My Marlin configs for Fabrikator Mini and CTC i3 Pro B
選択できるのは25トピックまでです。 トピックは、先頭が英数字で、英数字とダッシュ('-')を使用した35文字以内のものにしてください。

Marlin_main.cpp 208KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695
  1. /**
  2. * Marlin Firmware
  3. *
  4. * Based on Sprinter and grbl.
  5. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  6. *
  7. * This program is free software: you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation, either version 3 of the License, or
  10. * (at your option) any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  19. *
  20. * About Marlin
  21. *
  22. * This firmware is a mashup between Sprinter and grbl.
  23. * - https://github.com/kliment/Sprinter
  24. * - https://github.com/simen/grbl/tree
  25. *
  26. * It has preliminary support for Matthew Roberts advance algorithm
  27. * - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  28. */
  29. #include "Marlin.h"
  30. #ifdef ENABLE_AUTO_BED_LEVELING
  31. #include "vector_3.h"
  32. #ifdef AUTO_BED_LEVELING_GRID
  33. #include "qr_solve.h"
  34. #endif
  35. #endif // ENABLE_AUTO_BED_LEVELING
  36. #define SERVO_LEVELING (defined(ENABLE_AUTO_BED_LEVELING) && defined(DEACTIVATE_SERVOS_AFTER_MOVE))
  37. #ifdef MESH_BED_LEVELING
  38. #include "mesh_bed_leveling.h"
  39. #endif
  40. #include "ultralcd.h"
  41. #include "planner.h"
  42. #include "stepper.h"
  43. #include "temperature.h"
  44. #include "cardreader.h"
  45. #include "watchdog.h"
  46. #include "configuration_store.h"
  47. #include "language.h"
  48. #include "pins_arduino.h"
  49. #include "math.h"
  50. #include "buzzer.h"
  51. #ifdef BLINKM
  52. #include "blinkm.h"
  53. #include "Wire.h"
  54. #endif
  55. #if NUM_SERVOS > 0
  56. #include "servo.h"
  57. #endif
  58. #if HAS_DIGIPOTSS
  59. #include <SPI.h>
  60. #endif
  61. /**
  62. * Look here for descriptions of G-codes:
  63. * - http://linuxcnc.org/handbook/gcode/g-code.html
  64. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  65. *
  66. * Help us document these G-codes online:
  67. * - http://www.marlinfirmware.org/index.php/G-Code
  68. * - http://reprap.org/wiki/G-code
  69. *
  70. * -----------------
  71. * Implemented Codes
  72. * -----------------
  73. *
  74. * "G" Codes
  75. *
  76. * G0 -> G1
  77. * G1 - Coordinated Movement X Y Z E
  78. * G2 - CW ARC
  79. * G3 - CCW ARC
  80. * G4 - Dwell S<seconds> or P<milliseconds>
  81. * G10 - retract filament according to settings of M207
  82. * G11 - retract recover filament according to settings of M208
  83. * G28 - Home one or more axes
  84. * G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  85. * G30 - Single Z Probe, probes bed at current XY location.
  86. * G31 - Dock sled (Z_PROBE_SLED only)
  87. * G32 - Undock sled (Z_PROBE_SLED only)
  88. * G90 - Use Absolute Coordinates
  89. * G91 - Use Relative Coordinates
  90. * G92 - Set current position to coordinates given
  91. *
  92. * "M" Codes
  93. *
  94. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  95. * M1 - Same as M0
  96. * M17 - Enable/Power all stepper motors
  97. * M18 - Disable all stepper motors; same as M84
  98. * M20 - List SD card
  99. * M21 - Init SD card
  100. * M22 - Release SD card
  101. * M23 - Select SD file (M23 filename.g)
  102. * M24 - Start/resume SD print
  103. * M25 - Pause SD print
  104. * M26 - Set SD position in bytes (M26 S12345)
  105. * M27 - Report SD print status
  106. * M28 - Start SD write (M28 filename.g)
  107. * M29 - Stop SD write
  108. * M30 - Delete file from SD (M30 filename.g)
  109. * M31 - Output time since last M109 or SD card start to serial
  110. * M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  111. * syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  112. * Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  113. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  114. * M33 - Get the longname version of a path
  115. * M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  116. * M48 - Measure Z_Probe repeatability. M48 [P # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
  117. * M80 - Turn on Power Supply
  118. * M81 - Turn off Power Supply
  119. * M82 - Set E codes absolute (default)
  120. * M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  121. * M84 - Disable steppers until next move,
  122. * or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  123. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  124. * M92 - Set axis_steps_per_unit - same syntax as G92
  125. * M104 - Set extruder target temp
  126. * M105 - Read current temp
  127. * M106 - Fan on
  128. * M107 - Fan off
  129. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  130. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  131. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  132. * M110 - Set the current line number
  133. * M111 - Set debug flags with S<mask>. See flag bits defined in Marlin.h.
  134. * M112 - Emergency stop
  135. * M114 - Output current position to serial port
  136. * M115 - Capabilities string
  137. * M117 - Display a message on the controller screen
  138. * M119 - Output Endstop status to serial port
  139. * M120 - Enable endstop detection
  140. * M121 - Disable endstop detection
  141. * M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  142. * M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  143. * M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  144. * M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  145. * M140 - Set bed target temp
  146. * M145 - Set the heatup state H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  147. * M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  148. * M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  149. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  150. * M200 - set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).:D<millimeters>-
  151. * M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  152. * M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  153. * M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  154. * M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in mm/sec^2
  155. * M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  156. * M206 - Set additional homing offset
  157. * M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  158. * M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  159. * M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  160. * M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  161. * M220 - Set speed factor override percentage: S<factor in percent>
  162. * M221 - Set extrude factor override percentage: S<factor in percent>
  163. * M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
  164. * M240 - Trigger a camera to take a photograph
  165. * M250 - Set LCD contrast C<contrast value> (value 0..63)
  166. * M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  167. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  168. * M301 - Set PID parameters P I and D
  169. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  170. * M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  171. * M304 - Set bed PID parameters P I and D
  172. * M380 - Activate solenoid on active extruder
  173. * M381 - Disable all solenoids
  174. * M400 - Finish all moves
  175. * M401 - Lower z-probe if present
  176. * M402 - Raise z-probe if present
  177. * M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  178. * M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  179. * M406 - Turn off Filament Sensor extrusion control
  180. * M407 - Display measured filament diameter
  181. * M410 - Quickstop. Abort all the planned moves
  182. * M420 - Enable/Disable Mesh Leveling (with current values) S1=enable S0=disable
  183. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<mm> Y<mm> Z<mm>
  184. * M428 - Set the home_offset logically based on the current_position
  185. * M500 - Store parameters in EEPROM
  186. * M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  187. * M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  188. * M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  189. * M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  190. * M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  191. * M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
  192. * M666 - Set delta endstop adjustment
  193. * M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  194. * M907 - Set digital trimpot motor current using axis codes.
  195. * M908 - Control digital trimpot directly.
  196. * M350 - Set microstepping mode.
  197. * M351 - Toggle MS1 MS2 pins directly.
  198. *
  199. * ************ SCARA Specific - This can change to suit future G-code regulations
  200. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  201. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  202. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  203. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  204. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  205. * M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  206. * ************* SCARA End ***************
  207. *
  208. * ************ Custom codes - This can change to suit future G-code regulations
  209. * M851 - Set probe's Z offset (mm above extruder -- The value will always be negative)
  210. * M928 - Start SD logging (M928 filename.g) - ended by M29
  211. * M999 - Restart after being stopped by error
  212. *
  213. * "T" Codes
  214. *
  215. * T0-T3 - Select a tool by index (usually an extruder) [ F<mm/min> ]
  216. *
  217. */
  218. #ifdef SDSUPPORT
  219. CardReader card;
  220. #endif
  221. bool Running = true;
  222. uint8_t marlin_debug_flags = DEBUG_INFO|DEBUG_ERRORS;
  223. static float feedrate = 1500.0, saved_feedrate;
  224. float current_position[NUM_AXIS] = { 0.0 };
  225. static float destination[NUM_AXIS] = { 0.0 };
  226. bool axis_known_position[3] = { false };
  227. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  228. static char *current_command, *current_command_args;
  229. static int cmd_queue_index_r = 0;
  230. static int cmd_queue_index_w = 0;
  231. static int commands_in_queue = 0;
  232. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  233. float homing_feedrate[] = HOMING_FEEDRATE;
  234. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  235. int feedrate_multiplier = 100; //100->1 200->2
  236. int saved_feedrate_multiplier;
  237. int extruder_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS(100, 100, 100, 100);
  238. bool volumetric_enabled = false;
  239. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA);
  240. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS(1.0, 1.0, 1.0, 1.0);
  241. float home_offset[3] = { 0 };
  242. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  243. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  244. uint8_t active_extruder = 0;
  245. int fanSpeed = 0;
  246. bool cancel_heatup = false;
  247. const char errormagic[] PROGMEM = "Error:";
  248. const char echomagic[] PROGMEM = "echo:";
  249. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  250. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  251. static char serial_char;
  252. static int serial_count = 0;
  253. static boolean comment_mode = false;
  254. static char *seen_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.)
  255. const char* queued_commands_P= NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */
  256. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  257. // Inactivity shutdown
  258. millis_t previous_cmd_ms = 0;
  259. static millis_t max_inactive_time = 0;
  260. static millis_t stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME * 1000L;
  261. millis_t print_job_start_ms = 0; ///< Print job start time
  262. millis_t print_job_stop_ms = 0; ///< Print job stop time
  263. static uint8_t target_extruder;
  264. bool no_wait_for_cooling = true;
  265. bool target_direction;
  266. #ifdef ENABLE_AUTO_BED_LEVELING
  267. int xy_travel_speed = XY_TRAVEL_SPEED;
  268. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  269. #endif
  270. #if defined(Z_DUAL_ENDSTOPS) && !defined(DELTA)
  271. float z_endstop_adj = 0;
  272. #endif
  273. // Extruder offsets
  274. #if EXTRUDERS > 1
  275. #ifndef EXTRUDER_OFFSET_X
  276. #define EXTRUDER_OFFSET_X { 0 }
  277. #endif
  278. #ifndef EXTRUDER_OFFSET_Y
  279. #define EXTRUDER_OFFSET_Y { 0 }
  280. #endif
  281. float extruder_offset[][EXTRUDERS] = {
  282. EXTRUDER_OFFSET_X,
  283. EXTRUDER_OFFSET_Y
  284. #ifdef DUAL_X_CARRIAGE
  285. , { 0 } // supports offsets in XYZ plane
  286. #endif
  287. };
  288. #endif
  289. #ifdef SERVO_ENDSTOPS
  290. int servo_endstops[] = SERVO_ENDSTOPS;
  291. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  292. #endif
  293. #ifdef BARICUDA
  294. int ValvePressure = 0;
  295. int EtoPPressure = 0;
  296. #endif
  297. #ifdef FWRETRACT
  298. bool autoretract_enabled = false;
  299. bool retracted[EXTRUDERS] = { false };
  300. bool retracted_swap[EXTRUDERS] = { false };
  301. float retract_length = RETRACT_LENGTH;
  302. float retract_length_swap = RETRACT_LENGTH_SWAP;
  303. float retract_feedrate = RETRACT_FEEDRATE;
  304. float retract_zlift = RETRACT_ZLIFT;
  305. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  306. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  307. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  308. #endif // FWRETRACT
  309. #if defined(ULTIPANEL) && HAS_POWER_SWITCH
  310. bool powersupply =
  311. #ifdef PS_DEFAULT_OFF
  312. false
  313. #else
  314. true
  315. #endif
  316. ;
  317. #endif
  318. #ifdef DELTA
  319. float delta[3] = { 0 };
  320. #define SIN_60 0.8660254037844386
  321. #define COS_60 0.5
  322. float endstop_adj[3] = { 0 };
  323. // these are the default values, can be overriden with M665
  324. float delta_radius = DELTA_RADIUS;
  325. float delta_tower1_x = -SIN_60 * delta_radius; // front left tower
  326. float delta_tower1_y = -COS_60 * delta_radius;
  327. float delta_tower2_x = SIN_60 * delta_radius; // front right tower
  328. float delta_tower2_y = -COS_60 * delta_radius;
  329. float delta_tower3_x = 0; // back middle tower
  330. float delta_tower3_y = delta_radius;
  331. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  332. float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  333. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  334. #ifdef ENABLE_AUTO_BED_LEVELING
  335. int delta_grid_spacing[2] = { 0, 0 };
  336. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  337. #endif
  338. #else
  339. static bool home_all_axis = true;
  340. #endif
  341. #ifdef SCARA
  342. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND;
  343. static float delta[3] = { 0 };
  344. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  345. #endif
  346. #ifdef FILAMENT_SENSOR
  347. //Variables for Filament Sensor input
  348. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  349. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  350. float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  351. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  352. int delay_index1 = 0; //index into ring buffer
  353. int delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  354. float delay_dist = 0; //delay distance counter
  355. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  356. #endif
  357. #ifdef FILAMENT_RUNOUT_SENSOR
  358. static bool filrunoutEnqueued = false;
  359. #endif
  360. #ifdef SDSUPPORT
  361. static bool fromsd[BUFSIZE];
  362. #endif
  363. #if NUM_SERVOS > 0
  364. Servo servo[NUM_SERVOS];
  365. #endif
  366. #ifdef CHDK
  367. unsigned long chdkHigh = 0;
  368. boolean chdkActive = false;
  369. #endif
  370. //===========================================================================
  371. //================================ Functions ================================
  372. //===========================================================================
  373. void process_next_command();
  374. bool setTargetedHotend(int code);
  375. void serial_echopair_P(const char *s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  376. void serial_echopair_P(const char *s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  377. void serial_echopair_P(const char *s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  378. #ifdef PREVENT_DANGEROUS_EXTRUDE
  379. float extrude_min_temp = EXTRUDE_MINTEMP;
  380. #endif
  381. #ifdef SDSUPPORT
  382. #include "SdFatUtil.h"
  383. int freeMemory() { return SdFatUtil::FreeRam(); }
  384. #else
  385. extern "C" {
  386. extern unsigned int __bss_end;
  387. extern unsigned int __heap_start;
  388. extern void *__brkval;
  389. int freeMemory() {
  390. int free_memory;
  391. if ((int)__brkval == 0)
  392. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  393. else
  394. free_memory = ((int)&free_memory) - ((int)__brkval);
  395. return free_memory;
  396. }
  397. }
  398. #endif //!SDSUPPORT
  399. /**
  400. * Inject the next command from the command queue, when possible
  401. * Return false only if no command was pending
  402. */
  403. static bool drain_queued_commands_P() {
  404. if (!queued_commands_P) return false;
  405. // Get the next 30 chars from the sequence of gcodes to run
  406. char cmd[30];
  407. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  408. cmd[sizeof(cmd) - 1] = '\0';
  409. // Look for the end of line, or the end of sequence
  410. size_t i = 0;
  411. char c;
  412. while((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  413. cmd[i] = '\0';
  414. if (enqueuecommand(cmd)) { // buffer was not full (else we will retry later)
  415. if (c)
  416. queued_commands_P += i + 1; // move to next command
  417. else
  418. queued_commands_P = NULL; // will have no more commands in the sequence
  419. }
  420. return true;
  421. }
  422. /**
  423. * Record one or many commands to run from program memory.
  424. * Aborts the current queue, if any.
  425. * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  426. */
  427. void enqueuecommands_P(const char* pgcode) {
  428. queued_commands_P = pgcode;
  429. drain_queued_commands_P(); // first command executed asap (when possible)
  430. }
  431. /**
  432. * Copy a command directly into the main command buffer, from RAM.
  433. *
  434. * This is done in a non-safe way and needs a rework someday.
  435. * Returns false if it doesn't add any command
  436. */
  437. bool enqueuecommand(const char *cmd) {
  438. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  439. // This is dangerous if a mixing of serial and this happens
  440. char *command = command_queue[cmd_queue_index_w];
  441. strcpy(command, cmd);
  442. SERIAL_ECHO_START;
  443. SERIAL_ECHOPGM(MSG_Enqueueing);
  444. SERIAL_ECHO(command);
  445. SERIAL_ECHOLNPGM("\"");
  446. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  447. commands_in_queue++;
  448. return true;
  449. }
  450. void setup_killpin() {
  451. #if HAS_KILL
  452. SET_INPUT(KILL_PIN);
  453. WRITE(KILL_PIN, HIGH);
  454. #endif
  455. }
  456. void setup_filrunoutpin() {
  457. #if HAS_FILRUNOUT
  458. pinMode(FILRUNOUT_PIN, INPUT);
  459. #ifdef ENDSTOPPULLUP_FIL_RUNOUT
  460. WRITE(FILRUNOUT_PIN, HIGH);
  461. #endif
  462. #endif
  463. }
  464. // Set home pin
  465. void setup_homepin(void) {
  466. #if HAS_HOME
  467. SET_INPUT(HOME_PIN);
  468. WRITE(HOME_PIN, HIGH);
  469. #endif
  470. }
  471. void setup_photpin() {
  472. #if HAS_PHOTOGRAPH
  473. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  474. #endif
  475. }
  476. void setup_powerhold() {
  477. #if HAS_SUICIDE
  478. OUT_WRITE(SUICIDE_PIN, HIGH);
  479. #endif
  480. #if HAS_POWER_SWITCH
  481. #ifdef PS_DEFAULT_OFF
  482. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  483. #else
  484. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  485. #endif
  486. #endif
  487. }
  488. void suicide() {
  489. #if HAS_SUICIDE
  490. OUT_WRITE(SUICIDE_PIN, LOW);
  491. #endif
  492. }
  493. void servo_init() {
  494. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  495. servo[0].attach(SERVO0_PIN);
  496. #endif
  497. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  498. servo[1].attach(SERVO1_PIN);
  499. #endif
  500. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  501. servo[2].attach(SERVO2_PIN);
  502. #endif
  503. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  504. servo[3].attach(SERVO3_PIN);
  505. #endif
  506. // Set position of Servo Endstops that are defined
  507. #ifdef SERVO_ENDSTOPS
  508. for (int i = 0; i < 3; i++)
  509. if (servo_endstops[i] >= 0)
  510. servo[servo_endstops[i]].move(0, servo_endstop_angles[i * 2 + 1]);
  511. #endif
  512. }
  513. /**
  514. * Stepper Reset (RigidBoard, et.al.)
  515. */
  516. #if HAS_STEPPER_RESET
  517. void disableStepperDrivers() {
  518. pinMode(STEPPER_RESET_PIN, OUTPUT);
  519. digitalWrite(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  520. }
  521. void enableStepperDrivers() { pinMode(STEPPER_RESET_PIN, INPUT); } // set to input, which allows it to be pulled high by pullups
  522. #endif
  523. /**
  524. * Marlin entry-point: Set up before the program loop
  525. * - Set up the kill pin, filament runout, power hold
  526. * - Start the serial port
  527. * - Print startup messages and diagnostics
  528. * - Get EEPROM or default settings
  529. * - Initialize managers for:
  530. * • temperature
  531. * • planner
  532. * • watchdog
  533. * • stepper
  534. * • photo pin
  535. * • servos
  536. * • LCD controller
  537. * • Digipot I2C
  538. * • Z probe sled
  539. * • status LEDs
  540. */
  541. void setup() {
  542. setup_killpin();
  543. setup_filrunoutpin();
  544. setup_powerhold();
  545. #if HAS_STEPPER_RESET
  546. disableStepperDrivers();
  547. #endif
  548. MYSERIAL.begin(BAUDRATE);
  549. SERIAL_PROTOCOLLNPGM("start");
  550. SERIAL_ECHO_START;
  551. // Check startup - does nothing if bootloader sets MCUSR to 0
  552. byte mcu = MCUSR;
  553. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  554. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  555. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  556. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  557. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  558. MCUSR = 0;
  559. SERIAL_ECHOPGM(MSG_MARLIN);
  560. SERIAL_ECHOLNPGM(" " BUILD_VERSION);
  561. #ifdef STRING_DISTRIBUTION_DATE
  562. #ifdef STRING_CONFIG_H_AUTHOR
  563. SERIAL_ECHO_START;
  564. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  565. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  566. SERIAL_ECHOPGM(MSG_AUTHOR);
  567. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  568. SERIAL_ECHOPGM("Compiled: ");
  569. SERIAL_ECHOLNPGM(__DATE__);
  570. #endif // STRING_CONFIG_H_AUTHOR
  571. #endif // STRING_DISTRIBUTION_DATE
  572. SERIAL_ECHO_START;
  573. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  574. SERIAL_ECHO(freeMemory());
  575. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  576. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  577. #ifdef SDSUPPORT
  578. for (int8_t i = 0; i < BUFSIZE; i++) fromsd[i] = false;
  579. #endif
  580. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  581. Config_RetrieveSettings();
  582. lcd_init();
  583. _delay_ms(1000); // wait 1sec to display the splash screen
  584. tp_init(); // Initialize temperature loop
  585. plan_init(); // Initialize planner;
  586. watchdog_init();
  587. st_init(); // Initialize stepper, this enables interrupts!
  588. setup_photpin();
  589. servo_init();
  590. #if HAS_CONTROLLERFAN
  591. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  592. #endif
  593. #if HAS_STEPPER_RESET
  594. enableStepperDrivers();
  595. #endif
  596. #ifdef DIGIPOT_I2C
  597. digipot_i2c_init();
  598. #endif
  599. #ifdef Z_PROBE_SLED
  600. pinMode(SLED_PIN, OUTPUT);
  601. digitalWrite(SLED_PIN, LOW); // turn it off
  602. #endif // Z_PROBE_SLED
  603. setup_homepin();
  604. #ifdef STAT_LED_RED
  605. pinMode(STAT_LED_RED, OUTPUT);
  606. digitalWrite(STAT_LED_RED, LOW); // turn it off
  607. #endif
  608. #ifdef STAT_LED_BLUE
  609. pinMode(STAT_LED_BLUE, OUTPUT);
  610. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  611. #endif
  612. }
  613. /**
  614. * The main Marlin program loop
  615. *
  616. * - Save or log commands to SD
  617. * - Process available commands (if not saving)
  618. * - Call heater manager
  619. * - Call inactivity manager
  620. * - Call endstop manager
  621. * - Call LCD update
  622. */
  623. void loop() {
  624. if (commands_in_queue < BUFSIZE - 1) get_command();
  625. #ifdef SDSUPPORT
  626. card.checkautostart(false);
  627. #endif
  628. if (commands_in_queue) {
  629. #ifdef SDSUPPORT
  630. if (card.saving) {
  631. char *command = command_queue[cmd_queue_index_r];
  632. if (strstr_P(command, PSTR("M29"))) {
  633. // M29 closes the file
  634. card.closefile();
  635. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  636. }
  637. else {
  638. // Write the string from the read buffer to SD
  639. card.write_command(command);
  640. if (card.logging)
  641. process_next_command(); // The card is saving because it's logging
  642. else
  643. SERIAL_PROTOCOLLNPGM(MSG_OK);
  644. }
  645. }
  646. else
  647. process_next_command();
  648. #else
  649. process_next_command();
  650. #endif // SDSUPPORT
  651. commands_in_queue--;
  652. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  653. }
  654. checkHitEndstops();
  655. idle();
  656. }
  657. void gcode_line_error(const char *err, bool doFlush=true) {
  658. SERIAL_ERROR_START;
  659. serialprintPGM(err);
  660. SERIAL_ERRORLN(gcode_LastN);
  661. //Serial.println(gcode_N);
  662. if (doFlush) FlushSerialRequestResend();
  663. serial_count = 0;
  664. }
  665. /**
  666. * Add to the circular command queue the next command from:
  667. * - The command-injection queue (queued_commands_P)
  668. * - The active serial input (usually USB)
  669. * - The SD card file being actively printed
  670. */
  671. void get_command() {
  672. if (drain_queued_commands_P()) return; // priority is given to non-serial commands
  673. #ifdef NO_TIMEOUTS
  674. static millis_t last_command_time = 0;
  675. millis_t ms = millis();
  676. if (!MYSERIAL.available() && commands_in_queue == 0 && ms - last_command_time > NO_TIMEOUTS) {
  677. SERIAL_ECHOLNPGM(MSG_WAIT);
  678. last_command_time = ms;
  679. }
  680. #endif
  681. //
  682. // Loop while serial characters are incoming and the queue is not full
  683. //
  684. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  685. #ifdef NO_TIMEOUTS
  686. last_command_time = ms;
  687. #endif
  688. serial_char = MYSERIAL.read();
  689. //
  690. // If the character ends the line, or the line is full...
  691. //
  692. if (serial_char == '\n' || serial_char == '\r' || serial_count >= MAX_CMD_SIZE-1) {
  693. // end of line == end of comment
  694. comment_mode = false;
  695. if (!serial_count) return; // empty lines just exit
  696. char *command = command_queue[cmd_queue_index_w];
  697. command[serial_count] = 0; // terminate string
  698. // this item in the queue is not from sd
  699. #ifdef SDSUPPORT
  700. fromsd[cmd_queue_index_w] = false;
  701. #endif
  702. char *npos = strchr(command, 'N');
  703. char *apos = strchr(command, '*');
  704. if (npos) {
  705. boolean M110 = strstr_P(command, PSTR("M110")) != NULL;
  706. if (M110) {
  707. char *n2pos = strchr(command + 4, 'N');
  708. if (n2pos) npos = n2pos;
  709. }
  710. gcode_N = strtol(npos + 1, NULL, 10);
  711. if (gcode_N != gcode_LastN + 1 && !M110) {
  712. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  713. return;
  714. }
  715. if (apos) {
  716. byte checksum = 0, count = 0;
  717. while (command[count] != '*') checksum ^= command[count++];
  718. if (strtol(apos + 1, NULL, 10) != checksum) {
  719. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  720. return;
  721. }
  722. // if no errors, continue parsing
  723. }
  724. else if (npos == command) {
  725. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  726. return;
  727. }
  728. gcode_LastN = gcode_N;
  729. // if no errors, continue parsing
  730. }
  731. else if (apos) { // No '*' without 'N'
  732. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  733. return;
  734. }
  735. // Movement commands alert when stopped
  736. if (IsStopped()) {
  737. char *gpos = strchr(command, 'G');
  738. if (gpos) {
  739. int codenum = strtol(gpos + 1, NULL, 10);
  740. switch (codenum) {
  741. case 0:
  742. case 1:
  743. case 2:
  744. case 3:
  745. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  746. LCD_MESSAGEPGM(MSG_STOPPED);
  747. break;
  748. }
  749. }
  750. }
  751. // If command was e-stop process now
  752. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  753. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  754. commands_in_queue += 1;
  755. serial_count = 0; //clear buffer
  756. }
  757. else if (serial_char == '\\') { // Handle escapes
  758. if (MYSERIAL.available() > 0 && commands_in_queue < BUFSIZE) {
  759. // if we have one more character, copy it over
  760. serial_char = MYSERIAL.read();
  761. command_queue[cmd_queue_index_w][serial_count++] = serial_char;
  762. }
  763. // otherwise do nothing
  764. }
  765. else { // its not a newline, carriage return or escape char
  766. if (serial_char == ';') comment_mode = true;
  767. if (!comment_mode) command_queue[cmd_queue_index_w][serial_count++] = serial_char;
  768. }
  769. }
  770. #ifdef SDSUPPORT
  771. if (!card.sdprinting || serial_count) return;
  772. // '#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  773. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  774. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  775. static bool stop_buffering = false;
  776. if (commands_in_queue == 0) stop_buffering = false;
  777. while (!card.eof() && commands_in_queue < BUFSIZE && !stop_buffering) {
  778. int16_t n = card.get();
  779. serial_char = (char)n;
  780. if (serial_char == '\n' || serial_char == '\r' ||
  781. ((serial_char == '#' || serial_char == ':') && !comment_mode) ||
  782. serial_count >= (MAX_CMD_SIZE - 1) || n == -1
  783. ) {
  784. if (card.eof()) {
  785. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  786. print_job_stop_ms = millis();
  787. char time[30];
  788. millis_t t = (print_job_stop_ms - print_job_start_ms) / 1000;
  789. int hours = t / 60 / 60, minutes = (t / 60) % 60;
  790. sprintf_P(time, PSTR("%i " MSG_END_HOUR " %i " MSG_END_MINUTE), hours, minutes);
  791. SERIAL_ECHO_START;
  792. SERIAL_ECHOLN(time);
  793. lcd_setstatus(time, true);
  794. card.printingHasFinished();
  795. card.checkautostart(true);
  796. }
  797. if (serial_char == '#') stop_buffering = true;
  798. if (!serial_count) {
  799. comment_mode = false; //for new command
  800. return; //if empty line
  801. }
  802. command_queue[cmd_queue_index_w][serial_count] = 0; //terminate string
  803. // if (!comment_mode) {
  804. fromsd[cmd_queue_index_w] = true;
  805. commands_in_queue += 1;
  806. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  807. // }
  808. comment_mode = false; //for new command
  809. serial_count = 0; //clear buffer
  810. }
  811. else {
  812. if (serial_char == ';') comment_mode = true;
  813. if (!comment_mode) command_queue[cmd_queue_index_w][serial_count++] = serial_char;
  814. }
  815. }
  816. #endif // SDSUPPORT
  817. }
  818. bool code_has_value() {
  819. int i = 1;
  820. char c = seen_pointer[i];
  821. if (c == '-' || c == '+') c = seen_pointer[++i];
  822. if (c == '.') c = seen_pointer[++i];
  823. return (c >= '0' && c <= '9');
  824. }
  825. float code_value() {
  826. float ret;
  827. char *e = strchr(seen_pointer, 'E');
  828. if (e) {
  829. *e = 0;
  830. ret = strtod(seen_pointer+1, NULL);
  831. *e = 'E';
  832. }
  833. else
  834. ret = strtod(seen_pointer+1, NULL);
  835. return ret;
  836. }
  837. long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  838. int16_t code_value_short() { return (int16_t)strtol(seen_pointer + 1, NULL, 10); }
  839. bool code_seen(char code) {
  840. seen_pointer = strchr(current_command_args, code); // +3 since "G0 " is the shortest prefix
  841. return (seen_pointer != NULL); //Return True if a character was found
  842. }
  843. #define DEFINE_PGM_READ_ANY(type, reader) \
  844. static inline type pgm_read_any(const type *p) \
  845. { return pgm_read_##reader##_near(p); }
  846. DEFINE_PGM_READ_ANY(float, float);
  847. DEFINE_PGM_READ_ANY(signed char, byte);
  848. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  849. static const PROGMEM type array##_P[3] = \
  850. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  851. static inline type array(int axis) \
  852. { return pgm_read_any(&array##_P[axis]); }
  853. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  854. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  855. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  856. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  857. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  858. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  859. #ifdef DUAL_X_CARRIAGE
  860. #define DXC_FULL_CONTROL_MODE 0
  861. #define DXC_AUTO_PARK_MODE 1
  862. #define DXC_DUPLICATION_MODE 2
  863. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  864. static float x_home_pos(int extruder) {
  865. if (extruder == 0)
  866. return base_home_pos(X_AXIS) + home_offset[X_AXIS];
  867. else
  868. // In dual carriage mode the extruder offset provides an override of the
  869. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  870. // This allow soft recalibration of the second extruder offset position without firmware reflash
  871. // (through the M218 command).
  872. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  873. }
  874. static int x_home_dir(int extruder) {
  875. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  876. }
  877. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  878. static bool active_extruder_parked = false; // used in mode 1 & 2
  879. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  880. static millis_t delayed_move_time = 0; // used in mode 1
  881. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  882. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  883. bool extruder_duplication_enabled = false; // used in mode 2
  884. #endif //DUAL_X_CARRIAGE
  885. static void axis_is_at_home(AxisEnum axis) {
  886. #ifdef DUAL_X_CARRIAGE
  887. if (axis == X_AXIS) {
  888. if (active_extruder != 0) {
  889. current_position[X_AXIS] = x_home_pos(active_extruder);
  890. min_pos[X_AXIS] = X2_MIN_POS;
  891. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  892. return;
  893. }
  894. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  895. float xoff = home_offset[X_AXIS];
  896. current_position[X_AXIS] = base_home_pos(X_AXIS) + xoff;
  897. min_pos[X_AXIS] = base_min_pos(X_AXIS) + xoff;
  898. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + xoff, max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  899. return;
  900. }
  901. }
  902. #endif
  903. #ifdef SCARA
  904. if (axis == X_AXIS || axis == Y_AXIS) {
  905. float homeposition[3];
  906. for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i);
  907. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  908. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  909. // Works out real Homeposition angles using inverse kinematics,
  910. // and calculates homing offset using forward kinematics
  911. calculate_delta(homeposition);
  912. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  913. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  914. for (int i = 0; i < 2; i++) delta[i] -= home_offset[i];
  915. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
  916. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
  917. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  918. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  919. calculate_SCARA_forward_Transform(delta);
  920. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  921. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  922. current_position[axis] = delta[axis];
  923. // SCARA home positions are based on configuration since the actual limits are determined by the
  924. // inverse kinematic transform.
  925. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  926. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  927. }
  928. else
  929. #endif
  930. {
  931. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  932. min_pos[axis] = base_min_pos(axis) + home_offset[axis];
  933. max_pos[axis] = base_max_pos(axis) + home_offset[axis];
  934. #if defined(ENABLE_AUTO_BED_LEVELING) && Z_HOME_DIR < 0
  935. if (axis == Z_AXIS) current_position[Z_AXIS] -= zprobe_zoffset;
  936. #endif
  937. }
  938. }
  939. /**
  940. * Some planner shorthand inline functions
  941. */
  942. inline void set_homing_bump_feedrate(AxisEnum axis) {
  943. const int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  944. if (homing_bump_divisor[axis] >= 1)
  945. feedrate = homing_feedrate[axis] / homing_bump_divisor[axis];
  946. else {
  947. feedrate = homing_feedrate[axis] / 10;
  948. SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less than 1");
  949. }
  950. }
  951. inline void line_to_current_position() {
  952. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  953. }
  954. inline void line_to_z(float zPosition) {
  955. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  956. }
  957. inline void line_to_destination(float mm_m) {
  958. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], mm_m/60, active_extruder);
  959. }
  960. inline void line_to_destination() {
  961. line_to_destination(feedrate);
  962. }
  963. inline void sync_plan_position() {
  964. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  965. }
  966. #if defined(DELTA) || defined(SCARA)
  967. inline void sync_plan_position_delta() {
  968. calculate_delta(current_position);
  969. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  970. }
  971. #endif
  972. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  973. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  974. static void setup_for_endstop_move() {
  975. saved_feedrate = feedrate;
  976. saved_feedrate_multiplier = feedrate_multiplier;
  977. feedrate_multiplier = 100;
  978. refresh_cmd_timeout();
  979. enable_endstops(true);
  980. }
  981. #ifdef ENABLE_AUTO_BED_LEVELING
  982. #ifdef DELTA
  983. /**
  984. * Calculate delta, start a line, and set current_position to destination
  985. */
  986. void prepare_move_raw() {
  987. refresh_cmd_timeout();
  988. calculate_delta(destination);
  989. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedrate_multiplier/100.0), active_extruder);
  990. set_current_to_destination();
  991. }
  992. #endif
  993. #ifdef AUTO_BED_LEVELING_GRID
  994. #ifndef DELTA
  995. static void set_bed_level_equation_lsq(double *plane_equation_coefficients) {
  996. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  997. planeNormal.debug("planeNormal");
  998. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  999. //bedLevel.debug("bedLevel");
  1000. //plan_bed_level_matrix.debug("bed level before");
  1001. //vector_3 uncorrected_position = plan_get_position_mm();
  1002. //uncorrected_position.debug("position before");
  1003. vector_3 corrected_position = plan_get_position();
  1004. //corrected_position.debug("position after");
  1005. current_position[X_AXIS] = corrected_position.x;
  1006. current_position[Y_AXIS] = corrected_position.y;
  1007. current_position[Z_AXIS] = corrected_position.z;
  1008. sync_plan_position();
  1009. }
  1010. #endif // !DELTA
  1011. #else // !AUTO_BED_LEVELING_GRID
  1012. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1013. plan_bed_level_matrix.set_to_identity();
  1014. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1015. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1016. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1017. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  1018. if (planeNormal.z < 0) {
  1019. planeNormal.x = -planeNormal.x;
  1020. planeNormal.y = -planeNormal.y;
  1021. planeNormal.z = -planeNormal.z;
  1022. }
  1023. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1024. vector_3 corrected_position = plan_get_position();
  1025. current_position[X_AXIS] = corrected_position.x;
  1026. current_position[Y_AXIS] = corrected_position.y;
  1027. current_position[Z_AXIS] = corrected_position.z;
  1028. sync_plan_position();
  1029. }
  1030. #endif // !AUTO_BED_LEVELING_GRID
  1031. static void run_z_probe() {
  1032. #ifdef DELTA
  1033. float start_z = current_position[Z_AXIS];
  1034. long start_steps = st_get_position(Z_AXIS);
  1035. // move down slowly until you find the bed
  1036. feedrate = homing_feedrate[Z_AXIS] / 4;
  1037. destination[Z_AXIS] = -10;
  1038. prepare_move_raw(); // this will also set_current_to_destination
  1039. st_synchronize();
  1040. endstops_hit_on_purpose(); // clear endstop hit flags
  1041. // we have to let the planner know where we are right now as it is not where we said to go.
  1042. long stop_steps = st_get_position(Z_AXIS);
  1043. float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS];
  1044. current_position[Z_AXIS] = mm;
  1045. sync_plan_position_delta();
  1046. #else // !DELTA
  1047. plan_bed_level_matrix.set_to_identity();
  1048. feedrate = homing_feedrate[Z_AXIS];
  1049. // Move down until the probe (or endstop?) is triggered
  1050. float zPosition = -10;
  1051. line_to_z(zPosition);
  1052. st_synchronize();
  1053. // Tell the planner where we ended up - Get this from the stepper handler
  1054. zPosition = st_get_position_mm(Z_AXIS);
  1055. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1056. // move up the retract distance
  1057. zPosition += home_bump_mm(Z_AXIS);
  1058. line_to_z(zPosition);
  1059. st_synchronize();
  1060. endstops_hit_on_purpose(); // clear endstop hit flags
  1061. // move back down slowly to find bed
  1062. set_homing_bump_feedrate(Z_AXIS);
  1063. zPosition -= home_bump_mm(Z_AXIS) * 2;
  1064. line_to_z(zPosition);
  1065. st_synchronize();
  1066. endstops_hit_on_purpose(); // clear endstop hit flags
  1067. // Get the current stepper position after bumping an endstop
  1068. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1069. sync_plan_position();
  1070. #endif // !DELTA
  1071. }
  1072. /**
  1073. * Plan a move to (X, Y, Z) and set the current_position
  1074. * The final current_position may not be the one that was requested
  1075. */
  1076. static void do_blocking_move_to(float x, float y, float z) {
  1077. float oldFeedRate = feedrate;
  1078. #ifdef DELTA
  1079. feedrate = XY_TRAVEL_SPEED;
  1080. destination[X_AXIS] = x;
  1081. destination[Y_AXIS] = y;
  1082. destination[Z_AXIS] = z;
  1083. prepare_move_raw(); // this will also set_current_to_destination
  1084. st_synchronize();
  1085. #else
  1086. feedrate = homing_feedrate[Z_AXIS];
  1087. current_position[Z_AXIS] = z;
  1088. line_to_current_position();
  1089. st_synchronize();
  1090. feedrate = xy_travel_speed;
  1091. current_position[X_AXIS] = x;
  1092. current_position[Y_AXIS] = y;
  1093. line_to_current_position();
  1094. st_synchronize();
  1095. #endif
  1096. feedrate = oldFeedRate;
  1097. }
  1098. static void clean_up_after_endstop_move() {
  1099. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1100. enable_endstops(false);
  1101. #endif
  1102. feedrate = saved_feedrate;
  1103. feedrate_multiplier = saved_feedrate_multiplier;
  1104. refresh_cmd_timeout();
  1105. }
  1106. static void deploy_z_probe() {
  1107. #ifdef SERVO_ENDSTOPS
  1108. // Engage Z Servo endstop if enabled
  1109. if (servo_endstops[Z_AXIS] >= 0) {
  1110. Servo *srv = &servo[servo_endstops[Z_AXIS]];
  1111. srv->move(0, servo_endstop_angles[Z_AXIS * 2]);
  1112. }
  1113. #elif defined(Z_PROBE_ALLEN_KEY)
  1114. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE;
  1115. // If endstop is already false, the probe is deployed
  1116. #ifdef Z_PROBE_ENDSTOP
  1117. bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  1118. if (z_probe_endstop)
  1119. #else
  1120. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1121. if (z_min_endstop)
  1122. #endif
  1123. {
  1124. // Move to the start position to initiate deployment
  1125. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_X;
  1126. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Y;
  1127. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Z;
  1128. prepare_move_raw(); // this will also set_current_to_destination
  1129. // Move to engage deployment
  1130. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE) {
  1131. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE;
  1132. }
  1133. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_X != Z_PROBE_ALLEN_KEY_DEPLOY_1_X) {
  1134. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_X;
  1135. }
  1136. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_Y != Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) {
  1137. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Y;
  1138. }
  1139. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_Z != Z_PROBE_ALLEN_KEY_DEPLOY_1_Z) {
  1140. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Z;
  1141. }
  1142. prepare_move_raw();
  1143. #ifdef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1144. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE) {
  1145. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE;
  1146. }
  1147. // Move to trigger deployment
  1148. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE) {
  1149. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE;
  1150. }
  1151. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_X != Z_PROBE_ALLEN_KEY_DEPLOY_2_X) {
  1152. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_X;
  1153. }
  1154. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_Y != Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) {
  1155. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Y;
  1156. }
  1157. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_Z != Z_PROBE_ALLEN_KEY_DEPLOY_2_Z) {
  1158. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Z;
  1159. }
  1160. prepare_move_raw();
  1161. #endif
  1162. }
  1163. // Partially Home X,Y for safety
  1164. destination[X_AXIS] = destination[X_AXIS]*0.75;
  1165. destination[Y_AXIS] = destination[Y_AXIS]*0.75;
  1166. prepare_move_raw(); // this will also set_current_to_destination
  1167. st_synchronize();
  1168. #ifdef Z_PROBE_ENDSTOP
  1169. z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  1170. if (z_probe_endstop)
  1171. #else
  1172. z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1173. if (z_min_endstop)
  1174. #endif
  1175. {
  1176. if (IsRunning()) {
  1177. SERIAL_ERROR_START;
  1178. SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
  1179. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1180. }
  1181. Stop();
  1182. }
  1183. #endif // Z_PROBE_ALLEN_KEY
  1184. }
  1185. static void stow_z_probe(bool doRaise=true) {
  1186. #ifdef SERVO_ENDSTOPS
  1187. // Retract Z Servo endstop if enabled
  1188. if (servo_endstops[Z_AXIS] >= 0) {
  1189. #if Z_RAISE_AFTER_PROBING > 0
  1190. if (doRaise) {
  1191. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING); // this also updates current_position
  1192. st_synchronize();
  1193. }
  1194. #endif
  1195. // Change the Z servo angle
  1196. Servo *srv = &servo[servo_endstops[Z_AXIS]];
  1197. srv->move(0, servo_endstop_angles[Z_AXIS * 2 + 1]);
  1198. }
  1199. #elif defined(Z_PROBE_ALLEN_KEY)
  1200. // Move up for safety
  1201. feedrate = Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE;
  1202. destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING;
  1203. prepare_move_raw(); // this will also set_current_to_destination
  1204. // Move to the start position to initiate retraction
  1205. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_X;
  1206. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Y;
  1207. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Z;
  1208. prepare_move_raw();
  1209. // Move the nozzle down to push the probe into retracted position
  1210. if (Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE) {
  1211. feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE;
  1212. }
  1213. if (Z_PROBE_ALLEN_KEY_STOW_2_X != Z_PROBE_ALLEN_KEY_STOW_1_X) {
  1214. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_X;
  1215. }
  1216. if (Z_PROBE_ALLEN_KEY_STOW_2_Y != Z_PROBE_ALLEN_KEY_STOW_1_Y) {
  1217. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Y;
  1218. }
  1219. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Z;
  1220. prepare_move_raw();
  1221. // Move up for safety
  1222. if (Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE) {
  1223. feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE;
  1224. }
  1225. if (Z_PROBE_ALLEN_KEY_STOW_3_X != Z_PROBE_ALLEN_KEY_STOW_2_X) {
  1226. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_X;
  1227. }
  1228. if (Z_PROBE_ALLEN_KEY_STOW_3_Y != Z_PROBE_ALLEN_KEY_STOW_2_Y) {
  1229. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Y;
  1230. }
  1231. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Z;
  1232. prepare_move_raw();
  1233. // Home XY for safety
  1234. feedrate = homing_feedrate[X_AXIS]/2;
  1235. destination[X_AXIS] = 0;
  1236. destination[Y_AXIS] = 0;
  1237. prepare_move_raw(); // this will also set_current_to_destination
  1238. st_synchronize();
  1239. #ifdef Z_PROBE_ENDSTOP
  1240. bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  1241. if (!z_probe_endstop)
  1242. #else
  1243. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1244. if (!z_min_endstop)
  1245. #endif
  1246. {
  1247. if (IsRunning()) {
  1248. SERIAL_ERROR_START;
  1249. SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
  1250. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1251. }
  1252. Stop();
  1253. }
  1254. #endif // Z_PROBE_ALLEN_KEY
  1255. }
  1256. enum ProbeAction {
  1257. ProbeStay = 0,
  1258. ProbeDeploy = BIT(0),
  1259. ProbeStow = BIT(1),
  1260. ProbeDeployAndStow = (ProbeDeploy | ProbeStow)
  1261. };
  1262. // Probe bed height at position (x,y), returns the measured z value
  1263. static float probe_pt(float x, float y, float z_before, ProbeAction probe_action=ProbeDeployAndStow, int verbose_level=1) {
  1264. // Move Z up to the z_before height, then move the probe to the given XY
  1265. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before); // this also updates current_position
  1266. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]); // this also updates current_position
  1267. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1268. if (probe_action & ProbeDeploy) deploy_z_probe();
  1269. #endif
  1270. run_z_probe();
  1271. float measured_z = current_position[Z_AXIS];
  1272. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1273. if (probe_action & ProbeStow) stow_z_probe();
  1274. #endif
  1275. if (verbose_level > 2) {
  1276. SERIAL_PROTOCOLPGM("Bed X: ");
  1277. SERIAL_PROTOCOL_F(x, 3);
  1278. SERIAL_PROTOCOLPGM(" Y: ");
  1279. SERIAL_PROTOCOL_F(y, 3);
  1280. SERIAL_PROTOCOLPGM(" Z: ");
  1281. SERIAL_PROTOCOL_F(measured_z, 3);
  1282. SERIAL_EOL;
  1283. }
  1284. return measured_z;
  1285. }
  1286. #ifdef DELTA
  1287. /**
  1288. * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
  1289. */
  1290. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1291. if (bed_level[x][y] != 0.0) {
  1292. return; // Don't overwrite good values.
  1293. }
  1294. float a = 2*bed_level[x+xdir][y] - bed_level[x+xdir*2][y]; // Left to right.
  1295. float b = 2*bed_level[x][y+ydir] - bed_level[x][y+ydir*2]; // Front to back.
  1296. float c = 2*bed_level[x+xdir][y+ydir] - bed_level[x+xdir*2][y+ydir*2]; // Diagonal.
  1297. float median = c; // Median is robust (ignores outliers).
  1298. if (a < b) {
  1299. if (b < c) median = b;
  1300. if (c < a) median = a;
  1301. } else { // b <= a
  1302. if (c < b) median = b;
  1303. if (a < c) median = a;
  1304. }
  1305. bed_level[x][y] = median;
  1306. }
  1307. // Fill in the unprobed points (corners of circular print surface)
  1308. // using linear extrapolation, away from the center.
  1309. static void extrapolate_unprobed_bed_level() {
  1310. int half = (AUTO_BED_LEVELING_GRID_POINTS-1)/2;
  1311. for (int y = 0; y <= half; y++) {
  1312. for (int x = 0; x <= half; x++) {
  1313. if (x + y < 3) continue;
  1314. extrapolate_one_point(half-x, half-y, x>1?+1:0, y>1?+1:0);
  1315. extrapolate_one_point(half+x, half-y, x>1?-1:0, y>1?+1:0);
  1316. extrapolate_one_point(half-x, half+y, x>1?+1:0, y>1?-1:0);
  1317. extrapolate_one_point(half+x, half+y, x>1?-1:0, y>1?-1:0);
  1318. }
  1319. }
  1320. }
  1321. // Print calibration results for plotting or manual frame adjustment.
  1322. static void print_bed_level() {
  1323. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1324. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1325. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1326. SERIAL_PROTOCOLCHAR(' ');
  1327. }
  1328. SERIAL_EOL;
  1329. }
  1330. }
  1331. // Reset calibration results to zero.
  1332. void reset_bed_level() {
  1333. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1334. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1335. bed_level[x][y] = 0.0;
  1336. }
  1337. }
  1338. }
  1339. #endif // DELTA
  1340. #endif // ENABLE_AUTO_BED_LEVELING
  1341. #ifdef Z_PROBE_SLED
  1342. #ifndef SLED_DOCKING_OFFSET
  1343. #define SLED_DOCKING_OFFSET 0
  1344. #endif
  1345. /**
  1346. * Method to dock/undock a sled designed by Charles Bell.
  1347. *
  1348. * dock[in] If true, move to MAX_X and engage the electromagnet
  1349. * offset[in] The additional distance to move to adjust docking location
  1350. */
  1351. static void dock_sled(bool dock, int offset=0) {
  1352. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  1353. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1354. SERIAL_ECHO_START;
  1355. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1356. return;
  1357. }
  1358. if (dock) {
  1359. float oldXpos = current_position[X_AXIS]; // save x position
  1360. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING); // rise Z
  1361. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset - 1, current_position[Y_AXIS], current_position[Z_AXIS]); // Dock sled a bit closer to ensure proper capturing
  1362. digitalWrite(SLED_PIN, LOW); // turn off magnet
  1363. do_blocking_move_to(oldXpos, current_position[Y_AXIS], current_position[Z_AXIS]); // return to position before docking
  1364. } else {
  1365. float oldXpos = current_position[X_AXIS]; // save x position
  1366. float z_loc = current_position[Z_AXIS];
  1367. if (z_loc < Z_RAISE_BEFORE_PROBING + 5) z_loc = Z_RAISE_BEFORE_PROBING;
  1368. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, current_position[Y_AXIS], z_loc); // this also updates current_position
  1369. digitalWrite(SLED_PIN, HIGH); // turn on magnet
  1370. do_blocking_move_to(oldXpos, current_position[Y_AXIS], current_position[Z_AXIS]); // return to position before docking
  1371. }
  1372. }
  1373. #endif // Z_PROBE_SLED
  1374. /**
  1375. * Home an individual axis
  1376. */
  1377. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1378. static void homeaxis(AxisEnum axis) {
  1379. #define HOMEAXIS_DO(LETTER) \
  1380. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1381. if (axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0) {
  1382. int axis_home_dir =
  1383. #ifdef DUAL_X_CARRIAGE
  1384. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  1385. #endif
  1386. home_dir(axis);
  1387. // Set the axis position as setup for the move
  1388. current_position[axis] = 0;
  1389. sync_plan_position();
  1390. #ifdef Z_PROBE_SLED
  1391. // Get Probe
  1392. if (axis == Z_AXIS) {
  1393. if (axis_home_dir < 0) dock_sled(false);
  1394. }
  1395. #endif
  1396. #if SERVO_LEVELING && !defined(Z_PROBE_SLED)
  1397. // Deploy a probe if there is one, and homing towards the bed
  1398. if (axis == Z_AXIS) {
  1399. if (axis_home_dir < 0) deploy_z_probe();
  1400. }
  1401. #endif
  1402. #ifdef SERVO_ENDSTOPS
  1403. if (axis != Z_AXIS) {
  1404. // Engage Servo endstop if enabled
  1405. if (servo_endstops[axis] > -1)
  1406. servo[servo_endstops[axis]].move(0, servo_endstop_angles[axis * 2]);
  1407. }
  1408. #endif
  1409. // Set a flag for Z motor locking
  1410. #ifdef Z_DUAL_ENDSTOPS
  1411. if (axis == Z_AXIS) In_Homing_Process(true);
  1412. #endif
  1413. // Move towards the endstop until an endstop is triggered
  1414. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1415. feedrate = homing_feedrate[axis];
  1416. line_to_destination();
  1417. st_synchronize();
  1418. // Set the axis position as setup for the move
  1419. current_position[axis] = 0;
  1420. sync_plan_position();
  1421. enable_endstops(false); // Disable endstops while moving away
  1422. // Move away from the endstop by the axis HOME_BUMP_MM
  1423. destination[axis] = -home_bump_mm(axis) * axis_home_dir;
  1424. line_to_destination();
  1425. st_synchronize();
  1426. enable_endstops(true); // Enable endstops for next homing move
  1427. // Slow down the feedrate for the next move
  1428. set_homing_bump_feedrate(axis);
  1429. // Move slowly towards the endstop until triggered
  1430. destination[axis] = 2 * home_bump_mm(axis) * axis_home_dir;
  1431. line_to_destination();
  1432. st_synchronize();
  1433. #ifdef Z_DUAL_ENDSTOPS
  1434. if (axis == Z_AXIS) {
  1435. float adj = fabs(z_endstop_adj);
  1436. bool lockZ1;
  1437. if (axis_home_dir > 0) {
  1438. adj = -adj;
  1439. lockZ1 = (z_endstop_adj > 0);
  1440. }
  1441. else
  1442. lockZ1 = (z_endstop_adj < 0);
  1443. if (lockZ1) Lock_z_motor(true); else Lock_z2_motor(true);
  1444. sync_plan_position();
  1445. // Move to the adjusted endstop height
  1446. feedrate = homing_feedrate[axis];
  1447. destination[Z_AXIS] = adj;
  1448. line_to_destination();
  1449. st_synchronize();
  1450. if (lockZ1) Lock_z_motor(false); else Lock_z2_motor(false);
  1451. In_Homing_Process(false);
  1452. } // Z_AXIS
  1453. #endif
  1454. #ifdef DELTA
  1455. // retrace by the amount specified in endstop_adj
  1456. if (endstop_adj[axis] * axis_home_dir < 0) {
  1457. enable_endstops(false); // Disable endstops while moving away
  1458. sync_plan_position();
  1459. destination[axis] = endstop_adj[axis];
  1460. line_to_destination();
  1461. st_synchronize();
  1462. enable_endstops(true); // Enable endstops for next homing move
  1463. }
  1464. #endif
  1465. // Set the axis position to its home position (plus home offsets)
  1466. axis_is_at_home(axis);
  1467. sync_plan_position();
  1468. destination[axis] = current_position[axis];
  1469. feedrate = 0.0;
  1470. endstops_hit_on_purpose(); // clear endstop hit flags
  1471. axis_known_position[axis] = true;
  1472. #ifdef Z_PROBE_SLED
  1473. // bring probe back
  1474. if (axis == Z_AXIS) {
  1475. if (axis_home_dir < 0) dock_sled(true);
  1476. }
  1477. #endif
  1478. #if SERVO_LEVELING && !defined(Z_PROBE_SLED)
  1479. // Deploy a probe if there is one, and homing towards the bed
  1480. if (axis == Z_AXIS) {
  1481. if (axis_home_dir < 0) stow_z_probe();
  1482. }
  1483. else
  1484. #endif
  1485. {
  1486. #ifdef SERVO_ENDSTOPS
  1487. // Retract Servo endstop if enabled
  1488. if (servo_endstops[axis] > -1)
  1489. servo[servo_endstops[axis]].move(0, servo_endstop_angles[axis * 2 + 1]);
  1490. #endif
  1491. }
  1492. }
  1493. }
  1494. #ifdef FWRETRACT
  1495. void retract(bool retracting, bool swapping=false) {
  1496. if (retracting == retracted[active_extruder]) return;
  1497. float oldFeedrate = feedrate;
  1498. set_destination_to_current();
  1499. if (retracting) {
  1500. feedrate = retract_feedrate * 60;
  1501. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  1502. plan_set_e_position(current_position[E_AXIS]);
  1503. prepare_move();
  1504. if (retract_zlift > 0.01) {
  1505. current_position[Z_AXIS] -= retract_zlift;
  1506. #ifdef DELTA
  1507. sync_plan_position_delta();
  1508. #else
  1509. sync_plan_position();
  1510. #endif
  1511. prepare_move();
  1512. }
  1513. }
  1514. else {
  1515. if (retract_zlift > 0.01) {
  1516. current_position[Z_AXIS] += retract_zlift;
  1517. #ifdef DELTA
  1518. sync_plan_position_delta();
  1519. #else
  1520. sync_plan_position();
  1521. #endif
  1522. //prepare_move();
  1523. }
  1524. feedrate = retract_recover_feedrate * 60;
  1525. float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  1526. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  1527. plan_set_e_position(current_position[E_AXIS]);
  1528. prepare_move();
  1529. }
  1530. feedrate = oldFeedrate;
  1531. retracted[active_extruder] = retracting;
  1532. } // retract()
  1533. #endif // FWRETRACT
  1534. /**
  1535. *
  1536. * G-Code Handler functions
  1537. *
  1538. */
  1539. /**
  1540. * Set XYZE destination and feedrate from the current GCode command
  1541. *
  1542. * - Set destination from included axis codes
  1543. * - Set to current for missing axis codes
  1544. * - Set the feedrate, if included
  1545. */
  1546. void gcode_get_destination() {
  1547. for (int i = 0; i < NUM_AXIS; i++) {
  1548. if (code_seen(axis_codes[i]))
  1549. destination[i] = code_value() + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  1550. else
  1551. destination[i] = current_position[i];
  1552. }
  1553. if (code_seen('F')) {
  1554. float next_feedrate = code_value();
  1555. if (next_feedrate > 0.0) feedrate = next_feedrate;
  1556. }
  1557. }
  1558. void unknown_command_error() {
  1559. SERIAL_ECHO_START;
  1560. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  1561. SERIAL_ECHO(current_command);
  1562. SERIAL_ECHOPGM("\"\n");
  1563. }
  1564. /**
  1565. * G0, G1: Coordinated movement of X Y Z E axes
  1566. */
  1567. inline void gcode_G0_G1() {
  1568. if (IsRunning()) {
  1569. gcode_get_destination(); // For X Y Z E F
  1570. #ifdef FWRETRACT
  1571. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1572. float echange = destination[E_AXIS] - current_position[E_AXIS];
  1573. // Is this move an attempt to retract or recover?
  1574. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  1575. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  1576. plan_set_e_position(current_position[E_AXIS]); // AND from the planner
  1577. retract(!retracted[active_extruder]);
  1578. return;
  1579. }
  1580. }
  1581. #endif //FWRETRACT
  1582. prepare_move();
  1583. }
  1584. }
  1585. /**
  1586. * Plan an arc in 2 dimensions
  1587. *
  1588. * The arc is approximated by generating many small linear segments.
  1589. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  1590. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  1591. * larger segments will tend to be more efficient. Your slicer should have
  1592. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  1593. */
  1594. void plan_arc(
  1595. float *target, // Destination position
  1596. float *offset, // Center of rotation relative to current_position
  1597. uint8_t clockwise // Clockwise?
  1598. ) {
  1599. float radius = hypot(offset[X_AXIS], offset[Y_AXIS]),
  1600. center_axis0 = current_position[X_AXIS] + offset[X_AXIS],
  1601. center_axis1 = current_position[Y_AXIS] + offset[Y_AXIS],
  1602. linear_travel = target[Z_AXIS] - current_position[Z_AXIS],
  1603. extruder_travel = target[E_AXIS] - current_position[E_AXIS],
  1604. r_axis0 = -offset[X_AXIS], // Radius vector from center to current location
  1605. r_axis1 = -offset[Y_AXIS],
  1606. rt_axis0 = target[X_AXIS] - center_axis0,
  1607. rt_axis1 = target[Y_AXIS] - center_axis1;
  1608. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  1609. float angular_travel = atan2(r_axis0*rt_axis1-r_axis1*rt_axis0, r_axis0*rt_axis0+r_axis1*rt_axis1);
  1610. if (angular_travel < 0) { angular_travel += RADIANS(360); }
  1611. if (clockwise) { angular_travel -= RADIANS(360); }
  1612. // Make a circle if the angular rotation is 0
  1613. if (current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS] && angular_travel == 0)
  1614. angular_travel += RADIANS(360);
  1615. float mm_of_travel = hypot(angular_travel*radius, fabs(linear_travel));
  1616. if (mm_of_travel < 0.001) { return; }
  1617. uint16_t segments = floor(mm_of_travel / MM_PER_ARC_SEGMENT);
  1618. if (segments == 0) segments = 1;
  1619. float theta_per_segment = angular_travel/segments;
  1620. float linear_per_segment = linear_travel/segments;
  1621. float extruder_per_segment = extruder_travel/segments;
  1622. /* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  1623. and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  1624. r_T = [cos(phi) -sin(phi);
  1625. sin(phi) cos(phi] * r ;
  1626. For arc generation, the center of the circle is the axis of rotation and the radius vector is
  1627. defined from the circle center to the initial position. Each line segment is formed by successive
  1628. vector rotations. This requires only two cos() and sin() computations to form the rotation
  1629. matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  1630. all double numbers are single precision on the Arduino. (True double precision will not have
  1631. round off issues for CNC applications.) Single precision error can accumulate to be greater than
  1632. tool precision in some cases. Therefore, arc path correction is implemented.
  1633. Small angle approximation may be used to reduce computation overhead further. This approximation
  1634. holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  1635. theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  1636. to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  1637. numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  1638. issue for CNC machines with the single precision Arduino calculations.
  1639. This approximation also allows plan_arc to immediately insert a line segment into the planner
  1640. without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  1641. a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  1642. This is important when there are successive arc motions.
  1643. */
  1644. // Vector rotation matrix values
  1645. float cos_T = 1-0.5*theta_per_segment*theta_per_segment; // Small angle approximation
  1646. float sin_T = theta_per_segment;
  1647. float arc_target[4];
  1648. float sin_Ti;
  1649. float cos_Ti;
  1650. float r_axisi;
  1651. uint16_t i;
  1652. int8_t count = 0;
  1653. // Initialize the linear axis
  1654. arc_target[Z_AXIS] = current_position[Z_AXIS];
  1655. // Initialize the extruder axis
  1656. arc_target[E_AXIS] = current_position[E_AXIS];
  1657. float feed_rate = feedrate*feedrate_multiplier/60/100.0;
  1658. for (i = 1; i < segments; i++) { // Increment (segments-1)
  1659. if (count < N_ARC_CORRECTION) {
  1660. // Apply vector rotation matrix to previous r_axis0 / 1
  1661. r_axisi = r_axis0*sin_T + r_axis1*cos_T;
  1662. r_axis0 = r_axis0*cos_T - r_axis1*sin_T;
  1663. r_axis1 = r_axisi;
  1664. count++;
  1665. }
  1666. else {
  1667. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  1668. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  1669. cos_Ti = cos(i*theta_per_segment);
  1670. sin_Ti = sin(i*theta_per_segment);
  1671. r_axis0 = -offset[X_AXIS]*cos_Ti + offset[Y_AXIS]*sin_Ti;
  1672. r_axis1 = -offset[X_AXIS]*sin_Ti - offset[Y_AXIS]*cos_Ti;
  1673. count = 0;
  1674. }
  1675. // Update arc_target location
  1676. arc_target[X_AXIS] = center_axis0 + r_axis0;
  1677. arc_target[Y_AXIS] = center_axis1 + r_axis1;
  1678. arc_target[Z_AXIS] += linear_per_segment;
  1679. arc_target[E_AXIS] += extruder_per_segment;
  1680. clamp_to_software_endstops(arc_target);
  1681. plan_buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  1682. }
  1683. // Ensure last segment arrives at target location.
  1684. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  1685. // As far as the parser is concerned, the position is now == target. In reality the
  1686. // motion control system might still be processing the action and the real tool position
  1687. // in any intermediate location.
  1688. set_current_to_destination();
  1689. }
  1690. /**
  1691. * G2: Clockwise Arc
  1692. * G3: Counterclockwise Arc
  1693. */
  1694. inline void gcode_G2_G3(bool clockwise) {
  1695. if (IsRunning()) {
  1696. #ifdef SF_ARC_FIX
  1697. bool relative_mode_backup = relative_mode;
  1698. relative_mode = true;
  1699. #endif
  1700. gcode_get_destination();
  1701. #ifdef SF_ARC_FIX
  1702. relative_mode = relative_mode_backup;
  1703. #endif
  1704. // Center of arc as offset from current_position
  1705. float arc_offset[2] = {
  1706. code_seen('I') ? code_value() : 0,
  1707. code_seen('J') ? code_value() : 0
  1708. };
  1709. // Send an arc to the planner
  1710. plan_arc(destination, arc_offset, clockwise);
  1711. refresh_cmd_timeout();
  1712. }
  1713. }
  1714. /**
  1715. * G4: Dwell S<seconds> or P<milliseconds>
  1716. */
  1717. inline void gcode_G4() {
  1718. millis_t codenum = 0;
  1719. if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
  1720. if (code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1721. st_synchronize();
  1722. refresh_cmd_timeout();
  1723. codenum += previous_cmd_ms; // keep track of when we started waiting
  1724. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  1725. while (millis() < codenum) idle();
  1726. }
  1727. #ifdef FWRETRACT
  1728. /**
  1729. * G10 - Retract filament according to settings of M207
  1730. * G11 - Recover filament according to settings of M208
  1731. */
  1732. inline void gcode_G10_G11(bool doRetract=false) {
  1733. #if EXTRUDERS > 1
  1734. if (doRetract) {
  1735. retracted_swap[active_extruder] = (code_seen('S') && code_value_short() == 1); // checks for swap retract argument
  1736. }
  1737. #endif
  1738. retract(doRetract
  1739. #if EXTRUDERS > 1
  1740. , retracted_swap[active_extruder]
  1741. #endif
  1742. );
  1743. }
  1744. #endif //FWRETRACT
  1745. /**
  1746. * G28: Home all axes according to settings
  1747. *
  1748. * Parameters
  1749. *
  1750. * None Home to all axes with no parameters.
  1751. * With QUICK_HOME enabled XY will home together, then Z.
  1752. *
  1753. * Cartesian parameters
  1754. *
  1755. * X Home to the X endstop
  1756. * Y Home to the Y endstop
  1757. * Z Home to the Z endstop
  1758. *
  1759. */
  1760. inline void gcode_G28() {
  1761. // Wait for planner moves to finish!
  1762. st_synchronize();
  1763. // For auto bed leveling, clear the level matrix
  1764. #ifdef ENABLE_AUTO_BED_LEVELING
  1765. plan_bed_level_matrix.set_to_identity();
  1766. #ifdef DELTA
  1767. reset_bed_level();
  1768. #endif
  1769. #endif
  1770. // For manual bed leveling deactivate the matrix temporarily
  1771. #ifdef MESH_BED_LEVELING
  1772. uint8_t mbl_was_active = mbl.active;
  1773. mbl.active = 0;
  1774. #endif
  1775. setup_for_endstop_move();
  1776. set_destination_to_current();
  1777. feedrate = 0.0;
  1778. #ifdef DELTA
  1779. // A delta can only safely home all axis at the same time
  1780. // all axis have to home at the same time
  1781. // Pretend the current position is 0,0,0
  1782. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  1783. sync_plan_position();
  1784. // Move all carriages up together until the first endstop is hit.
  1785. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * Z_MAX_LENGTH;
  1786. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1787. line_to_destination();
  1788. st_synchronize();
  1789. endstops_hit_on_purpose(); // clear endstop hit flags
  1790. // Destination reached
  1791. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  1792. // take care of back off and rehome now we are all at the top
  1793. HOMEAXIS(X);
  1794. HOMEAXIS(Y);
  1795. HOMEAXIS(Z);
  1796. sync_plan_position_delta();
  1797. #else // NOT DELTA
  1798. bool homeX = code_seen(axis_codes[X_AXIS]),
  1799. homeY = code_seen(axis_codes[Y_AXIS]),
  1800. homeZ = code_seen(axis_codes[Z_AXIS]);
  1801. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  1802. if (home_all_axis || homeZ) {
  1803. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1804. HOMEAXIS(Z);
  1805. #elif !defined(Z_SAFE_HOMING) && defined(Z_RAISE_BEFORE_HOMING) && Z_RAISE_BEFORE_HOMING > 0
  1806. // Raise Z before homing any other axes
  1807. // (Does this need to be "negative home direction?" Why not just use Z_RAISE_BEFORE_HOMING?)
  1808. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS);
  1809. feedrate = max_feedrate[Z_AXIS] * 60;
  1810. line_to_destination();
  1811. st_synchronize();
  1812. #endif
  1813. } // home_all_axis || homeZ
  1814. #ifdef QUICK_HOME
  1815. if (home_all_axis || (homeX && homeY)) { // First diagonal move
  1816. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  1817. #ifdef DUAL_X_CARRIAGE
  1818. int x_axis_home_dir = x_home_dir(active_extruder);
  1819. extruder_duplication_enabled = false;
  1820. #else
  1821. int x_axis_home_dir = home_dir(X_AXIS);
  1822. #endif
  1823. sync_plan_position();
  1824. float mlx = max_length(X_AXIS), mly = max_length(Y_AXIS),
  1825. mlratio = mlx>mly ? mly/mlx : mlx/mly;
  1826. destination[X_AXIS] = 1.5 * mlx * x_axis_home_dir;
  1827. destination[Y_AXIS] = 1.5 * mly * home_dir(Y_AXIS);
  1828. feedrate = min(homing_feedrate[X_AXIS], homing_feedrate[Y_AXIS]) * sqrt(mlratio * mlratio + 1);
  1829. line_to_destination();
  1830. st_synchronize();
  1831. axis_is_at_home(X_AXIS);
  1832. axis_is_at_home(Y_AXIS);
  1833. sync_plan_position();
  1834. destination[X_AXIS] = current_position[X_AXIS];
  1835. destination[Y_AXIS] = current_position[Y_AXIS];
  1836. line_to_destination();
  1837. feedrate = 0.0;
  1838. st_synchronize();
  1839. endstops_hit_on_purpose(); // clear endstop hit flags
  1840. current_position[X_AXIS] = destination[X_AXIS];
  1841. current_position[Y_AXIS] = destination[Y_AXIS];
  1842. #ifndef SCARA
  1843. current_position[Z_AXIS] = destination[Z_AXIS];
  1844. #endif
  1845. }
  1846. #endif // QUICK_HOME
  1847. #ifdef HOME_Y_BEFORE_X
  1848. // Home Y
  1849. if (home_all_axis || homeY) HOMEAXIS(Y);
  1850. #endif
  1851. // Home X
  1852. if (home_all_axis || homeX) {
  1853. #ifdef DUAL_X_CARRIAGE
  1854. int tmp_extruder = active_extruder;
  1855. extruder_duplication_enabled = false;
  1856. active_extruder = !active_extruder;
  1857. HOMEAXIS(X);
  1858. inactive_extruder_x_pos = current_position[X_AXIS];
  1859. active_extruder = tmp_extruder;
  1860. HOMEAXIS(X);
  1861. // reset state used by the different modes
  1862. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1863. delayed_move_time = 0;
  1864. active_extruder_parked = true;
  1865. #else
  1866. HOMEAXIS(X);
  1867. #endif
  1868. }
  1869. #ifndef HOME_Y_BEFORE_X
  1870. // Home Y
  1871. if (home_all_axis || homeY) HOMEAXIS(Y);
  1872. #endif
  1873. // Home Z last if homing towards the bed
  1874. #if Z_HOME_DIR < 0
  1875. if (home_all_axis || homeZ) {
  1876. #ifdef Z_SAFE_HOMING
  1877. if (home_all_axis) {
  1878. current_position[Z_AXIS] = 0;
  1879. sync_plan_position();
  1880. //
  1881. // Set the probe (or just the nozzle) destination to the safe homing point
  1882. //
  1883. // NOTE: If current_position[X_AXIS] or current_position[Y_AXIS] were set above
  1884. // then this may not work as expected.
  1885. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1886. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1887. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1888. feedrate = XY_TRAVEL_SPEED;
  1889. // This could potentially move X, Y, Z all together
  1890. line_to_destination();
  1891. st_synchronize();
  1892. // Set current X, Y is the Z_SAFE_HOMING_POINT minus PROBE_OFFSET_FROM_EXTRUDER
  1893. current_position[X_AXIS] = destination[X_AXIS];
  1894. current_position[Y_AXIS] = destination[Y_AXIS];
  1895. // Home the Z axis
  1896. HOMEAXIS(Z);
  1897. }
  1898. else if (homeZ) { // Don't need to Home Z twice
  1899. // Let's see if X and Y are homed
  1900. if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) {
  1901. // Make sure the probe is within the physical limits
  1902. // NOTE: This doesn't necessarily ensure the probe is also within the bed!
  1903. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  1904. if ( cpx >= X_MIN_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1905. && cpx <= X_MAX_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1906. && cpy >= Y_MIN_POS - Y_PROBE_OFFSET_FROM_EXTRUDER
  1907. && cpy <= Y_MAX_POS - Y_PROBE_OFFSET_FROM_EXTRUDER) {
  1908. // Set the plan current position to X, Y, 0
  1909. current_position[Z_AXIS] = 0;
  1910. plan_set_position(cpx, cpy, 0, current_position[E_AXIS]); // = sync_plan_position
  1911. // Set Z destination away from bed and raise the axis
  1912. // NOTE: This should always just be Z_RAISE_BEFORE_HOMING unless...???
  1913. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS);
  1914. feedrate = max_feedrate[Z_AXIS] * 60; // feedrate (mm/m) = max_feedrate (mm/s)
  1915. line_to_destination();
  1916. st_synchronize();
  1917. // Home the Z axis
  1918. HOMEAXIS(Z);
  1919. }
  1920. else {
  1921. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1922. SERIAL_ECHO_START;
  1923. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1924. }
  1925. }
  1926. else {
  1927. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1928. SERIAL_ECHO_START;
  1929. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1930. }
  1931. } // !home_all_axes && homeZ
  1932. #else // !Z_SAFE_HOMING
  1933. HOMEAXIS(Z);
  1934. #endif // !Z_SAFE_HOMING
  1935. } // home_all_axis || homeZ
  1936. #endif // Z_HOME_DIR < 0
  1937. sync_plan_position();
  1938. #endif // else DELTA
  1939. #ifdef SCARA
  1940. sync_plan_position_delta();
  1941. #endif
  1942. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1943. enable_endstops(false);
  1944. #endif
  1945. // For manual leveling move back to 0,0
  1946. #ifdef MESH_BED_LEVELING
  1947. if (mbl_was_active) {
  1948. current_position[X_AXIS] = mbl.get_x(0);
  1949. current_position[Y_AXIS] = mbl.get_y(0);
  1950. set_destination_to_current();
  1951. feedrate = homing_feedrate[X_AXIS];
  1952. line_to_destination();
  1953. st_synchronize();
  1954. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1955. sync_plan_position();
  1956. mbl.active = 1;
  1957. }
  1958. #endif
  1959. feedrate = saved_feedrate;
  1960. feedrate_multiplier = saved_feedrate_multiplier;
  1961. refresh_cmd_timeout();
  1962. endstops_hit_on_purpose(); // clear endstop hit flags
  1963. }
  1964. #ifdef MESH_BED_LEVELING
  1965. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  1966. /**
  1967. * G29: Mesh-based Z-Probe, probes a grid and produces a
  1968. * mesh to compensate for variable bed height
  1969. *
  1970. * Parameters With MESH_BED_LEVELING:
  1971. *
  1972. * S0 Produce a mesh report
  1973. * S1 Start probing mesh points
  1974. * S2 Probe the next mesh point
  1975. * S3 Xn Yn Zn.nn Manually modify a single point
  1976. *
  1977. * The S0 report the points as below
  1978. *
  1979. * +----> X-axis
  1980. * |
  1981. * |
  1982. * v Y-axis
  1983. *
  1984. */
  1985. inline void gcode_G29() {
  1986. static int probe_point = -1;
  1987. MeshLevelingState state = code_seen('S') || code_seen('s') ? (MeshLevelingState)code_value_short() : MeshReport;
  1988. if (state < 0 || state > 3) {
  1989. SERIAL_PROTOCOLLNPGM("S out of range (0-3).");
  1990. return;
  1991. }
  1992. int ix, iy;
  1993. float z;
  1994. switch(state) {
  1995. case MeshReport:
  1996. if (mbl.active) {
  1997. SERIAL_PROTOCOLPGM("Num X,Y: ");
  1998. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  1999. SERIAL_PROTOCOLCHAR(',');
  2000. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2001. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2002. SERIAL_PROTOCOL(MESH_HOME_SEARCH_Z);
  2003. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2004. for (int y = 0; y < MESH_NUM_Y_POINTS; y++) {
  2005. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  2006. SERIAL_PROTOCOLPGM(" ");
  2007. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  2008. }
  2009. SERIAL_EOL;
  2010. }
  2011. }
  2012. else
  2013. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2014. break;
  2015. case MeshStart:
  2016. mbl.reset();
  2017. probe_point = 0;
  2018. enqueuecommands_P(PSTR("G28\nG29 S2"));
  2019. break;
  2020. case MeshNext:
  2021. if (probe_point < 0) {
  2022. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  2023. return;
  2024. }
  2025. if (probe_point == 0) {
  2026. // Set Z to a positive value before recording the first Z.
  2027. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2028. sync_plan_position();
  2029. }
  2030. else {
  2031. // For others, save the Z of the previous point, then raise Z again.
  2032. ix = (probe_point - 1) % MESH_NUM_X_POINTS;
  2033. iy = (probe_point - 1) / MESH_NUM_X_POINTS;
  2034. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  2035. mbl.set_z(ix, iy, current_position[Z_AXIS]);
  2036. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2037. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  2038. st_synchronize();
  2039. }
  2040. // Is there another point to sample? Move there.
  2041. if (probe_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS) {
  2042. ix = probe_point % MESH_NUM_X_POINTS;
  2043. iy = probe_point / MESH_NUM_X_POINTS;
  2044. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  2045. current_position[X_AXIS] = mbl.get_x(ix);
  2046. current_position[Y_AXIS] = mbl.get_y(iy);
  2047. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  2048. st_synchronize();
  2049. probe_point++;
  2050. }
  2051. else {
  2052. // After recording the last point, activate the mbl and home
  2053. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  2054. probe_point = -1;
  2055. mbl.active = 1;
  2056. enqueuecommands_P(PSTR("G28"));
  2057. }
  2058. break;
  2059. case MeshSet:
  2060. if (code_seen('X') || code_seen('x')) {
  2061. ix = code_value_long()-1;
  2062. if (ix < 0 || ix >= MESH_NUM_X_POINTS) {
  2063. SERIAL_PROTOCOLPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").\n");
  2064. return;
  2065. }
  2066. } else {
  2067. SERIAL_PROTOCOLPGM("X not entered.\n");
  2068. return;
  2069. }
  2070. if (code_seen('Y') || code_seen('y')) {
  2071. iy = code_value_long()-1;
  2072. if (iy < 0 || iy >= MESH_NUM_Y_POINTS) {
  2073. SERIAL_PROTOCOLPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").\n");
  2074. return;
  2075. }
  2076. } else {
  2077. SERIAL_PROTOCOLPGM("Y not entered.\n");
  2078. return;
  2079. }
  2080. if (code_seen('Z') || code_seen('z')) {
  2081. z = code_value();
  2082. } else {
  2083. SERIAL_PROTOCOLPGM("Z not entered.\n");
  2084. return;
  2085. }
  2086. mbl.z_values[iy][ix] = z;
  2087. } // switch(state)
  2088. }
  2089. #elif defined(ENABLE_AUTO_BED_LEVELING)
  2090. void out_of_range_error(const char *p_edge) {
  2091. SERIAL_PROTOCOLPGM("?Probe ");
  2092. serialprintPGM(p_edge);
  2093. SERIAL_PROTOCOLLNPGM(" position out of range.");
  2094. }
  2095. /**
  2096. * G29: Detailed Z-Probe, probes the bed at 3 or more points.
  2097. * Will fail if the printer has not been homed with G28.
  2098. *
  2099. * Enhanced G29 Auto Bed Leveling Probe Routine
  2100. *
  2101. * Parameters With AUTO_BED_LEVELING_GRID:
  2102. *
  2103. * P Set the size of the grid that will be probed (P x P points).
  2104. * Not supported by non-linear delta printer bed leveling.
  2105. * Example: "G29 P4"
  2106. *
  2107. * S Set the XY travel speed between probe points (in mm/min)
  2108. *
  2109. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  2110. * or clean the rotation Matrix. Useful to check the topology
  2111. * after a first run of G29.
  2112. *
  2113. * V Set the verbose level (0-4). Example: "G29 V3"
  2114. *
  2115. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  2116. * This is useful for manual bed leveling and finding flaws in the bed (to
  2117. * assist with part placement).
  2118. * Not supported by non-linear delta printer bed leveling.
  2119. *
  2120. * F Set the Front limit of the probing grid
  2121. * B Set the Back limit of the probing grid
  2122. * L Set the Left limit of the probing grid
  2123. * R Set the Right limit of the probing grid
  2124. *
  2125. * Global Parameters:
  2126. *
  2127. * E/e By default G29 will engage the probe, test the bed, then disengage.
  2128. * Include "E" to engage/disengage the probe for each sample.
  2129. * There's no extra effect if you have a fixed probe.
  2130. * Usage: "G29 E" or "G29 e"
  2131. *
  2132. */
  2133. inline void gcode_G29() {
  2134. // Don't allow auto-leveling without homing first
  2135. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  2136. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  2137. SERIAL_ECHO_START;
  2138. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  2139. return;
  2140. }
  2141. int verbose_level = code_seen('V') || code_seen('v') ? code_value_short() : 1;
  2142. if (verbose_level < 0 || verbose_level > 4) {
  2143. SERIAL_ECHOLNPGM("?(V)erbose Level is implausible (0-4).");
  2144. return;
  2145. }
  2146. bool dryrun = code_seen('D') || code_seen('d'),
  2147. deploy_probe_for_each_reading = code_seen('E') || code_seen('e');
  2148. #ifdef AUTO_BED_LEVELING_GRID
  2149. #ifndef DELTA
  2150. bool do_topography_map = verbose_level > 2 || code_seen('T') || code_seen('t');
  2151. #endif
  2152. if (verbose_level > 0) {
  2153. SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
  2154. if (dryrun) SERIAL_ECHOLNPGM("Running in DRY-RUN mode");
  2155. }
  2156. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  2157. #ifndef DELTA
  2158. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_short();
  2159. if (auto_bed_leveling_grid_points < 2) {
  2160. SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
  2161. return;
  2162. }
  2163. #endif
  2164. xy_travel_speed = code_seen('S') ? code_value_short() : XY_TRAVEL_SPEED;
  2165. int left_probe_bed_position = code_seen('L') ? code_value_short() : LEFT_PROBE_BED_POSITION,
  2166. right_probe_bed_position = code_seen('R') ? code_value_short() : RIGHT_PROBE_BED_POSITION,
  2167. front_probe_bed_position = code_seen('F') ? code_value_short() : FRONT_PROBE_BED_POSITION,
  2168. back_probe_bed_position = code_seen('B') ? code_value_short() : BACK_PROBE_BED_POSITION;
  2169. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  2170. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - MIN_PROBE_EDGE,
  2171. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  2172. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  2173. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  2174. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - MIN_PROBE_EDGE,
  2175. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  2176. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  2177. if (left_out || right_out || front_out || back_out) {
  2178. if (left_out) {
  2179. out_of_range_error(PSTR("(L)eft"));
  2180. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - MIN_PROBE_EDGE;
  2181. }
  2182. if (right_out) {
  2183. out_of_range_error(PSTR("(R)ight"));
  2184. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  2185. }
  2186. if (front_out) {
  2187. out_of_range_error(PSTR("(F)ront"));
  2188. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - MIN_PROBE_EDGE;
  2189. }
  2190. if (back_out) {
  2191. out_of_range_error(PSTR("(B)ack"));
  2192. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  2193. }
  2194. return;
  2195. }
  2196. #endif // AUTO_BED_LEVELING_GRID
  2197. #ifdef Z_PROBE_SLED
  2198. dock_sled(false); // engage (un-dock) the probe
  2199. #elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
  2200. deploy_z_probe();
  2201. #endif
  2202. st_synchronize();
  2203. if (!dryrun) {
  2204. // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
  2205. plan_bed_level_matrix.set_to_identity();
  2206. #ifdef DELTA
  2207. reset_bed_level();
  2208. #else //!DELTA
  2209. //vector_3 corrected_position = plan_get_position_mm();
  2210. //corrected_position.debug("position before G29");
  2211. vector_3 uncorrected_position = plan_get_position();
  2212. //uncorrected_position.debug("position during G29");
  2213. current_position[X_AXIS] = uncorrected_position.x;
  2214. current_position[Y_AXIS] = uncorrected_position.y;
  2215. current_position[Z_AXIS] = uncorrected_position.z;
  2216. sync_plan_position();
  2217. #endif // !DELTA
  2218. }
  2219. setup_for_endstop_move();
  2220. feedrate = homing_feedrate[Z_AXIS];
  2221. #ifdef AUTO_BED_LEVELING_GRID
  2222. // probe at the points of a lattice grid
  2223. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
  2224. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  2225. #ifdef DELTA
  2226. delta_grid_spacing[0] = xGridSpacing;
  2227. delta_grid_spacing[1] = yGridSpacing;
  2228. float z_offset = zprobe_zoffset;
  2229. if (code_seen(axis_codes[Z_AXIS])) z_offset += code_value();
  2230. #else // !DELTA
  2231. // solve the plane equation ax + by + d = z
  2232. // A is the matrix with rows [x y 1] for all the probed points
  2233. // B is the vector of the Z positions
  2234. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2235. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2236. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  2237. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  2238. eqnBVector[abl2], // "B" vector of Z points
  2239. mean = 0.0;
  2240. #endif // !DELTA
  2241. int probePointCounter = 0;
  2242. bool zig = true;
  2243. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  2244. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  2245. int xStart, xStop, xInc;
  2246. if (zig) {
  2247. xStart = 0;
  2248. xStop = auto_bed_leveling_grid_points;
  2249. xInc = 1;
  2250. }
  2251. else {
  2252. xStart = auto_bed_leveling_grid_points - 1;
  2253. xStop = -1;
  2254. xInc = -1;
  2255. }
  2256. #ifndef DELTA
  2257. // If do_topography_map is set then don't zig-zag. Just scan in one direction.
  2258. // This gets the probe points in more readable order.
  2259. if (!do_topography_map) zig = !zig;
  2260. #else
  2261. zig = !zig;
  2262. #endif
  2263. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  2264. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  2265. // raise extruder
  2266. float measured_z,
  2267. z_before = probePointCounter ? Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS] : Z_RAISE_BEFORE_PROBING;
  2268. #ifdef DELTA
  2269. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  2270. float distance_from_center = sqrt(xProbe*xProbe + yProbe*yProbe);
  2271. if (distance_from_center > DELTA_PROBABLE_RADIUS) continue;
  2272. #endif //DELTA
  2273. ProbeAction act;
  2274. if (deploy_probe_for_each_reading) // G29 E - Stow between probes
  2275. act = ProbeDeployAndStow;
  2276. else if (yCount == 0 && xCount == xStart)
  2277. act = ProbeDeploy;
  2278. else if (yCount == auto_bed_leveling_grid_points - 1 && xCount == xStop - xInc)
  2279. act = ProbeStow;
  2280. else
  2281. act = ProbeStay;
  2282. measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
  2283. #ifndef DELTA
  2284. mean += measured_z;
  2285. eqnBVector[probePointCounter] = measured_z;
  2286. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  2287. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  2288. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  2289. #else
  2290. bed_level[xCount][yCount] = measured_z + z_offset;
  2291. #endif
  2292. probePointCounter++;
  2293. idle();
  2294. } //xProbe
  2295. } //yProbe
  2296. clean_up_after_endstop_move();
  2297. #ifdef DELTA
  2298. if (!dryrun) extrapolate_unprobed_bed_level();
  2299. print_bed_level();
  2300. #else // !DELTA
  2301. // solve lsq problem
  2302. double *plane_equation_coefficients = qr_solve(abl2, 3, eqnAMatrix, eqnBVector);
  2303. mean /= abl2;
  2304. if (verbose_level) {
  2305. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2306. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  2307. SERIAL_PROTOCOLPGM(" b: ");
  2308. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  2309. SERIAL_PROTOCOLPGM(" d: ");
  2310. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  2311. SERIAL_EOL;
  2312. if (verbose_level > 2) {
  2313. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  2314. SERIAL_PROTOCOL_F(mean, 8);
  2315. SERIAL_EOL;
  2316. }
  2317. }
  2318. if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
  2319. free(plane_equation_coefficients);
  2320. // Show the Topography map if enabled
  2321. if (do_topography_map) {
  2322. SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
  2323. SERIAL_PROTOCOLPGM("+-----------+\n");
  2324. SERIAL_PROTOCOLPGM("|...Back....|\n");
  2325. SERIAL_PROTOCOLPGM("|Left..Right|\n");
  2326. SERIAL_PROTOCOLPGM("|...Front...|\n");
  2327. SERIAL_PROTOCOLPGM("+-----------+\n");
  2328. float min_diff = 999;
  2329. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2330. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2331. int ind = yy * auto_bed_leveling_grid_points + xx;
  2332. float diff = eqnBVector[ind] - mean;
  2333. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  2334. y_tmp = eqnAMatrix[ind + 1 * abl2],
  2335. z_tmp = 0;
  2336. apply_rotation_xyz(plan_bed_level_matrix,x_tmp,y_tmp,z_tmp);
  2337. if (eqnBVector[ind] - z_tmp < min_diff)
  2338. min_diff = eqnBVector[ind] - z_tmp;
  2339. if (diff >= 0.0)
  2340. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  2341. else
  2342. SERIAL_PROTOCOLCHAR(' ');
  2343. SERIAL_PROTOCOL_F(diff, 5);
  2344. } // xx
  2345. SERIAL_EOL;
  2346. } // yy
  2347. SERIAL_EOL;
  2348. if (verbose_level > 3) {
  2349. SERIAL_PROTOCOLPGM(" \nCorrected Bed Height vs. Bed Topology: \n");
  2350. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2351. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2352. int ind = yy * auto_bed_leveling_grid_points + xx;
  2353. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  2354. y_tmp = eqnAMatrix[ind + 1 * abl2],
  2355. z_tmp = 0;
  2356. apply_rotation_xyz(plan_bed_level_matrix,x_tmp,y_tmp,z_tmp);
  2357. float diff = eqnBVector[ind] - z_tmp - min_diff;
  2358. if (diff >= 0.0)
  2359. SERIAL_PROTOCOLPGM(" +");
  2360. // Include + for column alignment
  2361. else
  2362. SERIAL_PROTOCOLCHAR(' ');
  2363. SERIAL_PROTOCOL_F(diff, 5);
  2364. } // xx
  2365. SERIAL_EOL;
  2366. } // yy
  2367. SERIAL_EOL;
  2368. }
  2369. } //do_topography_map
  2370. #endif //!DELTA
  2371. #else // !AUTO_BED_LEVELING_GRID
  2372. // Actions for each probe
  2373. ProbeAction p1, p2, p3;
  2374. if (deploy_probe_for_each_reading)
  2375. p1 = p2 = p3 = ProbeDeployAndStow;
  2376. else
  2377. p1 = ProbeDeploy, p2 = ProbeStay, p3 = ProbeStow;
  2378. // Probe at 3 arbitrary points
  2379. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, p1, verbose_level),
  2380. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p2, verbose_level),
  2381. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p3, verbose_level);
  2382. clean_up_after_endstop_move();
  2383. if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2384. #endif // !AUTO_BED_LEVELING_GRID
  2385. #ifndef DELTA
  2386. if (verbose_level > 0)
  2387. plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
  2388. if (!dryrun) {
  2389. // Correct the Z height difference from z-probe position and hotend tip position.
  2390. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2391. // When the bed is uneven, this height must be corrected.
  2392. float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  2393. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  2394. z_tmp = current_position[Z_AXIS],
  2395. real_z = st_get_position_mm(Z_AXIS); //get the real Z (since the auto bed leveling is already correcting the plane)
  2396. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); // Apply the correction sending the probe offset
  2397. //line below controls z probe offset, zprobe_zoffset is the actual offset that can be modified via m851 or is read from EEPROM
  2398. current_position[Z_AXIS] = z_tmp - real_z - zprobe_zoffset; // The difference is added to current position and sent to planner.
  2399. sync_plan_position();
  2400. }
  2401. #endif // !DELTA
  2402. #ifdef Z_PROBE_SLED
  2403. dock_sled(true); // dock the probe
  2404. #elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
  2405. stow_z_probe();
  2406. #endif
  2407. #ifdef Z_PROBE_END_SCRIPT
  2408. enqueuecommands_P(PSTR(Z_PROBE_END_SCRIPT));
  2409. st_synchronize();
  2410. #endif
  2411. }
  2412. #ifndef Z_PROBE_SLED
  2413. inline void gcode_G30() {
  2414. deploy_z_probe(); // Engage Z Servo endstop if available
  2415. st_synchronize();
  2416. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2417. setup_for_endstop_move();
  2418. feedrate = homing_feedrate[Z_AXIS];
  2419. run_z_probe();
  2420. SERIAL_PROTOCOLPGM("Bed X: ");
  2421. SERIAL_PROTOCOL(current_position[X_AXIS] + 0.0001);
  2422. SERIAL_PROTOCOLPGM(" Y: ");
  2423. SERIAL_PROTOCOL(current_position[Y_AXIS] + 0.0001);
  2424. SERIAL_PROTOCOLPGM(" Z: ");
  2425. SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
  2426. SERIAL_EOL;
  2427. clean_up_after_endstop_move();
  2428. stow_z_probe(); // Retract Z Servo endstop if available
  2429. }
  2430. #endif //!Z_PROBE_SLED
  2431. #endif //ENABLE_AUTO_BED_LEVELING
  2432. /**
  2433. * G92: Set current position to given X Y Z E
  2434. */
  2435. inline void gcode_G92() {
  2436. if (!code_seen(axis_codes[E_AXIS]))
  2437. st_synchronize();
  2438. bool didXYZ = false;
  2439. for (int i = 0; i < NUM_AXIS; i++) {
  2440. if (code_seen(axis_codes[i])) {
  2441. float v = current_position[i] = code_value();
  2442. if (i == E_AXIS)
  2443. plan_set_e_position(v);
  2444. else
  2445. didXYZ = true;
  2446. }
  2447. }
  2448. if (didXYZ) {
  2449. #if defined(DELTA) || defined(SCARA)
  2450. sync_plan_position_delta();
  2451. #else
  2452. sync_plan_position();
  2453. #endif
  2454. }
  2455. }
  2456. #ifdef ULTIPANEL
  2457. /**
  2458. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  2459. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  2460. */
  2461. inline void gcode_M0_M1() {
  2462. char *args = current_command_args;
  2463. millis_t codenum = 0;
  2464. bool hasP = false, hasS = false;
  2465. if (code_seen('P')) {
  2466. codenum = code_value_short(); // milliseconds to wait
  2467. hasP = codenum > 0;
  2468. }
  2469. if (code_seen('S')) {
  2470. codenum = code_value() * 1000; // seconds to wait
  2471. hasS = codenum > 0;
  2472. }
  2473. if (!hasP && !hasS && *args != '\0')
  2474. lcd_setstatus(args, true);
  2475. else {
  2476. LCD_MESSAGEPGM(MSG_USERWAIT);
  2477. #if defined(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  2478. dontExpireStatus();
  2479. #endif
  2480. }
  2481. lcd_ignore_click();
  2482. st_synchronize();
  2483. refresh_cmd_timeout();
  2484. if (codenum > 0) {
  2485. codenum += previous_cmd_ms; // wait until this time for a click
  2486. while (millis() < codenum && !lcd_clicked()) idle();
  2487. lcd_ignore_click(false);
  2488. }
  2489. else {
  2490. if (!lcd_detected()) return;
  2491. while (!lcd_clicked()) idle();
  2492. }
  2493. if (IS_SD_PRINTING)
  2494. LCD_MESSAGEPGM(MSG_RESUMING);
  2495. else
  2496. LCD_MESSAGEPGM(WELCOME_MSG);
  2497. }
  2498. #endif // ULTIPANEL
  2499. /**
  2500. * M17: Enable power on all stepper motors
  2501. */
  2502. inline void gcode_M17() {
  2503. LCD_MESSAGEPGM(MSG_NO_MOVE);
  2504. enable_all_steppers();
  2505. }
  2506. #ifdef SDSUPPORT
  2507. /**
  2508. * M20: List SD card to serial output
  2509. */
  2510. inline void gcode_M20() {
  2511. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  2512. card.ls();
  2513. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  2514. }
  2515. /**
  2516. * M21: Init SD Card
  2517. */
  2518. inline void gcode_M21() {
  2519. card.initsd();
  2520. }
  2521. /**
  2522. * M22: Release SD Card
  2523. */
  2524. inline void gcode_M22() {
  2525. card.release();
  2526. }
  2527. /**
  2528. * M23: Select a file
  2529. */
  2530. inline void gcode_M23() {
  2531. card.openFile(current_command_args, true);
  2532. }
  2533. /**
  2534. * M24: Start SD Print
  2535. */
  2536. inline void gcode_M24() {
  2537. card.startFileprint();
  2538. print_job_start_ms = millis();
  2539. }
  2540. /**
  2541. * M25: Pause SD Print
  2542. */
  2543. inline void gcode_M25() {
  2544. card.pauseSDPrint();
  2545. }
  2546. /**
  2547. * M26: Set SD Card file index
  2548. */
  2549. inline void gcode_M26() {
  2550. if (card.cardOK && code_seen('S'))
  2551. card.setIndex(code_value_short());
  2552. }
  2553. /**
  2554. * M27: Get SD Card status
  2555. */
  2556. inline void gcode_M27() {
  2557. card.getStatus();
  2558. }
  2559. /**
  2560. * M28: Start SD Write
  2561. */
  2562. inline void gcode_M28() {
  2563. card.openFile(current_command_args, false);
  2564. }
  2565. /**
  2566. * M29: Stop SD Write
  2567. * Processed in write to file routine above
  2568. */
  2569. inline void gcode_M29() {
  2570. // card.saving = false;
  2571. }
  2572. /**
  2573. * M30 <filename>: Delete SD Card file
  2574. */
  2575. inline void gcode_M30() {
  2576. if (card.cardOK) {
  2577. card.closefile();
  2578. card.removeFile(current_command_args);
  2579. }
  2580. }
  2581. #endif
  2582. /**
  2583. * M31: Get the time since the start of SD Print (or last M109)
  2584. */
  2585. inline void gcode_M31() {
  2586. print_job_stop_ms = millis();
  2587. millis_t t = (print_job_stop_ms - print_job_start_ms) / 1000;
  2588. int min = t / 60, sec = t % 60;
  2589. char time[30];
  2590. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  2591. SERIAL_ECHO_START;
  2592. SERIAL_ECHOLN(time);
  2593. lcd_setstatus(time);
  2594. autotempShutdown();
  2595. }
  2596. #ifdef SDSUPPORT
  2597. /**
  2598. * M32: Select file and start SD Print
  2599. */
  2600. inline void gcode_M32() {
  2601. if (card.sdprinting)
  2602. st_synchronize();
  2603. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  2604. if (!namestartpos)
  2605. namestartpos = current_command_args; // Default name position, 4 letters after the M
  2606. else
  2607. namestartpos++; //to skip the '!'
  2608. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  2609. if (card.cardOK) {
  2610. card.openFile(namestartpos, true, !call_procedure);
  2611. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  2612. card.setIndex(code_value_short());
  2613. card.startFileprint();
  2614. if (!call_procedure)
  2615. print_job_start_ms = millis(); //procedure calls count as normal print time.
  2616. }
  2617. }
  2618. #ifdef LONG_FILENAME_HOST_SUPPORT
  2619. /**
  2620. * M33: Get the long full path of a file or folder
  2621. *
  2622. * Parameters:
  2623. * <dospath> Case-insensitive DOS-style path to a file or folder
  2624. *
  2625. * Example:
  2626. * M33 miscel~1/armchair/armcha~1.gco
  2627. *
  2628. * Output:
  2629. * /Miscellaneous/Armchair/Armchair.gcode
  2630. */
  2631. inline void gcode_M33() {
  2632. card.printLongPath(current_command_args);
  2633. }
  2634. #endif
  2635. /**
  2636. * M928: Start SD Write
  2637. */
  2638. inline void gcode_M928() {
  2639. card.openLogFile(current_command_args);
  2640. }
  2641. #endif // SDSUPPORT
  2642. /**
  2643. * M42: Change pin status via GCode
  2644. */
  2645. inline void gcode_M42() {
  2646. if (code_seen('S')) {
  2647. int pin_status = code_value_short(),
  2648. pin_number = LED_PIN;
  2649. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  2650. pin_number = code_value_short();
  2651. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins) / sizeof(*sensitive_pins)); i++) {
  2652. if (sensitive_pins[i] == pin_number) {
  2653. pin_number = -1;
  2654. break;
  2655. }
  2656. }
  2657. #if HAS_FAN
  2658. if (pin_number == FAN_PIN) fanSpeed = pin_status;
  2659. #endif
  2660. if (pin_number > -1) {
  2661. pinMode(pin_number, OUTPUT);
  2662. digitalWrite(pin_number, pin_status);
  2663. analogWrite(pin_number, pin_status);
  2664. }
  2665. } // code_seen('S')
  2666. }
  2667. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  2668. // This is redundant since the SanityCheck.h already checks for a valid Z_PROBE_PIN, but here for clarity.
  2669. #ifdef Z_PROBE_ENDSTOP
  2670. #if !HAS_Z_PROBE
  2671. #error You must define Z_PROBE_PIN to enable Z-Probe repeatability calculation.
  2672. #endif
  2673. #elif !HAS_Z_MIN
  2674. #error You must define Z_MIN_PIN to enable Z-Probe repeatability calculation.
  2675. #endif
  2676. /**
  2677. * M48: Z-Probe repeatability measurement function.
  2678. *
  2679. * Usage:
  2680. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  2681. * P = Number of sampled points (4-50, default 10)
  2682. * X = Sample X position
  2683. * Y = Sample Y position
  2684. * V = Verbose level (0-4, default=1)
  2685. * E = Engage probe for each reading
  2686. * L = Number of legs of movement before probe
  2687. *
  2688. * This function assumes the bed has been homed. Specifically, that a G28 command
  2689. * as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  2690. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  2691. * regenerated.
  2692. */
  2693. inline void gcode_M48() {
  2694. double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
  2695. uint8_t verbose_level = 1, n_samples = 10, n_legs = 0;
  2696. if (code_seen('V') || code_seen('v')) {
  2697. verbose_level = code_value_short();
  2698. if (verbose_level < 0 || verbose_level > 4 ) {
  2699. SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
  2700. return;
  2701. }
  2702. }
  2703. if (verbose_level > 0)
  2704. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
  2705. if (code_seen('P') || code_seen('p')) {
  2706. n_samples = code_value_short();
  2707. if (n_samples < 4 || n_samples > 50) {
  2708. SERIAL_PROTOCOLPGM("?Sample size not plausible (4-50).\n");
  2709. return;
  2710. }
  2711. }
  2712. double X_current = st_get_position_mm(X_AXIS),
  2713. Y_current = st_get_position_mm(Y_AXIS),
  2714. Z_current = st_get_position_mm(Z_AXIS),
  2715. E_current = st_get_position_mm(E_AXIS),
  2716. X_probe_location = X_current, Y_probe_location = Y_current,
  2717. Z_start_location = Z_current + Z_RAISE_BEFORE_PROBING;
  2718. bool deploy_probe_for_each_reading = code_seen('E') || code_seen('e');
  2719. if (code_seen('X') || code_seen('x')) {
  2720. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  2721. if (X_probe_location < X_MIN_POS || X_probe_location > X_MAX_POS) {
  2722. out_of_range_error(PSTR("X"));
  2723. return;
  2724. }
  2725. }
  2726. if (code_seen('Y') || code_seen('y')) {
  2727. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  2728. if (Y_probe_location < Y_MIN_POS || Y_probe_location > Y_MAX_POS) {
  2729. out_of_range_error(PSTR("Y"));
  2730. return;
  2731. }
  2732. }
  2733. if (code_seen('L') || code_seen('l')) {
  2734. n_legs = code_value_short();
  2735. if (n_legs == 1) n_legs = 2;
  2736. if (n_legs < 0 || n_legs > 15) {
  2737. SERIAL_PROTOCOLPGM("?Number of legs in movement not plausible (0-15).\n");
  2738. return;
  2739. }
  2740. }
  2741. //
  2742. // Do all the preliminary setup work. First raise the probe.
  2743. //
  2744. st_synchronize();
  2745. plan_bed_level_matrix.set_to_identity();
  2746. plan_buffer_line(X_current, Y_current, Z_start_location, E_current, homing_feedrate[Z_AXIS] / 60, active_extruder);
  2747. st_synchronize();
  2748. //
  2749. // Now get everything to the specified probe point So we can safely do a probe to
  2750. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  2751. // use that as a starting point for each probe.
  2752. //
  2753. if (verbose_level > 2)
  2754. SERIAL_PROTOCOLPGM("Positioning the probe...\n");
  2755. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2756. E_current,
  2757. homing_feedrate[X_AXIS]/60,
  2758. active_extruder);
  2759. st_synchronize();
  2760. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  2761. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  2762. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2763. current_position[E_AXIS] = E_current = st_get_position_mm(E_AXIS);
  2764. //
  2765. // OK, do the initial probe to get us close to the bed.
  2766. // Then retrace the right amount and use that in subsequent probes
  2767. //
  2768. deploy_z_probe();
  2769. setup_for_endstop_move();
  2770. run_z_probe();
  2771. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2772. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2773. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2774. E_current,
  2775. homing_feedrate[X_AXIS]/60,
  2776. active_extruder);
  2777. st_synchronize();
  2778. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2779. if (deploy_probe_for_each_reading) stow_z_probe();
  2780. for (uint8_t n=0; n < n_samples; n++) {
  2781. // Make sure we are at the probe location
  2782. do_blocking_move_to(X_probe_location, Y_probe_location, Z_start_location); // this also updates current_position
  2783. if (n_legs) {
  2784. millis_t ms = millis();
  2785. double radius = ms % (X_MAX_LENGTH / 4), // limit how far out to go
  2786. theta = RADIANS(ms % 360L);
  2787. float dir = (ms & 0x0001) ? 1 : -1; // clockwise or counter clockwise
  2788. //SERIAL_ECHOPAIR("starting radius: ",radius);
  2789. //SERIAL_ECHOPAIR(" theta: ",theta);
  2790. //SERIAL_ECHOPAIR(" direction: ",dir);
  2791. //SERIAL_EOL;
  2792. for (uint8_t l = 0; l < n_legs - 1; l++) {
  2793. ms = millis();
  2794. theta += RADIANS(dir * (ms % 20L));
  2795. radius += (ms % 10L) - 5L;
  2796. if (radius < 0.0) radius = -radius;
  2797. X_current = X_probe_location + cos(theta) * radius;
  2798. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  2799. Y_current = Y_probe_location + sin(theta) * radius;
  2800. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  2801. if (verbose_level > 3) {
  2802. SERIAL_ECHOPAIR("x: ", X_current);
  2803. SERIAL_ECHOPAIR("y: ", Y_current);
  2804. SERIAL_EOL;
  2805. }
  2806. do_blocking_move_to(X_current, Y_current, Z_current); // this also updates current_position
  2807. } // n_legs loop
  2808. // Go back to the probe location
  2809. do_blocking_move_to(X_probe_location, Y_probe_location, Z_start_location); // this also updates current_position
  2810. } // n_legs
  2811. if (deploy_probe_for_each_reading) {
  2812. deploy_z_probe();
  2813. delay(1000);
  2814. }
  2815. setup_for_endstop_move();
  2816. run_z_probe();
  2817. sample_set[n] = current_position[Z_AXIS];
  2818. //
  2819. // Get the current mean for the data points we have so far
  2820. //
  2821. sum = 0.0;
  2822. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  2823. mean = sum / (n + 1);
  2824. //
  2825. // Now, use that mean to calculate the standard deviation for the
  2826. // data points we have so far
  2827. //
  2828. sum = 0.0;
  2829. for (uint8_t j = 0; j <= n; j++) {
  2830. float ss = sample_set[j] - mean;
  2831. sum += ss * ss;
  2832. }
  2833. sigma = sqrt(sum / (n + 1));
  2834. if (verbose_level > 1) {
  2835. SERIAL_PROTOCOL(n+1);
  2836. SERIAL_PROTOCOLPGM(" of ");
  2837. SERIAL_PROTOCOL((int)n_samples);
  2838. SERIAL_PROTOCOLPGM(" z: ");
  2839. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  2840. if (verbose_level > 2) {
  2841. SERIAL_PROTOCOLPGM(" mean: ");
  2842. SERIAL_PROTOCOL_F(mean,6);
  2843. SERIAL_PROTOCOLPGM(" sigma: ");
  2844. SERIAL_PROTOCOL_F(sigma,6);
  2845. }
  2846. }
  2847. if (verbose_level > 0) SERIAL_EOL;
  2848. plan_buffer_line(X_probe_location, Y_probe_location, Z_start_location, current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2849. st_synchronize();
  2850. // Stow between
  2851. if (deploy_probe_for_each_reading) {
  2852. stow_z_probe();
  2853. delay(1000);
  2854. }
  2855. }
  2856. // Stow after
  2857. if (!deploy_probe_for_each_reading) {
  2858. stow_z_probe();
  2859. delay(1000);
  2860. }
  2861. clean_up_after_endstop_move();
  2862. if (verbose_level > 0) {
  2863. SERIAL_PROTOCOLPGM("Mean: ");
  2864. SERIAL_PROTOCOL_F(mean, 6);
  2865. SERIAL_EOL;
  2866. }
  2867. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2868. SERIAL_PROTOCOL_F(sigma, 6);
  2869. SERIAL_EOL; SERIAL_EOL;
  2870. }
  2871. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  2872. /**
  2873. * M104: Set hot end temperature
  2874. */
  2875. inline void gcode_M104() {
  2876. if (setTargetedHotend(104)) return;
  2877. if (marlin_debug_flags & DEBUG_DRYRUN) return;
  2878. if (code_seen('S')) {
  2879. float temp = code_value();
  2880. setTargetHotend(temp, target_extruder);
  2881. #ifdef DUAL_X_CARRIAGE
  2882. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  2883. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  2884. #endif
  2885. }
  2886. }
  2887. /**
  2888. * M105: Read hot end and bed temperature
  2889. */
  2890. inline void gcode_M105() {
  2891. if (setTargetedHotend(105)) return;
  2892. #if HAS_TEMP_0 || HAS_TEMP_BED || defined(HEATER_0_USES_MAX6675)
  2893. SERIAL_PROTOCOLPGM(MSG_OK);
  2894. #if HAS_TEMP_0 || defined(HEATER_0_USES_MAX6675)
  2895. SERIAL_PROTOCOLPGM(" T:");
  2896. SERIAL_PROTOCOL_F(degHotend(target_extruder), 1);
  2897. SERIAL_PROTOCOLPGM(" /");
  2898. SERIAL_PROTOCOL_F(degTargetHotend(target_extruder), 1);
  2899. #endif
  2900. #if HAS_TEMP_BED
  2901. SERIAL_PROTOCOLPGM(" B:");
  2902. SERIAL_PROTOCOL_F(degBed(), 1);
  2903. SERIAL_PROTOCOLPGM(" /");
  2904. SERIAL_PROTOCOL_F(degTargetBed(), 1);
  2905. #endif
  2906. for (int8_t e = 0; e < EXTRUDERS; ++e) {
  2907. SERIAL_PROTOCOLPGM(" T");
  2908. SERIAL_PROTOCOL(e);
  2909. SERIAL_PROTOCOLCHAR(':');
  2910. SERIAL_PROTOCOL_F(degHotend(e), 1);
  2911. SERIAL_PROTOCOLPGM(" /");
  2912. SERIAL_PROTOCOL_F(degTargetHotend(e), 1);
  2913. }
  2914. #else // !HAS_TEMP_0 && !HAS_TEMP_BED
  2915. SERIAL_ERROR_START;
  2916. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  2917. #endif
  2918. SERIAL_PROTOCOLPGM(" @:");
  2919. #ifdef EXTRUDER_WATTS
  2920. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(target_extruder))/127);
  2921. SERIAL_PROTOCOLCHAR('W');
  2922. #else
  2923. SERIAL_PROTOCOL(getHeaterPower(target_extruder));
  2924. #endif
  2925. SERIAL_PROTOCOLPGM(" B@:");
  2926. #ifdef BED_WATTS
  2927. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2928. SERIAL_PROTOCOLCHAR('W');
  2929. #else
  2930. SERIAL_PROTOCOL(getHeaterPower(-1));
  2931. #endif
  2932. #ifdef SHOW_TEMP_ADC_VALUES
  2933. #if HAS_TEMP_BED
  2934. SERIAL_PROTOCOLPGM(" ADC B:");
  2935. SERIAL_PROTOCOL_F(degBed(),1);
  2936. SERIAL_PROTOCOLPGM("C->");
  2937. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  2938. #endif
  2939. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2940. SERIAL_PROTOCOLPGM(" T");
  2941. SERIAL_PROTOCOL(cur_extruder);
  2942. SERIAL_PROTOCOLCHAR(':');
  2943. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2944. SERIAL_PROTOCOLPGM("C->");
  2945. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  2946. }
  2947. #endif
  2948. SERIAL_EOL;
  2949. }
  2950. #if HAS_FAN
  2951. /**
  2952. * M106: Set Fan Speed
  2953. */
  2954. inline void gcode_M106() { fanSpeed = code_seen('S') ? constrain(code_value_short(), 0, 255) : 255; }
  2955. /**
  2956. * M107: Fan Off
  2957. */
  2958. inline void gcode_M107() { fanSpeed = 0; }
  2959. #endif // HAS_FAN
  2960. /**
  2961. * M109: Wait for extruder(s) to reach temperature
  2962. */
  2963. inline void gcode_M109() {
  2964. if (setTargetedHotend(109)) return;
  2965. if (marlin_debug_flags & DEBUG_DRYRUN) return;
  2966. LCD_MESSAGEPGM(MSG_HEATING);
  2967. no_wait_for_cooling = code_seen('S');
  2968. if (no_wait_for_cooling || code_seen('R')) {
  2969. float temp = code_value();
  2970. setTargetHotend(temp, target_extruder);
  2971. #ifdef DUAL_X_CARRIAGE
  2972. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  2973. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  2974. #endif
  2975. }
  2976. #ifdef AUTOTEMP
  2977. autotemp_enabled = code_seen('F');
  2978. if (autotemp_enabled) autotemp_factor = code_value();
  2979. if (code_seen('S')) autotemp_min = code_value();
  2980. if (code_seen('B')) autotemp_max = code_value();
  2981. #endif
  2982. millis_t temp_ms = millis();
  2983. /* See if we are heating up or cooling down */
  2984. target_direction = isHeatingHotend(target_extruder); // true if heating, false if cooling
  2985. cancel_heatup = false;
  2986. #ifdef TEMP_RESIDENCY_TIME
  2987. long residency_start_ms = -1;
  2988. /* continue to loop until we have reached the target temp
  2989. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  2990. while((!cancel_heatup)&&((residency_start_ms == -1) ||
  2991. (residency_start_ms >= 0 && (((unsigned int) (millis() - residency_start_ms)) < (TEMP_RESIDENCY_TIME * 1000UL)))) )
  2992. #else
  2993. while ( target_direction ? (isHeatingHotend(target_extruder)) : (isCoolingHotend(target_extruder)&&(no_wait_for_cooling==false)) )
  2994. #endif //TEMP_RESIDENCY_TIME
  2995. { // while loop
  2996. if (millis() > temp_ms + 1000UL) { //Print temp & remaining time every 1s while waiting
  2997. SERIAL_PROTOCOLPGM("T:");
  2998. SERIAL_PROTOCOL_F(degHotend(target_extruder),1);
  2999. SERIAL_PROTOCOLPGM(" E:");
  3000. SERIAL_PROTOCOL((int)target_extruder);
  3001. #ifdef TEMP_RESIDENCY_TIME
  3002. SERIAL_PROTOCOLPGM(" W:");
  3003. if (residency_start_ms > -1) {
  3004. temp_ms = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residency_start_ms)) / 1000UL;
  3005. SERIAL_PROTOCOLLN(temp_ms);
  3006. }
  3007. else {
  3008. SERIAL_PROTOCOLLNPGM("?");
  3009. }
  3010. #else
  3011. SERIAL_EOL;
  3012. #endif
  3013. temp_ms = millis();
  3014. }
  3015. idle();
  3016. #ifdef TEMP_RESIDENCY_TIME
  3017. // start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  3018. // or when current temp falls outside the hysteresis after target temp was reached
  3019. if ((residency_start_ms == -1 && target_direction && (degHotend(target_extruder) >= (degTargetHotend(target_extruder)-TEMP_WINDOW))) ||
  3020. (residency_start_ms == -1 && !target_direction && (degHotend(target_extruder) <= (degTargetHotend(target_extruder)+TEMP_WINDOW))) ||
  3021. (residency_start_ms > -1 && labs(degHotend(target_extruder) - degTargetHotend(target_extruder)) > TEMP_HYSTERESIS) )
  3022. {
  3023. residency_start_ms = millis();
  3024. }
  3025. #endif //TEMP_RESIDENCY_TIME
  3026. }
  3027. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  3028. refresh_cmd_timeout();
  3029. print_job_start_ms = previous_cmd_ms;
  3030. }
  3031. #if HAS_TEMP_BED
  3032. /**
  3033. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  3034. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  3035. */
  3036. inline void gcode_M190() {
  3037. if (marlin_debug_flags & DEBUG_DRYRUN) return;
  3038. LCD_MESSAGEPGM(MSG_BED_HEATING);
  3039. no_wait_for_cooling = code_seen('S');
  3040. if (no_wait_for_cooling || code_seen('R'))
  3041. setTargetBed(code_value());
  3042. millis_t temp_ms = millis();
  3043. cancel_heatup = false;
  3044. target_direction = isHeatingBed(); // true if heating, false if cooling
  3045. while ((target_direction && !cancel_heatup) ? isHeatingBed() : isCoolingBed() && !no_wait_for_cooling) {
  3046. millis_t ms = millis();
  3047. if (ms > temp_ms + 1000UL) { //Print Temp Reading every 1 second while heating up.
  3048. temp_ms = ms;
  3049. float tt = degHotend(active_extruder);
  3050. SERIAL_PROTOCOLPGM("T:");
  3051. SERIAL_PROTOCOL(tt);
  3052. SERIAL_PROTOCOLPGM(" E:");
  3053. SERIAL_PROTOCOL((int)active_extruder);
  3054. SERIAL_PROTOCOLPGM(" B:");
  3055. SERIAL_PROTOCOL_F(degBed(), 1);
  3056. SERIAL_EOL;
  3057. }
  3058. idle();
  3059. }
  3060. LCD_MESSAGEPGM(MSG_BED_DONE);
  3061. refresh_cmd_timeout();
  3062. }
  3063. #endif // HAS_TEMP_BED
  3064. /**
  3065. * M111: Set the debug level
  3066. */
  3067. inline void gcode_M111() {
  3068. marlin_debug_flags = code_seen('S') ? code_value_short() : DEBUG_INFO|DEBUG_COMMUNICATION;
  3069. if (marlin_debug_flags & DEBUG_ECHO) {
  3070. SERIAL_ECHO_START;
  3071. SERIAL_ECHOLNPGM(MSG_DEBUG_ECHO);
  3072. }
  3073. // FOR MOMENT NOT ACTIVE
  3074. //if (marlin_debug_flags & DEBUG_INFO) SERIAL_ECHOLNPGM(MSG_DEBUG_INFO);
  3075. //if (marlin_debug_flags & DEBUG_ERRORS) SERIAL_ECHOLNPGM(MSG_DEBUG_ERRORS);
  3076. if (marlin_debug_flags & DEBUG_DRYRUN) {
  3077. SERIAL_ECHO_START;
  3078. SERIAL_ECHOLNPGM(MSG_DEBUG_DRYRUN);
  3079. disable_all_heaters();
  3080. }
  3081. }
  3082. /**
  3083. * M112: Emergency Stop
  3084. */
  3085. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  3086. #ifdef BARICUDA
  3087. #if HAS_HEATER_1
  3088. /**
  3089. * M126: Heater 1 valve open
  3090. */
  3091. inline void gcode_M126() { ValvePressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  3092. /**
  3093. * M127: Heater 1 valve close
  3094. */
  3095. inline void gcode_M127() { ValvePressure = 0; }
  3096. #endif
  3097. #if HAS_HEATER_2
  3098. /**
  3099. * M128: Heater 2 valve open
  3100. */
  3101. inline void gcode_M128() { EtoPPressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  3102. /**
  3103. * M129: Heater 2 valve close
  3104. */
  3105. inline void gcode_M129() { EtoPPressure = 0; }
  3106. #endif
  3107. #endif //BARICUDA
  3108. /**
  3109. * M140: Set bed temperature
  3110. */
  3111. inline void gcode_M140() {
  3112. if (marlin_debug_flags & DEBUG_DRYRUN) return;
  3113. if (code_seen('S')) setTargetBed(code_value());
  3114. }
  3115. #ifdef ULTIPANEL
  3116. /**
  3117. * M145: Set the heatup state for a material in the LCD menu
  3118. * S<material> (0=PLA, 1=ABS)
  3119. * H<hotend temp>
  3120. * B<bed temp>
  3121. * F<fan speed>
  3122. */
  3123. inline void gcode_M145() {
  3124. uint8_t material = code_seen('S') ? code_value_short() : 0;
  3125. if (material < 0 || material > 1) {
  3126. SERIAL_ERROR_START;
  3127. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  3128. }
  3129. else {
  3130. int v;
  3131. switch (material) {
  3132. case 0:
  3133. if (code_seen('H')) {
  3134. v = code_value_short();
  3135. plaPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  3136. }
  3137. if (code_seen('F')) {
  3138. v = code_value_short();
  3139. plaPreheatFanSpeed = constrain(v, 0, 255);
  3140. }
  3141. #if TEMP_SENSOR_BED != 0
  3142. if (code_seen('B')) {
  3143. v = code_value_short();
  3144. plaPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  3145. }
  3146. #endif
  3147. break;
  3148. case 1:
  3149. if (code_seen('H')) {
  3150. v = code_value_short();
  3151. absPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  3152. }
  3153. if (code_seen('F')) {
  3154. v = code_value_short();
  3155. absPreheatFanSpeed = constrain(v, 0, 255);
  3156. }
  3157. #if TEMP_SENSOR_BED != 0
  3158. if (code_seen('B')) {
  3159. v = code_value_short();
  3160. absPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  3161. }
  3162. #endif
  3163. break;
  3164. }
  3165. }
  3166. }
  3167. #endif
  3168. #if HAS_POWER_SWITCH
  3169. /**
  3170. * M80: Turn on Power Supply
  3171. */
  3172. inline void gcode_M80() {
  3173. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  3174. // If you have a switch on suicide pin, this is useful
  3175. // if you want to start another print with suicide feature after
  3176. // a print without suicide...
  3177. #if HAS_SUICIDE
  3178. OUT_WRITE(SUICIDE_PIN, HIGH);
  3179. #endif
  3180. #ifdef ULTIPANEL
  3181. powersupply = true;
  3182. LCD_MESSAGEPGM(WELCOME_MSG);
  3183. lcd_update();
  3184. #endif
  3185. }
  3186. #endif // HAS_POWER_SWITCH
  3187. /**
  3188. * M81: Turn off Power, including Power Supply, if there is one.
  3189. *
  3190. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  3191. */
  3192. inline void gcode_M81() {
  3193. disable_all_heaters();
  3194. st_synchronize();
  3195. disable_e0();
  3196. disable_e1();
  3197. disable_e2();
  3198. disable_e3();
  3199. finishAndDisableSteppers();
  3200. fanSpeed = 0;
  3201. delay(1000); // Wait 1 second before switching off
  3202. #if HAS_SUICIDE
  3203. st_synchronize();
  3204. suicide();
  3205. #elif HAS_POWER_SWITCH
  3206. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  3207. #endif
  3208. #ifdef ULTIPANEL
  3209. #if HAS_POWER_SWITCH
  3210. powersupply = false;
  3211. #endif
  3212. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  3213. lcd_update();
  3214. #endif
  3215. }
  3216. /**
  3217. * M82: Set E codes absolute (default)
  3218. */
  3219. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  3220. /**
  3221. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  3222. */
  3223. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  3224. /**
  3225. * M18, M84: Disable all stepper motors
  3226. */
  3227. inline void gcode_M18_M84() {
  3228. if (code_seen('S')) {
  3229. stepper_inactive_time = code_value() * 1000;
  3230. }
  3231. else {
  3232. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  3233. if (all_axis) {
  3234. st_synchronize();
  3235. disable_e0();
  3236. disable_e1();
  3237. disable_e2();
  3238. disable_e3();
  3239. finishAndDisableSteppers();
  3240. }
  3241. else {
  3242. st_synchronize();
  3243. if (code_seen('X')) disable_x();
  3244. if (code_seen('Y')) disable_y();
  3245. if (code_seen('Z')) disable_z();
  3246. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3247. if (code_seen('E')) {
  3248. disable_e0();
  3249. disable_e1();
  3250. disable_e2();
  3251. disable_e3();
  3252. }
  3253. #endif
  3254. }
  3255. }
  3256. }
  3257. /**
  3258. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  3259. */
  3260. inline void gcode_M85() {
  3261. if (code_seen('S')) max_inactive_time = code_value() * 1000;
  3262. }
  3263. /**
  3264. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  3265. * (Follows the same syntax as G92)
  3266. */
  3267. inline void gcode_M92() {
  3268. for(int8_t i=0; i < NUM_AXIS; i++) {
  3269. if (code_seen(axis_codes[i])) {
  3270. if (i == E_AXIS) {
  3271. float value = code_value();
  3272. if (value < 20.0) {
  3273. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3274. max_e_jerk *= factor;
  3275. max_feedrate[i] *= factor;
  3276. axis_steps_per_sqr_second[i] *= factor;
  3277. }
  3278. axis_steps_per_unit[i] = value;
  3279. }
  3280. else {
  3281. axis_steps_per_unit[i] = code_value();
  3282. }
  3283. }
  3284. }
  3285. }
  3286. /**
  3287. * M114: Output current position to serial port
  3288. */
  3289. inline void gcode_M114() {
  3290. SERIAL_PROTOCOLPGM("X:");
  3291. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3292. SERIAL_PROTOCOLPGM(" Y:");
  3293. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3294. SERIAL_PROTOCOLPGM(" Z:");
  3295. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3296. SERIAL_PROTOCOLPGM(" E:");
  3297. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3298. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  3299. SERIAL_PROTOCOL(st_get_position_mm(X_AXIS));
  3300. SERIAL_PROTOCOLPGM(" Y:");
  3301. SERIAL_PROTOCOL(st_get_position_mm(Y_AXIS));
  3302. SERIAL_PROTOCOLPGM(" Z:");
  3303. SERIAL_PROTOCOL(st_get_position_mm(Z_AXIS));
  3304. SERIAL_EOL;
  3305. #ifdef SCARA
  3306. SERIAL_PROTOCOLPGM("SCARA Theta:");
  3307. SERIAL_PROTOCOL(delta[X_AXIS]);
  3308. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  3309. SERIAL_PROTOCOL(delta[Y_AXIS]);
  3310. SERIAL_EOL;
  3311. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  3312. SERIAL_PROTOCOL(delta[X_AXIS]+home_offset[X_AXIS]);
  3313. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  3314. SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+home_offset[Y_AXIS]);
  3315. SERIAL_EOL;
  3316. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  3317. SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
  3318. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  3319. SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
  3320. SERIAL_EOL; SERIAL_EOL;
  3321. #endif
  3322. }
  3323. /**
  3324. * M115: Capabilities string
  3325. */
  3326. inline void gcode_M115() {
  3327. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  3328. }
  3329. /**
  3330. * M117: Set LCD Status Message
  3331. */
  3332. inline void gcode_M117() {
  3333. lcd_setstatus(current_command_args);
  3334. }
  3335. /**
  3336. * M119: Output endstop states to serial output
  3337. */
  3338. inline void gcode_M119() {
  3339. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  3340. #if HAS_X_MIN
  3341. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  3342. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3343. #endif
  3344. #if HAS_X_MAX
  3345. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  3346. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3347. #endif
  3348. #if HAS_Y_MIN
  3349. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  3350. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3351. #endif
  3352. #if HAS_Y_MAX
  3353. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  3354. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3355. #endif
  3356. #if HAS_Z_MIN
  3357. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  3358. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3359. #endif
  3360. #if HAS_Z_MAX
  3361. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  3362. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3363. #endif
  3364. #if HAS_Z2_MAX
  3365. SERIAL_PROTOCOLPGM(MSG_Z2_MAX);
  3366. SERIAL_PROTOCOLLN(((READ(Z2_MAX_PIN)^Z2_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3367. #endif
  3368. #if HAS_Z_PROBE
  3369. SERIAL_PROTOCOLPGM(MSG_Z_PROBE);
  3370. SERIAL_PROTOCOLLN(((READ(Z_PROBE_PIN)^Z_PROBE_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3371. #endif
  3372. }
  3373. /**
  3374. * M120: Enable endstops
  3375. */
  3376. inline void gcode_M120() { enable_endstops(true); }
  3377. /**
  3378. * M121: Disable endstops
  3379. */
  3380. inline void gcode_M121() { enable_endstops(false); }
  3381. #ifdef BLINKM
  3382. /**
  3383. * M150: Set Status LED Color - Use R-U-B for R-G-B
  3384. */
  3385. inline void gcode_M150() {
  3386. SendColors(
  3387. code_seen('R') ? (byte)code_value_short() : 0,
  3388. code_seen('U') ? (byte)code_value_short() : 0,
  3389. code_seen('B') ? (byte)code_value_short() : 0
  3390. );
  3391. }
  3392. #endif // BLINKM
  3393. /**
  3394. * M200: Set filament diameter and set E axis units to cubic millimeters
  3395. *
  3396. * T<extruder> - Optional extruder number. Current extruder if omitted.
  3397. * D<mm> - Diameter of the filament. Use "D0" to set units back to millimeters.
  3398. */
  3399. inline void gcode_M200() {
  3400. if (setTargetedHotend(200)) return;
  3401. if (code_seen('D')) {
  3402. float diameter = code_value();
  3403. // setting any extruder filament size disables volumetric on the assumption that
  3404. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3405. // for all extruders
  3406. volumetric_enabled = (diameter != 0.0);
  3407. if (volumetric_enabled) {
  3408. filament_size[target_extruder] = diameter;
  3409. // make sure all extruders have some sane value for the filament size
  3410. for (int i=0; i<EXTRUDERS; i++)
  3411. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  3412. }
  3413. }
  3414. else {
  3415. //reserved for setting filament diameter via UFID or filament measuring device
  3416. return;
  3417. }
  3418. calculate_volumetric_multipliers();
  3419. }
  3420. /**
  3421. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  3422. */
  3423. inline void gcode_M201() {
  3424. for (int8_t i=0; i < NUM_AXIS; i++) {
  3425. if (code_seen(axis_codes[i])) {
  3426. max_acceleration_units_per_sq_second[i] = code_value();
  3427. }
  3428. }
  3429. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3430. reset_acceleration_rates();
  3431. }
  3432. #if 0 // Not used for Sprinter/grbl gen6
  3433. inline void gcode_M202() {
  3434. for(int8_t i=0; i < NUM_AXIS; i++) {
  3435. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3436. }
  3437. }
  3438. #endif
  3439. /**
  3440. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  3441. */
  3442. inline void gcode_M203() {
  3443. for (int8_t i=0; i < NUM_AXIS; i++) {
  3444. if (code_seen(axis_codes[i])) {
  3445. max_feedrate[i] = code_value();
  3446. }
  3447. }
  3448. }
  3449. /**
  3450. * M204: Set Accelerations in mm/sec^2 (M204 P1200 R3000 T3000)
  3451. *
  3452. * P = Printing moves
  3453. * R = Retract only (no X, Y, Z) moves
  3454. * T = Travel (non printing) moves
  3455. *
  3456. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  3457. */
  3458. inline void gcode_M204() {
  3459. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  3460. travel_acceleration = acceleration = code_value();
  3461. SERIAL_ECHOPAIR("Setting Print and Travel Acceleration: ", acceleration);
  3462. SERIAL_EOL;
  3463. }
  3464. if (code_seen('P')) {
  3465. acceleration = code_value();
  3466. SERIAL_ECHOPAIR("Setting Print Acceleration: ", acceleration );
  3467. SERIAL_EOL;
  3468. }
  3469. if (code_seen('R')) {
  3470. retract_acceleration = code_value();
  3471. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", retract_acceleration );
  3472. SERIAL_EOL;
  3473. }
  3474. if (code_seen('T')) {
  3475. travel_acceleration = code_value();
  3476. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", travel_acceleration );
  3477. SERIAL_EOL;
  3478. }
  3479. }
  3480. /**
  3481. * M205: Set Advanced Settings
  3482. *
  3483. * S = Min Feed Rate (mm/s)
  3484. * T = Min Travel Feed Rate (mm/s)
  3485. * B = Min Segment Time (µs)
  3486. * X = Max XY Jerk (mm/s/s)
  3487. * Z = Max Z Jerk (mm/s/s)
  3488. * E = Max E Jerk (mm/s/s)
  3489. */
  3490. inline void gcode_M205() {
  3491. if (code_seen('S')) minimumfeedrate = code_value();
  3492. if (code_seen('T')) mintravelfeedrate = code_value();
  3493. if (code_seen('B')) minsegmenttime = code_value();
  3494. if (code_seen('X')) max_xy_jerk = code_value();
  3495. if (code_seen('Z')) max_z_jerk = code_value();
  3496. if (code_seen('E')) max_e_jerk = code_value();
  3497. }
  3498. /**
  3499. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  3500. */
  3501. inline void gcode_M206() {
  3502. for (int8_t i=X_AXIS; i <= Z_AXIS; i++) {
  3503. if (code_seen(axis_codes[i])) {
  3504. home_offset[i] = code_value();
  3505. }
  3506. }
  3507. #ifdef SCARA
  3508. if (code_seen('T')) home_offset[X_AXIS] = code_value(); // Theta
  3509. if (code_seen('P')) home_offset[Y_AXIS] = code_value(); // Psi
  3510. #endif
  3511. }
  3512. #ifdef DELTA
  3513. /**
  3514. * M665: Set delta configurations
  3515. *
  3516. * L = diagonal rod
  3517. * R = delta radius
  3518. * S = segments per second
  3519. */
  3520. inline void gcode_M665() {
  3521. if (code_seen('L')) delta_diagonal_rod = code_value();
  3522. if (code_seen('R')) delta_radius = code_value();
  3523. if (code_seen('S')) delta_segments_per_second = code_value();
  3524. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  3525. }
  3526. /**
  3527. * M666: Set delta endstop adjustment
  3528. */
  3529. inline void gcode_M666() {
  3530. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3531. if (code_seen(axis_codes[i])) {
  3532. endstop_adj[i] = code_value();
  3533. }
  3534. }
  3535. }
  3536. #elif defined(Z_DUAL_ENDSTOPS) // !DELTA && defined(Z_DUAL_ENDSTOPS)
  3537. /**
  3538. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  3539. */
  3540. inline void gcode_M666() {
  3541. if (code_seen('Z')) z_endstop_adj = code_value();
  3542. SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  3543. SERIAL_EOL;
  3544. }
  3545. #endif // !DELTA && defined(Z_DUAL_ENDSTOPS)
  3546. #ifdef FWRETRACT
  3547. /**
  3548. * M207: Set firmware retraction values
  3549. *
  3550. * S[+mm] retract_length
  3551. * W[+mm] retract_length_swap (multi-extruder)
  3552. * F[mm/min] retract_feedrate
  3553. * Z[mm] retract_zlift
  3554. */
  3555. inline void gcode_M207() {
  3556. if (code_seen('S')) retract_length = code_value();
  3557. if (code_seen('F')) retract_feedrate = code_value() / 60;
  3558. if (code_seen('Z')) retract_zlift = code_value();
  3559. #if EXTRUDERS > 1
  3560. if (code_seen('W')) retract_length_swap = code_value();
  3561. #endif
  3562. }
  3563. /**
  3564. * M208: Set firmware un-retraction values
  3565. *
  3566. * S[+mm] retract_recover_length (in addition to M207 S*)
  3567. * W[+mm] retract_recover_length_swap (multi-extruder)
  3568. * F[mm/min] retract_recover_feedrate
  3569. */
  3570. inline void gcode_M208() {
  3571. if (code_seen('S')) retract_recover_length = code_value();
  3572. if (code_seen('F')) retract_recover_feedrate = code_value() / 60;
  3573. #if EXTRUDERS > 1
  3574. if (code_seen('W')) retract_recover_length_swap = code_value();
  3575. #endif
  3576. }
  3577. /**
  3578. * M209: Enable automatic retract (M209 S1)
  3579. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3580. */
  3581. inline void gcode_M209() {
  3582. if (code_seen('S')) {
  3583. int t = code_value_short();
  3584. switch(t) {
  3585. case 0:
  3586. autoretract_enabled = false;
  3587. break;
  3588. case 1:
  3589. autoretract_enabled = true;
  3590. break;
  3591. default:
  3592. unknown_command_error();
  3593. return;
  3594. }
  3595. for (int i=0; i<EXTRUDERS; i++) retracted[i] = false;
  3596. }
  3597. }
  3598. #endif // FWRETRACT
  3599. #if EXTRUDERS > 1
  3600. /**
  3601. * M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3602. */
  3603. inline void gcode_M218() {
  3604. if (setTargetedHotend(218)) return;
  3605. if (code_seen('X')) extruder_offset[X_AXIS][target_extruder] = code_value();
  3606. if (code_seen('Y')) extruder_offset[Y_AXIS][target_extruder] = code_value();
  3607. #ifdef DUAL_X_CARRIAGE
  3608. if (code_seen('Z')) extruder_offset[Z_AXIS][target_extruder] = code_value();
  3609. #endif
  3610. SERIAL_ECHO_START;
  3611. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3612. for (int e = 0; e < EXTRUDERS; e++) {
  3613. SERIAL_CHAR(' ');
  3614. SERIAL_ECHO(extruder_offset[X_AXIS][e]);
  3615. SERIAL_CHAR(',');
  3616. SERIAL_ECHO(extruder_offset[Y_AXIS][e]);
  3617. #ifdef DUAL_X_CARRIAGE
  3618. SERIAL_CHAR(',');
  3619. SERIAL_ECHO(extruder_offset[Z_AXIS][e]);
  3620. #endif
  3621. }
  3622. SERIAL_EOL;
  3623. }
  3624. #endif // EXTRUDERS > 1
  3625. /**
  3626. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  3627. */
  3628. inline void gcode_M220() {
  3629. if (code_seen('S')) feedrate_multiplier = code_value();
  3630. }
  3631. /**
  3632. * M221: Set extrusion percentage (M221 T0 S95)
  3633. */
  3634. inline void gcode_M221() {
  3635. if (code_seen('S')) {
  3636. int sval = code_value();
  3637. if (code_seen('T')) {
  3638. if (setTargetedHotend(221)) return;
  3639. extruder_multiplier[target_extruder] = sval;
  3640. }
  3641. else {
  3642. extruder_multiplier[active_extruder] = sval;
  3643. }
  3644. }
  3645. }
  3646. /**
  3647. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  3648. */
  3649. inline void gcode_M226() {
  3650. if (code_seen('P')) {
  3651. int pin_number = code_value();
  3652. int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted
  3653. if (pin_state >= -1 && pin_state <= 1) {
  3654. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(*sensitive_pins)); i++) {
  3655. if (sensitive_pins[i] == pin_number) {
  3656. pin_number = -1;
  3657. break;
  3658. }
  3659. }
  3660. if (pin_number > -1) {
  3661. int target = LOW;
  3662. st_synchronize();
  3663. pinMode(pin_number, INPUT);
  3664. switch(pin_state){
  3665. case 1:
  3666. target = HIGH;
  3667. break;
  3668. case 0:
  3669. target = LOW;
  3670. break;
  3671. case -1:
  3672. target = !digitalRead(pin_number);
  3673. break;
  3674. }
  3675. while (digitalRead(pin_number) != target) idle();
  3676. } // pin_number > -1
  3677. } // pin_state -1 0 1
  3678. } // code_seen('P')
  3679. }
  3680. #if NUM_SERVOS > 0
  3681. /**
  3682. * M280: Get or set servo position. P<index> S<angle>
  3683. */
  3684. inline void gcode_M280() {
  3685. int servo_index = code_seen('P') ? code_value_short() : -1;
  3686. int servo_position = 0;
  3687. if (code_seen('S')) {
  3688. servo_position = code_value_short();
  3689. if (servo_index >= 0 && servo_index < NUM_SERVOS) {
  3690. Servo *srv = &servo[servo_index];
  3691. srv->move(0, servo_position);
  3692. }
  3693. else {
  3694. SERIAL_ECHO_START;
  3695. SERIAL_ECHO("Servo ");
  3696. SERIAL_ECHO(servo_index);
  3697. SERIAL_ECHOLN(" out of range");
  3698. }
  3699. }
  3700. else if (servo_index >= 0) {
  3701. SERIAL_PROTOCOL(MSG_OK);
  3702. SERIAL_PROTOCOL(" Servo ");
  3703. SERIAL_PROTOCOL(servo_index);
  3704. SERIAL_PROTOCOL(": ");
  3705. SERIAL_PROTOCOL(servo[servo_index].read());
  3706. SERIAL_EOL;
  3707. }
  3708. }
  3709. #endif // NUM_SERVOS > 0
  3710. #if HAS_BUZZER
  3711. /**
  3712. * M300: Play beep sound S<frequency Hz> P<duration ms>
  3713. */
  3714. inline void gcode_M300() {
  3715. uint16_t beepS = code_seen('S') ? code_value_short() : 110;
  3716. uint32_t beepP = code_seen('P') ? code_value_long() : 1000;
  3717. if (beepP > 5000) beepP = 5000; // limit to 5 seconds
  3718. buzz(beepP, beepS);
  3719. }
  3720. #endif // HAS_BUZZER
  3721. #ifdef PIDTEMP
  3722. /**
  3723. * M301: Set PID parameters P I D (and optionally C)
  3724. */
  3725. inline void gcode_M301() {
  3726. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  3727. // default behaviour (omitting E parameter) is to update for extruder 0 only
  3728. int e = code_seen('E') ? code_value() : 0; // extruder being updated
  3729. if (e < EXTRUDERS) { // catch bad input value
  3730. if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
  3731. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
  3732. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
  3733. #ifdef PID_ADD_EXTRUSION_RATE
  3734. if (code_seen('C')) PID_PARAM(Kc, e) = code_value();
  3735. #endif
  3736. updatePID();
  3737. SERIAL_PROTOCOL(MSG_OK);
  3738. #ifdef PID_PARAMS_PER_EXTRUDER
  3739. SERIAL_PROTOCOL(" e:"); // specify extruder in serial output
  3740. SERIAL_PROTOCOL(e);
  3741. #endif // PID_PARAMS_PER_EXTRUDER
  3742. SERIAL_PROTOCOL(" p:");
  3743. SERIAL_PROTOCOL(PID_PARAM(Kp, e));
  3744. SERIAL_PROTOCOL(" i:");
  3745. SERIAL_PROTOCOL(unscalePID_i(PID_PARAM(Ki, e)));
  3746. SERIAL_PROTOCOL(" d:");
  3747. SERIAL_PROTOCOL(unscalePID_d(PID_PARAM(Kd, e)));
  3748. #ifdef PID_ADD_EXTRUSION_RATE
  3749. SERIAL_PROTOCOL(" c:");
  3750. //Kc does not have scaling applied above, or in resetting defaults
  3751. SERIAL_PROTOCOL(PID_PARAM(Kc, e));
  3752. #endif
  3753. SERIAL_EOL;
  3754. }
  3755. else {
  3756. SERIAL_ECHO_START;
  3757. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3758. }
  3759. }
  3760. #endif // PIDTEMP
  3761. #ifdef PIDTEMPBED
  3762. inline void gcode_M304() {
  3763. if (code_seen('P')) bedKp = code_value();
  3764. if (code_seen('I')) bedKi = scalePID_i(code_value());
  3765. if (code_seen('D')) bedKd = scalePID_d(code_value());
  3766. updatePID();
  3767. SERIAL_PROTOCOL(MSG_OK);
  3768. SERIAL_PROTOCOL(" p:");
  3769. SERIAL_PROTOCOL(bedKp);
  3770. SERIAL_PROTOCOL(" i:");
  3771. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  3772. SERIAL_PROTOCOL(" d:");
  3773. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  3774. SERIAL_EOL;
  3775. }
  3776. #endif // PIDTEMPBED
  3777. #if defined(CHDK) || HAS_PHOTOGRAPH
  3778. /**
  3779. * M240: Trigger a camera by emulating a Canon RC-1
  3780. * See http://www.doc-diy.net/photo/rc-1_hacked/
  3781. */
  3782. inline void gcode_M240() {
  3783. #ifdef CHDK
  3784. OUT_WRITE(CHDK, HIGH);
  3785. chdkHigh = millis();
  3786. chdkActive = true;
  3787. #elif HAS_PHOTOGRAPH
  3788. const uint8_t NUM_PULSES = 16;
  3789. const float PULSE_LENGTH = 0.01524;
  3790. for (int i = 0; i < NUM_PULSES; i++) {
  3791. WRITE(PHOTOGRAPH_PIN, HIGH);
  3792. _delay_ms(PULSE_LENGTH);
  3793. WRITE(PHOTOGRAPH_PIN, LOW);
  3794. _delay_ms(PULSE_LENGTH);
  3795. }
  3796. delay(7.33);
  3797. for (int i = 0; i < NUM_PULSES; i++) {
  3798. WRITE(PHOTOGRAPH_PIN, HIGH);
  3799. _delay_ms(PULSE_LENGTH);
  3800. WRITE(PHOTOGRAPH_PIN, LOW);
  3801. _delay_ms(PULSE_LENGTH);
  3802. }
  3803. #endif // !CHDK && HAS_PHOTOGRAPH
  3804. }
  3805. #endif // CHDK || PHOTOGRAPH_PIN
  3806. #ifdef HAS_LCD_CONTRAST
  3807. /**
  3808. * M250: Read and optionally set the LCD contrast
  3809. */
  3810. inline void gcode_M250() {
  3811. if (code_seen('C')) lcd_setcontrast(code_value_short() & 0x3F);
  3812. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  3813. SERIAL_PROTOCOL(lcd_contrast);
  3814. SERIAL_EOL;
  3815. }
  3816. #endif // HAS_LCD_CONTRAST
  3817. #ifdef PREVENT_DANGEROUS_EXTRUDE
  3818. void set_extrude_min_temp(float temp) { extrude_min_temp = temp; }
  3819. /**
  3820. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  3821. */
  3822. inline void gcode_M302() {
  3823. set_extrude_min_temp(code_seen('S') ? code_value() : 0);
  3824. }
  3825. #endif // PREVENT_DANGEROUS_EXTRUDE
  3826. /**
  3827. * M303: PID relay autotune
  3828. * S<temperature> sets the target temperature. (default target temperature = 150C)
  3829. * E<extruder> (-1 for the bed)
  3830. * C<cycles>
  3831. */
  3832. inline void gcode_M303() {
  3833. int e = code_seen('E') ? code_value_short() : 0;
  3834. int c = code_seen('C') ? code_value_short() : 5;
  3835. float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
  3836. PID_autotune(temp, e, c);
  3837. }
  3838. #ifdef SCARA
  3839. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  3840. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3841. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3842. if (IsRunning()) {
  3843. //gcode_get_destination(); // For X Y Z E F
  3844. delta[X_AXIS] = delta_x;
  3845. delta[Y_AXIS] = delta_y;
  3846. calculate_SCARA_forward_Transform(delta);
  3847. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3848. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3849. prepare_move();
  3850. //ok_to_send();
  3851. return true;
  3852. }
  3853. return false;
  3854. }
  3855. /**
  3856. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  3857. */
  3858. inline bool gcode_M360() {
  3859. SERIAL_ECHOLN(" Cal: Theta 0 ");
  3860. return SCARA_move_to_cal(0, 120);
  3861. }
  3862. /**
  3863. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  3864. */
  3865. inline bool gcode_M361() {
  3866. SERIAL_ECHOLN(" Cal: Theta 90 ");
  3867. return SCARA_move_to_cal(90, 130);
  3868. }
  3869. /**
  3870. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  3871. */
  3872. inline bool gcode_M362() {
  3873. SERIAL_ECHOLN(" Cal: Psi 0 ");
  3874. return SCARA_move_to_cal(60, 180);
  3875. }
  3876. /**
  3877. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  3878. */
  3879. inline bool gcode_M363() {
  3880. SERIAL_ECHOLN(" Cal: Psi 90 ");
  3881. return SCARA_move_to_cal(50, 90);
  3882. }
  3883. /**
  3884. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  3885. */
  3886. inline bool gcode_M364() {
  3887. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  3888. return SCARA_move_to_cal(45, 135);
  3889. }
  3890. /**
  3891. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  3892. */
  3893. inline void gcode_M365() {
  3894. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3895. if (code_seen(axis_codes[i])) {
  3896. axis_scaling[i] = code_value();
  3897. }
  3898. }
  3899. }
  3900. #endif // SCARA
  3901. #ifdef EXT_SOLENOID
  3902. void enable_solenoid(uint8_t num) {
  3903. switch(num) {
  3904. case 0:
  3905. OUT_WRITE(SOL0_PIN, HIGH);
  3906. break;
  3907. #if HAS_SOLENOID_1
  3908. case 1:
  3909. OUT_WRITE(SOL1_PIN, HIGH);
  3910. break;
  3911. #endif
  3912. #if HAS_SOLENOID_2
  3913. case 2:
  3914. OUT_WRITE(SOL2_PIN, HIGH);
  3915. break;
  3916. #endif
  3917. #if HAS_SOLENOID_3
  3918. case 3:
  3919. OUT_WRITE(SOL3_PIN, HIGH);
  3920. break;
  3921. #endif
  3922. default:
  3923. SERIAL_ECHO_START;
  3924. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  3925. break;
  3926. }
  3927. }
  3928. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  3929. void disable_all_solenoids() {
  3930. OUT_WRITE(SOL0_PIN, LOW);
  3931. OUT_WRITE(SOL1_PIN, LOW);
  3932. OUT_WRITE(SOL2_PIN, LOW);
  3933. OUT_WRITE(SOL3_PIN, LOW);
  3934. }
  3935. /**
  3936. * M380: Enable solenoid on the active extruder
  3937. */
  3938. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  3939. /**
  3940. * M381: Disable all solenoids
  3941. */
  3942. inline void gcode_M381() { disable_all_solenoids(); }
  3943. #endif // EXT_SOLENOID
  3944. /**
  3945. * M400: Finish all moves
  3946. */
  3947. inline void gcode_M400() { st_synchronize(); }
  3948. #if defined(ENABLE_AUTO_BED_LEVELING) && !defined(Z_PROBE_SLED) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY))
  3949. #ifdef SERVO_ENDSTOPS
  3950. void raise_z_for_servo() {
  3951. float zpos = current_position[Z_AXIS], z_dest = Z_RAISE_BEFORE_HOMING;
  3952. z_dest += axis_known_position[Z_AXIS] ? zprobe_zoffset : zpos;
  3953. if (zpos < z_dest)
  3954. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_dest); // also updates current_position
  3955. }
  3956. #endif
  3957. /**
  3958. * M401: Engage Z Servo endstop if available
  3959. */
  3960. inline void gcode_M401() {
  3961. #ifdef SERVO_ENDSTOPS
  3962. raise_z_for_servo();
  3963. #endif
  3964. deploy_z_probe();
  3965. }
  3966. /**
  3967. * M402: Retract Z Servo endstop if enabled
  3968. */
  3969. inline void gcode_M402() {
  3970. #ifdef SERVO_ENDSTOPS
  3971. raise_z_for_servo();
  3972. #endif
  3973. stow_z_probe(false);
  3974. }
  3975. #endif // ENABLE_AUTO_BED_LEVELING && (SERVO_ENDSTOPS || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
  3976. #ifdef FILAMENT_SENSOR
  3977. /**
  3978. * M404: Display or set the nominal filament width (3mm, 1.75mm ) W<3.0>
  3979. */
  3980. inline void gcode_M404() {
  3981. #if HAS_FILWIDTH
  3982. if (code_seen('W')) {
  3983. filament_width_nominal = code_value();
  3984. }
  3985. else {
  3986. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  3987. SERIAL_PROTOCOLLN(filament_width_nominal);
  3988. }
  3989. #endif
  3990. }
  3991. /**
  3992. * M405: Turn on filament sensor for control
  3993. */
  3994. inline void gcode_M405() {
  3995. if (code_seen('D')) meas_delay_cm = code_value();
  3996. if (meas_delay_cm > MAX_MEASUREMENT_DELAY) meas_delay_cm = MAX_MEASUREMENT_DELAY;
  3997. if (delay_index2 == -1) { //initialize the ring buffer if it has not been done since startup
  3998. int temp_ratio = widthFil_to_size_ratio();
  3999. for (delay_index1 = 0; delay_index1 < MAX_MEASUREMENT_DELAY + 1; ++delay_index1)
  4000. measurement_delay[delay_index1] = temp_ratio - 100; //subtract 100 to scale within a signed byte
  4001. delay_index1 = delay_index2 = 0;
  4002. }
  4003. filament_sensor = true;
  4004. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4005. //SERIAL_PROTOCOL(filament_width_meas);
  4006. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  4007. //SERIAL_PROTOCOL(extruder_multiplier[active_extruder]);
  4008. }
  4009. /**
  4010. * M406: Turn off filament sensor for control
  4011. */
  4012. inline void gcode_M406() { filament_sensor = false; }
  4013. /**
  4014. * M407: Get measured filament diameter on serial output
  4015. */
  4016. inline void gcode_M407() {
  4017. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4018. SERIAL_PROTOCOLLN(filament_width_meas);
  4019. }
  4020. #endif // FILAMENT_SENSOR
  4021. /**
  4022. * M410: Quickstop - Abort all planned moves
  4023. *
  4024. * This will stop the carriages mid-move, so most likely they
  4025. * will be out of sync with the stepper position after this.
  4026. */
  4027. inline void gcode_M410() { quickStop(); }
  4028. #ifdef MESH_BED_LEVELING
  4029. /**
  4030. * M420: Enable/Disable Mesh Bed Leveling
  4031. */
  4032. inline void gcode_M420() { if (code_seen('S') && code_has_value()) mbl.active = !!code_value_short(); }
  4033. /**
  4034. * M421: Set a single Mesh Bed Leveling Z coordinate
  4035. */
  4036. inline void gcode_M421() {
  4037. float x, y, z;
  4038. bool err = false, hasX, hasY, hasZ;
  4039. if ((hasX = code_seen('X'))) x = code_value();
  4040. if ((hasY = code_seen('Y'))) y = code_value();
  4041. if ((hasZ = code_seen('Z'))) z = code_value();
  4042. if (!hasX || !hasY || !hasZ) {
  4043. SERIAL_ERROR_START;
  4044. SERIAL_ERRORLNPGM(MSG_ERR_M421_REQUIRES_XYZ);
  4045. err = true;
  4046. }
  4047. if (x >= MESH_NUM_X_POINTS || y >= MESH_NUM_Y_POINTS) {
  4048. SERIAL_ERROR_START;
  4049. SERIAL_ERRORLNPGM(MSG_ERR_MESH_INDEX_OOB);
  4050. err = true;
  4051. }
  4052. if (!err) mbl.set_z(mbl.select_x_index(x), mbl.select_y_index(y), z);
  4053. }
  4054. #endif
  4055. /**
  4056. * M428: Set home_offset based on the distance between the
  4057. * current_position and the nearest "reference point."
  4058. * If an axis is past center its endstop position
  4059. * is the reference-point. Otherwise it uses 0. This allows
  4060. * the Z offset to be set near the bed when using a max endstop.
  4061. *
  4062. * M428 can't be used more than 2cm away from 0 or an endstop.
  4063. *
  4064. * Use M206 to set these values directly.
  4065. */
  4066. inline void gcode_M428() {
  4067. bool err = false;
  4068. float new_offs[3], new_pos[3];
  4069. memcpy(new_pos, current_position, sizeof(new_pos));
  4070. memcpy(new_offs, home_offset, sizeof(new_offs));
  4071. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4072. if (axis_known_position[i]) {
  4073. float base = (new_pos[i] > (min_pos[i] + max_pos[i]) / 2) ? base_home_pos(i) : 0,
  4074. diff = new_pos[i] - base;
  4075. if (diff > -20 && diff < 20) {
  4076. new_offs[i] -= diff;
  4077. new_pos[i] = base;
  4078. }
  4079. else {
  4080. SERIAL_ERROR_START;
  4081. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  4082. LCD_ALERTMESSAGEPGM("Err: Too far!");
  4083. #if HAS_BUZZER
  4084. enqueuecommands_P(PSTR("M300 S40 P200"));
  4085. #endif
  4086. err = true;
  4087. break;
  4088. }
  4089. }
  4090. }
  4091. if (!err) {
  4092. memcpy(current_position, new_pos, sizeof(new_pos));
  4093. memcpy(home_offset, new_offs, sizeof(new_offs));
  4094. sync_plan_position();
  4095. LCD_ALERTMESSAGEPGM("Offset applied.");
  4096. #if HAS_BUZZER
  4097. enqueuecommands_P(PSTR("M300 S659 P200\nM300 S698 P200"));
  4098. #endif
  4099. }
  4100. }
  4101. /**
  4102. * M500: Store settings in EEPROM
  4103. */
  4104. inline void gcode_M500() {
  4105. Config_StoreSettings();
  4106. }
  4107. /**
  4108. * M501: Read settings from EEPROM
  4109. */
  4110. inline void gcode_M501() {
  4111. Config_RetrieveSettings();
  4112. }
  4113. /**
  4114. * M502: Revert to default settings
  4115. */
  4116. inline void gcode_M502() {
  4117. Config_ResetDefault();
  4118. }
  4119. /**
  4120. * M503: print settings currently in memory
  4121. */
  4122. inline void gcode_M503() {
  4123. Config_PrintSettings(code_seen('S') && code_value() == 0);
  4124. }
  4125. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4126. /**
  4127. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  4128. */
  4129. inline void gcode_M540() {
  4130. if (code_seen('S')) abort_on_endstop_hit = (code_value() > 0);
  4131. }
  4132. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4133. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4134. inline void gcode_SET_Z_PROBE_OFFSET() {
  4135. float value;
  4136. if (code_seen('Z')) {
  4137. value = code_value();
  4138. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  4139. zprobe_zoffset = value;
  4140. SERIAL_ECHO_START;
  4141. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
  4142. SERIAL_EOL;
  4143. }
  4144. else {
  4145. SERIAL_ECHO_START;
  4146. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  4147. SERIAL_ECHOPGM(MSG_Z_MIN);
  4148. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4149. SERIAL_ECHOPGM(MSG_Z_MAX);
  4150. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4151. SERIAL_EOL;
  4152. }
  4153. }
  4154. else {
  4155. SERIAL_ECHO_START;
  4156. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET " : ");
  4157. SERIAL_ECHO(zprobe_zoffset);
  4158. SERIAL_EOL;
  4159. }
  4160. }
  4161. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4162. #ifdef FILAMENTCHANGEENABLE
  4163. /**
  4164. * M600: Pause for filament change
  4165. *
  4166. * E[distance] - Retract the filament this far (negative value)
  4167. * Z[distance] - Move the Z axis by this distance
  4168. * X[position] - Move to this X position, with Y
  4169. * Y[position] - Move to this Y position, with X
  4170. * L[distance] - Retract distance for removal (manual reload)
  4171. *
  4172. * Default values are used for omitted arguments.
  4173. *
  4174. */
  4175. inline void gcode_M600() {
  4176. if (degHotend(active_extruder) < extrude_min_temp) {
  4177. SERIAL_ERROR_START;
  4178. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  4179. return;
  4180. }
  4181. float lastpos[NUM_AXIS], fr60 = feedrate / 60;
  4182. for (int i=0; i<NUM_AXIS; i++)
  4183. lastpos[i] = destination[i] = current_position[i];
  4184. #ifdef DELTA
  4185. #define RUNPLAN calculate_delta(destination); \
  4186. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder);
  4187. #else
  4188. #define RUNPLAN line_to_destination();
  4189. #endif
  4190. //retract by E
  4191. if (code_seen('E')) destination[E_AXIS] += code_value();
  4192. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4193. else destination[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
  4194. #endif
  4195. RUNPLAN;
  4196. //lift Z
  4197. if (code_seen('Z')) destination[Z_AXIS] += code_value();
  4198. #ifdef FILAMENTCHANGE_ZADD
  4199. else destination[Z_AXIS] += FILAMENTCHANGE_ZADD;
  4200. #endif
  4201. RUNPLAN;
  4202. //move xy
  4203. if (code_seen('X')) destination[X_AXIS] = code_value();
  4204. #ifdef FILAMENTCHANGE_XPOS
  4205. else destination[X_AXIS] = FILAMENTCHANGE_XPOS;
  4206. #endif
  4207. if (code_seen('Y')) destination[Y_AXIS] = code_value();
  4208. #ifdef FILAMENTCHANGE_YPOS
  4209. else destination[Y_AXIS] = FILAMENTCHANGE_YPOS;
  4210. #endif
  4211. RUNPLAN;
  4212. if (code_seen('L')) destination[E_AXIS] += code_value();
  4213. #ifdef FILAMENTCHANGE_FINALRETRACT
  4214. else destination[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  4215. #endif
  4216. RUNPLAN;
  4217. //finish moves
  4218. st_synchronize();
  4219. //disable extruder steppers so filament can be removed
  4220. disable_e0();
  4221. disable_e1();
  4222. disable_e2();
  4223. disable_e3();
  4224. delay(100);
  4225. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  4226. millis_t next_tick = 0;
  4227. while (!lcd_clicked()) {
  4228. #ifndef AUTO_FILAMENT_CHANGE
  4229. millis_t ms = millis();
  4230. if (ms >= next_tick) {
  4231. lcd_quick_feedback();
  4232. next_tick = ms + 2500; // feedback every 2.5s while waiting
  4233. }
  4234. manage_heater();
  4235. manage_inactivity(true);
  4236. lcd_update();
  4237. #else
  4238. current_position[E_AXIS] += AUTO_FILAMENT_CHANGE_LENGTH;
  4239. destination[E_AXIS] = current_position[E_AXIS];
  4240. line_to_destination(AUTO_FILAMENT_CHANGE_FEEDRATE);
  4241. st_synchronize();
  4242. #endif
  4243. } // while(!lcd_clicked)
  4244. lcd_quick_feedback(); // click sound feedback
  4245. #ifdef AUTO_FILAMENT_CHANGE
  4246. current_position[E_AXIS] = 0;
  4247. st_synchronize();
  4248. #endif
  4249. //return to normal
  4250. if (code_seen('L')) destination[E_AXIS] -= code_value();
  4251. #ifdef FILAMENTCHANGE_FINALRETRACT
  4252. else destination[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  4253. #endif
  4254. current_position[E_AXIS] = destination[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  4255. plan_set_e_position(current_position[E_AXIS]);
  4256. RUNPLAN; //should do nothing
  4257. lcd_reset_alert_level();
  4258. #ifdef DELTA
  4259. // Move XYZ to starting position, then E
  4260. calculate_delta(lastpos);
  4261. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder);
  4262. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder);
  4263. #else
  4264. // Move XY to starting position, then Z, then E
  4265. destination[X_AXIS] = lastpos[X_AXIS];
  4266. destination[Y_AXIS] = lastpos[Y_AXIS];
  4267. line_to_destination();
  4268. destination[Z_AXIS] = lastpos[Z_AXIS];
  4269. line_to_destination();
  4270. destination[E_AXIS] = lastpos[E_AXIS];
  4271. line_to_destination();
  4272. #endif
  4273. #ifdef FILAMENT_RUNOUT_SENSOR
  4274. filrunoutEnqueued = false;
  4275. #endif
  4276. }
  4277. #endif // FILAMENTCHANGEENABLE
  4278. #ifdef DUAL_X_CARRIAGE
  4279. /**
  4280. * M605: Set dual x-carriage movement mode
  4281. *
  4282. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  4283. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  4284. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  4285. * millimeters x-offset and an optional differential hotend temperature of
  4286. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  4287. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  4288. *
  4289. * Note: the X axis should be homed after changing dual x-carriage mode.
  4290. */
  4291. inline void gcode_M605() {
  4292. st_synchronize();
  4293. if (code_seen('S')) dual_x_carriage_mode = code_value();
  4294. switch(dual_x_carriage_mode) {
  4295. case DXC_DUPLICATION_MODE:
  4296. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0));
  4297. if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
  4298. SERIAL_ECHO_START;
  4299. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  4300. SERIAL_CHAR(' ');
  4301. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  4302. SERIAL_CHAR(',');
  4303. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  4304. SERIAL_CHAR(' ');
  4305. SERIAL_ECHO(duplicate_extruder_x_offset);
  4306. SERIAL_CHAR(',');
  4307. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  4308. break;
  4309. case DXC_FULL_CONTROL_MODE:
  4310. case DXC_AUTO_PARK_MODE:
  4311. break;
  4312. default:
  4313. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  4314. break;
  4315. }
  4316. active_extruder_parked = false;
  4317. extruder_duplication_enabled = false;
  4318. delayed_move_time = 0;
  4319. }
  4320. #endif // DUAL_X_CARRIAGE
  4321. /**
  4322. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  4323. */
  4324. inline void gcode_M907() {
  4325. #if HAS_DIGIPOTSS
  4326. for (int i=0;i<NUM_AXIS;i++)
  4327. if (code_seen(axis_codes[i])) digipot_current(i, code_value());
  4328. if (code_seen('B')) digipot_current(4, code_value());
  4329. if (code_seen('S')) for (int i=0; i<=4; i++) digipot_current(i, code_value());
  4330. #endif
  4331. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  4332. if (code_seen('X')) digipot_current(0, code_value());
  4333. #endif
  4334. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  4335. if (code_seen('Z')) digipot_current(1, code_value());
  4336. #endif
  4337. #ifdef MOTOR_CURRENT_PWM_E_PIN
  4338. if (code_seen('E')) digipot_current(2, code_value());
  4339. #endif
  4340. #ifdef DIGIPOT_I2C
  4341. // this one uses actual amps in floating point
  4342. for (int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  4343. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  4344. for (int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  4345. #endif
  4346. }
  4347. #if HAS_DIGIPOTSS
  4348. /**
  4349. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  4350. */
  4351. inline void gcode_M908() {
  4352. digitalPotWrite(
  4353. code_seen('P') ? code_value() : 0,
  4354. code_seen('S') ? code_value() : 0
  4355. );
  4356. }
  4357. #endif // HAS_DIGIPOTSS
  4358. #if HAS_MICROSTEPS
  4359. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4360. inline void gcode_M350() {
  4361. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  4362. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  4363. if(code_seen('B')) microstep_mode(4,code_value());
  4364. microstep_readings();
  4365. }
  4366. /**
  4367. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  4368. * S# determines MS1 or MS2, X# sets the pin high/low.
  4369. */
  4370. inline void gcode_M351() {
  4371. if (code_seen('S')) switch(code_value_short()) {
  4372. case 1:
  4373. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, code_value(), -1);
  4374. if (code_seen('B')) microstep_ms(4, code_value(), -1);
  4375. break;
  4376. case 2:
  4377. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, -1, code_value());
  4378. if (code_seen('B')) microstep_ms(4, -1, code_value());
  4379. break;
  4380. }
  4381. microstep_readings();
  4382. }
  4383. #endif // HAS_MICROSTEPS
  4384. /**
  4385. * M999: Restart after being stopped
  4386. */
  4387. inline void gcode_M999() {
  4388. Running = true;
  4389. lcd_reset_alert_level();
  4390. gcode_LastN = Stopped_gcode_LastN;
  4391. FlushSerialRequestResend();
  4392. }
  4393. /**
  4394. * T0-T3: Switch tool, usually switching extruders
  4395. *
  4396. * F[mm/min] Set the movement feedrate
  4397. */
  4398. inline void gcode_T(uint8_t tmp_extruder) {
  4399. if (tmp_extruder >= EXTRUDERS) {
  4400. SERIAL_ECHO_START;
  4401. SERIAL_CHAR('T');
  4402. SERIAL_ECHO(tmp_extruder);
  4403. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  4404. }
  4405. else {
  4406. target_extruder = tmp_extruder;
  4407. #if EXTRUDERS > 1
  4408. bool make_move = false;
  4409. #endif
  4410. if (code_seen('F')) {
  4411. #if EXTRUDERS > 1
  4412. make_move = true;
  4413. #endif
  4414. float next_feedrate = code_value();
  4415. if (next_feedrate > 0.0) feedrate = next_feedrate;
  4416. }
  4417. #if EXTRUDERS > 1
  4418. if (tmp_extruder != active_extruder) {
  4419. // Save current position to return to after applying extruder offset
  4420. set_destination_to_current();
  4421. #ifdef DUAL_X_CARRIAGE
  4422. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  4423. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  4424. // Park old head: 1) raise 2) move to park position 3) lower
  4425. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  4426. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4427. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  4428. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  4429. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  4430. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4431. st_synchronize();
  4432. }
  4433. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  4434. current_position[Y_AXIS] = current_position[Y_AXIS] -
  4435. extruder_offset[Y_AXIS][active_extruder] +
  4436. extruder_offset[Y_AXIS][tmp_extruder];
  4437. current_position[Z_AXIS] = current_position[Z_AXIS] -
  4438. extruder_offset[Z_AXIS][active_extruder] +
  4439. extruder_offset[Z_AXIS][tmp_extruder];
  4440. active_extruder = tmp_extruder;
  4441. // This function resets the max/min values - the current position may be overwritten below.
  4442. axis_is_at_home(X_AXIS);
  4443. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  4444. current_position[X_AXIS] = inactive_extruder_x_pos;
  4445. inactive_extruder_x_pos = destination[X_AXIS];
  4446. }
  4447. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  4448. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  4449. if (active_extruder == 0 || active_extruder_parked)
  4450. current_position[X_AXIS] = inactive_extruder_x_pos;
  4451. else
  4452. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  4453. inactive_extruder_x_pos = destination[X_AXIS];
  4454. extruder_duplication_enabled = false;
  4455. }
  4456. else {
  4457. // record raised toolhead position for use by unpark
  4458. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  4459. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  4460. active_extruder_parked = true;
  4461. delayed_move_time = 0;
  4462. }
  4463. #else // !DUAL_X_CARRIAGE
  4464. // Offset extruder (only by XY)
  4465. for (int i=X_AXIS; i<=Y_AXIS; i++)
  4466. current_position[i] += extruder_offset[i][tmp_extruder] - extruder_offset[i][active_extruder];
  4467. // Set the new active extruder and position
  4468. active_extruder = tmp_extruder;
  4469. #endif // !DUAL_X_CARRIAGE
  4470. #ifdef DELTA
  4471. sync_plan_position_delta();
  4472. #else
  4473. sync_plan_position();
  4474. #endif
  4475. // Move to the old position if 'F' was in the parameters
  4476. if (make_move && IsRunning()) prepare_move();
  4477. }
  4478. #ifdef EXT_SOLENOID
  4479. st_synchronize();
  4480. disable_all_solenoids();
  4481. enable_solenoid_on_active_extruder();
  4482. #endif // EXT_SOLENOID
  4483. #endif // EXTRUDERS > 1
  4484. SERIAL_ECHO_START;
  4485. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  4486. SERIAL_PROTOCOLLN((int)active_extruder);
  4487. }
  4488. }
  4489. /**
  4490. * Process a single command and dispatch it to its handler
  4491. * This is called from the main loop()
  4492. */
  4493. void process_next_command() {
  4494. current_command = command_queue[cmd_queue_index_r];
  4495. if ((marlin_debug_flags & DEBUG_ECHO)) {
  4496. SERIAL_ECHO_START;
  4497. SERIAL_ECHOLN(current_command);
  4498. }
  4499. // Sanitize the current command:
  4500. // - Skip leading spaces
  4501. // - Bypass N[0-9][0-9]*[ ]*
  4502. // - Overwrite * with nul to mark the end
  4503. while (*current_command == ' ') ++current_command;
  4504. if (*current_command == 'N' && ((current_command[1] >= '0' && current_command[1] <= '9') || current_command[1] == '-')) {
  4505. current_command += 2; // skip N[-0-9]
  4506. while (*current_command >= '0' && *current_command <= '9') ++current_command; // skip [0-9]*
  4507. while (*current_command == ' ') ++current_command; // skip [ ]*
  4508. }
  4509. char *starpos = strchr(current_command, '*'); // * should always be the last parameter
  4510. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  4511. // Get the command code, which must be G, M, or T
  4512. char command_code = *current_command;
  4513. // The code must have a numeric value
  4514. bool code_is_good = (current_command[1] >= '0' && current_command[1] <= '9');
  4515. int codenum; // define ahead of goto
  4516. // Bail early if there's no code
  4517. if (!code_is_good) goto ExitUnknownCommand;
  4518. // Args pointer optimizes code_seen, especially those taking XYZEF
  4519. // This wastes a little cpu on commands that expect no arguments.
  4520. current_command_args = current_command;
  4521. while (*current_command_args && *current_command_args != ' ') ++current_command_args;
  4522. while (*current_command_args == ' ') ++current_command_args;
  4523. // Interpret the code int
  4524. seen_pointer = current_command;
  4525. codenum = code_value_short();
  4526. // Handle a known G, M, or T
  4527. switch(command_code) {
  4528. case 'G': switch (codenum) {
  4529. // G0, G1
  4530. case 0:
  4531. case 1:
  4532. gcode_G0_G1();
  4533. break;
  4534. // G2, G3
  4535. #ifndef SCARA
  4536. case 2: // G2 - CW ARC
  4537. case 3: // G3 - CCW ARC
  4538. gcode_G2_G3(codenum == 2);
  4539. break;
  4540. #endif
  4541. // G4 Dwell
  4542. case 4:
  4543. gcode_G4();
  4544. break;
  4545. #ifdef FWRETRACT
  4546. case 10: // G10: retract
  4547. case 11: // G11: retract_recover
  4548. gcode_G10_G11(codenum == 10);
  4549. break;
  4550. #endif //FWRETRACT
  4551. case 28: // G28: Home all axes, one at a time
  4552. gcode_G28();
  4553. break;
  4554. #if defined(ENABLE_AUTO_BED_LEVELING) || defined(MESH_BED_LEVELING)
  4555. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  4556. gcode_G29();
  4557. break;
  4558. #endif
  4559. #ifdef ENABLE_AUTO_BED_LEVELING
  4560. #ifndef Z_PROBE_SLED
  4561. case 30: // G30 Single Z Probe
  4562. gcode_G30();
  4563. break;
  4564. #else // Z_PROBE_SLED
  4565. case 31: // G31: dock the sled
  4566. case 32: // G32: undock the sled
  4567. dock_sled(codenum == 31);
  4568. break;
  4569. #endif // Z_PROBE_SLED
  4570. #endif // ENABLE_AUTO_BED_LEVELING
  4571. case 90: // G90
  4572. relative_mode = false;
  4573. break;
  4574. case 91: // G91
  4575. relative_mode = true;
  4576. break;
  4577. case 92: // G92
  4578. gcode_G92();
  4579. break;
  4580. }
  4581. break;
  4582. case 'M': switch (codenum) {
  4583. #ifdef ULTIPANEL
  4584. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4585. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4586. gcode_M0_M1();
  4587. break;
  4588. #endif // ULTIPANEL
  4589. case 17:
  4590. gcode_M17();
  4591. break;
  4592. #ifdef SDSUPPORT
  4593. case 20: // M20 - list SD card
  4594. gcode_M20(); break;
  4595. case 21: // M21 - init SD card
  4596. gcode_M21(); break;
  4597. case 22: //M22 - release SD card
  4598. gcode_M22(); break;
  4599. case 23: //M23 - Select file
  4600. gcode_M23(); break;
  4601. case 24: //M24 - Start SD print
  4602. gcode_M24(); break;
  4603. case 25: //M25 - Pause SD print
  4604. gcode_M25(); break;
  4605. case 26: //M26 - Set SD index
  4606. gcode_M26(); break;
  4607. case 27: //M27 - Get SD status
  4608. gcode_M27(); break;
  4609. case 28: //M28 - Start SD write
  4610. gcode_M28(); break;
  4611. case 29: //M29 - Stop SD write
  4612. gcode_M29(); break;
  4613. case 30: //M30 <filename> Delete File
  4614. gcode_M30(); break;
  4615. case 32: //M32 - Select file and start SD print
  4616. gcode_M32(); break;
  4617. #ifdef LONG_FILENAME_HOST_SUPPORT
  4618. case 33: //M33 - Get the long full path to a file or folder
  4619. gcode_M33(); break;
  4620. #endif // LONG_FILENAME_HOST_SUPPORT
  4621. case 928: //M928 - Start SD write
  4622. gcode_M928(); break;
  4623. #endif //SDSUPPORT
  4624. case 31: //M31 take time since the start of the SD print or an M109 command
  4625. gcode_M31();
  4626. break;
  4627. case 42: //M42 -Change pin status via gcode
  4628. gcode_M42();
  4629. break;
  4630. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  4631. case 48: // M48 Z-Probe repeatability
  4632. gcode_M48();
  4633. break;
  4634. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  4635. case 104: // M104
  4636. gcode_M104();
  4637. break;
  4638. case 111: // M111: Set debug level
  4639. gcode_M111();
  4640. break;
  4641. case 112: // M112: Emergency Stop
  4642. gcode_M112();
  4643. break;
  4644. case 140: // M140: Set bed temp
  4645. gcode_M140();
  4646. break;
  4647. case 105: // M105: Read current temperature
  4648. gcode_M105();
  4649. return; // "ok" already printed
  4650. case 109: // M109: Wait for temperature
  4651. gcode_M109();
  4652. break;
  4653. #if HAS_TEMP_BED
  4654. case 190: // M190: Wait for bed heater to reach target
  4655. gcode_M190();
  4656. break;
  4657. #endif // HAS_TEMP_BED
  4658. #if HAS_FAN
  4659. case 106: // M106: Fan On
  4660. gcode_M106();
  4661. break;
  4662. case 107: // M107: Fan Off
  4663. gcode_M107();
  4664. break;
  4665. #endif // HAS_FAN
  4666. #ifdef BARICUDA
  4667. // PWM for HEATER_1_PIN
  4668. #if HAS_HEATER_1
  4669. case 126: // M126: valve open
  4670. gcode_M126();
  4671. break;
  4672. case 127: // M127: valve closed
  4673. gcode_M127();
  4674. break;
  4675. #endif // HAS_HEATER_1
  4676. // PWM for HEATER_2_PIN
  4677. #if HAS_HEATER_2
  4678. case 128: // M128: valve open
  4679. gcode_M128();
  4680. break;
  4681. case 129: // M129: valve closed
  4682. gcode_M129();
  4683. break;
  4684. #endif // HAS_HEATER_2
  4685. #endif // BARICUDA
  4686. #if HAS_POWER_SWITCH
  4687. case 80: // M80: Turn on Power Supply
  4688. gcode_M80();
  4689. break;
  4690. #endif // HAS_POWER_SWITCH
  4691. case 81: // M81: Turn off Power, including Power Supply, if possible
  4692. gcode_M81();
  4693. break;
  4694. case 82:
  4695. gcode_M82();
  4696. break;
  4697. case 83:
  4698. gcode_M83();
  4699. break;
  4700. case 18: // (for compatibility)
  4701. case 84: // M84
  4702. gcode_M18_M84();
  4703. break;
  4704. case 85: // M85
  4705. gcode_M85();
  4706. break;
  4707. case 92: // M92: Set the steps-per-unit for one or more axes
  4708. gcode_M92();
  4709. break;
  4710. case 115: // M115: Report capabilities
  4711. gcode_M115();
  4712. break;
  4713. case 117: // M117: Set LCD message text, if possible
  4714. gcode_M117();
  4715. break;
  4716. case 114: // M114: Report current position
  4717. gcode_M114();
  4718. break;
  4719. case 120: // M120: Enable endstops
  4720. gcode_M120();
  4721. break;
  4722. case 121: // M121: Disable endstops
  4723. gcode_M121();
  4724. break;
  4725. case 119: // M119: Report endstop states
  4726. gcode_M119();
  4727. break;
  4728. #ifdef ULTIPANEL
  4729. case 145: // M145: Set material heatup parameters
  4730. gcode_M145();
  4731. break;
  4732. #endif
  4733. #ifdef BLINKM
  4734. case 150: // M150
  4735. gcode_M150();
  4736. break;
  4737. #endif //BLINKM
  4738. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4739. gcode_M200();
  4740. break;
  4741. case 201: // M201
  4742. gcode_M201();
  4743. break;
  4744. #if 0 // Not used for Sprinter/grbl gen6
  4745. case 202: // M202
  4746. gcode_M202();
  4747. break;
  4748. #endif
  4749. case 203: // M203 max feedrate mm/sec
  4750. gcode_M203();
  4751. break;
  4752. case 204: // M204 acclereration S normal moves T filmanent only moves
  4753. gcode_M204();
  4754. break;
  4755. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4756. gcode_M205();
  4757. break;
  4758. case 206: // M206 additional homing offset
  4759. gcode_M206();
  4760. break;
  4761. #ifdef DELTA
  4762. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  4763. gcode_M665();
  4764. break;
  4765. #endif
  4766. #if defined(DELTA) || defined(Z_DUAL_ENDSTOPS)
  4767. case 666: // M666 set delta / dual endstop adjustment
  4768. gcode_M666();
  4769. break;
  4770. #endif
  4771. #ifdef FWRETRACT
  4772. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4773. gcode_M207();
  4774. break;
  4775. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4776. gcode_M208();
  4777. break;
  4778. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4779. gcode_M209();
  4780. break;
  4781. #endif // FWRETRACT
  4782. #if EXTRUDERS > 1
  4783. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4784. gcode_M218();
  4785. break;
  4786. #endif
  4787. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4788. gcode_M220();
  4789. break;
  4790. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4791. gcode_M221();
  4792. break;
  4793. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4794. gcode_M226();
  4795. break;
  4796. #if NUM_SERVOS > 0
  4797. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4798. gcode_M280();
  4799. break;
  4800. #endif // NUM_SERVOS > 0
  4801. #if HAS_BUZZER
  4802. case 300: // M300 - Play beep tone
  4803. gcode_M300();
  4804. break;
  4805. #endif // HAS_BUZZER
  4806. #ifdef PIDTEMP
  4807. case 301: // M301
  4808. gcode_M301();
  4809. break;
  4810. #endif // PIDTEMP
  4811. #ifdef PIDTEMPBED
  4812. case 304: // M304
  4813. gcode_M304();
  4814. break;
  4815. #endif // PIDTEMPBED
  4816. #if defined(CHDK) || HAS_PHOTOGRAPH
  4817. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4818. gcode_M240();
  4819. break;
  4820. #endif // CHDK || PHOTOGRAPH_PIN
  4821. #ifdef HAS_LCD_CONTRAST
  4822. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4823. gcode_M250();
  4824. break;
  4825. #endif // HAS_LCD_CONTRAST
  4826. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4827. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4828. gcode_M302();
  4829. break;
  4830. #endif // PREVENT_DANGEROUS_EXTRUDE
  4831. case 303: // M303 PID autotune
  4832. gcode_M303();
  4833. break;
  4834. #ifdef SCARA
  4835. case 360: // M360 SCARA Theta pos1
  4836. if (gcode_M360()) return;
  4837. break;
  4838. case 361: // M361 SCARA Theta pos2
  4839. if (gcode_M361()) return;
  4840. break;
  4841. case 362: // M362 SCARA Psi pos1
  4842. if (gcode_M362()) return;
  4843. break;
  4844. case 363: // M363 SCARA Psi pos2
  4845. if (gcode_M363()) return;
  4846. break;
  4847. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  4848. if (gcode_M364()) return;
  4849. break;
  4850. case 365: // M365 Set SCARA scaling for X Y Z
  4851. gcode_M365();
  4852. break;
  4853. #endif // SCARA
  4854. case 400: // M400 finish all moves
  4855. gcode_M400();
  4856. break;
  4857. #if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && !defined(Z_PROBE_SLED)
  4858. case 401:
  4859. gcode_M401();
  4860. break;
  4861. case 402:
  4862. gcode_M402();
  4863. break;
  4864. #endif // ENABLE_AUTO_BED_LEVELING && (SERVO_ENDSTOPS || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
  4865. #ifdef FILAMENT_SENSOR
  4866. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4867. gcode_M404();
  4868. break;
  4869. case 405: //M405 Turn on filament sensor for control
  4870. gcode_M405();
  4871. break;
  4872. case 406: //M406 Turn off filament sensor for control
  4873. gcode_M406();
  4874. break;
  4875. case 407: //M407 Display measured filament diameter
  4876. gcode_M407();
  4877. break;
  4878. #endif // FILAMENT_SENSOR
  4879. case 410: // M410 quickstop - Abort all the planned moves.
  4880. gcode_M410();
  4881. break;
  4882. #ifdef MESH_BED_LEVELING
  4883. case 420: // M420 Enable/Disable Mesh Bed Leveling
  4884. gcode_M420();
  4885. break;
  4886. case 421: // M421 Set a Mesh Bed Leveling Z coordinate
  4887. gcode_M421();
  4888. break;
  4889. #endif
  4890. case 428: // M428 Apply current_position to home_offset
  4891. gcode_M428();
  4892. break;
  4893. case 500: // M500 Store settings in EEPROM
  4894. gcode_M500();
  4895. break;
  4896. case 501: // M501 Read settings from EEPROM
  4897. gcode_M501();
  4898. break;
  4899. case 502: // M502 Revert to default settings
  4900. gcode_M502();
  4901. break;
  4902. case 503: // M503 print settings currently in memory
  4903. gcode_M503();
  4904. break;
  4905. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4906. case 540:
  4907. gcode_M540();
  4908. break;
  4909. #endif
  4910. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4911. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4912. gcode_SET_Z_PROBE_OFFSET();
  4913. break;
  4914. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4915. #ifdef FILAMENTCHANGEENABLE
  4916. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4917. gcode_M600();
  4918. break;
  4919. #endif // FILAMENTCHANGEENABLE
  4920. #ifdef DUAL_X_CARRIAGE
  4921. case 605:
  4922. gcode_M605();
  4923. break;
  4924. #endif // DUAL_X_CARRIAGE
  4925. case 907: // M907 Set digital trimpot motor current using axis codes.
  4926. gcode_M907();
  4927. break;
  4928. #if HAS_DIGIPOTSS
  4929. case 908: // M908 Control digital trimpot directly.
  4930. gcode_M908();
  4931. break;
  4932. #endif // HAS_DIGIPOTSS
  4933. #if HAS_MICROSTEPS
  4934. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4935. gcode_M350();
  4936. break;
  4937. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4938. gcode_M351();
  4939. break;
  4940. #endif // HAS_MICROSTEPS
  4941. case 999: // M999: Restart after being Stopped
  4942. gcode_M999();
  4943. break;
  4944. }
  4945. break;
  4946. case 'T':
  4947. gcode_T(codenum);
  4948. break;
  4949. default: code_is_good = false;
  4950. }
  4951. ExitUnknownCommand:
  4952. // Still unknown command? Throw an error
  4953. if (!code_is_good) unknown_command_error();
  4954. ok_to_send();
  4955. }
  4956. void FlushSerialRequestResend() {
  4957. //char command_queue[cmd_queue_index_r][100]="Resend:";
  4958. MYSERIAL.flush();
  4959. SERIAL_PROTOCOLPGM(MSG_RESEND);
  4960. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  4961. ok_to_send();
  4962. }
  4963. void ok_to_send() {
  4964. refresh_cmd_timeout();
  4965. #ifdef SDSUPPORT
  4966. if (fromsd[cmd_queue_index_r]) return;
  4967. #endif
  4968. SERIAL_PROTOCOLPGM(MSG_OK);
  4969. #ifdef ADVANCED_OK
  4970. SERIAL_PROTOCOLPGM(" N"); SERIAL_PROTOCOL(gcode_LastN);
  4971. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - movesplanned() - 1));
  4972. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  4973. #endif
  4974. SERIAL_EOL;
  4975. }
  4976. void clamp_to_software_endstops(float target[3]) {
  4977. if (min_software_endstops) {
  4978. NOLESS(target[X_AXIS], min_pos[X_AXIS]);
  4979. NOLESS(target[Y_AXIS], min_pos[Y_AXIS]);
  4980. float negative_z_offset = 0;
  4981. #ifdef ENABLE_AUTO_BED_LEVELING
  4982. if (zprobe_zoffset < 0) negative_z_offset += zprobe_zoffset;
  4983. if (home_offset[Z_AXIS] < 0) negative_z_offset += home_offset[Z_AXIS];
  4984. #endif
  4985. NOLESS(target[Z_AXIS], min_pos[Z_AXIS] + negative_z_offset);
  4986. }
  4987. if (max_software_endstops) {
  4988. NOMORE(target[X_AXIS], max_pos[X_AXIS]);
  4989. NOMORE(target[Y_AXIS], max_pos[Y_AXIS]);
  4990. NOMORE(target[Z_AXIS], max_pos[Z_AXIS]);
  4991. }
  4992. }
  4993. #ifdef DELTA
  4994. void recalc_delta_settings(float radius, float diagonal_rod) {
  4995. delta_tower1_x = -SIN_60 * radius; // front left tower
  4996. delta_tower1_y = -COS_60 * radius;
  4997. delta_tower2_x = SIN_60 * radius; // front right tower
  4998. delta_tower2_y = -COS_60 * radius;
  4999. delta_tower3_x = 0.0; // back middle tower
  5000. delta_tower3_y = radius;
  5001. delta_diagonal_rod_2 = sq(diagonal_rod);
  5002. }
  5003. void calculate_delta(float cartesian[3]) {
  5004. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  5005. - sq(delta_tower1_x-cartesian[X_AXIS])
  5006. - sq(delta_tower1_y-cartesian[Y_AXIS])
  5007. ) + cartesian[Z_AXIS];
  5008. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  5009. - sq(delta_tower2_x-cartesian[X_AXIS])
  5010. - sq(delta_tower2_y-cartesian[Y_AXIS])
  5011. ) + cartesian[Z_AXIS];
  5012. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  5013. - sq(delta_tower3_x-cartesian[X_AXIS])
  5014. - sq(delta_tower3_y-cartesian[Y_AXIS])
  5015. ) + cartesian[Z_AXIS];
  5016. /*
  5017. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  5018. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  5019. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  5020. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  5021. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  5022. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  5023. */
  5024. }
  5025. #ifdef ENABLE_AUTO_BED_LEVELING
  5026. // Adjust print surface height by linear interpolation over the bed_level array.
  5027. void adjust_delta(float cartesian[3]) {
  5028. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0) return; // G29 not done!
  5029. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  5030. float h1 = 0.001 - half, h2 = half - 0.001,
  5031. grid_x = max(h1, min(h2, cartesian[X_AXIS] / delta_grid_spacing[0])),
  5032. grid_y = max(h1, min(h2, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  5033. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  5034. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  5035. z1 = bed_level[floor_x + half][floor_y + half],
  5036. z2 = bed_level[floor_x + half][floor_y + half + 1],
  5037. z3 = bed_level[floor_x + half + 1][floor_y + half],
  5038. z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
  5039. left = (1 - ratio_y) * z1 + ratio_y * z2,
  5040. right = (1 - ratio_y) * z3 + ratio_y * z4,
  5041. offset = (1 - ratio_x) * left + ratio_x * right;
  5042. delta[X_AXIS] += offset;
  5043. delta[Y_AXIS] += offset;
  5044. delta[Z_AXIS] += offset;
  5045. /*
  5046. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  5047. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  5048. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  5049. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  5050. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  5051. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  5052. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  5053. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  5054. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  5055. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  5056. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  5057. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  5058. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  5059. */
  5060. }
  5061. #endif // ENABLE_AUTO_BED_LEVELING
  5062. #endif // DELTA
  5063. #ifdef MESH_BED_LEVELING
  5064. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  5065. void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t &extruder, uint8_t x_splits=0xff, uint8_t y_splits=0xff)
  5066. {
  5067. if (!mbl.active) {
  5068. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5069. set_current_to_destination();
  5070. return;
  5071. }
  5072. int pix = mbl.select_x_index(current_position[X_AXIS]);
  5073. int piy = mbl.select_y_index(current_position[Y_AXIS]);
  5074. int ix = mbl.select_x_index(x);
  5075. int iy = mbl.select_y_index(y);
  5076. pix = min(pix, MESH_NUM_X_POINTS - 2);
  5077. piy = min(piy, MESH_NUM_Y_POINTS - 2);
  5078. ix = min(ix, MESH_NUM_X_POINTS - 2);
  5079. iy = min(iy, MESH_NUM_Y_POINTS - 2);
  5080. if (pix == ix && piy == iy) {
  5081. // Start and end on same mesh square
  5082. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5083. set_current_to_destination();
  5084. return;
  5085. }
  5086. float nx, ny, ne, normalized_dist;
  5087. if (ix > pix && (x_splits) & BIT(ix)) {
  5088. nx = mbl.get_x(ix);
  5089. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  5090. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  5091. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5092. x_splits ^= BIT(ix);
  5093. } else if (ix < pix && (x_splits) & BIT(pix)) {
  5094. nx = mbl.get_x(pix);
  5095. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  5096. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  5097. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5098. x_splits ^= BIT(pix);
  5099. } else if (iy > piy && (y_splits) & BIT(iy)) {
  5100. ny = mbl.get_y(iy);
  5101. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  5102. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  5103. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5104. y_splits ^= BIT(iy);
  5105. } else if (iy < piy && (y_splits) & BIT(piy)) {
  5106. ny = mbl.get_y(piy);
  5107. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  5108. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  5109. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5110. y_splits ^= BIT(piy);
  5111. } else {
  5112. // Already split on a border
  5113. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5114. set_current_to_destination();
  5115. return;
  5116. }
  5117. // Do the split and look for more borders
  5118. destination[X_AXIS] = nx;
  5119. destination[Y_AXIS] = ny;
  5120. destination[E_AXIS] = ne;
  5121. mesh_plan_buffer_line(nx, ny, z, ne, feed_rate, extruder, x_splits, y_splits);
  5122. destination[X_AXIS] = x;
  5123. destination[Y_AXIS] = y;
  5124. destination[E_AXIS] = e;
  5125. mesh_plan_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
  5126. }
  5127. #endif // MESH_BED_LEVELING
  5128. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5129. inline void prevent_dangerous_extrude(float &curr_e, float &dest_e) {
  5130. if (marlin_debug_flags & DEBUG_DRYRUN) return;
  5131. float de = dest_e - curr_e;
  5132. if (de) {
  5133. if (degHotend(active_extruder) < extrude_min_temp) {
  5134. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  5135. SERIAL_ECHO_START;
  5136. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  5137. }
  5138. #ifdef PREVENT_LENGTHY_EXTRUDE
  5139. if (labs(de) > EXTRUDE_MAXLENGTH) {
  5140. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  5141. SERIAL_ECHO_START;
  5142. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  5143. }
  5144. #endif
  5145. }
  5146. }
  5147. #endif // PREVENT_DANGEROUS_EXTRUDE
  5148. #if defined(DELTA) || defined(SCARA)
  5149. inline bool prepare_move_delta() {
  5150. float difference[NUM_AXIS];
  5151. for (int8_t i=0; i < NUM_AXIS; i++) difference[i] = destination[i] - current_position[i];
  5152. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  5153. if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
  5154. if (cartesian_mm < 0.000001) return false;
  5155. float seconds = 6000 * cartesian_mm / feedrate / feedrate_multiplier;
  5156. int steps = max(1, int(delta_segments_per_second * seconds));
  5157. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  5158. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  5159. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  5160. for (int s = 1; s <= steps; s++) {
  5161. float fraction = float(s) / float(steps);
  5162. for (int8_t i = 0; i < NUM_AXIS; i++)
  5163. destination[i] = current_position[i] + difference[i] * fraction;
  5164. calculate_delta(destination);
  5165. #ifdef ENABLE_AUTO_BED_LEVELING
  5166. adjust_delta(destination);
  5167. #endif
  5168. //SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]);
  5169. //SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]);
  5170. //SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]);
  5171. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  5172. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  5173. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  5174. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], feedrate/60*feedrate_multiplier/100.0, active_extruder);
  5175. }
  5176. return true;
  5177. }
  5178. #endif // DELTA || SCARA
  5179. #ifdef SCARA
  5180. inline bool prepare_move_scara() { return prepare_move_delta(); }
  5181. #endif
  5182. #ifdef DUAL_X_CARRIAGE
  5183. inline bool prepare_move_dual_x_carriage() {
  5184. if (active_extruder_parked) {
  5185. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  5186. // move duplicate extruder into correct duplication position.
  5187. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  5188. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  5189. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  5190. sync_plan_position();
  5191. st_synchronize();
  5192. extruder_duplication_enabled = true;
  5193. active_extruder_parked = false;
  5194. }
  5195. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  5196. if (current_position[E_AXIS] == destination[E_AXIS]) {
  5197. // This is a travel move (with no extrusion)
  5198. // Skip it, but keep track of the current position
  5199. // (so it can be used as the start of the next non-travel move)
  5200. if (delayed_move_time != 0xFFFFFFFFUL) {
  5201. set_current_to_destination();
  5202. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  5203. delayed_move_time = millis();
  5204. return false;
  5205. }
  5206. }
  5207. delayed_move_time = 0;
  5208. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  5209. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  5210. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], min(max_feedrate[X_AXIS], max_feedrate[Y_AXIS]), active_extruder);
  5211. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  5212. active_extruder_parked = false;
  5213. }
  5214. }
  5215. return true;
  5216. }
  5217. #endif // DUAL_X_CARRIAGE
  5218. #if !defined(DELTA) && !defined(SCARA)
  5219. inline bool prepare_move_cartesian() {
  5220. // Do not use feedrate_multiplier for E or Z only moves
  5221. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  5222. line_to_destination();
  5223. }
  5224. else {
  5225. #ifdef MESH_BED_LEVELING
  5226. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedrate_multiplier/100.0), active_extruder);
  5227. return false;
  5228. #else
  5229. line_to_destination(feedrate * feedrate_multiplier / 100.0);
  5230. #endif
  5231. }
  5232. return true;
  5233. }
  5234. #endif // !DELTA && !SCARA
  5235. /**
  5236. * Prepare a single move and get ready for the next one
  5237. *
  5238. * (This may call plan_buffer_line several times to put
  5239. * smaller moves into the planner for DELTA or SCARA.)
  5240. */
  5241. void prepare_move() {
  5242. clamp_to_software_endstops(destination);
  5243. refresh_cmd_timeout();
  5244. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5245. prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]);
  5246. #endif
  5247. #ifdef SCARA
  5248. if (!prepare_move_scara()) return;
  5249. #elif defined(DELTA)
  5250. if (!prepare_move_delta()) return;
  5251. #endif
  5252. #ifdef DUAL_X_CARRIAGE
  5253. if (!prepare_move_dual_x_carriage()) return;
  5254. #endif
  5255. #if !defined(DELTA) && !defined(SCARA)
  5256. if (!prepare_move_cartesian()) return;
  5257. #endif
  5258. set_current_to_destination();
  5259. }
  5260. #if HAS_CONTROLLERFAN
  5261. void controllerFan() {
  5262. static millis_t lastMotor = 0; // Last time a motor was turned on
  5263. static millis_t lastMotorCheck = 0; // Last time the state was checked
  5264. millis_t ms = millis();
  5265. if (ms >= lastMotorCheck + 2500) { // Not a time critical function, so we only check every 2500ms
  5266. lastMotorCheck = ms;
  5267. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || soft_pwm_bed > 0
  5268. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  5269. #if EXTRUDERS > 1
  5270. || E1_ENABLE_READ == E_ENABLE_ON
  5271. #if HAS_X2_ENABLE
  5272. || X2_ENABLE_READ == X_ENABLE_ON
  5273. #endif
  5274. #if EXTRUDERS > 2
  5275. || E2_ENABLE_READ == E_ENABLE_ON
  5276. #if EXTRUDERS > 3
  5277. || E3_ENABLE_READ == E_ENABLE_ON
  5278. #endif
  5279. #endif
  5280. #endif
  5281. ) {
  5282. lastMotor = ms; //... set time to NOW so the fan will turn on
  5283. }
  5284. uint8_t speed = (lastMotor == 0 || ms >= lastMotor + (CONTROLLERFAN_SECS * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  5285. // allows digital or PWM fan output to be used (see M42 handling)
  5286. digitalWrite(CONTROLLERFAN_PIN, speed);
  5287. analogWrite(CONTROLLERFAN_PIN, speed);
  5288. }
  5289. }
  5290. #endif // HAS_CONTROLLERFAN
  5291. #ifdef SCARA
  5292. void calculate_SCARA_forward_Transform(float f_scara[3]) {
  5293. // Perform forward kinematics, and place results in delta[3]
  5294. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  5295. float x_sin, x_cos, y_sin, y_cos;
  5296. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  5297. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  5298. x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  5299. x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  5300. y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  5301. y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  5302. //SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  5303. //SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  5304. //SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  5305. //SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  5306. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  5307. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  5308. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  5309. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  5310. }
  5311. void calculate_delta(float cartesian[3]){
  5312. //reverse kinematics.
  5313. // Perform reversed kinematics, and place results in delta[3]
  5314. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  5315. float SCARA_pos[2];
  5316. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  5317. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  5318. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  5319. #if (Linkage_1 == Linkage_2)
  5320. SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
  5321. #else
  5322. SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000;
  5323. #endif
  5324. SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
  5325. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  5326. SCARA_K2 = Linkage_2 * SCARA_S2;
  5327. SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
  5328. SCARA_psi = atan2(SCARA_S2,SCARA_C2);
  5329. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  5330. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  5331. delta[Z_AXIS] = cartesian[Z_AXIS];
  5332. /*
  5333. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  5334. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  5335. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  5336. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  5337. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  5338. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  5339. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  5340. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  5341. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  5342. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  5343. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  5344. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  5345. SERIAL_EOL;
  5346. */
  5347. }
  5348. #endif // SCARA
  5349. #ifdef TEMP_STAT_LEDS
  5350. static bool red_led = false;
  5351. static millis_t next_status_led_update_ms = 0;
  5352. void handle_status_leds(void) {
  5353. float max_temp = 0.0;
  5354. if (millis() > next_status_led_update_ms) {
  5355. next_status_led_update_ms += 500; // Update every 0.5s
  5356. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder)
  5357. max_temp = max(max(max_temp, degHotend(cur_extruder)), degTargetHotend(cur_extruder));
  5358. #if HAS_TEMP_BED
  5359. max_temp = max(max(max_temp, degTargetBed()), degBed());
  5360. #endif
  5361. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  5362. if (new_led != red_led) {
  5363. red_led = new_led;
  5364. digitalWrite(STAT_LED_RED, new_led ? HIGH : LOW);
  5365. digitalWrite(STAT_LED_BLUE, new_led ? LOW : HIGH);
  5366. }
  5367. }
  5368. }
  5369. #endif
  5370. void enable_all_steppers() {
  5371. enable_x();
  5372. enable_y();
  5373. enable_z();
  5374. enable_e0();
  5375. enable_e1();
  5376. enable_e2();
  5377. enable_e3();
  5378. }
  5379. void disable_all_steppers() {
  5380. disable_x();
  5381. disable_y();
  5382. disable_z();
  5383. disable_e0();
  5384. disable_e1();
  5385. disable_e2();
  5386. disable_e3();
  5387. }
  5388. /**
  5389. * Standard idle routine keeps the machine alive
  5390. */
  5391. void idle() {
  5392. manage_heater();
  5393. manage_inactivity();
  5394. lcd_update();
  5395. }
  5396. /**
  5397. * Manage several activities:
  5398. * - Check for Filament Runout
  5399. * - Keep the command buffer full
  5400. * - Check for maximum inactive time between commands
  5401. * - Check for maximum inactive time between stepper commands
  5402. * - Check if pin CHDK needs to go LOW
  5403. * - Check for KILL button held down
  5404. * - Check for HOME button held down
  5405. * - Check if cooling fan needs to be switched on
  5406. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  5407. */
  5408. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  5409. #if HAS_FILRUNOUT
  5410. if (IS_SD_PRINTING && !(READ(FILRUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  5411. filrunout();
  5412. #endif
  5413. if (commands_in_queue < BUFSIZE - 1) get_command();
  5414. millis_t ms = millis();
  5415. if (max_inactive_time && ms > previous_cmd_ms + max_inactive_time) kill(PSTR(MSG_KILLED));
  5416. if (stepper_inactive_time && ms > previous_cmd_ms + stepper_inactive_time
  5417. && !ignore_stepper_queue && !blocks_queued()) {
  5418. #if DISABLE_X == true
  5419. disable_x();
  5420. #endif
  5421. #if DISABLE_Y == true
  5422. disable_y();
  5423. #endif
  5424. #if DISABLE_Z == true
  5425. disable_z();
  5426. #endif
  5427. #if DISABLE_E == true
  5428. disable_e0();
  5429. disable_e1();
  5430. disable_e2();
  5431. disable_e3();
  5432. #endif
  5433. }
  5434. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  5435. if (chdkActive && ms > chdkHigh + CHDK_DELAY) {
  5436. chdkActive = false;
  5437. WRITE(CHDK, LOW);
  5438. }
  5439. #endif
  5440. #if HAS_KILL
  5441. // Check if the kill button was pressed and wait just in case it was an accidental
  5442. // key kill key press
  5443. // -------------------------------------------------------------------------------
  5444. static int killCount = 0; // make the inactivity button a bit less responsive
  5445. const int KILL_DELAY = 750;
  5446. if (!READ(KILL_PIN))
  5447. killCount++;
  5448. else if (killCount > 0)
  5449. killCount--;
  5450. // Exceeded threshold and we can confirm that it was not accidental
  5451. // KILL the machine
  5452. // ----------------------------------------------------------------
  5453. if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED));
  5454. #endif
  5455. #if HAS_HOME
  5456. // Check to see if we have to home, use poor man's debouncer
  5457. // ---------------------------------------------------------
  5458. static int homeDebounceCount = 0; // poor man's debouncing count
  5459. const int HOME_DEBOUNCE_DELAY = 750;
  5460. if (!READ(HOME_PIN)) {
  5461. if (!homeDebounceCount) {
  5462. enqueuecommands_P(PSTR("G28"));
  5463. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  5464. }
  5465. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  5466. homeDebounceCount++;
  5467. else
  5468. homeDebounceCount = 0;
  5469. }
  5470. #endif
  5471. #if HAS_CONTROLLERFAN
  5472. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  5473. #endif
  5474. #ifdef EXTRUDER_RUNOUT_PREVENT
  5475. if (ms > previous_cmd_ms + EXTRUDER_RUNOUT_SECONDS * 1000)
  5476. if (degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  5477. bool oldstatus;
  5478. switch(active_extruder) {
  5479. case 0:
  5480. oldstatus = E0_ENABLE_READ;
  5481. enable_e0();
  5482. break;
  5483. #if EXTRUDERS > 1
  5484. case 1:
  5485. oldstatus = E1_ENABLE_READ;
  5486. enable_e1();
  5487. break;
  5488. #if EXTRUDERS > 2
  5489. case 2:
  5490. oldstatus = E2_ENABLE_READ;
  5491. enable_e2();
  5492. break;
  5493. #if EXTRUDERS > 3
  5494. case 3:
  5495. oldstatus = E3_ENABLE_READ;
  5496. enable_e3();
  5497. break;
  5498. #endif
  5499. #endif
  5500. #endif
  5501. }
  5502. float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
  5503. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  5504. destination[E_AXIS] + EXTRUDER_RUNOUT_EXTRUDE * EXTRUDER_RUNOUT_ESTEPS / axis_steps_per_unit[E_AXIS],
  5505. EXTRUDER_RUNOUT_SPEED / 60. * EXTRUDER_RUNOUT_ESTEPS / axis_steps_per_unit[E_AXIS], active_extruder);
  5506. current_position[E_AXIS] = oldepos;
  5507. destination[E_AXIS] = oldedes;
  5508. plan_set_e_position(oldepos);
  5509. previous_cmd_ms = ms; // refresh_cmd_timeout()
  5510. st_synchronize();
  5511. switch(active_extruder) {
  5512. case 0:
  5513. E0_ENABLE_WRITE(oldstatus);
  5514. break;
  5515. #if EXTRUDERS > 1
  5516. case 1:
  5517. E1_ENABLE_WRITE(oldstatus);
  5518. break;
  5519. #if EXTRUDERS > 2
  5520. case 2:
  5521. E2_ENABLE_WRITE(oldstatus);
  5522. break;
  5523. #if EXTRUDERS > 3
  5524. case 3:
  5525. E3_ENABLE_WRITE(oldstatus);
  5526. break;
  5527. #endif
  5528. #endif
  5529. #endif
  5530. }
  5531. }
  5532. #endif
  5533. #ifdef DUAL_X_CARRIAGE
  5534. // handle delayed move timeout
  5535. if (delayed_move_time && ms > delayed_move_time + 1000 && IsRunning()) {
  5536. // travel moves have been received so enact them
  5537. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  5538. set_destination_to_current();
  5539. prepare_move();
  5540. }
  5541. #endif
  5542. #ifdef TEMP_STAT_LEDS
  5543. handle_status_leds();
  5544. #endif
  5545. check_axes_activity();
  5546. }
  5547. void kill(const char *lcd_msg) {
  5548. #ifdef ULTRA_LCD
  5549. lcd_setalertstatuspgm(lcd_msg);
  5550. #endif
  5551. cli(); // Stop interrupts
  5552. disable_all_heaters();
  5553. disable_all_steppers();
  5554. #if HAS_POWER_SWITCH
  5555. pinMode(PS_ON_PIN, INPUT);
  5556. #endif
  5557. SERIAL_ERROR_START;
  5558. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  5559. // FMC small patch to update the LCD before ending
  5560. sei(); // enable interrupts
  5561. for (int i = 5; i--; lcd_update()) delay(200); // Wait a short time
  5562. cli(); // disable interrupts
  5563. suicide();
  5564. while(1) { /* Intentionally left empty */ } // Wait for reset
  5565. }
  5566. #ifdef FILAMENT_RUNOUT_SENSOR
  5567. void filrunout() {
  5568. if (!filrunoutEnqueued) {
  5569. filrunoutEnqueued = true;
  5570. enqueuecommands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  5571. st_synchronize();
  5572. }
  5573. }
  5574. #endif // FILAMENT_RUNOUT_SENSOR
  5575. #ifdef FAST_PWM_FAN
  5576. void setPwmFrequency(uint8_t pin, int val) {
  5577. val &= 0x07;
  5578. switch (digitalPinToTimer(pin)) {
  5579. #if defined(TCCR0A)
  5580. case TIMER0A:
  5581. case TIMER0B:
  5582. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5583. // TCCR0B |= val;
  5584. break;
  5585. #endif
  5586. #if defined(TCCR1A)
  5587. case TIMER1A:
  5588. case TIMER1B:
  5589. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5590. // TCCR1B |= val;
  5591. break;
  5592. #endif
  5593. #if defined(TCCR2)
  5594. case TIMER2:
  5595. case TIMER2:
  5596. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5597. TCCR2 |= val;
  5598. break;
  5599. #endif
  5600. #if defined(TCCR2A)
  5601. case TIMER2A:
  5602. case TIMER2B:
  5603. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5604. TCCR2B |= val;
  5605. break;
  5606. #endif
  5607. #if defined(TCCR3A)
  5608. case TIMER3A:
  5609. case TIMER3B:
  5610. case TIMER3C:
  5611. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5612. TCCR3B |= val;
  5613. break;
  5614. #endif
  5615. #if defined(TCCR4A)
  5616. case TIMER4A:
  5617. case TIMER4B:
  5618. case TIMER4C:
  5619. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5620. TCCR4B |= val;
  5621. break;
  5622. #endif
  5623. #if defined(TCCR5A)
  5624. case TIMER5A:
  5625. case TIMER5B:
  5626. case TIMER5C:
  5627. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5628. TCCR5B |= val;
  5629. break;
  5630. #endif
  5631. }
  5632. }
  5633. #endif // FAST_PWM_FAN
  5634. void Stop() {
  5635. disable_all_heaters();
  5636. if (IsRunning()) {
  5637. Running = false;
  5638. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5639. SERIAL_ERROR_START;
  5640. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  5641. LCD_MESSAGEPGM(MSG_STOPPED);
  5642. }
  5643. }
  5644. /**
  5645. * Set target_extruder from the T parameter or the active_extruder
  5646. *
  5647. * Returns TRUE if the target is invalid
  5648. */
  5649. bool setTargetedHotend(int code) {
  5650. target_extruder = active_extruder;
  5651. if (code_seen('T')) {
  5652. target_extruder = code_value_short();
  5653. if (target_extruder >= EXTRUDERS) {
  5654. SERIAL_ECHO_START;
  5655. SERIAL_CHAR('M');
  5656. SERIAL_ECHO(code);
  5657. SERIAL_ECHOPGM(" " MSG_INVALID_EXTRUDER " ");
  5658. SERIAL_ECHOLN(target_extruder);
  5659. return true;
  5660. }
  5661. }
  5662. return false;
  5663. }
  5664. float calculate_volumetric_multiplier(float diameter) {
  5665. if (!volumetric_enabled || diameter == 0) return 1.0;
  5666. float d2 = diameter * 0.5;
  5667. return 1.0 / (M_PI * d2 * d2);
  5668. }
  5669. void calculate_volumetric_multipliers() {
  5670. for (int i=0; i<EXTRUDERS; i++)
  5671. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  5672. }