My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

G26.cpp 32KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <https://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * G26 Mesh Validation Tool
  24. *
  25. * G26 is a Mesh Validation Tool intended to provide support for the Marlin Unified Bed Leveling System.
  26. * In order to fully utilize and benefit from the Marlin Unified Bed Leveling System an accurate Mesh must
  27. * be defined. G29 is designed to allow the user to quickly validate the correctness of her Mesh. It will
  28. * first heat the bed and nozzle. It will then print lines and circles along the Mesh Cell boundaries and
  29. * the intersections of those lines (respectively).
  30. *
  31. * This action allows the user to immediately see where the Mesh is properly defined and where it needs to
  32. * be edited. The command will generate the Mesh lines closest to the nozzle's starting position. Alternatively
  33. * the user can specify the X and Y position of interest with command parameters. This allows the user to
  34. * focus on a particular area of the Mesh where attention is needed.
  35. *
  36. * B # Bed Set the Bed Temperature. If not specified, a default of 60 C. will be assumed.
  37. *
  38. * C Current When searching for Mesh Intersection points to draw, use the current nozzle location
  39. * as the base for any distance comparison.
  40. *
  41. * D Disable Disable the Unified Bed Leveling System. In the normal case the user is invoking this
  42. * command to see how well a Mesh as been adjusted to match a print surface. In order to do
  43. * this the Unified Bed Leveling System is turned on by the G26 command. The D parameter
  44. * alters the command's normal behavior and disables the Unified Bed Leveling System even if
  45. * it is on.
  46. *
  47. * H # Hotend Set the Nozzle Temperature. If not specified, a default of 205 C. will be assumed.
  48. *
  49. * I # Preset Heat the Nozzle and Bed based on a Material Preset (if material presets are defined).
  50. *
  51. * F # Filament Used to specify the diameter of the filament being used. If not specified
  52. * 1.75mm filament is assumed. If you are not getting acceptable results by using the
  53. * 'correct' numbers, you can scale this number up or down a little bit to change the amount
  54. * of filament that is being extruded during the printing of the various lines on the bed.
  55. *
  56. * K Keep-On Keep the heaters turned on at the end of the command.
  57. *
  58. * L # Layer Layer height. (Height of nozzle above bed) If not specified .20mm will be used.
  59. *
  60. * O # Ooooze How much your nozzle will Ooooze filament while getting in position to print. This
  61. * is over kill, but using this parameter will let you get the very first 'circle' perfect
  62. * so you have a trophy to peel off of the bed and hang up to show how perfectly you have your
  63. * Mesh calibrated. If not specified, a filament length of .3mm is assumed.
  64. *
  65. * P # Prime Prime the nozzle with specified length of filament. If this parameter is not
  66. * given, no prime action will take place. If the parameter specifies an amount, that much
  67. * will be purged before continuing. If no amount is specified the command will start
  68. * purging filament until the user provides an LCD Click and then it will continue with
  69. * printing the Mesh. You can carefully remove the spent filament with a needle nose
  70. * pliers while holding the LCD Click wheel in a depressed state. If you do not have
  71. * an LCD, you must specify a value if you use P.
  72. *
  73. * Q # Multiplier Retraction Multiplier. Normally not needed. Retraction defaults to 1.0mm and
  74. * un-retraction is at 1.2mm These numbers will be scaled by the specified amount
  75. *
  76. * R # Repeat Prints the number of patterns given as a parameter, starting at the current location.
  77. * If a parameter isn't given, every point will be printed unless G26 is interrupted.
  78. * This works the same way that the UBL G29 P4 R parameter works.
  79. *
  80. * NOTE: If you do not have an LCD, you -must- specify R. This is to ensure that you are
  81. * aware that there's some risk associated with printing without the ability to abort in
  82. * cases where mesh point Z value may be inaccurate. As above, if you do not include a
  83. * parameter, every point will be printed.
  84. *
  85. * S # Nozzle Used to control the size of nozzle diameter. If not specified, a .4mm nozzle is assumed.
  86. *
  87. * U # Random Randomize the order that the circles are drawn on the bed. The search for the closest
  88. * un-drawn circle is still done. But the distance to the location for each circle has a
  89. * random number of the specified size added to it. Specifying S50 will give an interesting
  90. * deviation from the normal behavior on a 10 x 10 Mesh.
  91. *
  92. * X # X Coord. Specify the starting location of the drawing activity.
  93. *
  94. * Y # Y Coord. Specify the starting location of the drawing activity.
  95. */
  96. #include "../../inc/MarlinConfig.h"
  97. #if ENABLED(G26_MESH_VALIDATION)
  98. #define G26_OK false
  99. #define G26_ERR true
  100. #include "../../gcode/gcode.h"
  101. #include "../../feature/bedlevel/bedlevel.h"
  102. #include "../../MarlinCore.h"
  103. #include "../../module/planner.h"
  104. #include "../../module/stepper.h"
  105. #include "../../module/motion.h"
  106. #include "../../module/tool_change.h"
  107. #include "../../module/temperature.h"
  108. #include "../../lcd/marlinui.h"
  109. #define EXTRUSION_MULTIPLIER 1.0
  110. #define PRIME_LENGTH 10.0
  111. #define OOZE_AMOUNT 0.3
  112. #define INTERSECTION_CIRCLE_RADIUS 5
  113. #define CROSSHAIRS_SIZE 3
  114. #ifndef G26_RETRACT_MULTIPLIER
  115. #define G26_RETRACT_MULTIPLIER 1.0 // x 1mm
  116. #endif
  117. #ifndef G26_XY_FEEDRATE
  118. #define G26_XY_FEEDRATE (PLANNER_XY_FEEDRATE() / 3.0)
  119. #endif
  120. #ifndef G26_XY_FEEDRATE_TRAVEL
  121. #define G26_XY_FEEDRATE_TRAVEL (PLANNER_XY_FEEDRATE() / 1.5)
  122. #endif
  123. #if CROSSHAIRS_SIZE >= INTERSECTION_CIRCLE_RADIUS
  124. #error "CROSSHAIRS_SIZE must be less than INTERSECTION_CIRCLE_RADIUS."
  125. #endif
  126. #define G26_OK false
  127. #define G26_ERR true
  128. #if ENABLED(ARC_SUPPORT)
  129. void plan_arc(const xyze_pos_t&, const ab_float_t&, const bool, const uint8_t);
  130. #endif
  131. constexpr float g26_e_axis_feedrate = 0.025;
  132. static MeshFlags circle_flags, horizontal_mesh_line_flags, vertical_mesh_line_flags;
  133. float g26_random_deviation = 0.0;
  134. static bool g26_retracted = false; // Track the retracted state of the nozzle so mismatched
  135. // retracts/recovers won't result in a bad state.
  136. float g26_extrusion_multiplier,
  137. g26_retraction_multiplier,
  138. g26_layer_height,
  139. g26_prime_length;
  140. xy_pos_t g26_xy_pos; // = { 0, 0 }
  141. int16_t g26_bed_temp,
  142. g26_hotend_temp;
  143. int8_t g26_prime_flag;
  144. #if HAS_LCD_MENU
  145. /**
  146. * If the LCD is clicked, cancel, wait for release, return true
  147. */
  148. bool user_canceled() {
  149. if (!ui.button_pressed()) return false; // Return if the button isn't pressed
  150. ui.set_status_P(GET_TEXT(MSG_G26_CANCELED), 99);
  151. TERN_(HAS_LCD_MENU, ui.quick_feedback());
  152. ui.wait_for_release();
  153. return true;
  154. }
  155. #endif
  156. mesh_index_pair find_closest_circle_to_print(const xy_pos_t &pos) {
  157. float closest = 99999.99;
  158. mesh_index_pair out_point;
  159. out_point.pos = -1;
  160. GRID_LOOP(i, j) {
  161. if (!circle_flags.marked(i, j)) {
  162. // We found a circle that needs to be printed
  163. const xy_pos_t m = { _GET_MESH_X(i), _GET_MESH_Y(j) };
  164. // Get the distance to this intersection
  165. float f = (pos - m).magnitude();
  166. // It is possible that we are being called with the values
  167. // to let us find the closest circle to the start position.
  168. // But if this is not the case, add a small weighting to the
  169. // distance calculation to help it choose a better place to continue.
  170. f += (g26_xy_pos - m).magnitude() / 15.0f;
  171. // Add the specified amount of Random Noise to our search
  172. if (g26_random_deviation > 1.0) f += random(0.0, g26_random_deviation);
  173. if (f < closest) {
  174. closest = f; // Found a closer un-printed location
  175. out_point.pos.set(i, j); // Save its data
  176. out_point.distance = closest;
  177. }
  178. }
  179. }
  180. circle_flags.mark(out_point); // Mark this location as done.
  181. return out_point;
  182. }
  183. void move_to(const float &rx, const float &ry, const float &z, const float &e_delta) {
  184. static float last_z = -999.99;
  185. const xy_pos_t dest = { rx, ry };
  186. const bool has_xy_component = dest != current_position; // Check if X or Y is involved in the movement.
  187. const bool has_e_component = e_delta != 0.0;
  188. destination = current_position;
  189. if (z != last_z) {
  190. last_z = destination.z = z;
  191. const feedRate_t fr_mm_s = planner.settings.max_feedrate_mm_s[Z_AXIS] * 0.5f; // Use half of the Z_AXIS max feed rate
  192. prepare_internal_move_to_destination(fr_mm_s);
  193. }
  194. // If X or Y in combination with E is involved do a 'normal' move.
  195. // If X or Y with no E is involved do a 'fast' move
  196. // Otherwise retract/recover/hop.
  197. destination = dest;
  198. destination.e += e_delta;
  199. const feedRate_t fr_mm_s = has_xy_component
  200. ? (has_e_component ? feedRate_t(G26_XY_FEEDRATE) : feedRate_t(G26_XY_FEEDRATE_TRAVEL))
  201. : planner.settings.max_feedrate_mm_s[E_AXIS] * 0.666f;
  202. prepare_internal_move_to_destination(fr_mm_s);
  203. }
  204. FORCE_INLINE void move_to(const xyz_pos_t &where, const float &de) { move_to(where.x, where.y, where.z, de); }
  205. void retract_filament(const xyz_pos_t &where) {
  206. if (!g26_retracted) { // Only retract if we are not already retracted!
  207. g26_retracted = true;
  208. move_to(where, -1.0f * g26_retraction_multiplier);
  209. }
  210. }
  211. // TODO: Parameterize the Z lift with a define
  212. void retract_lift_move(const xyz_pos_t &s) {
  213. retract_filament(destination);
  214. move_to(current_position.x, current_position.y, current_position.z + 0.5f, 0.0); // Z lift to minimize scraping
  215. move_to(s.x, s.y, s.z + 0.5f, 0.0); // Get to the starting point with no extrusion while lifted
  216. }
  217. void recover_filament(const xyz_pos_t &where) {
  218. if (g26_retracted) { // Only un-retract if we are retracted.
  219. move_to(where, 1.2f * g26_retraction_multiplier);
  220. g26_retracted = false;
  221. }
  222. }
  223. /**
  224. * print_line_from_here_to_there() takes two cartesian coordinates and draws a line from one
  225. * to the other. But there are really three sets of coordinates involved. The first coordinate
  226. * is the present location of the nozzle. We don't necessarily want to print from this location.
  227. * We first need to move the nozzle to the start of line segment where we want to print. Once
  228. * there, we can use the two coordinates supplied to draw the line.
  229. *
  230. * Note: Although we assume the first set of coordinates is the start of the line and the second
  231. * set of coordinates is the end of the line, it does not always work out that way. This function
  232. * optimizes the movement to minimize the travel distance before it can start printing. This saves
  233. * a lot of time and eliminates a lot of nonsensical movement of the nozzle. However, it does
  234. * cause a lot of very little short retracement of th nozzle when it draws the very first line
  235. * segment of a 'circle'. The time this requires is very short and is easily saved by the other
  236. * cases where the optimization comes into play.
  237. */
  238. void print_line_from_here_to_there(const xyz_pos_t &s, const xyz_pos_t &e) {
  239. // Distances to the start / end of the line
  240. xy_float_t svec = current_position - s, evec = current_position - e;
  241. const float dist_start = HYPOT2(svec.x, svec.y),
  242. dist_end = HYPOT2(evec.x, evec.y),
  243. line_length = HYPOT(e.x - s.x, e.y - s.y);
  244. // If the end point of the line is closer to the nozzle, flip the direction,
  245. // moving from the end to the start. On very small lines the optimization isn't worth it.
  246. if (dist_end < dist_start && (INTERSECTION_CIRCLE_RADIUS) < ABS(line_length))
  247. return print_line_from_here_to_there(e, s);
  248. // Decide whether to retract & lift
  249. if (dist_start > 2.0) retract_lift_move(s);
  250. move_to(s, 0.0); // Get to the starting point with no extrusion / un-Z lift
  251. const float e_pos_delta = line_length * g26_e_axis_feedrate * g26_extrusion_multiplier;
  252. recover_filament(destination);
  253. move_to(e, e_pos_delta); // Get to the ending point with an appropriate amount of extrusion
  254. }
  255. inline bool look_for_lines_to_connect() {
  256. xyz_pos_t s, e;
  257. s.z = e.z = g26_layer_height;
  258. GRID_LOOP(i, j) {
  259. if (TERN0(HAS_LCD_MENU, user_canceled())) return true;
  260. if (i < (GRID_MAX_POINTS_X)) { // Can't connect to anything farther to the right than GRID_MAX_POINTS_X.
  261. // Already a half circle at the edge of the bed.
  262. if (circle_flags.marked(i, j) && circle_flags.marked(i + 1, j)) { // Test whether a leftward line can be done
  263. if (!horizontal_mesh_line_flags.marked(i, j)) {
  264. // Two circles need a horizontal line to connect them
  265. s.x = _GET_MESH_X( i ) + (INTERSECTION_CIRCLE_RADIUS - (CROSSHAIRS_SIZE)); // right edge
  266. e.x = _GET_MESH_X(i + 1) - (INTERSECTION_CIRCLE_RADIUS - (CROSSHAIRS_SIZE)); // left edge
  267. LIMIT(s.x, X_MIN_POS + 1, X_MAX_POS - 1);
  268. s.y = e.y = constrain(_GET_MESH_Y(j), Y_MIN_POS + 1, Y_MAX_POS - 1);
  269. LIMIT(e.x, X_MIN_POS + 1, X_MAX_POS - 1);
  270. if (position_is_reachable(s.x, s.y) && position_is_reachable(e.x, e.y))
  271. print_line_from_here_to_there(s, e);
  272. horizontal_mesh_line_flags.mark(i, j); // Mark done, even if skipped
  273. }
  274. }
  275. if (j < (GRID_MAX_POINTS_Y)) { // Can't connect to anything further back than GRID_MAX_POINTS_Y.
  276. // Already a half circle at the edge of the bed.
  277. if (circle_flags.marked(i, j) && circle_flags.marked(i, j + 1)) { // Test whether a downward line can be done
  278. if (!vertical_mesh_line_flags.marked(i, j)) {
  279. // Two circles that need a vertical line to connect them
  280. s.y = _GET_MESH_Y( j ) + (INTERSECTION_CIRCLE_RADIUS - (CROSSHAIRS_SIZE)); // top edge
  281. e.y = _GET_MESH_Y(j + 1) - (INTERSECTION_CIRCLE_RADIUS - (CROSSHAIRS_SIZE)); // bottom edge
  282. s.x = e.x = constrain(_GET_MESH_X(i), X_MIN_POS + 1, X_MAX_POS - 1);
  283. LIMIT(s.y, Y_MIN_POS + 1, Y_MAX_POS - 1);
  284. LIMIT(e.y, Y_MIN_POS + 1, Y_MAX_POS - 1);
  285. if (position_is_reachable(s.x, s.y) && position_is_reachable(e.x, e.y))
  286. print_line_from_here_to_there(s, e);
  287. vertical_mesh_line_flags.mark(i, j); // Mark done, even if skipped
  288. }
  289. }
  290. }
  291. }
  292. }
  293. return false;
  294. }
  295. /**
  296. * Turn on the bed and nozzle heat and
  297. * wait for them to get up to temperature.
  298. */
  299. inline bool turn_on_heaters() {
  300. SERIAL_ECHOLNPGM("Waiting for heatup.");
  301. #if HAS_HEATED_BED
  302. if (g26_bed_temp > 25) {
  303. #if HAS_WIRED_LCD
  304. ui.set_status_P(GET_TEXT(MSG_G26_HEATING_BED), 99);
  305. ui.quick_feedback();
  306. TERN_(HAS_LCD_MENU, ui.capture());
  307. #endif
  308. thermalManager.setTargetBed(g26_bed_temp);
  309. // Wait for the temperature to stabilize
  310. if (!thermalManager.wait_for_bed(true
  311. #if G26_CLICK_CAN_CANCEL
  312. , true
  313. #endif
  314. )
  315. ) return G26_ERR;
  316. }
  317. #endif // HAS_HEATED_BED
  318. // Start heating the active nozzle
  319. #if HAS_WIRED_LCD
  320. ui.set_status_P(GET_TEXT(MSG_G26_HEATING_NOZZLE), 99);
  321. ui.quick_feedback();
  322. #endif
  323. thermalManager.setTargetHotend(g26_hotend_temp, active_extruder);
  324. // Wait for the temperature to stabilize
  325. if (!thermalManager.wait_for_hotend(active_extruder, true
  326. #if G26_CLICK_CAN_CANCEL
  327. , true
  328. #endif
  329. )) return G26_ERR;
  330. #if HAS_WIRED_LCD
  331. ui.reset_status();
  332. ui.quick_feedback();
  333. #endif
  334. return G26_OK;
  335. }
  336. /**
  337. * Prime the nozzle if needed. Return true on error.
  338. */
  339. inline bool prime_nozzle() {
  340. const feedRate_t fr_slow_e = planner.settings.max_feedrate_mm_s[E_AXIS] / 15.0f;
  341. #if HAS_LCD_MENU && !HAS_TOUCH_BUTTONS // ui.button_pressed issue with touchscreen
  342. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  343. float Total_Prime = 0.0;
  344. #endif
  345. if (g26_prime_flag == -1) { // The user wants to control how much filament gets purged
  346. ui.capture();
  347. ui.set_status_P(GET_TEXT(MSG_G26_MANUAL_PRIME), 99);
  348. ui.chirp();
  349. destination = current_position;
  350. recover_filament(destination); // Make sure G26 doesn't think the filament is retracted().
  351. while (!ui.button_pressed()) {
  352. ui.chirp();
  353. destination.e += 0.25;
  354. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  355. Total_Prime += 0.25;
  356. if (Total_Prime >= EXTRUDE_MAXLENGTH) {
  357. ui.release();
  358. return G26_ERR;
  359. }
  360. #endif
  361. prepare_internal_move_to_destination(fr_slow_e);
  362. destination = current_position;
  363. planner.synchronize(); // Without this synchronize, the purge is more consistent,
  364. // but because the planner has a buffer, we won't be able
  365. // to stop as quickly. So we put up with the less smooth
  366. // action to give the user a more responsive 'Stop'.
  367. }
  368. ui.wait_for_release();
  369. ui.set_status_P(GET_TEXT(MSG_G26_PRIME_DONE), 99);
  370. ui.quick_feedback();
  371. ui.release();
  372. }
  373. else
  374. #endif
  375. {
  376. #if HAS_WIRED_LCD
  377. ui.set_status_P(GET_TEXT(MSG_G26_FIXED_LENGTH), 99);
  378. ui.quick_feedback();
  379. #endif
  380. destination = current_position;
  381. destination.e += g26_prime_length;
  382. prepare_internal_move_to_destination(fr_slow_e);
  383. destination.e -= g26_prime_length;
  384. retract_filament(destination);
  385. }
  386. return G26_OK;
  387. }
  388. /**
  389. * G26: Mesh Validation Pattern generation.
  390. *
  391. * Used to interactively edit the mesh by placing the
  392. * nozzle in a problem area and doing a G29 P4 R command.
  393. *
  394. * Parameters:
  395. *
  396. * B Bed Temperature
  397. * C Continue from the Closest mesh point
  398. * D Disable leveling before starting
  399. * F Filament diameter
  400. * H Hotend Temperature
  401. * K Keep heaters on when completed
  402. * L Layer Height
  403. * O Ooze extrusion length
  404. * P Prime length
  405. * Q Retraction multiplier
  406. * R Repetitions (number of grid points)
  407. * S Nozzle Size (diameter) in mm
  408. * T Tool index to change to, if included
  409. * U Random deviation (50 if no value given)
  410. * X X position
  411. * Y Y position
  412. */
  413. void GcodeSuite::G26() {
  414. SERIAL_ECHOLNPGM("G26 starting...");
  415. // Don't allow Mesh Validation without homing first,
  416. // or if the parameter parsing did not go OK, abort
  417. if (homing_needed_error()) return;
  418. // Change the tool first, if specified
  419. if (parser.seenval('T')) tool_change(parser.value_int());
  420. g26_extrusion_multiplier = EXTRUSION_MULTIPLIER;
  421. g26_retraction_multiplier = G26_RETRACT_MULTIPLIER;
  422. g26_layer_height = MESH_TEST_LAYER_HEIGHT;
  423. g26_prime_length = PRIME_LENGTH;
  424. g26_bed_temp = MESH_TEST_BED_TEMP;
  425. g26_hotend_temp = MESH_TEST_HOTEND_TEMP;
  426. g26_prime_flag = 0;
  427. float g26_nozzle = MESH_TEST_NOZZLE_SIZE,
  428. g26_filament_diameter = DEFAULT_NOMINAL_FILAMENT_DIA,
  429. g26_ooze_amount = parser.linearval('O', OOZE_AMOUNT);
  430. bool g26_continue_with_closest = parser.boolval('C'),
  431. g26_keep_heaters_on = parser.boolval('K');
  432. // Accept 'I' if temperature presets are defined
  433. #if PREHEAT_COUNT
  434. const uint8_t preset_index = parser.seenval('I') ? _MIN(parser.value_byte(), PREHEAT_COUNT - 1) + 1 : 0;
  435. #endif
  436. #if HAS_HEATED_BED
  437. // Get a temperature from 'I' or 'B'
  438. int16_t bedtemp = 0;
  439. // Use the 'I' index if temperature presets are defined
  440. #if PREHEAT_COUNT
  441. if (preset_index) bedtemp = ui.material_preset[preset_index - 1].bed_temp;
  442. #endif
  443. // Look for 'B' Bed Temperature
  444. if (parser.seenval('B')) bedtemp = parser.value_celsius();
  445. if (bedtemp) {
  446. if (!WITHIN(bedtemp, 40, BED_MAX_TARGET)) {
  447. SERIAL_ECHOLNPAIR("?Specified bed temperature not plausible (40-", BED_MAX_TARGET, "C).");
  448. return;
  449. }
  450. g26_bed_temp = bedtemp;
  451. }
  452. #endif // HAS_HEATED_BED
  453. if (parser.seenval('L')) {
  454. g26_layer_height = parser.value_linear_units();
  455. if (!WITHIN(g26_layer_height, 0.0, 2.0)) {
  456. SERIAL_ECHOLNPGM("?Specified layer height not plausible.");
  457. return;
  458. }
  459. }
  460. if (parser.seen('Q')) {
  461. if (parser.has_value()) {
  462. g26_retraction_multiplier = parser.value_float();
  463. if (!WITHIN(g26_retraction_multiplier, 0.05, 15.0)) {
  464. SERIAL_ECHOLNPGM("?Specified Retraction Multiplier not plausible.");
  465. return;
  466. }
  467. }
  468. else {
  469. SERIAL_ECHOLNPGM("?Retraction Multiplier must be specified.");
  470. return;
  471. }
  472. }
  473. if (parser.seenval('S')) {
  474. g26_nozzle = parser.value_float();
  475. if (!WITHIN(g26_nozzle, 0.1, 2.0)) {
  476. SERIAL_ECHOLNPGM("?Specified nozzle size not plausible.");
  477. return;
  478. }
  479. }
  480. if (parser.seen('P')) {
  481. if (!parser.has_value()) {
  482. #if HAS_LCD_MENU
  483. g26_prime_flag = -1;
  484. #else
  485. SERIAL_ECHOLNPGM("?Prime length must be specified when not using an LCD.");
  486. return;
  487. #endif
  488. }
  489. else {
  490. g26_prime_flag++;
  491. g26_prime_length = parser.value_linear_units();
  492. if (!WITHIN(g26_prime_length, 0.0, 25.0)) {
  493. SERIAL_ECHOLNPGM("?Specified prime length not plausible.");
  494. return;
  495. }
  496. }
  497. }
  498. if (parser.seenval('F')) {
  499. g26_filament_diameter = parser.value_linear_units();
  500. if (!WITHIN(g26_filament_diameter, 1.0, 4.0)) {
  501. SERIAL_ECHOLNPGM("?Specified filament size not plausible.");
  502. return;
  503. }
  504. }
  505. g26_extrusion_multiplier *= sq(1.75) / sq(g26_filament_diameter); // If we aren't using 1.75mm filament, we need to
  506. // scale up or down the length needed to get the
  507. // same volume of filament
  508. g26_extrusion_multiplier *= g26_filament_diameter * sq(g26_nozzle) / sq(0.3); // Scale up by nozzle size
  509. // Get a temperature from 'I' or 'H'
  510. int16_t noztemp = 0;
  511. // Accept 'I' if temperature presets are defined
  512. #if PREHEAT_COUNT
  513. if (preset_index) noztemp = ui.material_preset[preset_index - 1].hotend_temp;
  514. #endif
  515. // Look for 'H' Hotend Temperature
  516. if (parser.seenval('H')) noztemp = parser.value_celsius();
  517. // If any preset or temperature was specified
  518. if (noztemp) {
  519. if (!WITHIN(noztemp, 165, (HEATER_0_MAXTEMP) - (HOTEND_OVERSHOOT))) {
  520. SERIAL_ECHOLNPGM("?Specified nozzle temperature not plausible.");
  521. return;
  522. }
  523. g26_hotend_temp = noztemp;
  524. }
  525. // 'U' to Randomize and optionally set circle deviation
  526. if (parser.seen('U')) {
  527. randomSeed(millis());
  528. // This setting will persist for the next G26
  529. g26_random_deviation = parser.has_value() ? parser.value_float() : 50.0;
  530. }
  531. // Get repeat from 'R', otherwise do one full circuit
  532. int16_t g26_repeats;
  533. #if HAS_LCD_MENU
  534. g26_repeats = parser.intval('R', GRID_MAX_POINTS + 1);
  535. #else
  536. if (!parser.seen('R')) {
  537. SERIAL_ECHOLNPGM("?(R)epeat must be specified when not using an LCD.");
  538. return;
  539. }
  540. else
  541. g26_repeats = parser.has_value() ? parser.value_int() : GRID_MAX_POINTS + 1;
  542. #endif
  543. if (g26_repeats < 1) {
  544. SERIAL_ECHOLNPGM("?(R)epeat value not plausible; must be at least 1.");
  545. return;
  546. }
  547. // Set a position with 'X' and/or 'Y'. Default: current_position
  548. g26_xy_pos.set(parser.seenval('X') ? RAW_X_POSITION(parser.value_linear_units()) : current_position.x,
  549. parser.seenval('Y') ? RAW_Y_POSITION(parser.value_linear_units()) : current_position.y);
  550. if (!position_is_reachable(g26_xy_pos)) {
  551. SERIAL_ECHOLNPGM("?Specified X,Y coordinate out of bounds.");
  552. return;
  553. }
  554. /**
  555. * Wait until all parameters are verified before altering the state!
  556. */
  557. set_bed_leveling_enabled(!parser.seen('D'));
  558. do_z_clearance(Z_CLEARANCE_BETWEEN_PROBES);
  559. #if DISABLED(NO_VOLUMETRICS)
  560. bool volumetric_was_enabled = parser.volumetric_enabled;
  561. parser.volumetric_enabled = false;
  562. planner.calculate_volumetric_multipliers();
  563. #endif
  564. if (turn_on_heaters() != G26_OK) goto LEAVE;
  565. current_position.e = 0.0;
  566. sync_plan_position_e();
  567. if (g26_prime_flag && prime_nozzle() != G26_OK) goto LEAVE;
  568. /**
  569. * Bed is preheated
  570. *
  571. * Nozzle is at temperature
  572. *
  573. * Filament is primed!
  574. *
  575. * It's "Show Time" !!!
  576. */
  577. circle_flags.reset();
  578. horizontal_mesh_line_flags.reset();
  579. vertical_mesh_line_flags.reset();
  580. // Move nozzle to the specified height for the first layer
  581. destination = current_position;
  582. destination.z = g26_layer_height;
  583. move_to(destination, 0.0);
  584. move_to(destination, g26_ooze_amount);
  585. TERN_(HAS_LCD_MENU, ui.capture());
  586. #if DISABLED(ARC_SUPPORT)
  587. /**
  588. * Pre-generate radius offset values at 30 degree intervals to reduce CPU load.
  589. */
  590. #define A_INT 30
  591. #define _ANGS (360 / A_INT)
  592. #define A_CNT (_ANGS / 2)
  593. #define _IND(A) ((A + _ANGS * 8) % _ANGS)
  594. #define _COS(A) (trig_table[_IND(A) % A_CNT] * (_IND(A) >= A_CNT ? -1 : 1))
  595. #define _SIN(A) (-_COS((A + A_CNT / 2) % _ANGS))
  596. #if A_CNT & 1
  597. #error "A_CNT must be a positive value. Please change A_INT."
  598. #endif
  599. float trig_table[A_CNT];
  600. LOOP_L_N(i, A_CNT)
  601. trig_table[i] = INTERSECTION_CIRCLE_RADIUS * cos(RADIANS(i * A_INT));
  602. #endif // !ARC_SUPPORT
  603. mesh_index_pair location;
  604. do {
  605. // Find the nearest confluence
  606. location = find_closest_circle_to_print(g26_continue_with_closest ? xy_pos_t(current_position) : g26_xy_pos);
  607. if (location.valid()) {
  608. const xy_pos_t circle = _GET_MESH_POS(location.pos);
  609. // If this mesh location is outside the printable radius, skip it.
  610. if (!position_is_reachable(circle)) continue;
  611. // Determine where to start and end the circle,
  612. // which is always drawn counter-clockwise.
  613. const xy_int8_t st = location;
  614. const bool f = st.y == 0,
  615. r = st.x >= GRID_MAX_POINTS_X - 1,
  616. b = st.y >= GRID_MAX_POINTS_Y - 1;
  617. #if ENABLED(ARC_SUPPORT)
  618. #define ARC_LENGTH(quarters) (INTERSECTION_CIRCLE_RADIUS * M_PI * (quarters) / 2)
  619. #define INTERSECTION_CIRCLE_DIAM ((INTERSECTION_CIRCLE_RADIUS) * 2)
  620. xy_float_t e = { circle.x + INTERSECTION_CIRCLE_RADIUS, circle.y };
  621. xyz_float_t s = e;
  622. // Figure out where to start and end the arc - we always print counterclockwise
  623. float arc_length = ARC_LENGTH(4);
  624. if (st.x == 0) { // left edge
  625. if (!f) { s.x = circle.x; s.y -= INTERSECTION_CIRCLE_RADIUS; }
  626. if (!b) { e.x = circle.x; e.y += INTERSECTION_CIRCLE_RADIUS; }
  627. arc_length = (f || b) ? ARC_LENGTH(1) : ARC_LENGTH(2);
  628. }
  629. else if (r) { // right edge
  630. if (b) s.set(circle.x - (INTERSECTION_CIRCLE_RADIUS), circle.y);
  631. else s.set(circle.x, circle.y + INTERSECTION_CIRCLE_RADIUS);
  632. if (f) e.set(circle.x - (INTERSECTION_CIRCLE_RADIUS), circle.y);
  633. else e.set(circle.x, circle.y - (INTERSECTION_CIRCLE_RADIUS));
  634. arc_length = (f || b) ? ARC_LENGTH(1) : ARC_LENGTH(2);
  635. }
  636. else if (f) {
  637. e.x -= INTERSECTION_CIRCLE_DIAM;
  638. arc_length = ARC_LENGTH(2);
  639. }
  640. else if (b) {
  641. s.x -= INTERSECTION_CIRCLE_DIAM;
  642. arc_length = ARC_LENGTH(2);
  643. }
  644. const ab_float_t arc_offset = circle - s;
  645. const xy_float_t dist = current_position - s; // Distance from the start of the actual circle
  646. const float dist_start = HYPOT2(dist.x, dist.y);
  647. const xyze_pos_t endpoint = {
  648. e.x, e.y, g26_layer_height,
  649. current_position.e + (arc_length * g26_e_axis_feedrate * g26_extrusion_multiplier)
  650. };
  651. if (dist_start > 2.0) {
  652. s.z = g26_layer_height + 0.5f;
  653. retract_lift_move(s);
  654. }
  655. s.z = g26_layer_height;
  656. move_to(s, 0.0); // Get to the starting point with no extrusion / un-Z lift
  657. recover_filament(destination);
  658. const feedRate_t old_feedrate = feedrate_mm_s;
  659. feedrate_mm_s = PLANNER_XY_FEEDRATE() * 0.1f;
  660. plan_arc(endpoint, arc_offset, false, 0); // Draw a counter-clockwise arc
  661. feedrate_mm_s = old_feedrate;
  662. destination = current_position;
  663. if (TERN0(HAS_LCD_MENU, user_canceled())) goto LEAVE; // Check if the user wants to stop the Mesh Validation
  664. #else // !ARC_SUPPORT
  665. int8_t start_ind = -2, end_ind = 9; // Assume a full circle (from 5:00 to 5:00)
  666. if (st.x == 0) { // Left edge? Just right half.
  667. start_ind = f ? 0 : -3; // 03:00 to 12:00 for front-left
  668. end_ind = b ? 0 : 2; // 06:00 to 03:00 for back-left
  669. }
  670. else if (r) { // Right edge? Just left half.
  671. start_ind = b ? 6 : 3; // 12:00 to 09:00 for front-right
  672. end_ind = f ? 5 : 8; // 09:00 to 06:00 for back-right
  673. }
  674. else if (f) { // Front edge? Just back half.
  675. start_ind = 0; // 03:00
  676. end_ind = 5; // 09:00
  677. }
  678. else if (b) { // Back edge? Just front half.
  679. start_ind = 6; // 09:00
  680. end_ind = 11; // 03:00
  681. }
  682. for (int8_t ind = start_ind; ind <= end_ind; ind++) {
  683. if (TERN0(HAS_LCD_MENU, user_canceled())) goto LEAVE; // Check if the user wants to stop the Mesh Validation
  684. xyz_float_t p = { circle.x + _COS(ind ), circle.y + _SIN(ind ), g26_layer_height },
  685. q = { circle.x + _COS(ind + 1), circle.y + _SIN(ind + 1), g26_layer_height };
  686. #if IS_KINEMATIC
  687. // Check to make sure this segment is entirely on the bed, skip if not.
  688. if (!position_is_reachable(p) || !position_is_reachable(q)) continue;
  689. #else
  690. LIMIT(p.x, X_MIN_POS + 1, X_MAX_POS - 1); // Prevent hitting the endstops
  691. LIMIT(p.y, Y_MIN_POS + 1, Y_MAX_POS - 1);
  692. LIMIT(q.x, X_MIN_POS + 1, X_MAX_POS - 1);
  693. LIMIT(q.y, Y_MIN_POS + 1, Y_MAX_POS - 1);
  694. #endif
  695. print_line_from_here_to_there(p, q);
  696. SERIAL_FLUSH(); // Prevent host M105 buffer overrun.
  697. }
  698. #endif // !ARC_SUPPORT
  699. if (look_for_lines_to_connect()) goto LEAVE;
  700. }
  701. SERIAL_FLUSH(); // Prevent host M105 buffer overrun.
  702. } while (--g26_repeats && location.valid());
  703. LEAVE:
  704. ui.set_status_P(GET_TEXT(MSG_G26_LEAVING), -1);
  705. retract_filament(destination);
  706. destination.z = Z_CLEARANCE_BETWEEN_PROBES;
  707. move_to(destination, 0); // Raise the nozzle
  708. destination = g26_xy_pos; // Move back to the starting XY position
  709. move_to(destination, 0); // Move back to the starting position
  710. #if DISABLED(NO_VOLUMETRICS)
  711. parser.volumetric_enabled = volumetric_was_enabled;
  712. planner.calculate_volumetric_multipliers();
  713. #endif
  714. TERN_(HAS_LCD_MENU, ui.release()); // Give back control of the LCD
  715. if (!g26_keep_heaters_on) {
  716. TERN_(HAS_HEATED_BED, thermalManager.setTargetBed(0));
  717. thermalManager.setTargetHotend(active_extruder, 0);
  718. }
  719. }
  720. #endif // G26_MESH_VALIDATION