My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Du kan inte välja fler än 25 ämnen Ämnen måste starta med en bokstav eller siffra, kan innehålla bindestreck ('-') och vara max 35 tecken långa.

planner.cpp 43KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127
  1. /*
  2. planner.c - buffers movement commands and manages the acceleration profile plan
  3. Part of Grbl
  4. Copyright (c) 2009-2011 Simen Svale Skogsrud
  5. Grbl is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. Grbl is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /* The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis. */
  17. /*
  18. Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
  19. s == speed, a == acceleration, t == time, d == distance
  20. Basic definitions:
  21. Speed[s_, a_, t_] := s + (a*t)
  22. Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
  23. Distance to reach a specific speed with a constant acceleration:
  24. Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
  25. d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
  26. Speed after a given distance of travel with constant acceleration:
  27. Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
  28. m -> Sqrt[2 a d + s^2]
  29. DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
  30. When to start braking (di) to reach a specified destionation speed (s2) after accelerating
  31. from initial speed s1 without ever stopping at a plateau:
  32. Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
  33. di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
  34. IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
  35. */
  36. #include "Marlin.h"
  37. #include "planner.h"
  38. #include "stepper.h"
  39. #include "temperature.h"
  40. #include "ultralcd.h"
  41. #include "language.h"
  42. //===========================================================================
  43. //============================= public variables ============================
  44. //===========================================================================
  45. unsigned long minsegmenttime;
  46. float max_feedrate[NUM_AXIS]; // set the max speeds
  47. float axis_steps_per_unit[NUM_AXIS];
  48. unsigned long max_acceleration_units_per_sq_second[NUM_AXIS]; // Use M201 to override by software
  49. float minimumfeedrate;
  50. float acceleration; // Normal acceleration mm/s^2 THIS IS THE DEFAULT ACCELERATION for all printing moves. M204 SXXXX
  51. float retract_acceleration; // mm/s^2 filament pull-pack and push-forward while standing still in the other axis M204 TXXXX
  52. float travel_acceleration; // Travel acceleration mm/s^2 THIS IS THE DEFAULT ACCELERATION for all NON printing moves. M204 MXXXX
  53. float max_xy_jerk; //speed than can be stopped at once, if i understand correctly.
  54. float max_z_jerk;
  55. float max_e_jerk;
  56. float mintravelfeedrate;
  57. unsigned long axis_steps_per_sqr_second[NUM_AXIS];
  58. #ifdef ENABLE_AUTO_BED_LEVELING
  59. // this holds the required transform to compensate for bed level
  60. matrix_3x3 plan_bed_level_matrix = {
  61. 1.0, 0.0, 0.0,
  62. 0.0, 1.0, 0.0,
  63. 0.0, 0.0, 1.0
  64. };
  65. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  66. // The current position of the tool in absolute steps
  67. long position[NUM_AXIS]; //rescaled from extern when axis_steps_per_unit are changed by gcode
  68. static float previous_speed[NUM_AXIS]; // Speed of previous path line segment
  69. static float previous_nominal_speed; // Nominal speed of previous path line segment
  70. #ifdef AUTOTEMP
  71. float autotemp_max=250;
  72. float autotemp_min=210;
  73. float autotemp_factor=0.1;
  74. bool autotemp_enabled=false;
  75. #endif
  76. unsigned char g_uc_extruder_last_move[4] = {0,0,0,0};
  77. //===========================================================================
  78. //=================semi-private variables, used in inline functions =====
  79. //===========================================================================
  80. block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instfructions
  81. volatile unsigned char block_buffer_head; // Index of the next block to be pushed
  82. volatile unsigned char block_buffer_tail; // Index of the block to process now
  83. //===========================================================================
  84. //=============================private variables ============================
  85. //===========================================================================
  86. #ifdef PREVENT_DANGEROUS_EXTRUDE
  87. float extrude_min_temp=EXTRUDE_MINTEMP;
  88. #endif
  89. #ifdef XY_FREQUENCY_LIMIT
  90. #define MAX_FREQ_TIME (1000000.0/XY_FREQUENCY_LIMIT)
  91. // Used for the frequency limit
  92. static unsigned char old_direction_bits = 0; // Old direction bits. Used for speed calculations
  93. static long x_segment_time[3]={MAX_FREQ_TIME + 1,0,0}; // Segment times (in us). Used for speed calculations
  94. static long y_segment_time[3]={MAX_FREQ_TIME + 1,0,0};
  95. #endif
  96. #ifdef FILAMENT_SENSOR
  97. static char meas_sample; //temporary variable to hold filament measurement sample
  98. #endif
  99. // Returns the index of the next block in the ring buffer
  100. // NOTE: Removed modulo (%) operator, which uses an expensive divide and multiplication.
  101. static int8_t next_block_index(int8_t block_index) {
  102. block_index++;
  103. if (block_index == BLOCK_BUFFER_SIZE) {
  104. block_index = 0;
  105. }
  106. return(block_index);
  107. }
  108. // Returns the index of the previous block in the ring buffer
  109. static int8_t prev_block_index(int8_t block_index) {
  110. if (block_index == 0) {
  111. block_index = BLOCK_BUFFER_SIZE;
  112. }
  113. block_index--;
  114. return(block_index);
  115. }
  116. //===========================================================================
  117. //=============================functions ============================
  118. //===========================================================================
  119. // Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
  120. // given acceleration:
  121. FORCE_INLINE float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration)
  122. {
  123. if (acceleration!=0) {
  124. return((target_rate*target_rate-initial_rate*initial_rate)/
  125. (2.0*acceleration));
  126. }
  127. else {
  128. return 0.0; // acceleration was 0, set acceleration distance to 0
  129. }
  130. }
  131. // This function gives you the point at which you must start braking (at the rate of -acceleration) if
  132. // you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
  133. // a total travel of distance. This can be used to compute the intersection point between acceleration and
  134. // deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
  135. FORCE_INLINE float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance)
  136. {
  137. if (acceleration!=0) {
  138. return((2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/
  139. (4.0*acceleration) );
  140. }
  141. else {
  142. return 0.0; // acceleration was 0, set intersection distance to 0
  143. }
  144. }
  145. // Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
  146. void calculate_trapezoid_for_block(block_t *block, float entry_factor, float exit_factor) {
  147. unsigned long initial_rate = ceil(block->nominal_rate*entry_factor); // (step/min)
  148. unsigned long final_rate = ceil(block->nominal_rate*exit_factor); // (step/min)
  149. // Limit minimal step rate (Otherwise the timer will overflow.)
  150. if(initial_rate <120) {
  151. initial_rate=120;
  152. }
  153. if(final_rate < 120) {
  154. final_rate=120;
  155. }
  156. long acceleration = block->acceleration_st;
  157. int32_t accelerate_steps =
  158. ceil(estimate_acceleration_distance(initial_rate, block->nominal_rate, acceleration));
  159. int32_t decelerate_steps =
  160. floor(estimate_acceleration_distance(block->nominal_rate, final_rate, -acceleration));
  161. // Calculate the size of Plateau of Nominal Rate.
  162. int32_t plateau_steps = block->step_event_count-accelerate_steps-decelerate_steps;
  163. // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
  164. // have to use intersection_distance() to calculate when to abort acceleration and start braking
  165. // in order to reach the final_rate exactly at the end of this block.
  166. if (plateau_steps < 0) {
  167. accelerate_steps = ceil(intersection_distance(initial_rate, final_rate, acceleration, block->step_event_count));
  168. accelerate_steps = max(accelerate_steps,0); // Check limits due to numerical round-off
  169. accelerate_steps = min((uint32_t)accelerate_steps,block->step_event_count);//(We can cast here to unsigned, because the above line ensures that we are above zero)
  170. plateau_steps = 0;
  171. }
  172. #ifdef ADVANCE
  173. volatile long initial_advance = block->advance*entry_factor*entry_factor;
  174. volatile long final_advance = block->advance*exit_factor*exit_factor;
  175. #endif // ADVANCE
  176. // block->accelerate_until = accelerate_steps;
  177. // block->decelerate_after = accelerate_steps+plateau_steps;
  178. CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section
  179. if(block->busy == false) { // Don't update variables if block is busy.
  180. block->accelerate_until = accelerate_steps;
  181. block->decelerate_after = accelerate_steps+plateau_steps;
  182. block->initial_rate = initial_rate;
  183. block->final_rate = final_rate;
  184. #ifdef ADVANCE
  185. block->initial_advance = initial_advance;
  186. block->final_advance = final_advance;
  187. #endif //ADVANCE
  188. }
  189. CRITICAL_SECTION_END;
  190. }
  191. // Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the
  192. // acceleration within the allotted distance.
  193. FORCE_INLINE float max_allowable_speed(float acceleration, float target_velocity, float distance) {
  194. return sqrt(target_velocity*target_velocity-2*acceleration*distance);
  195. }
  196. // "Junction jerk" in this context is the immediate change in speed at the junction of two blocks.
  197. // This method will calculate the junction jerk as the euclidean distance between the nominal
  198. // velocities of the respective blocks.
  199. //inline float junction_jerk(block_t *before, block_t *after) {
  200. // return sqrt(
  201. // pow((before->speed_x-after->speed_x), 2)+pow((before->speed_y-after->speed_y), 2));
  202. //}
  203. // The kernel called by planner_recalculate() when scanning the plan from last to first entry.
  204. void planner_reverse_pass_kernel(block_t *previous, block_t *current, block_t *next) {
  205. if(!current) {
  206. return;
  207. }
  208. if (next) {
  209. // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
  210. // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
  211. // check for maximum allowable speed reductions to ensure maximum possible planned speed.
  212. if (current->entry_speed != current->max_entry_speed) {
  213. // If nominal length true, max junction speed is guaranteed to be reached. Only compute
  214. // for max allowable speed if block is decelerating and nominal length is false.
  215. if ((!current->nominal_length_flag) && (current->max_entry_speed > next->entry_speed)) {
  216. current->entry_speed = min( current->max_entry_speed,
  217. max_allowable_speed(-current->acceleration,next->entry_speed,current->millimeters));
  218. }
  219. else {
  220. current->entry_speed = current->max_entry_speed;
  221. }
  222. current->recalculate_flag = true;
  223. }
  224. } // Skip last block. Already initialized and set for recalculation.
  225. }
  226. // planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
  227. // implements the reverse pass.
  228. void planner_reverse_pass() {
  229. uint8_t block_index = block_buffer_head;
  230. //Make a local copy of block_buffer_tail, because the interrupt can alter it
  231. CRITICAL_SECTION_START;
  232. unsigned char tail = block_buffer_tail;
  233. CRITICAL_SECTION_END
  234. if(((block_buffer_head-tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1)) > 3) {
  235. block_index = (block_buffer_head - 3) & (BLOCK_BUFFER_SIZE - 1);
  236. block_t *block[3] = {
  237. NULL, NULL, NULL };
  238. while(block_index != tail) {
  239. block_index = prev_block_index(block_index);
  240. block[2]= block[1];
  241. block[1]= block[0];
  242. block[0] = &block_buffer[block_index];
  243. planner_reverse_pass_kernel(block[0], block[1], block[2]);
  244. }
  245. }
  246. }
  247. // The kernel called by planner_recalculate() when scanning the plan from first to last entry.
  248. void planner_forward_pass_kernel(block_t *previous, block_t *current, block_t *next) {
  249. if(!previous) {
  250. return;
  251. }
  252. // If the previous block is an acceleration block, but it is not long enough to complete the
  253. // full speed change within the block, we need to adjust the entry speed accordingly. Entry
  254. // speeds have already been reset, maximized, and reverse planned by reverse planner.
  255. // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
  256. if (!previous->nominal_length_flag) {
  257. if (previous->entry_speed < current->entry_speed) {
  258. double entry_speed = min( current->entry_speed,
  259. max_allowable_speed(-previous->acceleration,previous->entry_speed,previous->millimeters) );
  260. // Check for junction speed change
  261. if (current->entry_speed != entry_speed) {
  262. current->entry_speed = entry_speed;
  263. current->recalculate_flag = true;
  264. }
  265. }
  266. }
  267. }
  268. // planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
  269. // implements the forward pass.
  270. void planner_forward_pass() {
  271. uint8_t block_index = block_buffer_tail;
  272. block_t *block[3] = {
  273. NULL, NULL, NULL };
  274. while(block_index != block_buffer_head) {
  275. block[0] = block[1];
  276. block[1] = block[2];
  277. block[2] = &block_buffer[block_index];
  278. planner_forward_pass_kernel(block[0],block[1],block[2]);
  279. block_index = next_block_index(block_index);
  280. }
  281. planner_forward_pass_kernel(block[1], block[2], NULL);
  282. }
  283. // Recalculates the trapezoid speed profiles for all blocks in the plan according to the
  284. // entry_factor for each junction. Must be called by planner_recalculate() after
  285. // updating the blocks.
  286. void planner_recalculate_trapezoids() {
  287. int8_t block_index = block_buffer_tail;
  288. block_t *current;
  289. block_t *next = NULL;
  290. while(block_index != block_buffer_head) {
  291. current = next;
  292. next = &block_buffer[block_index];
  293. if (current) {
  294. // Recalculate if current block entry or exit junction speed has changed.
  295. if (current->recalculate_flag || next->recalculate_flag) {
  296. // NOTE: Entry and exit factors always > 0 by all previous logic operations.
  297. calculate_trapezoid_for_block(current, current->entry_speed/current->nominal_speed,
  298. next->entry_speed/current->nominal_speed);
  299. current->recalculate_flag = false; // Reset current only to ensure next trapezoid is computed
  300. }
  301. }
  302. block_index = next_block_index( block_index );
  303. }
  304. // Last/newest block in buffer. Exit speed is set with MINIMUM_PLANNER_SPEED. Always recalculated.
  305. if(next != NULL) {
  306. calculate_trapezoid_for_block(next, next->entry_speed/next->nominal_speed,
  307. MINIMUM_PLANNER_SPEED/next->nominal_speed);
  308. next->recalculate_flag = false;
  309. }
  310. }
  311. // Recalculates the motion plan according to the following algorithm:
  312. //
  313. // 1. Go over every block in reverse order and calculate a junction speed reduction (i.e. block_t.entry_factor)
  314. // so that:
  315. // a. The junction jerk is within the set limit
  316. // b. No speed reduction within one block requires faster deceleration than the one, true constant
  317. // acceleration.
  318. // 2. Go over every block in chronological order and dial down junction speed reduction values if
  319. // a. The speed increase within one block would require faster accelleration than the one, true
  320. // constant acceleration.
  321. //
  322. // When these stages are complete all blocks have an entry_factor that will allow all speed changes to
  323. // be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than
  324. // the set limit. Finally it will:
  325. //
  326. // 3. Recalculate trapezoids for all blocks.
  327. void planner_recalculate() {
  328. planner_reverse_pass();
  329. planner_forward_pass();
  330. planner_recalculate_trapezoids();
  331. }
  332. void plan_init() {
  333. block_buffer_head = 0;
  334. block_buffer_tail = 0;
  335. memset(position, 0, sizeof(position)); // clear position
  336. previous_speed[0] = 0.0;
  337. previous_speed[1] = 0.0;
  338. previous_speed[2] = 0.0;
  339. previous_speed[3] = 0.0;
  340. previous_nominal_speed = 0.0;
  341. }
  342. #ifdef AUTOTEMP
  343. void getHighESpeed()
  344. {
  345. static float oldt=0;
  346. if(!autotemp_enabled){
  347. return;
  348. }
  349. if(degTargetHotend0()+2<autotemp_min) { //probably temperature set to zero.
  350. return; //do nothing
  351. }
  352. float high=0.0;
  353. uint8_t block_index = block_buffer_tail;
  354. while(block_index != block_buffer_head) {
  355. if((block_buffer[block_index].steps_x != 0) ||
  356. (block_buffer[block_index].steps_y != 0) ||
  357. (block_buffer[block_index].steps_z != 0)) {
  358. float se=(float(block_buffer[block_index].steps_e)/float(block_buffer[block_index].step_event_count))*block_buffer[block_index].nominal_speed;
  359. //se; mm/sec;
  360. if(se>high)
  361. {
  362. high=se;
  363. }
  364. }
  365. block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
  366. }
  367. float g=autotemp_min+high*autotemp_factor;
  368. float t=g;
  369. if(t<autotemp_min)
  370. t=autotemp_min;
  371. if(t>autotemp_max)
  372. t=autotemp_max;
  373. if(oldt>t)
  374. {
  375. t=AUTOTEMP_OLDWEIGHT*oldt+(1-AUTOTEMP_OLDWEIGHT)*t;
  376. }
  377. oldt=t;
  378. setTargetHotend0(t);
  379. }
  380. #endif
  381. void check_axes_activity()
  382. {
  383. unsigned char x_active = 0;
  384. unsigned char y_active = 0;
  385. unsigned char z_active = 0;
  386. unsigned char e_active = 0;
  387. unsigned char tail_fan_speed = fanSpeed;
  388. #ifdef BARICUDA
  389. unsigned char tail_valve_pressure = ValvePressure;
  390. unsigned char tail_e_to_p_pressure = EtoPPressure;
  391. #endif
  392. block_t *block;
  393. if(block_buffer_tail != block_buffer_head)
  394. {
  395. uint8_t block_index = block_buffer_tail;
  396. tail_fan_speed = block_buffer[block_index].fan_speed;
  397. #ifdef BARICUDA
  398. tail_valve_pressure = block_buffer[block_index].valve_pressure;
  399. tail_e_to_p_pressure = block_buffer[block_index].e_to_p_pressure;
  400. #endif
  401. while(block_index != block_buffer_head)
  402. {
  403. block = &block_buffer[block_index];
  404. if(block->steps_x != 0) x_active++;
  405. if(block->steps_y != 0) y_active++;
  406. if(block->steps_z != 0) z_active++;
  407. if(block->steps_e != 0) e_active++;
  408. block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
  409. }
  410. }
  411. if((DISABLE_X) && (x_active == 0)) disable_x();
  412. if((DISABLE_Y) && (y_active == 0)) disable_y();
  413. if((DISABLE_Z) && (z_active == 0)) disable_z();
  414. if((DISABLE_E) && (e_active == 0))
  415. {
  416. disable_e0();
  417. disable_e1();
  418. disable_e2();
  419. disable_e3();
  420. }
  421. #if defined(FAN_PIN) && FAN_PIN > -1
  422. #ifdef FAN_KICKSTART_TIME
  423. static unsigned long fan_kick_end;
  424. if (tail_fan_speed) {
  425. if (fan_kick_end == 0) {
  426. // Just starting up fan - run at full power.
  427. fan_kick_end = millis() + FAN_KICKSTART_TIME;
  428. tail_fan_speed = 255;
  429. } else if (fan_kick_end > millis())
  430. // Fan still spinning up.
  431. tail_fan_speed = 255;
  432. } else {
  433. fan_kick_end = 0;
  434. }
  435. #endif//FAN_KICKSTART_TIME
  436. #ifdef FAN_SOFT_PWM
  437. fanSpeedSoftPwm = tail_fan_speed;
  438. #else
  439. analogWrite(FAN_PIN,tail_fan_speed);
  440. #endif//!FAN_SOFT_PWM
  441. #endif//FAN_PIN > -1
  442. #ifdef AUTOTEMP
  443. getHighESpeed();
  444. #endif
  445. #ifdef BARICUDA
  446. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  447. analogWrite(HEATER_1_PIN,tail_valve_pressure);
  448. #endif
  449. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  450. analogWrite(HEATER_2_PIN,tail_e_to_p_pressure);
  451. #endif
  452. #endif
  453. }
  454. float junction_deviation = 0.1;
  455. // Add a new linear movement to the buffer. steps_x, _y and _z is the absolute position in
  456. // mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration
  457. // calculation the caller must also provide the physical length of the line in millimeters.
  458. #ifdef ENABLE_AUTO_BED_LEVELING
  459. void plan_buffer_line(float x, float y, float z, const float &e, float feed_rate, const uint8_t &extruder)
  460. #else
  461. void plan_buffer_line(const float &x, const float &y, const float &z, const float &e, float feed_rate, const uint8_t &extruder)
  462. #endif //ENABLE_AUTO_BED_LEVELING
  463. {
  464. // Calculate the buffer head after we push this byte
  465. int next_buffer_head = next_block_index(block_buffer_head);
  466. // If the buffer is full: good! That means we are well ahead of the robot.
  467. // Rest here until there is room in the buffer.
  468. while(block_buffer_tail == next_buffer_head)
  469. {
  470. manage_heater();
  471. manage_inactivity();
  472. lcd_update();
  473. }
  474. #ifdef ENABLE_AUTO_BED_LEVELING
  475. apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
  476. #endif // ENABLE_AUTO_BED_LEVELING
  477. // The target position of the tool in absolute steps
  478. // Calculate target position in absolute steps
  479. //this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
  480. long target[4];
  481. target[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]);
  482. target[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);
  483. target[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
  484. target[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
  485. #ifdef PREVENT_DANGEROUS_EXTRUDE
  486. if(target[E_AXIS]!=position[E_AXIS])
  487. {
  488. if(degHotend(active_extruder)<extrude_min_temp)
  489. {
  490. position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
  491. SERIAL_ECHO_START;
  492. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  493. }
  494. #ifdef PREVENT_LENGTHY_EXTRUDE
  495. if(labs(target[E_AXIS]-position[E_AXIS])>axis_steps_per_unit[E_AXIS]*EXTRUDE_MAXLENGTH)
  496. {
  497. position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
  498. SERIAL_ECHO_START;
  499. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  500. }
  501. #endif
  502. }
  503. #endif
  504. // Prepare to set up new block
  505. block_t *block = &block_buffer[block_buffer_head];
  506. // Mark block as not busy (Not executed by the stepper interrupt)
  507. block->busy = false;
  508. // Number of steps for each axis
  509. #ifndef COREXY
  510. // default non-h-bot planning
  511. block->steps_x = labs(target[X_AXIS]-position[X_AXIS]);
  512. block->steps_y = labs(target[Y_AXIS]-position[Y_AXIS]);
  513. #else
  514. // corexy planning
  515. // these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
  516. block->steps_x = labs((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]));
  517. block->steps_y = labs((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]));
  518. #endif
  519. block->steps_z = labs(target[Z_AXIS]-position[Z_AXIS]);
  520. block->steps_e = labs(target[E_AXIS]-position[E_AXIS]);
  521. block->steps_e *= volumetric_multiplier[active_extruder];
  522. block->steps_e *= extrudemultiply;
  523. block->steps_e /= 100;
  524. block->step_event_count = max(block->steps_x, max(block->steps_y, max(block->steps_z, block->steps_e)));
  525. // Bail if this is a zero-length block
  526. if (block->step_event_count <= dropsegments)
  527. {
  528. return;
  529. }
  530. block->fan_speed = fanSpeed;
  531. #ifdef BARICUDA
  532. block->valve_pressure = ValvePressure;
  533. block->e_to_p_pressure = EtoPPressure;
  534. #endif
  535. // Compute direction bits for this block
  536. block->direction_bits = 0;
  537. #ifndef COREXY
  538. if (target[X_AXIS] < position[X_AXIS])
  539. {
  540. block->direction_bits |= BIT(X_AXIS);
  541. }
  542. if (target[Y_AXIS] < position[Y_AXIS])
  543. {
  544. block->direction_bits |= BIT(Y_AXIS);
  545. }
  546. #else
  547. if (target[X_AXIS] < position[X_AXIS])
  548. {
  549. block->direction_bits |= BIT(X_HEAD); //AlexBorro: Save the real Extruder (head) direction in X Axis
  550. }
  551. if (target[Y_AXIS] < position[Y_AXIS])
  552. {
  553. block->direction_bits |= BIT(Y_HEAD); //AlexBorro: Save the real Extruder (head) direction in Y Axis
  554. }
  555. if ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]) < 0)
  556. {
  557. block->direction_bits |= BIT(X_AXIS); //AlexBorro: Motor A direction (Incorrectly implemented as X_AXIS)
  558. }
  559. if ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]) < 0)
  560. {
  561. block->direction_bits |= BIT(Y_AXIS); //AlexBorro: Motor B direction (Incorrectly implemented as Y_AXIS)
  562. }
  563. #endif
  564. if (target[Z_AXIS] < position[Z_AXIS])
  565. {
  566. block->direction_bits |= BIT(Z_AXIS);
  567. }
  568. if (target[E_AXIS] < position[E_AXIS])
  569. {
  570. block->direction_bits |= BIT(E_AXIS);
  571. }
  572. block->active_extruder = extruder;
  573. //enable active axes
  574. #ifdef COREXY
  575. if((block->steps_x != 0) || (block->steps_y != 0))
  576. {
  577. enable_x();
  578. enable_y();
  579. }
  580. #else
  581. if(block->steps_x != 0) enable_x();
  582. if(block->steps_y != 0) enable_y();
  583. #endif
  584. #ifndef Z_LATE_ENABLE
  585. if(block->steps_z != 0) enable_z();
  586. #endif
  587. // Enable extruder(s)
  588. if(block->steps_e != 0)
  589. {
  590. if (DISABLE_INACTIVE_EXTRUDER) //enable only selected extruder
  591. {
  592. if(g_uc_extruder_last_move[0] > 0) g_uc_extruder_last_move[0]--;
  593. if(g_uc_extruder_last_move[1] > 0) g_uc_extruder_last_move[1]--;
  594. if(g_uc_extruder_last_move[2] > 0) g_uc_extruder_last_move[2]--;
  595. if(g_uc_extruder_last_move[3] > 0) g_uc_extruder_last_move[3]--;
  596. switch(extruder)
  597. {
  598. case 0:
  599. enable_e0();
  600. g_uc_extruder_last_move[0] = BLOCK_BUFFER_SIZE*2;
  601. if(g_uc_extruder_last_move[1] == 0) disable_e1();
  602. if(g_uc_extruder_last_move[2] == 0) disable_e2();
  603. if(g_uc_extruder_last_move[3] == 0) disable_e3();
  604. break;
  605. case 1:
  606. enable_e1();
  607. g_uc_extruder_last_move[1] = BLOCK_BUFFER_SIZE*2;
  608. if(g_uc_extruder_last_move[0] == 0) disable_e0();
  609. if(g_uc_extruder_last_move[2] == 0) disable_e2();
  610. if(g_uc_extruder_last_move[3] == 0) disable_e3();
  611. break;
  612. case 2:
  613. enable_e2();
  614. g_uc_extruder_last_move[2] = BLOCK_BUFFER_SIZE*2;
  615. if(g_uc_extruder_last_move[0] == 0) disable_e0();
  616. if(g_uc_extruder_last_move[1] == 0) disable_e1();
  617. if(g_uc_extruder_last_move[3] == 0) disable_e3();
  618. break;
  619. case 3:
  620. enable_e3();
  621. g_uc_extruder_last_move[3] = BLOCK_BUFFER_SIZE*2;
  622. if(g_uc_extruder_last_move[0] == 0) disable_e0();
  623. if(g_uc_extruder_last_move[1] == 0) disable_e1();
  624. if(g_uc_extruder_last_move[2] == 0) disable_e2();
  625. break;
  626. }
  627. }
  628. else //enable all
  629. {
  630. enable_e0();
  631. enable_e1();
  632. enable_e2();
  633. enable_e3();
  634. }
  635. }
  636. if (block->steps_e == 0)
  637. {
  638. if(feed_rate<mintravelfeedrate) feed_rate=mintravelfeedrate;
  639. }
  640. else
  641. {
  642. if(feed_rate<minimumfeedrate) feed_rate=minimumfeedrate;
  643. }
  644. /* This part of the code calculates the total length of the movement.
  645. For cartesian bots, the X_AXIS is the real X movement and same for Y_AXIS.
  646. But for corexy bots, that is not true. The "X_AXIS" and "Y_AXIS" motors (that should be named to A_AXIS
  647. and B_AXIS) cannot be used for X and Y length, because A=X+Y and B=X-Y.
  648. So we need to create other 2 "AXIS", named X_HEAD and Y_HEAD, meaning the real displacement of the Head.
  649. Having the real displacement of the head, we can calculate the total movement length and apply the desired speed.
  650. */
  651. #ifndef COREXY
  652. float delta_mm[4];
  653. delta_mm[X_AXIS] = (target[X_AXIS]-position[X_AXIS])/axis_steps_per_unit[X_AXIS];
  654. delta_mm[Y_AXIS] = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS];
  655. #else
  656. float delta_mm[6];
  657. delta_mm[X_HEAD] = (target[X_AXIS]-position[X_AXIS])/axis_steps_per_unit[X_AXIS];
  658. delta_mm[Y_HEAD] = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS];
  659. delta_mm[X_AXIS] = ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]))/axis_steps_per_unit[X_AXIS];
  660. delta_mm[Y_AXIS] = ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]))/axis_steps_per_unit[Y_AXIS];
  661. #endif
  662. delta_mm[Z_AXIS] = (target[Z_AXIS]-position[Z_AXIS])/axis_steps_per_unit[Z_AXIS];
  663. delta_mm[E_AXIS] = ((target[E_AXIS]-position[E_AXIS])/axis_steps_per_unit[E_AXIS])*volumetric_multiplier[active_extruder]*extrudemultiply/100.0;
  664. if ( block->steps_x <=dropsegments && block->steps_y <=dropsegments && block->steps_z <=dropsegments )
  665. {
  666. block->millimeters = fabs(delta_mm[E_AXIS]);
  667. }
  668. else
  669. {
  670. #ifndef COREXY
  671. block->millimeters = sqrt(square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_AXIS]));
  672. #else
  673. block->millimeters = sqrt(square(delta_mm[X_HEAD]) + square(delta_mm[Y_HEAD]) + square(delta_mm[Z_AXIS]));
  674. #endif
  675. }
  676. float inverse_millimeters = 1.0/block->millimeters; // Inverse millimeters to remove multiple divides
  677. // Calculate speed in mm/second for each axis. No divide by zero due to previous checks.
  678. float inverse_second = feed_rate * inverse_millimeters;
  679. int moves_queued=(block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1);
  680. // slow down when de buffer starts to empty, rather than wait at the corner for a buffer refill
  681. #ifdef OLD_SLOWDOWN
  682. if(moves_queued < (BLOCK_BUFFER_SIZE * 0.5) && moves_queued > 1)
  683. feed_rate = feed_rate*moves_queued / (BLOCK_BUFFER_SIZE * 0.5);
  684. #endif
  685. #ifdef SLOWDOWN
  686. // segment time im micro seconds
  687. unsigned long segment_time = lround(1000000.0/inverse_second);
  688. if ((moves_queued > 1) && (moves_queued < (BLOCK_BUFFER_SIZE * 0.5)))
  689. {
  690. if (segment_time < minsegmenttime)
  691. { // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
  692. inverse_second=1000000.0/(segment_time+lround(2*(minsegmenttime-segment_time)/moves_queued));
  693. #ifdef XY_FREQUENCY_LIMIT
  694. segment_time = lround(1000000.0/inverse_second);
  695. #endif
  696. }
  697. }
  698. #endif
  699. // END OF SLOW DOWN SECTION
  700. block->nominal_speed = block->millimeters * inverse_second; // (mm/sec) Always > 0
  701. block->nominal_rate = ceil(block->step_event_count * inverse_second); // (step/sec) Always > 0
  702. #ifdef FILAMENT_SENSOR
  703. //FMM update ring buffer used for delay with filament measurements
  704. if((extruder==FILAMENT_SENSOR_EXTRUDER_NUM) && (delay_index2 > -1)) //only for extruder with filament sensor and if ring buffer is initialized
  705. {
  706. delay_dist = delay_dist + delta_mm[E_AXIS]; //increment counter with next move in e axis
  707. while (delay_dist >= (10*(MAX_MEASUREMENT_DELAY+1))) //check if counter is over max buffer size in mm
  708. delay_dist = delay_dist - 10*(MAX_MEASUREMENT_DELAY+1); //loop around the buffer
  709. while (delay_dist<0)
  710. delay_dist = delay_dist + 10*(MAX_MEASUREMENT_DELAY+1); //loop around the buffer
  711. delay_index1=delay_dist/10.0; //calculate index
  712. //ensure the number is within range of the array after converting from floating point
  713. if(delay_index1<0)
  714. delay_index1=0;
  715. else if (delay_index1>MAX_MEASUREMENT_DELAY)
  716. delay_index1=MAX_MEASUREMENT_DELAY;
  717. if(delay_index1 != delay_index2) //moved index
  718. {
  719. meas_sample=widthFil_to_size_ratio()-100; //subtract off 100 to reduce magnitude - to store in a signed char
  720. }
  721. while( delay_index1 != delay_index2)
  722. {
  723. delay_index2 = delay_index2 + 1;
  724. if(delay_index2>MAX_MEASUREMENT_DELAY)
  725. delay_index2=delay_index2-(MAX_MEASUREMENT_DELAY+1); //loop around buffer when incrementing
  726. if(delay_index2<0)
  727. delay_index2=0;
  728. else if (delay_index2>MAX_MEASUREMENT_DELAY)
  729. delay_index2=MAX_MEASUREMENT_DELAY;
  730. measurement_delay[delay_index2]=meas_sample;
  731. }
  732. }
  733. #endif
  734. // Calculate and limit speed in mm/sec for each axis
  735. float current_speed[4];
  736. float speed_factor = 1.0; //factor <=1 do decrease speed
  737. for(int i=0; i < 4; i++)
  738. {
  739. current_speed[i] = delta_mm[i] * inverse_second;
  740. if(fabs(current_speed[i]) > max_feedrate[i])
  741. speed_factor = min(speed_factor, max_feedrate[i] / fabs(current_speed[i]));
  742. }
  743. // Max segement time in us.
  744. #ifdef XY_FREQUENCY_LIMIT
  745. #define MAX_FREQ_TIME (1000000.0/XY_FREQUENCY_LIMIT)
  746. // Check and limit the xy direction change frequency
  747. unsigned char direction_change = block->direction_bits ^ old_direction_bits;
  748. old_direction_bits = block->direction_bits;
  749. segment_time = lround((float)segment_time / speed_factor);
  750. if((direction_change & BIT(X_AXIS)) == 0)
  751. {
  752. x_segment_time[0] += segment_time;
  753. }
  754. else
  755. {
  756. x_segment_time[2] = x_segment_time[1];
  757. x_segment_time[1] = x_segment_time[0];
  758. x_segment_time[0] = segment_time;
  759. }
  760. if((direction_change & BIT(Y_AXIS)) == 0)
  761. {
  762. y_segment_time[0] += segment_time;
  763. }
  764. else
  765. {
  766. y_segment_time[2] = y_segment_time[1];
  767. y_segment_time[1] = y_segment_time[0];
  768. y_segment_time[0] = segment_time;
  769. }
  770. long max_x_segment_time = max(x_segment_time[0], max(x_segment_time[1], x_segment_time[2]));
  771. long max_y_segment_time = max(y_segment_time[0], max(y_segment_time[1], y_segment_time[2]));
  772. long min_xy_segment_time =min(max_x_segment_time, max_y_segment_time);
  773. if(min_xy_segment_time < MAX_FREQ_TIME)
  774. speed_factor = min(speed_factor, speed_factor * (float)min_xy_segment_time / (float)MAX_FREQ_TIME);
  775. #endif // XY_FREQUENCY_LIMIT
  776. // Correct the speed
  777. if( speed_factor < 1.0)
  778. {
  779. for(unsigned char i=0; i < 4; i++)
  780. {
  781. current_speed[i] *= speed_factor;
  782. }
  783. block->nominal_speed *= speed_factor;
  784. block->nominal_rate *= speed_factor;
  785. }
  786. // Compute and limit the acceleration rate for the trapezoid generator.
  787. float steps_per_mm = block->step_event_count/block->millimeters;
  788. if(block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0)
  789. {
  790. block->acceleration_st = ceil(retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  791. }
  792. else if(block->steps_e == 0)
  793. {
  794. block->acceleration_st = ceil(travel_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  795. }
  796. else
  797. {
  798. block->acceleration_st = ceil(acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  799. }
  800. // Limit acceleration per axis
  801. if(((float)block->acceleration_st * (float)block->steps_x / (float)block->step_event_count) > axis_steps_per_sqr_second[X_AXIS])
  802. block->acceleration_st = axis_steps_per_sqr_second[X_AXIS];
  803. if(((float)block->acceleration_st * (float)block->steps_y / (float)block->step_event_count) > axis_steps_per_sqr_second[Y_AXIS])
  804. block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS];
  805. if(((float)block->acceleration_st * (float)block->steps_e / (float)block->step_event_count) > axis_steps_per_sqr_second[E_AXIS])
  806. block->acceleration_st = axis_steps_per_sqr_second[E_AXIS];
  807. if(((float)block->acceleration_st * (float)block->steps_z / (float)block->step_event_count ) > axis_steps_per_sqr_second[Z_AXIS])
  808. block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS];
  809. block->acceleration = block->acceleration_st / steps_per_mm;
  810. block->acceleration_rate = (long)((float)block->acceleration_st * (16777216.0 / (F_CPU / 8.0)));
  811. #if 0 // Use old jerk for now
  812. // Compute path unit vector
  813. double unit_vec[3];
  814. unit_vec[X_AXIS] = delta_mm[X_AXIS]*inverse_millimeters;
  815. unit_vec[Y_AXIS] = delta_mm[Y_AXIS]*inverse_millimeters;
  816. unit_vec[Z_AXIS] = delta_mm[Z_AXIS]*inverse_millimeters;
  817. // Compute maximum allowable entry speed at junction by centripetal acceleration approximation.
  818. // Let a circle be tangent to both previous and current path line segments, where the junction
  819. // deviation is defined as the distance from the junction to the closest edge of the circle,
  820. // colinear with the circle center. The circular segment joining the two paths represents the
  821. // path of centripetal acceleration. Solve for max velocity based on max acceleration about the
  822. // radius of the circle, defined indirectly by junction deviation. This may be also viewed as
  823. // path width or max_jerk in the previous grbl version. This approach does not actually deviate
  824. // from path, but used as a robust way to compute cornering speeds, as it takes into account the
  825. // nonlinearities of both the junction angle and junction velocity.
  826. double vmax_junction = MINIMUM_PLANNER_SPEED; // Set default max junction speed
  827. // Skip first block or when previous_nominal_speed is used as a flag for homing and offset cycles.
  828. if ((block_buffer_head != block_buffer_tail) && (previous_nominal_speed > 0.0)) {
  829. // Compute cosine of angle between previous and current path. (prev_unit_vec is negative)
  830. // NOTE: Max junction velocity is computed without sin() or acos() by trig half angle identity.
  831. double cos_theta = - previous_unit_vec[X_AXIS] * unit_vec[X_AXIS]
  832. - previous_unit_vec[Y_AXIS] * unit_vec[Y_AXIS]
  833. - previous_unit_vec[Z_AXIS] * unit_vec[Z_AXIS] ;
  834. // Skip and use default max junction speed for 0 degree acute junction.
  835. if (cos_theta < 0.95) {
  836. vmax_junction = min(previous_nominal_speed,block->nominal_speed);
  837. // Skip and avoid divide by zero for straight junctions at 180 degrees. Limit to min() of nominal speeds.
  838. if (cos_theta > -0.95) {
  839. // Compute maximum junction velocity based on maximum acceleration and junction deviation
  840. double sin_theta_d2 = sqrt(0.5*(1.0-cos_theta)); // Trig half angle identity. Always positive.
  841. vmax_junction = min(vmax_junction,
  842. sqrt(block->acceleration * junction_deviation * sin_theta_d2/(1.0-sin_theta_d2)) );
  843. }
  844. }
  845. }
  846. #endif
  847. // Start with a safe speed
  848. float vmax_junction = max_xy_jerk/2;
  849. float vmax_junction_factor = 1.0;
  850. if(fabs(current_speed[Z_AXIS]) > max_z_jerk/2)
  851. vmax_junction = min(vmax_junction, max_z_jerk/2);
  852. if(fabs(current_speed[E_AXIS]) > max_e_jerk/2)
  853. vmax_junction = min(vmax_junction, max_e_jerk/2);
  854. vmax_junction = min(vmax_junction, block->nominal_speed);
  855. float safe_speed = vmax_junction;
  856. if ((moves_queued > 1) && (previous_nominal_speed > 0.0001)) {
  857. float jerk = sqrt(pow((current_speed[X_AXIS]-previous_speed[X_AXIS]), 2)+pow((current_speed[Y_AXIS]-previous_speed[Y_AXIS]), 2));
  858. // if((fabs(previous_speed[X_AXIS]) > 0.0001) || (fabs(previous_speed[Y_AXIS]) > 0.0001)) {
  859. vmax_junction = block->nominal_speed;
  860. // }
  861. if (jerk > max_xy_jerk) {
  862. vmax_junction_factor = (max_xy_jerk/jerk);
  863. }
  864. if(fabs(current_speed[Z_AXIS] - previous_speed[Z_AXIS]) > max_z_jerk) {
  865. vmax_junction_factor= min(vmax_junction_factor, (max_z_jerk/fabs(current_speed[Z_AXIS] - previous_speed[Z_AXIS])));
  866. }
  867. if(fabs(current_speed[E_AXIS] - previous_speed[E_AXIS]) > max_e_jerk) {
  868. vmax_junction_factor = min(vmax_junction_factor, (max_e_jerk/fabs(current_speed[E_AXIS] - previous_speed[E_AXIS])));
  869. }
  870. vmax_junction = min(previous_nominal_speed, vmax_junction * vmax_junction_factor); // Limit speed to max previous speed
  871. }
  872. block->max_entry_speed = vmax_junction;
  873. // Initialize block entry speed. Compute based on deceleration to user-defined MINIMUM_PLANNER_SPEED.
  874. double v_allowable = max_allowable_speed(-block->acceleration,MINIMUM_PLANNER_SPEED,block->millimeters);
  875. block->entry_speed = min(vmax_junction, v_allowable);
  876. // Initialize planner efficiency flags
  877. // Set flag if block will always reach maximum junction speed regardless of entry/exit speeds.
  878. // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
  879. // the current block and next block junction speeds are guaranteed to always be at their maximum
  880. // junction speeds in deceleration and acceleration, respectively. This is due to how the current
  881. // block nominal speed limits both the current and next maximum junction speeds. Hence, in both
  882. // the reverse and forward planners, the corresponding block junction speed will always be at the
  883. // the maximum junction speed and may always be ignored for any speed reduction checks.
  884. if (block->nominal_speed <= v_allowable) {
  885. block->nominal_length_flag = true;
  886. }
  887. else {
  888. block->nominal_length_flag = false;
  889. }
  890. block->recalculate_flag = true; // Always calculate trapezoid for new block
  891. // Update previous path unit_vector and nominal speed
  892. memcpy(previous_speed, current_speed, sizeof(previous_speed)); // previous_speed[] = current_speed[]
  893. previous_nominal_speed = block->nominal_speed;
  894. #ifdef ADVANCE
  895. // Calculate advance rate
  896. if((block->steps_e == 0) || (block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0)) {
  897. block->advance_rate = 0;
  898. block->advance = 0;
  899. }
  900. else {
  901. long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_st);
  902. float advance = (STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K) *
  903. (current_speed[E_AXIS] * current_speed[E_AXIS] * EXTRUSION_AREA * EXTRUSION_AREA)*256;
  904. block->advance = advance;
  905. if(acc_dist == 0) {
  906. block->advance_rate = 0;
  907. }
  908. else {
  909. block->advance_rate = advance / (float)acc_dist;
  910. }
  911. }
  912. /*
  913. SERIAL_ECHO_START;
  914. SERIAL_ECHOPGM("advance :");
  915. SERIAL_ECHO(block->advance/256.0);
  916. SERIAL_ECHOPGM("advance rate :");
  917. SERIAL_ECHOLN(block->advance_rate/256.0);
  918. */
  919. #endif // ADVANCE
  920. calculate_trapezoid_for_block(block, block->entry_speed/block->nominal_speed,
  921. safe_speed/block->nominal_speed);
  922. // Move buffer head
  923. block_buffer_head = next_buffer_head;
  924. // Update position
  925. memcpy(position, target, sizeof(target)); // position[] = target[]
  926. planner_recalculate();
  927. st_wake_up();
  928. }
  929. #ifdef ENABLE_AUTO_BED_LEVELING
  930. vector_3 plan_get_position() {
  931. vector_3 position = vector_3(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  932. //position.debug("in plan_get position");
  933. //plan_bed_level_matrix.debug("in plan_get bed_level");
  934. matrix_3x3 inverse = matrix_3x3::transpose(plan_bed_level_matrix);
  935. //inverse.debug("in plan_get inverse");
  936. position.apply_rotation(inverse);
  937. //position.debug("after rotation");
  938. return position;
  939. }
  940. #endif // ENABLE_AUTO_BED_LEVELING
  941. #ifdef ENABLE_AUTO_BED_LEVELING
  942. void plan_set_position(float x, float y, float z, const float &e)
  943. {
  944. apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
  945. #else
  946. void plan_set_position(const float &x, const float &y, const float &z, const float &e)
  947. {
  948. #endif // ENABLE_AUTO_BED_LEVELING
  949. position[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]);
  950. position[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);
  951. position[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
  952. position[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
  953. st_set_position(position[X_AXIS], position[Y_AXIS], position[Z_AXIS], position[E_AXIS]);
  954. previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
  955. previous_speed[0] = 0.0;
  956. previous_speed[1] = 0.0;
  957. previous_speed[2] = 0.0;
  958. previous_speed[3] = 0.0;
  959. }
  960. void plan_set_e_position(const float &e)
  961. {
  962. position[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
  963. st_set_e_position(position[E_AXIS]);
  964. }
  965. uint8_t movesplanned()
  966. {
  967. return (block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1);
  968. }
  969. #ifdef PREVENT_DANGEROUS_EXTRUDE
  970. void set_extrude_min_temp(float temp)
  971. {
  972. extrude_min_temp=temp;
  973. }
  974. #endif
  975. // Calculate the steps/s^2 acceleration rates, based on the mm/s^s
  976. void reset_acceleration_rates()
  977. {
  978. for(int8_t i=0; i < NUM_AXIS; i++)
  979. {
  980. axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i];
  981. }
  982. }