My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

ubl.cpp 8.4KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <https://www.gnu.org/licenses/>.
  20. *
  21. */
  22. #include "../../../inc/MarlinConfig.h"
  23. #if ENABLED(AUTO_BED_LEVELING_UBL)
  24. #include "../bedlevel.h"
  25. unified_bed_leveling ubl;
  26. #include "../../../MarlinCore.h"
  27. #include "../../../gcode/gcode.h"
  28. #include "../../../module/settings.h"
  29. #include "../../../module/planner.h"
  30. #include "../../../module/motion.h"
  31. #include "../../../module/probe.h"
  32. #if ENABLED(EXTENSIBLE_UI)
  33. #include "../../../lcd/extui/ui_api.h"
  34. #endif
  35. #include "math.h"
  36. void unified_bed_leveling::echo_name() { SERIAL_ECHOPGM("Unified Bed Leveling"); }
  37. void unified_bed_leveling::report_current_mesh() {
  38. if (!leveling_is_valid()) return;
  39. SERIAL_ECHO_MSG(" G29 I999");
  40. GRID_LOOP(x, y)
  41. if (!isnan(z_values[x][y])) {
  42. SERIAL_ECHO_START();
  43. SERIAL_ECHOPAIR(" M421 I", x, " J", y);
  44. SERIAL_ECHOLNPAIR_F_P(SP_Z_STR, z_values[x][y], 4);
  45. serial_delay(75); // Prevent Printrun from exploding
  46. }
  47. }
  48. void unified_bed_leveling::report_state() {
  49. echo_name();
  50. SERIAL_ECHO_TERNARY(planner.leveling_active, " System v" UBL_VERSION " ", "", "in", "active\n");
  51. serial_delay(50);
  52. }
  53. int8_t unified_bed_leveling::storage_slot;
  54. float unified_bed_leveling::z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  55. #define _GRIDPOS(A,N) (MESH_MIN_##A + N * (MESH_##A##_DIST))
  56. const float
  57. unified_bed_leveling::_mesh_index_to_xpos[GRID_MAX_POINTS_X] PROGMEM = ARRAY_N(GRID_MAX_POINTS_X,
  58. _GRIDPOS(X, 0), _GRIDPOS(X, 1), _GRIDPOS(X, 2), _GRIDPOS(X, 3),
  59. _GRIDPOS(X, 4), _GRIDPOS(X, 5), _GRIDPOS(X, 6), _GRIDPOS(X, 7),
  60. _GRIDPOS(X, 8), _GRIDPOS(X, 9), _GRIDPOS(X, 10), _GRIDPOS(X, 11),
  61. _GRIDPOS(X, 12), _GRIDPOS(X, 13), _GRIDPOS(X, 14), _GRIDPOS(X, 15)
  62. ),
  63. unified_bed_leveling::_mesh_index_to_ypos[GRID_MAX_POINTS_Y] PROGMEM = ARRAY_N(GRID_MAX_POINTS_Y,
  64. _GRIDPOS(Y, 0), _GRIDPOS(Y, 1), _GRIDPOS(Y, 2), _GRIDPOS(Y, 3),
  65. _GRIDPOS(Y, 4), _GRIDPOS(Y, 5), _GRIDPOS(Y, 6), _GRIDPOS(Y, 7),
  66. _GRIDPOS(Y, 8), _GRIDPOS(Y, 9), _GRIDPOS(Y, 10), _GRIDPOS(Y, 11),
  67. _GRIDPOS(Y, 12), _GRIDPOS(Y, 13), _GRIDPOS(Y, 14), _GRIDPOS(Y, 15)
  68. );
  69. volatile int16_t unified_bed_leveling::encoder_diff;
  70. unified_bed_leveling::unified_bed_leveling() { reset(); }
  71. void unified_bed_leveling::reset() {
  72. const bool was_enabled = planner.leveling_active;
  73. set_bed_leveling_enabled(false);
  74. storage_slot = -1;
  75. ZERO(z_values);
  76. #if ENABLED(EXTENSIBLE_UI)
  77. GRID_LOOP(x, y) ExtUI::onMeshUpdate(x, y, 0);
  78. #endif
  79. if (was_enabled) report_current_position();
  80. }
  81. void unified_bed_leveling::invalidate() {
  82. set_bed_leveling_enabled(false);
  83. set_all_mesh_points_to_value(NAN);
  84. }
  85. void unified_bed_leveling::set_all_mesh_points_to_value(const float value) {
  86. GRID_LOOP(x, y) {
  87. z_values[x][y] = value;
  88. TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(x, y, value));
  89. }
  90. }
  91. #if ENABLED(OPTIMIZED_MESH_STORAGE)
  92. constexpr float mesh_store_scaling = 1000;
  93. constexpr int16_t Z_STEPS_NAN = INT16_MAX;
  94. void unified_bed_leveling::set_store_from_mesh(const bed_mesh_t &in_values, mesh_store_t &stored_values) {
  95. auto z_to_store = [](const float &z) {
  96. if (isnan(z)) return Z_STEPS_NAN;
  97. const int32_t z_scaled = TRUNC(z * mesh_store_scaling);
  98. if (z_scaled == Z_STEPS_NAN || !WITHIN(z_scaled, INT16_MIN, INT16_MAX))
  99. return Z_STEPS_NAN; // If Z is out of range, return our custom 'NaN'
  100. return int16_t(z_scaled);
  101. };
  102. GRID_LOOP(x, y) stored_values[x][y] = z_to_store(in_values[x][y]);
  103. }
  104. void unified_bed_leveling::set_mesh_from_store(const mesh_store_t &stored_values, bed_mesh_t &out_values) {
  105. auto store_to_z = [](const int16_t z_scaled) {
  106. return z_scaled == Z_STEPS_NAN ? NAN : z_scaled / mesh_store_scaling;
  107. };
  108. GRID_LOOP(x, y) out_values[x][y] = store_to_z(stored_values[x][y]);
  109. }
  110. #endif // OPTIMIZED_MESH_STORAGE
  111. static void serial_echo_xy(const uint8_t sp, const int16_t x, const int16_t y) {
  112. SERIAL_ECHO_SP(sp);
  113. SERIAL_CHAR('(');
  114. if (x < 100) { SERIAL_CHAR(' '); if (x < 10) SERIAL_CHAR(' '); }
  115. SERIAL_ECHO(x);
  116. SERIAL_CHAR(',');
  117. if (y < 100) { SERIAL_CHAR(' '); if (y < 10) SERIAL_CHAR(' '); }
  118. SERIAL_ECHO(y);
  119. SERIAL_CHAR(')');
  120. serial_delay(5);
  121. }
  122. static void serial_echo_column_labels(const uint8_t sp) {
  123. SERIAL_ECHO_SP(7);
  124. LOOP_L_N(i, GRID_MAX_POINTS_X) {
  125. if (i < 10) SERIAL_CHAR(' ');
  126. SERIAL_ECHO(i);
  127. SERIAL_ECHO_SP(sp);
  128. }
  129. serial_delay(10);
  130. }
  131. /**
  132. * Produce one of these mesh maps:
  133. * 0: Human-readable
  134. * 1: CSV format for spreadsheet import
  135. * 2: TODO: Display on Graphical LCD
  136. * 4: Compact Human-Readable
  137. */
  138. void unified_bed_leveling::display_map(const int map_type) {
  139. const bool was = gcode.set_autoreport_paused(true);
  140. constexpr uint8_t eachsp = 1 + 6 + 1, // [-3.567]
  141. twixt = eachsp * (GRID_MAX_POINTS_X) - 9 * 2; // Leading 4sp, Coordinates 9sp each
  142. const bool human = !(map_type & 0x3), csv = map_type == 1, lcd = map_type == 2, comp = map_type & 0x4;
  143. SERIAL_ECHOPGM("\nBed Topography Report");
  144. if (human) {
  145. SERIAL_ECHOLNPGM(":\n");
  146. serial_echo_xy(4, MESH_MIN_X, MESH_MAX_Y);
  147. serial_echo_xy(twixt, MESH_MAX_X, MESH_MAX_Y);
  148. SERIAL_EOL();
  149. serial_echo_column_labels(eachsp - 2);
  150. }
  151. else {
  152. SERIAL_ECHOPGM(" for ");
  153. serialprintPGM(csv ? PSTR("CSV:\n") : PSTR("LCD:\n"));
  154. }
  155. // Add XY probe offset from extruder because probe.probe_at_point() subtracts them when
  156. // moving to the XY position to be measured. This ensures better agreement between
  157. // the current Z position after G28 and the mesh values.
  158. const xy_int8_t curr = closest_indexes(xy_pos_t(current_position) + probe.offset_xy);
  159. if (!lcd) SERIAL_EOL();
  160. for (int8_t j = GRID_MAX_POINTS_Y - 1; j >= 0; j--) {
  161. // Row Label (J index)
  162. if (human) {
  163. if (j < 10) SERIAL_CHAR(' ');
  164. SERIAL_ECHO(j);
  165. SERIAL_ECHOPGM(" |");
  166. }
  167. // Row Values (I indexes)
  168. LOOP_L_N(i, GRID_MAX_POINTS_X) {
  169. // Opening Brace or Space
  170. const bool is_current = i == curr.x && j == curr.y;
  171. if (human) SERIAL_CHAR(is_current ? '[' : ' ');
  172. // Z Value at current I, J
  173. const float f = z_values[i][j];
  174. if (lcd) {
  175. // TODO: Display on Graphical LCD
  176. }
  177. else if (isnan(f))
  178. serialprintPGM(human ? PSTR(" . ") : PSTR("NAN"));
  179. else if (human || csv) {
  180. if (human && f >= 0.0) SERIAL_CHAR(f > 0 ? '+' : ' '); // Display sign also for positive numbers (' ' for 0)
  181. SERIAL_ECHO_F(f, 3); // Positive: 5 digits, Negative: 6 digits
  182. }
  183. if (csv && i < GRID_MAX_POINTS_X - 1) SERIAL_CHAR('\t');
  184. // Closing Brace or Space
  185. if (human) SERIAL_CHAR(is_current ? ']' : ' ');
  186. SERIAL_FLUSHTX();
  187. idle_no_sleep();
  188. }
  189. if (!lcd) SERIAL_EOL();
  190. // A blank line between rows (unless compact)
  191. if (j && human && !comp) SERIAL_ECHOLNPGM(" |");
  192. }
  193. if (human) {
  194. serial_echo_column_labels(eachsp - 2);
  195. SERIAL_EOL();
  196. serial_echo_xy(4, MESH_MIN_X, MESH_MIN_Y);
  197. serial_echo_xy(twixt, MESH_MAX_X, MESH_MIN_Y);
  198. SERIAL_EOL();
  199. SERIAL_EOL();
  200. }
  201. gcode.set_autoreport_paused(was);
  202. }
  203. bool unified_bed_leveling::sanity_check() {
  204. uint8_t error_flag = 0;
  205. if (settings.calc_num_meshes() < 1) {
  206. SERIAL_ECHOLNPGM("?Mesh too big for EEPROM.");
  207. error_flag++;
  208. }
  209. return !!error_flag;
  210. }
  211. #endif // AUTO_BED_LEVELING_UBL