My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Du kan inte välja fler än 25 ämnen Ämnen måste starta med en bokstav eller siffra, kan innehålla bindestreck ('-') och vara max 35 tecken långa.

ubl.cpp 7.0KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. #include "Marlin.h"
  23. #include "math.h"
  24. #if ENABLED(AUTO_BED_LEVELING_UBL)
  25. #include "ubl.h"
  26. #include "hex_print_routines.h"
  27. #include "temperature.h"
  28. /**
  29. * These support functions allow the use of large bit arrays of flags that take very
  30. * little RAM. Currently they are limited to being 16x16 in size. Changing the declaration
  31. * to unsigned long will allow us to go to 32x32 if higher resolution Mesh's are needed
  32. * in the future.
  33. */
  34. void bit_clear(uint16_t bits[16], uint8_t x, uint8_t y) { CBI(bits[y], x); }
  35. void bit_set(uint16_t bits[16], uint8_t x, uint8_t y) { SBI(bits[y], x); }
  36. bool is_bit_set(uint16_t bits[16], uint8_t x, uint8_t y) { return TEST(bits[y], x); }
  37. uint8_t ubl_cnt = 0;
  38. static void serial_echo_xy(const uint16_t x, const uint16_t y) {
  39. SERIAL_CHAR('(');
  40. SERIAL_ECHO(x);
  41. SERIAL_CHAR(',');
  42. SERIAL_ECHO(y);
  43. SERIAL_CHAR(')');
  44. safe_delay(10);
  45. }
  46. ubl_state unified_bed_leveling::state;
  47. float unified_bed_leveling::z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y],
  48. unified_bed_leveling::last_specified_z;
  49. // 15 is the maximum nubmer of grid points supported + 1 safety margin for now,
  50. // until determinism prevails
  51. constexpr float unified_bed_leveling::mesh_index_to_xpos[16],
  52. unified_bed_leveling::mesh_index_to_ypos[16];
  53. bool unified_bed_leveling::g26_debug_flag = false,
  54. unified_bed_leveling::has_control_of_lcd_panel = false;
  55. int16_t unified_bed_leveling::eeprom_start = -1; // Please stop changing this to 8 bits in size
  56. // It needs to hold values bigger than this.
  57. volatile int unified_bed_leveling::encoder_diff;
  58. unified_bed_leveling::unified_bed_leveling() {
  59. ubl_cnt++; // Debug counter to insure we only have one UBL object present in memory.
  60. reset();
  61. }
  62. void unified_bed_leveling::load_mesh(const int16_t slot) {
  63. int16_t j = (UBL_LAST_EEPROM_INDEX - eeprom_start) / sizeof(z_values);
  64. if (slot == -1) {
  65. SERIAL_PROTOCOLLNPGM("?No mesh saved in EEPROM. Zeroing mesh in memory.\n");
  66. reset();
  67. return;
  68. }
  69. if (!WITHIN(slot, 0, j - 1) || eeprom_start <= 0) {
  70. SERIAL_PROTOCOLLNPGM("?EEPROM storage not available to load mesh.\n");
  71. return;
  72. }
  73. j = UBL_LAST_EEPROM_INDEX - (slot + 1) * sizeof(z_values);
  74. eeprom_read_block((void *)&z_values, (void *)j, sizeof(z_values));
  75. SERIAL_PROTOCOLPAIR("Mesh loaded from slot ", slot);
  76. SERIAL_PROTOCOLLNPAIR(" at offset ", hex_address((void*)j));
  77. }
  78. void unified_bed_leveling::store_mesh(const int16_t slot) {
  79. int16_t j = (UBL_LAST_EEPROM_INDEX - eeprom_start) / sizeof(z_values);
  80. if (!WITHIN(slot, 0, j - 1) || eeprom_start <= 0) {
  81. SERIAL_PROTOCOLLNPGM("?EEPROM storage not available to load mesh.\n");
  82. SERIAL_PROTOCOL(slot);
  83. SERIAL_PROTOCOLLNPGM(" mesh slots available.\n");
  84. SERIAL_PROTOCOLLNPAIR("E2END : ", E2END);
  85. SERIAL_PROTOCOLLNPAIR("k : ", (int)UBL_LAST_EEPROM_INDEX);
  86. SERIAL_PROTOCOLLNPAIR("j : ", j);
  87. SERIAL_PROTOCOLLNPAIR("m : ", slot);
  88. SERIAL_EOL;
  89. return;
  90. }
  91. j = UBL_LAST_EEPROM_INDEX - (slot + 1) * sizeof(z_values);
  92. eeprom_write_block((const void *)&z_values, (void *)j, sizeof(z_values));
  93. SERIAL_PROTOCOLPAIR("Mesh saved in slot ", slot);
  94. SERIAL_PROTOCOLLNPAIR(" at offset ", hex_address((void*)j));
  95. }
  96. void unified_bed_leveling::reset() {
  97. state.active = false;
  98. state.z_offset = 0;
  99. state.eeprom_storage_slot = -1;
  100. ZERO(z_values);
  101. last_specified_z = -999.9;
  102. }
  103. void unified_bed_leveling::invalidate() {
  104. state.active = false;
  105. state.z_offset = 0;
  106. for (int x = 0; x < GRID_MAX_POINTS_X; x++)
  107. for (int y = 0; y < GRID_MAX_POINTS_Y; y++)
  108. z_values[x][y] = NAN;
  109. }
  110. void unified_bed_leveling::display_map(const int map_type) {
  111. const bool map0 = map_type == 0;
  112. constexpr uint8_t spaces = 11 * (GRID_MAX_POINTS_X - 2);
  113. if (map0) {
  114. SERIAL_PROTOCOLLNPGM("\nBed Topography Report:\n");
  115. serial_echo_xy(0, GRID_MAX_POINTS_Y - 1);
  116. SERIAL_ECHO_SP(spaces + 3);
  117. serial_echo_xy(GRID_MAX_POINTS_X - 1, GRID_MAX_POINTS_Y - 1);
  118. SERIAL_EOL;
  119. serial_echo_xy(UBL_MESH_MIN_X, UBL_MESH_MAX_Y);
  120. SERIAL_ECHO_SP(spaces - 3);
  121. serial_echo_xy(UBL_MESH_MAX_X, UBL_MESH_MAX_Y);
  122. SERIAL_EOL;
  123. }
  124. const float current_xi = ubl.get_cell_index_x(current_position[X_AXIS] + (MESH_X_DIST) / 2.0),
  125. current_yi = ubl.get_cell_index_y(current_position[Y_AXIS] + (MESH_Y_DIST) / 2.0);
  126. for (int8_t j = GRID_MAX_POINTS_Y - 1; j >= 0; j--) {
  127. for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
  128. const bool is_current = i == current_xi && j == current_yi;
  129. // is the nozzle here? then mark the number
  130. if (map0) SERIAL_CHAR(is_current ? '[' : ' ');
  131. const float f = z_values[i][j];
  132. if (isnan(f)) {
  133. serialprintPGM(map0 ? PSTR(" . ") : PSTR("NAN"));
  134. }
  135. else {
  136. // if we don't do this, the columns won't line up nicely
  137. if (map0 && f >= 0.0) SERIAL_CHAR(' ');
  138. SERIAL_PROTOCOL_F(f, 3);
  139. idle();
  140. }
  141. if (!map0 && i < GRID_MAX_POINTS_X - 1) SERIAL_CHAR(',');
  142. #if TX_BUFFER_SIZE > 0
  143. MYSERIAL.flushTX();
  144. #endif
  145. safe_delay(15);
  146. if (map0) {
  147. SERIAL_CHAR(is_current ? ']' : ' ');
  148. SERIAL_CHAR(' ');
  149. }
  150. }
  151. SERIAL_EOL;
  152. if (j && map0) { // we want the (0,0) up tight against the block of numbers
  153. SERIAL_CHAR(' ');
  154. SERIAL_EOL;
  155. }
  156. }
  157. if (map0) {
  158. serial_echo_xy(UBL_MESH_MIN_X, UBL_MESH_MIN_Y);
  159. SERIAL_ECHO_SP(spaces + 1);
  160. serial_echo_xy(UBL_MESH_MAX_X, UBL_MESH_MIN_Y);
  161. SERIAL_EOL;
  162. serial_echo_xy(0, 0);
  163. SERIAL_ECHO_SP(spaces + 5);
  164. serial_echo_xy(GRID_MAX_POINTS_X - 1, 0);
  165. SERIAL_EOL;
  166. }
  167. }
  168. bool unified_bed_leveling::sanity_check() {
  169. uint8_t error_flag = 0;
  170. const int j = (UBL_LAST_EEPROM_INDEX - eeprom_start) / sizeof(z_values);
  171. if (j < 1) {
  172. SERIAL_PROTOCOLLNPGM("?No EEPROM storage available for a mesh of this size.\n");
  173. error_flag++;
  174. }
  175. return !!error_flag;
  176. }
  177. #endif // AUTO_BED_LEVELING_UBL