My Marlin configs for Fabrikator Mini and CTC i3 Pro B
您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

stepper.cpp 47KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * stepper.cpp - A singleton object to execute motion plans using stepper motors
  24. * Marlin Firmware
  25. *
  26. * Derived from Grbl
  27. * Copyright (c) 2009-2011 Simen Svale Skogsrud
  28. *
  29. * Grbl is free software: you can redistribute it and/or modify
  30. * it under the terms of the GNU General Public License as published by
  31. * the Free Software Foundation, either version 3 of the License, or
  32. * (at your option) any later version.
  33. *
  34. * Grbl is distributed in the hope that it will be useful,
  35. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  36. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  37. * GNU General Public License for more details.
  38. *
  39. * You should have received a copy of the GNU General Public License
  40. * along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  41. */
  42. /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
  43. and Philipp Tiefenbacher. */
  44. #include "Marlin.h"
  45. #include "stepper.h"
  46. #include "endstops.h"
  47. #include "planner.h"
  48. #include "temperature.h"
  49. #include "ultralcd.h"
  50. #include "language.h"
  51. #include "cardreader.h"
  52. #include "speed_lookuptable.h"
  53. #if HAS_DIGIPOTSS
  54. #include <SPI.h>
  55. #endif
  56. Stepper stepper; // Singleton
  57. // public:
  58. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(ULTIPANEL)
  59. extern bool ubl_lcd_map_control;
  60. #endif
  61. block_t* Stepper::current_block = NULL; // A pointer to the block currently being traced
  62. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  63. bool Stepper::abort_on_endstop_hit = false;
  64. #endif
  65. #if ENABLED(Z_DUAL_ENDSTOPS)
  66. bool Stepper::performing_homing = false;
  67. #endif
  68. #if HAS_MOTOR_CURRENT_PWM
  69. uint32_t Stepper::motor_current_setting[3]; // Initialized by settings.load()
  70. #endif
  71. // private:
  72. uint8_t Stepper::last_direction_bits = 0; // The next stepping-bits to be output
  73. uint16_t Stepper::cleaning_buffer_counter = 0;
  74. #if ENABLED(Z_DUAL_ENDSTOPS)
  75. bool Stepper::locked_z_motor = false;
  76. bool Stepper::locked_z2_motor = false;
  77. #endif
  78. long Stepper::counter_X = 0,
  79. Stepper::counter_Y = 0,
  80. Stepper::counter_Z = 0,
  81. Stepper::counter_E = 0;
  82. volatile uint32_t Stepper::step_events_completed = 0; // The number of step events executed in the current block
  83. #if ENABLED(LIN_ADVANCE)
  84. constexpr uint16_t ADV_NEVER = 65535;
  85. uint16_t Stepper::nextMainISR = 0,
  86. Stepper::nextAdvanceISR = ADV_NEVER,
  87. Stepper::eISR_Rate = ADV_NEVER;
  88. volatile int Stepper::e_steps[E_STEPPERS];
  89. int Stepper::final_estep_rate,
  90. Stepper::current_estep_rate[E_STEPPERS],
  91. Stepper::current_adv_steps[E_STEPPERS];
  92. /**
  93. * See https://github.com/MarlinFirmware/Marlin/issues/5699#issuecomment-309264382
  94. *
  95. * This fix isn't perfect and may lose steps - but better than locking up completely
  96. * in future the planner should slow down if advance stepping rate would be too high
  97. */
  98. FORCE_INLINE uint16_t adv_rate(const int steps, const uint16_t timer, const uint8_t loops) {
  99. if (steps) {
  100. const uint16_t rate = (timer * loops) / abs(steps);
  101. //return constrain(rate, 1, ADV_NEVER - 1)
  102. return rate ? rate : 1;
  103. }
  104. return ADV_NEVER;
  105. }
  106. #endif // LIN_ADVANCE
  107. long Stepper::acceleration_time, Stepper::deceleration_time;
  108. volatile long Stepper::count_position[NUM_AXIS] = { 0 };
  109. volatile signed char Stepper::count_direction[NUM_AXIS] = { 1, 1, 1, 1 };
  110. #if ENABLED(MIXING_EXTRUDER)
  111. long Stepper::counter_m[MIXING_STEPPERS];
  112. #endif
  113. unsigned short Stepper::acc_step_rate; // needed for deceleration start point
  114. uint8_t Stepper::step_loops, Stepper::step_loops_nominal;
  115. unsigned short Stepper::OCR1A_nominal;
  116. volatile long Stepper::endstops_trigsteps[XYZ];
  117. #if ENABLED(X_DUAL_STEPPER_DRIVERS)
  118. #define X_APPLY_DIR(v,Q) do{ X_DIR_WRITE(v); X2_DIR_WRITE((v) != INVERT_X2_VS_X_DIR); }while(0)
  119. #define X_APPLY_STEP(v,Q) do{ X_STEP_WRITE(v); X2_STEP_WRITE(v); }while(0)
  120. #elif ENABLED(DUAL_X_CARRIAGE)
  121. #define X_APPLY_DIR(v,ALWAYS) \
  122. if (extruder_duplication_enabled || ALWAYS) { \
  123. X_DIR_WRITE(v); \
  124. X2_DIR_WRITE(v); \
  125. } \
  126. else { \
  127. if (current_block->active_extruder) X2_DIR_WRITE(v); else X_DIR_WRITE(v); \
  128. }
  129. #define X_APPLY_STEP(v,ALWAYS) \
  130. if (extruder_duplication_enabled || ALWAYS) { \
  131. X_STEP_WRITE(v); \
  132. X2_STEP_WRITE(v); \
  133. } \
  134. else { \
  135. if (current_block->active_extruder) X2_STEP_WRITE(v); else X_STEP_WRITE(v); \
  136. }
  137. #else
  138. #define X_APPLY_DIR(v,Q) X_DIR_WRITE(v)
  139. #define X_APPLY_STEP(v,Q) X_STEP_WRITE(v)
  140. #endif
  141. #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
  142. #define Y_APPLY_DIR(v,Q) do{ Y_DIR_WRITE(v); Y2_DIR_WRITE((v) != INVERT_Y2_VS_Y_DIR); }while(0)
  143. #define Y_APPLY_STEP(v,Q) do{ Y_STEP_WRITE(v); Y2_STEP_WRITE(v); }while(0)
  144. #else
  145. #define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v)
  146. #define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v)
  147. #endif
  148. #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
  149. #define Z_APPLY_DIR(v,Q) do{ Z_DIR_WRITE(v); Z2_DIR_WRITE(v); }while(0)
  150. #if ENABLED(Z_DUAL_ENDSTOPS)
  151. #define Z_APPLY_STEP(v,Q) \
  152. if (performing_homing) { \
  153. if (Z_HOME_DIR < 0) { \
  154. if (!(TEST(endstops.old_endstop_bits, Z_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
  155. if (!(TEST(endstops.old_endstop_bits, Z2_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
  156. } \
  157. else { \
  158. if (!(TEST(endstops.old_endstop_bits, Z_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
  159. if (!(TEST(endstops.old_endstop_bits, Z2_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
  160. } \
  161. } \
  162. else { \
  163. Z_STEP_WRITE(v); \
  164. Z2_STEP_WRITE(v); \
  165. }
  166. #else
  167. #define Z_APPLY_STEP(v,Q) do{ Z_STEP_WRITE(v); Z2_STEP_WRITE(v); }while(0)
  168. #endif
  169. #else
  170. #define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v)
  171. #define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v)
  172. #endif
  173. #if DISABLED(MIXING_EXTRUDER)
  174. #define E_APPLY_STEP(v,Q) E_STEP_WRITE(v)
  175. #endif
  176. // intRes = longIn1 * longIn2 >> 24
  177. // uses:
  178. // r26 to store 0
  179. // r27 to store bits 16-23 of the 48bit result. The top bit is used to round the two byte result.
  180. // note that the lower two bytes and the upper byte of the 48bit result are not calculated.
  181. // this can cause the result to be out by one as the lower bytes may cause carries into the upper ones.
  182. // B0 A0 are bits 24-39 and are the returned value
  183. // C1 B1 A1 is longIn1
  184. // D2 C2 B2 A2 is longIn2
  185. //
  186. #define MultiU24X32toH16(intRes, longIn1, longIn2) \
  187. asm volatile ( \
  188. "clr r26 \n\t" \
  189. "mul %A1, %B2 \n\t" \
  190. "mov r27, r1 \n\t" \
  191. "mul %B1, %C2 \n\t" \
  192. "movw %A0, r0 \n\t" \
  193. "mul %C1, %C2 \n\t" \
  194. "add %B0, r0 \n\t" \
  195. "mul %C1, %B2 \n\t" \
  196. "add %A0, r0 \n\t" \
  197. "adc %B0, r1 \n\t" \
  198. "mul %A1, %C2 \n\t" \
  199. "add r27, r0 \n\t" \
  200. "adc %A0, r1 \n\t" \
  201. "adc %B0, r26 \n\t" \
  202. "mul %B1, %B2 \n\t" \
  203. "add r27, r0 \n\t" \
  204. "adc %A0, r1 \n\t" \
  205. "adc %B0, r26 \n\t" \
  206. "mul %C1, %A2 \n\t" \
  207. "add r27, r0 \n\t" \
  208. "adc %A0, r1 \n\t" \
  209. "adc %B0, r26 \n\t" \
  210. "mul %B1, %A2 \n\t" \
  211. "add r27, r1 \n\t" \
  212. "adc %A0, r26 \n\t" \
  213. "adc %B0, r26 \n\t" \
  214. "lsr r27 \n\t" \
  215. "adc %A0, r26 \n\t" \
  216. "adc %B0, r26 \n\t" \
  217. "mul %D2, %A1 \n\t" \
  218. "add %A0, r0 \n\t" \
  219. "adc %B0, r1 \n\t" \
  220. "mul %D2, %B1 \n\t" \
  221. "add %B0, r0 \n\t" \
  222. "clr r1 \n\t" \
  223. : \
  224. "=&r" (intRes) \
  225. : \
  226. "d" (longIn1), \
  227. "d" (longIn2) \
  228. : \
  229. "r26" , "r27" \
  230. )
  231. // Some useful constants
  232. #define ENABLE_STEPPER_DRIVER_INTERRUPT() SBI(TIMSK1, OCIE1A)
  233. #define DISABLE_STEPPER_DRIVER_INTERRUPT() CBI(TIMSK1, OCIE1A)
  234. /**
  235. * __________________________
  236. * /| |\ _________________ ^
  237. * / | | \ /| |\ |
  238. * / | | \ / | | \ s
  239. * / | | | | | \ p
  240. * / | | | | | \ e
  241. * +-----+------------------------+---+--+---------------+----+ e
  242. * | BLOCK 1 | BLOCK 2 | d
  243. *
  244. * time ----->
  245. *
  246. * The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
  247. * first block->accelerate_until step_events_completed, then keeps going at constant speed until
  248. * step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
  249. * The slope of acceleration is calculated using v = u + at where t is the accumulated timer values of the steps so far.
  250. */
  251. void Stepper::wake_up() {
  252. // TCNT1 = 0;
  253. ENABLE_STEPPER_DRIVER_INTERRUPT();
  254. }
  255. /**
  256. * Set the stepper direction of each axis
  257. *
  258. * COREXY: X_AXIS=A_AXIS and Y_AXIS=B_AXIS
  259. * COREXZ: X_AXIS=A_AXIS and Z_AXIS=C_AXIS
  260. * COREYZ: Y_AXIS=B_AXIS and Z_AXIS=C_AXIS
  261. */
  262. void Stepper::set_directions() {
  263. #define SET_STEP_DIR(AXIS) \
  264. if (motor_direction(AXIS ##_AXIS)) { \
  265. AXIS ##_APPLY_DIR(INVERT_## AXIS ##_DIR, false); \
  266. count_direction[AXIS ##_AXIS] = -1; \
  267. } \
  268. else { \
  269. AXIS ##_APPLY_DIR(!INVERT_## AXIS ##_DIR, false); \
  270. count_direction[AXIS ##_AXIS] = 1; \
  271. }
  272. #if HAS_X_DIR
  273. SET_STEP_DIR(X); // A
  274. #endif
  275. #if HAS_Y_DIR
  276. SET_STEP_DIR(Y); // B
  277. #endif
  278. #if HAS_Z_DIR
  279. SET_STEP_DIR(Z); // C
  280. #endif
  281. #if DISABLED(LIN_ADVANCE)
  282. if (motor_direction(E_AXIS)) {
  283. REV_E_DIR();
  284. count_direction[E_AXIS] = -1;
  285. }
  286. else {
  287. NORM_E_DIR();
  288. count_direction[E_AXIS] = 1;
  289. }
  290. #endif // !LIN_ADVANCE
  291. }
  292. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  293. extern volatile uint8_t e_hit;
  294. #endif
  295. /**
  296. * Stepper Driver Interrupt
  297. *
  298. * Directly pulses the stepper motors at high frequency.
  299. * Timer 1 runs at a base frequency of 2MHz, with this ISR using OCR1A compare mode.
  300. *
  301. * OCR1A Frequency
  302. * 1 2 MHz
  303. * 50 40 KHz
  304. * 100 20 KHz - capped max rate
  305. * 200 10 KHz - nominal max rate
  306. * 2000 1 KHz - sleep rate
  307. * 4000 500 Hz - init rate
  308. */
  309. ISR(TIMER1_COMPA_vect) {
  310. #if ENABLED(LIN_ADVANCE)
  311. Stepper::advance_isr_scheduler();
  312. #else
  313. Stepper::isr();
  314. #endif
  315. }
  316. #define _ENABLE_ISRs() do { cli(); if (thermalManager.in_temp_isr) CBI(TIMSK0, OCIE0B); else SBI(TIMSK0, OCIE0B); ENABLE_STEPPER_DRIVER_INTERRUPT(); } while(0)
  317. void Stepper::isr() {
  318. uint16_t ocr_val;
  319. #define ENDSTOP_NOMINAL_OCR_VAL 3000 // check endstops every 1.5ms to guarantee two stepper ISRs within 5ms for BLTouch
  320. #define OCR_VAL_TOLERANCE 1000 // First max delay is 2.0ms, last min delay is 0.5ms, all others 1.5ms
  321. #if DISABLED(LIN_ADVANCE)
  322. // Disable Timer0 ISRs and enable global ISR again to capture UART events (incoming chars)
  323. CBI(TIMSK0, OCIE0B); // Temperature ISR
  324. DISABLE_STEPPER_DRIVER_INTERRUPT();
  325. sei();
  326. #endif
  327. #define _SPLIT(L) (ocr_val = (uint16_t)L)
  328. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  329. #define SPLIT(L) _SPLIT(L)
  330. #else // sample endstops in between step pulses
  331. static uint32_t step_remaining = 0;
  332. #define SPLIT(L) do { \
  333. _SPLIT(L); \
  334. if (ENDSTOPS_ENABLED && L > ENDSTOP_NOMINAL_OCR_VAL) { \
  335. const uint16_t remainder = (uint16_t)L % (ENDSTOP_NOMINAL_OCR_VAL); \
  336. ocr_val = (remainder < OCR_VAL_TOLERANCE) ? ENDSTOP_NOMINAL_OCR_VAL + remainder : ENDSTOP_NOMINAL_OCR_VAL; \
  337. step_remaining = (uint16_t)L - ocr_val; \
  338. } \
  339. }while(0)
  340. if (step_remaining && ENDSTOPS_ENABLED) { // Just check endstops - not yet time for a step
  341. endstops.update();
  342. if (step_remaining > ENDSTOP_NOMINAL_OCR_VAL) {
  343. step_remaining -= ENDSTOP_NOMINAL_OCR_VAL;
  344. ocr_val = ENDSTOP_NOMINAL_OCR_VAL;
  345. }
  346. else {
  347. ocr_val = step_remaining;
  348. step_remaining = 0; // last one before the ISR that does the step
  349. }
  350. _NEXT_ISR(ocr_val);
  351. NOLESS(OCR1A, TCNT1 + 16);
  352. _ENABLE_ISRs(); // re-enable ISRs
  353. return;
  354. }
  355. #endif
  356. if (cleaning_buffer_counter) {
  357. --cleaning_buffer_counter;
  358. current_block = NULL;
  359. planner.discard_current_block();
  360. #ifdef SD_FINISHED_RELEASECOMMAND
  361. if (!cleaning_buffer_counter && (SD_FINISHED_STEPPERRELEASE)) enqueue_and_echo_commands_P(PSTR(SD_FINISHED_RELEASECOMMAND));
  362. #endif
  363. _NEXT_ISR(200); // Run at max speed - 10 KHz
  364. _ENABLE_ISRs(); // re-enable ISRs
  365. return;
  366. }
  367. // If there is no current block, attempt to pop one from the buffer
  368. if (!current_block) {
  369. // Anything in the buffer?
  370. current_block = planner.get_current_block();
  371. if (current_block) {
  372. trapezoid_generator_reset();
  373. // Initialize Bresenham counters to 1/2 the ceiling
  374. counter_X = counter_Y = counter_Z = counter_E = -(current_block->step_event_count >> 1);
  375. #if ENABLED(MIXING_EXTRUDER)
  376. MIXING_STEPPERS_LOOP(i)
  377. counter_m[i] = -(current_block->mix_event_count[i] >> 1);
  378. #endif
  379. step_events_completed = 0;
  380. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  381. e_hit = 2; // Needed for the case an endstop is already triggered before the new move begins.
  382. // No 'change' can be detected.
  383. #endif
  384. #if ENABLED(Z_LATE_ENABLE)
  385. if (current_block->steps[Z_AXIS] > 0) {
  386. enable_Z();
  387. _NEXT_ISR(2000); // Run at slow speed - 1 KHz
  388. _ENABLE_ISRs(); // re-enable ISRs
  389. return;
  390. }
  391. #endif
  392. }
  393. else {
  394. _NEXT_ISR(2000); // Run at slow speed - 1 KHz
  395. _ENABLE_ISRs(); // re-enable ISRs
  396. return;
  397. }
  398. }
  399. // Update endstops state, if enabled
  400. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  401. if (e_hit && ENDSTOPS_ENABLED) {
  402. endstops.update();
  403. e_hit--;
  404. }
  405. #else
  406. if (ENDSTOPS_ENABLED) endstops.update();
  407. #endif
  408. // Take multiple steps per interrupt (For high speed moves)
  409. bool all_steps_done = false;
  410. for (uint8_t i = step_loops; i--;) {
  411. #if ENABLED(LIN_ADVANCE)
  412. counter_E += current_block->steps[E_AXIS];
  413. if (counter_E > 0) {
  414. counter_E -= current_block->step_event_count;
  415. #if DISABLED(MIXING_EXTRUDER)
  416. // Don't step E here for mixing extruder
  417. count_position[E_AXIS] += count_direction[E_AXIS];
  418. motor_direction(E_AXIS) ? --e_steps[TOOL_E_INDEX] : ++e_steps[TOOL_E_INDEX];
  419. #endif
  420. }
  421. #if ENABLED(MIXING_EXTRUDER)
  422. // Step mixing steppers proportionally
  423. const bool dir = motor_direction(E_AXIS);
  424. MIXING_STEPPERS_LOOP(j) {
  425. counter_m[j] += current_block->steps[E_AXIS];
  426. if (counter_m[j] > 0) {
  427. counter_m[j] -= current_block->mix_event_count[j];
  428. dir ? --e_steps[j] : ++e_steps[j];
  429. }
  430. }
  431. #endif
  432. #endif // LIN_ADVANCE
  433. #define _COUNTER(AXIS) counter_## AXIS
  434. #define _APPLY_STEP(AXIS) AXIS ##_APPLY_STEP
  435. #define _INVERT_STEP_PIN(AXIS) INVERT_## AXIS ##_STEP_PIN
  436. // Advance the Bresenham counter; start a pulse if the axis needs a step
  437. #define PULSE_START(AXIS) \
  438. _COUNTER(AXIS) += current_block->steps[_AXIS(AXIS)]; \
  439. if (_COUNTER(AXIS) > 0) { _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS),0); }
  440. // Stop an active pulse, reset the Bresenham counter, update the position
  441. #define PULSE_STOP(AXIS) \
  442. if (_COUNTER(AXIS) > 0) { \
  443. _COUNTER(AXIS) -= current_block->step_event_count; \
  444. count_position[_AXIS(AXIS)] += count_direction[_AXIS(AXIS)]; \
  445. _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS),0); \
  446. }
  447. /**
  448. * Estimate the number of cycles that the stepper logic already takes
  449. * up between the start and stop of the X stepper pulse.
  450. *
  451. * Currently this uses very modest estimates of around 5 cycles.
  452. * True values may be derived by careful testing.
  453. *
  454. * Once any delay is added, the cost of the delay code itself
  455. * may be subtracted from this value to get a more accurate delay.
  456. * Delays under 20 cycles (1.25µs) will be very accurate, using NOPs.
  457. * Longer delays use a loop. The resolution is 8 cycles.
  458. */
  459. #if HAS_X_STEP
  460. #define _CYCLE_APPROX_1 5
  461. #else
  462. #define _CYCLE_APPROX_1 0
  463. #endif
  464. #if ENABLED(X_DUAL_STEPPER_DRIVERS)
  465. #define _CYCLE_APPROX_2 _CYCLE_APPROX_1 + 4
  466. #else
  467. #define _CYCLE_APPROX_2 _CYCLE_APPROX_1
  468. #endif
  469. #if HAS_Y_STEP
  470. #define _CYCLE_APPROX_3 _CYCLE_APPROX_2 + 5
  471. #else
  472. #define _CYCLE_APPROX_3 _CYCLE_APPROX_2
  473. #endif
  474. #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
  475. #define _CYCLE_APPROX_4 _CYCLE_APPROX_3 + 4
  476. #else
  477. #define _CYCLE_APPROX_4 _CYCLE_APPROX_3
  478. #endif
  479. #if HAS_Z_STEP
  480. #define _CYCLE_APPROX_5 _CYCLE_APPROX_4 + 5
  481. #else
  482. #define _CYCLE_APPROX_5 _CYCLE_APPROX_4
  483. #endif
  484. #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
  485. #define _CYCLE_APPROX_6 _CYCLE_APPROX_5 + 4
  486. #else
  487. #define _CYCLE_APPROX_6 _CYCLE_APPROX_5
  488. #endif
  489. #if DISABLED(LIN_ADVANCE)
  490. #if ENABLED(MIXING_EXTRUDER)
  491. #define _CYCLE_APPROX_7 _CYCLE_APPROX_6 + (MIXING_STEPPERS) * 6
  492. #else
  493. #define _CYCLE_APPROX_7 _CYCLE_APPROX_6 + 5
  494. #endif
  495. #else
  496. #define _CYCLE_APPROX_7 _CYCLE_APPROX_6
  497. #endif
  498. #define CYCLES_EATEN_XYZE _CYCLE_APPROX_7
  499. #define EXTRA_CYCLES_XYZE (STEP_PULSE_CYCLES - (CYCLES_EATEN_XYZE))
  500. /**
  501. * If a minimum pulse time was specified get the timer 0 value.
  502. *
  503. * TCNT0 has an 8x prescaler, so it increments every 8 cycles.
  504. * That's every 0.5µs on 16MHz and every 0.4µs on 20MHz.
  505. * 20 counts of TCNT0 -by itself- is a good pulse delay.
  506. * 10µs = 160 or 200 cycles.
  507. */
  508. #if EXTRA_CYCLES_XYZE > 20
  509. uint32_t pulse_start = TCNT0;
  510. #endif
  511. #if HAS_X_STEP
  512. PULSE_START(X);
  513. #endif
  514. #if HAS_Y_STEP
  515. PULSE_START(Y);
  516. #endif
  517. #if HAS_Z_STEP
  518. PULSE_START(Z);
  519. #endif
  520. // For non-advance use linear interpolation for E also
  521. #if DISABLED(LIN_ADVANCE)
  522. #if ENABLED(MIXING_EXTRUDER)
  523. // Keep updating the single E axis
  524. counter_E += current_block->steps[E_AXIS];
  525. // Tick the counters used for this mix
  526. MIXING_STEPPERS_LOOP(j) {
  527. // Step mixing steppers (proportionally)
  528. counter_m[j] += current_block->steps[E_AXIS];
  529. // Step when the counter goes over zero
  530. if (counter_m[j] > 0) En_STEP_WRITE(j, !INVERT_E_STEP_PIN);
  531. }
  532. #else // !MIXING_EXTRUDER
  533. PULSE_START(E);
  534. #endif
  535. #endif // !LIN_ADVANCE
  536. // For minimum pulse time wait before stopping pulses
  537. #if EXTRA_CYCLES_XYZE > 20
  538. while (EXTRA_CYCLES_XYZE > (uint32_t)(TCNT0 - pulse_start) * (INT0_PRESCALER)) { /* nada */ }
  539. pulse_start = TCNT0;
  540. #elif EXTRA_CYCLES_XYZE > 0
  541. DELAY_NOPS(EXTRA_CYCLES_XYZE);
  542. #endif
  543. #if HAS_X_STEP
  544. PULSE_STOP(X);
  545. #endif
  546. #if HAS_Y_STEP
  547. PULSE_STOP(Y);
  548. #endif
  549. #if HAS_Z_STEP
  550. PULSE_STOP(Z);
  551. #endif
  552. #if DISABLED(LIN_ADVANCE)
  553. #if ENABLED(MIXING_EXTRUDER)
  554. // Always step the single E axis
  555. if (counter_E > 0) {
  556. counter_E -= current_block->step_event_count;
  557. count_position[E_AXIS] += count_direction[E_AXIS];
  558. }
  559. MIXING_STEPPERS_LOOP(j) {
  560. if (counter_m[j] > 0) {
  561. counter_m[j] -= current_block->mix_event_count[j];
  562. En_STEP_WRITE(j, INVERT_E_STEP_PIN);
  563. }
  564. }
  565. #else // !MIXING_EXTRUDER
  566. PULSE_STOP(E);
  567. #endif
  568. #endif // !LIN_ADVANCE
  569. if (++step_events_completed >= current_block->step_event_count) {
  570. all_steps_done = true;
  571. break;
  572. }
  573. // For minimum pulse time wait after stopping pulses also
  574. #if EXTRA_CYCLES_XYZE > 20
  575. if (i) while (EXTRA_CYCLES_XYZE > (uint32_t)(TCNT0 - pulse_start) * (INT0_PRESCALER)) { /* nada */ }
  576. #elif EXTRA_CYCLES_XYZE > 0
  577. if (i) DELAY_NOPS(EXTRA_CYCLES_XYZE);
  578. #endif
  579. } // steps_loop
  580. #if ENABLED(LIN_ADVANCE)
  581. if (current_block->use_advance_lead) {
  582. const int delta_adv_steps = current_estep_rate[TOOL_E_INDEX] - current_adv_steps[TOOL_E_INDEX];
  583. current_adv_steps[TOOL_E_INDEX] += delta_adv_steps;
  584. #if ENABLED(MIXING_EXTRUDER)
  585. // Mixing extruders apply advance lead proportionally
  586. MIXING_STEPPERS_LOOP(j)
  587. e_steps[j] += delta_adv_steps * current_block->step_event_count / current_block->mix_event_count[j];
  588. #else
  589. // For most extruders, advance the single E stepper
  590. e_steps[TOOL_E_INDEX] += delta_adv_steps;
  591. #endif
  592. }
  593. // If we have esteps to execute, fire the next advance_isr "now"
  594. if (e_steps[TOOL_E_INDEX]) nextAdvanceISR = 0;
  595. #endif // LIN_ADVANCE
  596. // Calculate new timer value
  597. if (step_events_completed <= (uint32_t)current_block->accelerate_until) {
  598. MultiU24X32toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
  599. acc_step_rate += current_block->initial_rate;
  600. // upper limit
  601. NOMORE(acc_step_rate, current_block->nominal_rate);
  602. // step_rate to timer interval
  603. const uint16_t timer = calc_timer(acc_step_rate);
  604. SPLIT(timer); // split step into multiple ISRs if larger than ENDSTOP_NOMINAL_OCR_VAL
  605. _NEXT_ISR(ocr_val);
  606. acceleration_time += timer;
  607. #if ENABLED(LIN_ADVANCE)
  608. if (current_block->use_advance_lead) {
  609. #if ENABLED(MIXING_EXTRUDER)
  610. MIXING_STEPPERS_LOOP(j)
  611. current_estep_rate[j] = ((uint32_t)acc_step_rate * current_block->abs_adv_steps_multiplier8 * current_block->step_event_count / current_block->mix_event_count[j]) >> 17;
  612. #else
  613. current_estep_rate[TOOL_E_INDEX] = ((uint32_t)acc_step_rate * current_block->abs_adv_steps_multiplier8) >> 17;
  614. #endif
  615. }
  616. eISR_Rate = adv_rate(e_steps[TOOL_E_INDEX], timer, step_loops);
  617. #endif // LIN_ADVANCE
  618. }
  619. else if (step_events_completed > (uint32_t)current_block->decelerate_after) {
  620. uint16_t step_rate;
  621. MultiU24X32toH16(step_rate, deceleration_time, current_block->acceleration_rate);
  622. if (step_rate < acc_step_rate) { // Still decelerating?
  623. step_rate = acc_step_rate - step_rate;
  624. NOLESS(step_rate, current_block->final_rate);
  625. }
  626. else
  627. step_rate = current_block->final_rate;
  628. // step_rate to timer interval
  629. const uint16_t timer = calc_timer(step_rate);
  630. SPLIT(timer); // split step into multiple ISRs if larger than ENDSTOP_NOMINAL_OCR_VAL
  631. _NEXT_ISR(ocr_val);
  632. deceleration_time += timer;
  633. #if ENABLED(LIN_ADVANCE)
  634. if (current_block->use_advance_lead) {
  635. #if ENABLED(MIXING_EXTRUDER)
  636. MIXING_STEPPERS_LOOP(j)
  637. current_estep_rate[j] = ((uint32_t)step_rate * current_block->abs_adv_steps_multiplier8 * current_block->step_event_count / current_block->mix_event_count[j]) >> 17;
  638. #else
  639. current_estep_rate[TOOL_E_INDEX] = ((uint32_t)step_rate * current_block->abs_adv_steps_multiplier8) >> 17;
  640. #endif
  641. }
  642. eISR_Rate = adv_rate(e_steps[TOOL_E_INDEX], timer, step_loops);
  643. #endif // LIN_ADVANCE
  644. }
  645. else {
  646. #if ENABLED(LIN_ADVANCE)
  647. if (current_block->use_advance_lead)
  648. current_estep_rate[TOOL_E_INDEX] = final_estep_rate;
  649. eISR_Rate = adv_rate(e_steps[TOOL_E_INDEX], OCR1A_nominal, step_loops_nominal);
  650. #endif
  651. SPLIT(OCR1A_nominal); // split step into multiple ISRs if larger than ENDSTOP_NOMINAL_OCR_VAL
  652. _NEXT_ISR(ocr_val);
  653. // ensure we're running at the correct step rate, even if we just came off an acceleration
  654. step_loops = step_loops_nominal;
  655. }
  656. #if DISABLED(LIN_ADVANCE)
  657. NOLESS(OCR1A, TCNT1 + 16);
  658. #endif
  659. // If current block is finished, reset pointer
  660. if (all_steps_done) {
  661. current_block = NULL;
  662. planner.discard_current_block();
  663. }
  664. #if DISABLED(LIN_ADVANCE)
  665. _ENABLE_ISRs(); // re-enable ISRs
  666. #endif
  667. }
  668. #if ENABLED(LIN_ADVANCE)
  669. #define CYCLES_EATEN_E (E_STEPPERS * 5)
  670. #define EXTRA_CYCLES_E (STEP_PULSE_CYCLES - (CYCLES_EATEN_E))
  671. // Timer interrupt for E. e_steps is set in the main routine;
  672. void Stepper::advance_isr() {
  673. nextAdvanceISR = eISR_Rate;
  674. #if ENABLED(MK2_MULTIPLEXER)
  675. // Even-numbered steppers are reversed
  676. #define SET_E_STEP_DIR(INDEX) \
  677. if (e_steps[INDEX]) E## INDEX ##_DIR_WRITE(e_steps[INDEX] < 0 ? !INVERT_E## INDEX ##_DIR ^ TEST(INDEX, 0) : INVERT_E## INDEX ##_DIR ^ TEST(INDEX, 0))
  678. #else
  679. #define SET_E_STEP_DIR(INDEX) \
  680. if (e_steps[INDEX]) E## INDEX ##_DIR_WRITE(e_steps[INDEX] < 0 ? INVERT_E## INDEX ##_DIR : !INVERT_E## INDEX ##_DIR)
  681. #endif
  682. #define START_E_PULSE(INDEX) \
  683. if (e_steps[INDEX]) E## INDEX ##_STEP_WRITE(!INVERT_E_STEP_PIN)
  684. #define STOP_E_PULSE(INDEX) \
  685. if (e_steps[INDEX]) { \
  686. e_steps[INDEX] < 0 ? ++e_steps[INDEX] : --e_steps[INDEX]; \
  687. E## INDEX ##_STEP_WRITE(INVERT_E_STEP_PIN); \
  688. }
  689. SET_E_STEP_DIR(0);
  690. #if E_STEPPERS > 1
  691. SET_E_STEP_DIR(1);
  692. #if E_STEPPERS > 2
  693. SET_E_STEP_DIR(2);
  694. #if E_STEPPERS > 3
  695. SET_E_STEP_DIR(3);
  696. #if E_STEPPERS > 4
  697. SET_E_STEP_DIR(4);
  698. #endif
  699. #endif
  700. #endif
  701. #endif
  702. // Step all E steppers that have steps
  703. for (uint8_t i = step_loops; i--;) {
  704. #if EXTRA_CYCLES_E > 20
  705. uint32_t pulse_start = TCNT0;
  706. #endif
  707. START_E_PULSE(0);
  708. #if E_STEPPERS > 1
  709. START_E_PULSE(1);
  710. #if E_STEPPERS > 2
  711. START_E_PULSE(2);
  712. #if E_STEPPERS > 3
  713. START_E_PULSE(3);
  714. #if E_STEPPERS > 4
  715. START_E_PULSE(4);
  716. #endif
  717. #endif
  718. #endif
  719. #endif
  720. // For minimum pulse time wait before stopping pulses
  721. #if EXTRA_CYCLES_E > 20
  722. while (EXTRA_CYCLES_E > (uint32_t)(TCNT0 - pulse_start) * (INT0_PRESCALER)) { /* nada */ }
  723. pulse_start = TCNT0;
  724. #elif EXTRA_CYCLES_E > 0
  725. DELAY_NOPS(EXTRA_CYCLES_E);
  726. #endif
  727. STOP_E_PULSE(0);
  728. #if E_STEPPERS > 1
  729. STOP_E_PULSE(1);
  730. #if E_STEPPERS > 2
  731. STOP_E_PULSE(2);
  732. #if E_STEPPERS > 3
  733. STOP_E_PULSE(3);
  734. #if E_STEPPERS > 4
  735. STOP_E_PULSE(4);
  736. #endif
  737. #endif
  738. #endif
  739. #endif
  740. // For minimum pulse time wait before looping
  741. #if EXTRA_CYCLES_E > 20
  742. if (i) while (EXTRA_CYCLES_E > (uint32_t)(TCNT0 - pulse_start) * (INT0_PRESCALER)) { /* nada */ }
  743. #elif EXTRA_CYCLES_E > 0
  744. if (i) DELAY_NOPS(EXTRA_CYCLES_E);
  745. #endif
  746. } // steps_loop
  747. }
  748. void Stepper::advance_isr_scheduler() {
  749. // Disable Timer0 ISRs and enable global ISR again to capture UART events (incoming chars)
  750. CBI(TIMSK0, OCIE0B); // Temperature ISR
  751. DISABLE_STEPPER_DRIVER_INTERRUPT();
  752. sei();
  753. // Run main stepping ISR if flagged
  754. if (!nextMainISR) isr();
  755. // Run Advance stepping ISR if flagged
  756. if (!nextAdvanceISR) advance_isr();
  757. // Is the next advance ISR scheduled before the next main ISR?
  758. if (nextAdvanceISR <= nextMainISR) {
  759. // Set up the next interrupt
  760. OCR1A = nextAdvanceISR;
  761. // New interval for the next main ISR
  762. if (nextMainISR) nextMainISR -= nextAdvanceISR;
  763. // Will call Stepper::advance_isr on the next interrupt
  764. nextAdvanceISR = 0;
  765. }
  766. else {
  767. // The next main ISR comes first
  768. OCR1A = nextMainISR;
  769. // New interval for the next advance ISR, if any
  770. if (nextAdvanceISR && nextAdvanceISR != ADV_NEVER)
  771. nextAdvanceISR -= nextMainISR;
  772. // Will call Stepper::isr on the next interrupt
  773. nextMainISR = 0;
  774. }
  775. // Don't run the ISR faster than possible
  776. NOLESS(OCR1A, TCNT1 + 16);
  777. // Restore original ISR settings
  778. _ENABLE_ISRs();
  779. }
  780. #endif // LIN_ADVANCE
  781. void Stepper::init() {
  782. // Init Digipot Motor Current
  783. #if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM
  784. digipot_init();
  785. #endif
  786. // Init Microstepping Pins
  787. #if HAS_MICROSTEPS
  788. microstep_init();
  789. #endif
  790. // Init TMC Steppers
  791. #if ENABLED(HAVE_TMCDRIVER)
  792. tmc_init();
  793. #endif
  794. // Init TMC2130 Steppers
  795. #if ENABLED(HAVE_TMC2130)
  796. tmc2130_init();
  797. #endif
  798. // Init L6470 Steppers
  799. #if ENABLED(HAVE_L6470DRIVER)
  800. L6470_init();
  801. #endif
  802. // Init Dir Pins
  803. #if HAS_X_DIR
  804. X_DIR_INIT;
  805. #endif
  806. #if HAS_X2_DIR
  807. X2_DIR_INIT;
  808. #endif
  809. #if HAS_Y_DIR
  810. Y_DIR_INIT;
  811. #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_DIR
  812. Y2_DIR_INIT;
  813. #endif
  814. #endif
  815. #if HAS_Z_DIR
  816. Z_DIR_INIT;
  817. #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_DIR
  818. Z2_DIR_INIT;
  819. #endif
  820. #endif
  821. #if HAS_E0_DIR
  822. E0_DIR_INIT;
  823. #endif
  824. #if HAS_E1_DIR
  825. E1_DIR_INIT;
  826. #endif
  827. #if HAS_E2_DIR
  828. E2_DIR_INIT;
  829. #endif
  830. #if HAS_E3_DIR
  831. E3_DIR_INIT;
  832. #endif
  833. #if HAS_E4_DIR
  834. E4_DIR_INIT;
  835. #endif
  836. // Init Enable Pins - steppers default to disabled.
  837. #if HAS_X_ENABLE
  838. X_ENABLE_INIT;
  839. if (!X_ENABLE_ON) X_ENABLE_WRITE(HIGH);
  840. #if ENABLED(DUAL_X_CARRIAGE) && HAS_X2_ENABLE
  841. X2_ENABLE_INIT;
  842. if (!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH);
  843. #endif
  844. #endif
  845. #if HAS_Y_ENABLE
  846. Y_ENABLE_INIT;
  847. if (!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH);
  848. #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_ENABLE
  849. Y2_ENABLE_INIT;
  850. if (!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH);
  851. #endif
  852. #endif
  853. #if HAS_Z_ENABLE
  854. Z_ENABLE_INIT;
  855. if (!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH);
  856. #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_ENABLE
  857. Z2_ENABLE_INIT;
  858. if (!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH);
  859. #endif
  860. #endif
  861. #if HAS_E0_ENABLE
  862. E0_ENABLE_INIT;
  863. if (!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH);
  864. #endif
  865. #if HAS_E1_ENABLE
  866. E1_ENABLE_INIT;
  867. if (!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH);
  868. #endif
  869. #if HAS_E2_ENABLE
  870. E2_ENABLE_INIT;
  871. if (!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH);
  872. #endif
  873. #if HAS_E3_ENABLE
  874. E3_ENABLE_INIT;
  875. if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH);
  876. #endif
  877. #if HAS_E4_ENABLE
  878. E4_ENABLE_INIT;
  879. if (!E_ENABLE_ON) E4_ENABLE_WRITE(HIGH);
  880. #endif
  881. // Init endstops and pullups
  882. endstops.init();
  883. #define _STEP_INIT(AXIS) AXIS ##_STEP_INIT
  884. #define _WRITE_STEP(AXIS, HIGHLOW) AXIS ##_STEP_WRITE(HIGHLOW)
  885. #define _DISABLE(AXIS) disable_## AXIS()
  886. #define AXIS_INIT(AXIS, PIN) \
  887. _STEP_INIT(AXIS); \
  888. _WRITE_STEP(AXIS, _INVERT_STEP_PIN(PIN)); \
  889. _DISABLE(AXIS)
  890. #define E_AXIS_INIT(NUM) AXIS_INIT(E## NUM, E)
  891. // Init Step Pins
  892. #if HAS_X_STEP
  893. #if ENABLED(X_DUAL_STEPPER_DRIVERS) || ENABLED(DUAL_X_CARRIAGE)
  894. X2_STEP_INIT;
  895. X2_STEP_WRITE(INVERT_X_STEP_PIN);
  896. #endif
  897. AXIS_INIT(X, X);
  898. #endif
  899. #if HAS_Y_STEP
  900. #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
  901. Y2_STEP_INIT;
  902. Y2_STEP_WRITE(INVERT_Y_STEP_PIN);
  903. #endif
  904. AXIS_INIT(Y, Y);
  905. #endif
  906. #if HAS_Z_STEP
  907. #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
  908. Z2_STEP_INIT;
  909. Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
  910. #endif
  911. AXIS_INIT(Z, Z);
  912. #endif
  913. #if HAS_E0_STEP
  914. E_AXIS_INIT(0);
  915. #endif
  916. #if HAS_E1_STEP
  917. E_AXIS_INIT(1);
  918. #endif
  919. #if HAS_E2_STEP
  920. E_AXIS_INIT(2);
  921. #endif
  922. #if HAS_E3_STEP
  923. E_AXIS_INIT(3);
  924. #endif
  925. #if HAS_E4_STEP
  926. E_AXIS_INIT(4);
  927. #endif
  928. // waveform generation = 0100 = CTC
  929. SET_WGM(1, CTC_OCRnA);
  930. // output mode = 00 (disconnected)
  931. SET_COMA(1, NORMAL);
  932. // Set the timer pre-scaler
  933. // Generally we use a divider of 8, resulting in a 2MHz timer
  934. // frequency on a 16MHz MCU. If you are going to change this, be
  935. // sure to regenerate speed_lookuptable.h with
  936. // create_speed_lookuptable.py
  937. SET_CS(1, PRESCALER_8); // CS 2 = 1/8 prescaler
  938. // Init Stepper ISR to 122 Hz for quick starting
  939. OCR1A = 0x4000;
  940. TCNT1 = 0;
  941. ENABLE_STEPPER_DRIVER_INTERRUPT();
  942. #if ENABLED(LIN_ADVANCE)
  943. for (uint8_t i = 0; i < COUNT(e_steps); i++) e_steps[i] = 0;
  944. ZERO(current_adv_steps);
  945. #endif
  946. endstops.enable(true); // Start with endstops active. After homing they can be disabled
  947. sei();
  948. set_directions(); // Init directions to last_direction_bits = 0
  949. }
  950. /**
  951. * Block until all buffered steps are executed
  952. */
  953. void Stepper::synchronize() { while (planner.blocks_queued()) idle(); }
  954. /**
  955. * Set the stepper positions directly in steps
  956. *
  957. * The input is based on the typical per-axis XYZ steps.
  958. * For CORE machines XYZ needs to be translated to ABC.
  959. *
  960. * This allows get_axis_position_mm to correctly
  961. * derive the current XYZ position later on.
  962. */
  963. void Stepper::set_position(const long &a, const long &b, const long &c, const long &e) {
  964. synchronize(); // Bad to set stepper counts in the middle of a move
  965. CRITICAL_SECTION_START;
  966. #if CORE_IS_XY
  967. // corexy positioning
  968. // these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
  969. count_position[A_AXIS] = a + b;
  970. count_position[B_AXIS] = CORESIGN(a - b);
  971. count_position[Z_AXIS] = c;
  972. #elif CORE_IS_XZ
  973. // corexz planning
  974. count_position[A_AXIS] = a + c;
  975. count_position[Y_AXIS] = b;
  976. count_position[C_AXIS] = CORESIGN(a - c);
  977. #elif CORE_IS_YZ
  978. // coreyz planning
  979. count_position[X_AXIS] = a;
  980. count_position[B_AXIS] = b + c;
  981. count_position[C_AXIS] = CORESIGN(b - c);
  982. #else
  983. // default non-h-bot planning
  984. count_position[X_AXIS] = a;
  985. count_position[Y_AXIS] = b;
  986. count_position[Z_AXIS] = c;
  987. #endif
  988. count_position[E_AXIS] = e;
  989. CRITICAL_SECTION_END;
  990. }
  991. void Stepper::set_position(const AxisEnum &axis, const long &v) {
  992. CRITICAL_SECTION_START;
  993. count_position[axis] = v;
  994. CRITICAL_SECTION_END;
  995. }
  996. void Stepper::set_e_position(const long &e) {
  997. CRITICAL_SECTION_START;
  998. count_position[E_AXIS] = e;
  999. CRITICAL_SECTION_END;
  1000. }
  1001. /**
  1002. * Get a stepper's position in steps.
  1003. */
  1004. long Stepper::position(AxisEnum axis) {
  1005. CRITICAL_SECTION_START;
  1006. const long count_pos = count_position[axis];
  1007. CRITICAL_SECTION_END;
  1008. return count_pos;
  1009. }
  1010. /**
  1011. * Get an axis position according to stepper position(s)
  1012. * For CORE machines apply translation from ABC to XYZ.
  1013. */
  1014. float Stepper::get_axis_position_mm(AxisEnum axis) {
  1015. float axis_steps;
  1016. #if IS_CORE
  1017. // Requesting one of the "core" axes?
  1018. if (axis == CORE_AXIS_1 || axis == CORE_AXIS_2) {
  1019. CRITICAL_SECTION_START;
  1020. // ((a1+a2)+(a1-a2))/2 -> (a1+a2+a1-a2)/2 -> (a1+a1)/2 -> a1
  1021. // ((a1+a2)-(a1-a2))/2 -> (a1+a2-a1+a2)/2 -> (a2+a2)/2 -> a2
  1022. axis_steps = 0.5f * (
  1023. axis == CORE_AXIS_2 ? CORESIGN(count_position[CORE_AXIS_1] - count_position[CORE_AXIS_2])
  1024. : count_position[CORE_AXIS_1] + count_position[CORE_AXIS_2]
  1025. );
  1026. CRITICAL_SECTION_END;
  1027. }
  1028. else
  1029. axis_steps = position(axis);
  1030. #else
  1031. axis_steps = position(axis);
  1032. #endif
  1033. return axis_steps * planner.steps_to_mm[axis];
  1034. }
  1035. void Stepper::finish_and_disable() {
  1036. synchronize();
  1037. disable_all_steppers();
  1038. }
  1039. void Stepper::quick_stop() {
  1040. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(ULTIPANEL)
  1041. if (!ubl_lcd_map_control)
  1042. cleaning_buffer_counter = 5000;
  1043. #else
  1044. cleaning_buffer_counter = 5000;
  1045. #endif
  1046. DISABLE_STEPPER_DRIVER_INTERRUPT();
  1047. while (planner.blocks_queued()) planner.discard_current_block();
  1048. current_block = NULL;
  1049. ENABLE_STEPPER_DRIVER_INTERRUPT();
  1050. #if ENABLED(ULTRA_LCD)
  1051. planner.clear_block_buffer_runtime();
  1052. #endif
  1053. }
  1054. void Stepper::endstop_triggered(AxisEnum axis) {
  1055. #if IS_CORE
  1056. endstops_trigsteps[axis] = 0.5f * (
  1057. axis == CORE_AXIS_2 ? CORESIGN(count_position[CORE_AXIS_1] - count_position[CORE_AXIS_2])
  1058. : count_position[CORE_AXIS_1] + count_position[CORE_AXIS_2]
  1059. );
  1060. #else // !COREXY && !COREXZ && !COREYZ
  1061. endstops_trigsteps[axis] = count_position[axis];
  1062. #endif // !COREXY && !COREXZ && !COREYZ
  1063. kill_current_block();
  1064. }
  1065. void Stepper::report_positions() {
  1066. CRITICAL_SECTION_START;
  1067. const long xpos = count_position[X_AXIS],
  1068. ypos = count_position[Y_AXIS],
  1069. zpos = count_position[Z_AXIS];
  1070. CRITICAL_SECTION_END;
  1071. #if CORE_IS_XY || CORE_IS_XZ || IS_SCARA
  1072. SERIAL_PROTOCOLPGM(MSG_COUNT_A);
  1073. #else
  1074. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  1075. #endif
  1076. SERIAL_PROTOCOL(xpos);
  1077. #if CORE_IS_XY || CORE_IS_YZ || IS_SCARA
  1078. SERIAL_PROTOCOLPGM(" B:");
  1079. #else
  1080. SERIAL_PROTOCOLPGM(" Y:");
  1081. #endif
  1082. SERIAL_PROTOCOL(ypos);
  1083. #if CORE_IS_XZ || CORE_IS_YZ
  1084. SERIAL_PROTOCOLPGM(" C:");
  1085. #else
  1086. SERIAL_PROTOCOLPGM(" Z:");
  1087. #endif
  1088. SERIAL_PROTOCOL(zpos);
  1089. SERIAL_EOL();
  1090. }
  1091. #if ENABLED(BABYSTEPPING)
  1092. #if ENABLED(DELTA)
  1093. #define CYCLES_EATEN_BABYSTEP (2 * 15)
  1094. #else
  1095. #define CYCLES_EATEN_BABYSTEP 0
  1096. #endif
  1097. #define EXTRA_CYCLES_BABYSTEP (STEP_PULSE_CYCLES - (CYCLES_EATEN_BABYSTEP))
  1098. #define _ENABLE(AXIS) enable_## AXIS()
  1099. #define _READ_DIR(AXIS) AXIS ##_DIR_READ
  1100. #define _INVERT_DIR(AXIS) INVERT_## AXIS ##_DIR
  1101. #define _APPLY_DIR(AXIS, INVERT) AXIS ##_APPLY_DIR(INVERT, true)
  1102. #if EXTRA_CYCLES_BABYSTEP > 20
  1103. #define _SAVE_START const uint32_t pulse_start = TCNT0
  1104. #define _PULSE_WAIT while (EXTRA_CYCLES_BABYSTEP > (uint32_t)(TCNT0 - pulse_start) * (INT0_PRESCALER)) { /* nada */ }
  1105. #else
  1106. #define _SAVE_START NOOP
  1107. #if EXTRA_CYCLES_BABYSTEP > 0
  1108. #define _PULSE_WAIT DELAY_NOPS(EXTRA_CYCLES_BABYSTEP)
  1109. #elif STEP_PULSE_CYCLES > 0
  1110. #define _PULSE_WAIT NOOP
  1111. #elif ENABLED(DELTA)
  1112. #define _PULSE_WAIT delayMicroseconds(2);
  1113. #else
  1114. #define _PULSE_WAIT delayMicroseconds(4);
  1115. #endif
  1116. #endif
  1117. #define BABYSTEP_AXIS(AXIS, INVERT) { \
  1118. const uint8_t old_dir = _READ_DIR(AXIS); \
  1119. _ENABLE(AXIS); \
  1120. _SAVE_START; \
  1121. _APPLY_DIR(AXIS, _INVERT_DIR(AXIS)^direction^INVERT); \
  1122. _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS), true); \
  1123. _PULSE_WAIT; \
  1124. _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS), true); \
  1125. _APPLY_DIR(AXIS, old_dir); \
  1126. }
  1127. // MUST ONLY BE CALLED BY AN ISR,
  1128. // No other ISR should ever interrupt this!
  1129. void Stepper::babystep(const AxisEnum axis, const bool direction) {
  1130. cli();
  1131. switch (axis) {
  1132. #if ENABLED(BABYSTEP_XY)
  1133. case X_AXIS:
  1134. BABYSTEP_AXIS(X, false);
  1135. break;
  1136. case Y_AXIS:
  1137. BABYSTEP_AXIS(Y, false);
  1138. break;
  1139. #endif
  1140. case Z_AXIS: {
  1141. #if DISABLED(DELTA)
  1142. BABYSTEP_AXIS(Z, BABYSTEP_INVERT_Z);
  1143. #else // DELTA
  1144. const bool z_direction = direction ^ BABYSTEP_INVERT_Z;
  1145. enable_X();
  1146. enable_Y();
  1147. enable_Z();
  1148. const uint8_t old_x_dir_pin = X_DIR_READ,
  1149. old_y_dir_pin = Y_DIR_READ,
  1150. old_z_dir_pin = Z_DIR_READ;
  1151. X_DIR_WRITE(INVERT_X_DIR ^ z_direction);
  1152. Y_DIR_WRITE(INVERT_Y_DIR ^ z_direction);
  1153. Z_DIR_WRITE(INVERT_Z_DIR ^ z_direction);
  1154. _SAVE_START;
  1155. X_STEP_WRITE(!INVERT_X_STEP_PIN);
  1156. Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
  1157. Z_STEP_WRITE(!INVERT_Z_STEP_PIN);
  1158. _PULSE_WAIT;
  1159. X_STEP_WRITE(INVERT_X_STEP_PIN);
  1160. Y_STEP_WRITE(INVERT_Y_STEP_PIN);
  1161. Z_STEP_WRITE(INVERT_Z_STEP_PIN);
  1162. // Restore direction bits
  1163. X_DIR_WRITE(old_x_dir_pin);
  1164. Y_DIR_WRITE(old_y_dir_pin);
  1165. Z_DIR_WRITE(old_z_dir_pin);
  1166. #endif
  1167. } break;
  1168. default: break;
  1169. }
  1170. sei();
  1171. }
  1172. #endif // BABYSTEPPING
  1173. /**
  1174. * Software-controlled Stepper Motor Current
  1175. */
  1176. #if HAS_DIGIPOTSS
  1177. // From Arduino DigitalPotControl example
  1178. void Stepper::digitalPotWrite(const int16_t address, const int16_t value) {
  1179. WRITE(DIGIPOTSS_PIN, LOW); // Take the SS pin low to select the chip
  1180. SPI.transfer(address); // Send the address and value via SPI
  1181. SPI.transfer(value);
  1182. WRITE(DIGIPOTSS_PIN, HIGH); // Take the SS pin high to de-select the chip
  1183. //delay(10);
  1184. }
  1185. #endif // HAS_DIGIPOTSS
  1186. #if HAS_MOTOR_CURRENT_PWM
  1187. void Stepper::refresh_motor_power() {
  1188. for (uint8_t i = 0; i < COUNT(motor_current_setting); ++i) {
  1189. switch (i) {
  1190. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  1191. case 0:
  1192. #endif
  1193. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  1194. case 1:
  1195. #endif
  1196. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  1197. case 2:
  1198. #endif
  1199. digipot_current(i, motor_current_setting[i]);
  1200. default: break;
  1201. }
  1202. }
  1203. }
  1204. #endif // HAS_MOTOR_CURRENT_PWM
  1205. #if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM
  1206. void Stepper::digipot_current(const uint8_t driver, const int current) {
  1207. #if HAS_DIGIPOTSS
  1208. const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
  1209. digitalPotWrite(digipot_ch[driver], current);
  1210. #elif HAS_MOTOR_CURRENT_PWM
  1211. if (WITHIN(driver, 0, 2))
  1212. motor_current_setting[driver] = current; // update motor_current_setting
  1213. #define _WRITE_CURRENT_PWM(P) analogWrite(MOTOR_CURRENT_PWM_## P ##_PIN, 255L * current / (MOTOR_CURRENT_PWM_RANGE))
  1214. switch (driver) {
  1215. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  1216. case 0: _WRITE_CURRENT_PWM(XY); break;
  1217. #endif
  1218. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  1219. case 1: _WRITE_CURRENT_PWM(Z); break;
  1220. #endif
  1221. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  1222. case 2: _WRITE_CURRENT_PWM(E); break;
  1223. #endif
  1224. }
  1225. #endif
  1226. }
  1227. void Stepper::digipot_init() {
  1228. #if HAS_DIGIPOTSS
  1229. static const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
  1230. SPI.begin();
  1231. SET_OUTPUT(DIGIPOTSS_PIN);
  1232. for (uint8_t i = 0; i < COUNT(digipot_motor_current); i++) {
  1233. //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
  1234. digipot_current(i, digipot_motor_current[i]);
  1235. }
  1236. #elif HAS_MOTOR_CURRENT_PWM
  1237. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  1238. SET_OUTPUT(MOTOR_CURRENT_PWM_XY_PIN);
  1239. #endif
  1240. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  1241. SET_OUTPUT(MOTOR_CURRENT_PWM_Z_PIN);
  1242. #endif
  1243. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  1244. SET_OUTPUT(MOTOR_CURRENT_PWM_E_PIN);
  1245. #endif
  1246. refresh_motor_power();
  1247. // Set Timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
  1248. SET_CS5(PRESCALER_1);
  1249. #endif
  1250. }
  1251. #endif
  1252. #if HAS_MICROSTEPS
  1253. /**
  1254. * Software-controlled Microstepping
  1255. */
  1256. void Stepper::microstep_init() {
  1257. SET_OUTPUT(X_MS1_PIN);
  1258. SET_OUTPUT(X_MS2_PIN);
  1259. #if HAS_Y_MICROSTEPS
  1260. SET_OUTPUT(Y_MS1_PIN);
  1261. SET_OUTPUT(Y_MS2_PIN);
  1262. #endif
  1263. #if HAS_Z_MICROSTEPS
  1264. SET_OUTPUT(Z_MS1_PIN);
  1265. SET_OUTPUT(Z_MS2_PIN);
  1266. #endif
  1267. #if HAS_E0_MICROSTEPS
  1268. SET_OUTPUT(E0_MS1_PIN);
  1269. SET_OUTPUT(E0_MS2_PIN);
  1270. #endif
  1271. #if HAS_E1_MICROSTEPS
  1272. SET_OUTPUT(E1_MS1_PIN);
  1273. SET_OUTPUT(E1_MS2_PIN);
  1274. #endif
  1275. #if HAS_E2_MICROSTEPS
  1276. SET_OUTPUT(E2_MS1_PIN);
  1277. SET_OUTPUT(E2_MS2_PIN);
  1278. #endif
  1279. #if HAS_E3_MICROSTEPS
  1280. SET_OUTPUT(E3_MS1_PIN);
  1281. SET_OUTPUT(E3_MS2_PIN);
  1282. #endif
  1283. #if HAS_E4_MICROSTEPS
  1284. SET_OUTPUT(E4_MS1_PIN);
  1285. SET_OUTPUT(E4_MS2_PIN);
  1286. #endif
  1287. static const uint8_t microstep_modes[] = MICROSTEP_MODES;
  1288. for (uint16_t i = 0; i < COUNT(microstep_modes); i++)
  1289. microstep_mode(i, microstep_modes[i]);
  1290. }
  1291. void Stepper::microstep_ms(const uint8_t driver, const int8_t ms1, const int8_t ms2) {
  1292. if (ms1 >= 0) switch (driver) {
  1293. case 0: WRITE(X_MS1_PIN, ms1); break;
  1294. #if HAS_Y_MICROSTEPS
  1295. case 1: WRITE(Y_MS1_PIN, ms1); break;
  1296. #endif
  1297. #if HAS_Z_MICROSTEPS
  1298. case 2: WRITE(Z_MS1_PIN, ms1); break;
  1299. #endif
  1300. #if HAS_E0_MICROSTEPS
  1301. case 3: WRITE(E0_MS1_PIN, ms1); break;
  1302. #endif
  1303. #if HAS_E1_MICROSTEPS
  1304. case 4: WRITE(E1_MS1_PIN, ms1); break;
  1305. #endif
  1306. #if HAS_E2_MICROSTEPS
  1307. case 5: WRITE(E2_MS1_PIN, ms1); break;
  1308. #endif
  1309. #if HAS_E3_MICROSTEPS
  1310. case 6: WRITE(E3_MS1_PIN, ms1); break;
  1311. #endif
  1312. #if HAS_E4_MICROSTEPS
  1313. case 7: WRITE(E4_MS1_PIN, ms1); break;
  1314. #endif
  1315. }
  1316. if (ms2 >= 0) switch (driver) {
  1317. case 0: WRITE(X_MS2_PIN, ms2); break;
  1318. #if HAS_Y_MICROSTEPS
  1319. case 1: WRITE(Y_MS2_PIN, ms2); break;
  1320. #endif
  1321. #if HAS_Z_MICROSTEPS
  1322. case 2: WRITE(Z_MS2_PIN, ms2); break;
  1323. #endif
  1324. #if HAS_E0_MICROSTEPS
  1325. case 3: WRITE(E0_MS2_PIN, ms2); break;
  1326. #endif
  1327. #if HAS_E1_MICROSTEPS
  1328. case 4: WRITE(E1_MS2_PIN, ms2); break;
  1329. #endif
  1330. #if HAS_E2_MICROSTEPS
  1331. case 5: WRITE(E2_MS2_PIN, ms2); break;
  1332. #endif
  1333. #if HAS_E3_MICROSTEPS
  1334. case 6: WRITE(E3_MS2_PIN, ms2); break;
  1335. #endif
  1336. #if HAS_E4_MICROSTEPS
  1337. case 7: WRITE(E4_MS2_PIN, ms2); break;
  1338. #endif
  1339. }
  1340. }
  1341. void Stepper::microstep_mode(const uint8_t driver, const uint8_t stepping_mode) {
  1342. switch (stepping_mode) {
  1343. case 1: microstep_ms(driver, MICROSTEP1); break;
  1344. case 2: microstep_ms(driver, MICROSTEP2); break;
  1345. case 4: microstep_ms(driver, MICROSTEP4); break;
  1346. case 8: microstep_ms(driver, MICROSTEP8); break;
  1347. case 16: microstep_ms(driver, MICROSTEP16); break;
  1348. }
  1349. }
  1350. void Stepper::microstep_readings() {
  1351. SERIAL_PROTOCOLLNPGM("MS1,MS2 Pins");
  1352. SERIAL_PROTOCOLPGM("X: ");
  1353. SERIAL_PROTOCOL(READ(X_MS1_PIN));
  1354. SERIAL_PROTOCOLLN(READ(X_MS2_PIN));
  1355. #if HAS_Y_MICROSTEPS
  1356. SERIAL_PROTOCOLPGM("Y: ");
  1357. SERIAL_PROTOCOL(READ(Y_MS1_PIN));
  1358. SERIAL_PROTOCOLLN(READ(Y_MS2_PIN));
  1359. #endif
  1360. #if HAS_Z_MICROSTEPS
  1361. SERIAL_PROTOCOLPGM("Z: ");
  1362. SERIAL_PROTOCOL(READ(Z_MS1_PIN));
  1363. SERIAL_PROTOCOLLN(READ(Z_MS2_PIN));
  1364. #endif
  1365. #if HAS_E0_MICROSTEPS
  1366. SERIAL_PROTOCOLPGM("E0: ");
  1367. SERIAL_PROTOCOL(READ(E0_MS1_PIN));
  1368. SERIAL_PROTOCOLLN(READ(E0_MS2_PIN));
  1369. #endif
  1370. #if HAS_E1_MICROSTEPS
  1371. SERIAL_PROTOCOLPGM("E1: ");
  1372. SERIAL_PROTOCOL(READ(E1_MS1_PIN));
  1373. SERIAL_PROTOCOLLN(READ(E1_MS2_PIN));
  1374. #endif
  1375. #if HAS_E2_MICROSTEPS
  1376. SERIAL_PROTOCOLPGM("E2: ");
  1377. SERIAL_PROTOCOL(READ(E2_MS1_PIN));
  1378. SERIAL_PROTOCOLLN(READ(E2_MS2_PIN));
  1379. #endif
  1380. #if HAS_E3_MICROSTEPS
  1381. SERIAL_PROTOCOLPGM("E3: ");
  1382. SERIAL_PROTOCOL(READ(E3_MS1_PIN));
  1383. SERIAL_PROTOCOLLN(READ(E3_MS2_PIN));
  1384. #endif
  1385. #if HAS_E4_MICROSTEPS
  1386. SERIAL_PROTOCOLPGM("E4: ");
  1387. SERIAL_PROTOCOL(READ(E4_MS1_PIN));
  1388. SERIAL_PROTOCOLLN(READ(E4_MS2_PIN));
  1389. #endif
  1390. }
  1391. #endif // HAS_MICROSTEPS