My Marlin configs for Fabrikator Mini and CTC i3 Pro B
您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

stepper.cpp 36KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169
  1. /*
  2. stepper.c - stepper motor driver: executes motion plans using stepper motors
  3. Part of Grbl
  4. Copyright (c) 2009-2011 Simen Svale Skogsrud
  5. Grbl is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. Grbl is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
  17. and Philipp Tiefenbacher. */
  18. #include "Marlin.h"
  19. #include "stepper.h"
  20. #include "planner.h"
  21. #include "temperature.h"
  22. #include "ultralcd.h"
  23. #include "language.h"
  24. #include "cardreader.h"
  25. #include "speed_lookuptable.h"
  26. #if HAS_DIGIPOTSS
  27. #include <SPI.h>
  28. #endif
  29. //===========================================================================
  30. //============================= public variables ============================
  31. //===========================================================================
  32. block_t *current_block; // A pointer to the block currently being traced
  33. //===========================================================================
  34. //============================= private variables ===========================
  35. //===========================================================================
  36. //static makes it impossible to be called from outside of this file by extern.!
  37. // Variables used by The Stepper Driver Interrupt
  38. static unsigned char out_bits; // The next stepping-bits to be output
  39. // Counter variables for the bresenham line tracer
  40. static long counter_x, counter_y, counter_z, counter_e;
  41. volatile static unsigned long step_events_completed; // The number of step events executed in the current block
  42. #ifdef ADVANCE
  43. static long advance_rate, advance, final_advance = 0;
  44. static long old_advance = 0;
  45. static long e_steps[4];
  46. #endif
  47. static long acceleration_time, deceleration_time;
  48. //static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
  49. static unsigned short acc_step_rate; // needed for deccelaration start point
  50. static char step_loops;
  51. static unsigned short OCR1A_nominal;
  52. static unsigned short step_loops_nominal;
  53. volatile long endstops_trigsteps[3] = { 0 };
  54. volatile long endstops_stepsTotal, endstops_stepsDone;
  55. static volatile bool endstop_x_hit = false;
  56. static volatile bool endstop_y_hit = false;
  57. static volatile bool endstop_z_hit = false;
  58. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  59. bool abort_on_endstop_hit = false;
  60. #endif
  61. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  62. int motor_current_setting[3] = DEFAULT_PWM_MOTOR_CURRENT;
  63. #endif
  64. static bool old_x_min_endstop = false,
  65. old_x_max_endstop = false,
  66. old_y_min_endstop = false,
  67. old_y_max_endstop = false,
  68. old_z_min_endstop = false,
  69. old_z_max_endstop = false;
  70. static bool check_endstops = true;
  71. volatile long count_position[NUM_AXIS] = { 0 };
  72. volatile signed char count_direction[NUM_AXIS] = { 1 };
  73. //===========================================================================
  74. //================================ functions ================================
  75. //===========================================================================
  76. #ifdef DUAL_X_CARRIAGE
  77. #define X_APPLY_DIR(v,ALWAYS) \
  78. if (extruder_duplication_enabled || ALWAYS) { \
  79. X_DIR_WRITE(v); \
  80. X2_DIR_WRITE(v); \
  81. } \
  82. else{ \
  83. if (current_block->active_extruder) \
  84. X2_DIR_WRITE(v); \
  85. else \
  86. X_DIR_WRITE(v); \
  87. }
  88. #define X_APPLY_STEP(v,ALWAYS) \
  89. if (extruder_duplication_enabled || ALWAYS) { \
  90. X_STEP_WRITE(v); \
  91. X2_STEP_WRITE(v); \
  92. } \
  93. else { \
  94. if (current_block->active_extruder != 0) \
  95. X2_STEP_WRITE(v); \
  96. else \
  97. X_STEP_WRITE(v); \
  98. }
  99. #else
  100. #define X_APPLY_DIR(v,Q) X_DIR_WRITE(v)
  101. #define X_APPLY_STEP(v,Q) X_STEP_WRITE(v)
  102. #endif
  103. #ifdef Y_DUAL_STEPPER_DRIVERS
  104. #define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v), Y2_DIR_WRITE((v) != INVERT_Y2_VS_Y_DIR)
  105. #define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v), Y2_STEP_WRITE(v)
  106. #else
  107. #define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v)
  108. #define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v)
  109. #endif
  110. #ifdef Z_DUAL_STEPPER_DRIVERS
  111. #define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v), Z2_DIR_WRITE(v)
  112. #define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v), Z2_STEP_WRITE(v)
  113. #else
  114. #define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v)
  115. #define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v)
  116. #endif
  117. #define E_APPLY_STEP(v,Q) E_STEP_WRITE(v)
  118. // intRes = intIn1 * intIn2 >> 16
  119. // uses:
  120. // r26 to store 0
  121. // r27 to store the byte 1 of the 24 bit result
  122. #define MultiU16X8toH16(intRes, charIn1, intIn2) \
  123. asm volatile ( \
  124. "clr r26 \n\t" \
  125. "mul %A1, %B2 \n\t" \
  126. "movw %A0, r0 \n\t" \
  127. "mul %A1, %A2 \n\t" \
  128. "add %A0, r1 \n\t" \
  129. "adc %B0, r26 \n\t" \
  130. "lsr r0 \n\t" \
  131. "adc %A0, r26 \n\t" \
  132. "adc %B0, r26 \n\t" \
  133. "clr r1 \n\t" \
  134. : \
  135. "=&r" (intRes) \
  136. : \
  137. "d" (charIn1), \
  138. "d" (intIn2) \
  139. : \
  140. "r26" \
  141. )
  142. // intRes = longIn1 * longIn2 >> 24
  143. // uses:
  144. // r26 to store 0
  145. // r27 to store the byte 1 of the 48bit result
  146. #define MultiU24X24toH16(intRes, longIn1, longIn2) \
  147. asm volatile ( \
  148. "clr r26 \n\t" \
  149. "mul %A1, %B2 \n\t" \
  150. "mov r27, r1 \n\t" \
  151. "mul %B1, %C2 \n\t" \
  152. "movw %A0, r0 \n\t" \
  153. "mul %C1, %C2 \n\t" \
  154. "add %B0, r0 \n\t" \
  155. "mul %C1, %B2 \n\t" \
  156. "add %A0, r0 \n\t" \
  157. "adc %B0, r1 \n\t" \
  158. "mul %A1, %C2 \n\t" \
  159. "add r27, r0 \n\t" \
  160. "adc %A0, r1 \n\t" \
  161. "adc %B0, r26 \n\t" \
  162. "mul %B1, %B2 \n\t" \
  163. "add r27, r0 \n\t" \
  164. "adc %A0, r1 \n\t" \
  165. "adc %B0, r26 \n\t" \
  166. "mul %C1, %A2 \n\t" \
  167. "add r27, r0 \n\t" \
  168. "adc %A0, r1 \n\t" \
  169. "adc %B0, r26 \n\t" \
  170. "mul %B1, %A2 \n\t" \
  171. "add r27, r1 \n\t" \
  172. "adc %A0, r26 \n\t" \
  173. "adc %B0, r26 \n\t" \
  174. "lsr r27 \n\t" \
  175. "adc %A0, r26 \n\t" \
  176. "adc %B0, r26 \n\t" \
  177. "clr r1 \n\t" \
  178. : \
  179. "=&r" (intRes) \
  180. : \
  181. "d" (longIn1), \
  182. "d" (longIn2) \
  183. : \
  184. "r26" , "r27" \
  185. )
  186. // Some useful constants
  187. #define ENABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 |= BIT(OCIE1A)
  188. #define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~BIT(OCIE1A)
  189. void endstops_hit_on_purpose() {
  190. endstop_x_hit = endstop_y_hit = endstop_z_hit = false;
  191. }
  192. void checkHitEndstops() {
  193. if (endstop_x_hit || endstop_y_hit || endstop_z_hit) {
  194. SERIAL_ECHO_START;
  195. SERIAL_ECHOPGM(MSG_ENDSTOPS_HIT);
  196. if (endstop_x_hit) {
  197. SERIAL_ECHOPAIR(" X:", (float)endstops_trigsteps[X_AXIS] / axis_steps_per_unit[X_AXIS]);
  198. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "X");
  199. }
  200. if (endstop_y_hit) {
  201. SERIAL_ECHOPAIR(" Y:", (float)endstops_trigsteps[Y_AXIS] / axis_steps_per_unit[Y_AXIS]);
  202. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Y");
  203. }
  204. if (endstop_z_hit) {
  205. SERIAL_ECHOPAIR(" Z:", (float)endstops_trigsteps[Z_AXIS] / axis_steps_per_unit[Z_AXIS]);
  206. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Z");
  207. }
  208. SERIAL_EOL;
  209. endstops_hit_on_purpose();
  210. #if defined(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && defined(SDSUPPORT)
  211. if (abort_on_endstop_hit) {
  212. card.sdprinting = false;
  213. card.closefile();
  214. quickStop();
  215. setTargetHotend0(0);
  216. setTargetHotend1(0);
  217. setTargetHotend2(0);
  218. setTargetHotend3(0);
  219. setTargetBed(0);
  220. }
  221. #endif
  222. }
  223. }
  224. void enable_endstops(bool check) { check_endstops = check; }
  225. // __________________________
  226. // /| |\ _________________ ^
  227. // / | | \ /| |\ |
  228. // / | | \ / | | \ s
  229. // / | | | | | \ p
  230. // / | | | | | \ e
  231. // +-----+------------------------+---+--+---------------+----+ e
  232. // | BLOCK 1 | BLOCK 2 | d
  233. //
  234. // time ----->
  235. //
  236. // The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
  237. // first block->accelerate_until step_events_completed, then keeps going at constant speed until
  238. // step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
  239. // The slope of acceleration is calculated with the leib ramp alghorithm.
  240. void st_wake_up() {
  241. // TCNT1 = 0;
  242. ENABLE_STEPPER_DRIVER_INTERRUPT();
  243. }
  244. FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {
  245. unsigned short timer;
  246. if (step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY;
  247. if (step_rate > 20000) { // If steprate > 20kHz >> step 4 times
  248. step_rate = (step_rate >> 2) & 0x3fff;
  249. step_loops = 4;
  250. }
  251. else if (step_rate > 10000) { // If steprate > 10kHz >> step 2 times
  252. step_rate = (step_rate >> 1) & 0x7fff;
  253. step_loops = 2;
  254. }
  255. else {
  256. step_loops = 1;
  257. }
  258. if (step_rate < (F_CPU / 500000)) step_rate = (F_CPU / 500000);
  259. step_rate -= (F_CPU / 500000); // Correct for minimal speed
  260. if (step_rate >= (8 * 256)) { // higher step rate
  261. unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0];
  262. unsigned char tmp_step_rate = (step_rate & 0x00ff);
  263. unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2);
  264. MultiU16X8toH16(timer, tmp_step_rate, gain);
  265. timer = (unsigned short)pgm_read_word_near(table_address) - timer;
  266. }
  267. else { // lower step rates
  268. unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
  269. table_address += ((step_rate)>>1) & 0xfffc;
  270. timer = (unsigned short)pgm_read_word_near(table_address);
  271. timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3);
  272. }
  273. if (timer < 100) { timer = 100; MYSERIAL.print(MSG_STEPPER_TOO_HIGH); MYSERIAL.println(step_rate); }//(20kHz this should never happen)
  274. return timer;
  275. }
  276. // Initializes the trapezoid generator from the current block. Called whenever a new
  277. // block begins.
  278. FORCE_INLINE void trapezoid_generator_reset() {
  279. #ifdef ADVANCE
  280. advance = current_block->initial_advance;
  281. final_advance = current_block->final_advance;
  282. // Do E steps + advance steps
  283. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  284. old_advance = advance >>8;
  285. #endif
  286. deceleration_time = 0;
  287. // step_rate to timer interval
  288. OCR1A_nominal = calc_timer(current_block->nominal_rate);
  289. // make a note of the number of step loops required at nominal speed
  290. step_loops_nominal = step_loops;
  291. acc_step_rate = current_block->initial_rate;
  292. acceleration_time = calc_timer(acc_step_rate);
  293. OCR1A = acceleration_time;
  294. // SERIAL_ECHO_START;
  295. // SERIAL_ECHOPGM("advance :");
  296. // SERIAL_ECHO(current_block->advance/256.0);
  297. // SERIAL_ECHOPGM("advance rate :");
  298. // SERIAL_ECHO(current_block->advance_rate/256.0);
  299. // SERIAL_ECHOPGM("initial advance :");
  300. // SERIAL_ECHO(current_block->initial_advance/256.0);
  301. // SERIAL_ECHOPGM("final advance :");
  302. // SERIAL_ECHOLN(current_block->final_advance/256.0);
  303. }
  304. // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
  305. // It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
  306. ISR(TIMER1_COMPA_vect) {
  307. // If there is no current block, attempt to pop one from the buffer
  308. if (!current_block) {
  309. // Anything in the buffer?
  310. current_block = plan_get_current_block();
  311. if (current_block) {
  312. current_block->busy = true;
  313. trapezoid_generator_reset();
  314. counter_x = -(current_block->step_event_count >> 1);
  315. counter_y = counter_z = counter_e = counter_x;
  316. step_events_completed = 0;
  317. #ifdef Z_LATE_ENABLE
  318. if (current_block->steps_z > 0) {
  319. enable_z();
  320. OCR1A = 2000; //1ms wait
  321. return;
  322. }
  323. #endif
  324. // #ifdef ADVANCE
  325. // e_steps[current_block->active_extruder] = 0;
  326. // #endif
  327. }
  328. else {
  329. OCR1A = 2000; // 1kHz.
  330. }
  331. }
  332. if (current_block != NULL) {
  333. // Set directions TO DO This should be done once during init of trapezoid. Endstops -> interrupt
  334. out_bits = current_block->direction_bits;
  335. // Set the direction bits (X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY)
  336. if (TEST(out_bits, X_AXIS)) {
  337. X_APPLY_DIR(INVERT_X_DIR,0);
  338. count_direction[X_AXIS] = -1;
  339. }
  340. else {
  341. X_APPLY_DIR(!INVERT_X_DIR,0);
  342. count_direction[X_AXIS] = 1;
  343. }
  344. if (TEST(out_bits, Y_AXIS)) {
  345. Y_APPLY_DIR(INVERT_Y_DIR,0);
  346. count_direction[Y_AXIS] = -1;
  347. }
  348. else {
  349. Y_APPLY_DIR(!INVERT_Y_DIR,0);
  350. count_direction[Y_AXIS] = 1;
  351. }
  352. #define UPDATE_ENDSTOP(axis,AXIS,minmax,MINMAX) \
  353. bool axis ##_## minmax ##_endstop = (READ(AXIS ##_## MINMAX ##_PIN) != AXIS ##_## MINMAX ##_ENDSTOP_INVERTING); \
  354. if (axis ##_## minmax ##_endstop && old_## axis ##_## minmax ##_endstop && (current_block->steps_## axis > 0)) { \
  355. endstops_trigsteps[AXIS ##_AXIS] = count_position[AXIS ##_AXIS]; \
  356. endstop_## axis ##_hit = true; \
  357. step_events_completed = current_block->step_event_count; \
  358. } \
  359. old_## axis ##_## minmax ##_endstop = axis ##_## minmax ##_endstop;
  360. // Check X and Y endstops
  361. if (check_endstops) {
  362. #ifndef COREXY
  363. if (TEST(out_bits, X_AXIS)) // stepping along -X axis (regular cartesians bot)
  364. #else
  365. // Head direction in -X axis for CoreXY bots.
  366. // If DeltaX == -DeltaY, the movement is only in Y axis
  367. if (TEST(out_bits, X_HEAD) && (current_block->steps_x != current_block->steps_y || (TEST(out_bits, X_AXIS) == TEST(out_bits, Y_AXIS))))
  368. #endif
  369. { // -direction
  370. #ifdef DUAL_X_CARRIAGE
  371. // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
  372. if ((current_block->active_extruder == 0 && X_HOME_DIR == -1) || (current_block->active_extruder != 0 && X2_HOME_DIR == -1))
  373. #endif
  374. {
  375. #if defined(X_MIN_PIN) && X_MIN_PIN >= 0
  376. UPDATE_ENDSTOP(x, X, min, MIN);
  377. #endif
  378. }
  379. }
  380. else { // +direction
  381. #ifdef DUAL_X_CARRIAGE
  382. // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
  383. if ((current_block->active_extruder == 0 && X_HOME_DIR == 1) || (current_block->active_extruder != 0 && X2_HOME_DIR == 1))
  384. #endif
  385. {
  386. #if defined(X_MAX_PIN) && X_MAX_PIN >= 0
  387. UPDATE_ENDSTOP(x, X, max, MAX);
  388. #endif
  389. }
  390. }
  391. #ifndef COREXY
  392. if (TEST(out_bits, Y_AXIS)) // -direction
  393. #else
  394. // Head direction in -Y axis for CoreXY bots.
  395. // If DeltaX == DeltaY, the movement is only in X axis
  396. if (TEST(out_bits, Y_HEAD) && (current_block->steps_x != current_block->steps_y || (TEST(out_bits, X_AXIS) != TEST(out_bits, Y_AXIS))))
  397. #endif
  398. { // -direction
  399. #if defined(Y_MIN_PIN) && Y_MIN_PIN >= 0
  400. UPDATE_ENDSTOP(y, Y, min, MIN);
  401. #endif
  402. }
  403. else { // +direction
  404. #if defined(Y_MAX_PIN) && Y_MAX_PIN >= 0
  405. UPDATE_ENDSTOP(y, Y, max, MAX);
  406. #endif
  407. }
  408. }
  409. if (TEST(out_bits, Z_AXIS)) { // -direction
  410. Z_DIR_WRITE(INVERT_Z_DIR);
  411. #ifdef Z_DUAL_STEPPER_DRIVERS
  412. Z2_DIR_WRITE(INVERT_Z_DIR);
  413. #endif
  414. count_direction[Z_AXIS] = -1;
  415. if (check_endstops) {
  416. #if defined(Z_MIN_PIN) && Z_MIN_PIN >= 0
  417. UPDATE_ENDSTOP(z, Z, min, MIN);
  418. #endif
  419. }
  420. }
  421. else { // +direction
  422. Z_DIR_WRITE(!INVERT_Z_DIR);
  423. #ifdef Z_DUAL_STEPPER_DRIVERS
  424. Z2_DIR_WRITE(!INVERT_Z_DIR);
  425. #endif
  426. count_direction[Z_AXIS] = 1;
  427. if (check_endstops) {
  428. #if defined(Z_MAX_PIN) && Z_MAX_PIN >= 0
  429. UPDATE_ENDSTOP(z, Z, max, MAX);
  430. #endif
  431. }
  432. }
  433. #ifndef ADVANCE
  434. if (TEST(out_bits, E_AXIS)) { // -direction
  435. REV_E_DIR();
  436. count_direction[E_AXIS]=-1;
  437. }
  438. else { // +direction
  439. NORM_E_DIR();
  440. count_direction[E_AXIS]=1;
  441. }
  442. #endif //!ADVANCE
  443. // Take multiple steps per interrupt (For high speed moves)
  444. for (int8_t i=0; i < step_loops; i++) {
  445. #ifndef AT90USB
  446. MSerial.checkRx(); // Check for serial chars.
  447. #endif
  448. #ifdef ADVANCE
  449. counter_e += current_block->steps_e;
  450. if (counter_e > 0) {
  451. counter_e -= current_block->step_event_count;
  452. e_steps[current_block->active_extruder] += TEST(out_bits, E_AXIS) ? -1 : 1;
  453. }
  454. #endif //ADVANCE
  455. #ifdef CONFIG_STEPPERS_TOSHIBA
  456. /**
  457. * The Toshiba stepper controller require much longer pulses.
  458. * So we 'stage' decompose the pulses between high and low
  459. * instead of doing each in turn. The extra tests add enough
  460. * lag to allow it work with without needing NOPs
  461. */
  462. counter_x += current_block->steps_x;
  463. if (counter_x > 0) X_STEP_WRITE(HIGH);
  464. counter_y += current_block->steps_y;
  465. if (counter_y > 0) Y_STEP_WRITE(HIGH);
  466. counter_z += current_block->steps_z;
  467. if (counter_z > 0) Z_STEP_WRITE(HIGH);
  468. #ifndef ADVANCE
  469. counter_e += current_block->steps_e;
  470. if (counter_e > 0) E_STEP_WRITE(HIGH);
  471. #endif
  472. #define STEP_IF_COUNTER(axis, AXIS) \
  473. if (counter_## axis > 0) {
  474. counter_## axis -= current_block->step_event_count; \
  475. count_position[AXIS ##_AXIS] += count_direction[AXIS ##_AXIS]; \
  476. AXIS ##_STEP_WRITE(LOW);
  477. }
  478. STEP_IF_COUNTER(x, X);
  479. STEP_IF_COUNTER(y, Y);
  480. STEP_IF_COUNTER(z, Z);
  481. #ifndef ADVANCE
  482. STEP_IF_COUNTER(e, E);
  483. #endif
  484. #else // !CONFIG_STEPPERS_TOSHIBA
  485. #define APPLY_MOVEMENT(axis, AXIS) \
  486. counter_## axis += current_block->steps_## axis; \
  487. if (counter_## axis > 0) { \
  488. AXIS ##_APPLY_STEP(!INVERT_## AXIS ##_STEP_PIN,0); \
  489. counter_## axis -= current_block->step_event_count; \
  490. count_position[AXIS ##_AXIS] += count_direction[AXIS ##_AXIS]; \
  491. AXIS ##_APPLY_STEP(INVERT_## AXIS ##_STEP_PIN,0); \
  492. }
  493. APPLY_MOVEMENT(x, X);
  494. APPLY_MOVEMENT(y, Y);
  495. APPLY_MOVEMENT(z, Z);
  496. #ifndef ADVANCE
  497. APPLY_MOVEMENT(e, E);
  498. #endif
  499. #endif // CONFIG_STEPPERS_TOSHIBA
  500. step_events_completed++;
  501. if (step_events_completed >= current_block->step_event_count) break;
  502. }
  503. // Calculare new timer value
  504. unsigned short timer;
  505. unsigned short step_rate;
  506. if (step_events_completed <= (unsigned long int)current_block->accelerate_until) {
  507. MultiU24X24toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
  508. acc_step_rate += current_block->initial_rate;
  509. // upper limit
  510. if (acc_step_rate > current_block->nominal_rate)
  511. acc_step_rate = current_block->nominal_rate;
  512. // step_rate to timer interval
  513. timer = calc_timer(acc_step_rate);
  514. OCR1A = timer;
  515. acceleration_time += timer;
  516. #ifdef ADVANCE
  517. for(int8_t i=0; i < step_loops; i++) {
  518. advance += advance_rate;
  519. }
  520. //if (advance > current_block->advance) advance = current_block->advance;
  521. // Do E steps + advance steps
  522. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  523. old_advance = advance >>8;
  524. #endif
  525. }
  526. else if (step_events_completed > (unsigned long int)current_block->decelerate_after) {
  527. MultiU24X24toH16(step_rate, deceleration_time, current_block->acceleration_rate);
  528. if (step_rate > acc_step_rate) { // Check step_rate stays positive
  529. step_rate = current_block->final_rate;
  530. }
  531. else {
  532. step_rate = acc_step_rate - step_rate; // Decelerate from aceleration end point.
  533. }
  534. // lower limit
  535. if (step_rate < current_block->final_rate)
  536. step_rate = current_block->final_rate;
  537. // step_rate to timer interval
  538. timer = calc_timer(step_rate);
  539. OCR1A = timer;
  540. deceleration_time += timer;
  541. #ifdef ADVANCE
  542. for(int8_t i=0; i < step_loops; i++) {
  543. advance -= advance_rate;
  544. }
  545. if (advance < final_advance) advance = final_advance;
  546. // Do E steps + advance steps
  547. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  548. old_advance = advance >>8;
  549. #endif //ADVANCE
  550. }
  551. else {
  552. OCR1A = OCR1A_nominal;
  553. // ensure we're running at the correct step rate, even if we just came off an acceleration
  554. step_loops = step_loops_nominal;
  555. }
  556. // If current block is finished, reset pointer
  557. if (step_events_completed >= current_block->step_event_count) {
  558. current_block = NULL;
  559. plan_discard_current_block();
  560. }
  561. }
  562. }
  563. #ifdef ADVANCE
  564. unsigned char old_OCR0A;
  565. // Timer interrupt for E. e_steps is set in the main routine;
  566. // Timer 0 is shared with millies
  567. ISR(TIMER0_COMPA_vect)
  568. {
  569. old_OCR0A += 52; // ~10kHz interrupt (250000 / 26 = 9615kHz)
  570. OCR0A = old_OCR0A;
  571. // Set E direction (Depends on E direction + advance)
  572. for(unsigned char i=0; i<4;i++) {
  573. if (e_steps[0] != 0) {
  574. E0_STEP_WRITE(INVERT_E_STEP_PIN);
  575. if (e_steps[0] < 0) {
  576. E0_DIR_WRITE(INVERT_E0_DIR);
  577. e_steps[0]++;
  578. E0_STEP_WRITE(!INVERT_E_STEP_PIN);
  579. }
  580. else if (e_steps[0] > 0) {
  581. E0_DIR_WRITE(!INVERT_E0_DIR);
  582. e_steps[0]--;
  583. E0_STEP_WRITE(!INVERT_E_STEP_PIN);
  584. }
  585. }
  586. #if EXTRUDERS > 1
  587. if (e_steps[1] != 0) {
  588. E1_STEP_WRITE(INVERT_E_STEP_PIN);
  589. if (e_steps[1] < 0) {
  590. E1_DIR_WRITE(INVERT_E1_DIR);
  591. e_steps[1]++;
  592. E1_STEP_WRITE(!INVERT_E_STEP_PIN);
  593. }
  594. else if (e_steps[1] > 0) {
  595. E1_DIR_WRITE(!INVERT_E1_DIR);
  596. e_steps[1]--;
  597. E1_STEP_WRITE(!INVERT_E_STEP_PIN);
  598. }
  599. }
  600. #endif
  601. #if EXTRUDERS > 2
  602. if (e_steps[2] != 0) {
  603. E2_STEP_WRITE(INVERT_E_STEP_PIN);
  604. if (e_steps[2] < 0) {
  605. E2_DIR_WRITE(INVERT_E2_DIR);
  606. e_steps[2]++;
  607. E2_STEP_WRITE(!INVERT_E_STEP_PIN);
  608. }
  609. else if (e_steps[2] > 0) {
  610. E2_DIR_WRITE(!INVERT_E2_DIR);
  611. e_steps[2]--;
  612. E2_STEP_WRITE(!INVERT_E_STEP_PIN);
  613. }
  614. }
  615. #endif
  616. #if EXTRUDERS > 3
  617. if (e_steps[3] != 0) {
  618. E3_STEP_WRITE(INVERT_E_STEP_PIN);
  619. if (e_steps[3] < 0) {
  620. E3_DIR_WRITE(INVERT_E3_DIR);
  621. e_steps[3]++;
  622. E3_STEP_WRITE(!INVERT_E_STEP_PIN);
  623. }
  624. else if (e_steps[3] > 0) {
  625. E3_DIR_WRITE(!INVERT_E3_DIR);
  626. e_steps[3]--;
  627. E3_STEP_WRITE(!INVERT_E_STEP_PIN);
  628. }
  629. }
  630. #endif
  631. }
  632. }
  633. #endif // ADVANCE
  634. void st_init() {
  635. digipot_init(); //Initialize Digipot Motor Current
  636. microstep_init(); //Initialize Microstepping Pins
  637. // initialise TMC Steppers
  638. #ifdef HAVE_TMCDRIVER
  639. tmc_init();
  640. #endif
  641. // initialise L6470 Steppers
  642. #ifdef HAVE_L6470DRIVER
  643. L6470_init();
  644. #endif
  645. // Initialize Dir Pins
  646. #if defined(X_DIR_PIN) && X_DIR_PIN >= 0
  647. X_DIR_INIT;
  648. #endif
  649. #if defined(X2_DIR_PIN) && X2_DIR_PIN >= 0
  650. X2_DIR_INIT;
  651. #endif
  652. #if defined(Y_DIR_PIN) && Y_DIR_PIN >= 0
  653. Y_DIR_INIT;
  654. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_DIR_PIN) && Y2_DIR_PIN >= 0
  655. Y2_DIR_INIT;
  656. #endif
  657. #endif
  658. #if defined(Z_DIR_PIN) && Z_DIR_PIN >= 0
  659. Z_DIR_INIT;
  660. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_DIR_PIN) && Z2_DIR_PIN >= 0
  661. Z2_DIR_INIT;
  662. #endif
  663. #endif
  664. #if defined(E0_DIR_PIN) && E0_DIR_PIN >= 0
  665. E0_DIR_INIT;
  666. #endif
  667. #if defined(E1_DIR_PIN) && E1_DIR_PIN >= 0
  668. E1_DIR_INIT;
  669. #endif
  670. #if defined(E2_DIR_PIN) && E2_DIR_PIN >= 0
  671. E2_DIR_INIT;
  672. #endif
  673. #if defined(E3_DIR_PIN) && E3_DIR_PIN >= 0
  674. E3_DIR_INIT;
  675. #endif
  676. //Initialize Enable Pins - steppers default to disabled.
  677. #if defined(X_ENABLE_PIN) && X_ENABLE_PIN >= 0
  678. X_ENABLE_INIT;
  679. if (!X_ENABLE_ON) X_ENABLE_WRITE(HIGH);
  680. #endif
  681. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN >= 0
  682. X2_ENABLE_INIT;
  683. if (!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH);
  684. #endif
  685. #if defined(Y_ENABLE_PIN) && Y_ENABLE_PIN >= 0
  686. Y_ENABLE_INIT;
  687. if (!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH);
  688. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_ENABLE_PIN) && Y2_ENABLE_PIN >= 0
  689. Y2_ENABLE_INIT;
  690. if (!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH);
  691. #endif
  692. #endif
  693. #if defined(Z_ENABLE_PIN) && Z_ENABLE_PIN >= 0
  694. Z_ENABLE_INIT;
  695. if (!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH);
  696. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_ENABLE_PIN) && Z2_ENABLE_PIN >= 0
  697. Z2_ENABLE_INIT;
  698. if (!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH);
  699. #endif
  700. #endif
  701. #if defined(E0_ENABLE_PIN) && E0_ENABLE_PIN >= 0
  702. E0_ENABLE_INIT;
  703. if (!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH);
  704. #endif
  705. #if defined(E1_ENABLE_PIN) && E1_ENABLE_PIN >= 0
  706. E1_ENABLE_INIT;
  707. if (!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH);
  708. #endif
  709. #if defined(E2_ENABLE_PIN) && E2_ENABLE_PIN >= 0
  710. E2_ENABLE_INIT;
  711. if (!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH);
  712. #endif
  713. #if defined(E3_ENABLE_PIN) && E3_ENABLE_PIN >= 0
  714. E3_ENABLE_INIT;
  715. if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH);
  716. #endif
  717. //endstops and pullups
  718. #if defined(X_MIN_PIN) && X_MIN_PIN >= 0
  719. SET_INPUT(X_MIN_PIN);
  720. #ifdef ENDSTOPPULLUP_XMIN
  721. WRITE(X_MIN_PIN,HIGH);
  722. #endif
  723. #endif
  724. #if defined(Y_MIN_PIN) && Y_MIN_PIN >= 0
  725. SET_INPUT(Y_MIN_PIN);
  726. #ifdef ENDSTOPPULLUP_YMIN
  727. WRITE(Y_MIN_PIN,HIGH);
  728. #endif
  729. #endif
  730. #if defined(Z_MIN_PIN) && Z_MIN_PIN >= 0
  731. SET_INPUT(Z_MIN_PIN);
  732. #ifdef ENDSTOPPULLUP_ZMIN
  733. WRITE(Z_MIN_PIN,HIGH);
  734. #endif
  735. #endif
  736. #if defined(X_MAX_PIN) && X_MAX_PIN >= 0
  737. SET_INPUT(X_MAX_PIN);
  738. #ifdef ENDSTOPPULLUP_XMAX
  739. WRITE(X_MAX_PIN,HIGH);
  740. #endif
  741. #endif
  742. #if defined(Y_MAX_PIN) && Y_MAX_PIN >= 0
  743. SET_INPUT(Y_MAX_PIN);
  744. #ifdef ENDSTOPPULLUP_YMAX
  745. WRITE(Y_MAX_PIN,HIGH);
  746. #endif
  747. #endif
  748. #if defined(Z_MAX_PIN) && Z_MAX_PIN >= 0
  749. SET_INPUT(Z_MAX_PIN);
  750. #ifdef ENDSTOPPULLUP_ZMAX
  751. WRITE(Z_MAX_PIN,HIGH);
  752. #endif
  753. #endif
  754. #define AXIS_INIT(axis, AXIS, PIN) \
  755. AXIS ##_STEP_INIT; \
  756. AXIS ##_STEP_WRITE(INVERT_## PIN ##_STEP_PIN); \
  757. disable_## axis()
  758. #define E_AXIS_INIT(NUM) AXIS_INIT(e## NUM, E## NUM, E)
  759. // Initialize Step Pins
  760. #if defined(X_STEP_PIN) && X_STEP_PIN >= 0
  761. AXIS_INIT(x, X, X);
  762. #endif
  763. #if defined(X2_STEP_PIN) && X2_STEP_PIN >= 0
  764. AXIS_INIT(x, X2, X);
  765. #endif
  766. #if defined(Y_STEP_PIN) && Y_STEP_PIN >= 0
  767. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_STEP_PIN) && Y2_STEP_PIN >= 0
  768. Y2_STEP_INIT;
  769. Y2_STEP_WRITE(INVERT_Y_STEP_PIN);
  770. #endif
  771. AXIS_INIT(y, Y, Y);
  772. #endif
  773. #if defined(Z_STEP_PIN) && Z_STEP_PIN >= 0
  774. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_STEP_PIN) && Z2_STEP_PIN >= 0
  775. Z2_STEP_INIT;
  776. Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
  777. #endif
  778. AXIS_INIT(z, Z, Z);
  779. #endif
  780. #if defined(E0_STEP_PIN) && E0_STEP_PIN >= 0
  781. E_AXIS_INIT(0);
  782. #endif
  783. #if defined(E1_STEP_PIN) && E1_STEP_PIN >= 0
  784. E_AXIS_INIT(1);
  785. #endif
  786. #if defined(E2_STEP_PIN) && E2_STEP_PIN >= 0
  787. E_AXIS_INIT(2);
  788. #endif
  789. #if defined(E3_STEP_PIN) && E3_STEP_PIN >= 0
  790. E_AXIS_INIT(3);
  791. #endif
  792. // waveform generation = 0100 = CTC
  793. TCCR1B &= ~BIT(WGM13);
  794. TCCR1B |= BIT(WGM12);
  795. TCCR1A &= ~BIT(WGM11);
  796. TCCR1A &= ~BIT(WGM10);
  797. // output mode = 00 (disconnected)
  798. TCCR1A &= ~(3<<COM1A0);
  799. TCCR1A &= ~(3<<COM1B0);
  800. // Set the timer pre-scaler
  801. // Generally we use a divider of 8, resulting in a 2MHz timer
  802. // frequency on a 16MHz MCU. If you are going to change this, be
  803. // sure to regenerate speed_lookuptable.h with
  804. // create_speed_lookuptable.py
  805. TCCR1B = (TCCR1B & ~(0x07<<CS10)) | (2<<CS10);
  806. OCR1A = 0x4000;
  807. TCNT1 = 0;
  808. ENABLE_STEPPER_DRIVER_INTERRUPT();
  809. #ifdef ADVANCE
  810. #if defined(TCCR0A) && defined(WGM01)
  811. TCCR0A &= ~BIT(WGM01);
  812. TCCR0A &= ~BIT(WGM00);
  813. #endif
  814. e_steps[0] = 0;
  815. e_steps[1] = 0;
  816. e_steps[2] = 0;
  817. e_steps[3] = 0;
  818. TIMSK0 |= BIT(OCIE0A);
  819. #endif //ADVANCE
  820. enable_endstops(true); // Start with endstops active. After homing they can be disabled
  821. sei();
  822. }
  823. // Block until all buffered steps are executed
  824. void st_synchronize() {
  825. while (blocks_queued()) {
  826. manage_heater();
  827. manage_inactivity();
  828. lcd_update();
  829. }
  830. }
  831. void st_set_position(const long &x, const long &y, const long &z, const long &e) {
  832. CRITICAL_SECTION_START;
  833. count_position[X_AXIS] = x;
  834. count_position[Y_AXIS] = y;
  835. count_position[Z_AXIS] = z;
  836. count_position[E_AXIS] = e;
  837. CRITICAL_SECTION_END;
  838. }
  839. void st_set_e_position(const long &e) {
  840. CRITICAL_SECTION_START;
  841. count_position[E_AXIS] = e;
  842. CRITICAL_SECTION_END;
  843. }
  844. long st_get_position(uint8_t axis) {
  845. long count_pos;
  846. CRITICAL_SECTION_START;
  847. count_pos = count_position[axis];
  848. CRITICAL_SECTION_END;
  849. return count_pos;
  850. }
  851. #ifdef ENABLE_AUTO_BED_LEVELING
  852. float st_get_position_mm(uint8_t axis) {
  853. float steper_position_in_steps = st_get_position(axis);
  854. return steper_position_in_steps / axis_steps_per_unit[axis];
  855. }
  856. #endif // ENABLE_AUTO_BED_LEVELING
  857. void finishAndDisableSteppers() {
  858. st_synchronize();
  859. disable_x();
  860. disable_y();
  861. disable_z();
  862. disable_e0();
  863. disable_e1();
  864. disable_e2();
  865. disable_e3();
  866. }
  867. void quickStop() {
  868. DISABLE_STEPPER_DRIVER_INTERRUPT();
  869. while (blocks_queued()) plan_discard_current_block();
  870. current_block = NULL;
  871. ENABLE_STEPPER_DRIVER_INTERRUPT();
  872. }
  873. #ifdef BABYSTEPPING
  874. // MUST ONLY BE CALLED BY AN ISR,
  875. // No other ISR should ever interrupt this!
  876. void babystep(const uint8_t axis, const bool direction) {
  877. #define BABYSTEP_AXIS(axis, AXIS, INVERT) { \
  878. enable_## axis(); \
  879. uint8_t old_pin = AXIS ##_DIR_READ; \
  880. AXIS ##_APPLY_DIR(INVERT_## AXIS ##_DIR^direction^INVERT, true); \
  881. AXIS ##_APPLY_STEP(!INVERT_## AXIS ##_STEP_PIN, true); \
  882. _delay_us(1U); \
  883. AXIS ##_APPLY_STEP(INVERT_## AXIS ##_STEP_PIN, true); \
  884. AXIS ##_APPLY_DIR(old_pin, true); \
  885. }
  886. switch(axis) {
  887. case X_AXIS:
  888. BABYSTEP_AXIS(x, X, false);
  889. break;
  890. case Y_AXIS:
  891. BABYSTEP_AXIS(y, Y, false);
  892. break;
  893. case Z_AXIS: {
  894. #ifndef DELTA
  895. BABYSTEP_AXIS(z, Z, BABYSTEP_INVERT_Z);
  896. #else // DELTA
  897. bool z_direction = direction ^ BABYSTEP_INVERT_Z;
  898. enable_x();
  899. enable_y();
  900. enable_z();
  901. uint8_t old_x_dir_pin = X_DIR_READ,
  902. old_y_dir_pin = Y_DIR_READ,
  903. old_z_dir_pin = Z_DIR_READ;
  904. //setup new step
  905. X_DIR_WRITE(INVERT_X_DIR^z_direction);
  906. Y_DIR_WRITE(INVERT_Y_DIR^z_direction);
  907. Z_DIR_WRITE(INVERT_Z_DIR^z_direction);
  908. //perform step
  909. X_STEP_WRITE(!INVERT_X_STEP_PIN);
  910. Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
  911. Z_STEP_WRITE(!INVERT_Z_STEP_PIN);
  912. _delay_us(1U);
  913. X_STEP_WRITE(INVERT_X_STEP_PIN);
  914. Y_STEP_WRITE(INVERT_Y_STEP_PIN);
  915. Z_STEP_WRITE(INVERT_Z_STEP_PIN);
  916. //get old pin state back.
  917. X_DIR_WRITE(old_x_dir_pin);
  918. Y_DIR_WRITE(old_y_dir_pin);
  919. Z_DIR_WRITE(old_z_dir_pin);
  920. #endif
  921. } break;
  922. default: break;
  923. }
  924. }
  925. #endif //BABYSTEPPING
  926. // From Arduino DigitalPotControl example
  927. void digitalPotWrite(int address, int value) {
  928. #if HAS_DIGIPOTSS
  929. digitalWrite(DIGIPOTSS_PIN,LOW); // take the SS pin low to select the chip
  930. SPI.transfer(address); // send in the address and value via SPI:
  931. SPI.transfer(value);
  932. digitalWrite(DIGIPOTSS_PIN,HIGH); // take the SS pin high to de-select the chip:
  933. //delay(10);
  934. #endif
  935. }
  936. // Initialize Digipot Motor Current
  937. void digipot_init() {
  938. #if HAS_DIGIPOTSS
  939. const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
  940. SPI.begin();
  941. pinMode(DIGIPOTSS_PIN, OUTPUT);
  942. for (int i = 0; i <= 4; i++) {
  943. //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
  944. digipot_current(i,digipot_motor_current[i]);
  945. }
  946. #endif
  947. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  948. pinMode(MOTOR_CURRENT_PWM_XY_PIN, OUTPUT);
  949. pinMode(MOTOR_CURRENT_PWM_Z_PIN, OUTPUT);
  950. pinMode(MOTOR_CURRENT_PWM_E_PIN, OUTPUT);
  951. digipot_current(0, motor_current_setting[0]);
  952. digipot_current(1, motor_current_setting[1]);
  953. digipot_current(2, motor_current_setting[2]);
  954. //Set timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
  955. TCCR5B = (TCCR5B & ~(_BV(CS50) | _BV(CS51) | _BV(CS52))) | _BV(CS50);
  956. #endif
  957. }
  958. void digipot_current(uint8_t driver, int current) {
  959. #if HAS_DIGIPOTSS
  960. const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
  961. digitalPotWrite(digipot_ch[driver], current);
  962. #endif
  963. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  964. switch(driver) {
  965. case 0: analogWrite(MOTOR_CURRENT_PWM_XY_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
  966. case 1: analogWrite(MOTOR_CURRENT_PWM_Z_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
  967. case 2: analogWrite(MOTOR_CURRENT_PWM_E_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
  968. }
  969. #endif
  970. }
  971. void microstep_init() {
  972. const uint8_t microstep_modes[] = MICROSTEP_MODES;
  973. #if defined(E1_MS1_PIN) && E1_MS1_PIN >= 0
  974. pinMode(E1_MS1_PIN,OUTPUT);
  975. pinMode(E1_MS2_PIN,OUTPUT);
  976. #endif
  977. #if defined(X_MS1_PIN) && X_MS1_PIN >= 0
  978. pinMode(X_MS1_PIN,OUTPUT);
  979. pinMode(X_MS2_PIN,OUTPUT);
  980. pinMode(Y_MS1_PIN,OUTPUT);
  981. pinMode(Y_MS2_PIN,OUTPUT);
  982. pinMode(Z_MS1_PIN,OUTPUT);
  983. pinMode(Z_MS2_PIN,OUTPUT);
  984. pinMode(E0_MS1_PIN,OUTPUT);
  985. pinMode(E0_MS2_PIN,OUTPUT);
  986. for (int i = 0; i <= 4; i++) microstep_mode(i, microstep_modes[i]);
  987. #endif
  988. }
  989. void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2) {
  990. if (ms1 >= 0) switch(driver) {
  991. case 0: digitalWrite(X_MS1_PIN, ms1); break;
  992. case 1: digitalWrite(Y_MS1_PIN, ms1); break;
  993. case 2: digitalWrite(Z_MS1_PIN, ms1); break;
  994. case 3: digitalWrite(E0_MS1_PIN, ms1); break;
  995. #if defined(E1_MS1_PIN) && E1_MS1_PIN >= 0
  996. case 4: digitalWrite(E1_MS1_PIN, ms1); break;
  997. #endif
  998. }
  999. if (ms2 >= 0) switch(driver) {
  1000. case 0: digitalWrite(X_MS2_PIN, ms2); break;
  1001. case 1: digitalWrite(Y_MS2_PIN, ms2); break;
  1002. case 2: digitalWrite(Z_MS2_PIN, ms2); break;
  1003. case 3: digitalWrite(E0_MS2_PIN, ms2); break;
  1004. #if defined(E1_MS2_PIN) && E1_MS2_PIN >= 0
  1005. case 4: digitalWrite(E1_MS2_PIN, ms2); break;
  1006. #endif
  1007. }
  1008. }
  1009. void microstep_mode(uint8_t driver, uint8_t stepping_mode) {
  1010. switch(stepping_mode) {
  1011. case 1: microstep_ms(driver,MICROSTEP1); break;
  1012. case 2: microstep_ms(driver,MICROSTEP2); break;
  1013. case 4: microstep_ms(driver,MICROSTEP4); break;
  1014. case 8: microstep_ms(driver,MICROSTEP8); break;
  1015. case 16: microstep_ms(driver,MICROSTEP16); break;
  1016. }
  1017. }
  1018. void microstep_readings() {
  1019. SERIAL_PROTOCOLPGM("MS1,MS2 Pins\n");
  1020. SERIAL_PROTOCOLPGM("X: ");
  1021. SERIAL_PROTOCOL(digitalRead(X_MS1_PIN));
  1022. SERIAL_PROTOCOLLN(digitalRead(X_MS2_PIN));
  1023. SERIAL_PROTOCOLPGM("Y: ");
  1024. SERIAL_PROTOCOL(digitalRead(Y_MS1_PIN));
  1025. SERIAL_PROTOCOLLN(digitalRead(Y_MS2_PIN));
  1026. SERIAL_PROTOCOLPGM("Z: ");
  1027. SERIAL_PROTOCOL(digitalRead(Z_MS1_PIN));
  1028. SERIAL_PROTOCOLLN(digitalRead(Z_MS2_PIN));
  1029. SERIAL_PROTOCOLPGM("E0: ");
  1030. SERIAL_PROTOCOL(digitalRead(E0_MS1_PIN));
  1031. SERIAL_PROTOCOLLN(digitalRead(E0_MS2_PIN));
  1032. #if defined(E1_MS1_PIN) && E1_MS1_PIN >= 0
  1033. SERIAL_PROTOCOLPGM("E1: ");
  1034. SERIAL_PROTOCOL(digitalRead(E1_MS1_PIN));
  1035. SERIAL_PROTOCOLLN(digitalRead(E1_MS2_PIN));
  1036. #endif
  1037. }