My Marlin configs for Fabrikator Mini and CTC i3 Pro B
您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

settings.cpp 111KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <https://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * settings.cpp
  24. *
  25. * Settings and EEPROM storage
  26. *
  27. * IMPORTANT: Whenever there are changes made to the variables stored in EEPROM
  28. * in the functions below, also increment the version number. This makes sure that
  29. * the default values are used whenever there is a change to the data, to prevent
  30. * wrong data being written to the variables.
  31. *
  32. * ALSO: Variables in the Store and Retrieve sections must be in the same order.
  33. * If a feature is disabled, some data must still be written that, when read,
  34. * either sets a Sane Default, or results in No Change to the existing value.
  35. *
  36. */
  37. // Change EEPROM version if the structure changes
  38. #define EEPROM_VERSION "V81"
  39. #define EEPROM_OFFSET 100
  40. // Check the integrity of data offsets.
  41. // Can be disabled for production build.
  42. //#define DEBUG_EEPROM_READWRITE
  43. #include "settings.h"
  44. #include "endstops.h"
  45. #include "planner.h"
  46. #include "stepper.h"
  47. #include "temperature.h"
  48. #if ENABLED(DWIN_CREALITY_LCD)
  49. #include "../lcd/dwin/e3v2/dwin.h"
  50. #endif
  51. #include "../lcd/ultralcd.h"
  52. #include "../libs/vector_3.h" // for matrix_3x3
  53. #include "../gcode/gcode.h"
  54. #include "../MarlinCore.h"
  55. #if EITHER(EEPROM_SETTINGS, SD_FIRMWARE_UPDATE)
  56. #include "../HAL/shared/eeprom_api.h"
  57. #endif
  58. #include "probe.h"
  59. #if HAS_LEVELING
  60. #include "../feature/bedlevel/bedlevel.h"
  61. #endif
  62. #if ENABLED(Z_STEPPER_AUTO_ALIGN)
  63. #include "../feature/z_stepper_align.h"
  64. #endif
  65. #if ENABLED(EXTENSIBLE_UI)
  66. #include "../lcd/extui/ui_api.h"
  67. #endif
  68. #if HAS_SERVOS
  69. #include "servo.h"
  70. #endif
  71. #if HAS_SERVOS && HAS_SERVO_ANGLES
  72. #define EEPROM_NUM_SERVOS NUM_SERVOS
  73. #else
  74. #define EEPROM_NUM_SERVOS NUM_SERVO_PLUGS
  75. #endif
  76. #include "../feature/fwretract.h"
  77. #if ENABLED(POWER_LOSS_RECOVERY)
  78. #include "../feature/powerloss.h"
  79. #endif
  80. #if HAS_POWER_MONITOR
  81. #include "../feature/power_monitor.h"
  82. #endif
  83. #include "../feature/pause.h"
  84. #if ENABLED(BACKLASH_COMPENSATION)
  85. #include "../feature/backlash.h"
  86. #endif
  87. #if HAS_FILAMENT_SENSOR
  88. #include "../feature/runout.h"
  89. #ifndef FIL_RUNOUT_ENABLED_DEFAULT
  90. #define FIL_RUNOUT_ENABLED_DEFAULT true
  91. #endif
  92. #endif
  93. #if ENABLED(EXTRA_LIN_ADVANCE_K)
  94. extern float other_extruder_advance_K[EXTRUDERS];
  95. #endif
  96. #if HAS_MULTI_EXTRUDER
  97. #include "tool_change.h"
  98. void M217_report(const bool eeprom);
  99. #endif
  100. #if ENABLED(BLTOUCH)
  101. #include "../feature/bltouch.h"
  102. #endif
  103. #if HAS_TRINAMIC_CONFIG
  104. #include "stepper/indirection.h"
  105. #include "../feature/tmc_util.h"
  106. #endif
  107. #if ENABLED(PROBE_TEMP_COMPENSATION)
  108. #include "../feature/probe_temp_comp.h"
  109. #endif
  110. #include "../feature/controllerfan.h"
  111. #if ENABLED(CONTROLLER_FAN_EDITABLE)
  112. void M710_report(const bool forReplay);
  113. #endif
  114. #if ENABLED(CASE_LIGHT_ENABLE) && DISABLED(CASE_LIGHT_NO_BRIGHTNESS)
  115. #include "../feature/caselight.h"
  116. #define HAS_CASE_LIGHT_BRIGHTNESS 1
  117. #endif
  118. #if ENABLED(PASSWORD_FEATURE)
  119. #include "../feature/password/password.h"
  120. #endif
  121. #if ENABLED(TOUCH_SCREEN_CALIBRATION)
  122. #include "../lcd/tft/touch.h"
  123. #endif
  124. #pragma pack(push, 1) // No padding between variables
  125. typedef struct { uint16_t X, Y, Z, X2, Y2, Z2, Z3, Z4, E0, E1, E2, E3, E4, E5, E6, E7; } tmc_stepper_current_t;
  126. typedef struct { uint32_t X, Y, Z, X2, Y2, Z2, Z3, Z4, E0, E1, E2, E3, E4, E5, E6, E7; } tmc_hybrid_threshold_t;
  127. typedef struct { int16_t X, Y, Z, X2, Y2, Z2, Z3, Z4; } tmc_sgt_t;
  128. typedef struct { bool X, Y, Z, X2, Y2, Z2, Z3, Z4, E0, E1, E2, E3, E4, E5, E6, E7; } tmc_stealth_enabled_t;
  129. // Limit an index to an array size
  130. #define ALIM(I,ARR) _MIN(I, (signed)COUNT(ARR) - 1)
  131. // Defaults for reset / fill in on load
  132. static const uint32_t _DMA[] PROGMEM = DEFAULT_MAX_ACCELERATION;
  133. static const float _DASU[] PROGMEM = DEFAULT_AXIS_STEPS_PER_UNIT;
  134. static const feedRate_t _DMF[] PROGMEM = DEFAULT_MAX_FEEDRATE;
  135. extern const char SP_X_STR[], SP_Y_STR[], SP_Z_STR[], SP_E_STR[];
  136. /**
  137. * Current EEPROM Layout
  138. *
  139. * Keep this data structure up to date so
  140. * EEPROM size is known at compile time!
  141. */
  142. typedef struct SettingsDataStruct {
  143. char version[4]; // Vnn\0
  144. uint16_t crc; // Data Checksum
  145. //
  146. // DISTINCT_E_FACTORS
  147. //
  148. uint8_t esteppers; // XYZE_N - XYZ
  149. planner_settings_t planner_settings;
  150. xyze_float_t planner_max_jerk; // M205 XYZE planner.max_jerk
  151. float planner_junction_deviation_mm; // M205 J planner.junction_deviation_mm
  152. xyz_pos_t home_offset; // M206 XYZ / M665 TPZ
  153. #if HAS_HOTEND_OFFSET
  154. xyz_pos_t hotend_offset[HOTENDS - 1]; // M218 XYZ
  155. #endif
  156. //
  157. // FILAMENT_RUNOUT_SENSOR
  158. //
  159. bool runout_sensor_enabled; // M412 S
  160. float runout_distance_mm; // M412 D
  161. //
  162. // ENABLE_LEVELING_FADE_HEIGHT
  163. //
  164. float planner_z_fade_height; // M420 Zn planner.z_fade_height
  165. //
  166. // MESH_BED_LEVELING
  167. //
  168. float mbl_z_offset; // mbl.z_offset
  169. uint8_t mesh_num_x, mesh_num_y; // GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y
  170. float mbl_z_values[TERN(MESH_BED_LEVELING, GRID_MAX_POINTS_X, 3)] // mbl.z_values
  171. [TERN(MESH_BED_LEVELING, GRID_MAX_POINTS_Y, 3)];
  172. //
  173. // HAS_BED_PROBE
  174. //
  175. xyz_pos_t probe_offset;
  176. //
  177. // ABL_PLANAR
  178. //
  179. matrix_3x3 planner_bed_level_matrix; // planner.bed_level_matrix
  180. //
  181. // AUTO_BED_LEVELING_BILINEAR
  182. //
  183. uint8_t grid_max_x, grid_max_y; // GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y
  184. xy_pos_t bilinear_grid_spacing, bilinear_start; // G29 L F
  185. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  186. bed_mesh_t z_values; // G29
  187. #else
  188. float z_values[3][3];
  189. #endif
  190. //
  191. // AUTO_BED_LEVELING_UBL
  192. //
  193. bool planner_leveling_active; // M420 S planner.leveling_active
  194. int8_t ubl_storage_slot; // ubl.storage_slot
  195. //
  196. // SERVO_ANGLES
  197. //
  198. uint16_t servo_angles[EEPROM_NUM_SERVOS][2]; // M281 P L U
  199. //
  200. // Temperature first layer compensation values
  201. //
  202. #if ENABLED(PROBE_TEMP_COMPENSATION)
  203. int16_t z_offsets_probe[COUNT(temp_comp.z_offsets_probe)], // M871 P I V
  204. z_offsets_bed[COUNT(temp_comp.z_offsets_bed)] // M871 B I V
  205. #if ENABLED(USE_TEMP_EXT_COMPENSATION)
  206. , z_offsets_ext[COUNT(temp_comp.z_offsets_ext)] // M871 E I V
  207. #endif
  208. ;
  209. #endif
  210. //
  211. // BLTOUCH
  212. //
  213. bool bltouch_last_written_mode;
  214. //
  215. // DELTA / [XYZ]_DUAL_ENDSTOPS
  216. //
  217. #if ENABLED(DELTA)
  218. float delta_height; // M666 H
  219. abc_float_t delta_endstop_adj; // M666 X Y Z
  220. float delta_radius, // M665 R
  221. delta_diagonal_rod, // M665 L
  222. delta_segments_per_second; // M665 S
  223. abc_float_t delta_tower_angle_trim, // M665 X Y Z
  224. delta_diagonal_rod_trim; // M665 A B C
  225. #elif HAS_EXTRA_ENDSTOPS
  226. float x2_endstop_adj, // M666 X
  227. y2_endstop_adj, // M666 Y
  228. z2_endstop_adj, // M666 (S2) Z
  229. z3_endstop_adj, // M666 (S3) Z
  230. z4_endstop_adj; // M666 (S4) Z
  231. #endif
  232. //
  233. // Z_STEPPER_AUTO_ALIGN, Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS
  234. //
  235. #if ENABLED(Z_STEPPER_AUTO_ALIGN)
  236. xy_pos_t z_stepper_align_xy[NUM_Z_STEPPER_DRIVERS]; // M422 S X Y
  237. #if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
  238. xy_pos_t z_stepper_align_stepper_xy[NUM_Z_STEPPER_DRIVERS]; // M422 W X Y
  239. #endif
  240. #endif
  241. //
  242. // Material Presets
  243. //
  244. #if PREHEAT_COUNT
  245. preheat_t ui_material_preset[PREHEAT_COUNT]; // M145 S0 H B F
  246. #endif
  247. //
  248. // PIDTEMP
  249. //
  250. PIDCF_t hotendPID[HOTENDS]; // M301 En PIDCF / M303 En U
  251. int16_t lpq_len; // M301 L
  252. //
  253. // PIDTEMPBED
  254. //
  255. PID_t bedPID; // M304 PID / M303 E-1 U
  256. //
  257. // User-defined Thermistors
  258. //
  259. #if HAS_USER_THERMISTORS
  260. user_thermistor_t user_thermistor[USER_THERMISTORS]; // M305 P0 R4700 T100000 B3950
  261. #endif
  262. //
  263. // Power monitor
  264. //
  265. uint8_t power_monitor_flags; // M430 I V W
  266. //
  267. // HAS_LCD_CONTRAST
  268. //
  269. int16_t lcd_contrast; // M250 C
  270. //
  271. // Controller fan settings
  272. //
  273. controllerFan_settings_t controllerFan_settings; // M710
  274. //
  275. // POWER_LOSS_RECOVERY
  276. //
  277. bool recovery_enabled; // M413 S
  278. //
  279. // FWRETRACT
  280. //
  281. fwretract_settings_t fwretract_settings; // M207 S F Z W, M208 S F W R
  282. bool autoretract_enabled; // M209 S
  283. //
  284. // !NO_VOLUMETRIC
  285. //
  286. bool parser_volumetric_enabled; // M200 S parser.volumetric_enabled
  287. float planner_filament_size[EXTRUDERS]; // M200 T D planner.filament_size[]
  288. float planner_volumetric_extruder_limit[EXTRUDERS]; // M200 T L planner.volumetric_extruder_limit[]
  289. //
  290. // HAS_TRINAMIC_CONFIG
  291. //
  292. tmc_stepper_current_t tmc_stepper_current; // M906 X Y Z X2 Y2 Z2 Z3 Z4 E0 E1 E2 E3 E4 E5
  293. tmc_hybrid_threshold_t tmc_hybrid_threshold; // M913 X Y Z X2 Y2 Z2 Z3 Z4 E0 E1 E2 E3 E4 E5
  294. tmc_sgt_t tmc_sgt; // M914 X Y Z X2 Y2 Z2 Z3 Z4
  295. tmc_stealth_enabled_t tmc_stealth_enabled; // M569 X Y Z X2 Y2 Z2 Z3 Z4 E0 E1 E2 E3 E4 E5
  296. //
  297. // LIN_ADVANCE
  298. //
  299. float planner_extruder_advance_K[_MAX(EXTRUDERS, 1)]; // M900 K planner.extruder_advance_K
  300. //
  301. // HAS_MOTOR_CURRENT_PWM
  302. //
  303. uint32_t motor_current_setting[3]; // M907 X Z E
  304. //
  305. // CNC_COORDINATE_SYSTEMS
  306. //
  307. xyz_pos_t coordinate_system[MAX_COORDINATE_SYSTEMS]; // G54-G59.3
  308. //
  309. // SKEW_CORRECTION
  310. //
  311. skew_factor_t planner_skew_factor; // M852 I J K planner.skew_factor
  312. //
  313. // ADVANCED_PAUSE_FEATURE
  314. //
  315. #if EXTRUDERS
  316. fil_change_settings_t fc_settings[EXTRUDERS]; // M603 T U L
  317. #endif
  318. //
  319. // Tool-change settings
  320. //
  321. #if HAS_MULTI_EXTRUDER
  322. toolchange_settings_t toolchange_settings; // M217 S P R
  323. #endif
  324. //
  325. // BACKLASH_COMPENSATION
  326. //
  327. xyz_float_t backlash_distance_mm; // M425 X Y Z
  328. uint8_t backlash_correction; // M425 F
  329. float backlash_smoothing_mm; // M425 S
  330. //
  331. // EXTENSIBLE_UI
  332. //
  333. #if ENABLED(EXTENSIBLE_UI)
  334. // This is a significant hardware change; don't reserve space when not present
  335. uint8_t extui_data[ExtUI::eeprom_data_size];
  336. #endif
  337. //
  338. // HAS_CASE_LIGHT_BRIGHTNESS
  339. //
  340. #if HAS_CASE_LIGHT_BRIGHTNESS
  341. uint8_t caselight_brightness; // M355 P
  342. #endif
  343. //
  344. // PASSWORD_FEATURE
  345. //
  346. #if ENABLED(PASSWORD_FEATURE)
  347. bool password_is_set;
  348. uint32_t password_value;
  349. #endif
  350. //
  351. // TOUCH_SCREEN_CALIBRATION
  352. //
  353. #if ENABLED(TOUCH_SCREEN_CALIBRATION)
  354. touch_calibration_t touch_calibration;
  355. #endif
  356. } SettingsData;
  357. //static_assert(sizeof(SettingsData) <= MARLIN_EEPROM_SIZE, "EEPROM too small to contain SettingsData!");
  358. MarlinSettings settings;
  359. uint16_t MarlinSettings::datasize() { return sizeof(SettingsData); }
  360. /**
  361. * Post-process after Retrieve or Reset
  362. */
  363. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  364. float new_z_fade_height;
  365. #endif
  366. void MarlinSettings::postprocess() {
  367. xyze_pos_t oldpos = current_position;
  368. // steps per s2 needs to be updated to agree with units per s2
  369. planner.reset_acceleration_rates();
  370. // Make sure delta kinematics are updated before refreshing the
  371. // planner position so the stepper counts will be set correctly.
  372. TERN_(DELTA, recalc_delta_settings());
  373. TERN_(PIDTEMP, thermalManager.updatePID());
  374. #if DISABLED(NO_VOLUMETRICS)
  375. planner.calculate_volumetric_multipliers();
  376. #elif EXTRUDERS
  377. for (uint8_t i = COUNT(planner.e_factor); i--;)
  378. planner.refresh_e_factor(i);
  379. #endif
  380. // Software endstops depend on home_offset
  381. LOOP_XYZ(i) {
  382. update_workspace_offset((AxisEnum)i);
  383. update_software_endstops((AxisEnum)i);
  384. }
  385. TERN_(ENABLE_LEVELING_FADE_HEIGHT, set_z_fade_height(new_z_fade_height, false)); // false = no report
  386. TERN_(AUTO_BED_LEVELING_BILINEAR, refresh_bed_level());
  387. TERN_(HAS_MOTOR_CURRENT_PWM, stepper.refresh_motor_power());
  388. TERN_(FWRETRACT, fwretract.refresh_autoretract());
  389. TERN_(HAS_LINEAR_E_JERK, planner.recalculate_max_e_jerk());
  390. TERN_(HAS_CASE_LIGHT_BRIGHTNESS, caselight.update_brightness());
  391. // Refresh steps_to_mm with the reciprocal of axis_steps_per_mm
  392. // and init stepper.count[], planner.position[] with current_position
  393. planner.refresh_positioning();
  394. // Various factors can change the current position
  395. if (oldpos != current_position)
  396. report_current_position();
  397. }
  398. #if BOTH(PRINTCOUNTER, EEPROM_SETTINGS)
  399. #include "printcounter.h"
  400. static_assert(
  401. !WITHIN(STATS_EEPROM_ADDRESS, EEPROM_OFFSET, EEPROM_OFFSET + sizeof(SettingsData)) &&
  402. !WITHIN(STATS_EEPROM_ADDRESS + sizeof(printStatistics), EEPROM_OFFSET, EEPROM_OFFSET + sizeof(SettingsData)),
  403. "STATS_EEPROM_ADDRESS collides with EEPROM settings storage."
  404. );
  405. #endif
  406. #if ENABLED(SD_FIRMWARE_UPDATE)
  407. #if ENABLED(EEPROM_SETTINGS)
  408. static_assert(
  409. !WITHIN(SD_FIRMWARE_UPDATE_EEPROM_ADDR, EEPROM_OFFSET, EEPROM_OFFSET + sizeof(SettingsData)),
  410. "SD_FIRMWARE_UPDATE_EEPROM_ADDR collides with EEPROM settings storage."
  411. );
  412. #endif
  413. bool MarlinSettings::sd_update_status() {
  414. uint8_t val;
  415. persistentStore.read_data(SD_FIRMWARE_UPDATE_EEPROM_ADDR, &val);
  416. return (val == SD_FIRMWARE_UPDATE_ACTIVE_VALUE);
  417. }
  418. bool MarlinSettings::set_sd_update_status(const bool enable) {
  419. if (enable != sd_update_status())
  420. persistentStore.write_data(
  421. SD_FIRMWARE_UPDATE_EEPROM_ADDR,
  422. enable ? SD_FIRMWARE_UPDATE_ACTIVE_VALUE : SD_FIRMWARE_UPDATE_INACTIVE_VALUE
  423. );
  424. return true;
  425. }
  426. #endif // SD_FIRMWARE_UPDATE
  427. #ifdef ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE
  428. static_assert(
  429. EEPROM_OFFSET + sizeof(SettingsData) < ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE,
  430. "ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE is insufficient to capture all EEPROM data."
  431. );
  432. #endif
  433. #define DEBUG_OUT ENABLED(EEPROM_CHITCHAT)
  434. #include "../core/debug_out.h"
  435. #if ENABLED(EEPROM_SETTINGS)
  436. #define EEPROM_START() if (!persistentStore.access_start()) { SERIAL_ECHO_MSG("No EEPROM."); return false; } \
  437. int eeprom_index = EEPROM_OFFSET
  438. #define EEPROM_FINISH() persistentStore.access_finish()
  439. #define EEPROM_SKIP(VAR) (eeprom_index += sizeof(VAR))
  440. #define EEPROM_WRITE(VAR) do{ persistentStore.write_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc); }while(0)
  441. #define EEPROM_READ(VAR) do{ persistentStore.read_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc, !validating); }while(0)
  442. #define EEPROM_READ_ALWAYS(VAR) do{ persistentStore.read_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc); }while(0)
  443. #define EEPROM_ASSERT(TST,ERR) do{ if (!(TST)) { SERIAL_ERROR_MSG(ERR); eeprom_error = true; } }while(0)
  444. #if ENABLED(DEBUG_EEPROM_READWRITE)
  445. #define _FIELD_TEST(FIELD) \
  446. EEPROM_ASSERT( \
  447. eeprom_error || eeprom_index == offsetof(SettingsData, FIELD) + EEPROM_OFFSET, \
  448. "Field " STRINGIFY(FIELD) " mismatch." \
  449. )
  450. #else
  451. #define _FIELD_TEST(FIELD) NOOP
  452. #endif
  453. const char version[4] = EEPROM_VERSION;
  454. bool MarlinSettings::eeprom_error, MarlinSettings::validating;
  455. bool MarlinSettings::size_error(const uint16_t size) {
  456. if (size != datasize()) {
  457. DEBUG_ERROR_MSG("EEPROM datasize error.");
  458. return true;
  459. }
  460. return false;
  461. }
  462. /**
  463. * M500 - Store Configuration
  464. */
  465. bool MarlinSettings::save() {
  466. float dummyf = 0;
  467. char ver[4] = "ERR";
  468. uint16_t working_crc = 0;
  469. EEPROM_START();
  470. eeprom_error = false;
  471. // Write or Skip version. (Flash doesn't allow rewrite without erase.)
  472. TERN(FLASH_EEPROM_EMULATION, EEPROM_SKIP, EEPROM_WRITE)(ver);
  473. EEPROM_SKIP(working_crc); // Skip the checksum slot
  474. working_crc = 0; // clear before first "real data"
  475. _FIELD_TEST(esteppers);
  476. const uint8_t esteppers = COUNT(planner.settings.axis_steps_per_mm) - XYZ;
  477. EEPROM_WRITE(esteppers);
  478. //
  479. // Planner Motion
  480. //
  481. {
  482. EEPROM_WRITE(planner.settings);
  483. #if HAS_CLASSIC_JERK
  484. EEPROM_WRITE(planner.max_jerk);
  485. #if HAS_LINEAR_E_JERK
  486. dummyf = float(DEFAULT_EJERK);
  487. EEPROM_WRITE(dummyf);
  488. #endif
  489. #else
  490. const xyze_pos_t planner_max_jerk = { 10, 10, 0.4, float(DEFAULT_EJERK) };
  491. EEPROM_WRITE(planner_max_jerk);
  492. #endif
  493. TERN_(CLASSIC_JERK, dummyf = 0.02f);
  494. EEPROM_WRITE(TERN(CLASSIC_JERK, dummyf, planner.junction_deviation_mm));
  495. }
  496. //
  497. // Home Offset
  498. //
  499. {
  500. _FIELD_TEST(home_offset);
  501. #if HAS_SCARA_OFFSET
  502. EEPROM_WRITE(scara_home_offset);
  503. #else
  504. #if !HAS_HOME_OFFSET
  505. const xyz_pos_t home_offset{0};
  506. #endif
  507. EEPROM_WRITE(home_offset);
  508. #endif
  509. }
  510. //
  511. // Hotend Offsets, if any
  512. //
  513. {
  514. #if HAS_HOTEND_OFFSET
  515. // Skip hotend 0 which must be 0
  516. LOOP_S_L_N(e, 1, HOTENDS)
  517. EEPROM_WRITE(hotend_offset[e]);
  518. #endif
  519. }
  520. //
  521. // Filament Runout Sensor
  522. //
  523. {
  524. #if HAS_FILAMENT_SENSOR
  525. const bool &runout_sensor_enabled = runout.enabled;
  526. #else
  527. constexpr int8_t runout_sensor_enabled = -1;
  528. #endif
  529. _FIELD_TEST(runout_sensor_enabled);
  530. EEPROM_WRITE(runout_sensor_enabled);
  531. #if HAS_FILAMENT_RUNOUT_DISTANCE
  532. const float &runout_distance_mm = runout.runout_distance();
  533. #else
  534. constexpr float runout_distance_mm = 0;
  535. #endif
  536. EEPROM_WRITE(runout_distance_mm);
  537. }
  538. //
  539. // Global Leveling
  540. //
  541. {
  542. const float zfh = TERN(ENABLE_LEVELING_FADE_HEIGHT, planner.z_fade_height, 10.0f);
  543. EEPROM_WRITE(zfh);
  544. }
  545. //
  546. // Mesh Bed Leveling
  547. //
  548. {
  549. #if ENABLED(MESH_BED_LEVELING)
  550. static_assert(
  551. sizeof(mbl.z_values) == (GRID_MAX_POINTS) * sizeof(mbl.z_values[0][0]),
  552. "MBL Z array is the wrong size."
  553. );
  554. #else
  555. dummyf = 0;
  556. #endif
  557. const uint8_t mesh_num_x = TERN(MESH_BED_LEVELING, GRID_MAX_POINTS_X, 3),
  558. mesh_num_y = TERN(MESH_BED_LEVELING, GRID_MAX_POINTS_Y, 3);
  559. EEPROM_WRITE(TERN(MESH_BED_LEVELING, mbl.z_offset, dummyf));
  560. EEPROM_WRITE(mesh_num_x);
  561. EEPROM_WRITE(mesh_num_y);
  562. #if ENABLED(MESH_BED_LEVELING)
  563. EEPROM_WRITE(mbl.z_values);
  564. #else
  565. for (uint8_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_WRITE(dummyf);
  566. #endif
  567. }
  568. //
  569. // Probe XYZ Offsets
  570. //
  571. {
  572. _FIELD_TEST(probe_offset);
  573. #if HAS_BED_PROBE
  574. const xyz_pos_t &zpo = probe.offset;
  575. #else
  576. constexpr xyz_pos_t zpo{0};
  577. #endif
  578. EEPROM_WRITE(zpo);
  579. }
  580. //
  581. // Planar Bed Leveling matrix
  582. //
  583. {
  584. #if ABL_PLANAR
  585. EEPROM_WRITE(planner.bed_level_matrix);
  586. #else
  587. dummyf = 0;
  588. for (uint8_t q = 9; q--;) EEPROM_WRITE(dummyf);
  589. #endif
  590. }
  591. //
  592. // Bilinear Auto Bed Leveling
  593. //
  594. {
  595. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  596. static_assert(
  597. sizeof(z_values) == (GRID_MAX_POINTS) * sizeof(z_values[0][0]),
  598. "Bilinear Z array is the wrong size."
  599. );
  600. #else
  601. const xy_pos_t bilinear_start{0}, bilinear_grid_spacing{0};
  602. #endif
  603. const uint8_t grid_max_x = TERN(AUTO_BED_LEVELING_BILINEAR, GRID_MAX_POINTS_X, 3),
  604. grid_max_y = TERN(AUTO_BED_LEVELING_BILINEAR, GRID_MAX_POINTS_Y, 3);
  605. EEPROM_WRITE(grid_max_x);
  606. EEPROM_WRITE(grid_max_y);
  607. EEPROM_WRITE(bilinear_grid_spacing);
  608. EEPROM_WRITE(bilinear_start);
  609. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  610. EEPROM_WRITE(z_values); // 9-256 floats
  611. #else
  612. dummyf = 0;
  613. for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_WRITE(dummyf);
  614. #endif
  615. }
  616. //
  617. // Unified Bed Leveling
  618. //
  619. {
  620. _FIELD_TEST(planner_leveling_active);
  621. const bool ubl_active = TERN(AUTO_BED_LEVELING_UBL, planner.leveling_active, false);
  622. const int8_t storage_slot = TERN(AUTO_BED_LEVELING_UBL, ubl.storage_slot, -1);
  623. EEPROM_WRITE(ubl_active);
  624. EEPROM_WRITE(storage_slot);
  625. }
  626. //
  627. // Servo Angles
  628. //
  629. {
  630. _FIELD_TEST(servo_angles);
  631. #if !HAS_SERVO_ANGLES
  632. uint16_t servo_angles[EEPROM_NUM_SERVOS][2] = { { 0, 0 } };
  633. #endif
  634. EEPROM_WRITE(servo_angles);
  635. }
  636. //
  637. // Thermal first layer compensation values
  638. //
  639. #if ENABLED(PROBE_TEMP_COMPENSATION)
  640. EEPROM_WRITE(temp_comp.z_offsets_probe);
  641. EEPROM_WRITE(temp_comp.z_offsets_bed);
  642. #if ENABLED(USE_TEMP_EXT_COMPENSATION)
  643. EEPROM_WRITE(temp_comp.z_offsets_ext);
  644. #endif
  645. #else
  646. // No placeholder data for this feature
  647. #endif
  648. //
  649. // BLTOUCH
  650. //
  651. {
  652. _FIELD_TEST(bltouch_last_written_mode);
  653. const bool bltouch_last_written_mode = TERN(BLTOUCH, bltouch.last_written_mode, false);
  654. EEPROM_WRITE(bltouch_last_written_mode);
  655. }
  656. //
  657. // DELTA Geometry or Dual Endstops offsets
  658. //
  659. {
  660. #if ENABLED(DELTA)
  661. _FIELD_TEST(delta_height);
  662. EEPROM_WRITE(delta_height); // 1 float
  663. EEPROM_WRITE(delta_endstop_adj); // 3 floats
  664. EEPROM_WRITE(delta_radius); // 1 float
  665. EEPROM_WRITE(delta_diagonal_rod); // 1 float
  666. EEPROM_WRITE(delta_segments_per_second); // 1 float
  667. EEPROM_WRITE(delta_tower_angle_trim); // 3 floats
  668. EEPROM_WRITE(delta_diagonal_rod_trim); // 3 floats
  669. #elif HAS_EXTRA_ENDSTOPS
  670. _FIELD_TEST(x2_endstop_adj);
  671. // Write dual endstops in X, Y, Z order. Unused = 0.0
  672. dummyf = 0;
  673. EEPROM_WRITE(TERN(X_DUAL_ENDSTOPS, endstops.x2_endstop_adj, dummyf)); // 1 float
  674. EEPROM_WRITE(TERN(Y_DUAL_ENDSTOPS, endstops.y2_endstop_adj, dummyf)); // 1 float
  675. EEPROM_WRITE(TERN(Z_MULTI_ENDSTOPS, endstops.z2_endstop_adj, dummyf)); // 1 float
  676. #if ENABLED(Z_MULTI_ENDSTOPS) && NUM_Z_STEPPER_DRIVERS >= 3
  677. EEPROM_WRITE(endstops.z3_endstop_adj); // 1 float
  678. #else
  679. EEPROM_WRITE(dummyf);
  680. #endif
  681. #if ENABLED(Z_MULTI_ENDSTOPS) && NUM_Z_STEPPER_DRIVERS >= 4
  682. EEPROM_WRITE(endstops.z4_endstop_adj); // 1 float
  683. #else
  684. EEPROM_WRITE(dummyf);
  685. #endif
  686. #endif
  687. }
  688. #if ENABLED(Z_STEPPER_AUTO_ALIGN)
  689. EEPROM_WRITE(z_stepper_align.xy);
  690. #if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
  691. EEPROM_WRITE(z_stepper_align.stepper_xy);
  692. #endif
  693. #endif
  694. //
  695. // LCD Preheat settings
  696. //
  697. #if PREHEAT_COUNT
  698. _FIELD_TEST(ui_material_preset);
  699. EEPROM_WRITE(ui.material_preset);
  700. #endif
  701. //
  702. // PIDTEMP
  703. //
  704. {
  705. _FIELD_TEST(hotendPID);
  706. HOTEND_LOOP() {
  707. PIDCF_t pidcf = {
  708. #if DISABLED(PIDTEMP)
  709. NAN, NAN, NAN,
  710. NAN, NAN
  711. #else
  712. PID_PARAM(Kp, e),
  713. unscalePID_i(PID_PARAM(Ki, e)),
  714. unscalePID_d(PID_PARAM(Kd, e)),
  715. PID_PARAM(Kc, e),
  716. PID_PARAM(Kf, e)
  717. #endif
  718. };
  719. EEPROM_WRITE(pidcf);
  720. }
  721. _FIELD_TEST(lpq_len);
  722. #if DISABLED(PID_EXTRUSION_SCALING)
  723. const int16_t lpq_len = 20;
  724. #endif
  725. EEPROM_WRITE(TERN(PID_EXTRUSION_SCALING, thermalManager.lpq_len, lpq_len));
  726. }
  727. //
  728. // PIDTEMPBED
  729. //
  730. {
  731. _FIELD_TEST(bedPID);
  732. const PID_t bed_pid = {
  733. #if DISABLED(PIDTEMPBED)
  734. NAN, NAN, NAN
  735. #else
  736. // Store the unscaled PID values
  737. thermalManager.temp_bed.pid.Kp,
  738. unscalePID_i(thermalManager.temp_bed.pid.Ki),
  739. unscalePID_d(thermalManager.temp_bed.pid.Kd)
  740. #endif
  741. };
  742. EEPROM_WRITE(bed_pid);
  743. }
  744. //
  745. // User-defined Thermistors
  746. //
  747. #if HAS_USER_THERMISTORS
  748. {
  749. _FIELD_TEST(user_thermistor);
  750. EEPROM_WRITE(thermalManager.user_thermistor);
  751. }
  752. #endif
  753. //
  754. // Power monitor
  755. //
  756. {
  757. #if HAS_POWER_MONITOR
  758. const uint8_t &power_monitor_flags = power_monitor.flags;
  759. #else
  760. constexpr uint8_t power_monitor_flags = 0x00;
  761. #endif
  762. _FIELD_TEST(power_monitor_flags);
  763. EEPROM_WRITE(power_monitor_flags);
  764. }
  765. //
  766. // LCD Contrast
  767. //
  768. {
  769. _FIELD_TEST(lcd_contrast);
  770. const int16_t lcd_contrast =
  771. #if HAS_LCD_CONTRAST
  772. ui.contrast
  773. #else
  774. 127
  775. #endif
  776. ;
  777. EEPROM_WRITE(lcd_contrast);
  778. }
  779. //
  780. // Controller Fan
  781. //
  782. {
  783. _FIELD_TEST(controllerFan_settings);
  784. #if ENABLED(USE_CONTROLLER_FAN)
  785. const controllerFan_settings_t &cfs = controllerFan.settings;
  786. #else
  787. controllerFan_settings_t cfs = controllerFan_defaults;
  788. #endif
  789. EEPROM_WRITE(cfs);
  790. }
  791. //
  792. // Power-Loss Recovery
  793. //
  794. {
  795. _FIELD_TEST(recovery_enabled);
  796. const bool recovery_enabled = TERN(POWER_LOSS_RECOVERY, recovery.enabled, ENABLED(PLR_ENABLED_DEFAULT));
  797. EEPROM_WRITE(recovery_enabled);
  798. }
  799. //
  800. // Firmware Retraction
  801. //
  802. {
  803. _FIELD_TEST(fwretract_settings);
  804. #if DISABLED(FWRETRACT)
  805. const fwretract_settings_t autoretract_defaults = { 3, 45, 0, 0, 0, 13, 0, 8 };
  806. #endif
  807. EEPROM_WRITE(TERN(FWRETRACT, fwretract.settings, autoretract_defaults));
  808. #if DISABLED(FWRETRACT_AUTORETRACT)
  809. const bool autoretract_enabled = false;
  810. #endif
  811. EEPROM_WRITE(TERN(FWRETRACT_AUTORETRACT, fwretract.autoretract_enabled, autoretract_enabled));
  812. }
  813. //
  814. // Volumetric & Filament Size
  815. //
  816. {
  817. _FIELD_TEST(parser_volumetric_enabled);
  818. #if DISABLED(NO_VOLUMETRICS)
  819. EEPROM_WRITE(parser.volumetric_enabled);
  820. EEPROM_WRITE(planner.filament_size);
  821. #if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
  822. EEPROM_WRITE(planner.volumetric_extruder_limit);
  823. #else
  824. dummyf = DEFAULT_VOLUMETRIC_EXTRUDER_LIMIT;
  825. for (uint8_t q = EXTRUDERS; q--;) EEPROM_WRITE(dummyf);
  826. #endif
  827. #else
  828. const bool volumetric_enabled = false;
  829. EEPROM_WRITE(volumetric_enabled);
  830. dummyf = DEFAULT_NOMINAL_FILAMENT_DIA;
  831. for (uint8_t q = EXTRUDERS; q--;) EEPROM_WRITE(dummyf);
  832. dummyf = DEFAULT_VOLUMETRIC_EXTRUDER_LIMIT;
  833. for (uint8_t q = EXTRUDERS; q--;) EEPROM_WRITE(dummyf);
  834. #endif
  835. }
  836. //
  837. // TMC Configuration
  838. //
  839. {
  840. _FIELD_TEST(tmc_stepper_current);
  841. tmc_stepper_current_t tmc_stepper_current = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
  842. #if HAS_TRINAMIC_CONFIG
  843. #if AXIS_IS_TMC(X)
  844. tmc_stepper_current.X = stepperX.getMilliamps();
  845. #endif
  846. #if AXIS_IS_TMC(Y)
  847. tmc_stepper_current.Y = stepperY.getMilliamps();
  848. #endif
  849. #if AXIS_IS_TMC(Z)
  850. tmc_stepper_current.Z = stepperZ.getMilliamps();
  851. #endif
  852. #if AXIS_IS_TMC(X2)
  853. tmc_stepper_current.X2 = stepperX2.getMilliamps();
  854. #endif
  855. #if AXIS_IS_TMC(Y2)
  856. tmc_stepper_current.Y2 = stepperY2.getMilliamps();
  857. #endif
  858. #if AXIS_IS_TMC(Z2)
  859. tmc_stepper_current.Z2 = stepperZ2.getMilliamps();
  860. #endif
  861. #if AXIS_IS_TMC(Z3)
  862. tmc_stepper_current.Z3 = stepperZ3.getMilliamps();
  863. #endif
  864. #if AXIS_IS_TMC(Z4)
  865. tmc_stepper_current.Z4 = stepperZ4.getMilliamps();
  866. #endif
  867. #if MAX_EXTRUDERS
  868. #if AXIS_IS_TMC(E0)
  869. tmc_stepper_current.E0 = stepperE0.getMilliamps();
  870. #endif
  871. #if MAX_EXTRUDERS > 1
  872. #if AXIS_IS_TMC(E1)
  873. tmc_stepper_current.E1 = stepperE1.getMilliamps();
  874. #endif
  875. #if MAX_EXTRUDERS > 2
  876. #if AXIS_IS_TMC(E2)
  877. tmc_stepper_current.E2 = stepperE2.getMilliamps();
  878. #endif
  879. #if MAX_EXTRUDERS > 3
  880. #if AXIS_IS_TMC(E3)
  881. tmc_stepper_current.E3 = stepperE3.getMilliamps();
  882. #endif
  883. #if MAX_EXTRUDERS > 4
  884. #if AXIS_IS_TMC(E4)
  885. tmc_stepper_current.E4 = stepperE4.getMilliamps();
  886. #endif
  887. #if MAX_EXTRUDERS > 5
  888. #if AXIS_IS_TMC(E5)
  889. tmc_stepper_current.E5 = stepperE5.getMilliamps();
  890. #endif
  891. #if MAX_EXTRUDERS > 6
  892. #if AXIS_IS_TMC(E6)
  893. tmc_stepper_current.E6 = stepperE6.getMilliamps();
  894. #endif
  895. #if MAX_EXTRUDERS > 7
  896. #if AXIS_IS_TMC(E7)
  897. tmc_stepper_current.E7 = stepperE7.getMilliamps();
  898. #endif
  899. #endif // MAX_EXTRUDERS > 7
  900. #endif // MAX_EXTRUDERS > 6
  901. #endif // MAX_EXTRUDERS > 5
  902. #endif // MAX_EXTRUDERS > 4
  903. #endif // MAX_EXTRUDERS > 3
  904. #endif // MAX_EXTRUDERS > 2
  905. #endif // MAX_EXTRUDERS > 1
  906. #endif // MAX_EXTRUDERS
  907. #endif
  908. EEPROM_WRITE(tmc_stepper_current);
  909. }
  910. //
  911. // TMC Hybrid Threshold, and placeholder values
  912. //
  913. {
  914. _FIELD_TEST(tmc_hybrid_threshold);
  915. #if ENABLED(HYBRID_THRESHOLD)
  916. tmc_hybrid_threshold_t tmc_hybrid_threshold = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
  917. #if AXIS_HAS_STEALTHCHOP(X)
  918. tmc_hybrid_threshold.X = stepperX.get_pwm_thrs();
  919. #endif
  920. #if AXIS_HAS_STEALTHCHOP(Y)
  921. tmc_hybrid_threshold.Y = stepperY.get_pwm_thrs();
  922. #endif
  923. #if AXIS_HAS_STEALTHCHOP(Z)
  924. tmc_hybrid_threshold.Z = stepperZ.get_pwm_thrs();
  925. #endif
  926. #if AXIS_HAS_STEALTHCHOP(X2)
  927. tmc_hybrid_threshold.X2 = stepperX2.get_pwm_thrs();
  928. #endif
  929. #if AXIS_HAS_STEALTHCHOP(Y2)
  930. tmc_hybrid_threshold.Y2 = stepperY2.get_pwm_thrs();
  931. #endif
  932. #if AXIS_HAS_STEALTHCHOP(Z2)
  933. tmc_hybrid_threshold.Z2 = stepperZ2.get_pwm_thrs();
  934. #endif
  935. #if AXIS_HAS_STEALTHCHOP(Z3)
  936. tmc_hybrid_threshold.Z3 = stepperZ3.get_pwm_thrs();
  937. #endif
  938. #if AXIS_HAS_STEALTHCHOP(Z4)
  939. tmc_hybrid_threshold.Z4 = stepperZ4.get_pwm_thrs();
  940. #endif
  941. #if MAX_EXTRUDERS
  942. #if AXIS_HAS_STEALTHCHOP(E0)
  943. tmc_hybrid_threshold.E0 = stepperE0.get_pwm_thrs();
  944. #endif
  945. #if MAX_EXTRUDERS > 1
  946. #if AXIS_HAS_STEALTHCHOP(E1)
  947. tmc_hybrid_threshold.E1 = stepperE1.get_pwm_thrs();
  948. #endif
  949. #if MAX_EXTRUDERS > 2
  950. #if AXIS_HAS_STEALTHCHOP(E2)
  951. tmc_hybrid_threshold.E2 = stepperE2.get_pwm_thrs();
  952. #endif
  953. #if MAX_EXTRUDERS > 3
  954. #if AXIS_HAS_STEALTHCHOP(E3)
  955. tmc_hybrid_threshold.E3 = stepperE3.get_pwm_thrs();
  956. #endif
  957. #if MAX_EXTRUDERS > 4
  958. #if AXIS_HAS_STEALTHCHOP(E4)
  959. tmc_hybrid_threshold.E4 = stepperE4.get_pwm_thrs();
  960. #endif
  961. #if MAX_EXTRUDERS > 5
  962. #if AXIS_HAS_STEALTHCHOP(E5)
  963. tmc_hybrid_threshold.E5 = stepperE5.get_pwm_thrs();
  964. #endif
  965. #if MAX_EXTRUDERS > 6
  966. #if AXIS_HAS_STEALTHCHOP(E6)
  967. tmc_hybrid_threshold.E6 = stepperE6.get_pwm_thrs();
  968. #endif
  969. #if MAX_EXTRUDERS > 7
  970. #if AXIS_HAS_STEALTHCHOP(E7)
  971. tmc_hybrid_threshold.E7 = stepperE7.get_pwm_thrs();
  972. #endif
  973. #endif // MAX_EXTRUDERS > 7
  974. #endif // MAX_EXTRUDERS > 6
  975. #endif // MAX_EXTRUDERS > 5
  976. #endif // MAX_EXTRUDERS > 4
  977. #endif // MAX_EXTRUDERS > 3
  978. #endif // MAX_EXTRUDERS > 2
  979. #endif // MAX_EXTRUDERS > 1
  980. #endif // MAX_EXTRUDERS
  981. #else
  982. const tmc_hybrid_threshold_t tmc_hybrid_threshold = {
  983. .X = 100, .Y = 100, .Z = 3,
  984. .X2 = 100, .Y2 = 100, .Z2 = 3, .Z3 = 3, .Z4 = 3,
  985. .E0 = 30, .E1 = 30, .E2 = 30,
  986. .E3 = 30, .E4 = 30, .E5 = 30
  987. };
  988. #endif
  989. EEPROM_WRITE(tmc_hybrid_threshold);
  990. }
  991. //
  992. // TMC StallGuard threshold
  993. //
  994. {
  995. tmc_sgt_t tmc_sgt{0};
  996. #if USE_SENSORLESS
  997. TERN_(X_SENSORLESS, tmc_sgt.X = stepperX.homing_threshold());
  998. TERN_(X2_SENSORLESS, tmc_sgt.X2 = stepperX2.homing_threshold());
  999. TERN_(Y_SENSORLESS, tmc_sgt.Y = stepperY.homing_threshold());
  1000. TERN_(Y2_SENSORLESS, tmc_sgt.Y2 = stepperY2.homing_threshold());
  1001. TERN_(Z_SENSORLESS, tmc_sgt.Z = stepperZ.homing_threshold());
  1002. TERN_(Z2_SENSORLESS, tmc_sgt.Z2 = stepperZ2.homing_threshold());
  1003. TERN_(Z3_SENSORLESS, tmc_sgt.Z3 = stepperZ3.homing_threshold());
  1004. TERN_(Z4_SENSORLESS, tmc_sgt.Z4 = stepperZ4.homing_threshold());
  1005. #endif
  1006. EEPROM_WRITE(tmc_sgt);
  1007. }
  1008. //
  1009. // TMC stepping mode
  1010. //
  1011. {
  1012. _FIELD_TEST(tmc_stealth_enabled);
  1013. tmc_stealth_enabled_t tmc_stealth_enabled = { false, false, false, false, false, false, false, false, false, false, false, false, false };
  1014. #if HAS_STEALTHCHOP
  1015. #if AXIS_HAS_STEALTHCHOP(X)
  1016. tmc_stealth_enabled.X = stepperX.get_stored_stealthChop_status();
  1017. #endif
  1018. #if AXIS_HAS_STEALTHCHOP(Y)
  1019. tmc_stealth_enabled.Y = stepperY.get_stored_stealthChop_status();
  1020. #endif
  1021. #if AXIS_HAS_STEALTHCHOP(Z)
  1022. tmc_stealth_enabled.Z = stepperZ.get_stored_stealthChop_status();
  1023. #endif
  1024. #if AXIS_HAS_STEALTHCHOP(X2)
  1025. tmc_stealth_enabled.X2 = stepperX2.get_stored_stealthChop_status();
  1026. #endif
  1027. #if AXIS_HAS_STEALTHCHOP(Y2)
  1028. tmc_stealth_enabled.Y2 = stepperY2.get_stored_stealthChop_status();
  1029. #endif
  1030. #if AXIS_HAS_STEALTHCHOP(Z2)
  1031. tmc_stealth_enabled.Z2 = stepperZ2.get_stored_stealthChop_status();
  1032. #endif
  1033. #if AXIS_HAS_STEALTHCHOP(Z3)
  1034. tmc_stealth_enabled.Z3 = stepperZ3.get_stored_stealthChop_status();
  1035. #endif
  1036. #if AXIS_HAS_STEALTHCHOP(Z4)
  1037. tmc_stealth_enabled.Z4 = stepperZ4.get_stored_stealthChop_status();
  1038. #endif
  1039. #if MAX_EXTRUDERS
  1040. #if AXIS_HAS_STEALTHCHOP(E0)
  1041. tmc_stealth_enabled.E0 = stepperE0.get_stored_stealthChop_status();
  1042. #endif
  1043. #if MAX_EXTRUDERS > 1
  1044. #if AXIS_HAS_STEALTHCHOP(E1)
  1045. tmc_stealth_enabled.E1 = stepperE1.get_stored_stealthChop_status();
  1046. #endif
  1047. #if MAX_EXTRUDERS > 2
  1048. #if AXIS_HAS_STEALTHCHOP(E2)
  1049. tmc_stealth_enabled.E2 = stepperE2.get_stored_stealthChop_status();
  1050. #endif
  1051. #if MAX_EXTRUDERS > 3
  1052. #if AXIS_HAS_STEALTHCHOP(E3)
  1053. tmc_stealth_enabled.E3 = stepperE3.get_stored_stealthChop_status();
  1054. #endif
  1055. #if MAX_EXTRUDERS > 4
  1056. #if AXIS_HAS_STEALTHCHOP(E4)
  1057. tmc_stealth_enabled.E4 = stepperE4.get_stored_stealthChop_status();
  1058. #endif
  1059. #if MAX_EXTRUDERS > 5
  1060. #if AXIS_HAS_STEALTHCHOP(E5)
  1061. tmc_stealth_enabled.E5 = stepperE5.get_stored_stealthChop_status();
  1062. #endif
  1063. #if MAX_EXTRUDERS > 6
  1064. #if AXIS_HAS_STEALTHCHOP(E6)
  1065. tmc_stealth_enabled.E6 = stepperE6.get_stored_stealthChop_status();
  1066. #endif
  1067. #if MAX_EXTRUDERS > 7
  1068. #if AXIS_HAS_STEALTHCHOP(E7)
  1069. tmc_stealth_enabled.E7 = stepperE7.get_stored_stealthChop_status();
  1070. #endif
  1071. #endif // MAX_EXTRUDERS > 7
  1072. #endif // MAX_EXTRUDERS > 6
  1073. #endif // MAX_EXTRUDERS > 5
  1074. #endif // MAX_EXTRUDERS > 4
  1075. #endif // MAX_EXTRUDERS > 3
  1076. #endif // MAX_EXTRUDERS > 2
  1077. #endif // MAX_EXTRUDERS > 1
  1078. #endif // MAX_EXTRUDERS
  1079. #endif
  1080. EEPROM_WRITE(tmc_stealth_enabled);
  1081. }
  1082. //
  1083. // Linear Advance
  1084. //
  1085. {
  1086. _FIELD_TEST(planner_extruder_advance_K);
  1087. #if ENABLED(LIN_ADVANCE)
  1088. EEPROM_WRITE(planner.extruder_advance_K);
  1089. #else
  1090. dummyf = 0;
  1091. for (uint8_t q = _MAX(EXTRUDERS, 1); q--;) EEPROM_WRITE(dummyf);
  1092. #endif
  1093. }
  1094. //
  1095. // Motor Current PWM
  1096. //
  1097. {
  1098. _FIELD_TEST(motor_current_setting);
  1099. #if HAS_MOTOR_CURRENT_PWM
  1100. EEPROM_WRITE(stepper.motor_current_setting);
  1101. #else
  1102. const uint32_t no_current[3] = { 0 };
  1103. EEPROM_WRITE(no_current);
  1104. #endif
  1105. }
  1106. //
  1107. // CNC Coordinate Systems
  1108. //
  1109. _FIELD_TEST(coordinate_system);
  1110. #if DISABLED(CNC_COORDINATE_SYSTEMS)
  1111. const xyz_pos_t coordinate_system[MAX_COORDINATE_SYSTEMS] = { { 0 } };
  1112. #endif
  1113. EEPROM_WRITE(TERN(CNC_COORDINATE_SYSTEMS, gcode.coordinate_system, coordinate_system));
  1114. //
  1115. // Skew correction factors
  1116. //
  1117. _FIELD_TEST(planner_skew_factor);
  1118. EEPROM_WRITE(planner.skew_factor);
  1119. //
  1120. // Advanced Pause filament load & unload lengths
  1121. //
  1122. #if EXTRUDERS
  1123. {
  1124. #if DISABLED(ADVANCED_PAUSE_FEATURE)
  1125. const fil_change_settings_t fc_settings[EXTRUDERS] = { 0, 0 };
  1126. #endif
  1127. _FIELD_TEST(fc_settings);
  1128. EEPROM_WRITE(fc_settings);
  1129. }
  1130. #endif
  1131. //
  1132. // Multiple Extruders
  1133. //
  1134. #if HAS_MULTI_EXTRUDER
  1135. _FIELD_TEST(toolchange_settings);
  1136. EEPROM_WRITE(toolchange_settings);
  1137. #endif
  1138. //
  1139. // Backlash Compensation
  1140. //
  1141. {
  1142. #if ENABLED(BACKLASH_GCODE)
  1143. const xyz_float_t &backlash_distance_mm = backlash.distance_mm;
  1144. const uint8_t &backlash_correction = backlash.correction;
  1145. #else
  1146. const xyz_float_t backlash_distance_mm{0};
  1147. const uint8_t backlash_correction = 0;
  1148. #endif
  1149. #if ENABLED(BACKLASH_GCODE) && defined(BACKLASH_SMOOTHING_MM)
  1150. const float &backlash_smoothing_mm = backlash.smoothing_mm;
  1151. #else
  1152. const float backlash_smoothing_mm = 3;
  1153. #endif
  1154. _FIELD_TEST(backlash_distance_mm);
  1155. EEPROM_WRITE(backlash_distance_mm);
  1156. EEPROM_WRITE(backlash_correction);
  1157. EEPROM_WRITE(backlash_smoothing_mm);
  1158. }
  1159. //
  1160. // Extensible UI User Data
  1161. //
  1162. #if ENABLED(EXTENSIBLE_UI)
  1163. {
  1164. char extui_data[ExtUI::eeprom_data_size] = { 0 };
  1165. ExtUI::onStoreSettings(extui_data);
  1166. _FIELD_TEST(extui_data);
  1167. EEPROM_WRITE(extui_data);
  1168. }
  1169. #endif
  1170. //
  1171. // Case Light Brightness
  1172. //
  1173. #if HAS_CASE_LIGHT_BRIGHTNESS
  1174. EEPROM_WRITE(caselight.brightness);
  1175. #endif
  1176. //
  1177. // Password feature
  1178. //
  1179. #if ENABLED(PASSWORD_FEATURE)
  1180. EEPROM_WRITE(password.is_set);
  1181. EEPROM_WRITE(password.value);
  1182. #endif
  1183. //
  1184. // TOUCH_SCREEN_CALIBRATION
  1185. //
  1186. #if ENABLED(TOUCH_SCREEN_CALIBRATION)
  1187. EEPROM_WRITE(touch.calibration);
  1188. #endif
  1189. //
  1190. // Validate CRC and Data Size
  1191. //
  1192. if (!eeprom_error) {
  1193. const uint16_t eeprom_size = eeprom_index - (EEPROM_OFFSET),
  1194. final_crc = working_crc;
  1195. // Write the EEPROM header
  1196. eeprom_index = EEPROM_OFFSET;
  1197. EEPROM_WRITE(version);
  1198. EEPROM_WRITE(final_crc);
  1199. // Report storage size
  1200. DEBUG_ECHO_START();
  1201. DEBUG_ECHOLNPAIR("Settings Stored (", eeprom_size, " bytes; crc ", (uint32_t)final_crc, ")");
  1202. eeprom_error |= size_error(eeprom_size);
  1203. }
  1204. EEPROM_FINISH();
  1205. //
  1206. // UBL Mesh
  1207. //
  1208. #if ENABLED(UBL_SAVE_ACTIVE_ON_M500)
  1209. if (ubl.storage_slot >= 0)
  1210. store_mesh(ubl.storage_slot);
  1211. #endif
  1212. if (!eeprom_error) LCD_MESSAGEPGM(MSG_SETTINGS_STORED);
  1213. TERN_(EXTENSIBLE_UI, ExtUI::onConfigurationStoreWritten(!eeprom_error));
  1214. return !eeprom_error;
  1215. }
  1216. /**
  1217. * M501 - Retrieve Configuration
  1218. */
  1219. bool MarlinSettings::_load() {
  1220. uint16_t working_crc = 0;
  1221. EEPROM_START();
  1222. char stored_ver[4];
  1223. EEPROM_READ_ALWAYS(stored_ver);
  1224. uint16_t stored_crc;
  1225. EEPROM_READ_ALWAYS(stored_crc);
  1226. // Version has to match or defaults are used
  1227. if (strncmp(version, stored_ver, 3) != 0) {
  1228. if (stored_ver[3] != '\0') {
  1229. stored_ver[0] = '?';
  1230. stored_ver[1] = '\0';
  1231. }
  1232. DEBUG_ECHO_START();
  1233. DEBUG_ECHOLNPAIR("EEPROM version mismatch (EEPROM=", stored_ver, " Marlin=" EEPROM_VERSION ")");
  1234. TERN(EEPROM_AUTO_INIT,,ui.eeprom_alert_version());
  1235. eeprom_error = true;
  1236. }
  1237. else {
  1238. float dummyf = 0;
  1239. working_crc = 0; // Init to 0. Accumulated by EEPROM_READ
  1240. _FIELD_TEST(esteppers);
  1241. // Number of esteppers may change
  1242. uint8_t esteppers;
  1243. EEPROM_READ_ALWAYS(esteppers);
  1244. //
  1245. // Planner Motion
  1246. //
  1247. {
  1248. // Get only the number of E stepper parameters previously stored
  1249. // Any steppers added later are set to their defaults
  1250. uint32_t tmp1[XYZ + esteppers];
  1251. float tmp2[XYZ + esteppers];
  1252. feedRate_t tmp3[XYZ + esteppers];
  1253. EEPROM_READ(tmp1); // max_acceleration_mm_per_s2
  1254. EEPROM_READ(planner.settings.min_segment_time_us);
  1255. EEPROM_READ(tmp2); // axis_steps_per_mm
  1256. EEPROM_READ(tmp3); // max_feedrate_mm_s
  1257. if (!validating) LOOP_XYZE_N(i) {
  1258. const bool in = (i < esteppers + XYZ);
  1259. planner.settings.max_acceleration_mm_per_s2[i] = in ? tmp1[i] : pgm_read_dword(&_DMA[ALIM(i, _DMA)]);
  1260. planner.settings.axis_steps_per_mm[i] = in ? tmp2[i] : pgm_read_float(&_DASU[ALIM(i, _DASU)]);
  1261. planner.settings.max_feedrate_mm_s[i] = in ? tmp3[i] : pgm_read_float(&_DMF[ALIM(i, _DMF)]);
  1262. }
  1263. EEPROM_READ(planner.settings.acceleration);
  1264. EEPROM_READ(planner.settings.retract_acceleration);
  1265. EEPROM_READ(planner.settings.travel_acceleration);
  1266. EEPROM_READ(planner.settings.min_feedrate_mm_s);
  1267. EEPROM_READ(planner.settings.min_travel_feedrate_mm_s);
  1268. #if HAS_CLASSIC_JERK
  1269. EEPROM_READ(planner.max_jerk);
  1270. #if HAS_LINEAR_E_JERK
  1271. EEPROM_READ(dummyf);
  1272. #endif
  1273. #else
  1274. for (uint8_t q = 4; q--;) EEPROM_READ(dummyf);
  1275. #endif
  1276. EEPROM_READ(TERN(CLASSIC_JERK, dummyf, planner.junction_deviation_mm));
  1277. }
  1278. //
  1279. // Home Offset (M206 / M665)
  1280. //
  1281. {
  1282. _FIELD_TEST(home_offset);
  1283. #if HAS_SCARA_OFFSET
  1284. EEPROM_READ(scara_home_offset);
  1285. #else
  1286. #if !HAS_HOME_OFFSET
  1287. xyz_pos_t home_offset;
  1288. #endif
  1289. EEPROM_READ(home_offset);
  1290. #endif
  1291. }
  1292. //
  1293. // Hotend Offsets, if any
  1294. //
  1295. {
  1296. #if HAS_HOTEND_OFFSET
  1297. // Skip hotend 0 which must be 0
  1298. LOOP_S_L_N(e, 1, HOTENDS)
  1299. EEPROM_READ(hotend_offset[e]);
  1300. #endif
  1301. }
  1302. //
  1303. // Filament Runout Sensor
  1304. //
  1305. {
  1306. int8_t runout_sensor_enabled;
  1307. _FIELD_TEST(runout_sensor_enabled);
  1308. EEPROM_READ(runout_sensor_enabled);
  1309. #if HAS_FILAMENT_SENSOR
  1310. runout.enabled = runout_sensor_enabled < 0 ? FIL_RUNOUT_ENABLED_DEFAULT : runout_sensor_enabled;
  1311. #endif
  1312. TERN_(HAS_FILAMENT_SENSOR, if (runout.enabled) runout.reset());
  1313. float runout_distance_mm;
  1314. EEPROM_READ(runout_distance_mm);
  1315. #if HAS_FILAMENT_RUNOUT_DISTANCE
  1316. if (!validating) runout.set_runout_distance(runout_distance_mm);
  1317. #endif
  1318. }
  1319. //
  1320. // Global Leveling
  1321. //
  1322. EEPROM_READ(TERN(ENABLE_LEVELING_FADE_HEIGHT, new_z_fade_height, dummyf));
  1323. //
  1324. // Mesh (Manual) Bed Leveling
  1325. //
  1326. {
  1327. uint8_t mesh_num_x, mesh_num_y;
  1328. EEPROM_READ(dummyf);
  1329. EEPROM_READ_ALWAYS(mesh_num_x);
  1330. EEPROM_READ_ALWAYS(mesh_num_y);
  1331. #if ENABLED(MESH_BED_LEVELING)
  1332. if (!validating) mbl.z_offset = dummyf;
  1333. if (mesh_num_x == GRID_MAX_POINTS_X && mesh_num_y == GRID_MAX_POINTS_Y) {
  1334. // EEPROM data fits the current mesh
  1335. EEPROM_READ(mbl.z_values);
  1336. }
  1337. else {
  1338. // EEPROM data is stale
  1339. if (!validating) mbl.reset();
  1340. for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummyf);
  1341. }
  1342. #else
  1343. // MBL is disabled - skip the stored data
  1344. for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummyf);
  1345. #endif // MESH_BED_LEVELING
  1346. }
  1347. //
  1348. // Probe Z Offset
  1349. //
  1350. {
  1351. _FIELD_TEST(probe_offset);
  1352. #if HAS_BED_PROBE
  1353. const xyz_pos_t &zpo = probe.offset;
  1354. #else
  1355. xyz_pos_t zpo;
  1356. #endif
  1357. EEPROM_READ(zpo);
  1358. }
  1359. //
  1360. // Planar Bed Leveling matrix
  1361. //
  1362. {
  1363. #if ABL_PLANAR
  1364. EEPROM_READ(planner.bed_level_matrix);
  1365. #else
  1366. for (uint8_t q = 9; q--;) EEPROM_READ(dummyf);
  1367. #endif
  1368. }
  1369. //
  1370. // Bilinear Auto Bed Leveling
  1371. //
  1372. {
  1373. uint8_t grid_max_x, grid_max_y;
  1374. EEPROM_READ_ALWAYS(grid_max_x); // 1 byte
  1375. EEPROM_READ_ALWAYS(grid_max_y); // 1 byte
  1376. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  1377. if (grid_max_x == GRID_MAX_POINTS_X && grid_max_y == GRID_MAX_POINTS_Y) {
  1378. if (!validating) set_bed_leveling_enabled(false);
  1379. EEPROM_READ(bilinear_grid_spacing); // 2 ints
  1380. EEPROM_READ(bilinear_start); // 2 ints
  1381. EEPROM_READ(z_values); // 9 to 256 floats
  1382. }
  1383. else // EEPROM data is stale
  1384. #endif // AUTO_BED_LEVELING_BILINEAR
  1385. {
  1386. // Skip past disabled (or stale) Bilinear Grid data
  1387. xy_pos_t bgs, bs;
  1388. EEPROM_READ(bgs);
  1389. EEPROM_READ(bs);
  1390. for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_READ(dummyf);
  1391. }
  1392. }
  1393. //
  1394. // Unified Bed Leveling active state
  1395. //
  1396. {
  1397. _FIELD_TEST(planner_leveling_active);
  1398. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1399. const bool &planner_leveling_active = planner.leveling_active;
  1400. const int8_t &ubl_storage_slot = ubl.storage_slot;
  1401. #else
  1402. bool planner_leveling_active;
  1403. int8_t ubl_storage_slot;
  1404. #endif
  1405. EEPROM_READ(planner_leveling_active);
  1406. EEPROM_READ(ubl_storage_slot);
  1407. }
  1408. //
  1409. // SERVO_ANGLES
  1410. //
  1411. {
  1412. _FIELD_TEST(servo_angles);
  1413. #if ENABLED(EDITABLE_SERVO_ANGLES)
  1414. uint16_t (&servo_angles_arr)[EEPROM_NUM_SERVOS][2] = servo_angles;
  1415. #else
  1416. uint16_t servo_angles_arr[EEPROM_NUM_SERVOS][2];
  1417. #endif
  1418. EEPROM_READ(servo_angles_arr);
  1419. }
  1420. //
  1421. // Thermal first layer compensation values
  1422. //
  1423. #if ENABLED(PROBE_TEMP_COMPENSATION)
  1424. EEPROM_READ(temp_comp.z_offsets_probe);
  1425. EEPROM_READ(temp_comp.z_offsets_bed);
  1426. #if ENABLED(USE_TEMP_EXT_COMPENSATION)
  1427. EEPROM_READ(temp_comp.z_offsets_ext);
  1428. #endif
  1429. temp_comp.reset_index();
  1430. #else
  1431. // No placeholder data for this feature
  1432. #endif
  1433. //
  1434. // BLTOUCH
  1435. //
  1436. {
  1437. _FIELD_TEST(bltouch_last_written_mode);
  1438. #if ENABLED(BLTOUCH)
  1439. const bool &bltouch_last_written_mode = bltouch.last_written_mode;
  1440. #else
  1441. bool bltouch_last_written_mode;
  1442. #endif
  1443. EEPROM_READ(bltouch_last_written_mode);
  1444. }
  1445. //
  1446. // DELTA Geometry or Dual Endstops offsets
  1447. //
  1448. {
  1449. #if ENABLED(DELTA)
  1450. _FIELD_TEST(delta_height);
  1451. EEPROM_READ(delta_height); // 1 float
  1452. EEPROM_READ(delta_endstop_adj); // 3 floats
  1453. EEPROM_READ(delta_radius); // 1 float
  1454. EEPROM_READ(delta_diagonal_rod); // 1 float
  1455. EEPROM_READ(delta_segments_per_second); // 1 float
  1456. EEPROM_READ(delta_tower_angle_trim); // 3 floats
  1457. EEPROM_READ(delta_diagonal_rod_trim); // 3 floats
  1458. #elif HAS_EXTRA_ENDSTOPS
  1459. _FIELD_TEST(x2_endstop_adj);
  1460. EEPROM_READ(TERN(X_DUAL_ENDSTOPS, endstops.x2_endstop_adj, dummyf)); // 1 float
  1461. EEPROM_READ(TERN(Y_DUAL_ENDSTOPS, endstops.y2_endstop_adj, dummyf)); // 1 float
  1462. EEPROM_READ(TERN(Z_MULTI_ENDSTOPS, endstops.z2_endstop_adj, dummyf)); // 1 float
  1463. #if ENABLED(Z_MULTI_ENDSTOPS) && NUM_Z_STEPPER_DRIVERS >= 3
  1464. EEPROM_READ(endstops.z3_endstop_adj); // 1 float
  1465. #else
  1466. EEPROM_READ(dummyf);
  1467. #endif
  1468. #if ENABLED(Z_MULTI_ENDSTOPS) && NUM_Z_STEPPER_DRIVERS >= 4
  1469. EEPROM_READ(endstops.z4_endstop_adj); // 1 float
  1470. #else
  1471. EEPROM_READ(dummyf);
  1472. #endif
  1473. #endif
  1474. }
  1475. #if ENABLED(Z_STEPPER_AUTO_ALIGN)
  1476. EEPROM_READ(z_stepper_align.xy);
  1477. #if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
  1478. EEPROM_READ(z_stepper_align.stepper_xy);
  1479. #endif
  1480. #endif
  1481. //
  1482. // LCD Preheat settings
  1483. //
  1484. #if PREHEAT_COUNT
  1485. _FIELD_TEST(ui_material_preset);
  1486. EEPROM_READ(ui.material_preset);
  1487. #endif
  1488. //
  1489. // Hotend PID
  1490. //
  1491. {
  1492. HOTEND_LOOP() {
  1493. PIDCF_t pidcf;
  1494. EEPROM_READ(pidcf);
  1495. #if ENABLED(PIDTEMP)
  1496. if (!validating && !isnan(pidcf.Kp)) {
  1497. // Scale PID values since EEPROM values are unscaled
  1498. PID_PARAM(Kp, e) = pidcf.Kp;
  1499. PID_PARAM(Ki, e) = scalePID_i(pidcf.Ki);
  1500. PID_PARAM(Kd, e) = scalePID_d(pidcf.Kd);
  1501. TERN_(PID_EXTRUSION_SCALING, PID_PARAM(Kc, e) = pidcf.Kc);
  1502. TERN_(PID_FAN_SCALING, PID_PARAM(Kf, e) = pidcf.Kf);
  1503. }
  1504. #endif
  1505. }
  1506. }
  1507. //
  1508. // PID Extrusion Scaling
  1509. //
  1510. {
  1511. _FIELD_TEST(lpq_len);
  1512. #if ENABLED(PID_EXTRUSION_SCALING)
  1513. const int16_t &lpq_len = thermalManager.lpq_len;
  1514. #else
  1515. int16_t lpq_len;
  1516. #endif
  1517. EEPROM_READ(lpq_len);
  1518. }
  1519. //
  1520. // Heated Bed PID
  1521. //
  1522. {
  1523. PID_t pid;
  1524. EEPROM_READ(pid);
  1525. #if ENABLED(PIDTEMPBED)
  1526. if (!validating && !isnan(pid.Kp)) {
  1527. // Scale PID values since EEPROM values are unscaled
  1528. thermalManager.temp_bed.pid.Kp = pid.Kp;
  1529. thermalManager.temp_bed.pid.Ki = scalePID_i(pid.Ki);
  1530. thermalManager.temp_bed.pid.Kd = scalePID_d(pid.Kd);
  1531. }
  1532. #endif
  1533. }
  1534. //
  1535. // User-defined Thermistors
  1536. //
  1537. #if HAS_USER_THERMISTORS
  1538. {
  1539. _FIELD_TEST(user_thermistor);
  1540. EEPROM_READ(thermalManager.user_thermistor);
  1541. }
  1542. #endif
  1543. //
  1544. // Power monitor
  1545. //
  1546. {
  1547. #if HAS_POWER_MONITOR
  1548. uint8_t &power_monitor_flags = power_monitor.flags;
  1549. #else
  1550. uint8_t power_monitor_flags;
  1551. #endif
  1552. _FIELD_TEST(power_monitor_flags);
  1553. EEPROM_READ(power_monitor_flags);
  1554. }
  1555. //
  1556. // LCD Contrast
  1557. //
  1558. {
  1559. _FIELD_TEST(lcd_contrast);
  1560. int16_t lcd_contrast;
  1561. EEPROM_READ(lcd_contrast);
  1562. if (!validating) {
  1563. TERN_(HAS_LCD_CONTRAST, ui.set_contrast(lcd_contrast));
  1564. }
  1565. }
  1566. //
  1567. // Controller Fan
  1568. //
  1569. {
  1570. _FIELD_TEST(controllerFan_settings);
  1571. #if ENABLED(CONTROLLER_FAN_EDITABLE)
  1572. const controllerFan_settings_t &cfs = controllerFan.settings;
  1573. #else
  1574. controllerFan_settings_t cfs = { 0 };
  1575. #endif
  1576. EEPROM_READ(cfs);
  1577. }
  1578. //
  1579. // Power-Loss Recovery
  1580. //
  1581. {
  1582. _FIELD_TEST(recovery_enabled);
  1583. #if ENABLED(POWER_LOSS_RECOVERY)
  1584. const bool &recovery_enabled = recovery.enabled;
  1585. #else
  1586. bool recovery_enabled;
  1587. #endif
  1588. EEPROM_READ(recovery_enabled);
  1589. }
  1590. //
  1591. // Firmware Retraction
  1592. //
  1593. {
  1594. _FIELD_TEST(fwretract_settings);
  1595. #if ENABLED(FWRETRACT)
  1596. EEPROM_READ(fwretract.settings);
  1597. #else
  1598. fwretract_settings_t fwretract_settings;
  1599. EEPROM_READ(fwretract_settings);
  1600. #endif
  1601. #if BOTH(FWRETRACT, FWRETRACT_AUTORETRACT)
  1602. EEPROM_READ(fwretract.autoretract_enabled);
  1603. #else
  1604. bool autoretract_enabled;
  1605. EEPROM_READ(autoretract_enabled);
  1606. #endif
  1607. }
  1608. //
  1609. // Volumetric & Filament Size
  1610. //
  1611. {
  1612. struct {
  1613. bool volumetric_enabled;
  1614. float filament_size[EXTRUDERS];
  1615. float volumetric_extruder_limit[EXTRUDERS];
  1616. } storage;
  1617. _FIELD_TEST(parser_volumetric_enabled);
  1618. EEPROM_READ(storage);
  1619. #if DISABLED(NO_VOLUMETRICS)
  1620. if (!validating) {
  1621. parser.volumetric_enabled = storage.volumetric_enabled;
  1622. COPY(planner.filament_size, storage.filament_size);
  1623. #if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
  1624. COPY(planner.volumetric_extruder_limit, storage.volumetric_extruder_limit);
  1625. #endif
  1626. }
  1627. #endif
  1628. }
  1629. //
  1630. // TMC Stepper Settings
  1631. //
  1632. if (!validating) reset_stepper_drivers();
  1633. // TMC Stepper Current
  1634. {
  1635. _FIELD_TEST(tmc_stepper_current);
  1636. tmc_stepper_current_t currents;
  1637. EEPROM_READ(currents);
  1638. #if HAS_TRINAMIC_CONFIG
  1639. #define SET_CURR(Q) stepper##Q.rms_current(currents.Q ? currents.Q : Q##_CURRENT)
  1640. if (!validating) {
  1641. #if AXIS_IS_TMC(X)
  1642. SET_CURR(X);
  1643. #endif
  1644. #if AXIS_IS_TMC(Y)
  1645. SET_CURR(Y);
  1646. #endif
  1647. #if AXIS_IS_TMC(Z)
  1648. SET_CURR(Z);
  1649. #endif
  1650. #if AXIS_IS_TMC(X2)
  1651. SET_CURR(X2);
  1652. #endif
  1653. #if AXIS_IS_TMC(Y2)
  1654. SET_CURR(Y2);
  1655. #endif
  1656. #if AXIS_IS_TMC(Z2)
  1657. SET_CURR(Z2);
  1658. #endif
  1659. #if AXIS_IS_TMC(Z3)
  1660. SET_CURR(Z3);
  1661. #endif
  1662. #if AXIS_IS_TMC(Z4)
  1663. SET_CURR(Z4);
  1664. #endif
  1665. #if AXIS_IS_TMC(E0)
  1666. SET_CURR(E0);
  1667. #endif
  1668. #if AXIS_IS_TMC(E1)
  1669. SET_CURR(E1);
  1670. #endif
  1671. #if AXIS_IS_TMC(E2)
  1672. SET_CURR(E2);
  1673. #endif
  1674. #if AXIS_IS_TMC(E3)
  1675. SET_CURR(E3);
  1676. #endif
  1677. #if AXIS_IS_TMC(E4)
  1678. SET_CURR(E4);
  1679. #endif
  1680. #if AXIS_IS_TMC(E5)
  1681. SET_CURR(E5);
  1682. #endif
  1683. #if AXIS_IS_TMC(E6)
  1684. SET_CURR(E6);
  1685. #endif
  1686. #if AXIS_IS_TMC(E7)
  1687. SET_CURR(E7);
  1688. #endif
  1689. }
  1690. #endif
  1691. }
  1692. // TMC Hybrid Threshold
  1693. {
  1694. tmc_hybrid_threshold_t tmc_hybrid_threshold;
  1695. _FIELD_TEST(tmc_hybrid_threshold);
  1696. EEPROM_READ(tmc_hybrid_threshold);
  1697. #if ENABLED(HYBRID_THRESHOLD)
  1698. if (!validating) {
  1699. #if AXIS_HAS_STEALTHCHOP(X)
  1700. stepperX.set_pwm_thrs(tmc_hybrid_threshold.X);
  1701. #endif
  1702. #if AXIS_HAS_STEALTHCHOP(Y)
  1703. stepperY.set_pwm_thrs(tmc_hybrid_threshold.Y);
  1704. #endif
  1705. #if AXIS_HAS_STEALTHCHOP(Z)
  1706. stepperZ.set_pwm_thrs(tmc_hybrid_threshold.Z);
  1707. #endif
  1708. #if AXIS_HAS_STEALTHCHOP(X2)
  1709. stepperX2.set_pwm_thrs(tmc_hybrid_threshold.X2);
  1710. #endif
  1711. #if AXIS_HAS_STEALTHCHOP(Y2)
  1712. stepperY2.set_pwm_thrs(tmc_hybrid_threshold.Y2);
  1713. #endif
  1714. #if AXIS_HAS_STEALTHCHOP(Z2)
  1715. stepperZ2.set_pwm_thrs(tmc_hybrid_threshold.Z2);
  1716. #endif
  1717. #if AXIS_HAS_STEALTHCHOP(Z3)
  1718. stepperZ3.set_pwm_thrs(tmc_hybrid_threshold.Z3);
  1719. #endif
  1720. #if AXIS_HAS_STEALTHCHOP(Z4)
  1721. stepperZ4.set_pwm_thrs(tmc_hybrid_threshold.Z4);
  1722. #endif
  1723. #if AXIS_HAS_STEALTHCHOP(E0)
  1724. stepperE0.set_pwm_thrs(tmc_hybrid_threshold.E0);
  1725. #endif
  1726. #if AXIS_HAS_STEALTHCHOP(E1)
  1727. stepperE1.set_pwm_thrs(tmc_hybrid_threshold.E1);
  1728. #endif
  1729. #if AXIS_HAS_STEALTHCHOP(E2)
  1730. stepperE2.set_pwm_thrs(tmc_hybrid_threshold.E2);
  1731. #endif
  1732. #if AXIS_HAS_STEALTHCHOP(E3)
  1733. stepperE3.set_pwm_thrs(tmc_hybrid_threshold.E3);
  1734. #endif
  1735. #if AXIS_HAS_STEALTHCHOP(E4)
  1736. stepperE4.set_pwm_thrs(tmc_hybrid_threshold.E4);
  1737. #endif
  1738. #if AXIS_HAS_STEALTHCHOP(E5)
  1739. stepperE5.set_pwm_thrs(tmc_hybrid_threshold.E5);
  1740. #endif
  1741. #if AXIS_HAS_STEALTHCHOP(E6)
  1742. stepperE6.set_pwm_thrs(tmc_hybrid_threshold.E6);
  1743. #endif
  1744. #if AXIS_HAS_STEALTHCHOP(E7)
  1745. stepperE7.set_pwm_thrs(tmc_hybrid_threshold.E7);
  1746. #endif
  1747. }
  1748. #endif
  1749. }
  1750. //
  1751. // TMC StallGuard threshold.
  1752. //
  1753. {
  1754. tmc_sgt_t tmc_sgt;
  1755. _FIELD_TEST(tmc_sgt);
  1756. EEPROM_READ(tmc_sgt);
  1757. #if USE_SENSORLESS
  1758. if (!validating) {
  1759. TERN_(X_SENSORLESS, stepperX.homing_threshold(tmc_sgt.X));
  1760. TERN_(X2_SENSORLESS, stepperX2.homing_threshold(tmc_sgt.X2));
  1761. TERN_(Y_SENSORLESS, stepperY.homing_threshold(tmc_sgt.Y));
  1762. TERN_(Y2_SENSORLESS, stepperY2.homing_threshold(tmc_sgt.Y2));
  1763. TERN_(Z_SENSORLESS, stepperZ.homing_threshold(tmc_sgt.Z));
  1764. TERN_(Z2_SENSORLESS, stepperZ2.homing_threshold(tmc_sgt.Z2));
  1765. TERN_(Z3_SENSORLESS, stepperZ3.homing_threshold(tmc_sgt.Z3));
  1766. TERN_(Z4_SENSORLESS, stepperZ4.homing_threshold(tmc_sgt.Z4));
  1767. }
  1768. #endif
  1769. }
  1770. // TMC stepping mode
  1771. {
  1772. _FIELD_TEST(tmc_stealth_enabled);
  1773. tmc_stealth_enabled_t tmc_stealth_enabled;
  1774. EEPROM_READ(tmc_stealth_enabled);
  1775. #if HAS_TRINAMIC_CONFIG
  1776. #define SET_STEPPING_MODE(ST) stepper##ST.stored.stealthChop_enabled = tmc_stealth_enabled.ST; stepper##ST.refresh_stepping_mode();
  1777. if (!validating) {
  1778. #if AXIS_HAS_STEALTHCHOP(X)
  1779. SET_STEPPING_MODE(X);
  1780. #endif
  1781. #if AXIS_HAS_STEALTHCHOP(Y)
  1782. SET_STEPPING_MODE(Y);
  1783. #endif
  1784. #if AXIS_HAS_STEALTHCHOP(Z)
  1785. SET_STEPPING_MODE(Z);
  1786. #endif
  1787. #if AXIS_HAS_STEALTHCHOP(X2)
  1788. SET_STEPPING_MODE(X2);
  1789. #endif
  1790. #if AXIS_HAS_STEALTHCHOP(Y2)
  1791. SET_STEPPING_MODE(Y2);
  1792. #endif
  1793. #if AXIS_HAS_STEALTHCHOP(Z2)
  1794. SET_STEPPING_MODE(Z2);
  1795. #endif
  1796. #if AXIS_HAS_STEALTHCHOP(Z3)
  1797. SET_STEPPING_MODE(Z3);
  1798. #endif
  1799. #if AXIS_HAS_STEALTHCHOP(Z4)
  1800. SET_STEPPING_MODE(Z4);
  1801. #endif
  1802. #if AXIS_HAS_STEALTHCHOP(E0)
  1803. SET_STEPPING_MODE(E0);
  1804. #endif
  1805. #if AXIS_HAS_STEALTHCHOP(E1)
  1806. SET_STEPPING_MODE(E1);
  1807. #endif
  1808. #if AXIS_HAS_STEALTHCHOP(E2)
  1809. SET_STEPPING_MODE(E2);
  1810. #endif
  1811. #if AXIS_HAS_STEALTHCHOP(E3)
  1812. SET_STEPPING_MODE(E3);
  1813. #endif
  1814. #if AXIS_HAS_STEALTHCHOP(E4)
  1815. SET_STEPPING_MODE(E4);
  1816. #endif
  1817. #if AXIS_HAS_STEALTHCHOP(E5)
  1818. SET_STEPPING_MODE(E5);
  1819. #endif
  1820. #if AXIS_HAS_STEALTHCHOP(E6)
  1821. SET_STEPPING_MODE(E6);
  1822. #endif
  1823. #if AXIS_HAS_STEALTHCHOP(E7)
  1824. SET_STEPPING_MODE(E7);
  1825. #endif
  1826. }
  1827. #endif
  1828. }
  1829. //
  1830. // Linear Advance
  1831. //
  1832. {
  1833. float extruder_advance_K[_MAX(EXTRUDERS, 1)];
  1834. _FIELD_TEST(planner_extruder_advance_K);
  1835. EEPROM_READ(extruder_advance_K);
  1836. #if ENABLED(LIN_ADVANCE)
  1837. if (!validating)
  1838. COPY(planner.extruder_advance_K, extruder_advance_K);
  1839. #endif
  1840. }
  1841. //
  1842. // Motor Current PWM
  1843. //
  1844. {
  1845. uint32_t motor_current_setting[3];
  1846. _FIELD_TEST(motor_current_setting);
  1847. EEPROM_READ(motor_current_setting);
  1848. #if HAS_MOTOR_CURRENT_PWM
  1849. if (!validating)
  1850. COPY(stepper.motor_current_setting, motor_current_setting);
  1851. #endif
  1852. }
  1853. //
  1854. // CNC Coordinate System
  1855. //
  1856. {
  1857. _FIELD_TEST(coordinate_system);
  1858. #if ENABLED(CNC_COORDINATE_SYSTEMS)
  1859. if (!validating) (void)gcode.select_coordinate_system(-1); // Go back to machine space
  1860. EEPROM_READ(gcode.coordinate_system);
  1861. #else
  1862. xyz_pos_t coordinate_system[MAX_COORDINATE_SYSTEMS];
  1863. EEPROM_READ(coordinate_system);
  1864. #endif
  1865. }
  1866. //
  1867. // Skew correction factors
  1868. //
  1869. {
  1870. skew_factor_t skew_factor;
  1871. _FIELD_TEST(planner_skew_factor);
  1872. EEPROM_READ(skew_factor);
  1873. #if ENABLED(SKEW_CORRECTION_GCODE)
  1874. if (!validating) {
  1875. planner.skew_factor.xy = skew_factor.xy;
  1876. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  1877. planner.skew_factor.xz = skew_factor.xz;
  1878. planner.skew_factor.yz = skew_factor.yz;
  1879. #endif
  1880. }
  1881. #endif
  1882. }
  1883. //
  1884. // Advanced Pause filament load & unload lengths
  1885. //
  1886. #if EXTRUDERS
  1887. {
  1888. #if DISABLED(ADVANCED_PAUSE_FEATURE)
  1889. fil_change_settings_t fc_settings[EXTRUDERS];
  1890. #endif
  1891. _FIELD_TEST(fc_settings);
  1892. EEPROM_READ(fc_settings);
  1893. }
  1894. #endif
  1895. //
  1896. // Tool-change settings
  1897. //
  1898. #if HAS_MULTI_EXTRUDER
  1899. _FIELD_TEST(toolchange_settings);
  1900. EEPROM_READ(toolchange_settings);
  1901. #endif
  1902. //
  1903. // Backlash Compensation
  1904. //
  1905. {
  1906. #if ENABLED(BACKLASH_GCODE)
  1907. const xyz_float_t &backlash_distance_mm = backlash.distance_mm;
  1908. const uint8_t &backlash_correction = backlash.correction;
  1909. #else
  1910. float backlash_distance_mm[XYZ];
  1911. uint8_t backlash_correction;
  1912. #endif
  1913. #if ENABLED(BACKLASH_GCODE) && defined(BACKLASH_SMOOTHING_MM)
  1914. const float &backlash_smoothing_mm = backlash.smoothing_mm;
  1915. #else
  1916. float backlash_smoothing_mm;
  1917. #endif
  1918. _FIELD_TEST(backlash_distance_mm);
  1919. EEPROM_READ(backlash_distance_mm);
  1920. EEPROM_READ(backlash_correction);
  1921. EEPROM_READ(backlash_smoothing_mm);
  1922. }
  1923. //
  1924. // Extensible UI User Data
  1925. //
  1926. #if ENABLED(EXTENSIBLE_UI)
  1927. // This is a significant hardware change; don't reserve EEPROM space when not present
  1928. {
  1929. const char extui_data[ExtUI::eeprom_data_size] = { 0 };
  1930. _FIELD_TEST(extui_data);
  1931. EEPROM_READ(extui_data);
  1932. if (!validating) ExtUI::onLoadSettings(extui_data);
  1933. }
  1934. #endif
  1935. //
  1936. // Case Light Brightness
  1937. //
  1938. #if HAS_CASE_LIGHT_BRIGHTNESS
  1939. _FIELD_TEST(caselight_brightness);
  1940. EEPROM_READ(caselight.brightness);
  1941. #endif
  1942. //
  1943. // Password feature
  1944. //
  1945. #if ENABLED(PASSWORD_FEATURE)
  1946. _FIELD_TEST(password_is_set);
  1947. EEPROM_READ(password.is_set);
  1948. EEPROM_READ(password.value);
  1949. #endif
  1950. //
  1951. // TOUCH_SCREEN_CALIBRATION
  1952. //
  1953. #if ENABLED(TOUCH_SCREEN_CALIBRATION)
  1954. _FIELD_TEST(touch.calibration);
  1955. EEPROM_READ(touch.calibration);
  1956. #endif
  1957. eeprom_error = size_error(eeprom_index - (EEPROM_OFFSET));
  1958. if (eeprom_error) {
  1959. DEBUG_ECHO_START();
  1960. DEBUG_ECHOLNPAIR("Index: ", int(eeprom_index - (EEPROM_OFFSET)), " Size: ", datasize());
  1961. TERN(EEPROM_AUTO_INIT,,ui.eeprom_alert_index());
  1962. }
  1963. else if (working_crc != stored_crc) {
  1964. eeprom_error = true;
  1965. DEBUG_ERROR_START();
  1966. DEBUG_ECHOLNPAIR("EEPROM CRC mismatch - (stored) ", stored_crc, " != ", working_crc, " (calculated)!");
  1967. TERN(EEPROM_AUTO_INIT,,ui.eeprom_alert_crc());
  1968. }
  1969. else if (!validating) {
  1970. DEBUG_ECHO_START();
  1971. DEBUG_ECHO(version);
  1972. DEBUG_ECHOLNPAIR(" stored settings retrieved (", eeprom_index - (EEPROM_OFFSET), " bytes; crc ", (uint32_t)working_crc, ")");
  1973. }
  1974. if (!validating && !eeprom_error) postprocess();
  1975. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1976. if (!validating) {
  1977. ubl.report_state();
  1978. if (!ubl.sanity_check()) {
  1979. SERIAL_EOL();
  1980. #if ENABLED(EEPROM_CHITCHAT)
  1981. ubl.echo_name();
  1982. DEBUG_ECHOLNPGM(" initialized.\n");
  1983. #endif
  1984. }
  1985. else {
  1986. eeprom_error = true;
  1987. #if ENABLED(EEPROM_CHITCHAT)
  1988. DEBUG_ECHOPGM("?Can't enable ");
  1989. ubl.echo_name();
  1990. DEBUG_ECHOLNPGM(".");
  1991. #endif
  1992. ubl.reset();
  1993. }
  1994. if (ubl.storage_slot >= 0) {
  1995. load_mesh(ubl.storage_slot);
  1996. DEBUG_ECHOLNPAIR("Mesh ", ubl.storage_slot, " loaded from storage.");
  1997. }
  1998. else {
  1999. ubl.reset();
  2000. DEBUG_ECHOLNPGM("UBL reset");
  2001. }
  2002. }
  2003. #endif
  2004. }
  2005. #if ENABLED(EEPROM_CHITCHAT) && DISABLED(DISABLE_M503)
  2006. // Report the EEPROM settings
  2007. if (!validating && (DISABLED(EEPROM_BOOT_SILENT) || IsRunning())) report();
  2008. #endif
  2009. EEPROM_FINISH();
  2010. return !eeprom_error;
  2011. }
  2012. #ifdef ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE
  2013. extern bool restoreEEPROM();
  2014. #endif
  2015. bool MarlinSettings::validate() {
  2016. validating = true;
  2017. #ifdef ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE
  2018. bool success = _load();
  2019. if (!success && restoreEEPROM()) {
  2020. SERIAL_ECHOLNPGM("Recovered backup EEPROM settings from SPI Flash");
  2021. success = _load();
  2022. }
  2023. #else
  2024. const bool success = _load();
  2025. #endif
  2026. validating = false;
  2027. return success;
  2028. }
  2029. bool MarlinSettings::load() {
  2030. if (validate()) {
  2031. const bool success = _load();
  2032. TERN_(EXTENSIBLE_UI, ExtUI::onConfigurationStoreRead(success));
  2033. return success;
  2034. }
  2035. reset();
  2036. #if ENABLED(EEPROM_AUTO_INIT)
  2037. (void)save();
  2038. SERIAL_ECHO_MSG("EEPROM Initialized");
  2039. #endif
  2040. return false;
  2041. }
  2042. #if ENABLED(AUTO_BED_LEVELING_UBL)
  2043. inline void ubl_invalid_slot(const int s) {
  2044. #if ENABLED(EEPROM_CHITCHAT)
  2045. DEBUG_ECHOLNPGM("?Invalid slot.");
  2046. DEBUG_ECHO(s);
  2047. DEBUG_ECHOLNPGM(" mesh slots available.");
  2048. #else
  2049. UNUSED(s);
  2050. #endif
  2051. }
  2052. const uint16_t MarlinSettings::meshes_end = persistentStore.capacity() - 129; // 128 (+1 because of the change to capacity rather than last valid address)
  2053. // is a placeholder for the size of the MAT; the MAT will always
  2054. // live at the very end of the eeprom
  2055. uint16_t MarlinSettings::meshes_start_index() {
  2056. return (datasize() + EEPROM_OFFSET + 32) & 0xFFF8; // Pad the end of configuration data so it can float up
  2057. // or down a little bit without disrupting the mesh data
  2058. }
  2059. uint16_t MarlinSettings::calc_num_meshes() {
  2060. return (meshes_end - meshes_start_index()) / sizeof(ubl.z_values);
  2061. }
  2062. int MarlinSettings::mesh_slot_offset(const int8_t slot) {
  2063. return meshes_end - (slot + 1) * sizeof(ubl.z_values);
  2064. }
  2065. void MarlinSettings::store_mesh(const int8_t slot) {
  2066. #if ENABLED(AUTO_BED_LEVELING_UBL)
  2067. const int16_t a = calc_num_meshes();
  2068. if (!WITHIN(slot, 0, a - 1)) {
  2069. ubl_invalid_slot(a);
  2070. DEBUG_ECHOLNPAIR("E2END=", persistentStore.capacity() - 1, " meshes_end=", meshes_end, " slot=", slot);
  2071. DEBUG_EOL();
  2072. return;
  2073. }
  2074. int pos = mesh_slot_offset(slot);
  2075. uint16_t crc = 0;
  2076. // Write crc to MAT along with other data, or just tack on to the beginning or end
  2077. persistentStore.access_start();
  2078. const bool status = persistentStore.write_data(pos, (uint8_t *)&ubl.z_values, sizeof(ubl.z_values), &crc);
  2079. persistentStore.access_finish();
  2080. if (status) SERIAL_ECHOLNPGM("?Unable to save mesh data.");
  2081. else DEBUG_ECHOLNPAIR("Mesh saved in slot ", slot);
  2082. #else
  2083. // Other mesh types
  2084. #endif
  2085. }
  2086. void MarlinSettings::load_mesh(const int8_t slot, void * const into/*=nullptr*/) {
  2087. #if ENABLED(AUTO_BED_LEVELING_UBL)
  2088. const int16_t a = settings.calc_num_meshes();
  2089. if (!WITHIN(slot, 0, a - 1)) {
  2090. ubl_invalid_slot(a);
  2091. return;
  2092. }
  2093. int pos = mesh_slot_offset(slot);
  2094. uint16_t crc = 0;
  2095. uint8_t * const dest = into ? (uint8_t*)into : (uint8_t*)&ubl.z_values;
  2096. persistentStore.access_start();
  2097. const uint16_t status = persistentStore.read_data(pos, dest, sizeof(ubl.z_values), &crc);
  2098. persistentStore.access_finish();
  2099. if (status) SERIAL_ECHOLNPGM("?Unable to load mesh data.");
  2100. else DEBUG_ECHOLNPAIR("Mesh loaded from slot ", slot);
  2101. EEPROM_FINISH();
  2102. #else
  2103. // Other mesh types
  2104. #endif
  2105. }
  2106. //void MarlinSettings::delete_mesh() { return; }
  2107. //void MarlinSettings::defrag_meshes() { return; }
  2108. #endif // AUTO_BED_LEVELING_UBL
  2109. #else // !EEPROM_SETTINGS
  2110. bool MarlinSettings::save() {
  2111. DEBUG_ERROR_MSG("EEPROM disabled");
  2112. return false;
  2113. }
  2114. #endif // !EEPROM_SETTINGS
  2115. /**
  2116. * M502 - Reset Configuration
  2117. */
  2118. void MarlinSettings::reset() {
  2119. LOOP_XYZE_N(i) {
  2120. planner.settings.max_acceleration_mm_per_s2[i] = pgm_read_dword(&_DMA[ALIM(i, _DMA)]);
  2121. planner.settings.axis_steps_per_mm[i] = pgm_read_float(&_DASU[ALIM(i, _DASU)]);
  2122. planner.settings.max_feedrate_mm_s[i] = pgm_read_float(&_DMF[ALIM(i, _DMF)]);
  2123. }
  2124. planner.settings.min_segment_time_us = DEFAULT_MINSEGMENTTIME;
  2125. planner.settings.acceleration = DEFAULT_ACCELERATION;
  2126. planner.settings.retract_acceleration = DEFAULT_RETRACT_ACCELERATION;
  2127. planner.settings.travel_acceleration = DEFAULT_TRAVEL_ACCELERATION;
  2128. planner.settings.min_feedrate_mm_s = feedRate_t(DEFAULT_MINIMUMFEEDRATE);
  2129. planner.settings.min_travel_feedrate_mm_s = feedRate_t(DEFAULT_MINTRAVELFEEDRATE);
  2130. #if HAS_CLASSIC_JERK
  2131. #ifndef DEFAULT_XJERK
  2132. #define DEFAULT_XJERK 0
  2133. #endif
  2134. #ifndef DEFAULT_YJERK
  2135. #define DEFAULT_YJERK 0
  2136. #endif
  2137. #ifndef DEFAULT_ZJERK
  2138. #define DEFAULT_ZJERK 0
  2139. #endif
  2140. planner.max_jerk.set(DEFAULT_XJERK, DEFAULT_YJERK, DEFAULT_ZJERK);
  2141. TERN_(HAS_CLASSIC_E_JERK, planner.max_jerk.e = DEFAULT_EJERK;);
  2142. #endif
  2143. #if HAS_JUNCTION_DEVIATION
  2144. planner.junction_deviation_mm = float(JUNCTION_DEVIATION_MM);
  2145. #endif
  2146. #if HAS_SCARA_OFFSET
  2147. scara_home_offset.reset();
  2148. #elif HAS_HOME_OFFSET
  2149. home_offset.reset();
  2150. #endif
  2151. TERN_(HAS_HOTEND_OFFSET, reset_hotend_offsets());
  2152. //
  2153. // Filament Runout Sensor
  2154. //
  2155. #if HAS_FILAMENT_SENSOR
  2156. runout.enabled = FIL_RUNOUT_ENABLED_DEFAULT;
  2157. runout.reset();
  2158. TERN_(HAS_FILAMENT_RUNOUT_DISTANCE, runout.set_runout_distance(FILAMENT_RUNOUT_DISTANCE_MM));
  2159. #endif
  2160. //
  2161. // Tool-change Settings
  2162. //
  2163. #if HAS_MULTI_EXTRUDER
  2164. #if ENABLED(TOOLCHANGE_FILAMENT_SWAP)
  2165. toolchange_settings.swap_length = TOOLCHANGE_FS_LENGTH;
  2166. toolchange_settings.extra_resume = TOOLCHANGE_FS_EXTRA_RESUME_LENGTH;
  2167. toolchange_settings.retract_speed = TOOLCHANGE_FS_RETRACT_SPEED;
  2168. toolchange_settings.unretract_speed = TOOLCHANGE_FS_UNRETRACT_SPEED;
  2169. toolchange_settings.extra_prime = TOOLCHANGE_FS_EXTRA_PRIME;
  2170. toolchange_settings.prime_speed = TOOLCHANGE_FS_PRIME_SPEED;
  2171. toolchange_settings.fan_speed = TOOLCHANGE_FS_FAN_SPEED;
  2172. toolchange_settings.fan_time = TOOLCHANGE_FS_FAN_TIME;
  2173. #endif
  2174. #if ENABLED(TOOLCHANGE_FS_PRIME_FIRST_USED)
  2175. enable_first_prime = false;
  2176. #endif
  2177. #if ENABLED(TOOLCHANGE_PARK)
  2178. constexpr xyz_pos_t tpxy = TOOLCHANGE_PARK_XY;
  2179. toolchange_settings.enable_park = true;
  2180. toolchange_settings.change_point = tpxy;
  2181. #endif
  2182. toolchange_settings.z_raise = TOOLCHANGE_ZRAISE;
  2183. #if ENABLED(TOOLCHANGE_MIGRATION_FEATURE)
  2184. migration = migration_defaults;
  2185. #endif
  2186. #endif
  2187. #if ENABLED(BACKLASH_GCODE)
  2188. backlash.correction = (BACKLASH_CORRECTION) * 255;
  2189. constexpr xyz_float_t tmp = BACKLASH_DISTANCE_MM;
  2190. backlash.distance_mm = tmp;
  2191. #ifdef BACKLASH_SMOOTHING_MM
  2192. backlash.smoothing_mm = BACKLASH_SMOOTHING_MM;
  2193. #endif
  2194. #endif
  2195. TERN_(EXTENSIBLE_UI, ExtUI::onFactoryReset());
  2196. //
  2197. // Case Light Brightness
  2198. //
  2199. TERN_(HAS_CASE_LIGHT_BRIGHTNESS, caselight.brightness = CASE_LIGHT_DEFAULT_BRIGHTNESS);
  2200. //
  2201. // TOUCH_SCREEN_CALIBRATION
  2202. //
  2203. TERN_(TOUCH_SCREEN_CALIBRATION, touch.calibration_reset());
  2204. //
  2205. // Magnetic Parking Extruder
  2206. //
  2207. TERN_(MAGNETIC_PARKING_EXTRUDER, mpe_settings_init());
  2208. //
  2209. // Global Leveling
  2210. //
  2211. TERN_(ENABLE_LEVELING_FADE_HEIGHT, new_z_fade_height = 0.0);
  2212. TERN_(HAS_LEVELING, reset_bed_level());
  2213. #if HAS_BED_PROBE
  2214. constexpr float dpo[] = NOZZLE_TO_PROBE_OFFSET;
  2215. static_assert(COUNT(dpo) == 3, "NOZZLE_TO_PROBE_OFFSET must contain offsets for X, Y, and Z.");
  2216. #if HAS_PROBE_XY_OFFSET
  2217. LOOP_XYZ(a) probe.offset[a] = dpo[a];
  2218. #else
  2219. probe.offset.set(0, 0, dpo[Z_AXIS]);
  2220. #endif
  2221. #endif
  2222. //
  2223. // Z Stepper Auto-alignment points
  2224. //
  2225. TERN_(Z_STEPPER_AUTO_ALIGN, z_stepper_align.reset_to_default());
  2226. //
  2227. // Servo Angles
  2228. //
  2229. TERN_(EDITABLE_SERVO_ANGLES, COPY(servo_angles, base_servo_angles)); // When not editable only one copy of servo angles exists
  2230. //
  2231. // BLTOUCH
  2232. //
  2233. //#if ENABLED(BLTOUCH)
  2234. // bltouch.last_written_mode;
  2235. //#endif
  2236. //
  2237. // Endstop Adjustments
  2238. //
  2239. #if ENABLED(DELTA)
  2240. const abc_float_t adj = DELTA_ENDSTOP_ADJ, dta = DELTA_TOWER_ANGLE_TRIM, ddr = DELTA_DIAGONAL_ROD_TRIM_TOWER;
  2241. delta_height = DELTA_HEIGHT;
  2242. delta_endstop_adj = adj;
  2243. delta_radius = DELTA_RADIUS;
  2244. delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  2245. delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  2246. delta_tower_angle_trim = dta;
  2247. delta_diagonal_rod_trim = ddr;
  2248. #endif
  2249. #if ENABLED(X_DUAL_ENDSTOPS)
  2250. #ifndef X2_ENDSTOP_ADJUSTMENT
  2251. #define X2_ENDSTOP_ADJUSTMENT 0
  2252. #endif
  2253. endstops.x2_endstop_adj = X2_ENDSTOP_ADJUSTMENT;
  2254. #endif
  2255. #if ENABLED(Y_DUAL_ENDSTOPS)
  2256. #ifndef Y2_ENDSTOP_ADJUSTMENT
  2257. #define Y2_ENDSTOP_ADJUSTMENT 0
  2258. #endif
  2259. endstops.y2_endstop_adj = Y2_ENDSTOP_ADJUSTMENT;
  2260. #endif
  2261. #if ENABLED(Z_MULTI_ENDSTOPS)
  2262. #ifndef Z2_ENDSTOP_ADJUSTMENT
  2263. #define Z2_ENDSTOP_ADJUSTMENT 0
  2264. #endif
  2265. endstops.z2_endstop_adj = Z2_ENDSTOP_ADJUSTMENT;
  2266. #if NUM_Z_STEPPER_DRIVERS >= 3
  2267. #ifndef Z3_ENDSTOP_ADJUSTMENT
  2268. #define Z3_ENDSTOP_ADJUSTMENT 0
  2269. #endif
  2270. endstops.z3_endstop_adj = Z3_ENDSTOP_ADJUSTMENT;
  2271. #endif
  2272. #if NUM_Z_STEPPER_DRIVERS >= 4
  2273. #ifndef Z4_ENDSTOP_ADJUSTMENT
  2274. #define Z4_ENDSTOP_ADJUSTMENT 0
  2275. #endif
  2276. endstops.z4_endstop_adj = Z4_ENDSTOP_ADJUSTMENT;
  2277. #endif
  2278. #endif
  2279. //
  2280. // Preheat parameters
  2281. //
  2282. #if PREHEAT_COUNT
  2283. #if HAS_HOTEND
  2284. constexpr uint16_t hpre[] = ARRAY_N(PREHEAT_COUNT, PREHEAT_1_TEMP_HOTEND, PREHEAT_2_TEMP_HOTEND, PREHEAT_3_TEMP_HOTEND, PREHEAT_4_TEMP_HOTEND, PREHEAT_5_TEMP_HOTEND);
  2285. #endif
  2286. #if HAS_HEATED_BED
  2287. constexpr uint16_t bpre[] = ARRAY_N(PREHEAT_COUNT, PREHEAT_1_TEMP_BED, PREHEAT_2_TEMP_BED, PREHEAT_3_TEMP_BED, PREHEAT_4_TEMP_BED, PREHEAT_5_TEMP_BED);
  2288. #endif
  2289. #if HAS_FAN
  2290. constexpr uint8_t fpre[] = ARRAY_N(PREHEAT_COUNT, PREHEAT_1_FAN_SPEED, PREHEAT_2_FAN_SPEED, PREHEAT_3_FAN_SPEED, PREHEAT_4_FAN_SPEED, PREHEAT_5_FAN_SPEED);
  2291. #endif
  2292. LOOP_L_N(i, PREHEAT_COUNT) {
  2293. #if HAS_HOTEND
  2294. ui.material_preset[i].hotend_temp = hpre[i];
  2295. #endif
  2296. #if HAS_HEATED_BED
  2297. ui.material_preset[i].bed_temp = bpre[i];
  2298. #endif
  2299. #if HAS_FAN
  2300. ui.material_preset[i].fan_speed = fpre[i];
  2301. #endif
  2302. }
  2303. #endif
  2304. //
  2305. // Hotend PID
  2306. //
  2307. #if ENABLED(PIDTEMP)
  2308. #if ENABLED(PID_PARAMS_PER_HOTEND)
  2309. constexpr float defKp[] =
  2310. #ifdef DEFAULT_Kp_LIST
  2311. DEFAULT_Kp_LIST
  2312. #else
  2313. ARRAY_BY_HOTENDS1(DEFAULT_Kp)
  2314. #endif
  2315. , defKi[] =
  2316. #ifdef DEFAULT_Ki_LIST
  2317. DEFAULT_Ki_LIST
  2318. #else
  2319. ARRAY_BY_HOTENDS1(DEFAULT_Ki)
  2320. #endif
  2321. , defKd[] =
  2322. #ifdef DEFAULT_Kd_LIST
  2323. DEFAULT_Kd_LIST
  2324. #else
  2325. ARRAY_BY_HOTENDS1(DEFAULT_Kd)
  2326. #endif
  2327. ;
  2328. static_assert(WITHIN(COUNT(defKp), 1, HOTENDS), "DEFAULT_Kp_LIST must have between 1 and HOTENDS items.");
  2329. static_assert(WITHIN(COUNT(defKi), 1, HOTENDS), "DEFAULT_Ki_LIST must have between 1 and HOTENDS items.");
  2330. static_assert(WITHIN(COUNT(defKd), 1, HOTENDS), "DEFAULT_Kd_LIST must have between 1 and HOTENDS items.");
  2331. #if ENABLED(PID_EXTRUSION_SCALING)
  2332. constexpr float defKc[] =
  2333. #ifdef DEFAULT_Kc_LIST
  2334. DEFAULT_Kc_LIST
  2335. #else
  2336. ARRAY_BY_HOTENDS1(DEFAULT_Kc)
  2337. #endif
  2338. ;
  2339. static_assert(WITHIN(COUNT(defKc), 1, HOTENDS), "DEFAULT_Kc_LIST must have between 1 and HOTENDS items.");
  2340. #endif
  2341. #if ENABLED(PID_FAN_SCALING)
  2342. constexpr float defKf[] =
  2343. #ifdef DEFAULT_Kf_LIST
  2344. DEFAULT_Kf_LIST
  2345. #else
  2346. ARRAY_BY_HOTENDS1(DEFAULT_Kf)
  2347. #endif
  2348. ;
  2349. static_assert(WITHIN(COUNT(defKf), 1, HOTENDS), "DEFAULT_Kf_LIST must have between 1 and HOTENDS items.");
  2350. #endif
  2351. #define PID_DEFAULT(N,E) def##N[E]
  2352. #else
  2353. #define PID_DEFAULT(N,E) DEFAULT_##N
  2354. #endif
  2355. HOTEND_LOOP() {
  2356. PID_PARAM(Kp, e) = float(PID_DEFAULT(Kp, ALIM(e, defKp)));
  2357. PID_PARAM(Ki, e) = scalePID_i(PID_DEFAULT(Ki, ALIM(e, defKi)));
  2358. PID_PARAM(Kd, e) = scalePID_d(PID_DEFAULT(Kd, ALIM(e, defKd)));
  2359. TERN_(PID_EXTRUSION_SCALING, PID_PARAM(Kc, e) = float(PID_DEFAULT(Kc, ALIM(e, defKc))));
  2360. TERN_(PID_FAN_SCALING, PID_PARAM(Kf, e) = float(PID_DEFAULT(Kf, ALIM(e, defKf))));
  2361. }
  2362. #endif
  2363. //
  2364. // PID Extrusion Scaling
  2365. //
  2366. TERN_(PID_EXTRUSION_SCALING, thermalManager.lpq_len = 20); // Default last-position-queue size
  2367. //
  2368. // Heated Bed PID
  2369. //
  2370. #if ENABLED(PIDTEMPBED)
  2371. thermalManager.temp_bed.pid.Kp = DEFAULT_bedKp;
  2372. thermalManager.temp_bed.pid.Ki = scalePID_i(DEFAULT_bedKi);
  2373. thermalManager.temp_bed.pid.Kd = scalePID_d(DEFAULT_bedKd);
  2374. #endif
  2375. //
  2376. // User-Defined Thermistors
  2377. //
  2378. TERN_(HAS_USER_THERMISTORS, thermalManager.reset_user_thermistors());
  2379. //
  2380. // Power Monitor
  2381. //
  2382. TERN_(POWER_MONITOR, power_monitor.reset());
  2383. //
  2384. // LCD Contrast
  2385. //
  2386. TERN_(HAS_LCD_CONTRAST, ui.set_contrast(DEFAULT_LCD_CONTRAST));
  2387. //
  2388. // Controller Fan
  2389. //
  2390. TERN_(USE_CONTROLLER_FAN, controllerFan.reset());
  2391. //
  2392. // Power-Loss Recovery
  2393. //
  2394. TERN_(POWER_LOSS_RECOVERY, recovery.enable(ENABLED(PLR_ENABLED_DEFAULT)));
  2395. //
  2396. // Firmware Retraction
  2397. //
  2398. TERN_(FWRETRACT, fwretract.reset());
  2399. //
  2400. // Volumetric & Filament Size
  2401. //
  2402. #if DISABLED(NO_VOLUMETRICS)
  2403. parser.volumetric_enabled = ENABLED(VOLUMETRIC_DEFAULT_ON);
  2404. LOOP_L_N(q, COUNT(planner.filament_size))
  2405. planner.filament_size[q] = DEFAULT_NOMINAL_FILAMENT_DIA;
  2406. #if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
  2407. LOOP_L_N(q, COUNT(planner.volumetric_extruder_limit))
  2408. planner.volumetric_extruder_limit[q] = DEFAULT_VOLUMETRIC_EXTRUDER_LIMIT;
  2409. #endif
  2410. #endif
  2411. endstops.enable_globally(ENABLED(ENDSTOPS_ALWAYS_ON_DEFAULT));
  2412. reset_stepper_drivers();
  2413. //
  2414. // Linear Advance
  2415. //
  2416. #if ENABLED(LIN_ADVANCE)
  2417. LOOP_L_N(i, EXTRUDERS) {
  2418. planner.extruder_advance_K[i] = LIN_ADVANCE_K;
  2419. TERN_(EXTRA_LIN_ADVANCE_K, other_extruder_advance_K[i] = LIN_ADVANCE_K);
  2420. }
  2421. #endif
  2422. //
  2423. // Motor Current PWM
  2424. //
  2425. #if HAS_MOTOR_CURRENT_PWM
  2426. constexpr uint32_t tmp_motor_current_setting[3] = PWM_MOTOR_CURRENT;
  2427. LOOP_L_N(q, 3)
  2428. stepper.digipot_current(q, (stepper.motor_current_setting[q] = tmp_motor_current_setting[q]));
  2429. #endif
  2430. //
  2431. // CNC Coordinate System
  2432. //
  2433. TERN_(CNC_COORDINATE_SYSTEMS, (void)gcode.select_coordinate_system(-1)); // Go back to machine space
  2434. //
  2435. // Skew Correction
  2436. //
  2437. #if ENABLED(SKEW_CORRECTION_GCODE)
  2438. planner.skew_factor.xy = XY_SKEW_FACTOR;
  2439. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  2440. planner.skew_factor.xz = XZ_SKEW_FACTOR;
  2441. planner.skew_factor.yz = YZ_SKEW_FACTOR;
  2442. #endif
  2443. #endif
  2444. //
  2445. // Advanced Pause filament load & unload lengths
  2446. //
  2447. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  2448. LOOP_L_N(e, EXTRUDERS) {
  2449. fc_settings[e].unload_length = FILAMENT_CHANGE_UNLOAD_LENGTH;
  2450. fc_settings[e].load_length = FILAMENT_CHANGE_FAST_LOAD_LENGTH;
  2451. }
  2452. #endif
  2453. #if ENABLED(PASSWORD_FEATURE)
  2454. #ifdef PASSWORD_DEFAULT_VALUE
  2455. password.is_set = true;
  2456. password.value = PASSWORD_DEFAULT_VALUE;
  2457. #else
  2458. password.is_set = false;
  2459. #endif
  2460. #endif
  2461. postprocess();
  2462. DEBUG_ECHO_START();
  2463. DEBUG_ECHOLNPGM("Hardcoded Default Settings Loaded");
  2464. TERN_(EXTENSIBLE_UI, ExtUI::onFactoryReset());
  2465. }
  2466. #if DISABLED(DISABLE_M503)
  2467. static void config_heading(const bool repl, PGM_P const pstr, const bool eol=true) {
  2468. if (!repl) {
  2469. SERIAL_ECHO_START();
  2470. SERIAL_ECHOPGM("; ");
  2471. serialprintPGM(pstr);
  2472. if (eol) SERIAL_EOL();
  2473. }
  2474. }
  2475. #define CONFIG_ECHO_START() do{ if (!forReplay) SERIAL_ECHO_START(); }while(0)
  2476. #define CONFIG_ECHO_MSG(STR) do{ CONFIG_ECHO_START(); SERIAL_ECHOLNPGM(STR); }while(0)
  2477. #define CONFIG_ECHO_HEADING(STR) config_heading(forReplay, PSTR(STR))
  2478. #if HAS_TRINAMIC_CONFIG
  2479. inline void say_M906(const bool forReplay) { CONFIG_ECHO_START(); SERIAL_ECHOPGM(" M906"); }
  2480. #if HAS_STEALTHCHOP
  2481. void say_M569(const bool forReplay, const char * const etc=nullptr, const bool newLine = false) {
  2482. CONFIG_ECHO_START();
  2483. SERIAL_ECHOPGM(" M569 S1");
  2484. if (etc) {
  2485. SERIAL_CHAR(' ');
  2486. serialprintPGM(etc);
  2487. }
  2488. if (newLine) SERIAL_EOL();
  2489. }
  2490. #endif
  2491. #if ENABLED(HYBRID_THRESHOLD)
  2492. inline void say_M913(const bool forReplay) { CONFIG_ECHO_START(); SERIAL_ECHOPGM(" M913"); }
  2493. #endif
  2494. #if USE_SENSORLESS
  2495. inline void say_M914() { SERIAL_ECHOPGM(" M914"); }
  2496. #endif
  2497. #endif
  2498. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  2499. inline void say_M603(const bool forReplay) { CONFIG_ECHO_START(); SERIAL_ECHOPGM(" M603 "); }
  2500. #endif
  2501. inline void say_units(const bool colon) {
  2502. serialprintPGM(
  2503. #if ENABLED(INCH_MODE_SUPPORT)
  2504. parser.linear_unit_factor != 1.0 ? PSTR(" (in)") :
  2505. #endif
  2506. PSTR(" (mm)")
  2507. );
  2508. if (colon) SERIAL_ECHOLNPGM(":");
  2509. }
  2510. void report_M92(const bool echo=true, const int8_t e=-1);
  2511. /**
  2512. * M503 - Report current settings in RAM
  2513. *
  2514. * Unless specifically disabled, M503 is available even without EEPROM
  2515. */
  2516. void MarlinSettings::report(const bool forReplay) {
  2517. /**
  2518. * Announce current units, in case inches are being displayed
  2519. */
  2520. CONFIG_ECHO_START();
  2521. #if ENABLED(INCH_MODE_SUPPORT)
  2522. SERIAL_ECHOPGM(" G2");
  2523. SERIAL_CHAR(parser.linear_unit_factor == 1.0 ? '1' : '0');
  2524. SERIAL_ECHOPGM(" ;");
  2525. say_units(false);
  2526. #else
  2527. SERIAL_ECHOPGM(" G21 ; Units in mm");
  2528. say_units(false);
  2529. #endif
  2530. SERIAL_EOL();
  2531. #if HAS_LCD_MENU
  2532. // Temperature units - for Ultipanel temperature options
  2533. CONFIG_ECHO_START();
  2534. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  2535. SERIAL_ECHOPGM(" M149 ");
  2536. SERIAL_CHAR(parser.temp_units_code());
  2537. SERIAL_ECHOPGM(" ; Units in ");
  2538. serialprintPGM(parser.temp_units_name());
  2539. #else
  2540. SERIAL_ECHOLNPGM(" M149 C ; Units in Celsius");
  2541. #endif
  2542. #endif
  2543. SERIAL_EOL();
  2544. #if EXTRUDERS && DISABLED(NO_VOLUMETRICS)
  2545. /**
  2546. * Volumetric extrusion M200
  2547. */
  2548. if (!forReplay) {
  2549. config_heading(forReplay, PSTR("Filament settings:"), false);
  2550. if (parser.volumetric_enabled)
  2551. SERIAL_EOL();
  2552. else
  2553. SERIAL_ECHOLNPGM(" Disabled");
  2554. }
  2555. #if EXTRUDERS == 1
  2556. CONFIG_ECHO_START();
  2557. SERIAL_ECHOLNPAIR(" M200 S", int(parser.volumetric_enabled)
  2558. , " D", LINEAR_UNIT(planner.filament_size[0])
  2559. #if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
  2560. , " L", LINEAR_UNIT(planner.volumetric_extruder_limit[0])
  2561. #endif
  2562. );
  2563. #else
  2564. LOOP_L_N(i, EXTRUDERS) {
  2565. CONFIG_ECHO_START();
  2566. SERIAL_ECHOLNPAIR(" M200 T", int(i)
  2567. , " D", LINEAR_UNIT(planner.filament_size[i])
  2568. #if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
  2569. , " L", LINEAR_UNIT(planner.volumetric_extruder_limit[i])
  2570. #endif
  2571. );
  2572. }
  2573. CONFIG_ECHO_START();
  2574. SERIAL_ECHOLNPAIR(" M200 S", int(parser.volumetric_enabled));
  2575. #endif
  2576. #endif // EXTRUDERS && !NO_VOLUMETRICS
  2577. CONFIG_ECHO_HEADING("Steps per unit:");
  2578. report_M92(!forReplay);
  2579. CONFIG_ECHO_HEADING("Maximum feedrates (units/s):");
  2580. CONFIG_ECHO_START();
  2581. SERIAL_ECHOLNPAIR_P(
  2582. PSTR(" M203 X"), LINEAR_UNIT(planner.settings.max_feedrate_mm_s[X_AXIS])
  2583. , SP_Y_STR, LINEAR_UNIT(planner.settings.max_feedrate_mm_s[Y_AXIS])
  2584. , SP_Z_STR, LINEAR_UNIT(planner.settings.max_feedrate_mm_s[Z_AXIS])
  2585. #if DISABLED(DISTINCT_E_FACTORS)
  2586. , SP_E_STR, VOLUMETRIC_UNIT(planner.settings.max_feedrate_mm_s[E_AXIS])
  2587. #endif
  2588. );
  2589. #if ENABLED(DISTINCT_E_FACTORS)
  2590. LOOP_L_N(i, E_STEPPERS) {
  2591. CONFIG_ECHO_START();
  2592. SERIAL_ECHOLNPAIR_P(
  2593. PSTR(" M203 T"), (int)i
  2594. , SP_E_STR, VOLUMETRIC_UNIT(planner.settings.max_feedrate_mm_s[E_AXIS_N(i)])
  2595. );
  2596. }
  2597. #endif
  2598. CONFIG_ECHO_HEADING("Maximum Acceleration (units/s2):");
  2599. CONFIG_ECHO_START();
  2600. SERIAL_ECHOLNPAIR_P(
  2601. PSTR(" M201 X"), LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[X_AXIS])
  2602. , SP_Y_STR, LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[Y_AXIS])
  2603. , SP_Z_STR, LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[Z_AXIS])
  2604. #if DISABLED(DISTINCT_E_FACTORS)
  2605. , SP_E_STR, VOLUMETRIC_UNIT(planner.settings.max_acceleration_mm_per_s2[E_AXIS])
  2606. #endif
  2607. );
  2608. #if ENABLED(DISTINCT_E_FACTORS)
  2609. LOOP_L_N(i, E_STEPPERS) {
  2610. CONFIG_ECHO_START();
  2611. SERIAL_ECHOLNPAIR_P(
  2612. PSTR(" M201 T"), (int)i
  2613. , SP_E_STR, VOLUMETRIC_UNIT(planner.settings.max_acceleration_mm_per_s2[E_AXIS_N(i)])
  2614. );
  2615. }
  2616. #endif
  2617. CONFIG_ECHO_HEADING("Acceleration (units/s2): P<print_accel> R<retract_accel> T<travel_accel>");
  2618. CONFIG_ECHO_START();
  2619. SERIAL_ECHOLNPAIR_P(
  2620. PSTR(" M204 P"), LINEAR_UNIT(planner.settings.acceleration)
  2621. , PSTR(" R"), LINEAR_UNIT(planner.settings.retract_acceleration)
  2622. , SP_T_STR, LINEAR_UNIT(planner.settings.travel_acceleration)
  2623. );
  2624. CONFIG_ECHO_HEADING(
  2625. "Advanced: B<min_segment_time_us> S<min_feedrate> T<min_travel_feedrate>"
  2626. #if HAS_JUNCTION_DEVIATION
  2627. " J<junc_dev>"
  2628. #endif
  2629. #if HAS_CLASSIC_JERK
  2630. " X<max_x_jerk> Y<max_y_jerk> Z<max_z_jerk>"
  2631. TERN_(HAS_CLASSIC_E_JERK, " E<max_e_jerk>")
  2632. #endif
  2633. );
  2634. CONFIG_ECHO_START();
  2635. SERIAL_ECHOLNPAIR_P(
  2636. PSTR(" M205 B"), LINEAR_UNIT(planner.settings.min_segment_time_us)
  2637. , PSTR(" S"), LINEAR_UNIT(planner.settings.min_feedrate_mm_s)
  2638. , SP_T_STR, LINEAR_UNIT(planner.settings.min_travel_feedrate_mm_s)
  2639. #if HAS_JUNCTION_DEVIATION
  2640. , PSTR(" J"), LINEAR_UNIT(planner.junction_deviation_mm)
  2641. #endif
  2642. #if HAS_CLASSIC_JERK
  2643. , SP_X_STR, LINEAR_UNIT(planner.max_jerk.x)
  2644. , SP_Y_STR, LINEAR_UNIT(planner.max_jerk.y)
  2645. , SP_Z_STR, LINEAR_UNIT(planner.max_jerk.z)
  2646. #if HAS_CLASSIC_E_JERK
  2647. , SP_E_STR, LINEAR_UNIT(planner.max_jerk.e)
  2648. #endif
  2649. #endif
  2650. );
  2651. #if HAS_M206_COMMAND
  2652. CONFIG_ECHO_HEADING("Home offset:");
  2653. CONFIG_ECHO_START();
  2654. SERIAL_ECHOLNPAIR_P(
  2655. #if IS_CARTESIAN
  2656. PSTR(" M206 X"), LINEAR_UNIT(home_offset.x)
  2657. , SP_Y_STR, LINEAR_UNIT(home_offset.y)
  2658. , SP_Z_STR
  2659. #else
  2660. PSTR(" M206 Z")
  2661. #endif
  2662. , LINEAR_UNIT(home_offset.z)
  2663. );
  2664. #endif
  2665. #if HAS_HOTEND_OFFSET
  2666. CONFIG_ECHO_HEADING("Hotend offsets:");
  2667. CONFIG_ECHO_START();
  2668. LOOP_S_L_N(e, 1, HOTENDS) {
  2669. SERIAL_ECHOPAIR_P(
  2670. PSTR(" M218 T"), (int)e,
  2671. SP_X_STR, LINEAR_UNIT(hotend_offset[e].x),
  2672. SP_Y_STR, LINEAR_UNIT(hotend_offset[e].y)
  2673. );
  2674. SERIAL_ECHOLNPAIR_F_P(SP_Z_STR, LINEAR_UNIT(hotend_offset[e].z), 3);
  2675. }
  2676. #endif
  2677. /**
  2678. * Bed Leveling
  2679. */
  2680. #if HAS_LEVELING
  2681. #if ENABLED(MESH_BED_LEVELING)
  2682. CONFIG_ECHO_HEADING("Mesh Bed Leveling:");
  2683. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2684. config_heading(forReplay, PSTR(""), false);
  2685. if (!forReplay) {
  2686. ubl.echo_name();
  2687. SERIAL_CHAR(':');
  2688. SERIAL_EOL();
  2689. }
  2690. #elif HAS_ABL_OR_UBL
  2691. CONFIG_ECHO_HEADING("Auto Bed Leveling:");
  2692. #endif
  2693. CONFIG_ECHO_START();
  2694. SERIAL_ECHOLNPAIR_P(
  2695. PSTR(" M420 S"), planner.leveling_active ? 1 : 0
  2696. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  2697. , SP_Z_STR, LINEAR_UNIT(planner.z_fade_height)
  2698. #endif
  2699. );
  2700. #if ENABLED(MESH_BED_LEVELING)
  2701. if (leveling_is_valid()) {
  2702. LOOP_L_N(py, GRID_MAX_POINTS_Y) {
  2703. LOOP_L_N(px, GRID_MAX_POINTS_X) {
  2704. CONFIG_ECHO_START();
  2705. SERIAL_ECHOPAIR_P(PSTR(" G29 S3 I"), (int)px, PSTR(" J"), (int)py);
  2706. SERIAL_ECHOLNPAIR_F_P(SP_Z_STR, LINEAR_UNIT(mbl.z_values[px][py]), 5);
  2707. }
  2708. }
  2709. CONFIG_ECHO_START();
  2710. SERIAL_ECHOLNPAIR_F_P(PSTR(" G29 S4 Z"), LINEAR_UNIT(mbl.z_offset), 5);
  2711. }
  2712. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2713. if (!forReplay) {
  2714. SERIAL_EOL();
  2715. ubl.report_state();
  2716. SERIAL_EOL();
  2717. config_heading(false, PSTR("Active Mesh Slot: "), false);
  2718. SERIAL_ECHOLN(ubl.storage_slot);
  2719. config_heading(false, PSTR("EEPROM can hold "), false);
  2720. SERIAL_ECHO(calc_num_meshes());
  2721. SERIAL_ECHOLNPGM(" meshes.\n");
  2722. }
  2723. //ubl.report_current_mesh(); // This is too verbose for large meshes. A better (more terse)
  2724. // solution needs to be found.
  2725. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2726. if (leveling_is_valid()) {
  2727. LOOP_L_N(py, GRID_MAX_POINTS_Y) {
  2728. LOOP_L_N(px, GRID_MAX_POINTS_X) {
  2729. CONFIG_ECHO_START();
  2730. SERIAL_ECHOPAIR(" G29 W I", (int)px, " J", (int)py);
  2731. SERIAL_ECHOLNPAIR_F_P(SP_Z_STR, LINEAR_UNIT(z_values[px][py]), 5);
  2732. }
  2733. }
  2734. }
  2735. #endif
  2736. #endif // HAS_LEVELING
  2737. #if ENABLED(EDITABLE_SERVO_ANGLES)
  2738. CONFIG_ECHO_HEADING("Servo Angles:");
  2739. LOOP_L_N(i, NUM_SERVOS) {
  2740. switch (i) {
  2741. #if ENABLED(SWITCHING_EXTRUDER)
  2742. case SWITCHING_EXTRUDER_SERVO_NR:
  2743. #if EXTRUDERS > 3
  2744. case SWITCHING_EXTRUDER_E23_SERVO_NR:
  2745. #endif
  2746. #elif ENABLED(SWITCHING_NOZZLE)
  2747. case SWITCHING_NOZZLE_SERVO_NR:
  2748. #elif ENABLED(BLTOUCH) || (HAS_Z_SERVO_PROBE && defined(Z_SERVO_ANGLES))
  2749. case Z_PROBE_SERVO_NR:
  2750. #endif
  2751. CONFIG_ECHO_START();
  2752. SERIAL_ECHOLNPAIR(" M281 P", int(i), " L", servo_angles[i][0], " U", servo_angles[i][1]);
  2753. default: break;
  2754. }
  2755. }
  2756. #endif // EDITABLE_SERVO_ANGLES
  2757. #if HAS_SCARA_OFFSET
  2758. CONFIG_ECHO_HEADING("SCARA settings: S<seg-per-sec> P<theta-psi-offset> T<theta-offset>");
  2759. CONFIG_ECHO_START();
  2760. SERIAL_ECHOLNPAIR_P(
  2761. PSTR(" M665 S"), delta_segments_per_second
  2762. , SP_P_STR, scara_home_offset.a
  2763. , SP_T_STR, scara_home_offset.b
  2764. , SP_Z_STR, LINEAR_UNIT(scara_home_offset.z)
  2765. );
  2766. #elif ENABLED(DELTA)
  2767. CONFIG_ECHO_HEADING("Endstop adjustment:");
  2768. CONFIG_ECHO_START();
  2769. SERIAL_ECHOLNPAIR_P(
  2770. PSTR(" M666 X"), LINEAR_UNIT(delta_endstop_adj.a)
  2771. , SP_Y_STR, LINEAR_UNIT(delta_endstop_adj.b)
  2772. , SP_Z_STR, LINEAR_UNIT(delta_endstop_adj.c)
  2773. );
  2774. CONFIG_ECHO_HEADING("Delta settings: L<diagonal rod> R<radius> H<height> S<segments per sec> XYZ<tower angle trim> ABC<rod trim>");
  2775. CONFIG_ECHO_START();
  2776. SERIAL_ECHOLNPAIR_P(
  2777. PSTR(" M665 L"), LINEAR_UNIT(delta_diagonal_rod)
  2778. , PSTR(" R"), LINEAR_UNIT(delta_radius)
  2779. , PSTR(" H"), LINEAR_UNIT(delta_height)
  2780. , PSTR(" S"), delta_segments_per_second
  2781. , SP_X_STR, LINEAR_UNIT(delta_tower_angle_trim.a)
  2782. , SP_Y_STR, LINEAR_UNIT(delta_tower_angle_trim.b)
  2783. , SP_Z_STR, LINEAR_UNIT(delta_tower_angle_trim.c)
  2784. , PSTR(" A"), LINEAR_UNIT(delta_diagonal_rod_trim.a)
  2785. , PSTR(" B"), LINEAR_UNIT(delta_diagonal_rod_trim.b)
  2786. , PSTR(" C"), LINEAR_UNIT(delta_diagonal_rod_trim.c)
  2787. );
  2788. #elif HAS_EXTRA_ENDSTOPS
  2789. CONFIG_ECHO_HEADING("Endstop adjustment:");
  2790. CONFIG_ECHO_START();
  2791. SERIAL_ECHOPGM(" M666");
  2792. #if ENABLED(X_DUAL_ENDSTOPS)
  2793. SERIAL_ECHOLNPAIR_P(SP_X_STR, LINEAR_UNIT(endstops.x2_endstop_adj));
  2794. #endif
  2795. #if ENABLED(Y_DUAL_ENDSTOPS)
  2796. SERIAL_ECHOLNPAIR_P(SP_Y_STR, LINEAR_UNIT(endstops.y2_endstop_adj));
  2797. #endif
  2798. #if ENABLED(Z_MULTI_ENDSTOPS)
  2799. #if NUM_Z_STEPPER_DRIVERS >= 3
  2800. SERIAL_ECHOPAIR(" S2 Z", LINEAR_UNIT(endstops.z3_endstop_adj));
  2801. CONFIG_ECHO_START();
  2802. SERIAL_ECHOPAIR(" M666 S3 Z", LINEAR_UNIT(endstops.z3_endstop_adj));
  2803. #if NUM_Z_STEPPER_DRIVERS >= 4
  2804. CONFIG_ECHO_START();
  2805. SERIAL_ECHOPAIR(" M666 S4 Z", LINEAR_UNIT(endstops.z4_endstop_adj));
  2806. #endif
  2807. #else
  2808. SERIAL_ECHOLNPAIR_P(SP_Z_STR, LINEAR_UNIT(endstops.z2_endstop_adj));
  2809. #endif
  2810. #endif
  2811. #endif // [XYZ]_DUAL_ENDSTOPS
  2812. #if PREHEAT_COUNT
  2813. CONFIG_ECHO_HEADING("Material heatup parameters:");
  2814. LOOP_L_N(i, PREHEAT_COUNT) {
  2815. CONFIG_ECHO_START();
  2816. SERIAL_ECHOLNPAIR_P(
  2817. PSTR(" M145 S"), (int)i
  2818. #if HAS_HOTEND
  2819. , PSTR(" H"), TEMP_UNIT(ui.material_preset[i].hotend_temp)
  2820. #endif
  2821. #if HAS_HEATED_BED
  2822. , SP_B_STR, TEMP_UNIT(ui.material_preset[i].bed_temp)
  2823. #endif
  2824. #if HAS_FAN
  2825. , PSTR(" F"), ui.material_preset[i].fan_speed
  2826. #endif
  2827. );
  2828. }
  2829. #endif
  2830. #if HAS_PID_HEATING
  2831. CONFIG_ECHO_HEADING("PID settings:");
  2832. #if ENABLED(PIDTEMP)
  2833. HOTEND_LOOP() {
  2834. CONFIG_ECHO_START();
  2835. SERIAL_ECHOPAIR_P(
  2836. #if ENABLED(PID_PARAMS_PER_HOTEND)
  2837. PSTR(" M301 E"), e,
  2838. SP_P_STR
  2839. #else
  2840. PSTR(" M301 P")
  2841. #endif
  2842. , PID_PARAM(Kp, e)
  2843. , PSTR(" I"), unscalePID_i(PID_PARAM(Ki, e))
  2844. , PSTR(" D"), unscalePID_d(PID_PARAM(Kd, e))
  2845. );
  2846. #if ENABLED(PID_EXTRUSION_SCALING)
  2847. SERIAL_ECHOPAIR_P(SP_C_STR, PID_PARAM(Kc, e));
  2848. if (e == 0) SERIAL_ECHOPAIR(" L", thermalManager.lpq_len);
  2849. #endif
  2850. #if ENABLED(PID_FAN_SCALING)
  2851. SERIAL_ECHOPAIR(" F", PID_PARAM(Kf, e));
  2852. #endif
  2853. SERIAL_EOL();
  2854. }
  2855. #endif // PIDTEMP
  2856. #if ENABLED(PIDTEMPBED)
  2857. CONFIG_ECHO_START();
  2858. SERIAL_ECHOLNPAIR(
  2859. " M304 P", thermalManager.temp_bed.pid.Kp
  2860. , " I", unscalePID_i(thermalManager.temp_bed.pid.Ki)
  2861. , " D", unscalePID_d(thermalManager.temp_bed.pid.Kd)
  2862. );
  2863. #endif
  2864. #endif // PIDTEMP || PIDTEMPBED
  2865. #if HAS_USER_THERMISTORS
  2866. CONFIG_ECHO_HEADING("User thermistors:");
  2867. LOOP_L_N(i, USER_THERMISTORS)
  2868. thermalManager.log_user_thermistor(i, true);
  2869. #endif
  2870. #if HAS_LCD_CONTRAST
  2871. CONFIG_ECHO_HEADING("LCD Contrast:");
  2872. CONFIG_ECHO_START();
  2873. SERIAL_ECHOLNPAIR(" M250 C", ui.contrast);
  2874. #endif
  2875. TERN_(CONTROLLER_FAN_EDITABLE, M710_report(forReplay));
  2876. #if ENABLED(POWER_LOSS_RECOVERY)
  2877. CONFIG_ECHO_HEADING("Power-Loss Recovery:");
  2878. CONFIG_ECHO_START();
  2879. SERIAL_ECHOLNPAIR(" M413 S", int(recovery.enabled));
  2880. #endif
  2881. #if ENABLED(FWRETRACT)
  2882. CONFIG_ECHO_HEADING("Retract: S<length> F<units/m> Z<lift>");
  2883. CONFIG_ECHO_START();
  2884. SERIAL_ECHOLNPAIR_P(
  2885. PSTR(" M207 S"), LINEAR_UNIT(fwretract.settings.retract_length)
  2886. , PSTR(" W"), LINEAR_UNIT(fwretract.settings.swap_retract_length)
  2887. , PSTR(" F"), LINEAR_UNIT(MMS_TO_MMM(fwretract.settings.retract_feedrate_mm_s))
  2888. , SP_Z_STR, LINEAR_UNIT(fwretract.settings.retract_zraise)
  2889. );
  2890. CONFIG_ECHO_HEADING("Recover: S<length> F<units/m>");
  2891. CONFIG_ECHO_START();
  2892. SERIAL_ECHOLNPAIR(
  2893. " M208 S", LINEAR_UNIT(fwretract.settings.retract_recover_extra)
  2894. , " W", LINEAR_UNIT(fwretract.settings.swap_retract_recover_extra)
  2895. , " F", LINEAR_UNIT(MMS_TO_MMM(fwretract.settings.retract_recover_feedrate_mm_s))
  2896. );
  2897. #if ENABLED(FWRETRACT_AUTORETRACT)
  2898. CONFIG_ECHO_HEADING("Auto-Retract: S=0 to disable, 1 to interpret E-only moves as retract/recover");
  2899. CONFIG_ECHO_START();
  2900. SERIAL_ECHOLNPAIR(" M209 S", fwretract.autoretract_enabled ? 1 : 0);
  2901. #endif // FWRETRACT_AUTORETRACT
  2902. #endif // FWRETRACT
  2903. /**
  2904. * Probe Offset
  2905. */
  2906. #if HAS_BED_PROBE
  2907. config_heading(forReplay, PSTR("Z-Probe Offset"), false);
  2908. if (!forReplay) say_units(true);
  2909. CONFIG_ECHO_START();
  2910. SERIAL_ECHOLNPAIR_P(
  2911. #if HAS_PROBE_XY_OFFSET
  2912. PSTR(" M851 X"), LINEAR_UNIT(probe.offset_xy.x),
  2913. SP_Y_STR, LINEAR_UNIT(probe.offset_xy.y),
  2914. SP_Z_STR
  2915. #else
  2916. PSTR(" M851 X0 Y0 Z")
  2917. #endif
  2918. , LINEAR_UNIT(probe.offset.z)
  2919. );
  2920. #endif
  2921. /**
  2922. * Bed Skew Correction
  2923. */
  2924. #if ENABLED(SKEW_CORRECTION_GCODE)
  2925. CONFIG_ECHO_HEADING("Skew Factor: ");
  2926. CONFIG_ECHO_START();
  2927. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  2928. SERIAL_ECHOPAIR_F(" M852 I", LINEAR_UNIT(planner.skew_factor.xy), 6);
  2929. SERIAL_ECHOPAIR_F(" J", LINEAR_UNIT(planner.skew_factor.xz), 6);
  2930. SERIAL_ECHOLNPAIR_F(" K", LINEAR_UNIT(planner.skew_factor.yz), 6);
  2931. #else
  2932. SERIAL_ECHOLNPAIR_F(" M852 S", LINEAR_UNIT(planner.skew_factor.xy), 6);
  2933. #endif
  2934. #endif
  2935. #if HAS_TRINAMIC_CONFIG
  2936. /**
  2937. * TMC stepper driver current
  2938. */
  2939. CONFIG_ECHO_HEADING("Stepper driver current:");
  2940. #if AXIS_IS_TMC(X) || AXIS_IS_TMC(Y) || AXIS_IS_TMC(Z)
  2941. say_M906(forReplay);
  2942. #if AXIS_IS_TMC(X)
  2943. SERIAL_ECHOPAIR_P(SP_X_STR, stepperX.getMilliamps());
  2944. #endif
  2945. #if AXIS_IS_TMC(Y)
  2946. SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY.getMilliamps());
  2947. #endif
  2948. #if AXIS_IS_TMC(Z)
  2949. SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ.getMilliamps());
  2950. #endif
  2951. SERIAL_EOL();
  2952. #endif
  2953. #if AXIS_IS_TMC(X2) || AXIS_IS_TMC(Y2) || AXIS_IS_TMC(Z2)
  2954. say_M906(forReplay);
  2955. SERIAL_ECHOPGM(" I1");
  2956. #if AXIS_IS_TMC(X2)
  2957. SERIAL_ECHOPAIR_P(SP_X_STR, stepperX2.getMilliamps());
  2958. #endif
  2959. #if AXIS_IS_TMC(Y2)
  2960. SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY2.getMilliamps());
  2961. #endif
  2962. #if AXIS_IS_TMC(Z2)
  2963. SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ2.getMilliamps());
  2964. #endif
  2965. SERIAL_EOL();
  2966. #endif
  2967. #if AXIS_IS_TMC(Z3)
  2968. say_M906(forReplay);
  2969. SERIAL_ECHOLNPAIR(" I2 Z", stepperZ3.getMilliamps());
  2970. #endif
  2971. #if AXIS_IS_TMC(Z4)
  2972. say_M906(forReplay);
  2973. SERIAL_ECHOLNPAIR(" I3 Z", stepperZ4.getMilliamps());
  2974. #endif
  2975. #if AXIS_IS_TMC(E0)
  2976. say_M906(forReplay);
  2977. SERIAL_ECHOLNPAIR(" T0 E", stepperE0.getMilliamps());
  2978. #endif
  2979. #if AXIS_IS_TMC(E1)
  2980. say_M906(forReplay);
  2981. SERIAL_ECHOLNPAIR(" T1 E", stepperE1.getMilliamps());
  2982. #endif
  2983. #if AXIS_IS_TMC(E2)
  2984. say_M906(forReplay);
  2985. SERIAL_ECHOLNPAIR(" T2 E", stepperE2.getMilliamps());
  2986. #endif
  2987. #if AXIS_IS_TMC(E3)
  2988. say_M906(forReplay);
  2989. SERIAL_ECHOLNPAIR(" T3 E", stepperE3.getMilliamps());
  2990. #endif
  2991. #if AXIS_IS_TMC(E4)
  2992. say_M906(forReplay);
  2993. SERIAL_ECHOLNPAIR(" T4 E", stepperE4.getMilliamps());
  2994. #endif
  2995. #if AXIS_IS_TMC(E5)
  2996. say_M906(forReplay);
  2997. SERIAL_ECHOLNPAIR(" T5 E", stepperE5.getMilliamps());
  2998. #endif
  2999. #if AXIS_IS_TMC(E6)
  3000. say_M906(forReplay);
  3001. SERIAL_ECHOLNPAIR(" T6 E", stepperE6.getMilliamps());
  3002. #endif
  3003. #if AXIS_IS_TMC(E7)
  3004. say_M906(forReplay);
  3005. SERIAL_ECHOLNPAIR(" T7 E", stepperE7.getMilliamps());
  3006. #endif
  3007. SERIAL_EOL();
  3008. /**
  3009. * TMC Hybrid Threshold
  3010. */
  3011. #if ENABLED(HYBRID_THRESHOLD)
  3012. CONFIG_ECHO_HEADING("Hybrid Threshold:");
  3013. #if AXIS_HAS_STEALTHCHOP(X) || AXIS_HAS_STEALTHCHOP(Y) || AXIS_HAS_STEALTHCHOP(Z)
  3014. say_M913(forReplay);
  3015. #if AXIS_HAS_STEALTHCHOP(X)
  3016. SERIAL_ECHOPAIR_P(SP_X_STR, stepperX.get_pwm_thrs());
  3017. #endif
  3018. #if AXIS_HAS_STEALTHCHOP(Y)
  3019. SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY.get_pwm_thrs());
  3020. #endif
  3021. #if AXIS_HAS_STEALTHCHOP(Z)
  3022. SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ.get_pwm_thrs());
  3023. #endif
  3024. SERIAL_EOL();
  3025. #endif
  3026. #if AXIS_HAS_STEALTHCHOP(X2) || AXIS_HAS_STEALTHCHOP(Y2) || AXIS_HAS_STEALTHCHOP(Z2)
  3027. say_M913(forReplay);
  3028. SERIAL_ECHOPGM(" I1");
  3029. #if AXIS_HAS_STEALTHCHOP(X2)
  3030. SERIAL_ECHOPAIR_P(SP_X_STR, stepperX2.get_pwm_thrs());
  3031. #endif
  3032. #if AXIS_HAS_STEALTHCHOP(Y2)
  3033. SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY2.get_pwm_thrs());
  3034. #endif
  3035. #if AXIS_HAS_STEALTHCHOP(Z2)
  3036. SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ2.get_pwm_thrs());
  3037. #endif
  3038. SERIAL_EOL();
  3039. #endif
  3040. #if AXIS_HAS_STEALTHCHOP(Z3)
  3041. say_M913(forReplay);
  3042. SERIAL_ECHOLNPAIR(" I2 Z", stepperZ3.get_pwm_thrs());
  3043. #endif
  3044. #if AXIS_HAS_STEALTHCHOP(Z4)
  3045. say_M913(forReplay);
  3046. SERIAL_ECHOLNPAIR(" I3 Z", stepperZ4.get_pwm_thrs());
  3047. #endif
  3048. #if AXIS_HAS_STEALTHCHOP(E0)
  3049. say_M913(forReplay);
  3050. SERIAL_ECHOLNPAIR(" T0 E", stepperE0.get_pwm_thrs());
  3051. #endif
  3052. #if AXIS_HAS_STEALTHCHOP(E1)
  3053. say_M913(forReplay);
  3054. SERIAL_ECHOLNPAIR(" T1 E", stepperE1.get_pwm_thrs());
  3055. #endif
  3056. #if AXIS_HAS_STEALTHCHOP(E2)
  3057. say_M913(forReplay);
  3058. SERIAL_ECHOLNPAIR(" T2 E", stepperE2.get_pwm_thrs());
  3059. #endif
  3060. #if AXIS_HAS_STEALTHCHOP(E3)
  3061. say_M913(forReplay);
  3062. SERIAL_ECHOLNPAIR(" T3 E", stepperE3.get_pwm_thrs());
  3063. #endif
  3064. #if AXIS_HAS_STEALTHCHOP(E4)
  3065. say_M913(forReplay);
  3066. SERIAL_ECHOLNPAIR(" T4 E", stepperE4.get_pwm_thrs());
  3067. #endif
  3068. #if AXIS_HAS_STEALTHCHOP(E5)
  3069. say_M913(forReplay);
  3070. SERIAL_ECHOLNPAIR(" T5 E", stepperE5.get_pwm_thrs());
  3071. #endif
  3072. #if AXIS_HAS_STEALTHCHOP(E6)
  3073. say_M913(forReplay);
  3074. SERIAL_ECHOLNPAIR(" T6 E", stepperE6.get_pwm_thrs());
  3075. #endif
  3076. #if AXIS_HAS_STEALTHCHOP(E7)
  3077. say_M913(forReplay);
  3078. SERIAL_ECHOLNPAIR(" T7 E", stepperE7.get_pwm_thrs());
  3079. #endif
  3080. SERIAL_EOL();
  3081. #endif // HYBRID_THRESHOLD
  3082. /**
  3083. * TMC Sensorless homing thresholds
  3084. */
  3085. #if USE_SENSORLESS
  3086. CONFIG_ECHO_HEADING("StallGuard threshold:");
  3087. #if X_SENSORLESS || Y_SENSORLESS || Z_SENSORLESS
  3088. CONFIG_ECHO_START();
  3089. say_M914();
  3090. #if X_SENSORLESS
  3091. SERIAL_ECHOPAIR_P(SP_X_STR, stepperX.homing_threshold());
  3092. #endif
  3093. #if Y_SENSORLESS
  3094. SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY.homing_threshold());
  3095. #endif
  3096. #if Z_SENSORLESS
  3097. SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ.homing_threshold());
  3098. #endif
  3099. SERIAL_EOL();
  3100. #endif
  3101. #if X2_SENSORLESS || Y2_SENSORLESS || Z2_SENSORLESS
  3102. CONFIG_ECHO_START();
  3103. say_M914();
  3104. SERIAL_ECHOPGM(" I1");
  3105. #if X2_SENSORLESS
  3106. SERIAL_ECHOPAIR_P(SP_X_STR, stepperX2.homing_threshold());
  3107. #endif
  3108. #if Y2_SENSORLESS
  3109. SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY2.homing_threshold());
  3110. #endif
  3111. #if Z2_SENSORLESS
  3112. SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ2.homing_threshold());
  3113. #endif
  3114. SERIAL_EOL();
  3115. #endif
  3116. #if Z3_SENSORLESS
  3117. CONFIG_ECHO_START();
  3118. say_M914();
  3119. SERIAL_ECHOLNPAIR(" I2 Z", stepperZ3.homing_threshold());
  3120. #endif
  3121. #if Z4_SENSORLESS
  3122. CONFIG_ECHO_START();
  3123. say_M914();
  3124. SERIAL_ECHOLNPAIR(" I3 Z", stepperZ4.homing_threshold());
  3125. #endif
  3126. #endif // USE_SENSORLESS
  3127. /**
  3128. * TMC stepping mode
  3129. */
  3130. #if HAS_STEALTHCHOP
  3131. CONFIG_ECHO_HEADING("Driver stepping mode:");
  3132. #if AXIS_HAS_STEALTHCHOP(X)
  3133. const bool chop_x = stepperX.get_stored_stealthChop_status();
  3134. #else
  3135. constexpr bool chop_x = false;
  3136. #endif
  3137. #if AXIS_HAS_STEALTHCHOP(Y)
  3138. const bool chop_y = stepperY.get_stored_stealthChop_status();
  3139. #else
  3140. constexpr bool chop_y = false;
  3141. #endif
  3142. #if AXIS_HAS_STEALTHCHOP(Z)
  3143. const bool chop_z = stepperZ.get_stored_stealthChop_status();
  3144. #else
  3145. constexpr bool chop_z = false;
  3146. #endif
  3147. if (chop_x || chop_y || chop_z) {
  3148. say_M569(forReplay);
  3149. if (chop_x) SERIAL_ECHOPGM_P(SP_X_STR);
  3150. if (chop_y) SERIAL_ECHOPGM_P(SP_Y_STR);
  3151. if (chop_z) SERIAL_ECHOPGM_P(SP_Z_STR);
  3152. SERIAL_EOL();
  3153. }
  3154. #if AXIS_HAS_STEALTHCHOP(X2)
  3155. const bool chop_x2 = stepperX2.get_stored_stealthChop_status();
  3156. #else
  3157. constexpr bool chop_x2 = false;
  3158. #endif
  3159. #if AXIS_HAS_STEALTHCHOP(Y2)
  3160. const bool chop_y2 = stepperY2.get_stored_stealthChop_status();
  3161. #else
  3162. constexpr bool chop_y2 = false;
  3163. #endif
  3164. #if AXIS_HAS_STEALTHCHOP(Z2)
  3165. const bool chop_z2 = stepperZ2.get_stored_stealthChop_status();
  3166. #else
  3167. constexpr bool chop_z2 = false;
  3168. #endif
  3169. if (chop_x2 || chop_y2 || chop_z2) {
  3170. say_M569(forReplay, PSTR("I1"));
  3171. if (chop_x2) SERIAL_ECHOPGM_P(SP_X_STR);
  3172. if (chop_y2) SERIAL_ECHOPGM_P(SP_Y_STR);
  3173. if (chop_z2) SERIAL_ECHOPGM_P(SP_Z_STR);
  3174. SERIAL_EOL();
  3175. }
  3176. #if AXIS_HAS_STEALTHCHOP(Z3)
  3177. if (stepperZ3.get_stored_stealthChop_status()) { say_M569(forReplay, PSTR("I2 Z"), true); }
  3178. #endif
  3179. #if AXIS_HAS_STEALTHCHOP(Z4)
  3180. if (stepperZ4.get_stored_stealthChop_status()) { say_M569(forReplay, PSTR("I3 Z"), true); }
  3181. #endif
  3182. #if AXIS_HAS_STEALTHCHOP(E0)
  3183. if (stepperE0.get_stored_stealthChop_status()) { say_M569(forReplay, PSTR("T0 E"), true); }
  3184. #endif
  3185. #if AXIS_HAS_STEALTHCHOP(E1)
  3186. if (stepperE1.get_stored_stealthChop_status()) { say_M569(forReplay, PSTR("T1 E"), true); }
  3187. #endif
  3188. #if AXIS_HAS_STEALTHCHOP(E2)
  3189. if (stepperE2.get_stored_stealthChop_status()) { say_M569(forReplay, PSTR("T2 E"), true); }
  3190. #endif
  3191. #if AXIS_HAS_STEALTHCHOP(E3)
  3192. if (stepperE3.get_stored_stealthChop_status()) { say_M569(forReplay, PSTR("T3 E"), true); }
  3193. #endif
  3194. #if AXIS_HAS_STEALTHCHOP(E4)
  3195. if (stepperE4.get_stored_stealthChop_status()) { say_M569(forReplay, PSTR("T4 E"), true); }
  3196. #endif
  3197. #if AXIS_HAS_STEALTHCHOP(E5)
  3198. if (stepperE5.get_stored_stealthChop_status()) { say_M569(forReplay, PSTR("T5 E"), true); }
  3199. #endif
  3200. #if AXIS_HAS_STEALTHCHOP(E6)
  3201. if (stepperE6.get_stored_stealthChop_status()) { say_M569(forReplay, PSTR("T6 E"), true); }
  3202. #endif
  3203. #if AXIS_HAS_STEALTHCHOP(E7)
  3204. if (stepperE7.get_stored_stealthChop_status()) { say_M569(forReplay, PSTR("T7 E"), true); }
  3205. #endif
  3206. #endif // HAS_STEALTHCHOP
  3207. #endif // HAS_TRINAMIC_CONFIG
  3208. /**
  3209. * Linear Advance
  3210. */
  3211. #if ENABLED(LIN_ADVANCE)
  3212. CONFIG_ECHO_HEADING("Linear Advance:");
  3213. #if EXTRUDERS < 2
  3214. CONFIG_ECHO_START();
  3215. SERIAL_ECHOLNPAIR(" M900 K", planner.extruder_advance_K[0]);
  3216. #else
  3217. LOOP_L_N(i, EXTRUDERS) {
  3218. CONFIG_ECHO_START();
  3219. SERIAL_ECHOLNPAIR(" M900 T", int(i), " K", planner.extruder_advance_K[i]);
  3220. }
  3221. #endif
  3222. #endif
  3223. #if HAS_MOTOR_CURRENT_PWM
  3224. CONFIG_ECHO_HEADING("Stepper motor currents:");
  3225. CONFIG_ECHO_START();
  3226. SERIAL_ECHOLNPAIR_P(
  3227. PSTR(" M907 X"), stepper.motor_current_setting[0]
  3228. , SP_Z_STR, stepper.motor_current_setting[1]
  3229. , SP_E_STR, stepper.motor_current_setting[2]
  3230. );
  3231. #endif
  3232. /**
  3233. * Advanced Pause filament load & unload lengths
  3234. */
  3235. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  3236. CONFIG_ECHO_HEADING("Filament load/unload lengths:");
  3237. #if EXTRUDERS == 1
  3238. say_M603(forReplay);
  3239. SERIAL_ECHOLNPAIR("L", LINEAR_UNIT(fc_settings[0].load_length), " U", LINEAR_UNIT(fc_settings[0].unload_length));
  3240. #else
  3241. #define _ECHO_603(N) do{ say_M603(forReplay); SERIAL_ECHOLNPAIR("T" STRINGIFY(N) " L", LINEAR_UNIT(fc_settings[N].load_length), " U", LINEAR_UNIT(fc_settings[N].unload_length)); }while(0);
  3242. REPEAT(EXTRUDERS, _ECHO_603)
  3243. #endif
  3244. #endif
  3245. #if HAS_MULTI_EXTRUDER
  3246. CONFIG_ECHO_HEADING("Tool-changing:");
  3247. CONFIG_ECHO_START();
  3248. M217_report(true);
  3249. #endif
  3250. #if ENABLED(BACKLASH_GCODE)
  3251. CONFIG_ECHO_HEADING("Backlash compensation:");
  3252. CONFIG_ECHO_START();
  3253. SERIAL_ECHOLNPAIR_P(
  3254. PSTR(" M425 F"), backlash.get_correction()
  3255. , SP_X_STR, LINEAR_UNIT(backlash.distance_mm.x)
  3256. , SP_Y_STR, LINEAR_UNIT(backlash.distance_mm.y)
  3257. , SP_Z_STR, LINEAR_UNIT(backlash.distance_mm.z)
  3258. #ifdef BACKLASH_SMOOTHING_MM
  3259. , PSTR(" S"), LINEAR_UNIT(backlash.smoothing_mm)
  3260. #endif
  3261. );
  3262. #endif
  3263. #if HAS_FILAMENT_SENSOR
  3264. CONFIG_ECHO_HEADING("Filament runout sensor:");
  3265. CONFIG_ECHO_START();
  3266. SERIAL_ECHOLNPAIR(
  3267. " M412 S", int(runout.enabled)
  3268. #if HAS_FILAMENT_RUNOUT_DISTANCE
  3269. , " D", LINEAR_UNIT(runout.runout_distance())
  3270. #endif
  3271. );
  3272. #endif
  3273. }
  3274. #endif // !DISABLE_M503
  3275. #pragma pack(pop)