My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

motion.h 12KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (c) 2019 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. #pragma once
  23. /**
  24. * motion.h
  25. *
  26. * High-level motion commands to feed the planner
  27. * Some of these methods may migrate to the planner class.
  28. */
  29. #include "../inc/MarlinConfig.h"
  30. #if HAS_BED_PROBE
  31. #include "probe.h"
  32. #endif
  33. #if IS_SCARA
  34. #include "scara.h"
  35. #endif
  36. // Axis homed and known-position states
  37. extern uint8_t axis_homed, axis_known_position;
  38. constexpr uint8_t xyz_bits = _BV(X_AXIS) | _BV(Y_AXIS) | _BV(Z_AXIS);
  39. FORCE_INLINE bool all_axes_homed() { return (axis_homed & xyz_bits) == xyz_bits; }
  40. FORCE_INLINE bool all_axes_known() { return (axis_known_position & xyz_bits) == xyz_bits; }
  41. FORCE_INLINE void set_all_unhomed() { axis_homed = 0; }
  42. FORCE_INLINE void set_all_unknown() { axis_known_position = 0; }
  43. FORCE_INLINE bool homing_needed() {
  44. return !(
  45. #if ENABLED(HOME_AFTER_DEACTIVATE)
  46. all_axes_known()
  47. #else
  48. all_axes_homed()
  49. #endif
  50. );
  51. }
  52. // Error margin to work around float imprecision
  53. constexpr float slop = 0.0001;
  54. extern bool relative_mode;
  55. extern float current_position[XYZE], // High-level current tool position
  56. destination[XYZE]; // Destination for a move
  57. // Scratch space for a cartesian result
  58. extern float cartes[XYZ];
  59. // Until kinematics.cpp is created, declare this here
  60. #if IS_KINEMATIC
  61. extern float delta[ABC];
  62. #endif
  63. #if HAS_ABL_NOT_UBL
  64. extern float xy_probe_feedrate_mm_s;
  65. #define XY_PROBE_FEEDRATE_MM_S xy_probe_feedrate_mm_s
  66. #elif defined(XY_PROBE_SPEED)
  67. #define XY_PROBE_FEEDRATE_MM_S MMM_TO_MMS(XY_PROBE_SPEED)
  68. #else
  69. #define XY_PROBE_FEEDRATE_MM_S PLANNER_XY_FEEDRATE()
  70. #endif
  71. /**
  72. * Feed rates are often configured with mm/m
  73. * but the planner and stepper like mm/s units.
  74. */
  75. extern const float homing_feedrate_mm_s[XYZ];
  76. FORCE_INLINE float homing_feedrate(const AxisEnum a) { return pgm_read_float(&homing_feedrate_mm_s[a]); }
  77. float get_homing_bump_feedrate(const AxisEnum axis);
  78. extern float feedrate_mm_s;
  79. /**
  80. * Feedrate scaling and conversion
  81. */
  82. extern int16_t feedrate_percentage;
  83. #define MMS_SCALED(MM_S) ((MM_S)*feedrate_percentage*0.01f)
  84. // The active extruder (tool). Set with T<extruder> command.
  85. #if EXTRUDERS > 1
  86. extern uint8_t active_extruder;
  87. #else
  88. constexpr uint8_t active_extruder = 0;
  89. #endif
  90. FORCE_INLINE float pgm_read_any(const float *p) { return pgm_read_float(p); }
  91. FORCE_INLINE signed char pgm_read_any(const signed char *p) { return pgm_read_byte(p); }
  92. #define XYZ_DEFS(type, array, CONFIG) \
  93. extern const type array##_P[XYZ]; \
  94. FORCE_INLINE type array(AxisEnum axis) { return pgm_read_any(&array##_P[axis]); } \
  95. typedef void __void_##CONFIG##__
  96. XYZ_DEFS(float, base_min_pos, MIN_POS);
  97. XYZ_DEFS(float, base_max_pos, MAX_POS);
  98. XYZ_DEFS(float, base_home_pos, HOME_POS);
  99. XYZ_DEFS(float, max_length, MAX_LENGTH);
  100. XYZ_DEFS(float, home_bump_mm, HOME_BUMP_MM);
  101. XYZ_DEFS(signed char, home_dir, HOME_DIR);
  102. #if HAS_WORKSPACE_OFFSET
  103. void update_workspace_offset(const AxisEnum axis);
  104. #else
  105. #define update_workspace_offset(x) NOOP
  106. #endif
  107. #if HAS_HOTEND_OFFSET
  108. extern float hotend_offset[XYZ][HOTENDS];
  109. void reset_hotend_offsets();
  110. #elif HOTENDS > 0
  111. constexpr float hotend_offset[XYZ][HOTENDS] = { { 0 }, { 0 }, { 0 } };
  112. #else
  113. constexpr float hotend_offset[XYZ][1] = { { 0 }, { 0 }, { 0 } };
  114. #endif
  115. typedef struct { float min, max; } axis_limits_t;
  116. #if HAS_SOFTWARE_ENDSTOPS
  117. extern bool soft_endstops_enabled;
  118. extern axis_limits_t soft_endstop[XYZ];
  119. void apply_motion_limits(float target[XYZ]);
  120. void update_software_endstops(const AxisEnum axis
  121. #if HAS_HOTEND_OFFSET
  122. , const uint8_t old_tool_index=0, const uint8_t new_tool_index=0
  123. #endif
  124. );
  125. #else
  126. constexpr bool soft_endstops_enabled = false;
  127. //constexpr axis_limits_t soft_endstop[XYZ] = { { X_MIN_POS, X_MAX_POS }, { Y_MIN_POS, Y_MAX_POS }, { Z_MIN_POS, Z_MAX_POS } };
  128. #define apply_motion_limits(V) NOOP
  129. #define update_software_endstops(...) NOOP
  130. #endif
  131. void report_current_position();
  132. inline void set_current_from_destination() { COPY(current_position, destination); }
  133. inline void set_destination_from_current() { COPY(destination, current_position); }
  134. void get_cartesian_from_steppers();
  135. void set_current_from_steppers_for_axis(const AxisEnum axis);
  136. /**
  137. * sync_plan_position
  138. *
  139. * Set the planner/stepper positions directly from current_position with
  140. * no kinematic translation. Used for homing axes and cartesian/core syncing.
  141. */
  142. void sync_plan_position();
  143. void sync_plan_position_e();
  144. /**
  145. * Move the planner to the current position from wherever it last moved
  146. * (or from wherever it has been told it is located).
  147. */
  148. void line_to_current_position(const float &fr_mm_s=feedrate_mm_s);
  149. /**
  150. * Move the planner to the position stored in the destination array, which is
  151. * used by G0/G1/G2/G3/G5 and many other functions to set a destination.
  152. */
  153. void buffer_line_to_destination(const float fr_mm_s);
  154. #if IS_KINEMATIC
  155. void prepare_uninterpolated_move_to_destination(const float &fr_mm_s=0);
  156. #endif
  157. void prepare_move_to_destination();
  158. /**
  159. * Blocking movement and shorthand functions
  160. */
  161. void do_blocking_move_to(const float rx, const float ry, const float rz, const float &fr_mm_s=0);
  162. void do_blocking_move_to_x(const float &rx, const float &fr_mm_s=0);
  163. void do_blocking_move_to_y(const float &ry, const float &fr_mm_s=0);
  164. void do_blocking_move_to_z(const float &rz, const float &fr_mm_s=0);
  165. void do_blocking_move_to_xy(const float &rx, const float &ry, const float &fr_mm_s=0);
  166. FORCE_INLINE void do_blocking_move_to(const float (&raw)[XYZ], const float &fr_mm_s=0) {
  167. do_blocking_move_to(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS], fr_mm_s);
  168. }
  169. FORCE_INLINE void do_blocking_move_to(const float (&raw)[XYZE], const float &fr_mm_s=0) {
  170. do_blocking_move_to(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS], fr_mm_s);
  171. }
  172. void remember_feedrate_and_scaling();
  173. void remember_feedrate_scaling_off();
  174. void restore_feedrate_and_scaling();
  175. //
  176. // Homing
  177. //
  178. bool axis_unhomed_error(const bool x=true, const bool y=true, const bool z=true);
  179. #if ENABLED(NO_MOTION_BEFORE_HOMING)
  180. #define MOTION_CONDITIONS (IsRunning() && !axis_unhomed_error())
  181. #else
  182. #define MOTION_CONDITIONS IsRunning()
  183. #endif
  184. void set_axis_is_at_home(const AxisEnum axis);
  185. void set_axis_is_not_at_home(const AxisEnum axis);
  186. void homeaxis(const AxisEnum axis);
  187. /**
  188. * Workspace offsets
  189. */
  190. #if HAS_HOME_OFFSET || HAS_POSITION_SHIFT
  191. #if HAS_HOME_OFFSET
  192. extern float home_offset[XYZ];
  193. #endif
  194. #if HAS_POSITION_SHIFT
  195. extern float position_shift[XYZ];
  196. #endif
  197. #if HAS_HOME_OFFSET && HAS_POSITION_SHIFT
  198. extern float workspace_offset[XYZ];
  199. #define WORKSPACE_OFFSET(AXIS) workspace_offset[AXIS]
  200. #elif HAS_HOME_OFFSET
  201. #define WORKSPACE_OFFSET(AXIS) home_offset[AXIS]
  202. #else
  203. #define WORKSPACE_OFFSET(AXIS) position_shift[AXIS]
  204. #endif
  205. #define NATIVE_TO_LOGICAL(POS, AXIS) ((POS) + WORKSPACE_OFFSET(AXIS))
  206. #define LOGICAL_TO_NATIVE(POS, AXIS) ((POS) - WORKSPACE_OFFSET(AXIS))
  207. #else
  208. #define NATIVE_TO_LOGICAL(POS, AXIS) (POS)
  209. #define LOGICAL_TO_NATIVE(POS, AXIS) (POS)
  210. #endif
  211. #define LOGICAL_X_POSITION(POS) NATIVE_TO_LOGICAL(POS, X_AXIS)
  212. #define LOGICAL_Y_POSITION(POS) NATIVE_TO_LOGICAL(POS, Y_AXIS)
  213. #define LOGICAL_Z_POSITION(POS) NATIVE_TO_LOGICAL(POS, Z_AXIS)
  214. #define RAW_X_POSITION(POS) LOGICAL_TO_NATIVE(POS, X_AXIS)
  215. #define RAW_Y_POSITION(POS) LOGICAL_TO_NATIVE(POS, Y_AXIS)
  216. #define RAW_Z_POSITION(POS) LOGICAL_TO_NATIVE(POS, Z_AXIS)
  217. /**
  218. * position_is_reachable family of functions
  219. */
  220. #if IS_KINEMATIC // (DELTA or SCARA)
  221. #if HAS_SCARA_OFFSET
  222. extern float scara_home_offset[ABC]; // A and B angular offsets, Z mm offset
  223. #endif
  224. // Return true if the given point is within the printable area
  225. inline bool position_is_reachable(const float &rx, const float &ry, const float inset=0) {
  226. #if ENABLED(DELTA)
  227. return HYPOT2(rx, ry) <= sq(DELTA_PRINTABLE_RADIUS - inset);
  228. #elif IS_SCARA
  229. const float R2 = HYPOT2(rx - SCARA_OFFSET_X, ry - SCARA_OFFSET_Y);
  230. return (
  231. R2 <= sq(L1 + L2) - inset
  232. #if MIDDLE_DEAD_ZONE_R > 0
  233. && R2 >= sq(float(MIDDLE_DEAD_ZONE_R))
  234. #endif
  235. );
  236. #endif
  237. }
  238. #if HAS_BED_PROBE
  239. // Return true if the both nozzle and the probe can reach the given point.
  240. // Note: This won't work on SCARA since the probe offset rotates with the arm.
  241. inline bool position_is_reachable_by_probe(const float &rx, const float &ry) {
  242. return position_is_reachable(rx - zprobe_offset[X_AXIS], ry - zprobe_offset[Y_AXIS])
  243. && position_is_reachable(rx, ry, ABS(MIN_PROBE_EDGE));
  244. }
  245. #endif
  246. #else // CARTESIAN
  247. // Return true if the given position is within the machine bounds.
  248. inline bool position_is_reachable(const float &rx, const float &ry) {
  249. if (!WITHIN(ry, Y_MIN_POS - slop, Y_MAX_POS + slop)) return false;
  250. #if ENABLED(DUAL_X_CARRIAGE)
  251. if (active_extruder)
  252. return WITHIN(rx, X2_MIN_POS - slop, X2_MAX_POS + slop);
  253. else
  254. return WITHIN(rx, X1_MIN_POS - slop, X1_MAX_POS + slop);
  255. #else
  256. return WITHIN(rx, X_MIN_POS - slop, X_MAX_POS + slop);
  257. #endif
  258. }
  259. #if HAS_BED_PROBE
  260. /**
  261. * Return whether the given position is within the bed, and whether the nozzle
  262. * can reach the position required to put the probe at the given position.
  263. *
  264. * Example: For a probe offset of -10,+10, then for the probe to reach 0,0 the
  265. * nozzle must be be able to reach +10,-10.
  266. */
  267. inline bool position_is_reachable_by_probe(const float &rx, const float &ry) {
  268. return position_is_reachable(rx - zprobe_offset[X_AXIS], ry - zprobe_offset[Y_AXIS])
  269. && WITHIN(rx, probe_min_x() - slop, probe_max_x() + slop)
  270. && WITHIN(ry, probe_min_y() - slop, probe_max_y() + slop);
  271. }
  272. #endif
  273. #endif // CARTESIAN
  274. #if !HAS_BED_PROBE
  275. FORCE_INLINE bool position_is_reachable_by_probe(const float &rx, const float &ry) { return position_is_reachable(rx, ry); }
  276. #endif
  277. /**
  278. * Duplication mode
  279. */
  280. #if HAS_DUPLICATION_MODE
  281. extern bool extruder_duplication_enabled, // Used in Dual X mode 2
  282. mirrored_duplication_mode; // Used in Dual X mode 3
  283. #if ENABLED(MULTI_NOZZLE_DUPLICATION)
  284. extern uint8_t duplication_e_mask;
  285. #endif
  286. #endif
  287. /**
  288. * Dual X Carriage
  289. */
  290. #if ENABLED(DUAL_X_CARRIAGE)
  291. enum DualXMode : char {
  292. DXC_FULL_CONTROL_MODE,
  293. DXC_AUTO_PARK_MODE,
  294. DXC_DUPLICATION_MODE,
  295. DXC_MIRRORED_MODE
  296. };
  297. extern DualXMode dual_x_carriage_mode;
  298. extern float inactive_extruder_x_pos, // Used in mode 0 & 1
  299. raised_parked_position[XYZE], // Used in mode 1
  300. duplicate_extruder_x_offset; // Used in mode 2 & 3
  301. extern bool active_extruder_parked; // Used in mode 1, 2 & 3
  302. extern millis_t delayed_move_time; // Used in mode 1
  303. extern int16_t duplicate_extruder_temp_offset; // Used in mode 2 & 3
  304. FORCE_INLINE bool dxc_is_duplicating() { return dual_x_carriage_mode >= DXC_DUPLICATION_MODE; }
  305. float x_home_pos(const int extruder);
  306. FORCE_INLINE int x_home_dir(const uint8_t extruder) { return extruder ? X2_HOME_DIR : X_HOME_DIR; }
  307. #elif ENABLED(MULTI_NOZZLE_DUPLICATION)
  308. enum DualXMode : char {
  309. DXC_DUPLICATION_MODE = 2
  310. };
  311. #endif
  312. #if HAS_M206_COMMAND
  313. void set_home_offset(const AxisEnum axis, const float v);
  314. #endif