feedrate = saved_feedrate;
  1506. feedmultiply = saved_feedmultiply;
  1507. previous_millis_cmd = millis();
  1508. endstops_hit_on_purpose();
  1509. }
  1510. #ifdef ENABLE_AUTO_BED_LEVELING
  1511. // Define the possible boundaries for probing based on set limits
  1512. #define MIN_PROBE_X (max(X_MIN_POS, X_MIN_POS + X_PROBE_OFFSET_FROM_EXTRUDER))
  1513. #define MAX_PROBE_X (min(X_MAX_POS, X_MAX_POS + X_PROBE_OFFSET_FROM_EXTRUDER))
  1514. #define MIN_PROBE_Y (max(Y_MIN_POS, Y_MIN_POS + Y_PROBE_OFFSET_FROM_EXTRUDER))
  1515. #define MAX_PROBE_Y (min(Y_MAX_POS, Y_MAX_POS + Y_PROBE_OFFSET_FROM_EXTRUDER))
  1516. #ifdef AUTO_BED_LEVELING_GRID
  1517. #define MIN_PROBE_EDGE 20 // The probe square sides can be no smaller than this
  1518. // Make sure probing points are reachable
  1519. #if LEFT_PROBE_BED_POSITION < MIN_PROBE_X
  1520. #error The given LEFT_PROBE_BED_POSITION can't be reached by the probe.
  1521. #elif RIGHT_PROBE_BED_POSITION > MAX_PROBE_X
  1522. #error The given RIGHT_PROBE_BED_POSITION can't be reached by the probe.
  1523. #elif FRONT_PROBE_BED_POSITION < MIN_PROBE_Y
  1524. #error The given FRONT_PROBE_BED_POSITION can't be reached by the probe.
  1525. #elif BACK_PROBE_BED_POSITION > MAX_PROBE_Y
  1526. #error The given BACK_PROBE_BED_POSITION can't be reached by the probe.
  1527. // Check if Probe_Offset * Grid Points is greater than Probing Range
  1528. #elif abs(X_PROBE_OFFSET_FROM_EXTRUDER) * (AUTO_BED_LEVELING_GRID_POINTS-1) >= RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION
  1529. #error "The X axis probing range is not enough to fit all the points defined in AUTO_BED_LEVELING_GRID_POINTS"
  1530. #elif abs(Y_PROBE_OFFSET_FROM_EXTRUDER) * (AUTO_BED_LEVELING_GRID_POINTS-1) >= BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION
  1531. #error "The Y axis probing range is not enough to fit all the points defined in AUTO_BED_LEVELING_GRID_POINTS"
  1532. #endif
  1533. #else // !AUTO_BED_LEVELING_GRID
  1534. #if ABL_PROBE_PT_1_X < MIN_PROBE_X || ABL_PROBE_PT_1_X > MAX_PROBE_X
  1535. #error The given ABL_PROBE_PT_1_X can't be reached by the probe.
  1536. #elif ABL_PROBE_PT_2_X < MIN_PROBE_X || ABL_PROBE_PT_2_X > MAX_PROBE_X
  1537. #error The given ABL_PROBE_PT_2_X can't be reached by the probe.
  1538. #elif ABL_PROBE_PT_3_X < MIN_PROBE_X || ABL_PROBE_PT_3_X > MAX_PROBE_X
  1539. #error The given ABL_PROBE_PT_3_X can't be reached by the probe.
  1540. #elif ABL_PROBE_PT_1_Y < MIN_PROBE_Y || ABL_PROBE_PT_1_Y > MAX_PROBE_Y
  1541. #error The given ABL_PROBE_PT_1_Y can't be reached by the probe.
  1542. #elif ABL_PROBE_PT_2_Y < MIN_PROBE_Y || ABL_PROBE_PT_2_Y > MAX_PROBE_Y
  1543. #error The given ABL_PROBE_PT_2_Y can't be reached by the probe.
  1544. #elif ABL_PROBE_PT_3_Y < MIN_PROBE_Y || ABL_PROBE_PT_3_Y > MAX_PROBE_Y
  1545. #error The given ABL_PROBE_PT_3_Y can't be reached by the probe.
  1546. #endif
  1547. #endif // !AUTO_BED_LEVELING_GRID
  1548. /**
  1549. * G29: Detailed Z-Probe, probes the bed at 3 or more points.
  1550. * Will fail if the printer has not been homed with G28.
  1551. *
  1552. * Enhanced G29 Auto Bed Leveling Probe Routine
  1553. *
  1554. * Parameters With AUTO_BED_LEVELING_GRID:
  1555. *
  1556. * P Set the size of the grid that will be probed (P x P points).
  1557. * Example: "G29 P4"
  1558. *
  1559. * V Set the verbose level (0-4). Example: "G29 V3"
  1560. *
  1561. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  1562. * This is useful for manual bed leveling and finding flaws in the bed (to
  1563. * assist with part placement).
  1564. *
  1565. * F Set the Front limit of the probing grid
  1566. * B Set the Back limit of the probing grid
  1567. * L Set the Left limit of the probing grid
  1568. * R Set the Right limit of the probing grid
  1569. *
  1570. * Global Parameters:
  1571. *
  1572. * E/e By default G29 engages / disengages the probe for each point.
  1573. * Include "E" to engage and disengage the probe just once.
  1574. * There's no extra effect if you have a fixed probe.
  1575. * Usage: "G29 E" or "G29 e"
  1576. *
  1577. */
  1578. // Use one of these defines to specify the origin
  1579. // for a topographical map to be printed for your bed.
  1580. enum { OriginBackLeft, OriginFrontLeft, OriginBackRight, OriginFrontRight };
  1581. #define TOPO_ORIGIN OriginFrontLeft
  1582. inline void gcode_G29() {
  1583. // Prevent user from running a G29 without first homing in X and Y
  1584. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  1585. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1586. SERIAL_ECHO_START;
  1587. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1588. return;
  1589. }
  1590. int verbose_level = 1;
  1591. float x_tmp, y_tmp, z_tmp, real_z;
  1592. if (code_seen('V') || code_seen('v')) {
  1593. verbose_level = code_value_long();
  1594. if (verbose_level < 0 || verbose_level > 4) {
  1595. SERIAL_PROTOCOLPGM("?(V)erbose Level is implausible (0-4).\n");
  1596. return;
  1597. }
  1598. }
  1599. bool enhanced_g29 = code_seen('E') || code_seen('e');
  1600. #ifdef AUTO_BED_LEVELING_GRID
  1601. bool topo_flag = verbose_level > 2 || code_seen('T') || code_seen('t');
  1602. if (verbose_level > 0)
  1603. SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
  1604. int auto_bed_leveling_grid_points = code_seen('P') ? code_value_long() : AUTO_BED_LEVELING_GRID_POINTS;
  1605. if (auto_bed_leveling_grid_points < 2 || auto_bed_leveling_grid_points > AUTO_BED_LEVELING_GRID_POINTS) {
  1606. SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
  1607. return;
  1608. }
  1609. int left_probe_bed_position = code_seen('L') ? code_value_long() : LEFT_PROBE_BED_POSITION,
  1610. right_probe_bed_position = code_seen('R') ? code_value_long() : RIGHT_PROBE_BED_POSITION,
  1611. front_probe_bed_position = code_seen('F') ? code_value_long() : FRONT_PROBE_BED_POSITION,
  1612. back_probe_bed_position = code_seen('B') ? code_value_long() : BACK_PROBE_BED_POSITION;
  1613. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  1614. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - MIN_PROBE_EDGE,
  1615. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  1616. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  1617. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  1618. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - MIN_PROBE_EDGE,
  1619. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  1620. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  1621. if (left_out || right_out || front_out || back_out) {
  1622. if (left_out) {
  1623. SERIAL_PROTOCOLPGM("?Probe (L)eft position out of range.\n");
  1624. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - MIN_PROBE_EDGE;
  1625. }
  1626. if (right_out) {
  1627. SERIAL_PROTOCOLPGM("?Probe (R)ight position out of range.\n");
  1628. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  1629. }
  1630. if (front_out) {
  1631. SERIAL_PROTOCOLPGM("?Probe (F)ront position out of range.\n");
  1632. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - MIN_PROBE_EDGE;
  1633. }
  1634. if (back_out) {
  1635. SERIAL_PROTOCOLPGM("?Probe (B)ack position out of range.\n");
  1636. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  1637. }
  1638. return;
  1639. }
  1640. #endif // AUTO_BED_LEVELING_GRID
  1641. #ifdef Z_PROBE_SLED
  1642. dock_sled(false); // engage (un-dock) the probe
  1643. #endif
  1644. st_synchronize();
  1645. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  1646. //vector_3 corrected_position = plan_get_position_mm();
  1647. //corrected_position.debug("position before G29");
  1648. plan_bed_level_matrix.set_to_identity();
  1649. vector_3 uncorrected_position = plan_get_position();
  1650. //uncorrected_position.debug("position durring G29");
  1651. current_position[X_AXIS] = uncorrected_position.x;
  1652. current_position[Y_AXIS] = uncorrected_position.y;
  1653. current_position[Z_AXIS] = uncorrected_position.z;
  1654. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1655. setup_for_endstop_move();
  1656. feedrate = homing_feedrate[Z_AXIS];
  1657. #ifdef AUTO_BED_LEVELING_GRID
  1658. // probe at the points of a lattice grid
  1659. int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  1660. int yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  1661. // solve the plane equation ax + by + d = z
  1662. // A is the matrix with rows [x y 1] for all the probed points
  1663. // B is the vector of the Z positions
  1664. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1665. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1666. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  1667. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  1668. eqnBVector[abl2], // "B" vector of Z points
  1669. mean = 0.0;
  1670. int probePointCounter = 0;
  1671. bool zig = true;
  1672. for (int yProbe = front_probe_bed_position; yProbe <= back_probe_bed_position; yProbe += yGridSpacing) {
  1673. int xProbe, xInc;
  1674. if (zig)
  1675. xProbe = left_probe_bed_position, xInc = xGridSpacing;
  1676. else
  1677. xProbe = right_probe_bed_position, xInc = -xGridSpacing;
  1678. // If topo_flag is set then don't zig-zag. Just scan in one direction.
  1679. // This gets the probe points in more readable order.
  1680. if (!topo_flag) zig = !zig;
  1681. for (int xCount = 0; xCount < auto_bed_leveling_grid_points; xCount++) {
  1682. // raise extruder
  1683. float measured_z,
  1684. z_before = probePointCounter == 0 ? Z_RAISE_BEFORE_PROBING : current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  1685. // Enhanced G29 - Do not retract servo between probes
  1686. ProbeAction act;
  1687. if (enhanced_g29) {
  1688. if (yProbe == front_probe_bed_position && xCount == 0)
  1689. act = ProbeEngage;
  1690. else if (yProbe == front_probe_bed_position + (yGridSpacing * (auto_bed_leveling_grid_points - 1)) && xCount == auto_bed_leveling_grid_points - 1)
  1691. act = ProbeRetract;
  1692. else
  1693. act = ProbeStay;
  1694. }
  1695. else
  1696. act = ProbeEngageRetract;
  1697. measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
  1698. mean += measured_z;
  1699. eqnBVector[probePointCounter] = measured_z;
  1700. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  1701. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  1702. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  1703. probePointCounter++;
  1704. xProbe += xInc;
  1705. } //xProbe
  1706. } //yProbe
  1707. clean_up_after_endstop_move();
  1708. // solve lsq problem
  1709. double *plane_equation_coefficients = qr_solve(abl2, 3, eqnAMatrix, eqnBVector);
  1710. mean /= abl2;
  1711. if (verbose_level) {
  1712. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  1713. SERIAL_PROTOCOL(plane_equation_coefficients[0] + 0.0001);
  1714. SERIAL_PROTOCOLPGM(" b: ");
  1715. SERIAL_PROTOCOL(plane_equation_coefficients[1] + 0.0001);
  1716. SERIAL_PROTOCOLPGM(" d: ");
  1717. SERIAL_PROTOCOLLN(plane_equation_coefficients[2] + 0.0001);
  1718. if (verbose_level > 2) {
  1719. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  1720. SERIAL_PROTOCOL_F(mean, 6);
  1721. SERIAL_EOL;
  1722. }
  1723. }
  1724. if (topo_flag) {
  1725. int xx, yy;
  1726. SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
  1727. #if TOPO_ORIGIN == OriginFrontLeft
  1728. for (yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--)
  1729. #else
  1730. for (yy = 0; yy < auto_bed_leveling_grid_points; yy++)
  1731. #endif
  1732. {
  1733. #if TOPO_ORIGIN == OriginBackRight
  1734. for (xx = auto_bed_leveling_grid_points - 1; xx >= 0; xx--)
  1735. #else
  1736. for (xx = 0; xx < auto_bed_leveling_grid_points; xx++)
  1737. #endif
  1738. {
  1739. int ind =
  1740. #if TOPO_ORIGIN == OriginBackRight || TOPO_ORIGIN == OriginFrontLeft
  1741. yy * auto_bed_leveling_grid_points + xx
  1742. #elif TOPO_ORIGIN == OriginBackLeft
  1743. xx * auto_bed_leveling_grid_points + yy
  1744. #elif TOPO_ORIGIN == OriginFrontRight
  1745. abl2 - xx * auto_bed_leveling_grid_points - yy - 1
  1746. #endif
  1747. ;
  1748. float diff = eqnBVector[ind] - mean;
  1749. if (diff >= 0.0)
  1750. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  1751. else
  1752. SERIAL_PROTOCOLPGM(" ");
  1753. SERIAL_PROTOCOL_F(diff, 5);
  1754. } // xx
  1755. SERIAL_EOL;
  1756. } // yy
  1757. SERIAL_EOL;
  1758. } //topo_flag
  1759. set_bed_level_equation_lsq(plane_equation_coefficients);
  1760. free(plane_equation_coefficients);
  1761. #else // !AUTO_BED_LEVELING_GRID
  1762. // Probe at 3 arbitrary points
  1763. float z_at_pt_1, z_at_pt_2, z_at_pt_3;
  1764. if (enhanced_g29) {
  1765. // Basic Enhanced G29
  1766. z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, ProbeEngage, verbose_level);
  1767. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, ProbeStay, verbose_level);
  1768. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, ProbeRetract, verbose_level);
  1769. }
  1770. else {
  1771. z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, verbose_level);
  1772. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, verbose_level);
  1773. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, verbose_level);
  1774. }
  1775. clean_up_after_endstop_move();
  1776. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  1777. #endif // !AUTO_BED_LEVELING_GRID
  1778. st_synchronize();
  1779. if (verbose_level > 0)
  1780. plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
  1781. // Correct the Z height difference from z-probe position and hotend tip position.
  1782. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  1783. // When the bed is uneven, this height must be corrected.
  1784. real_z = float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  1785. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  1786. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  1787. z_tmp = current_position[Z_AXIS];
  1788. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  1789. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  1790. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1791. #ifdef Z_PROBE_SLED
  1792. dock_sled(true, -SLED_DOCKING_OFFSET); // dock the probe, correcting for over-travel
  1793. #endif
  1794. }
  1795. #ifndef Z_PROBE_SLED
  1796. inline void gcode_G30() {
  1797. engage_z_probe(); // Engage Z Servo endstop if available
  1798. st_synchronize();
  1799. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  1800. setup_for_endstop_move();
  1801. feedrate = homing_feedrate[Z_AXIS];
  1802. run_z_probe();
  1803. SERIAL_PROTOCOLPGM(MSG_BED);
  1804. SERIAL_PROTOCOLPGM(" X: ");
  1805. SERIAL_PROTOCOL(current_position[X_AXIS] + 0.0001);
  1806. SERIAL_PROTOCOLPGM(" Y: ");
  1807. SERIAL_PROTOCOL(current_position[Y_AXIS] + 0.0001);
  1808. SERIAL_PROTOCOLPGM(" Z: ");
  1809. SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
  1810. SERIAL_EOL;
  1811. clean_up_after_endstop_move();
  1812. retract_z_probe(); // Retract Z Servo endstop if available
  1813. }
  1814. #endif //!Z_PROBE_SLED
  1815. #endif //ENABLE_AUTO_BED_LEVELING
  1816. /**
  1817. * G92: Set current position to given X Y Z E
  1818. */
  1819. inline void gcode_G92() {
  1820. if (!code_seen(axis_codes[E_AXIS]))
  1821. st_synchronize();
  1822. for (int i=0;i<NUM_AXIS;i++) {
  1823. if (code_seen(axis_codes[i])) {
  1824. if (i == E_AXIS) {
  1825. current_position[i] = code_value();
  1826. plan_set_e_position(current_position[E_AXIS]);
  1827. }
  1828. else {
  1829. current_position[i] = code_value() +
  1830. #ifdef SCARA
  1831. ((i != X_AXIS && i != Y_AXIS) ? add_homing[i] : 0)
  1832. #else
  1833. add_homing[i]
  1834. #endif
  1835. ;
  1836. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1837. }
  1838. }
  1839. }
  1840. }
  1841. #ifdef ULTIPANEL
  1842. /**
  1843. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  1844. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  1845. */
  1846. inline void gcode_M0_M1() {
  1847. char *src = strchr_pointer + 2;
  1848. unsigned long codenum = 0;
  1849. bool hasP = false, hasS = false;
  1850. if (code_seen('P')) {
  1851. codenum = code_value(); // milliseconds to wait
  1852. hasP = codenum > 0;
  1853. }
  1854. if (code_seen('S')) {
  1855. codenum = code_value() * 1000; // seconds to wait
  1856. hasS = codenum > 0;
  1857. }
  1858. char* starpos = strchr(src, '*');
  1859. if (starpos != NULL) *(starpos) = '\0';
  1860. while (*src == ' ') ++src;
  1861. if (!hasP && !hasS && *src != '\0')
  1862. lcd_setstatus(src);
  1863. else
  1864. LCD_MESSAGEPGM(MSG_USERWAIT);
  1865. lcd_ignore_click();
  1866. st_synchronize();
  1867. previous_millis_cmd = millis();
  1868. if (codenum > 0) {
  1869. codenum += previous_millis_cmd; // keep track of when we started waiting
  1870. while(millis() < codenum && !lcd_clicked()) {
  1871. manage_heater();
  1872. manage_inactivity();
  1873. lcd_update();
  1874. }
  1875. lcd_ignore_click(false);
  1876. }
  1877. else {
  1878. if (!lcd_detected()) return;
  1879. while (!lcd_clicked()) {
  1880. manage_heater();
  1881. manage_inactivity();
  1882. lcd_update();
  1883. }
  1884. }
  1885. if (IS_SD_PRINTING)
  1886. LCD_MESSAGEPGM(MSG_RESUMING);
  1887. else
  1888. LCD_MESSAGEPGM(WELCOME_MSG);
  1889. }
  1890. #endif // ULTIPANEL
  1891. /**
  1892. * M17: Enable power on all stepper motors
  1893. */
  1894. inline void gcode_M17() {
  1895. LCD_MESSAGEPGM(MSG_NO_MOVE);
  1896. enable_x();
  1897. enable_y();
  1898. enable_z();
  1899. enable_e0();
  1900. enable_e1();
  1901. enable_e2();
  1902. enable_e3();
  1903. }
  1904. #ifdef SDSUPPORT
  1905. /**
  1906. * M20: List SD card to serial output
  1907. */
  1908. inline void gcode_M20() {
  1909. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  1910. card.ls();
  1911. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  1912. }
  1913. /**
  1914. * M21: Init SD Card
  1915. */
  1916. inline void gcode_M21() {
  1917. card.initsd();
  1918. }
  1919. /**
  1920. * M22: Release SD Card
  1921. */
  1922. inline void gcode_M22() {
  1923. card.release();
  1924. }
  1925. /**
  1926. * M23: Select a file
  1927. */
  1928. inline void gcode_M23() {
  1929. char* codepos = strchr_pointer + 4;
  1930. char* starpos = strchr(codepos, '*');
  1931. if (starpos) *starpos = '\0';
  1932. card.openFile(codepos, true);
  1933. }
  1934. /**
  1935. * M24: Start SD Print
  1936. */
  1937. inline void gcode_M24() {
  1938. card.startFileprint();
  1939. starttime = millis();
  1940. }
  1941. /**
  1942. * M25: Pause SD Print
  1943. */
  1944. inline void gcode_M25() {
  1945. card.pauseSDPrint();
  1946. }
  1947. /**
  1948. * M26: Set SD Card file index
  1949. */
  1950. inline void gcode_M26() {
  1951. if (card.cardOK && code_seen('S'))
  1952. card.setIndex(code_value_long());
  1953. }
  1954. /**
  1955. * M27: Get SD Card status
  1956. */
  1957. inline void gcode_M27() {
  1958. card.getStatus();
  1959. }
  1960. /**
  1961. * M28: Start SD Write
  1962. */
  1963. inline void gcode_M28() {
  1964. char* codepos = strchr_pointer + 4;
  1965. char* starpos = strchr(strchr_pointer + 4, '*');
  1966. if (starpos) {
  1967. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1968. strchr_pointer = strchr(npos, ' ') + 1;
  1969. *(starpos) = '\0';
  1970. }
  1971. card.openFile(strchr_pointer + 4, false);
  1972. }
  1973. /**
  1974. * M29: Stop SD Write
  1975. * Processed in write to file routine above
  1976. */
  1977. inline void gcode_M29() {
  1978. // card.saving = false;
  1979. }
  1980. /**
  1981. * M30 <filename>: Delete SD Card file
  1982. */
  1983. inline void gcode_M30() {
  1984. if (card.cardOK) {
  1985. card.closefile();
  1986. char* starpos = strchr(strchr_pointer + 4, '*');
  1987. if (starpos) {
  1988. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1989. strchr_pointer = strchr(npos, ' ') + 1;
  1990. *(starpos) = '\0';
  1991. }
  1992. card.removeFile(strchr_pointer + 4);
  1993. }
  1994. }
  1995. #endif
  1996. /**
  1997. * M31: Get the time since the start of SD Print (or last M109)
  1998. */
  1999. inline void gcode_M31() {
  2000. stoptime = millis();
  2001. unsigned long t = (stoptime - starttime) / 1000;
  2002. int min = t / 60, sec = t % 60;
  2003. char time[30];
  2004. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  2005. SERIAL_ECHO_START;
  2006. SERIAL_ECHOLN(time);
  2007. lcd_setstatus(time);
  2008. autotempShutdown();
  2009. }
  2010. #ifdef SDSUPPORT
  2011. /**
  2012. * M32: Select file and start SD Print
  2013. */
  2014. inline void gcode_M32() {
  2015. if (card.sdprinting)
  2016. st_synchronize();
  2017. char* codepos = strchr_pointer + 4;
  2018. char* namestartpos = strchr(codepos, '!'); //find ! to indicate filename string start.
  2019. if (! namestartpos)
  2020. namestartpos = codepos; //default name position, 4 letters after the M
  2021. else
  2022. namestartpos++; //to skip the '!'
  2023. char* starpos = strchr(codepos, '*');
  2024. if (starpos) *(starpos) = '\0';
  2025. bool call_procedure = code_seen('P') && (strchr_pointer < namestartpos);
  2026. if (card.cardOK) {
  2027. card.openFile(namestartpos, true, !call_procedure);
  2028. if (code_seen('S') && strchr_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  2029. card.setIndex(code_value_long());
  2030. card.startFileprint();
  2031. if (!call_procedure)
  2032. starttime = millis(); //procedure calls count as normal print time.
  2033. }
  2034. }
  2035. /**
  2036. * M928: Start SD Write
  2037. */
  2038. inline void gcode_M928() {
  2039. char* starpos = strchr(strchr_pointer + 5, '*');
  2040. if (starpos) {
  2041. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2042. strchr_pointer = strchr(npos, ' ') + 1;
  2043. *(starpos) = '\0';
  2044. }
  2045. card.openLogFile(strchr_pointer + 5);
  2046. }
  2047. #endif // SDSUPPORT
  2048. /**
  2049. * M42: Change pin status via GCode
  2050. */
  2051. inline void gcode_M42() {
  2052. if (code_seen('S')) {
  2053. int pin_status = code_value(),
  2054. pin_number = LED_PIN;
  2055. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  2056. pin_number = code_value();
  2057. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins) / sizeof(*sensitive_pins)); i++) {
  2058. if (sensitive_pins[i] == pin_number) {
  2059. pin_number = -1;
  2060. break;
  2061. }
  2062. }
  2063. #if defined(FAN_PIN) && FAN_PIN > -1
  2064. if (pin_number == FAN_PIN) fanSpeed = pin_status;
  2065. #endif
  2066. if (pin_number > -1) {
  2067. pinMode(pin_number, OUTPUT);
  2068. digitalWrite(pin_number, pin_status);
  2069. analogWrite(pin_number, pin_status);
  2070. }
  2071. } // code_seen('S')
  2072. }
  2073. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  2074. #if Z_MIN_PIN == -1
  2075. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  2076. #endif
  2077. /**
  2078. * M48: Z-Probe repeatability measurement function.
  2079. *
  2080. * Usage:
  2081. * M48 <n#> <X#> <Y#> <V#> <E> <L#>
  2082. * n = Number of samples (4-50, default 10)
  2083. * X = Sample X position
  2084. * Y = Sample Y position
  2085. * V = Verbose level (0-4, default=1)
  2086. * E = Engage probe for each reading
  2087. * L = Number of legs of movement before probe
  2088. *
  2089. * This function assumes the bed has been homed. Specificaly, that a G28 command
  2090. * as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  2091. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  2092. * regenerated.
  2093. *
  2094. * The number of samples will default to 10 if not specified. You can use upper or lower case
  2095. * letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  2096. * N for its communication protocol and will get horribly confused if you send it a capital N.
  2097. */
  2098. inline void gcode_M48() {
  2099. double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
  2100. int verbose_level = 1, n = 0, j, n_samples = 10, n_legs = 0, engage_probe_for_each_reading = 0;
  2101. double X_current, Y_current, Z_current;
  2102. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  2103. if (code_seen('V') || code_seen('v')) {
  2104. verbose_level = code_value();
  2105. if (verbose_level < 0 || verbose_level > 4 ) {
  2106. SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
  2107. return;
  2108. }
  2109. }
  2110. if (verbose_level > 0)
  2111. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
  2112. if (code_seen('n')) {
  2113. n_samples = code_value();
  2114. if (n_samples < 4 || n_samples > 50) {
  2115. SERIAL_PROTOCOLPGM("?Specified sample size not plausible (4-50).\n");
  2116. return;
  2117. }
  2118. }
  2119. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  2120. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  2121. Z_current = st_get_position_mm(Z_AXIS);
  2122. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2123. ext_position = st_get_position_mm(E_AXIS);
  2124. if (code_seen('E') || code_seen('e'))
  2125. engage_probe_for_each_reading++;
  2126. if (code_seen('X') || code_seen('x')) {
  2127. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  2128. if (X_probe_location < X_MIN_POS || X_probe_location > X_MAX_POS) {
  2129. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  2130. return;
  2131. }
  2132. }
  2133. if (code_seen('Y') || code_seen('y')) {
  2134. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  2135. if (Y_probe_location < Y_MIN_POS || Y_probe_location > Y_MAX_POS) {
  2136. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  2137. return;
  2138. }
  2139. }
  2140. if (code_seen('L') || code_seen('l')) {
  2141. n_legs = code_value();
  2142. if (n_legs == 1) n_legs = 2;
  2143. if (n_legs < 0 || n_legs > 15) {
  2144. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausible (0-15).\n");
  2145. return;
  2146. }
  2147. }
  2148. //
  2149. // Do all the preliminary setup work. First raise the probe.
  2150. //
  2151. st_synchronize();
  2152. plan_bed_level_matrix.set_to_identity();
  2153. plan_buffer_line(X_current, Y_current, Z_start_location,
  2154. ext_position,
  2155. homing_feedrate[Z_AXIS] / 60,
  2156. active_extruder);
  2157. st_synchronize();
  2158. //
  2159. // Now get everything to the specified probe point So we can safely do a probe to
  2160. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  2161. // use that as a starting point for each probe.
  2162. //
  2163. if (verbose_level > 2)
  2164. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  2165. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2166. ext_position,
  2167. homing_feedrate[X_AXIS]/60,
  2168. active_extruder);
  2169. st_synchronize();
  2170. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  2171. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  2172. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2173. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  2174. //
  2175. // OK, do the inital probe to get us close to the bed.
  2176. // Then retrace the right amount and use that in subsequent probes
  2177. //
  2178. engage_z_probe();
  2179. setup_for_endstop_move();
  2180. run_z_probe();
  2181. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2182. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2183. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2184. ext_position,
  2185. homing_feedrate[X_AXIS]/60,
  2186. active_extruder);
  2187. st_synchronize();
  2188. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2189. if (engage_probe_for_each_reading) retract_z_probe();
  2190. for (n=0; n < n_samples; n++) {
  2191. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  2192. if (n_legs) {
  2193. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  2194. int l;
  2195. int rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  2196. radius = (unsigned long)millis() % (long)(X_MAX_LENGTH / 4); // limit how far out to go
  2197. theta = (float)((unsigned long)millis() % 360L) / (360. / (2 * 3.1415926)); // turn into radians
  2198. //SERIAL_ECHOPAIR("starting radius: ",radius);
  2199. //SERIAL_ECHOPAIR(" theta: ",theta);
  2200. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  2201. //SERIAL_PROTOCOLLNPGM("");
  2202. float dir = rotational_direction ? 1 : -1;
  2203. for (l = 0; l < n_legs - 1; l++) {
  2204. theta += dir * (float)((unsigned long)millis() % 20L) / (360.0/(2*3.1415926)); // turn into radians
  2205. radius += (float)(((long)((unsigned long) millis() % 10L)) - 5L);
  2206. if (radius < 0.0) radius = -radius;
  2207. X_current = X_probe_location + cos(theta) * radius;
  2208. Y_current = Y_probe_location + sin(theta) * radius;
  2209. // Make sure our X & Y are sane
  2210. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  2211. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  2212. if (verbose_level > 3) {
  2213. SERIAL_ECHOPAIR("x: ", X_current);
  2214. SERIAL_ECHOPAIR("y: ", Y_current);
  2215. SERIAL_PROTOCOLLNPGM("");
  2216. }
  2217. do_blocking_move_to( X_current, Y_current, Z_current );
  2218. }
  2219. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  2220. }
  2221. if (engage_probe_for_each_reading) {
  2222. engage_z_probe();
  2223. delay(1000);
  2224. }
  2225. setup_for_endstop_move();
  2226. run_z_probe();
  2227. sample_set[n] = current_position[Z_AXIS];
  2228. //
  2229. // Get the current mean for the data points we have so far
  2230. //
  2231. sum = 0.0;
  2232. for (j=0; j<=n; j++) sum += sample_set[j];
  2233. mean = sum / (double (n+1));
  2234. //
  2235. // Now, use that mean to calculate the standard deviation for the
  2236. // data points we have so far
  2237. //
  2238. sum = 0.0;
  2239. for (j=0; j<=n; j++) sum += (sample_set[j]-mean) * (sample_set[j]-mean);
  2240. sigma = sqrt( sum / (double (n+1)) );
  2241. if (verbose_level > 1) {
  2242. SERIAL_PROTOCOL(n+1);
  2243. SERIAL_PROTOCOL(" of ");
  2244. SERIAL_PROTOCOL(n_samples);
  2245. SERIAL_PROTOCOLPGM(" z: ");
  2246. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  2247. }
  2248. if (verbose_level > 2) {
  2249. SERIAL_PROTOCOL(" mean: ");
  2250. SERIAL_PROTOCOL_F(mean,6);
  2251. SERIAL_PROTOCOL(" sigma: ");
  2252. SERIAL_PROTOCOL_F(sigma,6);
  2253. }
  2254. if (verbose_level > 0) SERIAL_EOL;
  2255. plan_buffer_line(X_probe_location, Y_probe_location, Z_start_location,
  2256. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2257. st_synchronize();
  2258. if (engage_probe_for_each_reading) {
  2259. retract_z_probe();
  2260. delay(1000);
  2261. }
  2262. }
  2263. retract_z_probe();
  2264. delay(1000);
  2265. clean_up_after_endstop_move();
  2266. // enable_endstops(true);
  2267. if (verbose_level > 0) {
  2268. SERIAL_PROTOCOLPGM("Mean: ");
  2269. SERIAL_PROTOCOL_F(mean, 6);
  2270. SERIAL_EOL;
  2271. }
  2272. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2273. SERIAL_PROTOCOL_F(sigma, 6);
  2274. SERIAL_EOL; SERIAL_EOL;
  2275. }
  2276. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  2277. /**
  2278. * M104: Set hot end temperature
  2279. */
  2280. inline void gcode_M104() {
  2281. if (setTargetedHotend(104)) return;
  2282. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  2283. #ifdef DUAL_X_CARRIAGE
  2284. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2285. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2286. #endif
  2287. setWatch();
  2288. }
  2289. /**
  2290. * M105: Read hot end and bed temperature
  2291. */
  2292. inline void gcode_M105() {
  2293. if (setTargetedHotend(105)) return;
  2294. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  2295. SERIAL_PROTOCOLPGM("ok T:");
  2296. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2297. SERIAL_PROTOCOLPGM(" /");
  2298. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  2299. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2300. SERIAL_PROTOCOLPGM(" B:");
  2301. SERIAL_PROTOCOL_F(degBed(),1);
  2302. SERIAL_PROTOCOLPGM(" /");
  2303. SERIAL_PROTOCOL_F(degTargetBed(),1);
  2304. #endif //TEMP_BED_PIN
  2305. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2306. SERIAL_PROTOCOLPGM(" T");
  2307. SERIAL_PROTOCOL(cur_extruder);
  2308. SERIAL_PROTOCOLPGM(":");
  2309. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2310. SERIAL_PROTOCOLPGM(" /");
  2311. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  2312. }
  2313. #else
  2314. SERIAL_ERROR_START;
  2315. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  2316. #endif
  2317. SERIAL_PROTOCOLPGM(" @:");
  2318. #ifdef EXTRUDER_WATTS
  2319. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  2320. SERIAL_PROTOCOLPGM("W");
  2321. #else
  2322. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  2323. #endif
  2324. SERIAL_PROTOCOLPGM(" B@:");
  2325. #ifdef BED_WATTS
  2326. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2327. SERIAL_PROTOCOLPGM("W");
  2328. #else
  2329. SERIAL_PROTOCOL(getHeaterPower(-1));
  2330. #endif
  2331. #ifdef SHOW_TEMP_ADC_VALUES
  2332. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2333. SERIAL_PROTOCOLPGM(" ADC B:");
  2334. SERIAL_PROTOCOL_F(degBed(),1);
  2335. SERIAL_PROTOCOLPGM("C->");
  2336. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  2337. #endif
  2338. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2339. SERIAL_PROTOCOLPGM(" T");
  2340. SERIAL_PROTOCOL(cur_extruder);
  2341. SERIAL_PROTOCOLPGM(":");
  2342. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2343. SERIAL_PROTOCOLPGM("C->");
  2344. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  2345. }
  2346. #endif
  2347. SERIAL_PROTOCOLLN("");
  2348. }
  2349. #if defined(FAN_PIN) && FAN_PIN > -1
  2350. /**
  2351. * M106: Set Fan Speed
  2352. */
  2353. inline void gcode_M106() { fanSpeed = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2354. /**
  2355. * M107: Fan Off
  2356. */
  2357. inline void gcode_M107() { fanSpeed = 0; }
  2358. #endif //FAN_PIN
  2359. /**
  2360. * M109: Wait for extruder(s) to reach temperature
  2361. */
  2362. inline void gcode_M109() {
  2363. if (setTargetedHotend(109)) return;
  2364. LCD_MESSAGEPGM(MSG_HEATING);
  2365. CooldownNoWait = code_seen('S');
  2366. if (CooldownNoWait || code_seen('R')) {
  2367. setTargetHotend(code_value(), tmp_extruder);
  2368. #ifdef DUAL_X_CARRIAGE
  2369. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2370. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2371. #endif
  2372. }
  2373. #ifdef AUTOTEMP
  2374. autotemp_enabled = code_seen('F');
  2375. if (autotemp_enabled) autotemp_factor = code_value();
  2376. if (code_seen('S')) autotemp_min = code_value();
  2377. if (code_seen('B')) autotemp_max = code_value();
  2378. #endif
  2379. setWatch();
  2380. unsigned long timetemp = millis();
  2381. /* See if we are heating up or cooling down */
  2382. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  2383. cancel_heatup = false;
  2384. #ifdef TEMP_RESIDENCY_TIME
  2385. long residencyStart = -1;
  2386. /* continue to loop until we have reached the target temp
  2387. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  2388. while((!cancel_heatup)&&((residencyStart == -1) ||
  2389. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) )
  2390. #else
  2391. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) )
  2392. #endif //TEMP_RESIDENCY_TIME
  2393. { // while loop
  2394. if (millis() > timetemp + 1000UL) { //Print temp & remaining time every 1s while waiting
  2395. SERIAL_PROTOCOLPGM("T:");
  2396. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2397. SERIAL_PROTOCOLPGM(" E:");
  2398. SERIAL_PROTOCOL((int)tmp_extruder);
  2399. #ifdef TEMP_RESIDENCY_TIME
  2400. SERIAL_PROTOCOLPGM(" W:");
  2401. if (residencyStart > -1) {
  2402. timetemp = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  2403. SERIAL_PROTOCOLLN( timetemp );
  2404. }
  2405. else {
  2406. SERIAL_PROTOCOLLN( "?" );
  2407. }
  2408. #else
  2409. SERIAL_PROTOCOLLN("");
  2410. #endif
  2411. timetemp = millis();
  2412. }
  2413. manage_heater();
  2414. manage_inactivity();
  2415. lcd_update();
  2416. #ifdef TEMP_RESIDENCY_TIME
  2417. // start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  2418. // or when current temp falls outside the hysteresis after target temp was reached
  2419. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  2420. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  2421. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  2422. {
  2423. residencyStart = millis();
  2424. }
  2425. #endif //TEMP_RESIDENCY_TIME
  2426. }
  2427. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  2428. starttime = previous_millis_cmd = millis();
  2429. }
  2430. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2431. /**
  2432. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  2433. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  2434. */
  2435. inline void gcode_M190() {
  2436. LCD_MESSAGEPGM(MSG_BED_HEATING);
  2437. CooldownNoWait = code_seen('S');
  2438. if (CooldownNoWait || code_seen('R'))
  2439. setTargetBed(code_value());
  2440. unsigned long timetemp = millis();
  2441. cancel_heatup = false;
  2442. target_direction = isHeatingBed(); // true if heating, false if cooling
  2443. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) ) {
  2444. unsigned long ms = millis();
  2445. if (ms > timetemp + 1000UL) { //Print Temp Reading every 1 second while heating up.
  2446. timetemp = ms;
  2447. float tt = degHotend(active_extruder);
  2448. SERIAL_PROTOCOLPGM("T:");
  2449. SERIAL_PROTOCOL(tt);
  2450. SERIAL_PROTOCOLPGM(" E:");
  2451. SERIAL_PROTOCOL((int)active_extruder);
  2452. SERIAL_PROTOCOLPGM(" B:");
  2453. SERIAL_PROTOCOL_F(degBed(), 1);
  2454. SERIAL_PROTOCOLLN("");
  2455. }
  2456. manage_heater();
  2457. manage_inactivity();
  2458. lcd_update();
  2459. }
  2460. LCD_MESSAGEPGM(MSG_BED_DONE);
  2461. previous_millis_cmd = millis();
  2462. }
  2463. #endif // TEMP_BED_PIN > -1
  2464. /**
  2465. * M112: Emergency Stop
  2466. */
  2467. inline void gcode_M112() {
  2468. kill();
  2469. }
  2470. #ifdef BARICUDA
  2471. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  2472. /**
  2473. * M126: Heater 1 valve open
  2474. */
  2475. inline void gcode_M126() { ValvePressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2476. /**
  2477. * M127: Heater 1 valve close
  2478. */
  2479. inline void gcode_M127() { ValvePressure = 0; }
  2480. #endif
  2481. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  2482. /**
  2483. * M128: Heater 2 valve open
  2484. */
  2485. inline void gcode_M128() { EtoPPressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2486. /**
  2487. * M129: Heater 2 valve close
  2488. */
  2489. inline void gcode_M129() { EtoPPressure = 0; }
  2490. #endif
  2491. #endif //BARICUDA
  2492. /**
  2493. * M140: Set bed temperature
  2494. */
  2495. inline void gcode_M140() {
  2496. if (code_seen('S')) setTargetBed(code_value());
  2497. }
  2498. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  2499. /**
  2500. * M80: Turn on Power Supply
  2501. */
  2502. inline void gcode_M80() {
  2503. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  2504. // If you have a switch on suicide pin, this is useful
  2505. // if you want to start another print with suicide feature after
  2506. // a print without suicide...
  2507. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  2508. OUT_WRITE(SUICIDE_PIN, HIGH);
  2509. #endif
  2510. #ifdef ULTIPANEL
  2511. powersupply = true;
  2512. LCD_MESSAGEPGM(WELCOME_MSG);
  2513. lcd_update();
  2514. #endif
  2515. }
  2516. #endif // PS_ON_PIN
  2517. /**
  2518. * M81: Turn off Power Supply
  2519. */
  2520. inline void gcode_M81() {
  2521. disable_heater();
  2522. st_synchronize();
  2523. disable_e0();
  2524. disable_e1();
  2525. disable_e2();
  2526. disable_e3();
  2527. finishAndDisableSteppers();
  2528. fanSpeed = 0;
  2529. delay(1000); // Wait 1 second before switching off
  2530. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  2531. st_synchronize();
  2532. suicide();
  2533. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  2534. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  2535. #endif
  2536. #ifdef ULTIPANEL
  2537. powersupply = false;
  2538. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  2539. lcd_update();
  2540. #endif
  2541. }
  2542. /**
  2543. * M82: Set E codes absolute (default)
  2544. */
  2545. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  2546. /**
  2547. * M82: Set E codes relative while in Absolute Coordinates (G90) mode
  2548. */
  2549. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  2550. /**
  2551. * M18, M84: Disable all stepper motors
  2552. */
  2553. inline void gcode_M18_M84() {
  2554. if (code_seen('S')) {
  2555. stepper_inactive_time = code_value() * 1000;
  2556. }
  2557. else {
  2558. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  2559. if (all_axis) {
  2560. st_synchronize();
  2561. disable_e0();
  2562. disable_e1();
  2563. disable_e2();
  2564. disable_e3();
  2565. finishAndDisableSteppers();
  2566. }
  2567. else {
  2568. st_synchronize();
  2569. if (code_seen('X')) disable_x();
  2570. if (code_seen('Y')) disable_y();
  2571. if (code_seen('Z')) disable_z();
  2572. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  2573. if (code_seen('E')) {
  2574. disable_e0();
  2575. disable_e1();
  2576. disable_e2();
  2577. disable_e3();
  2578. }
  2579. #endif
  2580. }
  2581. }
  2582. }
  2583. /**
  2584. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2585. */
  2586. inline void gcode_M85() {
  2587. if (code_seen('S')) max_inactive_time = code_value() * 1000;
  2588. }
  2589. /**
  2590. * M92: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2591. */
  2592. inline void gcode_M92() {
  2593. for(int8_t i=0; i < NUM_AXIS; i++) {
  2594. if (code_seen(axis_codes[i])) {
  2595. if (i == E_AXIS) {
  2596. float value = code_value();
  2597. if (value < 20.0) {
  2598. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  2599. max_e_jerk *= factor;
  2600. max_feedrate[i] *= factor;
  2601. axis_steps_per_sqr_second[i] *= factor;
  2602. }
  2603. axis_steps_per_unit[i] = value;
  2604. }
  2605. else {
  2606. axis_steps_per_unit[i] = code_value();
  2607. }
  2608. }
  2609. }
  2610. }
  2611. /**
  2612. * M114: Output current position to serial port
  2613. */
  2614. inline void gcode_M114() {
  2615. SERIAL_PROTOCOLPGM("X:");
  2616. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2617. SERIAL_PROTOCOLPGM(" Y:");
  2618. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2619. SERIAL_PROTOCOLPGM(" Z:");
  2620. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2621. SERIAL_PROTOCOLPGM(" E:");
  2622. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2623. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  2624. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  2625. SERIAL_PROTOCOLPGM(" Y:");
  2626. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  2627. SERIAL_PROTOCOLPGM(" Z:");
  2628. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  2629. SERIAL_PROTOCOLLN("");
  2630. #ifdef SCARA
  2631. SERIAL_PROTOCOLPGM("SCARA Theta:");
  2632. SERIAL_PROTOCOL(delta[X_AXIS]);
  2633. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2634. SERIAL_PROTOCOL(delta[Y_AXIS]);
  2635. SERIAL_PROTOCOLLN("");
  2636. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  2637. SERIAL_PROTOCOL(delta[X_AXIS]+add_homing[X_AXIS]);
  2638. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  2639. SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+add_homing[Y_AXIS]);
  2640. SERIAL_PROTOCOLLN("");
  2641. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  2642. SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
  2643. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2644. SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
  2645. SERIAL_PROTOCOLLN("");
  2646. SERIAL_PROTOCOLLN("");
  2647. #endif
  2648. }
  2649. /**
  2650. * M115: Capabilities string
  2651. */
  2652. inline void gcode_M115() {
  2653. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  2654. }
  2655. /**
  2656. * M117: Set LCD Status Message
  2657. */
  2658. inline void gcode_M117() {
  2659. char* codepos = strchr_pointer + 5;
  2660. char* starpos = strchr(codepos, '*');
  2661. if (starpos) *starpos = '\0';
  2662. lcd_setstatus(codepos);
  2663. }
  2664. /**
  2665. * M119: Output endstop states to serial output
  2666. */
  2667. inline void gcode_M119() {
  2668. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  2669. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  2670. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  2671. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2672. #endif
  2673. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  2674. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  2675. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2676. #endif
  2677. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  2678. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  2679. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2680. #endif
  2681. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  2682. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  2683. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2684. #endif
  2685. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  2686. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  2687. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2688. #endif
  2689. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  2690. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  2691. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2692. #endif
  2693. }
  2694. /**
  2695. * M120: Enable endstops
  2696. */
  2697. inline void gcode_M120() { enable_endstops(false); }
  2698. /**
  2699. * M121: Disable endstops
  2700. */
  2701. inline void gcode_M121() { enable_endstops(true); }
  2702. #ifdef BLINKM
  2703. /**
  2704. * M150: Set Status LED Color - Use R-U-B for R-G-B
  2705. */
  2706. inline void gcode_M150() {
  2707. SendColors(
  2708. code_seen('R') ? (byte)code_value() : 0,
  2709. code_seen('U') ? (byte)code_value() : 0,
  2710. code_seen('B') ? (byte)code_value() : 0
  2711. );
  2712. }
  2713. #endif // BLINKM
  2714. /**
  2715. * M200: Set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  2716. * T<extruder>
  2717. * D<millimeters>
  2718. */
  2719. inline void gcode_M200() {
  2720. tmp_extruder = active_extruder;
  2721. if (code_seen('T')) {
  2722. tmp_extruder = code_value();
  2723. if (tmp_extruder >= EXTRUDERS) {
  2724. SERIAL_ECHO_START;
  2725. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  2726. return;
  2727. }
  2728. }
  2729. float area = .0;
  2730. if (code_seen('D')) {
  2731. float diameter = code_value();
  2732. // setting any extruder filament size disables volumetric on the assumption that
  2733. // slicers either generate in extruder values as cubic mm or as as filament feeds
  2734. // for all extruders
  2735. volumetric_enabled = (diameter != 0.0);
  2736. if (volumetric_enabled) {
  2737. filament_size[tmp_extruder] = diameter;
  2738. // make sure all extruders have some sane value for the filament size
  2739. for (int i=0; i<EXTRUDERS; i++)
  2740. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  2741. }
  2742. }
  2743. else {
  2744. //reserved for setting filament diameter via UFID or filament measuring device
  2745. return;
  2746. }
  2747. calculate_volumetric_multipliers();
  2748. }
  2749. /**
  2750. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  2751. */
  2752. inline void gcode_M201() {
  2753. for (int8_t i=0; i < NUM_AXIS; i++) {
  2754. if (code_seen(axis_codes[i])) {
  2755. max_acceleration_units_per_sq_second[i] = code_value();
  2756. }
  2757. }
  2758. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  2759. reset_acceleration_rates();
  2760. }
  2761. #if 0 // Not used for Sprinter/grbl gen6
  2762. inline void gcode_M202() {
  2763. for(int8_t i=0; i < NUM_AXIS; i++) {
  2764. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  2765. }
  2766. }
  2767. #endif
  2768. /**
  2769. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  2770. */
  2771. inline void gcode_M203() {
  2772. for (int8_t i=0; i < NUM_AXIS; i++) {
  2773. if (code_seen(axis_codes[i])) {
  2774. max_feedrate[i] = code_value();
  2775. }
  2776. }
  2777. }
  2778. /**
  2779. * M204: Set Default Acceleration and/or Default Filament Acceleration in mm/sec^2 (M204 S3000 T7000)
  2780. *
  2781. * S = normal moves
  2782. * T = filament only moves
  2783. *
  2784. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  2785. */
  2786. inline void gcode_M204() {
  2787. if (code_seen('S')) acceleration = code_value();
  2788. if (code_seen('T')) retract_acceleration = code_value();
  2789. }
  2790. /**
  2791. * M205: Set Advanced Settings
  2792. *
  2793. * S = Min Feed Rate (mm/s)
  2794. * T = Min Travel Feed Rate (mm/s)
  2795. * B = Min Segment Time (µs)
  2796. * X = Max XY Jerk (mm/s/s)
  2797. * Z = Max Z Jerk (mm/s/s)
  2798. * E = Max E Jerk (mm/s/s)
  2799. */
  2800. inline void gcode_M205() {
  2801. if (code_seen('S')) minimumfeedrate = code_value();
  2802. if (code_seen('T')) mintravelfeedrate = code_value();
  2803. if (code_seen('B')) minsegmenttime = code_value();
  2804. if (code_seen('X')) max_xy_jerk = code_value();
  2805. if (code_seen('Z')) max_z_jerk = code_value();
  2806. if (code_seen('E')) max_e_jerk = code_value();
  2807. }
  2808. /**
  2809. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  2810. */
  2811. inline void gcode_M206() {
  2812. for (int8_t i=X_AXIS; i <= Z_AXIS; i++) {
  2813. if (code_seen(axis_codes[i])) {
  2814. add_homing[i] = code_value();
  2815. }
  2816. }
  2817. #ifdef SCARA
  2818. if (code_seen('T')) add_homing[X_AXIS] = code_value(); // Theta
  2819. if (code_seen('P')) add_homing[Y_AXIS] = code_value(); // Psi
  2820. #endif
  2821. }
  2822. #ifdef DELTA
  2823. /**
  2824. * M665: Set delta configurations
  2825. *
  2826. * L = diagonal rod
  2827. * R = delta radius
  2828. * S = segments per second
  2829. */
  2830. inline void gcode_M665() {
  2831. if (code_seen('L')) delta_diagonal_rod = code_value();
  2832. if (code_seen('R')) delta_radius = code_value();
  2833. if (code_seen('S')) delta_segments_per_second = code_value();
  2834. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  2835. }
  2836. /**
  2837. * M666: Set delta endstop adjustment
  2838. */
  2839. inline void gcode_M666() {
  2840. for (int8_t i = 0; i < 3; i++) {
  2841. if (code_seen(axis_codes[i])) {
  2842. endstop_adj[i] = code_value();
  2843. }
  2844. }
  2845. }
  2846. #endif // DELTA
  2847. #ifdef FWRETRACT
  2848. /**
  2849. * M207: Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  2850. */
  2851. inline void gcode_M207() {
  2852. if (code_seen('S')) retract_length = code_value();
  2853. if (code_seen('F')) retract_feedrate = code_value() / 60;
  2854. if (code_seen('Z')) retract_zlift = code_value();
  2855. }
  2856. /**
  2857. * M208: Set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  2858. */
  2859. inline void gcode_M208() {
  2860. if (code_seen('S')) retract_recover_length = code_value();
  2861. if (code_seen('F')) retract_recover_feedrate = code_value() / 60;
  2862. }
  2863. /**
  2864. * M209: Enable automatic retract (M209 S1)
  2865. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  2866. */
  2867. inline void gcode_M209() {
  2868. if (code_seen('S')) {
  2869. int t = code_value();
  2870. switch(t) {
  2871. case 0:
  2872. autoretract_enabled = false;
  2873. break;
  2874. case 1:
  2875. autoretract_enabled = true;
  2876. break;
  2877. default:
  2878. SERIAL_ECHO_START;
  2879. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2880. SERIAL_ECHO(cmdbuffer[bufindr]);
  2881. SERIAL_ECHOLNPGM("\"");
  2882. return;
  2883. }
  2884. for (int i=0; i<EXTRUDERS; i++) retracted[i] = false;
  2885. }
  2886. }
  2887. #endif // FWRETRACT
  2888. #if EXTRUDERS > 1
  2889. /**
  2890. * M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  2891. */
  2892. inline void gcode_M218() {
  2893. if (setTargetedHotend(218)) return;
  2894. if (code_seen('X')) extruder_offset[X_AXIS][tmp_extruder] = code_value();
  2895. if (code_seen('Y')) extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  2896. #ifdef DUAL_X_CARRIAGE
  2897. if (code_seen('Z')) extruder_offset[Z_AXIS][tmp_extruder] = code_value();
  2898. #endif
  2899. SERIAL_ECHO_START;
  2900. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  2901. for (tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++) {
  2902. SERIAL_ECHO(" ");
  2903. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  2904. SERIAL_ECHO(",");
  2905. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  2906. #ifdef DUAL_X_CARRIAGE
  2907. SERIAL_ECHO(",");
  2908. SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
  2909. #endif
  2910. }
  2911. SERIAL_EOL;
  2912. }
  2913. #endif // EXTRUDERS > 1
  2914. /**
  2915. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  2916. */
  2917. inline void gcode_M220() {
  2918. if (code_seen('S')) feedmultiply = code_value();
  2919. }
  2920. /**
  2921. * M221: Set extrusion percentage (M221 T0 S95)
  2922. */
  2923. inline void gcode_M221() {
  2924. if (code_seen('S')) {
  2925. int sval = code_value();
  2926. if (code_seen('T')) {
  2927. if (setTargetedHotend(221)) return;
  2928. extruder_multiply[tmp_extruder] = sval;
  2929. }
  2930. else {
  2931. extrudemultiply = sval;
  2932. }
  2933. }
  2934. }
  2935. /**
  2936. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  2937. */
  2938. inline void gcode_M226() {
  2939. if (code_seen('P')) {
  2940. int pin_number = code_value();
  2941. int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted
  2942. if (pin_state >= -1 && pin_state <= 1) {
  2943. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(*sensitive_pins)); i++) {
  2944. if (sensitive_pins[i] == pin_number) {
  2945. pin_number = -1;
  2946. break;
  2947. }
  2948. }
  2949. if (pin_number > -1) {
  2950. int target = LOW;
  2951. st_synchronize();
  2952. pinMode(pin_number, INPUT);
  2953. switch(pin_state){
  2954. case 1:
  2955. target = HIGH;
  2956. break;
  2957. case 0:
  2958. target = LOW;
  2959. break;
  2960. case -1:
  2961. target = !digitalRead(pin_number);
  2962. break;
  2963. }
  2964. while(digitalRead(pin_number) != target) {
  2965. manage_heater();
  2966. manage_inactivity();
  2967. lcd_update();
  2968. }
  2969. } // pin_number > -1
  2970. } // pin_state -1 0 1
  2971. } // code_seen('P')
  2972. }
  2973. #if NUM_SERVOS > 0
  2974. /**
  2975. * M280: Set servo position absolute. P: servo index, S: angle or microseconds
  2976. */
  2977. inline void gcode_M280() {
  2978. int servo_index = code_seen('P') ? code_value() : -1;
  2979. int servo_position = 0;
  2980. if (code_seen('S')) {
  2981. servo_position = code_value();
  2982. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  2983. #if SERVO_LEVELING
  2984. servos[servo_index].attach(0);
  2985. #endif
  2986. servos[servo_index].write(servo_position);
  2987. #if SERVO_LEVELING
  2988. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  2989. servos[servo_index].detach();
  2990. #endif
  2991. }
  2992. else {
  2993. SERIAL_ECHO_START;
  2994. SERIAL_ECHO("Servo ");
  2995. SERIAL_ECHO(servo_index);
  2996. SERIAL_ECHOLN(" out of range");
  2997. }
  2998. }
  2999. else if (servo_index >= 0) {
  3000. SERIAL_PROTOCOL(MSG_OK);
  3001. SERIAL_PROTOCOL(" Servo ");
  3002. SERIAL_PROTOCOL(servo_index);
  3003. SERIAL_PROTOCOL(": ");
  3004. SERIAL_PROTOCOL(servos[servo_index].read());
  3005. SERIAL_PROTOCOLLN("");
  3006. }
  3007. }
  3008. #endif // NUM_SERVOS > 0
  3009. #if defined(LARGE_FLASH) && (BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER))
  3010. /**
  3011. * M300: Play beep sound S<frequency Hz> P<duration ms>
  3012. */
  3013. inline void gcode_M300() {
  3014. int beepS = code_seen('S') ? code_value() : 110;
  3015. int beepP = code_seen('P') ? code_value() : 1000;
  3016. if (beepS > 0) {
  3017. #if BEEPER > 0
  3018. tone(BEEPER, beepS);
  3019. delay(beepP);
  3020. noTone(BEEPER);
  3021. #elif defined(ULTRALCD)
  3022. lcd_buzz(beepS, beepP);
  3023. #elif defined(LCD_USE_I2C_BUZZER)
  3024. lcd_buzz(beepP, beepS);
  3025. #endif
  3026. }
  3027. else {
  3028. delay(beepP);
  3029. }
  3030. }
  3031. #endif // LARGE_FLASH && (BEEPER>0 || ULTRALCD || LCD_USE_I2C_BUZZER)
  3032. #ifdef PIDTEMP
  3033. /**
  3034. * M301: Set PID parameters P I D (and optionally C)
  3035. */
  3036. inline void gcode_M301() {
  3037. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  3038. // default behaviour (omitting E parameter) is to update for extruder 0 only
  3039. int e = code_seen('E') ? code_value() : 0; // extruder being updated
  3040. if (e < EXTRUDERS) { // catch bad input value
  3041. if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
  3042. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
  3043. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
  3044. #ifdef PID_ADD_EXTRUSION_RATE
  3045. if (code_seen('C')) PID_PARAM(Kc, e) = code_value();
  3046. #endif
  3047. updatePID();
  3048. SERIAL_PROTOCOL(MSG_OK);
  3049. #ifdef PID_PARAMS_PER_EXTRUDER
  3050. SERIAL_PROTOCOL(" e:"); // specify extruder in serial output
  3051. SERIAL_PROTOCOL(e);
  3052. #endif // PID_PARAMS_PER_EXTRUDER
  3053. SERIAL_PROTOCOL(" p:");
  3054. SERIAL_PROTOCOL(PID_PARAM(Kp, e));
  3055. SERIAL_PROTOCOL(" i:");
  3056. SERIAL_PROTOCOL(unscalePID_i(PID_PARAM(Ki, e)));
  3057. SERIAL_PROTOCOL(" d:");
  3058. SERIAL_PROTOCOL(unscalePID_d(PID_PARAM(Kd, e)));
  3059. #ifdef PID_ADD_EXTRUSION_RATE
  3060. SERIAL_PROTOCOL(" c:");
  3061. //Kc does not have scaling applied above, or in resetting defaults
  3062. SERIAL_PROTOCOL(PID_PARAM(Kc, e));
  3063. #endif
  3064. SERIAL_PROTOCOLLN("");
  3065. }
  3066. else {
  3067. SERIAL_ECHO_START;
  3068. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3069. }
  3070. }
  3071. #endif // PIDTEMP
  3072. #ifdef PIDTEMPBED
  3073. inline void gcode_M304() {
  3074. if (code_seen('P')) bedKp = code_value();
  3075. if (code_seen('I')) bedKi = scalePID_i(code_value());
  3076. if (code_seen('D')) bedKd = scalePID_d(code_value());
  3077. updatePID();
  3078. SERIAL_PROTOCOL(MSG_OK);
  3079. SERIAL_PROTOCOL(" p:");
  3080. SERIAL_PROTOCOL(bedKp);
  3081. SERIAL_PROTOCOL(" i:");
  3082. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  3083. SERIAL_PROTOCOL(" d:");
  3084. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  3085. SERIAL_PROTOCOLLN("");
  3086. }
  3087. #endif // PIDTEMPBED
  3088. #if defined(CHDK) || (defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1)
  3089. /**
  3090. * M240: Trigger a camera by emulating a Canon RC-1
  3091. * See http://www.doc-diy.net/photo/rc-1_hacked/
  3092. */
  3093. inline void gcode_M240() {
  3094. #ifdef CHDK
  3095. OUT_WRITE(CHDK, HIGH);
  3096. chdkHigh = millis();
  3097. chdkActive = true;
  3098. #elif defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  3099. const uint8_t NUM_PULSES = 16;
  3100. const float PULSE_LENGTH = 0.01524;
  3101. for (int i = 0; i < NUM_PULSES; i++) {
  3102. WRITE(PHOTOGRAPH_PIN, HIGH);
  3103. _delay_ms(PULSE_LENGTH);
  3104. WRITE(PHOTOGRAPH_PIN, LOW);
  3105. _delay_ms(PULSE_LENGTH);
  3106. }
  3107. delay(7.33);
  3108. for (int i = 0; i < NUM_PULSES; i++) {
  3109. WRITE(PHOTOGRAPH_PIN, HIGH);
  3110. _delay_ms(PULSE_LENGTH);
  3111. WRITE(PHOTOGRAPH_PIN, LOW);
  3112. _delay_ms(PULSE_LENGTH);
  3113. }
  3114. #endif // !CHDK && PHOTOGRAPH_PIN > -1
  3115. }
  3116. #endif // CHDK || PHOTOGRAPH_PIN
  3117. #ifdef DOGLCD
  3118. /**
  3119. * M250: Read and optionally set the LCD contrast
  3120. */
  3121. inline void gcode_M250() {
  3122. if (code_seen('C')) lcd_setcontrast(code_value_long() & 0x3F);
  3123. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  3124. SERIAL_PROTOCOL(lcd_contrast);
  3125. SERIAL_PROTOCOLLN("");
  3126. }
  3127. #endif // DOGLCD
  3128. #ifdef PREVENT_DANGEROUS_EXTRUDE
  3129. /**
  3130. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  3131. */
  3132. inline void gcode_M302() {
  3133. set_extrude_min_temp(code_seen('S') ? code_value() : 0);
  3134. }
  3135. #endif // PREVENT_DANGEROUS_EXTRUDE
  3136. /**
  3137. * M303: PID relay autotune
  3138. * S<temperature> sets the target temperature. (default target temperature = 150C)
  3139. * E<extruder> (-1 for the bed)
  3140. * C<cycles>
  3141. */
  3142. inline void gcode_M303() {
  3143. int e = code_seen('E') ? code_value_long() : 0;
  3144. int c = code_seen('C') ? code_value_long() : 5;
  3145. float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
  3146. PID_autotune(temp, e, c);
  3147. }
  3148. #ifdef SCARA
  3149. /**
  3150. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  3151. */
  3152. inline bool gcode_M360() {
  3153. SERIAL_ECHOLN(" Cal: Theta 0 ");
  3154. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3155. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3156. if (! Stopped) {
  3157. //get_coordinates(); // For X Y Z E F
  3158. delta[X_AXIS] = 0;
  3159. delta[Y_AXIS] = 120;
  3160. calculate_SCARA_forward_Transform(delta);
  3161. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3162. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3163. prepare_move();
  3164. //ClearToSend();
  3165. return true;
  3166. }
  3167. return false;
  3168. }
  3169. /**
  3170. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  3171. */
  3172. inline bool gcode_M361() {
  3173. SERIAL_ECHOLN(" Cal: Theta 90 ");
  3174. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3175. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3176. if (! Stopped) {
  3177. //get_coordinates(); // For X Y Z E F
  3178. delta[X_AXIS] = 90;
  3179. delta[Y_AXIS] = 130;
  3180. calculate_SCARA_forward_Transform(delta);
  3181. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3182. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3183. prepare_move();
  3184. //ClearToSend();
  3185. return true;
  3186. }
  3187. return false;
  3188. }
  3189. /**
  3190. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  3191. */
  3192. inline bool gcode_M362() {
  3193. SERIAL_ECHOLN(" Cal: Psi 0 ");
  3194. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3195. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3196. if (! Stopped) {
  3197. //get_coordinates(); // For X Y Z E F
  3198. delta[X_AXIS] = 60;
  3199. delta[Y_AXIS] = 180;
  3200. calculate_SCARA_forward_Transform(delta);
  3201. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3202. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3203. prepare_move();
  3204. //ClearToSend();
  3205. return true;
  3206. }
  3207. return false;
  3208. }
  3209. /**
  3210. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  3211. */
  3212. inline bool gcode_M363() {
  3213. SERIAL_ECHOLN(" Cal: Psi 90 ");
  3214. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3215. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3216. if (! Stopped) {
  3217. //get_coordinates(); // For X Y Z E F
  3218. delta[X_AXIS] = 50;
  3219. delta[Y_AXIS] = 90;
  3220. calculate_SCARA_forward_Transform(delta);
  3221. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3222. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3223. prepare_move();
  3224. //ClearToSend();
  3225. return true;
  3226. }
  3227. return false;
  3228. }
  3229. /**
  3230. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  3231. */
  3232. inline bool gcode_M364() {
  3233. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  3234. // SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3235. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3236. if (! Stopped) {
  3237. //get_coordinates(); // For X Y Z E F
  3238. delta[X_AXIS] = 45;
  3239. delta[Y_AXIS] = 135;
  3240. calculate_SCARA_forward_Transform(delta);
  3241. destination[X_AXIS] = delta[X_AXIS] / axis_scaling[X_AXIS];
  3242. destination[Y_AXIS] = delta[Y_AXIS] / axis_scaling[Y_AXIS];
  3243. prepare_move();
  3244. //ClearToSend();
  3245. return true;
  3246. }
  3247. return false;
  3248. }
  3249. /**
  3250. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  3251. */
  3252. inline void gcode_M365() {
  3253. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3254. if (code_seen(axis_codes[i])) {
  3255. axis_scaling[i] = code_value();
  3256. }
  3257. }
  3258. }
  3259. #endif // SCARA
  3260. #ifdef EXT_SOLENOID
  3261. void enable_solenoid(uint8_t num) {
  3262. switch(num) {
  3263. case 0:
  3264. OUT_WRITE(SOL0_PIN, HIGH);
  3265. break;
  3266. #if defined(SOL1_PIN) && SOL1_PIN > -1
  3267. case 1:
  3268. OUT_WRITE(SOL1_PIN, HIGH);
  3269. break;
  3270. #endif
  3271. #if defined(SOL2_PIN) && SOL2_PIN > -1
  3272. case 2:
  3273. OUT_WRITE(SOL2_PIN, HIGH);
  3274. break;
  3275. #endif
  3276. #if defined(SOL3_PIN) && SOL3_PIN > -1
  3277. case 3:
  3278. OUT_WRITE(SOL3_PIN, HIGH);
  3279. break;
  3280. #endif
  3281. default:
  3282. SERIAL_ECHO_START;
  3283. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  3284. break;
  3285. }
  3286. }
  3287. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  3288. void disable_all_solenoids() {
  3289. OUT_WRITE(SOL0_PIN, LOW);
  3290. OUT_WRITE(SOL1_PIN, LOW);
  3291. OUT_WRITE(SOL2_PIN, LOW);
  3292. OUT_WRITE(SOL3_PIN, LOW);
  3293. }
  3294. /**
  3295. * M380: Enable solenoid on the active extruder
  3296. */
  3297. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  3298. /**
  3299. * M381: Disable all solenoids
  3300. */
  3301. inline void gcode_M381() { disable_all_solenoids(); }
  3302. #endif // EXT_SOLENOID
  3303. /**
  3304. * M400: Finish all moves
  3305. */
  3306. inline void gcode_M400() { st_synchronize(); }
  3307. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(SERVO_ENDSTOPS) && not defined(Z_PROBE_SLED)
  3308. /**
  3309. * M401: Engage Z Servo endstop if available
  3310. */
  3311. inline void gcode_M401() { engage_z_probe(); }
  3312. /**
  3313. * M402: Retract Z Servo endstop if enabled
  3314. */
  3315. inline void gcode_M402() { retract_z_probe(); }
  3316. #endif
  3317. #ifdef FILAMENT_SENSOR
  3318. /**
  3319. * M404: Display or set the nominal filament width (3mm, 1.75mm ) N<3.0>
  3320. */
  3321. inline void gcode_M404() {
  3322. #if FILWIDTH_PIN > -1
  3323. if (code_seen('N')) {
  3324. filament_width_nominal = code_value();
  3325. }
  3326. else {
  3327. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  3328. SERIAL_PROTOCOLLN(filament_width_nominal);
  3329. }
  3330. #endif
  3331. }
  3332. /**
  3333. * M405: Turn on filament sensor for control
  3334. */
  3335. inline void gcode_M405() {
  3336. if (code_seen('D')) meas_delay_cm = code_value();
  3337. if (meas_delay_cm > MAX_MEASUREMENT_DELAY) meas_delay_cm = MAX_MEASUREMENT_DELAY;
  3338. if (delay_index2 == -1) { //initialize the ring buffer if it has not been done since startup
  3339. int temp_ratio = widthFil_to_size_ratio();
  3340. for (delay_index1 = 0; delay_index1 < MAX_MEASUREMENT_DELAY + 1; ++delay_index1)
  3341. measurement_delay[delay_index1] = temp_ratio - 100; //subtract 100 to scale within a signed byte
  3342. delay_index1 = delay_index2 = 0;
  3343. }
  3344. filament_sensor = true;
  3345. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3346. //SERIAL_PROTOCOL(filament_width_meas);
  3347. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  3348. //SERIAL_PROTOCOL(extrudemultiply);
  3349. }
  3350. /**
  3351. * M406: Turn off filament sensor for control
  3352. */
  3353. inline void gcode_M406() { filament_sensor = false; }
  3354. /**
  3355. * M407: Get measured filament diameter on serial output
  3356. */
  3357. inline void gcode_M407() {
  3358. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3359. SERIAL_PROTOCOLLN(filament_width_meas);
  3360. }
  3361. #endif // FILAMENT_SENSOR
  3362. /**
  3363. * M500: Store settings in EEPROM
  3364. */
  3365. inline void gcode_M500() {
  3366. Config_StoreSettings();
  3367. }
  3368. /**
  3369. * M501: Read settings from EEPROM
  3370. */
  3371. inline void gcode_M501() {
  3372. Config_RetrieveSettings();
  3373. }
  3374. /**
  3375. * M502: Revert to default settings
  3376. */
  3377. inline void gcode_M502() {
  3378. Config_ResetDefault();
  3379. }
  3380. /**
  3381. * M503: print settings currently in memory
  3382. */
  3383. inline void gcode_M503() {
  3384. Config_PrintSettings(code_seen('S') && code_value == 0);
  3385. }
  3386. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3387. /**
  3388. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  3389. */
  3390. inline void gcode_M540() {
  3391. if (code_seen('S')) abort_on_endstop_hit = (code_value() > 0);
  3392. }
  3393. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3394. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3395. inline void gcode_SET_Z_PROBE_OFFSET() {
  3396. float value;
  3397. if (code_seen('Z')) {
  3398. value = code_value();
  3399. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  3400. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  3401. SERIAL_ECHO_START;
  3402. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
  3403. SERIAL_PROTOCOLLN("");
  3404. }
  3405. else {
  3406. SERIAL_ECHO_START;
  3407. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  3408. SERIAL_ECHOPGM(MSG_Z_MIN);
  3409. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  3410. SERIAL_ECHOPGM(MSG_Z_MAX);
  3411. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  3412. SERIAL_PROTOCOLLN("");
  3413. }
  3414. }
  3415. else {
  3416. SERIAL_ECHO_START;
  3417. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " : ");
  3418. SERIAL_ECHO(-zprobe_zoffset);
  3419. SERIAL_PROTOCOLLN("");
  3420. }
  3421. }
  3422. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3423. #ifdef FILAMENTCHANGEENABLE
  3424. /**
  3425. * M600: Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3426. */
  3427. inline void gcode_M600() {
  3428. float target[NUM_AXIS], lastpos[NUM_AXIS], fr60 = feedrate / 60;
  3429. for (int i=0; i<NUM_AXIS; i++)
  3430. target[i] = lastpos[i] = current_position[i];
  3431. #define BASICPLAN plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder);
  3432. #ifdef DELTA
  3433. #define RUNPLAN calculate_delta(target); BASICPLAN
  3434. #else
  3435. #define RUNPLAN BASICPLAN
  3436. #endif
  3437. //retract by E
  3438. if (code_seen('E')) target[E_AXIS] += code_value();
  3439. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  3440. else target[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
  3441. #endif
  3442. RUNPLAN;
  3443. //lift Z
  3444. if (code_seen('Z')) target[Z_AXIS] += code_value();
  3445. #ifdef FILAMENTCHANGE_ZADD
  3446. else target[Z_AXIS] += FILAMENTCHANGE_ZADD;
  3447. #endif
  3448. RUNPLAN;
  3449. //move xy
  3450. if (code_seen('X')) target[X_AXIS] = code_value();
  3451. #ifdef FILAMENTCHANGE_XPOS
  3452. else target[X_AXIS] = FILAMENTCHANGE_XPOS;
  3453. #endif
  3454. if (code_seen('Y')) target[Y_AXIS] = code_value();
  3455. #ifdef FILAMENTCHANGE_YPOS
  3456. else target[Y_AXIS] = FILAMENTCHANGE_YPOS;
  3457. #endif
  3458. RUNPLAN;
  3459. if (code_seen('L')) target[E_AXIS] += code_value();
  3460. #ifdef FILAMENTCHANGE_FINALRETRACT
  3461. else target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  3462. #endif
  3463. RUNPLAN;
  3464. //finish moves
  3465. st_synchronize();
  3466. //disable extruder steppers so filament can be removed
  3467. disable_e0();
  3468. disable_e1();
  3469. disable_e2();
  3470. disable_e3();
  3471. delay(100);
  3472. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  3473. uint8_t cnt = 0;
  3474. while (!lcd_clicked()) {
  3475. cnt++;
  3476. manage_heater();
  3477. manage_inactivity(true);
  3478. lcd_update();
  3479. if (cnt == 0) {
  3480. #if BEEPER > 0
  3481. OUT_WRITE(BEEPER,HIGH);
  3482. delay(3);
  3483. WRITE(BEEPER,LOW);
  3484. delay(3);
  3485. #else
  3486. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  3487. lcd_buzz(1000/6, 100);
  3488. #else
  3489. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
  3490. #endif
  3491. #endif
  3492. }
  3493. } // while(!lcd_clicked)
  3494. //return to normal
  3495. if (code_seen('L')) target[E_AXIS] -= code_value();
  3496. #ifdef FILAMENTCHANGE_FINALRETRACT
  3497. else target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  3498. #endif
  3499. current_position[E_AXIS] = target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3500. plan_set_e_position(current_position[E_AXIS]);
  3501. RUNPLAN; //should do nothing
  3502. lcd_reset_alert_level();
  3503. #ifdef DELTA
  3504. calculate_delta(lastpos);
  3505. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xyz back
  3506. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  3507. #else
  3508. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xy back
  3509. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move z back
  3510. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  3511. #endif
  3512. }
  3513. #endif // FILAMENTCHANGEENABLE
  3514. #ifdef DUAL_X_CARRIAGE
  3515. /**
  3516. * M605: Set dual x-carriage movement mode
  3517. *
  3518. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  3519. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  3520. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  3521. * millimeters x-offset and an optional differential hotend temperature of
  3522. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  3523. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  3524. *
  3525. * Note: the X axis should be homed after changing dual x-carriage mode.
  3526. */
  3527. inline void gcode_M605() {
  3528. st_synchronize();
  3529. if (code_seen('S')) dual_x_carriage_mode = code_value();
  3530. switch(dual_x_carriage_mode) {
  3531. case DXC_DUPLICATION_MODE:
  3532. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0));
  3533. if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
  3534. SERIAL_ECHO_START;
  3535. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3536. SERIAL_ECHO(" ");
  3537. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  3538. SERIAL_ECHO(",");
  3539. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  3540. SERIAL_ECHO(" ");
  3541. SERIAL_ECHO(duplicate_extruder_x_offset);
  3542. SERIAL_ECHO(",");
  3543. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  3544. break;
  3545. case DXC_FULL_CONTROL_MODE:
  3546. case DXC_AUTO_PARK_MODE:
  3547. break;
  3548. default:
  3549. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  3550. break;
  3551. }
  3552. active_extruder_parked = false;
  3553. extruder_duplication_enabled = false;
  3554. delayed_move_time = 0;
  3555. }
  3556. #endif // DUAL_X_CARRIAGE
  3557. /**
  3558. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  3559. */
  3560. inline void gcode_M907() {
  3561. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  3562. for (int i=0;i<NUM_AXIS;i++)
  3563. if (code_seen(axis_codes[i])) digipot_current(i, code_value());
  3564. if (code_seen('B')) digipot_current(4, code_value());
  3565. if (code_seen('S')) for (int i=0; i<=4; i++) digipot_current(i, code_value());
  3566. #endif
  3567. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  3568. if (code_seen('X')) digipot_current(0, code_value());
  3569. #endif
  3570. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  3571. if (code_seen('Z')) digipot_current(1, code_value());
  3572. #endif
  3573. #ifdef MOTOR_CURRENT_PWM_E_PIN
  3574. if (code_seen('E')) digipot_current(2, code_value());
  3575. #endif
  3576. #ifdef DIGIPOT_I2C
  3577. // this one uses actual amps in floating point
  3578. for (int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  3579. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  3580. for (int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  3581. #endif
  3582. }
  3583. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  3584. /**
  3585. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  3586. */
  3587. inline void gcode_M908() {
  3588. digitalPotWrite(
  3589. code_seen('P') ? code_value() : 0,
  3590. code_seen('S') ? code_value() : 0
  3591. );
  3592. }
  3593. #endif // DIGIPOTSS_PIN
  3594. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  3595. inline void gcode_M350() {
  3596. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3597. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  3598. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  3599. if(code_seen('B')) microstep_mode(4,code_value());
  3600. microstep_readings();
  3601. #endif
  3602. }
  3603. /**
  3604. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  3605. * S# determines MS1 or MS2, X# sets the pin high/low.
  3606. */
  3607. inline void gcode_M351() {
  3608. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3609. if (code_seen('S')) switch(code_value_long()) {
  3610. case 1:
  3611. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, code_value(), -1);
  3612. if (code_seen('B')) microstep_ms(4, code_value(), -1);
  3613. break;
  3614. case 2:
  3615. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, -1, code_value());
  3616. if (code_seen('B')) microstep_ms(4, -1, code_value());
  3617. break;
  3618. }
  3619. microstep_readings();
  3620. #endif
  3621. }
  3622. /**
  3623. * M999: Restart after being stopped
  3624. */
  3625. inline void gcode_M999() {
  3626. Stopped = false;
  3627. lcd_reset_alert_level();
  3628. gcode_LastN = Stopped_gcode_LastN;
  3629. FlushSerialRequestResend();
  3630. }
  3631. inline void gcode_T() {
  3632. tmp_extruder = code_value();
  3633. if (tmp_extruder >= EXTRUDERS) {
  3634. SERIAL_ECHO_START;
  3635. SERIAL_ECHO("T");
  3636. SERIAL_ECHO(tmp_extruder);
  3637. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3638. }
  3639. else {
  3640. boolean make_move = false;
  3641. if (code_seen('F')) {
  3642. make_move = true;
  3643. next_feedrate = code_value();
  3644. if (next_feedrate > 0.0) feedrate = next_feedrate;
  3645. }
  3646. #if EXTRUDERS > 1
  3647. if (tmp_extruder != active_extruder) {
  3648. // Save current position to return to after applying extruder offset
  3649. memcpy(destination, current_position, sizeof(destination));
  3650. #ifdef DUAL_X_CARRIAGE
  3651. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
  3652. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  3653. // Park old head: 1) raise 2) move to park position 3) lower
  3654. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3655. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3656. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3657. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  3658. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  3659. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3660. st_synchronize();
  3661. }
  3662. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  3663. current_position[Y_AXIS] = current_position[Y_AXIS] -
  3664. extruder_offset[Y_AXIS][active_extruder] +
  3665. extruder_offset[Y_AXIS][tmp_extruder];
  3666. current_position[Z_AXIS] = current_position[Z_AXIS] -
  3667. extruder_offset[Z_AXIS][active_extruder] +
  3668. extruder_offset[Z_AXIS][tmp_extruder];
  3669. active_extruder = tmp_extruder;
  3670. // This function resets the max/min values - the current position may be overwritten below.
  3671. axis_is_at_home(X_AXIS);
  3672. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  3673. current_position[X_AXIS] = inactive_extruder_x_pos;
  3674. inactive_extruder_x_pos = destination[X_AXIS];
  3675. }
  3676. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  3677. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  3678. if (active_extruder == 0 || active_extruder_parked)
  3679. current_position[X_AXIS] = inactive_extruder_x_pos;
  3680. else
  3681. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  3682. inactive_extruder_x_pos = destination[X_AXIS];
  3683. extruder_duplication_enabled = false;
  3684. }
  3685. else {
  3686. // record raised toolhead position for use by unpark
  3687. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  3688. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  3689. active_extruder_parked = true;
  3690. delayed_move_time = 0;
  3691. }
  3692. #else // !DUAL_X_CARRIAGE
  3693. // Offset extruder (only by XY)
  3694. for (int i=X_AXIS; i<=Y_AXIS; i++)
  3695. current_position[i] += extruder_offset[i][tmp_extruder] - extruder_offset[i][active_extruder];
  3696. // Set the new active extruder and position
  3697. active_extruder = tmp_extruder;
  3698. #endif // !DUAL_X_CARRIAGE
  3699. #ifdef DELTA
  3700. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  3701. //sent position to plan_set_position();
  3702. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],current_position[E_AXIS]);
  3703. #else
  3704. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3705. #endif
  3706. // Move to the old position if 'F' was in the parameters
  3707. if (make_move && !Stopped) prepare_move();
  3708. }
  3709. #ifdef EXT_SOLENOID
  3710. st_synchronize();
  3711. disable_all_solenoids();
  3712. enable_solenoid_on_active_extruder();
  3713. #endif // EXT_SOLENOID
  3714. #endif // EXTRUDERS > 1
  3715. SERIAL_ECHO_START;
  3716. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  3717. SERIAL_PROTOCOLLN((int)active_extruder);
  3718. }
  3719. }
  3720. /**
  3721. * Process Commands and dispatch them to handlers
  3722. */
  3723. void process_commands() {
  3724. if (code_seen('G')) {
  3725. int gCode = code_value_long();
  3726. switch(gCode) {
  3727. // G0, G1
  3728. case 0:
  3729. case 1:
  3730. gcode_G0_G1();
  3731. break;
  3732. // G2, G3
  3733. #ifndef SCARA
  3734. case 2: // G2 - CW ARC
  3735. case 3: // G3 - CCW ARC
  3736. gcode_G2_G3(gCode == 2);
  3737. break;
  3738. #endif
  3739. // G4 Dwell
  3740. case 4:
  3741. gcode_G4();
  3742. break;
  3743. #ifdef FWRETRACT
  3744. case 10: // G10: retract
  3745. case 11: // G11: retract_recover
  3746. gcode_G10_G11(gCode == 10);
  3747. break;
  3748. #endif //FWRETRACT
  3749. case 28: // G28: Home all axes, one at a time
  3750. gcode_G28();
  3751. break;
  3752. #ifdef ENABLE_AUTO_BED_LEVELING
  3753. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  3754. gcode_G29();
  3755. break;
  3756. #ifndef Z_PROBE_SLED
  3757. case 30: // G30 Single Z Probe
  3758. gcode_G30();
  3759. break;
  3760. #else // Z_PROBE_SLED
  3761. case 31: // G31: dock the sled
  3762. case 32: // G32: undock the sled
  3763. dock_sled(gCode == 31);
  3764. break;
  3765. #endif // Z_PROBE_SLED
  3766. #endif // ENABLE_AUTO_BED_LEVELING
  3767. case 90: // G90
  3768. relative_mode = false;
  3769. break;
  3770. case 91: // G91
  3771. relative_mode = true;
  3772. break;
  3773. case 92: // G92
  3774. gcode_G92();
  3775. break;
  3776. }
  3777. }
  3778. else if (code_seen('M')) {
  3779. switch( code_value_long() ) {
  3780. #ifdef ULTIPANEL
  3781. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  3782. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  3783. gcode_M0_M1();
  3784. break;
  3785. #endif // ULTIPANEL
  3786. case 17:
  3787. gcode_M17();
  3788. break;
  3789. #ifdef SDSUPPORT
  3790. case 20: // M20 - list SD card
  3791. gcode_M20(); break;
  3792. case 21: // M21 - init SD card
  3793. gcode_M21(); break;
  3794. case 22: //M22 - release SD card
  3795. gcode_M22(); break;
  3796. case 23: //M23 - Select file
  3797. gcode_M23(); break;
  3798. case 24: //M24 - Start SD print
  3799. gcode_M24(); break;
  3800. case 25: //M25 - Pause SD print
  3801. gcode_M25(); break;
  3802. case 26: //M26 - Set SD index
  3803. gcode_M26(); break;
  3804. case 27: //M27 - Get SD status
  3805. gcode_M27(); break;
  3806. case 28: //M28 - Start SD write
  3807. gcode_M28(); break;
  3808. case 29: //M29 - Stop SD write
  3809. gcode_M29(); break;
  3810. case 30: //M30 <filename> Delete File
  3811. gcode_M30(); break;
  3812. case 32: //M32 - Select file and start SD print
  3813. gcode_M32(); break;
  3814. case 928: //M928 - Start SD write
  3815. gcode_M928(); break;
  3816. #endif //SDSUPPORT
  3817. case 31: //M31 take time since the start of the SD print or an M109 command
  3818. gcode_M31();
  3819. break;
  3820. case 42: //M42 -Change pin status via gcode
  3821. gcode_M42();
  3822. break;
  3823. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  3824. case 48: // M48 Z-Probe repeatability
  3825. gcode_M48();
  3826. break;
  3827. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  3828. case 104: // M104
  3829. gcode_M104();
  3830. break;
  3831. case 112: // M112 Emergency Stop
  3832. gcode_M112();
  3833. break;
  3834. case 140: // M140 Set bed temp
  3835. gcode_M140();
  3836. break;
  3837. case 105: // M105 Read current temperature
  3838. gcode_M105();
  3839. return;
  3840. break;
  3841. case 109: // M109 Wait for temperature
  3842. gcode_M109();
  3843. break;
  3844. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3845. case 190: // M190 - Wait for bed heater to reach target.
  3846. gcode_M190();
  3847. break;
  3848. #endif //TEMP_BED_PIN
  3849. #if defined(FAN_PIN) && FAN_PIN > -1
  3850. case 106: //M106 Fan On
  3851. gcode_M106();
  3852. break;
  3853. case 107: //M107 Fan Off
  3854. gcode_M107();
  3855. break;
  3856. #endif //FAN_PIN
  3857. #ifdef BARICUDA
  3858. // PWM for HEATER_1_PIN
  3859. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  3860. case 126: // M126 valve open
  3861. gcode_M126();
  3862. break;
  3863. case 127: // M127 valve closed
  3864. gcode_M127();
  3865. break;
  3866. #endif //HEATER_1_PIN
  3867. // PWM for HEATER_2_PIN
  3868. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  3869. case 128: // M128 valve open
  3870. gcode_M128();
  3871. break;
  3872. case 129: // M129 valve closed
  3873. gcode_M129();
  3874. break;
  3875. #endif //HEATER_2_PIN
  3876. #endif //BARICUDA
  3877. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3878. case 80: // M80 - Turn on Power Supply
  3879. gcode_M80();
  3880. break;
  3881. #endif // PS_ON_PIN
  3882. case 81: // M81 - Turn off Power Supply
  3883. gcode_M81();
  3884. break;
  3885. case 82:
  3886. gcode_M82();
  3887. break;
  3888. case 83:
  3889. gcode_M83();
  3890. break;
  3891. case 18: //compatibility
  3892. case 84: // M84
  3893. gcode_M18_M84();
  3894. break;
  3895. case 85: // M85
  3896. gcode_M85();
  3897. break;
  3898. case 92: // M92
  3899. gcode_M92();
  3900. break;
  3901. case 115: // M115
  3902. gcode_M115();
  3903. break;
  3904. case 117: // M117 display message
  3905. gcode_M117();
  3906. break;
  3907. case 114: // M114
  3908. gcode_M114();
  3909. break;
  3910. case 120: // M120
  3911. gcode_M120();
  3912. break;
  3913. case 121: // M121
  3914. gcode_M121();
  3915. break;
  3916. case 119: // M119
  3917. gcode_M119();
  3918. break;
  3919. //TODO: update for all axis, use for loop
  3920. #ifdef BLINKM
  3921. case 150: // M150
  3922. gcode_M150();
  3923. break;
  3924. #endif //BLINKM
  3925. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3926. gcode_M200();
  3927. break;
  3928. case 201: // M201
  3929. gcode_M201();
  3930. break;
  3931. #if 0 // Not used for Sprinter/grbl gen6
  3932. case 202: // M202
  3933. gcode_M202();
  3934. break;
  3935. #endif
  3936. case 203: // M203 max feedrate mm/sec
  3937. gcode_M203();
  3938. break;
  3939. case 204: // M204 acclereration S normal moves T filmanent only moves
  3940. gcode_M204();
  3941. break;
  3942. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  3943. gcode_M205();
  3944. break;
  3945. case 206: // M206 additional homing offset
  3946. gcode_M206();
  3947. break;
  3948. #ifdef DELTA
  3949. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  3950. gcode_M665();
  3951. break;
  3952. case 666: // M666 set delta endstop adjustment
  3953. gcode_M666();
  3954. break;
  3955. #endif // DELTA
  3956. #ifdef FWRETRACT
  3957. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  3958. gcode_M207();
  3959. break;
  3960. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  3961. gcode_M208();
  3962. break;
  3963. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3964. gcode_M209();
  3965. break;
  3966. #endif // FWRETRACT
  3967. #if EXTRUDERS > 1
  3968. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3969. gcode_M218();
  3970. break;
  3971. #endif
  3972. case 220: // M220 S<factor in percent>- set speed factor override percentage
  3973. gcode_M220();
  3974. break;
  3975. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  3976. gcode_M221();
  3977. break;
  3978. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  3979. gcode_M226();
  3980. break;
  3981. #if NUM_SERVOS > 0
  3982. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  3983. gcode_M280();
  3984. break;
  3985. #endif // NUM_SERVOS > 0
  3986. #if defined(LARGE_FLASH) && (BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER))
  3987. case 300: // M300 - Play beep tone
  3988. gcode_M300();
  3989. break;
  3990. #endif // LARGE_FLASH && (BEEPER>0 || ULTRALCD || LCD_USE_I2C_BUZZER)
  3991. #ifdef PIDTEMP
  3992. case 301: // M301
  3993. gcode_M301();
  3994. break;
  3995. #endif // PIDTEMP
  3996. #ifdef PIDTEMPBED
  3997. case 304: // M304
  3998. gcode_M304();
  3999. break;
  4000. #endif // PIDTEMPBED
  4001. #if defined(CHDK) || (defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1)
  4002. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4003. gcode_M240();
  4004. break;
  4005. #endif // CHDK || PHOTOGRAPH_PIN
  4006. #ifdef DOGLCD
  4007. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4008. gcode_M250();
  4009. break;
  4010. #endif // DOGLCD
  4011. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4012. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4013. gcode_M302();
  4014. break;
  4015. #endif // PREVENT_DANGEROUS_EXTRUDE
  4016. case 303: // M303 PID autotune
  4017. gcode_M303();
  4018. break;
  4019. #ifdef SCARA
  4020. case 360: // M360 SCARA Theta pos1
  4021. if (gcode_M360()) return;
  4022. break;
  4023. case 361: // M361 SCARA Theta pos2
  4024. if (gcode_M361()) return;
  4025. break;
  4026. case 362: // M362 SCARA Psi pos1
  4027. if (gcode_M362()) return;
  4028. break;
  4029. case 363: // M363 SCARA Psi pos2
  4030. if (gcode_M363()) return;
  4031. break;
  4032. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  4033. if (gcode_M364()) return;
  4034. break;
  4035. case 365: // M365 Set SCARA scaling for X Y Z
  4036. gcode_M365();
  4037. break;
  4038. #endif // SCARA
  4039. case 400: // M400 finish all moves
  4040. gcode_M400();
  4041. break;
  4042. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(SERVO_ENDSTOPS) && not defined(Z_PROBE_SLED)
  4043. case 401:
  4044. gcode_M401();
  4045. break;
  4046. case 402:
  4047. gcode_M402();
  4048. break;
  4049. #endif
  4050. #ifdef FILAMENT_SENSOR
  4051. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4052. gcode_M404();
  4053. break;
  4054. case 405: //M405 Turn on filament sensor for control
  4055. gcode_M405();
  4056. break;
  4057. case 406: //M406 Turn off filament sensor for control
  4058. gcode_M406();
  4059. break;
  4060. case 407: //M407 Display measured filament diameter
  4061. gcode_M407();
  4062. break;
  4063. #endif // FILAMENT_SENSOR
  4064. case 500: // M500 Store settings in EEPROM
  4065. gcode_M500();
  4066. break;
  4067. case 501: // M501 Read settings from EEPROM
  4068. gcode_M501();
  4069. break;
  4070. case 502: // M502 Revert to default settings
  4071. gcode_M502();
  4072. break;
  4073. case 503: // M503 print settings currently in memory
  4074. gcode_M503();
  4075. break;
  4076. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4077. case 540:
  4078. gcode_M540();
  4079. break;
  4080. #endif
  4081. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4082. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4083. gcode_SET_Z_PROBE_OFFSET();
  4084. break;
  4085. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4086. #ifdef FILAMENTCHANGEENABLE
  4087. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4088. gcode_M600();
  4089. break;
  4090. #endif // FILAMENTCHANGEENABLE
  4091. #ifdef DUAL_X_CARRIAGE
  4092. case 605:
  4093. gcode_M605();
  4094. break;
  4095. #endif // DUAL_X_CARRIAGE
  4096. case 907: // M907 Set digital trimpot motor current using axis codes.
  4097. gcode_M907();
  4098. break;
  4099. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4100. case 908: // M908 Control digital trimpot directly.
  4101. gcode_M908();
  4102. break;
  4103. #endif // DIGIPOTSS_PIN
  4104. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4105. gcode_M350();
  4106. break;
  4107. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4108. gcode_M351();
  4109. break;
  4110. case 999: // M999: Restart after being Stopped
  4111. gcode_M999();
  4112. break;
  4113. }
  4114. }
  4115. else if (code_seen('T')) {
  4116. gcode_T();
  4117. }
  4118. else {
  4119. SERIAL_ECHO_START;
  4120. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  4121. SERIAL_ECHO(cmdbuffer[bufindr]);
  4122. SERIAL_ECHOLNPGM("\"");
  4123. }
  4124. ClearToSend();
  4125. }
  4126. void FlushSerialRequestResend()
  4127. {
  4128. //char cmdbuffer[bufindr][100]="Resend:";
  4129. MYSERIAL.flush();
  4130. SERIAL_PROTOCOLPGM(MSG_RESEND);
  4131. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  4132. ClearToSend();
  4133. }
  4134. void ClearToSend()
  4135. {
  4136. previous_millis_cmd = millis();
  4137. #ifdef SDSUPPORT
  4138. if(fromsd[bufindr])
  4139. return;
  4140. #endif //SDSUPPORT
  4141. SERIAL_PROTOCOLLNPGM(MSG_OK);
  4142. }
  4143. void get_coordinates()
  4144. {
  4145. bool seen[4]={false,false,false,false};
  4146. for(int8_t i=0; i < NUM_AXIS; i++) {
  4147. if(code_seen(axis_codes[i]))
  4148. {
  4149. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  4150. seen[i]=true;
  4151. }
  4152. else destination[i] = current_position[i]; //Are these else lines really needed?
  4153. }
  4154. if(code_seen('F')) {
  4155. next_feedrate = code_value();
  4156. if(next_feedrate > 0.0) feedrate = next_feedrate;
  4157. }
  4158. }
  4159. void get_arc_coordinates()
  4160. {
  4161. #ifdef SF_ARC_FIX
  4162. bool relative_mode_backup = relative_mode;
  4163. relative_mode = true;
  4164. #endif
  4165. get_coordinates();
  4166. #ifdef SF_ARC_FIX
  4167. relative_mode=relative_mode_backup;
  4168. #endif
  4169. if(code_seen('I')) {
  4170. offset[0] = code_value();
  4171. }
  4172. else {
  4173. offset[0] = 0.0;
  4174. }
  4175. if(code_seen('J')) {
  4176. offset[1] = code_value();
  4177. }
  4178. else {
  4179. offset[1] = 0.0;
  4180. }
  4181. }
  4182. void clamp_to_software_endstops(float target[3])
  4183. {
  4184. if (min_software_endstops) {
  4185. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  4186. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  4187. float negative_z_offset = 0;
  4188. #ifdef ENABLE_AUTO_BED_LEVELING
  4189. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  4190. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  4191. #endif
  4192. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  4193. }
  4194. if (max_software_endstops) {
  4195. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  4196. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  4197. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  4198. }
  4199. }
  4200. #ifdef DELTA
  4201. void recalc_delta_settings(float radius, float diagonal_rod)
  4202. {
  4203. delta_tower1_x= -SIN_60*radius; // front left tower
  4204. delta_tower1_y= -COS_60*radius;
  4205. delta_tower2_x= SIN_60*radius; // front right tower
  4206. delta_tower2_y= -COS_60*radius;
  4207. delta_tower3_x= 0.0; // back middle tower
  4208. delta_tower3_y= radius;
  4209. delta_diagonal_rod_2= sq(diagonal_rod);
  4210. }
  4211. void calculate_delta(float cartesian[3])
  4212. {
  4213. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  4214. - sq(delta_tower1_x-cartesian[X_AXIS])
  4215. - sq(delta_tower1_y-cartesian[Y_AXIS])
  4216. ) + cartesian[Z_AXIS];
  4217. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  4218. - sq(delta_tower2_x-cartesian[X_AXIS])
  4219. - sq(delta_tower2_y-cartesian[Y_AXIS])
  4220. ) + cartesian[Z_AXIS];
  4221. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  4222. - sq(delta_tower3_x-cartesian[X_AXIS])
  4223. - sq(delta_tower3_y-cartesian[Y_AXIS])
  4224. ) + cartesian[Z_AXIS];
  4225. /*
  4226. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4227. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4228. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4229. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4230. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4231. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4232. */
  4233. }
  4234. #endif
  4235. void prepare_move()
  4236. {
  4237. clamp_to_software_endstops(destination);
  4238. previous_millis_cmd = millis();
  4239. #ifdef SCARA //for now same as delta-code
  4240. float difference[NUM_AXIS];
  4241. for (int8_t i=0; i < NUM_AXIS; i++) {
  4242. difference[i] = destination[i] - current_position[i];
  4243. }
  4244. float cartesian_mm = sqrt( sq(difference[X_AXIS]) +
  4245. sq(difference[Y_AXIS]) +
  4246. sq(difference[Z_AXIS]));
  4247. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  4248. if (cartesian_mm < 0.000001) { return; }
  4249. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  4250. int steps = max(1, int(scara_segments_per_second * seconds));
  4251. //SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  4252. //SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  4253. //SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  4254. for (int s = 1; s <= steps; s++) {
  4255. float fraction = float(s) / float(steps);
  4256. for(int8_t i=0; i < NUM_AXIS; i++) {
  4257. destination[i] = current_position[i] + difference[i] * fraction;
  4258. }
  4259. calculate_delta(destination);
  4260. //SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]);
  4261. //SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]);
  4262. //SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]);
  4263. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  4264. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  4265. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4266. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  4267. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  4268. active_extruder);
  4269. }
  4270. #endif // SCARA
  4271. #ifdef DELTA
  4272. float difference[NUM_AXIS];
  4273. for (int8_t i=0; i < NUM_AXIS; i++) {
  4274. difference[i] = destination[i] - current_position[i];
  4275. }
  4276. float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
  4277. sq(difference[Y_AXIS]) +
  4278. sq(difference[Z_AXIS]));
  4279. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  4280. if (cartesian_mm < 0.000001) { return; }
  4281. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  4282. int steps = max(1, int(delta_segments_per_second * seconds));
  4283. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  4284. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  4285. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  4286. for (int s = 1; s <= steps; s++) {
  4287. float fraction = float(s) / float(steps);
  4288. for(int8_t i=0; i < NUM_AXIS; i++) {
  4289. destination[i] = current_position[i] + difference[i] * fraction;
  4290. }
  4291. calculate_delta(destination);
  4292. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  4293. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  4294. active_extruder);
  4295. }
  4296. #endif // DELTA
  4297. #ifdef DUAL_X_CARRIAGE
  4298. if (active_extruder_parked)
  4299. {
  4300. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
  4301. {
  4302. // move duplicate extruder into correct duplication position.
  4303. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4304. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
  4305. current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  4306. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4307. st_synchronize();
  4308. extruder_duplication_enabled = true;
  4309. active_extruder_parked = false;
  4310. }
  4311. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
  4312. {
  4313. if (current_position[E_AXIS] == destination[E_AXIS])
  4314. {
  4315. // this is a travel move - skit it but keep track of current position (so that it can later
  4316. // be used as start of first non-travel move)
  4317. if (delayed_move_time != 0xFFFFFFFFUL)
  4318. {
  4319. memcpy(current_position, destination, sizeof(current_position));
  4320. if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
  4321. raised_parked_position[Z_AXIS] = destination[Z_AXIS];
  4322. delayed_move_time = millis();
  4323. return;
  4324. }
  4325. }
  4326. delayed_move_time = 0;
  4327. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  4328. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4329. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
  4330. current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
  4331. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  4332. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4333. active_extruder_parked = false;
  4334. }
  4335. }
  4336. #endif //DUAL_X_CARRIAGE
  4337. #if ! (defined DELTA || defined SCARA)
  4338. // Do not use feedmultiply for E or Z only moves
  4339. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  4340. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  4341. }
  4342. else {
  4343. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  4344. }
  4345. #endif // !(DELTA || SCARA)
  4346. for(int8_t i=0; i < NUM_AXIS; i++) {
  4347. current_position[i] = destination[i];
  4348. }
  4349. }
  4350. void prepare_arc_move(char isclockwise) {
  4351. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  4352. // Trace the arc
  4353. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  4354. // As far as the parser is concerned, the position is now == target. In reality the
  4355. // motion control system might still be processing the action and the real tool position
  4356. // in any intermediate location.
  4357. for(int8_t i=0; i < NUM_AXIS; i++) {
  4358. current_position[i] = destination[i];
  4359. }
  4360. previous_millis_cmd = millis();
  4361. }
  4362. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4363. #if defined(FAN_PIN)
  4364. #if CONTROLLERFAN_PIN == FAN_PIN
  4365. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  4366. #endif
  4367. #endif
  4368. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  4369. unsigned long lastMotorCheck = 0;
  4370. void controllerFan()
  4371. {
  4372. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  4373. {
  4374. lastMotorCheck = millis();
  4375. if((X_ENABLE_READ) == (X_ENABLE_ON)) || (Y_ENABLE_READ) == (Y_ENABLE_ON)) || (Z_ENABLE_READ) == (Z_ENABLE_ON)) || (soft_pwm_bed > 0)
  4376. #if EXTRUDERS > 2
  4377. || (E2_ENABLE_READ) == (E_ENABLE_ON))
  4378. #endif
  4379. #if EXTRUDER > 1
  4380. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  4381. || (X2_ENABLE_READ) == (X_ENABLE_ON))
  4382. #endif
  4383. || (E1_ENABLE_READ) == (E_ENABLE_ON))
  4384. #endif
  4385. || (E0_ENABLE_READ) == (E_ENABLE_ON))) //If any of the drivers are enabled...
  4386. {
  4387. lastMotor = millis(); //... set time to NOW so the fan will turn on
  4388. }
  4389. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  4390. {
  4391. digitalWrite(CONTROLLERFAN_PIN, 0);
  4392. analogWrite(CONTROLLERFAN_PIN, 0);
  4393. }
  4394. else
  4395. {
  4396. // allows digital or PWM fan output to be used (see M42 handling)
  4397. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  4398. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  4399. }
  4400. }
  4401. }
  4402. #endif
  4403. #ifdef SCARA
  4404. void calculate_SCARA_forward_Transform(float f_scara[3])
  4405. {
  4406. // Perform forward kinematics, and place results in delta[3]
  4407. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  4408. float x_sin, x_cos, y_sin, y_cos;
  4409. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  4410. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  4411. x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  4412. x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  4413. y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  4414. y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  4415. // SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  4416. // SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  4417. // SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  4418. // SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  4419. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  4420. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  4421. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  4422. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  4423. }
  4424. void calculate_delta(float cartesian[3]){
  4425. //reverse kinematics.
  4426. // Perform reversed kinematics, and place results in delta[3]
  4427. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  4428. float SCARA_pos[2];
  4429. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  4430. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  4431. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  4432. #if (Linkage_1 == Linkage_2)
  4433. SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
  4434. #else
  4435. SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000;
  4436. #endif
  4437. SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
  4438. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  4439. SCARA_K2 = Linkage_2 * SCARA_S2;
  4440. SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
  4441. SCARA_psi = atan2(SCARA_S2,SCARA_C2);
  4442. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  4443. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  4444. delta[Z_AXIS] = cartesian[Z_AXIS];
  4445. /*
  4446. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4447. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4448. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4449. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  4450. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  4451. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4452. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4453. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4454. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  4455. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  4456. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  4457. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  4458. SERIAL_ECHOLN(" ");*/
  4459. }
  4460. #endif
  4461. #ifdef TEMP_STAT_LEDS
  4462. static bool blue_led = false;
  4463. static bool red_led = false;
  4464. static uint32_t stat_update = 0;
  4465. void handle_status_leds(void) {
  4466. float max_temp = 0.0;
  4467. if(millis() > stat_update) {
  4468. stat_update += 500; // Update every 0.5s
  4469. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4470. max_temp = max(max_temp, degHotend(cur_extruder));
  4471. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  4472. }
  4473. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4474. max_temp = max(max_temp, degTargetBed());
  4475. max_temp = max(max_temp, degBed());
  4476. #endif
  4477. if((max_temp > 55.0) && (red_led == false)) {
  4478. digitalWrite(STAT_LED_RED, 1);
  4479. digitalWrite(STAT_LED_BLUE, 0);
  4480. red_led = true;
  4481. blue_led = false;
  4482. }
  4483. if((max_temp < 54.0) && (blue_led == false)) {
  4484. digitalWrite(STAT_LED_RED, 0);
  4485. digitalWrite(STAT_LED_BLUE, 1);
  4486. red_led = false;
  4487. blue_led = true;
  4488. }
  4489. }
  4490. }
  4491. #endif
  4492. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  4493. {
  4494. #if defined(KILL_PIN) && KILL_PIN > -1
  4495. static int killCount = 0; // make the inactivity button a bit less responsive
  4496. const int KILL_DELAY = 10000;
  4497. #endif
  4498. #if defined(HOME_PIN) && HOME_PIN > -1
  4499. static int homeDebounceCount = 0; // poor man's debouncing count
  4500. const int HOME_DEBOUNCE_DELAY = 10000;
  4501. #endif
  4502. if(buflen < (BUFSIZE-1))
  4503. get_command();
  4504. if( (millis() - previous_millis_cmd) > max_inactive_time )
  4505. if(max_inactive_time)
  4506. kill();
  4507. if(stepper_inactive_time) {
  4508. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  4509. {
  4510. if(blocks_queued() == false && ignore_stepper_queue == false) {
  4511. disable_x();
  4512. disable_y();
  4513. disable_z();
  4514. disable_e0();
  4515. disable_e1();
  4516. disable_e2();
  4517. disable_e3();
  4518. }
  4519. }
  4520. }
  4521. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  4522. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  4523. {
  4524. chdkActive = false;
  4525. WRITE(CHDK, LOW);
  4526. }
  4527. #endif
  4528. #if defined(KILL_PIN) && KILL_PIN > -1
  4529. // Check if the kill button was pressed and wait just in case it was an accidental
  4530. // key kill key press
  4531. // -------------------------------------------------------------------------------
  4532. if( 0 == READ(KILL_PIN) )
  4533. {
  4534. killCount++;
  4535. }
  4536. else if (killCount > 0)
  4537. {
  4538. killCount--;
  4539. }
  4540. // Exceeded threshold and we can confirm that it was not accidental
  4541. // KILL the machine
  4542. // ----------------------------------------------------------------
  4543. if ( killCount >= KILL_DELAY)
  4544. {
  4545. kill();
  4546. }
  4547. #endif
  4548. #if defined(HOME_PIN) && HOME_PIN > -1
  4549. // Check to see if we have to home, use poor man's debouncer
  4550. // ---------------------------------------------------------
  4551. if ( 0 == READ(HOME_PIN) )
  4552. {
  4553. if (homeDebounceCount == 0)
  4554. {
  4555. enquecommands_P((PSTR("G28")));
  4556. homeDebounceCount++;
  4557. LCD_ALERTMESSAGEPGM(MSG_AUTO_HOME);
  4558. }
  4559. else if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  4560. {
  4561. homeDebounceCount++;
  4562. }
  4563. else
  4564. {
  4565. homeDebounceCount = 0;
  4566. }
  4567. }
  4568. #endif
  4569. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4570. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  4571. #endif
  4572. #ifdef EXTRUDER_RUNOUT_PREVENT
  4573. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  4574. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  4575. {
  4576. bool oldstatus=E0_ENABLE_READ;
  4577. enable_e0();
  4578. float oldepos=current_position[E_AXIS];
  4579. float oldedes=destination[E_AXIS];
  4580. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  4581. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  4582. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  4583. current_position[E_AXIS]=oldepos;
  4584. destination[E_AXIS]=oldedes;
  4585. plan_set_e_position(oldepos);
  4586. previous_millis_cmd=millis();
  4587. st_synchronize();
  4588. E0_ENABLE_WRITE(oldstatus);
  4589. }
  4590. #endif
  4591. #if defined(DUAL_X_CARRIAGE)
  4592. // handle delayed move timeout
  4593. if (delayed_move_time != 0 && (millis() - delayed_move_time) > 1000 && Stopped == false)
  4594. {
  4595. // travel moves have been received so enact them
  4596. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  4597. memcpy(destination,current_position,sizeof(destination));
  4598. prepare_move();
  4599. }
  4600. #endif
  4601. #ifdef TEMP_STAT_LEDS
  4602. handle_status_leds();
  4603. #endif
  4604. check_axes_activity();
  4605. }
  4606. void kill()
  4607. {
  4608. cli(); // Stop interrupts
  4609. disable_heater();
  4610. disable_x();
  4611. disable_y();
  4612. disable_z();
  4613. disable_e0();
  4614. disable_e1();
  4615. disable_e2();
  4616. disable_e3();
  4617. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4618. pinMode(PS_ON_PIN,INPUT);
  4619. #endif
  4620. SERIAL_ERROR_START;
  4621. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  4622. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  4623. // FMC small patch to update the LCD before ending
  4624. sei(); // enable interrupts
  4625. for ( int i=5; i--; lcd_update())
  4626. {
  4627. delay(200);
  4628. }
  4629. cli(); // disable interrupts
  4630. suicide();
  4631. while(1) { /* Intentionally left empty */ } // Wait for reset
  4632. }
  4633. void Stop()
  4634. {
  4635. disable_heater();
  4636. if(Stopped == false) {
  4637. Stopped = true;
  4638. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  4639. SERIAL_ERROR_START;
  4640. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  4641. LCD_MESSAGEPGM(MSG_STOPPED);
  4642. }
  4643. }
  4644. bool IsStopped() { return Stopped; };
  4645. #ifdef FAST_PWM_FAN
  4646. void setPwmFrequency(uint8_t pin, int val)
  4647. {
  4648. val &= 0x07;
  4649. switch(digitalPinToTimer(pin))
  4650. {
  4651. #if defined(TCCR0A)
  4652. case TIMER0A:
  4653. case TIMER0B:
  4654. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  4655. // TCCR0B |= val;
  4656. break;
  4657. #endif
  4658. #if defined(TCCR1A)
  4659. case TIMER1A:
  4660. case TIMER1B:
  4661. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4662. // TCCR1B |= val;
  4663. break;
  4664. #endif
  4665. #if defined(TCCR2)
  4666. case TIMER2:
  4667. case TIMER2:
  4668. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4669. TCCR2 |= val;
  4670. break;
  4671. #endif
  4672. #if defined(TCCR2A)
  4673. case TIMER2A:
  4674. case TIMER2B:
  4675. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  4676. TCCR2B |= val;
  4677. break;
  4678. #endif
  4679. #if defined(TCCR3A)
  4680. case TIMER3A:
  4681. case TIMER3B:
  4682. case TIMER3C:
  4683. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  4684. TCCR3B |= val;
  4685. break;
  4686. #endif
  4687. #if defined(TCCR4A)
  4688. case TIMER4A:
  4689. case TIMER4B:
  4690. case TIMER4C:
  4691. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  4692. TCCR4B |= val;
  4693. break;
  4694. #endif
  4695. #if defined(TCCR5A)
  4696. case TIMER5A:
  4697. case TIMER5B:
  4698. case TIMER5C:
  4699. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  4700. TCCR5B |= val;
  4701. break;
  4702. #endif
  4703. }
  4704. }
  4705. #endif //FAST_PWM_FAN
  4706. bool setTargetedHotend(int code){
  4707. tmp_extruder = active_extruder;
  4708. if(code_seen('T')) {
  4709. tmp_extruder = code_value();
  4710. if(tmp_extruder >= EXTRUDERS) {
  4711. SERIAL_ECHO_START;
  4712. switch(code){
  4713. case 104:
  4714. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  4715. break;
  4716. case 105:
  4717. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  4718. break;
  4719. case 109:
  4720. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  4721. break;
  4722. case 218:
  4723. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  4724. break;
  4725. case 221:
  4726. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  4727. break;
  4728. }
  4729. SERIAL_ECHOLN(tmp_extruder);
  4730. return true;
  4731. }
  4732. }
  4733. return false;
  4734. }
  4735. float calculate_volumetric_multiplier(float diameter) {
  4736. if (!volumetric_enabled || diameter == 0) return 1.0;
  4737. float d2 = diameter * 0.5;
  4738. return 1.0 / (M_PI * d2 * d2);
  4739. }
  4740. void calculate_volumetric_multipliers() {
  4741. for (int i=0; i<EXTRUDERS; i++)
  4742. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  4743. }