My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

G29.cpp 29KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <https://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * G29.cpp - Auto Bed Leveling
  24. */
  25. #include "../../../inc/MarlinConfig.h"
  26. #if HAS_ABL_NOT_UBL
  27. #include "../../gcode.h"
  28. #include "../../../feature/bedlevel/bedlevel.h"
  29. #include "../../../module/motion.h"
  30. #include "../../../module/planner.h"
  31. #include "../../../module/stepper.h"
  32. #include "../../../module/probe.h"
  33. #include "../../queue.h"
  34. #if ENABLED(PROBE_TEMP_COMPENSATION)
  35. #include "../../../feature/probe_temp_comp.h"
  36. #include "../../../module/temperature.h"
  37. #endif
  38. #if HAS_DISPLAY
  39. #include "../../../lcd/ultralcd.h"
  40. #endif
  41. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  42. #include "../../../libs/least_squares_fit.h"
  43. #endif
  44. #if ABL_PLANAR
  45. #include "../../../libs/vector_3.h"
  46. #endif
  47. #define DEBUG_OUT ENABLED(DEBUG_LEVELING_FEATURE)
  48. #include "../../../core/debug_out.h"
  49. #if ENABLED(EXTENSIBLE_UI)
  50. #include "../../../lcd/extui/ui_api.h"
  51. #endif
  52. #if ENABLED(DWIN_CREALITY_LCD)
  53. #include "../../../lcd/dwin/e3v2/dwin.h"
  54. #endif
  55. #if HAS_MULTI_HOTEND
  56. #include "../../../module/tool_change.h"
  57. #endif
  58. #if ABL_GRID
  59. #if ENABLED(PROBE_Y_FIRST)
  60. #define PR_OUTER_VAR meshCount.x
  61. #define PR_OUTER_END abl_grid_points.x
  62. #define PR_INNER_VAR meshCount.y
  63. #define PR_INNER_END abl_grid_points.y
  64. #else
  65. #define PR_OUTER_VAR meshCount.y
  66. #define PR_OUTER_END abl_grid_points.y
  67. #define PR_INNER_VAR meshCount.x
  68. #define PR_INNER_END abl_grid_points.x
  69. #endif
  70. #endif
  71. #define G29_RETURN(b) return TERN_(G29_RETRY_AND_RECOVER, b)
  72. /**
  73. * G29: Detailed Z probe, probes the bed at 3 or more points.
  74. * Will fail if the printer has not been homed with G28.
  75. *
  76. * Enhanced G29 Auto Bed Leveling Probe Routine
  77. *
  78. * O Auto-level only if needed
  79. *
  80. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  81. * or alter the bed level data. Useful to check the topology
  82. * after a first run of G29.
  83. *
  84. * J Jettison current bed leveling data
  85. *
  86. * V Set the verbose level (0-4). Example: "G29 V3"
  87. *
  88. * Parameters With LINEAR leveling only:
  89. *
  90. * P Set the size of the grid that will be probed (P x P points).
  91. * Example: "G29 P4"
  92. *
  93. * X Set the X size of the grid that will be probed (X x Y points).
  94. * Example: "G29 X7 Y5"
  95. *
  96. * Y Set the Y size of the grid that will be probed (X x Y points).
  97. *
  98. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  99. * This is useful for manual bed leveling and finding flaws in the bed (to
  100. * assist with part placement).
  101. * Not supported by non-linear delta printer bed leveling.
  102. *
  103. * Parameters With LINEAR and BILINEAR leveling only:
  104. *
  105. * S Set the XY travel speed between probe points (in units/min)
  106. *
  107. * H Set bounds to a centered square H x H units in size
  108. *
  109. * -or-
  110. *
  111. * F Set the Front limit of the probing grid
  112. * B Set the Back limit of the probing grid
  113. * L Set the Left limit of the probing grid
  114. * R Set the Right limit of the probing grid
  115. *
  116. * Parameters with DEBUG_LEVELING_FEATURE only:
  117. *
  118. * C Make a totally fake grid with no actual probing.
  119. * For use in testing when no probing is possible.
  120. *
  121. * Parameters with BILINEAR leveling only:
  122. *
  123. * Z Supply an additional Z probe offset
  124. *
  125. * Extra parameters with PROBE_MANUALLY:
  126. *
  127. * To do manual probing simply repeat G29 until the procedure is complete.
  128. * The first G29 accepts parameters. 'G29 Q' for status, 'G29 A' to abort.
  129. *
  130. * Q Query leveling and G29 state
  131. *
  132. * A Abort current leveling procedure
  133. *
  134. * Extra parameters with BILINEAR only:
  135. *
  136. * W Write a mesh point. (If G29 is idle.)
  137. * I X index for mesh point
  138. * J Y index for mesh point
  139. * X X for mesh point, overrides I
  140. * Y Y for mesh point, overrides J
  141. * Z Z for mesh point. Otherwise, raw current Z.
  142. *
  143. * Without PROBE_MANUALLY:
  144. *
  145. * E By default G29 will engage the Z probe, test the bed, then disengage.
  146. * Include "E" to engage/disengage the Z probe for each sample.
  147. * There's no extra effect if you have a fixed Z probe.
  148. */
  149. G29_TYPE GcodeSuite::G29() {
  150. reset_stepper_timeout();
  151. const bool seenQ = EITHER(DEBUG_LEVELING_FEATURE, PROBE_MANUALLY) && parser.seen('Q');
  152. // G29 Q is also available if debugging
  153. #if ENABLED(DEBUG_LEVELING_FEATURE)
  154. const uint8_t old_debug_flags = marlin_debug_flags;
  155. if (seenQ) marlin_debug_flags |= MARLIN_DEBUG_LEVELING;
  156. DEBUG_SECTION(log_G29, "G29", DEBUGGING(LEVELING));
  157. if (DEBUGGING(LEVELING)) log_machine_info();
  158. marlin_debug_flags = old_debug_flags;
  159. if (DISABLED(PROBE_MANUALLY) && seenQ) G29_RETURN(false);
  160. #endif
  161. const bool seenA = TERN0(PROBE_MANUALLY, parser.seen('A')),
  162. no_action = seenA || seenQ,
  163. faux = ENABLED(DEBUG_LEVELING_FEATURE) && DISABLED(PROBE_MANUALLY) ? parser.boolval('C') : no_action;
  164. // Don't allow auto-leveling without homing first
  165. if (homing_needed_error()) G29_RETURN(false);
  166. if (!no_action && planner.leveling_active && parser.boolval('O')) { // Auto-level only if needed
  167. if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("> Auto-level not needed, skip");
  168. G29_RETURN(false);
  169. }
  170. // Define local vars 'static' for manual probing, 'auto' otherwise
  171. #define ABL_VAR TERN_(PROBE_MANUALLY, static)
  172. ABL_VAR int verbose_level;
  173. ABL_VAR xy_pos_t probePos;
  174. ABL_VAR float measured_z;
  175. ABL_VAR bool dryrun, abl_should_enable;
  176. #if EITHER(PROBE_MANUALLY, AUTO_BED_LEVELING_LINEAR)
  177. ABL_VAR int abl_probe_index;
  178. #endif
  179. #if ABL_GRID
  180. #if ENABLED(PROBE_MANUALLY)
  181. ABL_VAR xy_int8_t meshCount;
  182. #endif
  183. ABL_VAR xy_pos_t probe_position_lf, probe_position_rb;
  184. ABL_VAR xy_float_t gridSpacing = { 0, 0 };
  185. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  186. ABL_VAR bool do_topography_map;
  187. ABL_VAR xy_uint8_t abl_grid_points;
  188. #else // Bilinear
  189. constexpr xy_uint8_t abl_grid_points = { GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y };
  190. #endif
  191. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  192. ABL_VAR int abl_points;
  193. #else
  194. int constexpr abl_points = GRID_MAX_POINTS;
  195. #endif
  196. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  197. ABL_VAR float zoffset;
  198. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  199. ABL_VAR int indexIntoAB[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  200. ABL_VAR float eqnAMatrix[(GRID_MAX_POINTS) * 3], // "A" matrix of the linear system of equations
  201. eqnBVector[GRID_MAX_POINTS], // "B" vector of Z points
  202. mean;
  203. #endif
  204. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  205. #if ENABLED(PROBE_MANUALLY)
  206. int constexpr abl_points = 3; // used to show total points
  207. #endif
  208. vector_3 points[3];
  209. probe.get_three_points(points);
  210. #endif // AUTO_BED_LEVELING_3POINT
  211. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  212. struct linear_fit_data lsf_results;
  213. incremental_LSF_reset(&lsf_results);
  214. #endif
  215. /**
  216. * On the initial G29 fetch command parameters.
  217. */
  218. if (!g29_in_progress) {
  219. TERN_(HAS_MULTI_HOTEND, if (active_extruder) tool_change(0));
  220. #if EITHER(PROBE_MANUALLY, AUTO_BED_LEVELING_LINEAR)
  221. abl_probe_index = -1;
  222. #endif
  223. abl_should_enable = planner.leveling_active;
  224. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  225. const bool seen_w = parser.seen('W');
  226. if (seen_w) {
  227. if (!leveling_is_valid()) {
  228. SERIAL_ERROR_MSG("No bilinear grid");
  229. G29_RETURN(false);
  230. }
  231. const float rz = parser.seenval('Z') ? RAW_Z_POSITION(parser.value_linear_units()) : current_position.z;
  232. if (!WITHIN(rz, -10, 10)) {
  233. SERIAL_ERROR_MSG("Bad Z value");
  234. G29_RETURN(false);
  235. }
  236. const float rx = RAW_X_POSITION(parser.linearval('X', NAN)),
  237. ry = RAW_Y_POSITION(parser.linearval('Y', NAN));
  238. int8_t i = parser.byteval('I', -1), j = parser.byteval('J', -1);
  239. if (!isnan(rx) && !isnan(ry)) {
  240. // Get nearest i / j from rx / ry
  241. i = (rx - bilinear_start.x + 0.5 * gridSpacing.x) / gridSpacing.x;
  242. j = (ry - bilinear_start.y + 0.5 * gridSpacing.y) / gridSpacing.y;
  243. LIMIT(i, 0, GRID_MAX_POINTS_X - 1);
  244. LIMIT(j, 0, GRID_MAX_POINTS_Y - 1);
  245. }
  246. if (WITHIN(i, 0, GRID_MAX_POINTS_X - 1) && WITHIN(j, 0, GRID_MAX_POINTS_Y)) {
  247. set_bed_leveling_enabled(false);
  248. z_values[i][j] = rz;
  249. TERN_(ABL_BILINEAR_SUBDIVISION, bed_level_virt_interpolate());
  250. TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(i, j, rz));
  251. set_bed_leveling_enabled(abl_should_enable);
  252. if (abl_should_enable) report_current_position();
  253. }
  254. G29_RETURN(false);
  255. } // parser.seen('W')
  256. #else
  257. constexpr bool seen_w = false;
  258. #endif
  259. // Jettison bed leveling data
  260. if (!seen_w && parser.seen('J')) {
  261. reset_bed_level();
  262. G29_RETURN(false);
  263. }
  264. verbose_level = parser.intval('V');
  265. if (!WITHIN(verbose_level, 0, 4)) {
  266. SERIAL_ECHOLNPGM("?(V)erbose level implausible (0-4).");
  267. G29_RETURN(false);
  268. }
  269. dryrun = parser.boolval('D') || TERN0(PROBE_MANUALLY, no_action);
  270. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  271. do_topography_map = verbose_level > 2 || parser.boolval('T');
  272. // X and Y specify points in each direction, overriding the default
  273. // These values may be saved with the completed mesh
  274. abl_grid_points.set(
  275. parser.byteval('X', GRID_MAX_POINTS_X),
  276. parser.byteval('Y', GRID_MAX_POINTS_Y)
  277. );
  278. if (parser.seenval('P')) abl_grid_points.x = abl_grid_points.y = parser.value_int();
  279. if (!WITHIN(abl_grid_points.x, 2, GRID_MAX_POINTS_X)) {
  280. SERIAL_ECHOLNPGM("?Probe points (X) implausible (2-" STRINGIFY(GRID_MAX_POINTS_X) ").");
  281. G29_RETURN(false);
  282. }
  283. if (!WITHIN(abl_grid_points.y, 2, GRID_MAX_POINTS_Y)) {
  284. SERIAL_ECHOLNPGM("?Probe points (Y) implausible (2-" STRINGIFY(GRID_MAX_POINTS_Y) ").");
  285. G29_RETURN(false);
  286. }
  287. abl_points = abl_grid_points.x * abl_grid_points.y;
  288. mean = 0;
  289. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  290. zoffset = parser.linearval('Z');
  291. #endif
  292. #if ABL_GRID
  293. xy_probe_feedrate_mm_s = MMM_TO_MMS(parser.linearval('S', XY_PROBE_SPEED));
  294. const float x_min = probe.min_x(), x_max = probe.max_x(),
  295. y_min = probe.min_y(), y_max = probe.max_y();
  296. if (parser.seen('H')) {
  297. const int16_t size = (int16_t)parser.value_linear_units();
  298. probe_position_lf.set(
  299. _MAX(X_CENTER - size / 2, x_min),
  300. _MAX(Y_CENTER - size / 2, y_min)
  301. );
  302. probe_position_rb.set(
  303. _MIN(probe_position_lf.x + size, x_max),
  304. _MIN(probe_position_lf.y + size, y_max)
  305. );
  306. }
  307. else {
  308. probe_position_lf.set(
  309. parser.seenval('L') ? RAW_X_POSITION(parser.value_linear_units()) : x_min,
  310. parser.seenval('F') ? RAW_Y_POSITION(parser.value_linear_units()) : y_min
  311. );
  312. probe_position_rb.set(
  313. parser.seenval('R') ? RAW_X_POSITION(parser.value_linear_units()) : x_max,
  314. parser.seenval('B') ? RAW_Y_POSITION(parser.value_linear_units()) : y_max
  315. );
  316. }
  317. if (!probe.good_bounds(probe_position_lf, probe_position_rb)) {
  318. SERIAL_ECHOLNPGM("? (L,R,F,B) out of bounds.");
  319. G29_RETURN(false);
  320. }
  321. // probe at the points of a lattice grid
  322. gridSpacing.set((probe_position_rb.x - probe_position_lf.x) / (abl_grid_points.x - 1),
  323. (probe_position_rb.y - probe_position_lf.y) / (abl_grid_points.y - 1));
  324. #endif // ABL_GRID
  325. if (verbose_level > 0) {
  326. SERIAL_ECHOPGM("G29 Auto Bed Leveling");
  327. if (dryrun) SERIAL_ECHOPGM(" (DRYRUN)");
  328. SERIAL_EOL();
  329. }
  330. planner.synchronize();
  331. if (!faux) remember_feedrate_scaling_off();
  332. // Disable auto bed leveling during G29.
  333. // Be formal so G29 can be done successively without G28.
  334. if (!no_action) set_bed_leveling_enabled(false);
  335. // Deploy certain probes before starting probing
  336. #if HAS_BED_PROBE
  337. if (ENABLED(BLTOUCH))
  338. do_z_clearance(Z_CLEARANCE_DEPLOY_PROBE);
  339. else if (probe.deploy()) {
  340. set_bed_leveling_enabled(abl_should_enable);
  341. G29_RETURN(false);
  342. }
  343. #endif
  344. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  345. if (TERN1(PROBE_MANUALLY, !no_action)
  346. && (gridSpacing != bilinear_grid_spacing || probe_position_lf != bilinear_start)
  347. ) {
  348. // Reset grid to 0.0 or "not probed". (Also disables ABL)
  349. reset_bed_level();
  350. // Initialize a grid with the given dimensions
  351. bilinear_grid_spacing = gridSpacing;
  352. bilinear_start = probe_position_lf;
  353. // Can't re-enable (on error) until the new grid is written
  354. abl_should_enable = false;
  355. }
  356. #endif // AUTO_BED_LEVELING_BILINEAR
  357. #if ENABLED(AUTO_BED_LEVELING_3POINT)
  358. if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("> 3-point Leveling");
  359. // Probe at 3 arbitrary points
  360. points[0].z = points[1].z = points[2].z = 0;
  361. #endif // AUTO_BED_LEVELING_3POINT
  362. } // !g29_in_progress
  363. #if ENABLED(PROBE_MANUALLY)
  364. // For manual probing, get the next index to probe now.
  365. // On the first probe this will be incremented to 0.
  366. if (!no_action) {
  367. ++abl_probe_index;
  368. g29_in_progress = true;
  369. }
  370. // Abort current G29 procedure, go back to idle state
  371. if (seenA && g29_in_progress) {
  372. SERIAL_ECHOLNPGM("Manual G29 aborted");
  373. SET_SOFT_ENDSTOP_LOOSE(false);
  374. set_bed_leveling_enabled(abl_should_enable);
  375. g29_in_progress = false;
  376. TERN_(LCD_BED_LEVELING, ui.wait_for_move = false);
  377. }
  378. // Query G29 status
  379. if (verbose_level || seenQ) {
  380. SERIAL_ECHOPGM("Manual G29 ");
  381. if (g29_in_progress) {
  382. SERIAL_ECHOPAIR("point ", _MIN(abl_probe_index + 1, abl_points));
  383. SERIAL_ECHOLNPAIR(" of ", abl_points);
  384. }
  385. else
  386. SERIAL_ECHOLNPGM("idle");
  387. }
  388. if (no_action) G29_RETURN(false);
  389. if (abl_probe_index == 0) {
  390. // For the initial G29 S2 save software endstop state
  391. SET_SOFT_ENDSTOP_LOOSE(true);
  392. // Move close to the bed before the first point
  393. do_blocking_move_to_z(0);
  394. }
  395. else {
  396. #if EITHER(AUTO_BED_LEVELING_LINEAR, AUTO_BED_LEVELING_3POINT)
  397. const uint16_t index = abl_probe_index - 1;
  398. #endif
  399. // For G29 after adjusting Z.
  400. // Save the previous Z before going to the next point
  401. measured_z = current_position.z;
  402. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  403. mean += measured_z;
  404. eqnBVector[index] = measured_z;
  405. eqnAMatrix[index + 0 * abl_points] = probePos.x;
  406. eqnAMatrix[index + 1 * abl_points] = probePos.y;
  407. eqnAMatrix[index + 2 * abl_points] = 1;
  408. incremental_LSF(&lsf_results, probePos, measured_z);
  409. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  410. points[index].z = measured_z;
  411. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  412. const float newz = measured_z + zoffset;
  413. z_values[meshCount.x][meshCount.y] = newz;
  414. TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(meshCount, newz));
  415. if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR_P(PSTR("Save X"), meshCount.x, SP_Y_STR, meshCount.y, SP_Z_STR, measured_z + zoffset);
  416. #endif
  417. }
  418. //
  419. // If there's another point to sample, move there with optional lift.
  420. //
  421. #if ABL_GRID
  422. // Skip any unreachable points
  423. while (abl_probe_index < abl_points) {
  424. // Set meshCount.x, meshCount.y based on abl_probe_index, with zig-zag
  425. PR_OUTER_VAR = abl_probe_index / PR_INNER_END;
  426. PR_INNER_VAR = abl_probe_index - (PR_OUTER_VAR * PR_INNER_END);
  427. // Probe in reverse order for every other row/column
  428. const bool zig = (PR_OUTER_VAR & 1); // != ((PR_OUTER_END) & 1);
  429. if (zig) PR_INNER_VAR = (PR_INNER_END - 1) - PR_INNER_VAR;
  430. probePos = probe_position_lf + gridSpacing * meshCount.asFloat();
  431. TERN_(AUTO_BED_LEVELING_LINEAR, indexIntoAB[meshCount.x][meshCount.y] = abl_probe_index);
  432. // Keep looping till a reachable point is found
  433. if (position_is_reachable(probePos)) break;
  434. ++abl_probe_index;
  435. }
  436. // Is there a next point to move to?
  437. if (abl_probe_index < abl_points) {
  438. _manual_goto_xy(probePos); // Can be used here too!
  439. // Disable software endstops to allow manual adjustment
  440. // If G29 is not completed, they will not be re-enabled
  441. SET_SOFT_ENDSTOP_LOOSE(true);
  442. G29_RETURN(false);
  443. }
  444. else {
  445. // Leveling done! Fall through to G29 finishing code below
  446. SERIAL_ECHOLNPGM("Grid probing done.");
  447. // Re-enable software endstops, if needed
  448. SET_SOFT_ENDSTOP_LOOSE(false);
  449. }
  450. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  451. // Probe at 3 arbitrary points
  452. if (abl_probe_index < abl_points) {
  453. probePos = points[abl_probe_index];
  454. _manual_goto_xy(probePos);
  455. // Disable software endstops to allow manual adjustment
  456. // If G29 is not completed, they will not be re-enabled
  457. SET_SOFT_ENDSTOP_LOOSE(true);
  458. G29_RETURN(false);
  459. }
  460. else {
  461. SERIAL_ECHOLNPGM("3-point probing done.");
  462. // Re-enable software endstops, if needed
  463. SET_SOFT_ENDSTOP_LOOSE(false);
  464. if (!dryrun) {
  465. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  466. if (planeNormal.z < 0) planeNormal *= -1;
  467. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  468. // Can't re-enable (on error) until the new grid is written
  469. abl_should_enable = false;
  470. }
  471. }
  472. #endif // AUTO_BED_LEVELING_3POINT
  473. #else // !PROBE_MANUALLY
  474. {
  475. const ProbePtRaise raise_after = parser.boolval('E') ? PROBE_PT_STOW : PROBE_PT_RAISE;
  476. measured_z = 0;
  477. #if ABL_GRID
  478. bool zig = PR_OUTER_END & 1; // Always end at RIGHT and BACK_PROBE_BED_POSITION
  479. measured_z = 0;
  480. xy_int8_t meshCount;
  481. // Outer loop is X with PROBE_Y_FIRST enabled
  482. // Outer loop is Y with PROBE_Y_FIRST disabled
  483. for (PR_OUTER_VAR = 0; PR_OUTER_VAR < PR_OUTER_END && !isnan(measured_z); PR_OUTER_VAR++) {
  484. int8_t inStart, inStop, inInc;
  485. if (zig) { // Zig away from origin
  486. inStart = 0; // Left or front
  487. inStop = PR_INNER_END; // Right or back
  488. inInc = 1; // Zig right
  489. }
  490. else { // Zag towards origin
  491. inStart = PR_INNER_END - 1; // Right or back
  492. inStop = -1; // Left or front
  493. inInc = -1; // Zag left
  494. }
  495. zig ^= true; // zag
  496. // An index to print current state
  497. uint8_t pt_index = (PR_OUTER_VAR) * (PR_INNER_END) + 1;
  498. // Inner loop is Y with PROBE_Y_FIRST enabled
  499. // Inner loop is X with PROBE_Y_FIRST disabled
  500. for (PR_INNER_VAR = inStart; PR_INNER_VAR != inStop; pt_index++, PR_INNER_VAR += inInc) {
  501. probePos = probe_position_lf + gridSpacing * meshCount.asFloat();
  502. TERN_(AUTO_BED_LEVELING_LINEAR, indexIntoAB[meshCount.x][meshCount.y] = ++abl_probe_index); // 0...
  503. // Avoid probing outside the round or hexagonal area
  504. if (TERN0(IS_KINEMATIC, !probe.can_reach(probePos))) continue;
  505. if (verbose_level) SERIAL_ECHOLNPAIR("Probing mesh point ", int(pt_index), "/", abl_points, ".");
  506. TERN_(HAS_DISPLAY, ui.status_printf_P(0, PSTR(S_FMT " %i/%i"), GET_TEXT(MSG_PROBING_MESH), int(pt_index), int(abl_points)));
  507. measured_z = faux ? 0.001f * random(-100, 101) : probe.probe_at_point(probePos, raise_after, verbose_level);
  508. if (isnan(measured_z)) {
  509. set_bed_leveling_enabled(abl_should_enable);
  510. break; // Breaks out of both loops
  511. }
  512. #if ENABLED(PROBE_TEMP_COMPENSATION)
  513. temp_comp.compensate_measurement(TSI_BED, thermalManager.degBed(), measured_z);
  514. temp_comp.compensate_measurement(TSI_PROBE, thermalManager.degProbe(), measured_z);
  515. TERN_(USE_TEMP_EXT_COMPENSATION, temp_comp.compensate_measurement(TSI_EXT, thermalManager.degHotend(), measured_z));
  516. #endif
  517. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  518. mean += measured_z;
  519. eqnBVector[abl_probe_index] = measured_z;
  520. eqnAMatrix[abl_probe_index + 0 * abl_points] = probePos.x;
  521. eqnAMatrix[abl_probe_index + 1 * abl_points] = probePos.y;
  522. eqnAMatrix[abl_probe_index + 2 * abl_points] = 1;
  523. incremental_LSF(&lsf_results, probePos, measured_z);
  524. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  525. z_values[meshCount.x][meshCount.y] = measured_z + zoffset;
  526. TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(meshCount, z_values[meshCount.x][meshCount.y]));
  527. #endif
  528. abl_should_enable = false;
  529. idle_no_sleep();
  530. } // inner
  531. } // outer
  532. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  533. // Probe at 3 arbitrary points
  534. LOOP_L_N(i, 3) {
  535. if (verbose_level) SERIAL_ECHOLNPAIR("Probing point ", int(i + 1), "/3.");
  536. TERN_(HAS_DISPLAY, ui.status_printf_P(0, PSTR(S_FMT " %i/3"), GET_TEXT(MSG_PROBING_MESH), int(i + 1)));
  537. // Retain the last probe position
  538. probePos = points[i];
  539. measured_z = faux ? 0.001 * random(-100, 101) : probe.probe_at_point(probePos, raise_after, verbose_level);
  540. if (isnan(measured_z)) {
  541. set_bed_leveling_enabled(abl_should_enable);
  542. break;
  543. }
  544. points[i].z = measured_z;
  545. }
  546. if (!dryrun && !isnan(measured_z)) {
  547. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  548. if (planeNormal.z < 0) planeNormal *= -1;
  549. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  550. // Can't re-enable (on error) until the new grid is written
  551. abl_should_enable = false;
  552. }
  553. #endif // AUTO_BED_LEVELING_3POINT
  554. TERN_(HAS_DISPLAY, ui.reset_status());
  555. // Stow the probe. No raise for FIX_MOUNTED_PROBE.
  556. if (probe.stow()) {
  557. set_bed_leveling_enabled(abl_should_enable);
  558. measured_z = NAN;
  559. }
  560. }
  561. #endif // !PROBE_MANUALLY
  562. //
  563. // G29 Finishing Code
  564. //
  565. // Unless this is a dry run, auto bed leveling will
  566. // definitely be enabled after this point.
  567. //
  568. // If code above wants to continue leveling, it should
  569. // return or loop before this point.
  570. //
  571. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  572. #if ENABLED(PROBE_MANUALLY)
  573. g29_in_progress = false;
  574. TERN_(LCD_BED_LEVELING, ui.wait_for_move = false);
  575. #endif
  576. // Calculate leveling, print reports, correct the position
  577. if (!isnan(measured_z)) {
  578. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  579. if (!dryrun) extrapolate_unprobed_bed_level();
  580. print_bilinear_leveling_grid();
  581. refresh_bed_level();
  582. TERN_(ABL_BILINEAR_SUBDIVISION, print_bilinear_leveling_grid_virt());
  583. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  584. // For LINEAR leveling calculate matrix, print reports, correct the position
  585. /**
  586. * solve the plane equation ax + by + d = z
  587. * A is the matrix with rows [x y 1] for all the probed points
  588. * B is the vector of the Z positions
  589. * the normal vector to the plane is formed by the coefficients of the
  590. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  591. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  592. */
  593. struct { float a, b, d; } plane_equation_coefficients;
  594. finish_incremental_LSF(&lsf_results);
  595. plane_equation_coefficients.a = -lsf_results.A; // We should be able to eliminate the '-' on these three lines and down below
  596. plane_equation_coefficients.b = -lsf_results.B; // but that is not yet tested.
  597. plane_equation_coefficients.d = -lsf_results.D;
  598. mean /= abl_points;
  599. if (verbose_level) {
  600. SERIAL_ECHOPAIR_F("Eqn coefficients: a: ", plane_equation_coefficients.a, 8);
  601. SERIAL_ECHOPAIR_F(" b: ", plane_equation_coefficients.b, 8);
  602. SERIAL_ECHOPAIR_F(" d: ", plane_equation_coefficients.d, 8);
  603. if (verbose_level > 2)
  604. SERIAL_ECHOPAIR_F("\nMean of sampled points: ", mean, 8);
  605. SERIAL_EOL();
  606. }
  607. // Create the matrix but don't correct the position yet
  608. if (!dryrun)
  609. planner.bed_level_matrix = matrix_3x3::create_look_at(
  610. vector_3(-plane_equation_coefficients.a, -plane_equation_coefficients.b, 1) // We can eliminate the '-' here and up above
  611. );
  612. // Show the Topography map if enabled
  613. if (do_topography_map) {
  614. float min_diff = 999;
  615. auto print_topo_map = [&](PGM_P const title, const bool get_min) {
  616. serialprintPGM(title);
  617. for (int8_t yy = abl_grid_points.y - 1; yy >= 0; yy--) {
  618. LOOP_L_N(xx, abl_grid_points.x) {
  619. const int ind = indexIntoAB[xx][yy];
  620. xyz_float_t tmp = { eqnAMatrix[ind + 0 * abl_points],
  621. eqnAMatrix[ind + 1 * abl_points], 0 };
  622. apply_rotation_xyz(planner.bed_level_matrix, tmp);
  623. if (get_min) NOMORE(min_diff, eqnBVector[ind] - tmp.z);
  624. const float subval = get_min ? mean : tmp.z + min_diff,
  625. diff = eqnBVector[ind] - subval;
  626. SERIAL_CHAR(' '); if (diff >= 0.0) SERIAL_CHAR('+'); // Include + for column alignment
  627. SERIAL_ECHO_F(diff, 5);
  628. } // xx
  629. SERIAL_EOL();
  630. } // yy
  631. SERIAL_EOL();
  632. };
  633. print_topo_map(PSTR("\nBed Height Topography:\n"
  634. " +--- BACK --+\n"
  635. " | |\n"
  636. " L | (+) | R\n"
  637. " E | | I\n"
  638. " F | (-) N (+) | G\n"
  639. " T | | H\n"
  640. " | (-) | T\n"
  641. " | |\n"
  642. " O-- FRONT --+\n"
  643. " (0,0)\n"), true);
  644. if (verbose_level > 3)
  645. print_topo_map(PSTR("\nCorrected Bed Height vs. Bed Topology:\n"), false);
  646. } //do_topography_map
  647. #endif // AUTO_BED_LEVELING_LINEAR
  648. #if ABL_PLANAR
  649. // For LINEAR and 3POINT leveling correct the current position
  650. if (verbose_level > 0)
  651. planner.bed_level_matrix.debug(PSTR("\n\nBed Level Correction Matrix:"));
  652. if (!dryrun) {
  653. //
  654. // Correct the current XYZ position based on the tilted plane.
  655. //
  656. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 uncorrected XYZ", current_position);
  657. xyze_pos_t converted = current_position;
  658. planner.force_unapply_leveling(converted); // use conversion machinery
  659. // Use the last measured distance to the bed, if possible
  660. if ( NEAR(current_position.x, probePos.x - probe.offset_xy.x)
  661. && NEAR(current_position.y, probePos.y - probe.offset_xy.y)
  662. ) {
  663. const float simple_z = current_position.z - measured_z;
  664. if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("Probed Z", simple_z, " Matrix Z", converted.z, " Discrepancy ", simple_z - converted.z);
  665. converted.z = simple_z;
  666. }
  667. // The rotated XY and corrected Z are now current_position
  668. current_position = converted;
  669. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 corrected XYZ", current_position);
  670. }
  671. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  672. if (!dryrun) {
  673. if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("G29 uncorrected Z:", current_position.z);
  674. // Unapply the offset because it is going to be immediately applied
  675. // and cause compensation movement in Z
  676. const float fade_scaling_factor = TERN(ENABLE_LEVELING_FADE_HEIGHT, planner.fade_scaling_factor_for_z(current_position.z), 1);
  677. current_position.z -= fade_scaling_factor * bilinear_z_offset(current_position);
  678. if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR(" corrected Z:", current_position.z);
  679. }
  680. #endif // ABL_PLANAR
  681. // Auto Bed Leveling is complete! Enable if possible.
  682. planner.leveling_active = dryrun ? abl_should_enable : true;
  683. } // !isnan(measured_z)
  684. // Restore state after probing
  685. if (!faux) restore_feedrate_and_scaling();
  686. // Sync the planner from the current_position
  687. if (planner.leveling_active) sync_plan_position();
  688. #if HAS_BED_PROBE
  689. probe.move_z_after_probing();
  690. #endif
  691. #ifdef Z_PROBE_END_SCRIPT
  692. if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("Z Probe End Script: ", Z_PROBE_END_SCRIPT);
  693. planner.synchronize();
  694. process_subcommands_now_P(PSTR(Z_PROBE_END_SCRIPT));
  695. #endif
  696. #if ENABLED(DWIN_CREALITY_LCD)
  697. DWIN_CompletedLeveling();
  698. #endif
  699. report_current_position();
  700. G29_RETURN(isnan(measured_z));
  701. }
  702. #endif // HAS_ABL_NOT_UBL