My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Вы не можете выбрать более 25 тем Темы должны начинаться с буквы или цифры, могут содержать дефисы(-) и должны содержать не более 35 символов.

configuration_store.cpp 29KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * configuration_store.cpp
  24. *
  25. * Configuration and EEPROM storage
  26. *
  27. * IMPORTANT: Whenever there are changes made to the variables stored in EEPROM
  28. * in the functions below, also increment the version number. This makes sure that
  29. * the default values are used whenever there is a change to the data, to prevent
  30. * wrong data being written to the variables.
  31. *
  32. * ALSO: Variables in the Store and Retrieve sections must be in the same order.
  33. * If a feature is disabled, some data must still be written that, when read,
  34. * either sets a Sane Default, or results in No Change to the existing value.
  35. *
  36. */
  37. #define EEPROM_VERSION "V26"
  38. // Change EEPROM version if these are changed:
  39. #define EEPROM_OFFSET 100
  40. /**
  41. * V24 EEPROM Layout:
  42. *
  43. * 100 Version (char x4)
  44. * 104 EEPROM Checksum (uint16_t)
  45. *
  46. * 106 M92 XYZE planner.axis_steps_per_mm (float x4)
  47. * 122 M203 XYZE planner.max_feedrate_mm_s (float x4)
  48. * 138 M201 XYZE planner.max_acceleration_mm_per_s2 (uint32_t x4)
  49. * 154 M204 P planner.acceleration (float)
  50. * 158 M204 R planner.retract_acceleration (float)
  51. * 162 M204 T planner.travel_acceleration (float)
  52. * 166 M205 S planner.min_feedrate_mm_s (float)
  53. * 170 M205 T planner.min_travel_feedrate_mm_s (float)
  54. * 174 M205 B planner.min_segment_time (ulong)
  55. * 178 M205 X planner.max_jerk[X_AXIS] (float)
  56. * 182 M205 Y planner.max_jerk[Y_AXIS] (float)
  57. * 186 M205 Z planner.max_jerk[Z_AXIS] (float)
  58. * 190 M205 E planner.max_jerk[E_AXIS] (float)
  59. * 194 M206 XYZ home_offset (float x3)
  60. *
  61. * Mesh bed leveling:
  62. * 206 M420 S status (uint8)
  63. * 207 z_offset (float)
  64. * 211 mesh_num_x (uint8 as set in firmware)
  65. * 212 mesh_num_y (uint8 as set in firmware)
  66. * 213 G29 S3 XYZ z_values[][] (float x9, by default, up to float x 81)
  67. *
  68. * AUTO BED LEVELING
  69. * 249 M851 zprobe_zoffset (float)
  70. *
  71. * DELTA:
  72. * 253 M666 XYZ endstop_adj (float x3)
  73. * 265 M665 R delta_radius (float)
  74. * 269 M665 L delta_diagonal_rod (float)
  75. * 273 M665 S delta_segments_per_second (float)
  76. * 277 M665 A delta_diagonal_rod_trim_tower_1 (float)
  77. * 281 M665 B delta_diagonal_rod_trim_tower_2 (float)
  78. * 285 M665 C delta_diagonal_rod_trim_tower_3 (float)
  79. *
  80. * Z_DUAL_ENDSTOPS:
  81. * 289 M666 Z z_endstop_adj (float)
  82. *
  83. * ULTIPANEL:
  84. * 293 M145 S0 H preheatHotendTemp1 (int)
  85. * 295 M145 S0 B preheatBedTemp1 (int)
  86. * 297 M145 S0 F preheatFanSpeed1 (int)
  87. * 299 M145 S1 H preheatHotendTemp2 (int)
  88. * 301 M145 S1 B preheatBedTemp2 (int)
  89. * 303 M145 S1 F preheatFanSpeed2 (int)
  90. *
  91. * PIDTEMP:
  92. * 305 M301 E0 PIDC Kp[0], Ki[0], Kd[0], Kc[0] (float x4)
  93. * 321 M301 E1 PIDC Kp[1], Ki[1], Kd[1], Kc[1] (float x4)
  94. * 337 M301 E2 PIDC Kp[2], Ki[2], Kd[2], Kc[2] (float x4)
  95. * 353 M301 E3 PIDC Kp[3], Ki[3], Kd[3], Kc[3] (float x4)
  96. * 369 M301 L lpq_len (int)
  97. *
  98. * PIDTEMPBED:
  99. * 371 M304 PID thermalManager.bedKp, thermalManager.bedKi, thermalManager.bedKd (float x3)
  100. *
  101. * DOGLCD:
  102. * 383 M250 C lcd_contrast (int)
  103. *
  104. * FWRETRACT:
  105. * 385 M209 S autoretract_enabled (bool)
  106. * 386 M207 S retract_length (float)
  107. * 390 M207 W retract_length_swap (float)
  108. * 394 M207 F retract_feedrate_mm_s (float)
  109. * 399 M207 Z retract_zlift (float)
  110. * 402 M208 S retract_recover_length (float)
  111. * 406 M208 W retract_recover_length_swap (float)
  112. * 410 M208 F retract_recover_feedrate_mm_s (float)
  113. *
  114. * Volumetric Extrusion:
  115. * 414 M200 D volumetric_enabled (bool)
  116. * 415 M200 T D filament_size (float x4) (T0..3)
  117. *
  118. * 431 This Slot is Available!
  119. *
  120. */
  121. #include "Marlin.h"
  122. #include "language.h"
  123. #include "endstops.h"
  124. #include "planner.h"
  125. #include "temperature.h"
  126. #include "ultralcd.h"
  127. #include "configuration_store.h"
  128. #if ENABLED(MESH_BED_LEVELING)
  129. #include "mesh_bed_leveling.h"
  130. #endif
  131. uint16_t eeprom_checksum;
  132. const char version[4] = EEPROM_VERSION;
  133. void _EEPROM_writeData(int &pos, uint8_t* value, uint8_t size) {
  134. uint8_t c;
  135. while (size--) {
  136. eeprom_write_byte((unsigned char*)pos, *value);
  137. c = eeprom_read_byte((unsigned char*)pos);
  138. if (c != *value) {
  139. SERIAL_ECHO_START;
  140. SERIAL_ECHOLNPGM(MSG_ERR_EEPROM_WRITE);
  141. }
  142. eeprom_checksum += c;
  143. pos++;
  144. value++;
  145. };
  146. }
  147. void _EEPROM_readData(int &pos, uint8_t* value, uint8_t size) {
  148. do {
  149. uint8_t c = eeprom_read_byte((unsigned char*)pos);
  150. *value = c;
  151. eeprom_checksum += c;
  152. pos++;
  153. value++;
  154. } while (--size);
  155. }
  156. /**
  157. * Post-process after Retrieve or Reset
  158. */
  159. void Config_Postprocess() {
  160. // steps per s2 needs to be updated to agree with units per s2
  161. planner.reset_acceleration_rates();
  162. // Make sure delta kinematics are updated before refreshing the
  163. // planner position so the stepper counts will be set correctly.
  164. #if ENABLED(DELTA)
  165. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  166. #endif
  167. // Refresh steps_to_mm with the reciprocal of axis_steps_per_mm
  168. // and init stepper.count[], planner.position[] with current_position
  169. planner.refresh_positioning();
  170. #if ENABLED(PIDTEMP)
  171. thermalManager.updatePID();
  172. #endif
  173. calculate_volumetric_multipliers();
  174. // Software endstops depend on home_offset
  175. LOOP_XYZ(i) update_software_endstops((AxisEnum)i);
  176. }
  177. #if ENABLED(EEPROM_SETTINGS)
  178. #define DUMMY_PID_VALUE 3000.0f
  179. #define EEPROM_START() int eeprom_index = EEPROM_OFFSET
  180. #define EEPROM_SKIP(VAR) eeprom_index += sizeof(VAR)
  181. #define EEPROM_WRITE(VAR) _EEPROM_writeData(eeprom_index, (uint8_t*)&VAR, sizeof(VAR))
  182. #define EEPROM_READ(VAR) _EEPROM_readData(eeprom_index, (uint8_t*)&VAR, sizeof(VAR))
  183. /**
  184. * M500 - Store Configuration
  185. */
  186. void Config_StoreSettings() {
  187. float dummy = 0.0f;
  188. char ver[4] = "000";
  189. EEPROM_START();
  190. EEPROM_WRITE(ver); // invalidate data first
  191. EEPROM_SKIP(eeprom_checksum); // Skip the checksum slot
  192. eeprom_checksum = 0; // clear before first "real data"
  193. EEPROM_WRITE(planner.axis_steps_per_mm);
  194. EEPROM_WRITE(planner.max_feedrate_mm_s);
  195. EEPROM_WRITE(planner.max_acceleration_mm_per_s2);
  196. EEPROM_WRITE(planner.acceleration);
  197. EEPROM_WRITE(planner.retract_acceleration);
  198. EEPROM_WRITE(planner.travel_acceleration);
  199. EEPROM_WRITE(planner.min_feedrate_mm_s);
  200. EEPROM_WRITE(planner.min_travel_feedrate_mm_s);
  201. EEPROM_WRITE(planner.min_segment_time);
  202. EEPROM_WRITE(planner.max_jerk);
  203. EEPROM_WRITE(home_offset);
  204. #if ENABLED(MESH_BED_LEVELING)
  205. // Compile time test that sizeof(mbl.z_values) is as expected
  206. typedef char c_assert[(sizeof(mbl.z_values) == (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS) * sizeof(dummy)) ? 1 : -1];
  207. uint8_t mesh_num_x = MESH_NUM_X_POINTS,
  208. mesh_num_y = MESH_NUM_Y_POINTS,
  209. dummy_uint8 = mbl.status & _BV(MBL_STATUS_HAS_MESH_BIT);
  210. EEPROM_WRITE(dummy_uint8);
  211. EEPROM_WRITE(mbl.z_offset);
  212. EEPROM_WRITE(mesh_num_x);
  213. EEPROM_WRITE(mesh_num_y);
  214. EEPROM_WRITE(mbl.z_values);
  215. #else
  216. // For disabled MBL write a default mesh
  217. uint8_t mesh_num_x = 3,
  218. mesh_num_y = 3,
  219. dummy_uint8 = 0;
  220. dummy = 0.0f;
  221. EEPROM_WRITE(dummy_uint8);
  222. EEPROM_WRITE(dummy);
  223. EEPROM_WRITE(mesh_num_x);
  224. EEPROM_WRITE(mesh_num_y);
  225. for (uint8_t q = 0; q < mesh_num_x * mesh_num_y; q++) EEPROM_WRITE(dummy);
  226. #endif // MESH_BED_LEVELING
  227. #if !HAS_BED_PROBE
  228. float zprobe_zoffset = 0;
  229. #endif
  230. EEPROM_WRITE(zprobe_zoffset);
  231. // 9 floats for DELTA / Z_DUAL_ENDSTOPS
  232. #if ENABLED(DELTA)
  233. EEPROM_WRITE(endstop_adj); // 3 floats
  234. EEPROM_WRITE(delta_radius); // 1 float
  235. EEPROM_WRITE(delta_diagonal_rod); // 1 float
  236. EEPROM_WRITE(delta_segments_per_second); // 1 float
  237. EEPROM_WRITE(delta_diagonal_rod_trim_tower_1); // 1 float
  238. EEPROM_WRITE(delta_diagonal_rod_trim_tower_2); // 1 float
  239. EEPROM_WRITE(delta_diagonal_rod_trim_tower_3); // 1 float
  240. #elif ENABLED(Z_DUAL_ENDSTOPS)
  241. EEPROM_WRITE(z_endstop_adj); // 1 float
  242. dummy = 0.0f;
  243. for (uint8_t q = 8; q--;) EEPROM_WRITE(dummy);
  244. #else
  245. dummy = 0.0f;
  246. for (uint8_t q = 9; q--;) EEPROM_WRITE(dummy);
  247. #endif
  248. #if DISABLED(ULTIPANEL)
  249. int preheatHotendTemp1 = PREHEAT_1_TEMP_HOTEND, preheatBedTemp1 = PREHEAT_1_TEMP_BED, preheatFanSpeed1 = PREHEAT_1_FAN_SPEED,
  250. preheatHotendTemp2 = PREHEAT_2_TEMP_HOTEND, preheatBedTemp2 = PREHEAT_2_TEMP_BED, preheatFanSpeed2 = PREHEAT_2_FAN_SPEED;
  251. #endif // !ULTIPANEL
  252. EEPROM_WRITE(preheatHotendTemp1);
  253. EEPROM_WRITE(preheatBedTemp1);
  254. EEPROM_WRITE(preheatFanSpeed1);
  255. EEPROM_WRITE(preheatHotendTemp2);
  256. EEPROM_WRITE(preheatBedTemp2);
  257. EEPROM_WRITE(preheatFanSpeed2);
  258. for (uint8_t e = 0; e < MAX_EXTRUDERS; e++) {
  259. #if ENABLED(PIDTEMP)
  260. if (e < HOTENDS) {
  261. EEPROM_WRITE(PID_PARAM(Kp, e));
  262. EEPROM_WRITE(PID_PARAM(Ki, e));
  263. EEPROM_WRITE(PID_PARAM(Kd, e));
  264. #if ENABLED(PID_EXTRUSION_SCALING)
  265. EEPROM_WRITE(PID_PARAM(Kc, e));
  266. #else
  267. dummy = 1.0f; // 1.0 = default kc
  268. EEPROM_WRITE(dummy);
  269. #endif
  270. }
  271. else
  272. #endif // !PIDTEMP
  273. {
  274. dummy = DUMMY_PID_VALUE; // When read, will not change the existing value
  275. EEPROM_WRITE(dummy); // Kp
  276. dummy = 0.0f;
  277. for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy); // Ki, Kd, Kc
  278. }
  279. } // Hotends Loop
  280. #if DISABLED(PID_EXTRUSION_SCALING)
  281. int lpq_len = 20;
  282. #endif
  283. EEPROM_WRITE(lpq_len);
  284. #if DISABLED(PIDTEMPBED)
  285. dummy = DUMMY_PID_VALUE;
  286. for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy);
  287. #else
  288. EEPROM_WRITE(thermalManager.bedKp);
  289. EEPROM_WRITE(thermalManager.bedKi);
  290. EEPROM_WRITE(thermalManager.bedKd);
  291. #endif
  292. #if !HAS_LCD_CONTRAST
  293. const int lcd_contrast = 32;
  294. #endif
  295. EEPROM_WRITE(lcd_contrast);
  296. #if ENABLED(FWRETRACT)
  297. EEPROM_WRITE(autoretract_enabled);
  298. EEPROM_WRITE(retract_length);
  299. #if EXTRUDERS > 1
  300. EEPROM_WRITE(retract_length_swap);
  301. #else
  302. dummy = 0.0f;
  303. EEPROM_WRITE(dummy);
  304. #endif
  305. EEPROM_WRITE(retract_feedrate_mm_s);
  306. EEPROM_WRITE(retract_zlift);
  307. EEPROM_WRITE(retract_recover_length);
  308. #if EXTRUDERS > 1
  309. EEPROM_WRITE(retract_recover_length_swap);
  310. #else
  311. dummy = 0.0f;
  312. EEPROM_WRITE(dummy);
  313. #endif
  314. EEPROM_WRITE(retract_recover_feedrate_mm_s);
  315. #endif // FWRETRACT
  316. EEPROM_WRITE(volumetric_enabled);
  317. // Save filament sizes
  318. for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
  319. if (q < COUNT(filament_size)) dummy = filament_size[q];
  320. EEPROM_WRITE(dummy);
  321. }
  322. uint16_t final_checksum = eeprom_checksum,
  323. eeprom_size = eeprom_index;
  324. eeprom_index = EEPROM_OFFSET;
  325. EEPROM_WRITE(version);
  326. EEPROM_WRITE(final_checksum);
  327. // Report storage size
  328. SERIAL_ECHO_START;
  329. SERIAL_ECHOPAIR("Settings Stored (", eeprom_size);
  330. SERIAL_ECHOLNPGM(" bytes)");
  331. }
  332. /**
  333. * M501 - Retrieve Configuration
  334. */
  335. void Config_RetrieveSettings() {
  336. EEPROM_START();
  337. char stored_ver[4];
  338. EEPROM_READ(stored_ver);
  339. uint16_t stored_checksum;
  340. EEPROM_READ(stored_checksum);
  341. // SERIAL_ECHOPAIR("Version: [", ver);
  342. // SERIAL_ECHOPAIR("] Stored version: [", stored_ver);
  343. // SERIAL_CHAR(']');
  344. // SERIAL_EOL;
  345. if (strncmp(version, stored_ver, 3) != 0) {
  346. Config_ResetDefault();
  347. }
  348. else {
  349. float dummy = 0;
  350. eeprom_checksum = 0; // clear before reading first "real data"
  351. // version number match
  352. EEPROM_READ(planner.axis_steps_per_mm);
  353. EEPROM_READ(planner.max_feedrate_mm_s);
  354. EEPROM_READ(planner.max_acceleration_mm_per_s2);
  355. EEPROM_READ(planner.acceleration);
  356. EEPROM_READ(planner.retract_acceleration);
  357. EEPROM_READ(planner.travel_acceleration);
  358. EEPROM_READ(planner.min_feedrate_mm_s);
  359. EEPROM_READ(planner.min_travel_feedrate_mm_s);
  360. EEPROM_READ(planner.min_segment_time);
  361. EEPROM_READ(planner.max_jerk);
  362. EEPROM_READ(home_offset);
  363. uint8_t dummy_uint8 = 0, mesh_num_x = 0, mesh_num_y = 0;
  364. EEPROM_READ(dummy_uint8);
  365. EEPROM_READ(dummy);
  366. EEPROM_READ(mesh_num_x);
  367. EEPROM_READ(mesh_num_y);
  368. #if ENABLED(MESH_BED_LEVELING)
  369. mbl.status = dummy_uint8;
  370. mbl.z_offset = dummy;
  371. if (mesh_num_x == MESH_NUM_X_POINTS && mesh_num_y == MESH_NUM_Y_POINTS) {
  372. // EEPROM data fits the current mesh
  373. EEPROM_READ(mbl.z_values);
  374. }
  375. else {
  376. // EEPROM data is stale
  377. mbl.reset();
  378. for (uint8_t q = 0; q < mesh_num_x * mesh_num_y; q++) EEPROM_READ(dummy);
  379. }
  380. #else
  381. // MBL is disabled - skip the stored data
  382. for (uint8_t q = 0; q < mesh_num_x * mesh_num_y; q++) EEPROM_READ(dummy);
  383. #endif // MESH_BED_LEVELING
  384. #if !HAS_BED_PROBE
  385. float zprobe_zoffset = 0;
  386. #endif
  387. EEPROM_READ(zprobe_zoffset);
  388. #if ENABLED(DELTA)
  389. EEPROM_READ(endstop_adj); // 3 floats
  390. EEPROM_READ(delta_radius); // 1 float
  391. EEPROM_READ(delta_diagonal_rod); // 1 float
  392. EEPROM_READ(delta_segments_per_second); // 1 float
  393. EEPROM_READ(delta_diagonal_rod_trim_tower_1); // 1 float
  394. EEPROM_READ(delta_diagonal_rod_trim_tower_2); // 1 float
  395. EEPROM_READ(delta_diagonal_rod_trim_tower_3); // 1 float
  396. #elif ENABLED(Z_DUAL_ENDSTOPS)
  397. EEPROM_READ(z_endstop_adj);
  398. dummy = 0.0f;
  399. for (uint8_t q=8; q--;) EEPROM_READ(dummy);
  400. #else
  401. dummy = 0.0f;
  402. for (uint8_t q=9; q--;) EEPROM_READ(dummy);
  403. #endif
  404. #if DISABLED(ULTIPANEL)
  405. int preheatHotendTemp1, preheatBedTemp1, preheatFanSpeed1,
  406. preheatHotendTemp2, preheatBedTemp2, preheatFanSpeed2;
  407. #endif
  408. EEPROM_READ(preheatHotendTemp1);
  409. EEPROM_READ(preheatBedTemp1);
  410. EEPROM_READ(preheatFanSpeed1);
  411. EEPROM_READ(preheatHotendTemp2);
  412. EEPROM_READ(preheatBedTemp2);
  413. EEPROM_READ(preheatFanSpeed2);
  414. #if ENABLED(PIDTEMP)
  415. for (uint8_t e = 0; e < MAX_EXTRUDERS; e++) {
  416. EEPROM_READ(dummy); // Kp
  417. if (e < HOTENDS && dummy != DUMMY_PID_VALUE) {
  418. // do not need to scale PID values as the values in EEPROM are already scaled
  419. PID_PARAM(Kp, e) = dummy;
  420. EEPROM_READ(PID_PARAM(Ki, e));
  421. EEPROM_READ(PID_PARAM(Kd, e));
  422. #if ENABLED(PID_EXTRUSION_SCALING)
  423. EEPROM_READ(PID_PARAM(Kc, e));
  424. #else
  425. EEPROM_READ(dummy);
  426. #endif
  427. }
  428. else {
  429. for (uint8_t q=3; q--;) EEPROM_READ(dummy); // Ki, Kd, Kc
  430. }
  431. }
  432. #else // !PIDTEMP
  433. // 4 x 4 = 16 slots for PID parameters
  434. for (uint8_t q = MAX_EXTRUDERS * 4; q--;) EEPROM_READ(dummy); // Kp, Ki, Kd, Kc
  435. #endif // !PIDTEMP
  436. #if DISABLED(PID_EXTRUSION_SCALING)
  437. int lpq_len;
  438. #endif
  439. EEPROM_READ(lpq_len);
  440. #if ENABLED(PIDTEMPBED)
  441. EEPROM_READ(dummy); // bedKp
  442. if (dummy != DUMMY_PID_VALUE) {
  443. thermalManager.bedKp = dummy;
  444. EEPROM_READ(thermalManager.bedKi);
  445. EEPROM_READ(thermalManager.bedKd);
  446. }
  447. #else
  448. for (uint8_t q=3; q--;) EEPROM_READ(dummy); // bedKp, bedKi, bedKd
  449. #endif
  450. #if !HAS_LCD_CONTRAST
  451. int lcd_contrast;
  452. #endif
  453. EEPROM_READ(lcd_contrast);
  454. #if ENABLED(FWRETRACT)
  455. EEPROM_READ(autoretract_enabled);
  456. EEPROM_READ(retract_length);
  457. #if EXTRUDERS > 1
  458. EEPROM_READ(retract_length_swap);
  459. #else
  460. EEPROM_READ(dummy);
  461. #endif
  462. EEPROM_READ(retract_feedrate_mm_s);
  463. EEPROM_READ(retract_zlift);
  464. EEPROM_READ(retract_recover_length);
  465. #if EXTRUDERS > 1
  466. EEPROM_READ(retract_recover_length_swap);
  467. #else
  468. EEPROM_READ(dummy);
  469. #endif
  470. EEPROM_READ(retract_recover_feedrate_mm_s);
  471. #endif // FWRETRACT
  472. EEPROM_READ(volumetric_enabled);
  473. for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
  474. EEPROM_READ(dummy);
  475. if (q < COUNT(filament_size)) filament_size[q] = dummy;
  476. }
  477. if (eeprom_checksum == stored_checksum) {
  478. Config_Postprocess();
  479. SERIAL_ECHO_START;
  480. SERIAL_ECHO(version);
  481. SERIAL_ECHOPAIR(" stored settings retrieved (", eeprom_index);
  482. SERIAL_ECHOLNPGM(" bytes)");
  483. }
  484. else {
  485. SERIAL_ERROR_START;
  486. SERIAL_ERRORLNPGM("EEPROM checksum mismatch");
  487. Config_ResetDefault();
  488. }
  489. }
  490. #if ENABLED(EEPROM_CHITCHAT)
  491. Config_PrintSettings();
  492. #endif
  493. }
  494. #endif // EEPROM_SETTINGS
  495. /**
  496. * M502 - Reset Configuration
  497. */
  498. void Config_ResetDefault() {
  499. float tmp1[] = DEFAULT_AXIS_STEPS_PER_UNIT;
  500. float tmp2[] = DEFAULT_MAX_FEEDRATE;
  501. long tmp3[] = DEFAULT_MAX_ACCELERATION;
  502. LOOP_XYZE(i) {
  503. planner.axis_steps_per_mm[i] = tmp1[i];
  504. planner.max_feedrate_mm_s[i] = tmp2[i];
  505. planner.max_acceleration_mm_per_s2[i] = tmp3[i];
  506. }
  507. planner.acceleration = DEFAULT_ACCELERATION;
  508. planner.retract_acceleration = DEFAULT_RETRACT_ACCELERATION;
  509. planner.travel_acceleration = DEFAULT_TRAVEL_ACCELERATION;
  510. planner.min_feedrate_mm_s = DEFAULT_MINIMUMFEEDRATE;
  511. planner.min_segment_time = DEFAULT_MINSEGMENTTIME;
  512. planner.min_travel_feedrate_mm_s = DEFAULT_MINTRAVELFEEDRATE;
  513. planner.max_jerk[X_AXIS] = DEFAULT_XJERK;
  514. planner.max_jerk[Y_AXIS] = DEFAULT_YJERK;
  515. planner.max_jerk[Z_AXIS] = DEFAULT_ZJERK;
  516. planner.max_jerk[E_AXIS] = DEFAULT_EJERK;
  517. home_offset[X_AXIS] = home_offset[Y_AXIS] = home_offset[Z_AXIS] = 0;
  518. #if ENABLED(MESH_BED_LEVELING)
  519. mbl.reset();
  520. #endif
  521. #if HAS_BED_PROBE
  522. zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  523. #endif
  524. #if ENABLED(DELTA)
  525. const float adj[ABC] = DELTA_ENDSTOP_ADJ;
  526. endstop_adj[A_AXIS] = adj[A_AXIS];
  527. endstop_adj[B_AXIS] = adj[B_AXIS];
  528. endstop_adj[C_AXIS] = adj[C_AXIS];
  529. delta_radius = DELTA_RADIUS;
  530. delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  531. delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  532. delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1;
  533. delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2;
  534. delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3;
  535. #elif ENABLED(Z_DUAL_ENDSTOPS)
  536. z_endstop_adj = 0;
  537. #endif
  538. #if ENABLED(ULTIPANEL)
  539. preheatHotendTemp1 = PREHEAT_1_TEMP_HOTEND;
  540. preheatBedTemp1 = PREHEAT_1_TEMP_BED;
  541. preheatFanSpeed1 = PREHEAT_1_FAN_SPEED;
  542. preheatHotendTemp2 = PREHEAT_2_TEMP_HOTEND;
  543. preheatBedTemp2 = PREHEAT_2_TEMP_BED;
  544. preheatFanSpeed2 = PREHEAT_2_FAN_SPEED;
  545. #endif
  546. #if HAS_LCD_CONTRAST
  547. lcd_contrast = DEFAULT_LCD_CONTRAST;
  548. #endif
  549. #if ENABLED(PIDTEMP)
  550. #if ENABLED(PID_PARAMS_PER_HOTEND) && HOTENDS > 1
  551. HOTEND_LOOP()
  552. #else
  553. int e = 0; UNUSED(e); // only need to write once
  554. #endif
  555. {
  556. PID_PARAM(Kp, e) = DEFAULT_Kp;
  557. PID_PARAM(Ki, e) = scalePID_i(DEFAULT_Ki);
  558. PID_PARAM(Kd, e) = scalePID_d(DEFAULT_Kd);
  559. #if ENABLED(PID_EXTRUSION_SCALING)
  560. PID_PARAM(Kc, e) = DEFAULT_Kc;
  561. #endif
  562. }
  563. #if ENABLED(PID_EXTRUSION_SCALING)
  564. lpq_len = 20; // default last-position-queue size
  565. #endif
  566. #endif // PIDTEMP
  567. #if ENABLED(PIDTEMPBED)
  568. thermalManager.bedKp = DEFAULT_bedKp;
  569. thermalManager.bedKi = scalePID_i(DEFAULT_bedKi);
  570. thermalManager.bedKd = scalePID_d(DEFAULT_bedKd);
  571. #endif
  572. #if ENABLED(FWRETRACT)
  573. autoretract_enabled = false;
  574. retract_length = RETRACT_LENGTH;
  575. #if EXTRUDERS > 1
  576. retract_length_swap = RETRACT_LENGTH_SWAP;
  577. #endif
  578. retract_feedrate_mm_s = RETRACT_FEEDRATE;
  579. retract_zlift = RETRACT_ZLIFT;
  580. retract_recover_length = RETRACT_RECOVER_LENGTH;
  581. #if EXTRUDERS > 1
  582. retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  583. #endif
  584. retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE;
  585. #endif
  586. volumetric_enabled = false;
  587. for (uint8_t q = 0; q < COUNT(filament_size); q++)
  588. filament_size[q] = DEFAULT_NOMINAL_FILAMENT_DIA;
  589. endstops.enable_globally(
  590. #if ENABLED(ENDSTOPS_ALWAYS_ON_DEFAULT)
  591. (true)
  592. #else
  593. (false)
  594. #endif
  595. );
  596. Config_Postprocess();
  597. SERIAL_ECHO_START;
  598. SERIAL_ECHOLNPGM("Hardcoded Default Settings Loaded");
  599. }
  600. #if DISABLED(DISABLE_M503)
  601. #define CONFIG_ECHO_START do{ if (!forReplay) SERIAL_ECHO_START; }while(0)
  602. /**
  603. * M503 - Print Configuration
  604. */
  605. void Config_PrintSettings(bool forReplay) {
  606. // Always have this function, even with EEPROM_SETTINGS disabled, the current values will be shown
  607. CONFIG_ECHO_START;
  608. if (!forReplay) {
  609. SERIAL_ECHOLNPGM("Steps per unit:");
  610. CONFIG_ECHO_START;
  611. }
  612. SERIAL_ECHOPAIR(" M92 X", planner.axis_steps_per_mm[X_AXIS]);
  613. SERIAL_ECHOPAIR(" Y", planner.axis_steps_per_mm[Y_AXIS]);
  614. SERIAL_ECHOPAIR(" Z", planner.axis_steps_per_mm[Z_AXIS]);
  615. SERIAL_ECHOPAIR(" E", planner.axis_steps_per_mm[E_AXIS]);
  616. SERIAL_EOL;
  617. CONFIG_ECHO_START;
  618. if (!forReplay) {
  619. SERIAL_ECHOLNPGM("Maximum feedrates (mm/s):");
  620. CONFIG_ECHO_START;
  621. }
  622. SERIAL_ECHOPAIR(" M203 X", planner.max_feedrate_mm_s[X_AXIS]);
  623. SERIAL_ECHOPAIR(" Y", planner.max_feedrate_mm_s[Y_AXIS]);
  624. SERIAL_ECHOPAIR(" Z", planner.max_feedrate_mm_s[Z_AXIS]);
  625. SERIAL_ECHOPAIR(" E", planner.max_feedrate_mm_s[E_AXIS]);
  626. SERIAL_EOL;
  627. CONFIG_ECHO_START;
  628. if (!forReplay) {
  629. SERIAL_ECHOLNPGM("Maximum Acceleration (mm/s2):");
  630. CONFIG_ECHO_START;
  631. }
  632. SERIAL_ECHOPAIR(" M201 X", planner.max_acceleration_mm_per_s2[X_AXIS]);
  633. SERIAL_ECHOPAIR(" Y", planner.max_acceleration_mm_per_s2[Y_AXIS]);
  634. SERIAL_ECHOPAIR(" Z", planner.max_acceleration_mm_per_s2[Z_AXIS]);
  635. SERIAL_ECHOPAIR(" E", planner.max_acceleration_mm_per_s2[E_AXIS]);
  636. SERIAL_EOL;
  637. CONFIG_ECHO_START;
  638. if (!forReplay) {
  639. SERIAL_ECHOLNPGM("Accelerations: P=printing, R=retract and T=travel");
  640. CONFIG_ECHO_START;
  641. }
  642. SERIAL_ECHOPAIR(" M204 P", planner.acceleration);
  643. SERIAL_ECHOPAIR(" R", planner.retract_acceleration);
  644. SERIAL_ECHOPAIR(" T", planner.travel_acceleration);
  645. SERIAL_EOL;
  646. CONFIG_ECHO_START;
  647. if (!forReplay) {
  648. SERIAL_ECHOLNPGM("Advanced variables: S=Min feedrate (mm/s), T=Min travel feedrate (mm/s), B=minimum segment time (ms), X=maximum XY jerk (mm/s), Z=maximum Z jerk (mm/s), E=maximum E jerk (mm/s)");
  649. CONFIG_ECHO_START;
  650. }
  651. SERIAL_ECHOPAIR(" M205 S", planner.min_feedrate_mm_s);
  652. SERIAL_ECHOPAIR(" T", planner.min_travel_feedrate_mm_s);
  653. SERIAL_ECHOPAIR(" B", planner.min_segment_time);
  654. SERIAL_ECHOPAIR(" X", planner.max_jerk[X_AXIS]);
  655. SERIAL_ECHOPAIR(" Y", planner.max_jerk[Y_AXIS]);
  656. SERIAL_ECHOPAIR(" Z", planner.max_jerk[Z_AXIS]);
  657. SERIAL_ECHOPAIR(" E", planner.max_jerk[E_AXIS]);
  658. SERIAL_EOL;
  659. CONFIG_ECHO_START;
  660. if (!forReplay) {
  661. SERIAL_ECHOLNPGM("Home offset (mm)");
  662. CONFIG_ECHO_START;
  663. }
  664. SERIAL_ECHOPAIR(" M206 X", home_offset[X_AXIS]);
  665. SERIAL_ECHOPAIR(" Y", home_offset[Y_AXIS]);
  666. SERIAL_ECHOPAIR(" Z", home_offset[Z_AXIS]);
  667. SERIAL_EOL;
  668. #if ENABLED(MESH_BED_LEVELING)
  669. if (!forReplay) {
  670. SERIAL_ECHOLNPGM("Mesh bed leveling:");
  671. CONFIG_ECHO_START;
  672. }
  673. SERIAL_ECHOPAIR(" M420 S", mbl.has_mesh() ? 1 : 0);
  674. SERIAL_ECHOPAIR(" X", MESH_NUM_X_POINTS);
  675. SERIAL_ECHOPAIR(" Y", MESH_NUM_Y_POINTS);
  676. SERIAL_EOL;
  677. for (uint8_t py = 1; py <= MESH_NUM_Y_POINTS; py++) {
  678. for (uint8_t px = 1; px <= MESH_NUM_X_POINTS; px++) {
  679. CONFIG_ECHO_START;
  680. SERIAL_ECHOPAIR(" G29 S3 X", px);
  681. SERIAL_ECHOPAIR(" Y", py);
  682. SERIAL_ECHOPGM(" Z");
  683. SERIAL_PROTOCOL_F(mbl.z_values[py-1][px-1], 5);
  684. SERIAL_EOL;
  685. }
  686. }
  687. #endif
  688. #if ENABLED(DELTA)
  689. CONFIG_ECHO_START;
  690. if (!forReplay) {
  691. SERIAL_ECHOLNPGM("Endstop adjustment (mm):");
  692. CONFIG_ECHO_START;
  693. }
  694. SERIAL_ECHOPAIR(" M666 X", endstop_adj[X_AXIS]);
  695. SERIAL_ECHOPAIR(" Y", endstop_adj[Y_AXIS]);
  696. SERIAL_ECHOPAIR(" Z", endstop_adj[Z_AXIS]);
  697. SERIAL_EOL;
  698. CONFIG_ECHO_START;
  699. if (!forReplay) {
  700. SERIAL_ECHOLNPGM("Delta settings: L=diagonal_rod, R=radius, S=segments_per_second, ABC=diagonal_rod_trim_tower_[123]");
  701. CONFIG_ECHO_START;
  702. }
  703. SERIAL_ECHOPAIR(" M665 L", delta_diagonal_rod);
  704. SERIAL_ECHOPAIR(" R", delta_radius);
  705. SERIAL_ECHOPAIR(" S", delta_segments_per_second);
  706. SERIAL_ECHOPAIR(" A", delta_diagonal_rod_trim_tower_1);
  707. SERIAL_ECHOPAIR(" B", delta_diagonal_rod_trim_tower_2);
  708. SERIAL_ECHOPAIR(" C", delta_diagonal_rod_trim_tower_3);
  709. SERIAL_EOL;
  710. #elif ENABLED(Z_DUAL_ENDSTOPS)
  711. CONFIG_ECHO_START;
  712. if (!forReplay) {
  713. SERIAL_ECHOLNPGM("Z2 Endstop adjustment (mm):");
  714. CONFIG_ECHO_START;
  715. }
  716. SERIAL_ECHOPAIR(" M666 Z", z_endstop_adj);
  717. SERIAL_EOL;
  718. #endif // DELTA
  719. #if ENABLED(ULTIPANEL)
  720. CONFIG_ECHO_START;
  721. if (!forReplay) {
  722. SERIAL_ECHOLNPGM("Material heatup parameters:");
  723. CONFIG_ECHO_START;
  724. }
  725. SERIAL_ECHOPAIR(" M145 S0 H", preheatHotendTemp1);
  726. SERIAL_ECHOPAIR(" B", preheatBedTemp1);
  727. SERIAL_ECHOPAIR(" F", preheatFanSpeed1);
  728. SERIAL_EOL;
  729. CONFIG_ECHO_START;
  730. SERIAL_ECHOPAIR(" M145 S1 H", preheatHotendTemp2);
  731. SERIAL_ECHOPAIR(" B", preheatBedTemp2);
  732. SERIAL_ECHOPAIR(" F", preheatFanSpeed2);
  733. SERIAL_EOL;
  734. #endif // ULTIPANEL
  735. #if HAS_PID_HEATING
  736. CONFIG_ECHO_START;
  737. if (!forReplay) {
  738. SERIAL_ECHOLNPGM("PID settings:");
  739. }
  740. #if ENABLED(PIDTEMP)
  741. #if HOTENDS > 1
  742. if (forReplay) {
  743. HOTEND_LOOP() {
  744. CONFIG_ECHO_START;
  745. SERIAL_ECHOPAIR(" M301 E", e);
  746. SERIAL_ECHOPAIR(" P", PID_PARAM(Kp, e));
  747. SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, e)));
  748. SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, e)));
  749. #if ENABLED(PID_EXTRUSION_SCALING)
  750. SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, e));
  751. if (e == 0) SERIAL_ECHOPAIR(" L", lpq_len);
  752. #endif
  753. SERIAL_EOL;
  754. }
  755. }
  756. else
  757. #endif // HOTENDS > 1
  758. // !forReplay || HOTENDS == 1
  759. {
  760. CONFIG_ECHO_START;
  761. SERIAL_ECHOPAIR(" M301 P", PID_PARAM(Kp, 0)); // for compatibility with hosts, only echo values for E0
  762. SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, 0)));
  763. SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, 0)));
  764. #if ENABLED(PID_EXTRUSION_SCALING)
  765. SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, 0));
  766. SERIAL_ECHOPAIR(" L", lpq_len);
  767. #endif
  768. SERIAL_EOL;
  769. }
  770. #endif // PIDTEMP
  771. #if ENABLED(PIDTEMPBED)
  772. CONFIG_ECHO_START;
  773. SERIAL_ECHOPAIR(" M304 P", thermalManager.bedKp);
  774. SERIAL_ECHOPAIR(" I", unscalePID_i(thermalManager.bedKi));
  775. SERIAL_ECHOPAIR(" D", unscalePID_d(thermalManager.bedKd));
  776. SERIAL_EOL;
  777. #endif
  778. #endif // PIDTEMP || PIDTEMPBED
  779. #if HAS_LCD_CONTRAST
  780. CONFIG_ECHO_START;
  781. if (!forReplay) {
  782. SERIAL_ECHOLNPGM("LCD Contrast:");
  783. CONFIG_ECHO_START;
  784. }
  785. SERIAL_ECHOPAIR(" M250 C", lcd_contrast);
  786. SERIAL_EOL;
  787. #endif
  788. #if ENABLED(FWRETRACT)
  789. CONFIG_ECHO_START;
  790. if (!forReplay) {
  791. SERIAL_ECHOLNPGM("Retract: S=Length (mm) F:Speed (mm/m) Z: ZLift (mm)");
  792. CONFIG_ECHO_START;
  793. }
  794. SERIAL_ECHOPAIR(" M207 S", retract_length);
  795. #if EXTRUDERS > 1
  796. SERIAL_ECHOPAIR(" W", retract_length_swap);
  797. #endif
  798. SERIAL_ECHOPAIR(" F", MMS_TO_MMM(retract_feedrate_mm_s));
  799. SERIAL_ECHOPAIR(" Z", retract_zlift);
  800. SERIAL_EOL;
  801. CONFIG_ECHO_START;
  802. if (!forReplay) {
  803. SERIAL_ECHOLNPGM("Recover: S=Extra length (mm) F:Speed (mm/m)");
  804. CONFIG_ECHO_START;
  805. }
  806. SERIAL_ECHOPAIR(" M208 S", retract_recover_length);
  807. #if EXTRUDERS > 1
  808. SERIAL_ECHOPAIR(" W", retract_recover_length_swap);
  809. #endif
  810. SERIAL_ECHOPAIR(" F", MMS_TO_MMM(retract_recover_feedrate_mm_s));
  811. SERIAL_EOL;
  812. CONFIG_ECHO_START;
  813. if (!forReplay) {
  814. SERIAL_ECHOLNPGM("Auto-Retract: S=0 to disable, 1 to interpret extrude-only moves as retracts or recoveries");
  815. CONFIG_ECHO_START;
  816. }
  817. SERIAL_ECHOPAIR(" M209 S", autoretract_enabled ? 1 : 0);
  818. SERIAL_EOL;
  819. #endif // FWRETRACT
  820. /**
  821. * Volumetric extrusion M200
  822. */
  823. if (!forReplay) {
  824. CONFIG_ECHO_START;
  825. SERIAL_ECHOPGM("Filament settings:");
  826. if (volumetric_enabled)
  827. SERIAL_EOL;
  828. else
  829. SERIAL_ECHOLNPGM(" Disabled");
  830. }
  831. CONFIG_ECHO_START;
  832. SERIAL_ECHOPAIR(" M200 D", filament_size[0]);
  833. SERIAL_EOL;
  834. #if EXTRUDERS > 1
  835. CONFIG_ECHO_START;
  836. SERIAL_ECHOPAIR(" M200 T1 D", filament_size[1]);
  837. SERIAL_EOL;
  838. #if EXTRUDERS > 2
  839. CONFIG_ECHO_START;
  840. SERIAL_ECHOPAIR(" M200 T2 D", filament_size[2]);
  841. SERIAL_EOL;
  842. #if EXTRUDERS > 3
  843. CONFIG_ECHO_START;
  844. SERIAL_ECHOPAIR(" M200 T3 D", filament_size[3]);
  845. SERIAL_EOL;
  846. #endif
  847. #endif
  848. #endif
  849. if (!volumetric_enabled) {
  850. CONFIG_ECHO_START;
  851. SERIAL_ECHOLNPGM(" M200 D0");
  852. }
  853. /**
  854. * Auto Bed Leveling
  855. */
  856. #if HAS_BED_PROBE
  857. if (!forReplay) {
  858. CONFIG_ECHO_START;
  859. SERIAL_ECHOLNPGM("Z-Probe Offset (mm):");
  860. }
  861. CONFIG_ECHO_START;
  862. SERIAL_ECHOPAIR(" M851 Z", zprobe_zoffset);
  863. SERIAL_EOL;
  864. #endif
  865. }
  866. #endif // !DISABLE_M503