My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

G26.cpp 31KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (c) 2019 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * Marlin Firmware -- G26 - Mesh Validation Tool
  24. */
  25. #include "../../inc/MarlinConfig.h"
  26. #if ENABLED(G26_MESH_VALIDATION)
  27. #define G26_OK false
  28. #define G26_ERR true
  29. #include "../../gcode/gcode.h"
  30. #include "../../feature/bedlevel/bedlevel.h"
  31. #include "../../MarlinCore.h"
  32. #include "../../module/planner.h"
  33. #include "../../module/stepper.h"
  34. #include "../../module/motion.h"
  35. #include "../../module/tool_change.h"
  36. #include "../../module/temperature.h"
  37. #include "../../lcd/ultralcd.h"
  38. #define EXTRUSION_MULTIPLIER 1.0
  39. #define RETRACTION_MULTIPLIER 1.0
  40. #define PRIME_LENGTH 10.0
  41. #define OOZE_AMOUNT 0.3
  42. #define INTERSECTION_CIRCLE_RADIUS 5
  43. #define CROSSHAIRS_SIZE 3
  44. #ifndef G26_XY_FEEDRATE
  45. #define G26_XY_FEEDRATE (PLANNER_XY_FEEDRATE() / 3.0)
  46. #endif
  47. #if CROSSHAIRS_SIZE >= INTERSECTION_CIRCLE_RADIUS
  48. #error "CROSSHAIRS_SIZE must be less than INTERSECTION_CIRCLE_RADIUS."
  49. #endif
  50. #define G26_OK false
  51. #define G26_ERR true
  52. #if ENABLED(ARC_SUPPORT)
  53. void plan_arc(const xyze_pos_t &cart, const ab_float_t &offset, const uint8_t clockwise);
  54. #endif
  55. /**
  56. * G26 Mesh Validation Tool
  57. *
  58. * G26 is a Mesh Validation Tool intended to provide support for the Marlin Unified Bed Leveling System.
  59. * In order to fully utilize and benefit from the Marlin Unified Bed Leveling System an accurate Mesh must
  60. * be defined. G29 is designed to allow the user to quickly validate the correctness of her Mesh. It will
  61. * first heat the bed and nozzle. It will then print lines and circles along the Mesh Cell boundaries and
  62. * the intersections of those lines (respectively).
  63. *
  64. * This action allows the user to immediately see where the Mesh is properly defined and where it needs to
  65. * be edited. The command will generate the Mesh lines closest to the nozzle's starting position. Alternatively
  66. * the user can specify the X and Y position of interest with command parameters. This allows the user to
  67. * focus on a particular area of the Mesh where attention is needed.
  68. *
  69. * B # Bed Set the Bed Temperature. If not specified, a default of 60 C. will be assumed.
  70. *
  71. * C Current When searching for Mesh Intersection points to draw, use the current nozzle location
  72. * as the base for any distance comparison.
  73. *
  74. * D Disable Disable the Unified Bed Leveling System. In the normal case the user is invoking this
  75. * command to see how well a Mesh as been adjusted to match a print surface. In order to do
  76. * this the Unified Bed Leveling System is turned on by the G26 command. The D parameter
  77. * alters the command's normal behavior and disables the Unified Bed Leveling System even if
  78. * it is on.
  79. *
  80. * H # Hotend Set the Nozzle Temperature. If not specified, a default of 205 C. will be assumed.
  81. *
  82. * F # Filament Used to specify the diameter of the filament being used. If not specified
  83. * 1.75mm filament is assumed. If you are not getting acceptable results by using the
  84. * 'correct' numbers, you can scale this number up or down a little bit to change the amount
  85. * of filament that is being extruded during the printing of the various lines on the bed.
  86. *
  87. * K Keep-On Keep the heaters turned on at the end of the command.
  88. *
  89. * L # Layer Layer height. (Height of nozzle above bed) If not specified .20mm will be used.
  90. *
  91. * O # Ooooze How much your nozzle will Ooooze filament while getting in position to print. This
  92. * is over kill, but using this parameter will let you get the very first 'circle' perfect
  93. * so you have a trophy to peel off of the bed and hang up to show how perfectly you have your
  94. * Mesh calibrated. If not specified, a filament length of .3mm is assumed.
  95. *
  96. * P # Prime Prime the nozzle with specified length of filament. If this parameter is not
  97. * given, no prime action will take place. If the parameter specifies an amount, that much
  98. * will be purged before continuing. If no amount is specified the command will start
  99. * purging filament until the user provides an LCD Click and then it will continue with
  100. * printing the Mesh. You can carefully remove the spent filament with a needle nose
  101. * pliers while holding the LCD Click wheel in a depressed state. If you do not have
  102. * an LCD, you must specify a value if you use P.
  103. *
  104. * Q # Multiplier Retraction Multiplier. Normally not needed. Retraction defaults to 1.0mm and
  105. * un-retraction is at 1.2mm These numbers will be scaled by the specified amount
  106. *
  107. * R # Repeat Prints the number of patterns given as a parameter, starting at the current location.
  108. * If a parameter isn't given, every point will be printed unless G26 is interrupted.
  109. * This works the same way that the UBL G29 P4 R parameter works.
  110. *
  111. * NOTE: If you do not have an LCD, you -must- specify R. This is to ensure that you are
  112. * aware that there's some risk associated with printing without the ability to abort in
  113. * cases where mesh point Z value may be inaccurate. As above, if you do not include a
  114. * parameter, every point will be printed.
  115. *
  116. * S # Nozzle Used to control the size of nozzle diameter. If not specified, a .4mm nozzle is assumed.
  117. *
  118. * U # Random Randomize the order that the circles are drawn on the bed. The search for the closest
  119. * un-drawn circle is still done. But the distance to the location for each circle has a
  120. * random number of the specified size added to it. Specifying S50 will give an interesting
  121. * deviation from the normal behavior on a 10 x 10 Mesh.
  122. *
  123. * X # X Coord. Specify the starting location of the drawing activity.
  124. *
  125. * Y # Y Coord. Specify the starting location of the drawing activity.
  126. */
  127. // External references
  128. // Private functions
  129. static MeshFlags circle_flags, horizontal_mesh_line_flags, vertical_mesh_line_flags;
  130. float g26_e_axis_feedrate = 0.025,
  131. random_deviation = 0.0;
  132. static bool g26_retracted = false; // Track the retracted state of the nozzle so mismatched
  133. // retracts/recovers won't result in a bad state.
  134. float g26_extrusion_multiplier,
  135. g26_retraction_multiplier,
  136. g26_layer_height,
  137. g26_prime_length;
  138. xy_pos_t g26_pos; // = { 0, 0 }
  139. int16_t g26_bed_temp,
  140. g26_hotend_temp;
  141. int8_t g26_prime_flag;
  142. #if HAS_LCD_MENU
  143. /**
  144. * If the LCD is clicked, cancel, wait for release, return true
  145. */
  146. bool user_canceled() {
  147. if (!ui.button_pressed()) return false; // Return if the button isn't pressed
  148. ui.set_status_P(GET_TEXT(MSG_G26_CANCELED), 99);
  149. #if HAS_LCD_MENU
  150. ui.quick_feedback();
  151. #endif
  152. ui.wait_for_release();
  153. return true;
  154. }
  155. #endif
  156. mesh_index_pair find_closest_circle_to_print(const xy_pos_t &pos) {
  157. float closest = 99999.99;
  158. mesh_index_pair out_point;
  159. out_point.pos = -1;
  160. for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
  161. for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
  162. if (!circle_flags.marked(i, j)) {
  163. // We found a circle that needs to be printed
  164. const xy_pos_t m = { _GET_MESH_X(i), _GET_MESH_Y(j) };
  165. // Get the distance to this intersection
  166. float f = (pos - m).magnitude();
  167. // It is possible that we are being called with the values
  168. // to let us find the closest circle to the start position.
  169. // But if this is not the case, add a small weighting to the
  170. // distance calculation to help it choose a better place to continue.
  171. f += (g26_pos - m).magnitude() / 15.0f;
  172. // Add the specified amount of Random Noise to our search
  173. if (random_deviation > 1.0) f += random(0.0, random_deviation);
  174. if (f < closest) {
  175. closest = f; // Found a closer un-printed location
  176. out_point.pos.set(i, j); // Save its data
  177. out_point.distance = closest;
  178. }
  179. }
  180. }
  181. }
  182. circle_flags.mark(out_point); // Mark this location as done.
  183. return out_point;
  184. }
  185. void move_to(const float &rx, const float &ry, const float &z, const float &e_delta) {
  186. static float last_z = -999.99;
  187. const xy_pos_t dest = { rx, ry };
  188. const bool has_xy_component = dest != current_position; // Check if X or Y is involved in the movement.
  189. destination = current_position;
  190. if (z != last_z) {
  191. last_z = destination.z = z;
  192. const feedRate_t feed_value = planner.settings.max_feedrate_mm_s[Z_AXIS] * 0.5f; // Use half of the Z_AXIS max feed rate
  193. prepare_internal_move_to_destination(feed_value);
  194. destination = current_position;
  195. }
  196. // If X or Y is involved do a 'normal' move. Otherwise retract/recover/hop.
  197. destination = dest;
  198. destination.e += e_delta;
  199. const feedRate_t feed_value = has_xy_component ? feedRate_t(G26_XY_FEEDRATE) : planner.settings.max_feedrate_mm_s[E_AXIS] * 0.666f;
  200. prepare_internal_move_to_destination(feed_value);
  201. destination = current_position;
  202. }
  203. FORCE_INLINE void move_to(const xyz_pos_t &where, const float &de) { move_to(where.x, where.y, where.z, de); }
  204. void retract_filament(const xyz_pos_t &where) {
  205. if (!g26_retracted) { // Only retract if we are not already retracted!
  206. g26_retracted = true;
  207. move_to(where, -1.0f * g26_retraction_multiplier);
  208. }
  209. }
  210. // TODO: Parameterize the Z lift with a define
  211. void retract_lift_move(const xyz_pos_t &s) {
  212. retract_filament(destination);
  213. move_to(current_position.x, current_position.y, current_position.z + 0.5f, 0.0); // Z lift to minimize scraping
  214. move_to(s.x, s.y, s.z + 0.5f, 0.0); // Get to the starting point with no extrusion while lifted
  215. }
  216. void recover_filament(const xyz_pos_t &where) {
  217. if (g26_retracted) { // Only un-retract if we are retracted.
  218. move_to(where, 1.2f * g26_retraction_multiplier);
  219. g26_retracted = false;
  220. }
  221. }
  222. /**
  223. * print_line_from_here_to_there() takes two cartesian coordinates and draws a line from one
  224. * to the other. But there are really three sets of coordinates involved. The first coordinate
  225. * is the present location of the nozzle. We don't necessarily want to print from this location.
  226. * We first need to move the nozzle to the start of line segment where we want to print. Once
  227. * there, we can use the two coordinates supplied to draw the line.
  228. *
  229. * Note: Although we assume the first set of coordinates is the start of the line and the second
  230. * set of coordinates is the end of the line, it does not always work out that way. This function
  231. * optimizes the movement to minimize the travel distance before it can start printing. This saves
  232. * a lot of time and eliminates a lot of nonsensical movement of the nozzle. However, it does
  233. * cause a lot of very little short retracement of th nozzle when it draws the very first line
  234. * segment of a 'circle'. The time this requires is very short and is easily saved by the other
  235. * cases where the optimization comes into play.
  236. */
  237. void print_line_from_here_to_there(const xyz_pos_t &s, const xyz_pos_t &e) {
  238. // Distances to the start / end of the line
  239. xy_float_t svec = current_position - s, evec = current_position - e;
  240. const float dist_start = HYPOT2(svec.x, svec.y),
  241. dist_end = HYPOT2(evec.x, evec.y),
  242. line_length = HYPOT(e.x - s.x, e.y - s.y);
  243. // If the end point of the line is closer to the nozzle, flip the direction,
  244. // moving from the end to the start. On very small lines the optimization isn't worth it.
  245. if (dist_end < dist_start && (INTERSECTION_CIRCLE_RADIUS) < ABS(line_length))
  246. return print_line_from_here_to_there(e, s);
  247. // Decide whether to retract & lift
  248. if (dist_start > 2.0) retract_lift_move(s);
  249. move_to(s, 0.0); // Get to the starting point with no extrusion / un-Z lift
  250. const float e_pos_delta = line_length * g26_e_axis_feedrate * g26_extrusion_multiplier;
  251. recover_filament(destination);
  252. move_to(e, e_pos_delta); // Get to the ending point with an appropriate amount of extrusion
  253. }
  254. inline bool look_for_lines_to_connect() {
  255. xyz_pos_t s, e;
  256. s.z = e.z = g26_layer_height;
  257. for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
  258. for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
  259. #if HAS_LCD_MENU
  260. if (user_canceled()) return true;
  261. #endif
  262. if (i < GRID_MAX_POINTS_X) { // Can't connect to anything farther to the right than GRID_MAX_POINTS_X.
  263. // Already a half circle at the edge of the bed.
  264. if (circle_flags.marked(i, j) && circle_flags.marked(i + 1, j)) { // Test whether a leftward line can be done
  265. if (!horizontal_mesh_line_flags.marked(i, j)) {
  266. // Two circles need a horizontal line to connect them
  267. s.x = _GET_MESH_X( i ) + (INTERSECTION_CIRCLE_RADIUS - (CROSSHAIRS_SIZE)); // right edge
  268. e.x = _GET_MESH_X(i + 1) - (INTERSECTION_CIRCLE_RADIUS - (CROSSHAIRS_SIZE)); // left edge
  269. LIMIT(s.x, X_MIN_POS + 1, X_MAX_POS - 1);
  270. s.y = e.y = constrain(_GET_MESH_Y(j), Y_MIN_POS + 1, Y_MAX_POS - 1);
  271. LIMIT(e.x, X_MIN_POS + 1, X_MAX_POS - 1);
  272. if (position_is_reachable(s.x, s.y) && position_is_reachable(e.x, e.y))
  273. print_line_from_here_to_there(s, e);
  274. horizontal_mesh_line_flags.mark(i, j); // Mark done, even if skipped
  275. }
  276. }
  277. if (j < GRID_MAX_POINTS_Y) { // Can't connect to anything further back than GRID_MAX_POINTS_Y.
  278. // Already a half circle at the edge of the bed.
  279. if (circle_flags.marked(i, j) && circle_flags.marked(i, j + 1)) { // Test whether a downward line can be done
  280. if (!vertical_mesh_line_flags.marked(i, j)) {
  281. // Two circles that need a vertical line to connect them
  282. s.y = _GET_MESH_Y( j ) + (INTERSECTION_CIRCLE_RADIUS - (CROSSHAIRS_SIZE)); // top edge
  283. e.y = _GET_MESH_Y(j + 1) - (INTERSECTION_CIRCLE_RADIUS - (CROSSHAIRS_SIZE)); // bottom edge
  284. s.x = e.x = constrain(_GET_MESH_X(i), X_MIN_POS + 1, X_MAX_POS - 1);
  285. LIMIT(s.y, Y_MIN_POS + 1, Y_MAX_POS - 1);
  286. LIMIT(e.y, Y_MIN_POS + 1, Y_MAX_POS - 1);
  287. if (position_is_reachable(s.x, s.y) && position_is_reachable(e.x, e.y))
  288. print_line_from_here_to_there(s, e);
  289. vertical_mesh_line_flags.mark(i, j); // Mark done, even if skipped
  290. }
  291. }
  292. }
  293. }
  294. }
  295. }
  296. return false;
  297. }
  298. /**
  299. * Turn on the bed and nozzle heat and
  300. * wait for them to get up to temperature.
  301. */
  302. inline bool turn_on_heaters() {
  303. SERIAL_ECHOLNPGM("Waiting for heatup.");
  304. #if HAS_HEATED_BED
  305. if (g26_bed_temp > 25) {
  306. #if HAS_SPI_LCD
  307. ui.set_status_P(GET_TEXT(MSG_G26_HEATING_BED), 99);
  308. ui.quick_feedback();
  309. #if HAS_LCD_MENU
  310. ui.capture();
  311. #endif
  312. #endif
  313. thermalManager.setTargetBed(g26_bed_temp);
  314. // Wait for the temperature to stabilize
  315. if (!thermalManager.wait_for_bed(true
  316. #if G26_CLICK_CAN_CANCEL
  317. , true
  318. #endif
  319. )
  320. ) return G26_ERR;
  321. }
  322. #endif // HAS_HEATED_BED
  323. // Start heating the active nozzle
  324. #if HAS_SPI_LCD
  325. ui.set_status_P(GET_TEXT(MSG_G26_HEATING_NOZZLE), 99);
  326. ui.quick_feedback();
  327. #endif
  328. thermalManager.setTargetHotend(g26_hotend_temp, active_extruder);
  329. // Wait for the temperature to stabilize
  330. if (!thermalManager.wait_for_hotend(active_extruder, true
  331. #if G26_CLICK_CAN_CANCEL
  332. , true
  333. #endif
  334. )
  335. ) return G26_ERR;
  336. #if HAS_SPI_LCD
  337. ui.reset_status();
  338. ui.quick_feedback();
  339. #endif
  340. return G26_OK;
  341. }
  342. /**
  343. * Prime the nozzle if needed. Return true on error.
  344. */
  345. inline bool prime_nozzle() {
  346. const feedRate_t fr_slow_e = planner.settings.max_feedrate_mm_s[E_AXIS] / 15.0f;
  347. #if HAS_LCD_MENU && DISABLED(TOUCH_BUTTONS) // ui.button_pressed issue with touchscreen
  348. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  349. float Total_Prime = 0.0;
  350. #endif
  351. if (g26_prime_flag == -1) { // The user wants to control how much filament gets purged
  352. ui.capture();
  353. ui.set_status_P(GET_TEXT(MSG_G26_MANUAL_PRIME), 99);
  354. ui.chirp();
  355. destination = current_position;
  356. recover_filament(destination); // Make sure G26 doesn't think the filament is retracted().
  357. while (!ui.button_pressed()) {
  358. ui.chirp();
  359. destination.e += 0.25;
  360. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  361. Total_Prime += 0.25;
  362. if (Total_Prime >= EXTRUDE_MAXLENGTH) {
  363. ui.release();
  364. return G26_ERR;
  365. }
  366. #endif
  367. prepare_internal_move_to_destination(fr_slow_e);
  368. destination = current_position;
  369. planner.synchronize(); // Without this synchronize, the purge is more consistent,
  370. // but because the planner has a buffer, we won't be able
  371. // to stop as quickly. So we put up with the less smooth
  372. // action to give the user a more responsive 'Stop'.
  373. }
  374. ui.wait_for_release();
  375. ui.set_status_P(GET_TEXT(MSG_G26_PRIME_DONE), 99);
  376. ui.quick_feedback();
  377. ui.release();
  378. }
  379. else
  380. #endif
  381. {
  382. #if HAS_SPI_LCD
  383. ui.set_status_P(GET_TEXT(MSG_G26_FIXED_LENGTH), 99);
  384. ui.quick_feedback();
  385. #endif
  386. destination = current_position;
  387. destination.e += g26_prime_length;
  388. prepare_internal_move_to_destination(fr_slow_e);
  389. destination.e -= g26_prime_length;
  390. retract_filament(destination);
  391. }
  392. return G26_OK;
  393. }
  394. /**
  395. * G26: Mesh Validation Pattern generation.
  396. *
  397. * Used to interactively edit the mesh by placing the
  398. * nozzle in a problem area and doing a G29 P4 R command.
  399. *
  400. * Parameters:
  401. *
  402. * B Bed Temperature
  403. * C Continue from the Closest mesh point
  404. * D Disable leveling before starting
  405. * F Filament diameter
  406. * H Hotend Temperature
  407. * K Keep heaters on when completed
  408. * L Layer Height
  409. * O Ooze extrusion length
  410. * P Prime length
  411. * Q Retraction multiplier
  412. * R Repetitions (number of grid points)
  413. * S Nozzle Size (diameter) in mm
  414. * T Tool index to change to, if included
  415. * U Random deviation (50 if no value given)
  416. * X X position
  417. * Y Y position
  418. */
  419. void GcodeSuite::G26() {
  420. SERIAL_ECHOLNPGM("G26 starting...");
  421. // Don't allow Mesh Validation without homing first,
  422. // or if the parameter parsing did not go OK, abort
  423. if (axis_unhomed_error()) return;
  424. // Change the tool first, if specified
  425. if (parser.seenval('T')) tool_change(parser.value_int());
  426. g26_extrusion_multiplier = EXTRUSION_MULTIPLIER;
  427. g26_retraction_multiplier = RETRACTION_MULTIPLIER;
  428. g26_layer_height = MESH_TEST_LAYER_HEIGHT;
  429. g26_prime_length = PRIME_LENGTH;
  430. g26_bed_temp = MESH_TEST_BED_TEMP;
  431. g26_hotend_temp = MESH_TEST_HOTEND_TEMP;
  432. g26_prime_flag = 0;
  433. float g26_nozzle = MESH_TEST_NOZZLE_SIZE,
  434. g26_filament_diameter = DEFAULT_NOMINAL_FILAMENT_DIA,
  435. g26_ooze_amount = parser.linearval('O', OOZE_AMOUNT);
  436. bool g26_continue_with_closest = parser.boolval('C'),
  437. g26_keep_heaters_on = parser.boolval('K');
  438. #if HAS_HEATED_BED
  439. if (parser.seenval('B')) {
  440. g26_bed_temp = parser.value_celsius();
  441. if (g26_bed_temp && !WITHIN(g26_bed_temp, 40, (BED_MAXTEMP - 10))) {
  442. SERIAL_ECHOLNPAIR("?Specified bed temperature not plausible (40-", int(BED_MAXTEMP - 10), "C).");
  443. return;
  444. }
  445. }
  446. #endif
  447. if (parser.seenval('L')) {
  448. g26_layer_height = parser.value_linear_units();
  449. if (!WITHIN(g26_layer_height, 0.0, 2.0)) {
  450. SERIAL_ECHOLNPGM("?Specified layer height not plausible.");
  451. return;
  452. }
  453. }
  454. if (parser.seen('Q')) {
  455. if (parser.has_value()) {
  456. g26_retraction_multiplier = parser.value_float();
  457. if (!WITHIN(g26_retraction_multiplier, 0.05, 15.0)) {
  458. SERIAL_ECHOLNPGM("?Specified Retraction Multiplier not plausible.");
  459. return;
  460. }
  461. }
  462. else {
  463. SERIAL_ECHOLNPGM("?Retraction Multiplier must be specified.");
  464. return;
  465. }
  466. }
  467. if (parser.seenval('S')) {
  468. g26_nozzle = parser.value_float();
  469. if (!WITHIN(g26_nozzle, 0.1, 2.0)) {
  470. SERIAL_ECHOLNPGM("?Specified nozzle size not plausible.");
  471. return;
  472. }
  473. }
  474. if (parser.seen('P')) {
  475. if (!parser.has_value()) {
  476. #if HAS_LCD_MENU
  477. g26_prime_flag = -1;
  478. #else
  479. SERIAL_ECHOLNPGM("?Prime length must be specified when not using an LCD.");
  480. return;
  481. #endif
  482. }
  483. else {
  484. g26_prime_flag++;
  485. g26_prime_length = parser.value_linear_units();
  486. if (!WITHIN(g26_prime_length, 0.0, 25.0)) {
  487. SERIAL_ECHOLNPGM("?Specified prime length not plausible.");
  488. return;
  489. }
  490. }
  491. }
  492. if (parser.seenval('F')) {
  493. g26_filament_diameter = parser.value_linear_units();
  494. if (!WITHIN(g26_filament_diameter, 1.0, 4.0)) {
  495. SERIAL_ECHOLNPGM("?Specified filament size not plausible.");
  496. return;
  497. }
  498. }
  499. g26_extrusion_multiplier *= sq(1.75) / sq(g26_filament_diameter); // If we aren't using 1.75mm filament, we need to
  500. // scale up or down the length needed to get the
  501. // same volume of filament
  502. g26_extrusion_multiplier *= g26_filament_diameter * sq(g26_nozzle) / sq(0.3); // Scale up by nozzle size
  503. if (parser.seenval('H')) {
  504. g26_hotend_temp = parser.value_celsius();
  505. if (!WITHIN(g26_hotend_temp, 165, (HEATER_0_MAXTEMP - 15))) {
  506. SERIAL_ECHOLNPGM("?Specified nozzle temperature not plausible.");
  507. return;
  508. }
  509. }
  510. if (parser.seen('U')) {
  511. randomSeed(millis());
  512. // This setting will persist for the next G26
  513. random_deviation = parser.has_value() ? parser.value_float() : 50.0;
  514. }
  515. int16_t g26_repeats;
  516. #if HAS_LCD_MENU
  517. g26_repeats = parser.intval('R', GRID_MAX_POINTS + 1);
  518. #else
  519. if (!parser.seen('R')) {
  520. SERIAL_ECHOLNPGM("?(R)epeat must be specified when not using an LCD.");
  521. return;
  522. }
  523. else
  524. g26_repeats = parser.has_value() ? parser.value_int() : GRID_MAX_POINTS + 1;
  525. #endif
  526. if (g26_repeats < 1) {
  527. SERIAL_ECHOLNPGM("?(R)epeat value not plausible; must be at least 1.");
  528. return;
  529. }
  530. g26_pos.set(parser.seenval('X') ? RAW_X_POSITION(parser.value_linear_units()) : current_position.x,
  531. parser.seenval('Y') ? RAW_Y_POSITION(parser.value_linear_units()) : current_position.y);
  532. if (!position_is_reachable(g26_pos.x, g26_pos.y)) {
  533. SERIAL_ECHOLNPGM("?Specified X,Y coordinate out of bounds.");
  534. return;
  535. }
  536. /**
  537. * Wait until all parameters are verified before altering the state!
  538. */
  539. set_bed_leveling_enabled(!parser.seen('D'));
  540. if (current_position.z < Z_CLEARANCE_BETWEEN_PROBES) {
  541. do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
  542. current_position = destination;
  543. }
  544. #if DISABLED(NO_VOLUMETRICS)
  545. bool volumetric_was_enabled = parser.volumetric_enabled;
  546. parser.volumetric_enabled = false;
  547. planner.calculate_volumetric_multipliers();
  548. #endif
  549. if (turn_on_heaters() != G26_OK) goto LEAVE;
  550. current_position.e = 0.0;
  551. sync_plan_position_e();
  552. if (g26_prime_flag && prime_nozzle() != G26_OK) goto LEAVE;
  553. /**
  554. * Bed is preheated
  555. *
  556. * Nozzle is at temperature
  557. *
  558. * Filament is primed!
  559. *
  560. * It's "Show Time" !!!
  561. */
  562. circle_flags.reset();
  563. horizontal_mesh_line_flags.reset();
  564. vertical_mesh_line_flags.reset();
  565. // Move nozzle to the specified height for the first layer
  566. destination = current_position;
  567. destination.z = g26_layer_height;
  568. move_to(destination, 0.0);
  569. move_to(destination, g26_ooze_amount);
  570. #if HAS_LCD_MENU
  571. ui.capture();
  572. #endif
  573. #if DISABLED(ARC_SUPPORT)
  574. /**
  575. * Pre-generate radius offset values at 30 degree intervals to reduce CPU load.
  576. */
  577. #define A_INT 30
  578. #define _ANGS (360 / A_INT)
  579. #define A_CNT (_ANGS / 2)
  580. #define _IND(A) ((A + _ANGS * 8) % _ANGS)
  581. #define _COS(A) (trig_table[_IND(A) % A_CNT] * (_IND(A) >= A_CNT ? -1 : 1))
  582. #define _SIN(A) (-_COS((A + A_CNT / 2) % _ANGS))
  583. #if A_CNT & 1
  584. #error "A_CNT must be a positive value. Please change A_INT."
  585. #endif
  586. float trig_table[A_CNT];
  587. for (uint8_t i = 0; i < A_CNT; i++)
  588. trig_table[i] = INTERSECTION_CIRCLE_RADIUS * cos(RADIANS(i * A_INT));
  589. #endif // !ARC_SUPPORT
  590. mesh_index_pair location;
  591. do {
  592. // Find the nearest confluence
  593. location = find_closest_circle_to_print(g26_continue_with_closest ? xy_pos_t(current_position) : g26_pos);
  594. if (location.valid()) {
  595. const xy_pos_t circle = _GET_MESH_POS(location.pos);
  596. // If this mesh location is outside the printable radius, skip it.
  597. if (!position_is_reachable(circle)) continue;
  598. // Determine where to start and end the circle,
  599. // which is always drawn counter-clockwise.
  600. const xy_int8_t st = location;
  601. const bool f = st.y == 0,
  602. r = st.x >= GRID_MAX_POINTS_X - 1,
  603. b = st.y >= GRID_MAX_POINTS_Y - 1;
  604. #if ENABLED(ARC_SUPPORT)
  605. #define ARC_LENGTH(quarters) (INTERSECTION_CIRCLE_RADIUS * M_PI * (quarters) / 2)
  606. #define INTERSECTION_CIRCLE_DIAM ((INTERSECTION_CIRCLE_RADIUS) * 2)
  607. xy_float_t e = { circle.x + INTERSECTION_CIRCLE_RADIUS, circle.y };
  608. xyz_float_t s = e;
  609. // Figure out where to start and end the arc - we always print counterclockwise
  610. float arc_length = ARC_LENGTH(4);
  611. if (st.x == 0) { // left edge
  612. if (!f) { s.x = circle.x; s.y -= INTERSECTION_CIRCLE_RADIUS; }
  613. if (!b) { e.x = circle.x; e.y += INTERSECTION_CIRCLE_RADIUS; }
  614. arc_length = (f || b) ? ARC_LENGTH(1) : ARC_LENGTH(2);
  615. }
  616. else if (r) { // right edge
  617. if (b) s.set(circle.x - (INTERSECTION_CIRCLE_RADIUS), circle.y);
  618. else s.set(circle.x, circle.y + INTERSECTION_CIRCLE_RADIUS);
  619. if (f) e.set(circle.x - (INTERSECTION_CIRCLE_RADIUS), circle.y);
  620. else e.set(circle.x, circle.y - (INTERSECTION_CIRCLE_RADIUS));
  621. arc_length = (f || b) ? ARC_LENGTH(1) : ARC_LENGTH(2);
  622. }
  623. else if (f) {
  624. e.x -= INTERSECTION_CIRCLE_DIAM;
  625. arc_length = ARC_LENGTH(2);
  626. }
  627. else if (b) {
  628. s.x -= INTERSECTION_CIRCLE_DIAM;
  629. arc_length = ARC_LENGTH(2);
  630. }
  631. const ab_float_t arc_offset = circle - s;
  632. const xy_float_t dist = current_position - s; // Distance from the start of the actual circle
  633. const float dist_start = HYPOT2(dist.x, dist.y);
  634. const xyze_pos_t endpoint = {
  635. e.x, e.y, g26_layer_height,
  636. current_position.e + (arc_length * g26_e_axis_feedrate * g26_extrusion_multiplier)
  637. };
  638. if (dist_start > 2.0) {
  639. s.z = g26_layer_height + 0.5f;
  640. retract_lift_move(s);
  641. }
  642. s.z = g26_layer_height;
  643. move_to(s, 0.0); // Get to the starting point with no extrusion / un-Z lift
  644. recover_filament(destination);
  645. const feedRate_t old_feedrate = feedrate_mm_s;
  646. feedrate_mm_s = PLANNER_XY_FEEDRATE() * 0.1f;
  647. plan_arc(endpoint, arc_offset, false); // Draw a counter-clockwise arc
  648. feedrate_mm_s = old_feedrate;
  649. destination = current_position;
  650. #if HAS_LCD_MENU
  651. if (user_canceled()) goto LEAVE; // Check if the user wants to stop the Mesh Validation
  652. #endif
  653. #else // !ARC_SUPPORT
  654. int8_t start_ind = -2, end_ind = 9; // Assume a full circle (from 5:00 to 5:00)
  655. if (st.x == 0) { // Left edge? Just right half.
  656. start_ind = f ? 0 : -3; // 03:00 to 12:00 for front-left
  657. end_ind = b ? 0 : 2; // 06:00 to 03:00 for back-left
  658. }
  659. else if (r) { // Right edge? Just left half.
  660. start_ind = b ? 6 : 3; // 12:00 to 09:00 for front-right
  661. end_ind = f ? 5 : 8; // 09:00 to 06:00 for back-right
  662. }
  663. else if (f) { // Front edge? Just back half.
  664. start_ind = 0; // 03:00
  665. end_ind = 5; // 09:00
  666. }
  667. else if (b) { // Back edge? Just front half.
  668. start_ind = 6; // 09:00
  669. end_ind = 11; // 03:00
  670. }
  671. for (int8_t ind = start_ind; ind <= end_ind; ind++) {
  672. #if HAS_LCD_MENU
  673. if (user_canceled()) goto LEAVE; // Check if the user wants to stop the Mesh Validation
  674. #endif
  675. xyz_float_t p = { circle.x + _COS(ind ), circle.y + _SIN(ind ), g26_layer_height },
  676. q = { circle.x + _COS(ind + 1), circle.y + _SIN(ind + 1), g26_layer_height };
  677. #if IS_KINEMATIC
  678. // Check to make sure this segment is entirely on the bed, skip if not.
  679. if (!position_is_reachable(p) || !position_is_reachable(q)) continue;
  680. #else
  681. LIMIT(p.x, X_MIN_POS + 1, X_MAX_POS - 1); // Prevent hitting the endstops
  682. LIMIT(p.y, Y_MIN_POS + 1, Y_MAX_POS - 1);
  683. LIMIT(q.x, X_MIN_POS + 1, X_MAX_POS - 1);
  684. LIMIT(q.y, Y_MIN_POS + 1, Y_MAX_POS - 1);
  685. #endif
  686. print_line_from_here_to_there(p, q);
  687. SERIAL_FLUSH(); // Prevent host M105 buffer overrun.
  688. }
  689. #endif // !ARC_SUPPORT
  690. if (look_for_lines_to_connect()) goto LEAVE;
  691. }
  692. SERIAL_FLUSH(); // Prevent host M105 buffer overrun.
  693. } while (--g26_repeats && location.valid());
  694. LEAVE:
  695. ui.set_status_P(GET_TEXT(MSG_G26_LEAVING), -1);
  696. retract_filament(destination);
  697. destination.z = Z_CLEARANCE_BETWEEN_PROBES;
  698. move_to(destination, 0); // Raise the nozzle
  699. destination.set(g26_pos.x, g26_pos.y); // Move back to the starting position
  700. //destination.z = Z_CLEARANCE_BETWEEN_PROBES; // Keep the nozzle where it is
  701. move_to(destination, 0); // Move back to the starting position
  702. #if DISABLED(NO_VOLUMETRICS)
  703. parser.volumetric_enabled = volumetric_was_enabled;
  704. planner.calculate_volumetric_multipliers();
  705. #endif
  706. #if HAS_LCD_MENU
  707. ui.release(); // Give back control of the LCD
  708. #endif
  709. if (!g26_keep_heaters_on) {
  710. #if HAS_HEATED_BED
  711. thermalManager.setTargetBed(0);
  712. #endif
  713. thermalManager.setTargetHotend(active_extruder, 0);
  714. }
  715. }
  716. #endif // G26_MESH_VALIDATION