My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

settings.cpp 114KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <https://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * settings.cpp
  24. *
  25. * Settings and EEPROM storage
  26. *
  27. * IMPORTANT: Whenever there are changes made to the variables stored in EEPROM
  28. * in the functions below, also increment the version number. This makes sure that
  29. * the default values are used whenever there is a change to the data, to prevent
  30. * wrong data being written to the variables.
  31. *
  32. * ALSO: Variables in the Store and Retrieve sections must be in the same order.
  33. * If a feature is disabled, some data must still be written that, when read,
  34. * either sets a Sane Default, or results in No Change to the existing value.
  35. */
  36. // Change EEPROM version if the structure changes
  37. #define EEPROM_VERSION "V83"
  38. #define EEPROM_OFFSET 100
  39. // Check the integrity of data offsets.
  40. // Can be disabled for production build.
  41. //#define DEBUG_EEPROM_READWRITE
  42. #include "settings.h"
  43. #include "endstops.h"
  44. #include "planner.h"
  45. #include "stepper.h"
  46. #include "temperature.h"
  47. #include "../lcd/marlinui.h"
  48. #include "../libs/vector_3.h" // for matrix_3x3
  49. #include "../gcode/gcode.h"
  50. #include "../MarlinCore.h"
  51. #if EITHER(EEPROM_SETTINGS, SD_FIRMWARE_UPDATE)
  52. #include "../HAL/shared/eeprom_api.h"
  53. #endif
  54. #include "probe.h"
  55. #if HAS_LEVELING
  56. #include "../feature/bedlevel/bedlevel.h"
  57. #endif
  58. #if ENABLED(Z_STEPPER_AUTO_ALIGN)
  59. #include "../feature/z_stepper_align.h"
  60. #endif
  61. #if ENABLED(EXTENSIBLE_UI)
  62. #include "../lcd/extui/ui_api.h"
  63. #endif
  64. #if HAS_SERVOS
  65. #include "servo.h"
  66. #endif
  67. #if HAS_SERVOS && HAS_SERVO_ANGLES
  68. #define EEPROM_NUM_SERVOS NUM_SERVOS
  69. #else
  70. #define EEPROM_NUM_SERVOS NUM_SERVO_PLUGS
  71. #endif
  72. #include "../feature/fwretract.h"
  73. #if ENABLED(POWER_LOSS_RECOVERY)
  74. #include "../feature/powerloss.h"
  75. #endif
  76. #if HAS_POWER_MONITOR
  77. #include "../feature/power_monitor.h"
  78. #endif
  79. #include "../feature/pause.h"
  80. #if ENABLED(BACKLASH_COMPENSATION)
  81. #include "../feature/backlash.h"
  82. #endif
  83. #if HAS_FILAMENT_SENSOR
  84. #include "../feature/runout.h"
  85. #ifndef FIL_RUNOUT_ENABLED_DEFAULT
  86. #define FIL_RUNOUT_ENABLED_DEFAULT true
  87. #endif
  88. #endif
  89. #if ENABLED(EXTRA_LIN_ADVANCE_K)
  90. extern float other_extruder_advance_K[EXTRUDERS];
  91. #endif
  92. #if HAS_MULTI_EXTRUDER
  93. #include "tool_change.h"
  94. void M217_report(const bool eeprom);
  95. #endif
  96. #if ENABLED(BLTOUCH)
  97. #include "../feature/bltouch.h"
  98. #endif
  99. #if HAS_TRINAMIC_CONFIG
  100. #include "stepper/indirection.h"
  101. #include "../feature/tmc_util.h"
  102. #endif
  103. #if ENABLED(PROBE_TEMP_COMPENSATION)
  104. #include "../feature/probe_temp_comp.h"
  105. #endif
  106. #include "../feature/controllerfan.h"
  107. #if ENABLED(CONTROLLER_FAN_EDITABLE)
  108. void M710_report(const bool forReplay);
  109. #endif
  110. #if ENABLED(CASE_LIGHT_ENABLE)
  111. #include "../feature/caselight.h"
  112. #endif
  113. #if ENABLED(PASSWORD_FEATURE)
  114. #include "../feature/password/password.h"
  115. #endif
  116. #if ENABLED(TOUCH_SCREEN_CALIBRATION)
  117. #include "../lcd/tft_io/touch_calibration.h"
  118. #endif
  119. #if HAS_ETHERNET
  120. #include "../feature/ethernet.h"
  121. #endif
  122. #if ENABLED(SOUND_MENU_ITEM)
  123. #include "../libs/buzzer.h"
  124. #endif
  125. #pragma pack(push, 1) // No padding between variables
  126. #if HAS_ETHERNET
  127. void ETH0_report();
  128. void MAC_report();
  129. void M552_report();
  130. void M553_report();
  131. void M554_report();
  132. #endif
  133. typedef struct { uint16_t X, Y, Z, X2, Y2, Z2, Z3, Z4, E0, E1, E2, E3, E4, E5, E6, E7; } tmc_stepper_current_t;
  134. typedef struct { uint32_t X, Y, Z, X2, Y2, Z2, Z3, Z4, E0, E1, E2, E3, E4, E5, E6, E7; } tmc_hybrid_threshold_t;
  135. typedef struct { int16_t X, Y, Z, X2, Y2, Z2, Z3, Z4; } tmc_sgt_t;
  136. typedef struct { bool X, Y, Z, X2, Y2, Z2, Z3, Z4, E0, E1, E2, E3, E4, E5, E6, E7; } tmc_stealth_enabled_t;
  137. // Limit an index to an array size
  138. #define ALIM(I,ARR) _MIN(I, (signed)COUNT(ARR) - 1)
  139. // Defaults for reset / fill in on load
  140. static const uint32_t _DMA[] PROGMEM = DEFAULT_MAX_ACCELERATION;
  141. static const float _DASU[] PROGMEM = DEFAULT_AXIS_STEPS_PER_UNIT;
  142. static const feedRate_t _DMF[] PROGMEM = DEFAULT_MAX_FEEDRATE;
  143. /**
  144. * Current EEPROM Layout
  145. *
  146. * Keep this data structure up to date so
  147. * EEPROM size is known at compile time!
  148. */
  149. typedef struct SettingsDataStruct {
  150. char version[4]; // Vnn\0
  151. uint16_t crc; // Data Checksum
  152. //
  153. // DISTINCT_E_FACTORS
  154. //
  155. uint8_t esteppers; // XYZE_N - XYZ
  156. planner_settings_t planner_settings;
  157. xyze_float_t planner_max_jerk; // M205 XYZE planner.max_jerk
  158. float planner_junction_deviation_mm; // M205 J planner.junction_deviation_mm
  159. xyz_pos_t home_offset; // M206 XYZ / M665 TPZ
  160. #if HAS_HOTEND_OFFSET
  161. xyz_pos_t hotend_offset[HOTENDS - 1]; // M218 XYZ
  162. #endif
  163. //
  164. // FILAMENT_RUNOUT_SENSOR
  165. //
  166. bool runout_sensor_enabled; // M412 S
  167. float runout_distance_mm; // M412 D
  168. //
  169. // ENABLE_LEVELING_FADE_HEIGHT
  170. //
  171. float planner_z_fade_height; // M420 Zn planner.z_fade_height
  172. //
  173. // MESH_BED_LEVELING
  174. //
  175. float mbl_z_offset; // mbl.z_offset
  176. uint8_t mesh_num_x, mesh_num_y; // GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y
  177. float mbl_z_values[TERN(MESH_BED_LEVELING, GRID_MAX_POINTS_X, 3)] // mbl.z_values
  178. [TERN(MESH_BED_LEVELING, GRID_MAX_POINTS_Y, 3)];
  179. //
  180. // HAS_BED_PROBE
  181. //
  182. xyz_pos_t probe_offset;
  183. //
  184. // ABL_PLANAR
  185. //
  186. matrix_3x3 planner_bed_level_matrix; // planner.bed_level_matrix
  187. //
  188. // AUTO_BED_LEVELING_BILINEAR
  189. //
  190. uint8_t grid_max_x, grid_max_y; // GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y
  191. xy_pos_t bilinear_grid_spacing, bilinear_start; // G29 L F
  192. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  193. bed_mesh_t z_values; // G29
  194. #else
  195. float z_values[3][3];
  196. #endif
  197. //
  198. // AUTO_BED_LEVELING_UBL
  199. //
  200. bool planner_leveling_active; // M420 S planner.leveling_active
  201. int8_t ubl_storage_slot; // ubl.storage_slot
  202. //
  203. // SERVO_ANGLES
  204. //
  205. uint16_t servo_angles[EEPROM_NUM_SERVOS][2]; // M281 P L U
  206. //
  207. // Temperature first layer compensation values
  208. //
  209. #if ENABLED(PROBE_TEMP_COMPENSATION)
  210. int16_t z_offsets_probe[COUNT(temp_comp.z_offsets_probe)], // M871 P I V
  211. z_offsets_bed[COUNT(temp_comp.z_offsets_bed)] // M871 B I V
  212. #if ENABLED(USE_TEMP_EXT_COMPENSATION)
  213. , z_offsets_ext[COUNT(temp_comp.z_offsets_ext)] // M871 E I V
  214. #endif
  215. ;
  216. #endif
  217. //
  218. // BLTOUCH
  219. //
  220. bool bltouch_last_written_mode;
  221. //
  222. // DELTA / [XYZ]_DUAL_ENDSTOPS
  223. //
  224. #if ENABLED(DELTA)
  225. float delta_height; // M666 H
  226. abc_float_t delta_endstop_adj; // M666 X Y Z
  227. float delta_radius, // M665 R
  228. delta_diagonal_rod, // M665 L
  229. delta_segments_per_second; // M665 S
  230. abc_float_t delta_tower_angle_trim, // M665 X Y Z
  231. delta_diagonal_rod_trim; // M665 A B C
  232. #elif HAS_EXTRA_ENDSTOPS
  233. float x2_endstop_adj, // M666 X
  234. y2_endstop_adj, // M666 Y
  235. z2_endstop_adj, // M666 (S2) Z
  236. z3_endstop_adj, // M666 (S3) Z
  237. z4_endstop_adj; // M666 (S4) Z
  238. #endif
  239. //
  240. // Z_STEPPER_AUTO_ALIGN, Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS
  241. //
  242. #if ENABLED(Z_STEPPER_AUTO_ALIGN)
  243. xy_pos_t z_stepper_align_xy[NUM_Z_STEPPER_DRIVERS]; // M422 S X Y
  244. #if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
  245. xy_pos_t z_stepper_align_stepper_xy[NUM_Z_STEPPER_DRIVERS]; // M422 W X Y
  246. #endif
  247. #endif
  248. //
  249. // Material Presets
  250. //
  251. #if PREHEAT_COUNT
  252. preheat_t ui_material_preset[PREHEAT_COUNT]; // M145 S0 H B F
  253. #endif
  254. //
  255. // PIDTEMP
  256. //
  257. PIDCF_t hotendPID[HOTENDS]; // M301 En PIDCF / M303 En U
  258. int16_t lpq_len; // M301 L
  259. //
  260. // PIDTEMPBED
  261. //
  262. PID_t bedPID; // M304 PID / M303 E-1 U
  263. //
  264. // User-defined Thermistors
  265. //
  266. #if HAS_USER_THERMISTORS
  267. user_thermistor_t user_thermistor[USER_THERMISTORS]; // M305 P0 R4700 T100000 B3950
  268. #endif
  269. //
  270. // Power monitor
  271. //
  272. uint8_t power_monitor_flags; // M430 I V W
  273. //
  274. // HAS_LCD_CONTRAST
  275. //
  276. int16_t lcd_contrast; // M250 C
  277. //
  278. // Controller fan settings
  279. //
  280. controllerFan_settings_t controllerFan_settings; // M710
  281. //
  282. // POWER_LOSS_RECOVERY
  283. //
  284. bool recovery_enabled; // M413 S
  285. //
  286. // FWRETRACT
  287. //
  288. fwretract_settings_t fwretract_settings; // M207 S F Z W, M208 S F W R
  289. bool autoretract_enabled; // M209 S
  290. //
  291. // !NO_VOLUMETRIC
  292. //
  293. bool parser_volumetric_enabled; // M200 S parser.volumetric_enabled
  294. float planner_filament_size[EXTRUDERS]; // M200 T D planner.filament_size[]
  295. float planner_volumetric_extruder_limit[EXTRUDERS]; // M200 T L planner.volumetric_extruder_limit[]
  296. //
  297. // HAS_TRINAMIC_CONFIG
  298. //
  299. tmc_stepper_current_t tmc_stepper_current; // M906 X Y Z X2 Y2 Z2 Z3 Z4 E0 E1 E2 E3 E4 E5
  300. tmc_hybrid_threshold_t tmc_hybrid_threshold; // M913 X Y Z X2 Y2 Z2 Z3 Z4 E0 E1 E2 E3 E4 E5
  301. tmc_sgt_t tmc_sgt; // M914 X Y Z X2 Y2 Z2 Z3 Z4
  302. tmc_stealth_enabled_t tmc_stealth_enabled; // M569 X Y Z X2 Y2 Z2 Z3 Z4 E0 E1 E2 E3 E4 E5
  303. //
  304. // LIN_ADVANCE
  305. //
  306. float planner_extruder_advance_K[_MAX(EXTRUDERS, 1)]; // M900 K planner.extruder_advance_K
  307. //
  308. // HAS_MOTOR_CURRENT_PWM
  309. //
  310. #ifndef MOTOR_CURRENT_COUNT
  311. #define MOTOR_CURRENT_COUNT 3
  312. #endif
  313. uint32_t motor_current_setting[MOTOR_CURRENT_COUNT]; // M907 X Z E
  314. //
  315. // CNC_COORDINATE_SYSTEMS
  316. //
  317. xyz_pos_t coordinate_system[MAX_COORDINATE_SYSTEMS]; // G54-G59.3
  318. //
  319. // SKEW_CORRECTION
  320. //
  321. skew_factor_t planner_skew_factor; // M852 I J K planner.skew_factor
  322. //
  323. // ADVANCED_PAUSE_FEATURE
  324. //
  325. #if EXTRUDERS
  326. fil_change_settings_t fc_settings[EXTRUDERS]; // M603 T U L
  327. #endif
  328. //
  329. // Tool-change settings
  330. //
  331. #if HAS_MULTI_EXTRUDER
  332. toolchange_settings_t toolchange_settings; // M217 S P R
  333. #endif
  334. //
  335. // BACKLASH_COMPENSATION
  336. //
  337. xyz_float_t backlash_distance_mm; // M425 X Y Z
  338. uint8_t backlash_correction; // M425 F
  339. float backlash_smoothing_mm; // M425 S
  340. //
  341. // EXTENSIBLE_UI
  342. //
  343. #if ENABLED(EXTENSIBLE_UI)
  344. // This is a significant hardware change; don't reserve space when not present
  345. uint8_t extui_data[ExtUI::eeprom_data_size];
  346. #endif
  347. //
  348. // CASELIGHT_USES_BRIGHTNESS
  349. //
  350. #if CASELIGHT_USES_BRIGHTNESS
  351. uint8_t caselight_brightness; // M355 P
  352. #endif
  353. //
  354. // PASSWORD_FEATURE
  355. //
  356. #if ENABLED(PASSWORD_FEATURE)
  357. bool password_is_set;
  358. uint32_t password_value;
  359. #endif
  360. //
  361. // TOUCH_SCREEN_CALIBRATION
  362. //
  363. #if ENABLED(TOUCH_SCREEN_CALIBRATION)
  364. touch_calibration_t touch_calibration_data;
  365. #endif
  366. // Ethernet settings
  367. #if HAS_ETHERNET
  368. bool ethernet_hardware_enabled; // M552 S
  369. uint32_t ethernet_ip, // M552 P
  370. ethernet_dns,
  371. ethernet_gateway, // M553 P
  372. ethernet_subnet; // M554 P
  373. #endif
  374. //
  375. // Buzzer enable/disable
  376. //
  377. #if ENABLED(SOUND_MENU_ITEM)
  378. bool buzzer_enabled;
  379. #endif
  380. #if HAS_MULTI_LANGUAGE
  381. uint8_t ui_language; // M414 S
  382. #endif
  383. } SettingsData;
  384. //static_assert(sizeof(SettingsData) <= MARLIN_EEPROM_SIZE, "EEPROM too small to contain SettingsData!");
  385. MarlinSettings settings;
  386. uint16_t MarlinSettings::datasize() { return sizeof(SettingsData); }
  387. /**
  388. * Post-process after Retrieve or Reset
  389. */
  390. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  391. float new_z_fade_height;
  392. #endif
  393. void MarlinSettings::postprocess() {
  394. xyze_pos_t oldpos = current_position;
  395. // steps per s2 needs to be updated to agree with units per s2
  396. planner.reset_acceleration_rates();
  397. // Make sure delta kinematics are updated before refreshing the
  398. // planner position so the stepper counts will be set correctly.
  399. TERN_(DELTA, recalc_delta_settings());
  400. TERN_(PIDTEMP, thermalManager.updatePID());
  401. #if DISABLED(NO_VOLUMETRICS)
  402. planner.calculate_volumetric_multipliers();
  403. #elif EXTRUDERS
  404. for (uint8_t i = COUNT(planner.e_factor); i--;)
  405. planner.refresh_e_factor(i);
  406. #endif
  407. // Software endstops depend on home_offset
  408. LOOP_XYZ(i) {
  409. update_workspace_offset((AxisEnum)i);
  410. update_software_endstops((AxisEnum)i);
  411. }
  412. TERN_(ENABLE_LEVELING_FADE_HEIGHT, set_z_fade_height(new_z_fade_height, false)); // false = no report
  413. TERN_(AUTO_BED_LEVELING_BILINEAR, refresh_bed_level());
  414. TERN_(HAS_MOTOR_CURRENT_PWM, stepper.refresh_motor_power());
  415. TERN_(FWRETRACT, fwretract.refresh_autoretract());
  416. TERN_(HAS_LINEAR_E_JERK, planner.recalculate_max_e_jerk());
  417. TERN_(CASELIGHT_USES_BRIGHTNESS, caselight.update_brightness());
  418. // Refresh steps_to_mm with the reciprocal of axis_steps_per_mm
  419. // and init stepper.count[], planner.position[] with current_position
  420. planner.refresh_positioning();
  421. // Various factors can change the current position
  422. if (oldpos != current_position)
  423. report_current_position();
  424. }
  425. #if BOTH(PRINTCOUNTER, EEPROM_SETTINGS)
  426. #include "printcounter.h"
  427. static_assert(
  428. !WITHIN(STATS_EEPROM_ADDRESS, EEPROM_OFFSET, EEPROM_OFFSET + sizeof(SettingsData)) &&
  429. !WITHIN(STATS_EEPROM_ADDRESS + sizeof(printStatistics), EEPROM_OFFSET, EEPROM_OFFSET + sizeof(SettingsData)),
  430. "STATS_EEPROM_ADDRESS collides with EEPROM settings storage."
  431. );
  432. #endif
  433. #if ENABLED(SD_FIRMWARE_UPDATE)
  434. #if ENABLED(EEPROM_SETTINGS)
  435. static_assert(
  436. !WITHIN(SD_FIRMWARE_UPDATE_EEPROM_ADDR, EEPROM_OFFSET, EEPROM_OFFSET + sizeof(SettingsData)),
  437. "SD_FIRMWARE_UPDATE_EEPROM_ADDR collides with EEPROM settings storage."
  438. );
  439. #endif
  440. bool MarlinSettings::sd_update_status() {
  441. uint8_t val;
  442. persistentStore.read_data(SD_FIRMWARE_UPDATE_EEPROM_ADDR, &val);
  443. return (val == SD_FIRMWARE_UPDATE_ACTIVE_VALUE);
  444. }
  445. bool MarlinSettings::set_sd_update_status(const bool enable) {
  446. if (enable != sd_update_status())
  447. persistentStore.write_data(
  448. SD_FIRMWARE_UPDATE_EEPROM_ADDR,
  449. enable ? SD_FIRMWARE_UPDATE_ACTIVE_VALUE : SD_FIRMWARE_UPDATE_INACTIVE_VALUE
  450. );
  451. return true;
  452. }
  453. #endif // SD_FIRMWARE_UPDATE
  454. #ifdef ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE
  455. static_assert(EEPROM_OFFSET + sizeof(SettingsData) < ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE,
  456. "ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE is insufficient to capture all EEPROM data.");
  457. #endif
  458. #define DEBUG_OUT ENABLED(DEBUG_LEVELING_FEATURE)
  459. #include "../core/debug_out.h"
  460. #if ENABLED(EEPROM_SETTINGS)
  461. #define EEPROM_START() if (!persistentStore.access_start()) { SERIAL_ECHO_MSG("No EEPROM."); return false; } \
  462. int eeprom_index = EEPROM_OFFSET
  463. #define EEPROM_FINISH() persistentStore.access_finish()
  464. #define EEPROM_SKIP(VAR) (eeprom_index += sizeof(VAR))
  465. #define EEPROM_WRITE(VAR) do{ persistentStore.write_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc); }while(0)
  466. #define EEPROM_READ(VAR) do{ persistentStore.read_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc, !validating); }while(0)
  467. #define EEPROM_READ_ALWAYS(VAR) do{ persistentStore.read_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc); }while(0)
  468. #define EEPROM_ASSERT(TST,ERR) do{ if (!(TST)) { SERIAL_ERROR_MSG(ERR); eeprom_error = true; } }while(0)
  469. #if ENABLED(DEBUG_EEPROM_READWRITE)
  470. #define _FIELD_TEST(FIELD) \
  471. EEPROM_ASSERT( \
  472. eeprom_error || eeprom_index == offsetof(SettingsData, FIELD) + EEPROM_OFFSET, \
  473. "Field " STRINGIFY(FIELD) " mismatch." \
  474. )
  475. #else
  476. #define _FIELD_TEST(FIELD) NOOP
  477. #endif
  478. const char version[4] = EEPROM_VERSION;
  479. bool MarlinSettings::eeprom_error, MarlinSettings::validating;
  480. bool MarlinSettings::size_error(const uint16_t size) {
  481. if (size != datasize()) {
  482. DEBUG_ERROR_MSG("EEPROM datasize error.");
  483. return true;
  484. }
  485. return false;
  486. }
  487. /**
  488. * M500 - Store Configuration
  489. */
  490. bool MarlinSettings::save() {
  491. float dummyf = 0;
  492. char ver[4] = "ERR";
  493. uint16_t working_crc = 0;
  494. EEPROM_START();
  495. eeprom_error = false;
  496. // Write or Skip version. (Flash doesn't allow rewrite without erase.)
  497. TERN(FLASH_EEPROM_EMULATION, EEPROM_SKIP, EEPROM_WRITE)(ver);
  498. EEPROM_SKIP(working_crc); // Skip the checksum slot
  499. working_crc = 0; // clear before first "real data"
  500. _FIELD_TEST(esteppers);
  501. const uint8_t esteppers = COUNT(planner.settings.axis_steps_per_mm) - XYZ;
  502. EEPROM_WRITE(esteppers);
  503. //
  504. // Planner Motion
  505. //
  506. {
  507. EEPROM_WRITE(planner.settings);
  508. #if HAS_CLASSIC_JERK
  509. EEPROM_WRITE(planner.max_jerk);
  510. #if HAS_LINEAR_E_JERK
  511. dummyf = float(DEFAULT_EJERK);
  512. EEPROM_WRITE(dummyf);
  513. #endif
  514. #else
  515. const xyze_pos_t planner_max_jerk = { 10, 10, 0.4, float(DEFAULT_EJERK) };
  516. EEPROM_WRITE(planner_max_jerk);
  517. #endif
  518. TERN_(CLASSIC_JERK, dummyf = 0.02f);
  519. EEPROM_WRITE(TERN(CLASSIC_JERK, dummyf, planner.junction_deviation_mm));
  520. }
  521. //
  522. // Home Offset
  523. //
  524. {
  525. _FIELD_TEST(home_offset);
  526. #if HAS_SCARA_OFFSET
  527. EEPROM_WRITE(scara_home_offset);
  528. #else
  529. #if !HAS_HOME_OFFSET
  530. const xyz_pos_t home_offset{0};
  531. #endif
  532. EEPROM_WRITE(home_offset);
  533. #endif
  534. }
  535. //
  536. // Hotend Offsets, if any
  537. //
  538. {
  539. #if HAS_HOTEND_OFFSET
  540. // Skip hotend 0 which must be 0
  541. LOOP_S_L_N(e, 1, HOTENDS)
  542. EEPROM_WRITE(hotend_offset[e]);
  543. #endif
  544. }
  545. //
  546. // Filament Runout Sensor
  547. //
  548. {
  549. #if HAS_FILAMENT_SENSOR
  550. const bool &runout_sensor_enabled = runout.enabled;
  551. #else
  552. constexpr int8_t runout_sensor_enabled = -1;
  553. #endif
  554. _FIELD_TEST(runout_sensor_enabled);
  555. EEPROM_WRITE(runout_sensor_enabled);
  556. #if HAS_FILAMENT_RUNOUT_DISTANCE
  557. const float &runout_distance_mm = runout.runout_distance();
  558. #else
  559. constexpr float runout_distance_mm = 0;
  560. #endif
  561. EEPROM_WRITE(runout_distance_mm);
  562. }
  563. //
  564. // Global Leveling
  565. //
  566. {
  567. const float zfh = TERN(ENABLE_LEVELING_FADE_HEIGHT, planner.z_fade_height, (DEFAULT_LEVELING_FADE_HEIGHT));
  568. EEPROM_WRITE(zfh);
  569. }
  570. //
  571. // Mesh Bed Leveling
  572. //
  573. {
  574. #if ENABLED(MESH_BED_LEVELING)
  575. static_assert(
  576. sizeof(mbl.z_values) == (GRID_MAX_POINTS) * sizeof(mbl.z_values[0][0]),
  577. "MBL Z array is the wrong size."
  578. );
  579. #else
  580. dummyf = 0;
  581. #endif
  582. const uint8_t mesh_num_x = TERN(MESH_BED_LEVELING, GRID_MAX_POINTS_X, 3),
  583. mesh_num_y = TERN(MESH_BED_LEVELING, GRID_MAX_POINTS_Y, 3);
  584. EEPROM_WRITE(TERN(MESH_BED_LEVELING, mbl.z_offset, dummyf));
  585. EEPROM_WRITE(mesh_num_x);
  586. EEPROM_WRITE(mesh_num_y);
  587. #if ENABLED(MESH_BED_LEVELING)
  588. EEPROM_WRITE(mbl.z_values);
  589. #else
  590. for (uint8_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_WRITE(dummyf);
  591. #endif
  592. }
  593. //
  594. // Probe XYZ Offsets
  595. //
  596. {
  597. _FIELD_TEST(probe_offset);
  598. #if HAS_BED_PROBE
  599. const xyz_pos_t &zpo = probe.offset;
  600. #else
  601. constexpr xyz_pos_t zpo{0};
  602. #endif
  603. EEPROM_WRITE(zpo);
  604. }
  605. //
  606. // Planar Bed Leveling matrix
  607. //
  608. {
  609. #if ABL_PLANAR
  610. EEPROM_WRITE(planner.bed_level_matrix);
  611. #else
  612. dummyf = 0;
  613. for (uint8_t q = 9; q--;) EEPROM_WRITE(dummyf);
  614. #endif
  615. }
  616. //
  617. // Bilinear Auto Bed Leveling
  618. //
  619. {
  620. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  621. static_assert(
  622. sizeof(z_values) == (GRID_MAX_POINTS) * sizeof(z_values[0][0]),
  623. "Bilinear Z array is the wrong size."
  624. );
  625. #else
  626. const xy_pos_t bilinear_start{0}, bilinear_grid_spacing{0};
  627. #endif
  628. const uint8_t grid_max_x = TERN(AUTO_BED_LEVELING_BILINEAR, GRID_MAX_POINTS_X, 3),
  629. grid_max_y = TERN(AUTO_BED_LEVELING_BILINEAR, GRID_MAX_POINTS_Y, 3);
  630. EEPROM_WRITE(grid_max_x);
  631. EEPROM_WRITE(grid_max_y);
  632. EEPROM_WRITE(bilinear_grid_spacing);
  633. EEPROM_WRITE(bilinear_start);
  634. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  635. EEPROM_WRITE(z_values); // 9-256 floats
  636. #else
  637. dummyf = 0;
  638. for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_WRITE(dummyf);
  639. #endif
  640. }
  641. //
  642. // Unified Bed Leveling
  643. //
  644. {
  645. _FIELD_TEST(planner_leveling_active);
  646. const bool ubl_active = TERN(AUTO_BED_LEVELING_UBL, planner.leveling_active, false);
  647. const int8_t storage_slot = TERN(AUTO_BED_LEVELING_UBL, ubl.storage_slot, -1);
  648. EEPROM_WRITE(ubl_active);
  649. EEPROM_WRITE(storage_slot);
  650. }
  651. //
  652. // Servo Angles
  653. //
  654. {
  655. _FIELD_TEST(servo_angles);
  656. #if !HAS_SERVO_ANGLES
  657. uint16_t servo_angles[EEPROM_NUM_SERVOS][2] = { { 0, 0 } };
  658. #endif
  659. EEPROM_WRITE(servo_angles);
  660. }
  661. //
  662. // Thermal first layer compensation values
  663. //
  664. #if ENABLED(PROBE_TEMP_COMPENSATION)
  665. EEPROM_WRITE(temp_comp.z_offsets_probe);
  666. EEPROM_WRITE(temp_comp.z_offsets_bed);
  667. #if ENABLED(USE_TEMP_EXT_COMPENSATION)
  668. EEPROM_WRITE(temp_comp.z_offsets_ext);
  669. #endif
  670. #else
  671. // No placeholder data for this feature
  672. #endif
  673. //
  674. // BLTOUCH
  675. //
  676. {
  677. _FIELD_TEST(bltouch_last_written_mode);
  678. const bool bltouch_last_written_mode = TERN(BLTOUCH, bltouch.last_written_mode, false);
  679. EEPROM_WRITE(bltouch_last_written_mode);
  680. }
  681. //
  682. // DELTA Geometry or Dual Endstops offsets
  683. //
  684. {
  685. #if ENABLED(DELTA)
  686. _FIELD_TEST(delta_height);
  687. EEPROM_WRITE(delta_height); // 1 float
  688. EEPROM_WRITE(delta_endstop_adj); // 3 floats
  689. EEPROM_WRITE(delta_radius); // 1 float
  690. EEPROM_WRITE(delta_diagonal_rod); // 1 float
  691. EEPROM_WRITE(delta_segments_per_second); // 1 float
  692. EEPROM_WRITE(delta_tower_angle_trim); // 3 floats
  693. EEPROM_WRITE(delta_diagonal_rod_trim); // 3 floats
  694. #elif HAS_EXTRA_ENDSTOPS
  695. _FIELD_TEST(x2_endstop_adj);
  696. // Write dual endstops in X, Y, Z order. Unused = 0.0
  697. dummyf = 0;
  698. EEPROM_WRITE(TERN(X_DUAL_ENDSTOPS, endstops.x2_endstop_adj, dummyf)); // 1 float
  699. EEPROM_WRITE(TERN(Y_DUAL_ENDSTOPS, endstops.y2_endstop_adj, dummyf)); // 1 float
  700. EEPROM_WRITE(TERN(Z_MULTI_ENDSTOPS, endstops.z2_endstop_adj, dummyf)); // 1 float
  701. #if ENABLED(Z_MULTI_ENDSTOPS) && NUM_Z_STEPPER_DRIVERS >= 3
  702. EEPROM_WRITE(endstops.z3_endstop_adj); // 1 float
  703. #else
  704. EEPROM_WRITE(dummyf);
  705. #endif
  706. #if ENABLED(Z_MULTI_ENDSTOPS) && NUM_Z_STEPPER_DRIVERS >= 4
  707. EEPROM_WRITE(endstops.z4_endstop_adj); // 1 float
  708. #else
  709. EEPROM_WRITE(dummyf);
  710. #endif
  711. #endif
  712. }
  713. #if ENABLED(Z_STEPPER_AUTO_ALIGN)
  714. EEPROM_WRITE(z_stepper_align.xy);
  715. #if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
  716. EEPROM_WRITE(z_stepper_align.stepper_xy);
  717. #endif
  718. #endif
  719. //
  720. // LCD Preheat settings
  721. //
  722. #if PREHEAT_COUNT
  723. _FIELD_TEST(ui_material_preset);
  724. EEPROM_WRITE(ui.material_preset);
  725. #endif
  726. //
  727. // PIDTEMP
  728. //
  729. {
  730. _FIELD_TEST(hotendPID);
  731. HOTEND_LOOP() {
  732. PIDCF_t pidcf = {
  733. #if DISABLED(PIDTEMP)
  734. NAN, NAN, NAN,
  735. NAN, NAN
  736. #else
  737. PID_PARAM(Kp, e),
  738. unscalePID_i(PID_PARAM(Ki, e)),
  739. unscalePID_d(PID_PARAM(Kd, e)),
  740. PID_PARAM(Kc, e),
  741. PID_PARAM(Kf, e)
  742. #endif
  743. };
  744. EEPROM_WRITE(pidcf);
  745. }
  746. _FIELD_TEST(lpq_len);
  747. #if DISABLED(PID_EXTRUSION_SCALING)
  748. const int16_t lpq_len = 20;
  749. #endif
  750. EEPROM_WRITE(TERN(PID_EXTRUSION_SCALING, thermalManager.lpq_len, lpq_len));
  751. }
  752. //
  753. // PIDTEMPBED
  754. //
  755. {
  756. _FIELD_TEST(bedPID);
  757. const PID_t bed_pid = {
  758. #if DISABLED(PIDTEMPBED)
  759. NAN, NAN, NAN
  760. #else
  761. // Store the unscaled PID values
  762. thermalManager.temp_bed.pid.Kp,
  763. unscalePID_i(thermalManager.temp_bed.pid.Ki),
  764. unscalePID_d(thermalManager.temp_bed.pid.Kd)
  765. #endif
  766. };
  767. EEPROM_WRITE(bed_pid);
  768. }
  769. //
  770. // User-defined Thermistors
  771. //
  772. #if HAS_USER_THERMISTORS
  773. {
  774. _FIELD_TEST(user_thermistor);
  775. EEPROM_WRITE(thermalManager.user_thermistor);
  776. }
  777. #endif
  778. //
  779. // Power monitor
  780. //
  781. {
  782. #if HAS_POWER_MONITOR
  783. const uint8_t &power_monitor_flags = power_monitor.flags;
  784. #else
  785. constexpr uint8_t power_monitor_flags = 0x00;
  786. #endif
  787. _FIELD_TEST(power_monitor_flags);
  788. EEPROM_WRITE(power_monitor_flags);
  789. }
  790. //
  791. // LCD Contrast
  792. //
  793. {
  794. _FIELD_TEST(lcd_contrast);
  795. const int16_t lcd_contrast =
  796. #if HAS_LCD_CONTRAST
  797. ui.contrast
  798. #else
  799. 127
  800. #endif
  801. ;
  802. EEPROM_WRITE(lcd_contrast);
  803. }
  804. //
  805. // Controller Fan
  806. //
  807. {
  808. _FIELD_TEST(controllerFan_settings);
  809. #if ENABLED(USE_CONTROLLER_FAN)
  810. const controllerFan_settings_t &cfs = controllerFan.settings;
  811. #else
  812. controllerFan_settings_t cfs = controllerFan_defaults;
  813. #endif
  814. EEPROM_WRITE(cfs);
  815. }
  816. //
  817. // Power-Loss Recovery
  818. //
  819. {
  820. _FIELD_TEST(recovery_enabled);
  821. const bool recovery_enabled = TERN(POWER_LOSS_RECOVERY, recovery.enabled, ENABLED(PLR_ENABLED_DEFAULT));
  822. EEPROM_WRITE(recovery_enabled);
  823. }
  824. //
  825. // Firmware Retraction
  826. //
  827. {
  828. _FIELD_TEST(fwretract_settings);
  829. #if DISABLED(FWRETRACT)
  830. const fwretract_settings_t autoretract_defaults = { 3, 45, 0, 0, 0, 13, 0, 8 };
  831. #endif
  832. EEPROM_WRITE(TERN(FWRETRACT, fwretract.settings, autoretract_defaults));
  833. #if DISABLED(FWRETRACT_AUTORETRACT)
  834. const bool autoretract_enabled = false;
  835. #endif
  836. EEPROM_WRITE(TERN(FWRETRACT_AUTORETRACT, fwretract.autoretract_enabled, autoretract_enabled));
  837. }
  838. //
  839. // Volumetric & Filament Size
  840. //
  841. {
  842. _FIELD_TEST(parser_volumetric_enabled);
  843. #if DISABLED(NO_VOLUMETRICS)
  844. EEPROM_WRITE(parser.volumetric_enabled);
  845. EEPROM_WRITE(planner.filament_size);
  846. #if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
  847. EEPROM_WRITE(planner.volumetric_extruder_limit);
  848. #else
  849. dummyf = DEFAULT_VOLUMETRIC_EXTRUDER_LIMIT;
  850. for (uint8_t q = EXTRUDERS; q--;) EEPROM_WRITE(dummyf);
  851. #endif
  852. #else
  853. const bool volumetric_enabled = false;
  854. EEPROM_WRITE(volumetric_enabled);
  855. dummyf = DEFAULT_NOMINAL_FILAMENT_DIA;
  856. for (uint8_t q = EXTRUDERS; q--;) EEPROM_WRITE(dummyf);
  857. dummyf = DEFAULT_VOLUMETRIC_EXTRUDER_LIMIT;
  858. for (uint8_t q = EXTRUDERS; q--;) EEPROM_WRITE(dummyf);
  859. #endif
  860. }
  861. //
  862. // TMC Configuration
  863. //
  864. {
  865. _FIELD_TEST(tmc_stepper_current);
  866. tmc_stepper_current_t tmc_stepper_current = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
  867. #if HAS_TRINAMIC_CONFIG
  868. #if AXIS_IS_TMC(X)
  869. tmc_stepper_current.X = stepperX.getMilliamps();
  870. #endif
  871. #if AXIS_IS_TMC(Y)
  872. tmc_stepper_current.Y = stepperY.getMilliamps();
  873. #endif
  874. #if AXIS_IS_TMC(Z)
  875. tmc_stepper_current.Z = stepperZ.getMilliamps();
  876. #endif
  877. #if AXIS_IS_TMC(X2)
  878. tmc_stepper_current.X2 = stepperX2.getMilliamps();
  879. #endif
  880. #if AXIS_IS_TMC(Y2)
  881. tmc_stepper_current.Y2 = stepperY2.getMilliamps();
  882. #endif
  883. #if AXIS_IS_TMC(Z2)
  884. tmc_stepper_current.Z2 = stepperZ2.getMilliamps();
  885. #endif
  886. #if AXIS_IS_TMC(Z3)
  887. tmc_stepper_current.Z3 = stepperZ3.getMilliamps();
  888. #endif
  889. #if AXIS_IS_TMC(Z4)
  890. tmc_stepper_current.Z4 = stepperZ4.getMilliamps();
  891. #endif
  892. #if AXIS_IS_TMC(E0)
  893. tmc_stepper_current.E0 = stepperE0.getMilliamps();
  894. #endif
  895. #if AXIS_IS_TMC(E1)
  896. tmc_stepper_current.E1 = stepperE1.getMilliamps();
  897. #endif
  898. #if AXIS_IS_TMC(E2)
  899. tmc_stepper_current.E2 = stepperE2.getMilliamps();
  900. #endif
  901. #if AXIS_IS_TMC(E3)
  902. tmc_stepper_current.E3 = stepperE3.getMilliamps();
  903. #endif
  904. #if AXIS_IS_TMC(E4)
  905. tmc_stepper_current.E4 = stepperE4.getMilliamps();
  906. #endif
  907. #if AXIS_IS_TMC(E5)
  908. tmc_stepper_current.E5 = stepperE5.getMilliamps();
  909. #endif
  910. #if AXIS_IS_TMC(E6)
  911. tmc_stepper_current.E6 = stepperE6.getMilliamps();
  912. #endif
  913. #if AXIS_IS_TMC(E7)
  914. tmc_stepper_current.E7 = stepperE7.getMilliamps();
  915. #endif
  916. #endif
  917. EEPROM_WRITE(tmc_stepper_current);
  918. }
  919. //
  920. // TMC Hybrid Threshold, and placeholder values
  921. //
  922. {
  923. _FIELD_TEST(tmc_hybrid_threshold);
  924. #if ENABLED(HYBRID_THRESHOLD)
  925. tmc_hybrid_threshold_t tmc_hybrid_threshold = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
  926. #if AXIS_HAS_STEALTHCHOP(X)
  927. tmc_hybrid_threshold.X = stepperX.get_pwm_thrs();
  928. #endif
  929. #if AXIS_HAS_STEALTHCHOP(Y)
  930. tmc_hybrid_threshold.Y = stepperY.get_pwm_thrs();
  931. #endif
  932. #if AXIS_HAS_STEALTHCHOP(Z)
  933. tmc_hybrid_threshold.Z = stepperZ.get_pwm_thrs();
  934. #endif
  935. #if AXIS_HAS_STEALTHCHOP(X2)
  936. tmc_hybrid_threshold.X2 = stepperX2.get_pwm_thrs();
  937. #endif
  938. #if AXIS_HAS_STEALTHCHOP(Y2)
  939. tmc_hybrid_threshold.Y2 = stepperY2.get_pwm_thrs();
  940. #endif
  941. #if AXIS_HAS_STEALTHCHOP(Z2)
  942. tmc_hybrid_threshold.Z2 = stepperZ2.get_pwm_thrs();
  943. #endif
  944. #if AXIS_HAS_STEALTHCHOP(Z3)
  945. tmc_hybrid_threshold.Z3 = stepperZ3.get_pwm_thrs();
  946. #endif
  947. #if AXIS_HAS_STEALTHCHOP(Z4)
  948. tmc_hybrid_threshold.Z4 = stepperZ4.get_pwm_thrs();
  949. #endif
  950. #if AXIS_HAS_STEALTHCHOP(E0)
  951. tmc_hybrid_threshold.E0 = stepperE0.get_pwm_thrs();
  952. #endif
  953. #if AXIS_HAS_STEALTHCHOP(E1)
  954. tmc_hybrid_threshold.E1 = stepperE1.get_pwm_thrs();
  955. #endif
  956. #if AXIS_HAS_STEALTHCHOP(E2)
  957. tmc_hybrid_threshold.E2 = stepperE2.get_pwm_thrs();
  958. #endif
  959. #if AXIS_HAS_STEALTHCHOP(E3)
  960. tmc_hybrid_threshold.E3 = stepperE3.get_pwm_thrs();
  961. #endif
  962. #if AXIS_HAS_STEALTHCHOP(E4)
  963. tmc_hybrid_threshold.E4 = stepperE4.get_pwm_thrs();
  964. #endif
  965. #if AXIS_HAS_STEALTHCHOP(E5)
  966. tmc_hybrid_threshold.E5 = stepperE5.get_pwm_thrs();
  967. #endif
  968. #if AXIS_HAS_STEALTHCHOP(E6)
  969. tmc_hybrid_threshold.E6 = stepperE6.get_pwm_thrs();
  970. #endif
  971. #if AXIS_HAS_STEALTHCHOP(E7)
  972. tmc_hybrid_threshold.E7 = stepperE7.get_pwm_thrs();
  973. #endif
  974. #else
  975. const tmc_hybrid_threshold_t tmc_hybrid_threshold = {
  976. .X = 100, .Y = 100, .Z = 3,
  977. .X2 = 100, .Y2 = 100, .Z2 = 3, .Z3 = 3, .Z4 = 3,
  978. .E0 = 30, .E1 = 30, .E2 = 30,
  979. .E3 = 30, .E4 = 30, .E5 = 30
  980. };
  981. #endif
  982. EEPROM_WRITE(tmc_hybrid_threshold);
  983. }
  984. //
  985. // TMC StallGuard threshold
  986. //
  987. {
  988. tmc_sgt_t tmc_sgt{0};
  989. #if USE_SENSORLESS
  990. TERN_(X_SENSORLESS, tmc_sgt.X = stepperX.homing_threshold());
  991. TERN_(X2_SENSORLESS, tmc_sgt.X2 = stepperX2.homing_threshold());
  992. TERN_(Y_SENSORLESS, tmc_sgt.Y = stepperY.homing_threshold());
  993. TERN_(Y2_SENSORLESS, tmc_sgt.Y2 = stepperY2.homing_threshold());
  994. TERN_(Z_SENSORLESS, tmc_sgt.Z = stepperZ.homing_threshold());
  995. TERN_(Z2_SENSORLESS, tmc_sgt.Z2 = stepperZ2.homing_threshold());
  996. TERN_(Z3_SENSORLESS, tmc_sgt.Z3 = stepperZ3.homing_threshold());
  997. TERN_(Z4_SENSORLESS, tmc_sgt.Z4 = stepperZ4.homing_threshold());
  998. #endif
  999. EEPROM_WRITE(tmc_sgt);
  1000. }
  1001. //
  1002. // TMC stepping mode
  1003. //
  1004. {
  1005. _FIELD_TEST(tmc_stealth_enabled);
  1006. tmc_stealth_enabled_t tmc_stealth_enabled = { false };
  1007. #if AXIS_HAS_STEALTHCHOP(X)
  1008. tmc_stealth_enabled.X = stepperX.get_stored_stealthChop();
  1009. #endif
  1010. #if AXIS_HAS_STEALTHCHOP(Y)
  1011. tmc_stealth_enabled.Y = stepperY.get_stored_stealthChop();
  1012. #endif
  1013. #if AXIS_HAS_STEALTHCHOP(Z)
  1014. tmc_stealth_enabled.Z = stepperZ.get_stored_stealthChop();
  1015. #endif
  1016. #if AXIS_HAS_STEALTHCHOP(X2)
  1017. tmc_stealth_enabled.X2 = stepperX2.get_stored_stealthChop();
  1018. #endif
  1019. #if AXIS_HAS_STEALTHCHOP(Y2)
  1020. tmc_stealth_enabled.Y2 = stepperY2.get_stored_stealthChop();
  1021. #endif
  1022. #if AXIS_HAS_STEALTHCHOP(Z2)
  1023. tmc_stealth_enabled.Z2 = stepperZ2.get_stored_stealthChop();
  1024. #endif
  1025. #if AXIS_HAS_STEALTHCHOP(Z3)
  1026. tmc_stealth_enabled.Z3 = stepperZ3.get_stored_stealthChop();
  1027. #endif
  1028. #if AXIS_HAS_STEALTHCHOP(Z4)
  1029. tmc_stealth_enabled.Z4 = stepperZ4.get_stored_stealthChop();
  1030. #endif
  1031. #if AXIS_HAS_STEALTHCHOP(E0)
  1032. tmc_stealth_enabled.E0 = stepperE0.get_stored_stealthChop();
  1033. #endif
  1034. #if AXIS_HAS_STEALTHCHOP(E1)
  1035. tmc_stealth_enabled.E1 = stepperE1.get_stored_stealthChop();
  1036. #endif
  1037. #if AXIS_HAS_STEALTHCHOP(E2)
  1038. tmc_stealth_enabled.E2 = stepperE2.get_stored_stealthChop();
  1039. #endif
  1040. #if AXIS_HAS_STEALTHCHOP(E3)
  1041. tmc_stealth_enabled.E3 = stepperE3.get_stored_stealthChop();
  1042. #endif
  1043. #if AXIS_HAS_STEALTHCHOP(E4)
  1044. tmc_stealth_enabled.E4 = stepperE4.get_stored_stealthChop();
  1045. #endif
  1046. #if AXIS_HAS_STEALTHCHOP(E5)
  1047. tmc_stealth_enabled.E5 = stepperE5.get_stored_stealthChop();
  1048. #endif
  1049. #if AXIS_HAS_STEALTHCHOP(E6)
  1050. tmc_stealth_enabled.E6 = stepperE6.get_stored_stealthChop();
  1051. #endif
  1052. #if AXIS_HAS_STEALTHCHOP(E7)
  1053. tmc_stealth_enabled.E7 = stepperE7.get_stored_stealthChop();
  1054. #endif
  1055. EEPROM_WRITE(tmc_stealth_enabled);
  1056. }
  1057. //
  1058. // Linear Advance
  1059. //
  1060. {
  1061. _FIELD_TEST(planner_extruder_advance_K);
  1062. #if ENABLED(LIN_ADVANCE)
  1063. EEPROM_WRITE(planner.extruder_advance_K);
  1064. #else
  1065. dummyf = 0;
  1066. for (uint8_t q = _MAX(EXTRUDERS, 1); q--;) EEPROM_WRITE(dummyf);
  1067. #endif
  1068. }
  1069. //
  1070. // Motor Current PWM
  1071. //
  1072. {
  1073. _FIELD_TEST(motor_current_setting);
  1074. #if HAS_MOTOR_CURRENT_SPI || HAS_MOTOR_CURRENT_PWM
  1075. EEPROM_WRITE(stepper.motor_current_setting);
  1076. #else
  1077. const uint32_t no_current[MOTOR_CURRENT_COUNT] = { 0 };
  1078. EEPROM_WRITE(no_current);
  1079. #endif
  1080. }
  1081. //
  1082. // CNC Coordinate Systems
  1083. //
  1084. _FIELD_TEST(coordinate_system);
  1085. #if DISABLED(CNC_COORDINATE_SYSTEMS)
  1086. const xyz_pos_t coordinate_system[MAX_COORDINATE_SYSTEMS] = { { 0 } };
  1087. #endif
  1088. EEPROM_WRITE(TERN(CNC_COORDINATE_SYSTEMS, gcode.coordinate_system, coordinate_system));
  1089. //
  1090. // Skew correction factors
  1091. //
  1092. _FIELD_TEST(planner_skew_factor);
  1093. EEPROM_WRITE(planner.skew_factor);
  1094. //
  1095. // Advanced Pause filament load & unload lengths
  1096. //
  1097. #if EXTRUDERS
  1098. {
  1099. #if DISABLED(ADVANCED_PAUSE_FEATURE)
  1100. const fil_change_settings_t fc_settings[EXTRUDERS] = { 0, 0 };
  1101. #endif
  1102. _FIELD_TEST(fc_settings);
  1103. EEPROM_WRITE(fc_settings);
  1104. }
  1105. #endif
  1106. //
  1107. // Multiple Extruders
  1108. //
  1109. #if HAS_MULTI_EXTRUDER
  1110. _FIELD_TEST(toolchange_settings);
  1111. EEPROM_WRITE(toolchange_settings);
  1112. #endif
  1113. //
  1114. // Backlash Compensation
  1115. //
  1116. {
  1117. #if ENABLED(BACKLASH_GCODE)
  1118. const xyz_float_t &backlash_distance_mm = backlash.distance_mm;
  1119. const uint8_t &backlash_correction = backlash.correction;
  1120. #else
  1121. const xyz_float_t backlash_distance_mm{0};
  1122. const uint8_t backlash_correction = 0;
  1123. #endif
  1124. #if ENABLED(BACKLASH_GCODE) && defined(BACKLASH_SMOOTHING_MM)
  1125. const float &backlash_smoothing_mm = backlash.smoothing_mm;
  1126. #else
  1127. const float backlash_smoothing_mm = 3;
  1128. #endif
  1129. _FIELD_TEST(backlash_distance_mm);
  1130. EEPROM_WRITE(backlash_distance_mm);
  1131. EEPROM_WRITE(backlash_correction);
  1132. EEPROM_WRITE(backlash_smoothing_mm);
  1133. }
  1134. //
  1135. // Extensible UI User Data
  1136. //
  1137. #if ENABLED(EXTENSIBLE_UI)
  1138. {
  1139. char extui_data[ExtUI::eeprom_data_size] = { 0 };
  1140. ExtUI::onStoreSettings(extui_data);
  1141. _FIELD_TEST(extui_data);
  1142. EEPROM_WRITE(extui_data);
  1143. }
  1144. #endif
  1145. //
  1146. // Case Light Brightness
  1147. //
  1148. #if CASELIGHT_USES_BRIGHTNESS
  1149. EEPROM_WRITE(caselight.brightness);
  1150. #endif
  1151. //
  1152. // Password feature
  1153. //
  1154. #if ENABLED(PASSWORD_FEATURE)
  1155. EEPROM_WRITE(password.is_set);
  1156. EEPROM_WRITE(password.value);
  1157. #endif
  1158. //
  1159. // TOUCH_SCREEN_CALIBRATION
  1160. //
  1161. #if ENABLED(TOUCH_SCREEN_CALIBRATION)
  1162. EEPROM_WRITE(touch_calibration.calibration);
  1163. #endif
  1164. //
  1165. // Ethernet network info
  1166. //
  1167. #if HAS_ETHERNET
  1168. {
  1169. _FIELD_TEST(ethernet_hardware_enabled);
  1170. const bool ethernet_hardware_enabled = ethernet.hardware_enabled;
  1171. const uint32_t ethernet_ip = ethernet.ip,
  1172. ethernet_dns = ethernet.myDns,
  1173. ethernet_gateway = ethernet.gateway,
  1174. ethernet_subnet = ethernet.subnet;
  1175. EEPROM_WRITE(ethernet_hardware_enabled);
  1176. EEPROM_WRITE(ethernet_ip);
  1177. EEPROM_WRITE(ethernet_dns);
  1178. EEPROM_WRITE(ethernet_gateway);
  1179. EEPROM_WRITE(ethernet_subnet);
  1180. }
  1181. #endif
  1182. //
  1183. // Buzzer enable/disable
  1184. //
  1185. #if ENABLED(SOUND_MENU_ITEM)
  1186. EEPROM_WRITE(ui.buzzer_enabled);
  1187. #endif
  1188. //
  1189. // Selected LCD language
  1190. //
  1191. #if HAS_MULTI_LANGUAGE
  1192. EEPROM_WRITE(ui.language);
  1193. #endif
  1194. //
  1195. // Report final CRC and Data Size
  1196. //
  1197. if (!eeprom_error) {
  1198. const uint16_t eeprom_size = eeprom_index - (EEPROM_OFFSET),
  1199. final_crc = working_crc;
  1200. // Write the EEPROM header
  1201. eeprom_index = EEPROM_OFFSET;
  1202. EEPROM_WRITE(version);
  1203. EEPROM_WRITE(final_crc);
  1204. // Report storage size
  1205. DEBUG_ECHO_START();
  1206. DEBUG_ECHOLNPAIR("Settings Stored (", eeprom_size, " bytes; crc ", (uint32_t)final_crc, ")");
  1207. eeprom_error |= size_error(eeprom_size);
  1208. }
  1209. EEPROM_FINISH();
  1210. //
  1211. // UBL Mesh
  1212. //
  1213. #if ENABLED(UBL_SAVE_ACTIVE_ON_M500)
  1214. if (ubl.storage_slot >= 0)
  1215. store_mesh(ubl.storage_slot);
  1216. #endif
  1217. if (!eeprom_error) LCD_MESSAGEPGM(MSG_SETTINGS_STORED);
  1218. TERN_(EXTENSIBLE_UI, ExtUI::onConfigurationStoreWritten(!eeprom_error));
  1219. return !eeprom_error;
  1220. }
  1221. /**
  1222. * M501 - Retrieve Configuration
  1223. */
  1224. bool MarlinSettings::_load() {
  1225. uint16_t working_crc = 0;
  1226. EEPROM_START();
  1227. char stored_ver[4];
  1228. EEPROM_READ_ALWAYS(stored_ver);
  1229. uint16_t stored_crc;
  1230. EEPROM_READ_ALWAYS(stored_crc);
  1231. // Version has to match or defaults are used
  1232. if (strncmp(version, stored_ver, 3) != 0) {
  1233. if (stored_ver[3] != '\0') {
  1234. stored_ver[0] = '?';
  1235. stored_ver[1] = '\0';
  1236. }
  1237. DEBUG_ECHO_START();
  1238. DEBUG_ECHOLNPAIR("EEPROM version mismatch (EEPROM=", stored_ver, " Marlin=" EEPROM_VERSION ")");
  1239. IF_DISABLED(EEPROM_AUTO_INIT, ui.eeprom_alert_version());
  1240. eeprom_error = true;
  1241. }
  1242. else {
  1243. float dummyf = 0;
  1244. working_crc = 0; // Init to 0. Accumulated by EEPROM_READ
  1245. _FIELD_TEST(esteppers);
  1246. // Number of esteppers may change
  1247. uint8_t esteppers;
  1248. EEPROM_READ_ALWAYS(esteppers);
  1249. //
  1250. // Planner Motion
  1251. //
  1252. {
  1253. // Get only the number of E stepper parameters previously stored
  1254. // Any steppers added later are set to their defaults
  1255. uint32_t tmp1[XYZ + esteppers];
  1256. float tmp2[XYZ + esteppers];
  1257. feedRate_t tmp3[XYZ + esteppers];
  1258. EEPROM_READ(tmp1); // max_acceleration_mm_per_s2
  1259. EEPROM_READ(planner.settings.min_segment_time_us);
  1260. EEPROM_READ(tmp2); // axis_steps_per_mm
  1261. EEPROM_READ(tmp3); // max_feedrate_mm_s
  1262. if (!validating) LOOP_XYZE_N(i) {
  1263. const bool in = (i < esteppers + XYZ);
  1264. planner.settings.max_acceleration_mm_per_s2[i] = in ? tmp1[i] : pgm_read_dword(&_DMA[ALIM(i, _DMA)]);
  1265. planner.settings.axis_steps_per_mm[i] = in ? tmp2[i] : pgm_read_float(&_DASU[ALIM(i, _DASU)]);
  1266. planner.settings.max_feedrate_mm_s[i] = in ? tmp3[i] : pgm_read_float(&_DMF[ALIM(i, _DMF)]);
  1267. }
  1268. EEPROM_READ(planner.settings.acceleration);
  1269. EEPROM_READ(planner.settings.retract_acceleration);
  1270. EEPROM_READ(planner.settings.travel_acceleration);
  1271. EEPROM_READ(planner.settings.min_feedrate_mm_s);
  1272. EEPROM_READ(planner.settings.min_travel_feedrate_mm_s);
  1273. #if HAS_CLASSIC_JERK
  1274. EEPROM_READ(planner.max_jerk);
  1275. #if HAS_LINEAR_E_JERK
  1276. EEPROM_READ(dummyf);
  1277. #endif
  1278. #else
  1279. for (uint8_t q = 4; q--;) EEPROM_READ(dummyf);
  1280. #endif
  1281. EEPROM_READ(TERN(CLASSIC_JERK, dummyf, planner.junction_deviation_mm));
  1282. }
  1283. //
  1284. // Home Offset (M206 / M665)
  1285. //
  1286. {
  1287. _FIELD_TEST(home_offset);
  1288. #if HAS_SCARA_OFFSET
  1289. EEPROM_READ(scara_home_offset);
  1290. #else
  1291. #if !HAS_HOME_OFFSET
  1292. xyz_pos_t home_offset;
  1293. #endif
  1294. EEPROM_READ(home_offset);
  1295. #endif
  1296. }
  1297. //
  1298. // Hotend Offsets, if any
  1299. //
  1300. {
  1301. #if HAS_HOTEND_OFFSET
  1302. // Skip hotend 0 which must be 0
  1303. LOOP_S_L_N(e, 1, HOTENDS)
  1304. EEPROM_READ(hotend_offset[e]);
  1305. #endif
  1306. }
  1307. //
  1308. // Filament Runout Sensor
  1309. //
  1310. {
  1311. int8_t runout_sensor_enabled;
  1312. _FIELD_TEST(runout_sensor_enabled);
  1313. EEPROM_READ(runout_sensor_enabled);
  1314. #if HAS_FILAMENT_SENSOR
  1315. runout.enabled = runout_sensor_enabled < 0 ? FIL_RUNOUT_ENABLED_DEFAULT : runout_sensor_enabled;
  1316. #endif
  1317. TERN_(HAS_FILAMENT_SENSOR, if (runout.enabled) runout.reset());
  1318. float runout_distance_mm;
  1319. EEPROM_READ(runout_distance_mm);
  1320. #if HAS_FILAMENT_RUNOUT_DISTANCE
  1321. if (!validating) runout.set_runout_distance(runout_distance_mm);
  1322. #endif
  1323. }
  1324. //
  1325. // Global Leveling
  1326. //
  1327. EEPROM_READ(TERN(ENABLE_LEVELING_FADE_HEIGHT, new_z_fade_height, dummyf));
  1328. //
  1329. // Mesh (Manual) Bed Leveling
  1330. //
  1331. {
  1332. uint8_t mesh_num_x, mesh_num_y;
  1333. EEPROM_READ(dummyf);
  1334. EEPROM_READ_ALWAYS(mesh_num_x);
  1335. EEPROM_READ_ALWAYS(mesh_num_y);
  1336. #if ENABLED(MESH_BED_LEVELING)
  1337. if (!validating) mbl.z_offset = dummyf;
  1338. if (mesh_num_x == GRID_MAX_POINTS_X && mesh_num_y == GRID_MAX_POINTS_Y) {
  1339. // EEPROM data fits the current mesh
  1340. EEPROM_READ(mbl.z_values);
  1341. }
  1342. else {
  1343. // EEPROM data is stale
  1344. if (!validating) mbl.reset();
  1345. for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummyf);
  1346. }
  1347. #else
  1348. // MBL is disabled - skip the stored data
  1349. for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummyf);
  1350. #endif // MESH_BED_LEVELING
  1351. }
  1352. //
  1353. // Probe Z Offset
  1354. //
  1355. {
  1356. _FIELD_TEST(probe_offset);
  1357. #if HAS_BED_PROBE
  1358. const xyz_pos_t &zpo = probe.offset;
  1359. #else
  1360. xyz_pos_t zpo;
  1361. #endif
  1362. EEPROM_READ(zpo);
  1363. }
  1364. //
  1365. // Planar Bed Leveling matrix
  1366. //
  1367. {
  1368. #if ABL_PLANAR
  1369. EEPROM_READ(planner.bed_level_matrix);
  1370. #else
  1371. for (uint8_t q = 9; q--;) EEPROM_READ(dummyf);
  1372. #endif
  1373. }
  1374. //
  1375. // Bilinear Auto Bed Leveling
  1376. //
  1377. {
  1378. uint8_t grid_max_x, grid_max_y;
  1379. EEPROM_READ_ALWAYS(grid_max_x); // 1 byte
  1380. EEPROM_READ_ALWAYS(grid_max_y); // 1 byte
  1381. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  1382. if (grid_max_x == GRID_MAX_POINTS_X && grid_max_y == GRID_MAX_POINTS_Y) {
  1383. if (!validating) set_bed_leveling_enabled(false);
  1384. EEPROM_READ(bilinear_grid_spacing); // 2 ints
  1385. EEPROM_READ(bilinear_start); // 2 ints
  1386. EEPROM_READ(z_values); // 9 to 256 floats
  1387. }
  1388. else // EEPROM data is stale
  1389. #endif // AUTO_BED_LEVELING_BILINEAR
  1390. {
  1391. // Skip past disabled (or stale) Bilinear Grid data
  1392. xy_pos_t bgs, bs;
  1393. EEPROM_READ(bgs);
  1394. EEPROM_READ(bs);
  1395. for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_READ(dummyf);
  1396. }
  1397. }
  1398. //
  1399. // Unified Bed Leveling active state
  1400. //
  1401. {
  1402. _FIELD_TEST(planner_leveling_active);
  1403. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1404. const bool &planner_leveling_active = planner.leveling_active;
  1405. const int8_t &ubl_storage_slot = ubl.storage_slot;
  1406. #else
  1407. bool planner_leveling_active;
  1408. int8_t ubl_storage_slot;
  1409. #endif
  1410. EEPROM_READ(planner_leveling_active);
  1411. EEPROM_READ(ubl_storage_slot);
  1412. }
  1413. //
  1414. // SERVO_ANGLES
  1415. //
  1416. {
  1417. _FIELD_TEST(servo_angles);
  1418. #if ENABLED(EDITABLE_SERVO_ANGLES)
  1419. uint16_t (&servo_angles_arr)[EEPROM_NUM_SERVOS][2] = servo_angles;
  1420. #else
  1421. uint16_t servo_angles_arr[EEPROM_NUM_SERVOS][2];
  1422. #endif
  1423. EEPROM_READ(servo_angles_arr);
  1424. }
  1425. //
  1426. // Thermal first layer compensation values
  1427. //
  1428. #if ENABLED(PROBE_TEMP_COMPENSATION)
  1429. EEPROM_READ(temp_comp.z_offsets_probe);
  1430. EEPROM_READ(temp_comp.z_offsets_bed);
  1431. #if ENABLED(USE_TEMP_EXT_COMPENSATION)
  1432. EEPROM_READ(temp_comp.z_offsets_ext);
  1433. #endif
  1434. temp_comp.reset_index();
  1435. #else
  1436. // No placeholder data for this feature
  1437. #endif
  1438. //
  1439. // BLTOUCH
  1440. //
  1441. {
  1442. _FIELD_TEST(bltouch_last_written_mode);
  1443. #if ENABLED(BLTOUCH)
  1444. const bool &bltouch_last_written_mode = bltouch.last_written_mode;
  1445. #else
  1446. bool bltouch_last_written_mode;
  1447. #endif
  1448. EEPROM_READ(bltouch_last_written_mode);
  1449. }
  1450. //
  1451. // DELTA Geometry or Dual Endstops offsets
  1452. //
  1453. {
  1454. #if ENABLED(DELTA)
  1455. _FIELD_TEST(delta_height);
  1456. EEPROM_READ(delta_height); // 1 float
  1457. EEPROM_READ(delta_endstop_adj); // 3 floats
  1458. EEPROM_READ(delta_radius); // 1 float
  1459. EEPROM_READ(delta_diagonal_rod); // 1 float
  1460. EEPROM_READ(delta_segments_per_second); // 1 float
  1461. EEPROM_READ(delta_tower_angle_trim); // 3 floats
  1462. EEPROM_READ(delta_diagonal_rod_trim); // 3 floats
  1463. #elif HAS_EXTRA_ENDSTOPS
  1464. _FIELD_TEST(x2_endstop_adj);
  1465. EEPROM_READ(TERN(X_DUAL_ENDSTOPS, endstops.x2_endstop_adj, dummyf)); // 1 float
  1466. EEPROM_READ(TERN(Y_DUAL_ENDSTOPS, endstops.y2_endstop_adj, dummyf)); // 1 float
  1467. EEPROM_READ(TERN(Z_MULTI_ENDSTOPS, endstops.z2_endstop_adj, dummyf)); // 1 float
  1468. #if ENABLED(Z_MULTI_ENDSTOPS) && NUM_Z_STEPPER_DRIVERS >= 3
  1469. EEPROM_READ(endstops.z3_endstop_adj); // 1 float
  1470. #else
  1471. EEPROM_READ(dummyf);
  1472. #endif
  1473. #if ENABLED(Z_MULTI_ENDSTOPS) && NUM_Z_STEPPER_DRIVERS >= 4
  1474. EEPROM_READ(endstops.z4_endstop_adj); // 1 float
  1475. #else
  1476. EEPROM_READ(dummyf);
  1477. #endif
  1478. #endif
  1479. }
  1480. #if ENABLED(Z_STEPPER_AUTO_ALIGN)
  1481. EEPROM_READ(z_stepper_align.xy);
  1482. #if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
  1483. EEPROM_READ(z_stepper_align.stepper_xy);
  1484. #endif
  1485. #endif
  1486. //
  1487. // LCD Preheat settings
  1488. //
  1489. #if PREHEAT_COUNT
  1490. _FIELD_TEST(ui_material_preset);
  1491. EEPROM_READ(ui.material_preset);
  1492. #endif
  1493. //
  1494. // Hotend PID
  1495. //
  1496. {
  1497. HOTEND_LOOP() {
  1498. PIDCF_t pidcf;
  1499. EEPROM_READ(pidcf);
  1500. #if ENABLED(PIDTEMP)
  1501. if (!validating && !isnan(pidcf.Kp)) {
  1502. // Scale PID values since EEPROM values are unscaled
  1503. PID_PARAM(Kp, e) = pidcf.Kp;
  1504. PID_PARAM(Ki, e) = scalePID_i(pidcf.Ki);
  1505. PID_PARAM(Kd, e) = scalePID_d(pidcf.Kd);
  1506. TERN_(PID_EXTRUSION_SCALING, PID_PARAM(Kc, e) = pidcf.Kc);
  1507. TERN_(PID_FAN_SCALING, PID_PARAM(Kf, e) = pidcf.Kf);
  1508. }
  1509. #endif
  1510. }
  1511. }
  1512. //
  1513. // PID Extrusion Scaling
  1514. //
  1515. {
  1516. _FIELD_TEST(lpq_len);
  1517. #if ENABLED(PID_EXTRUSION_SCALING)
  1518. const int16_t &lpq_len = thermalManager.lpq_len;
  1519. #else
  1520. int16_t lpq_len;
  1521. #endif
  1522. EEPROM_READ(lpq_len);
  1523. }
  1524. //
  1525. // Heated Bed PID
  1526. //
  1527. {
  1528. PID_t pid;
  1529. EEPROM_READ(pid);
  1530. #if ENABLED(PIDTEMPBED)
  1531. if (!validating && !isnan(pid.Kp)) {
  1532. // Scale PID values since EEPROM values are unscaled
  1533. thermalManager.temp_bed.pid.Kp = pid.Kp;
  1534. thermalManager.temp_bed.pid.Ki = scalePID_i(pid.Ki);
  1535. thermalManager.temp_bed.pid.Kd = scalePID_d(pid.Kd);
  1536. }
  1537. #endif
  1538. }
  1539. //
  1540. // User-defined Thermistors
  1541. //
  1542. #if HAS_USER_THERMISTORS
  1543. {
  1544. _FIELD_TEST(user_thermistor);
  1545. EEPROM_READ(thermalManager.user_thermistor);
  1546. }
  1547. #endif
  1548. //
  1549. // Power monitor
  1550. //
  1551. {
  1552. #if HAS_POWER_MONITOR
  1553. uint8_t &power_monitor_flags = power_monitor.flags;
  1554. #else
  1555. uint8_t power_monitor_flags;
  1556. #endif
  1557. _FIELD_TEST(power_monitor_flags);
  1558. EEPROM_READ(power_monitor_flags);
  1559. }
  1560. //
  1561. // LCD Contrast
  1562. //
  1563. {
  1564. _FIELD_TEST(lcd_contrast);
  1565. int16_t lcd_contrast;
  1566. EEPROM_READ(lcd_contrast);
  1567. if (!validating) {
  1568. TERN_(HAS_LCD_CONTRAST, ui.set_contrast(lcd_contrast));
  1569. }
  1570. }
  1571. //
  1572. // Controller Fan
  1573. //
  1574. {
  1575. _FIELD_TEST(controllerFan_settings);
  1576. #if ENABLED(CONTROLLER_FAN_EDITABLE)
  1577. const controllerFan_settings_t &cfs = controllerFan.settings;
  1578. #else
  1579. controllerFan_settings_t cfs = { 0 };
  1580. #endif
  1581. EEPROM_READ(cfs);
  1582. }
  1583. //
  1584. // Power-Loss Recovery
  1585. //
  1586. {
  1587. _FIELD_TEST(recovery_enabled);
  1588. #if ENABLED(POWER_LOSS_RECOVERY)
  1589. const bool &recovery_enabled = recovery.enabled;
  1590. #else
  1591. bool recovery_enabled;
  1592. #endif
  1593. EEPROM_READ(recovery_enabled);
  1594. }
  1595. //
  1596. // Firmware Retraction
  1597. //
  1598. {
  1599. _FIELD_TEST(fwretract_settings);
  1600. #if ENABLED(FWRETRACT)
  1601. EEPROM_READ(fwretract.settings);
  1602. #else
  1603. fwretract_settings_t fwretract_settings;
  1604. EEPROM_READ(fwretract_settings);
  1605. #endif
  1606. #if BOTH(FWRETRACT, FWRETRACT_AUTORETRACT)
  1607. EEPROM_READ(fwretract.autoretract_enabled);
  1608. #else
  1609. bool autoretract_enabled;
  1610. EEPROM_READ(autoretract_enabled);
  1611. #endif
  1612. }
  1613. //
  1614. // Volumetric & Filament Size
  1615. //
  1616. {
  1617. struct {
  1618. bool volumetric_enabled;
  1619. float filament_size[EXTRUDERS];
  1620. float volumetric_extruder_limit[EXTRUDERS];
  1621. } storage;
  1622. _FIELD_TEST(parser_volumetric_enabled);
  1623. EEPROM_READ(storage);
  1624. #if DISABLED(NO_VOLUMETRICS)
  1625. if (!validating) {
  1626. parser.volumetric_enabled = storage.volumetric_enabled;
  1627. COPY(planner.filament_size, storage.filament_size);
  1628. #if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
  1629. COPY(planner.volumetric_extruder_limit, storage.volumetric_extruder_limit);
  1630. #endif
  1631. }
  1632. #endif
  1633. }
  1634. //
  1635. // TMC Stepper Settings
  1636. //
  1637. if (!validating) reset_stepper_drivers();
  1638. // TMC Stepper Current
  1639. {
  1640. _FIELD_TEST(tmc_stepper_current);
  1641. tmc_stepper_current_t currents;
  1642. EEPROM_READ(currents);
  1643. #if HAS_TRINAMIC_CONFIG
  1644. #define SET_CURR(Q) stepper##Q.rms_current(currents.Q ? currents.Q : Q##_CURRENT)
  1645. if (!validating) {
  1646. #if AXIS_IS_TMC(X)
  1647. SET_CURR(X);
  1648. #endif
  1649. #if AXIS_IS_TMC(Y)
  1650. SET_CURR(Y);
  1651. #endif
  1652. #if AXIS_IS_TMC(Z)
  1653. SET_CURR(Z);
  1654. #endif
  1655. #if AXIS_IS_TMC(X2)
  1656. SET_CURR(X2);
  1657. #endif
  1658. #if AXIS_IS_TMC(Y2)
  1659. SET_CURR(Y2);
  1660. #endif
  1661. #if AXIS_IS_TMC(Z2)
  1662. SET_CURR(Z2);
  1663. #endif
  1664. #if AXIS_IS_TMC(Z3)
  1665. SET_CURR(Z3);
  1666. #endif
  1667. #if AXIS_IS_TMC(Z4)
  1668. SET_CURR(Z4);
  1669. #endif
  1670. #if AXIS_IS_TMC(E0)
  1671. SET_CURR(E0);
  1672. #endif
  1673. #if AXIS_IS_TMC(E1)
  1674. SET_CURR(E1);
  1675. #endif
  1676. #if AXIS_IS_TMC(E2)
  1677. SET_CURR(E2);
  1678. #endif
  1679. #if AXIS_IS_TMC(E3)
  1680. SET_CURR(E3);
  1681. #endif
  1682. #if AXIS_IS_TMC(E4)
  1683. SET_CURR(E4);
  1684. #endif
  1685. #if AXIS_IS_TMC(E5)
  1686. SET_CURR(E5);
  1687. #endif
  1688. #if AXIS_IS_TMC(E6)
  1689. SET_CURR(E6);
  1690. #endif
  1691. #if AXIS_IS_TMC(E7)
  1692. SET_CURR(E7);
  1693. #endif
  1694. }
  1695. #endif
  1696. }
  1697. // TMC Hybrid Threshold
  1698. {
  1699. tmc_hybrid_threshold_t tmc_hybrid_threshold;
  1700. _FIELD_TEST(tmc_hybrid_threshold);
  1701. EEPROM_READ(tmc_hybrid_threshold);
  1702. #if ENABLED(HYBRID_THRESHOLD)
  1703. if (!validating) {
  1704. #if AXIS_HAS_STEALTHCHOP(X)
  1705. stepperX.set_pwm_thrs(tmc_hybrid_threshold.X);
  1706. #endif
  1707. #if AXIS_HAS_STEALTHCHOP(Y)
  1708. stepperY.set_pwm_thrs(tmc_hybrid_threshold.Y);
  1709. #endif
  1710. #if AXIS_HAS_STEALTHCHOP(Z)
  1711. stepperZ.set_pwm_thrs(tmc_hybrid_threshold.Z);
  1712. #endif
  1713. #if AXIS_HAS_STEALTHCHOP(X2)
  1714. stepperX2.set_pwm_thrs(tmc_hybrid_threshold.X2);
  1715. #endif
  1716. #if AXIS_HAS_STEALTHCHOP(Y2)
  1717. stepperY2.set_pwm_thrs(tmc_hybrid_threshold.Y2);
  1718. #endif
  1719. #if AXIS_HAS_STEALTHCHOP(Z2)
  1720. stepperZ2.set_pwm_thrs(tmc_hybrid_threshold.Z2);
  1721. #endif
  1722. #if AXIS_HAS_STEALTHCHOP(Z3)
  1723. stepperZ3.set_pwm_thrs(tmc_hybrid_threshold.Z3);
  1724. #endif
  1725. #if AXIS_HAS_STEALTHCHOP(Z4)
  1726. stepperZ4.set_pwm_thrs(tmc_hybrid_threshold.Z4);
  1727. #endif
  1728. #if AXIS_HAS_STEALTHCHOP(E0)
  1729. stepperE0.set_pwm_thrs(tmc_hybrid_threshold.E0);
  1730. #endif
  1731. #if AXIS_HAS_STEALTHCHOP(E1)
  1732. stepperE1.set_pwm_thrs(tmc_hybrid_threshold.E1);
  1733. #endif
  1734. #if AXIS_HAS_STEALTHCHOP(E2)
  1735. stepperE2.set_pwm_thrs(tmc_hybrid_threshold.E2);
  1736. #endif
  1737. #if AXIS_HAS_STEALTHCHOP(E3)
  1738. stepperE3.set_pwm_thrs(tmc_hybrid_threshold.E3);
  1739. #endif
  1740. #if AXIS_HAS_STEALTHCHOP(E4)
  1741. stepperE4.set_pwm_thrs(tmc_hybrid_threshold.E4);
  1742. #endif
  1743. #if AXIS_HAS_STEALTHCHOP(E5)
  1744. stepperE5.set_pwm_thrs(tmc_hybrid_threshold.E5);
  1745. #endif
  1746. #if AXIS_HAS_STEALTHCHOP(E6)
  1747. stepperE6.set_pwm_thrs(tmc_hybrid_threshold.E6);
  1748. #endif
  1749. #if AXIS_HAS_STEALTHCHOP(E7)
  1750. stepperE7.set_pwm_thrs(tmc_hybrid_threshold.E7);
  1751. #endif
  1752. }
  1753. #endif
  1754. }
  1755. //
  1756. // TMC StallGuard threshold.
  1757. //
  1758. {
  1759. tmc_sgt_t tmc_sgt;
  1760. _FIELD_TEST(tmc_sgt);
  1761. EEPROM_READ(tmc_sgt);
  1762. #if USE_SENSORLESS
  1763. if (!validating) {
  1764. TERN_(X_SENSORLESS, stepperX.homing_threshold(tmc_sgt.X));
  1765. TERN_(X2_SENSORLESS, stepperX2.homing_threshold(tmc_sgt.X2));
  1766. TERN_(Y_SENSORLESS, stepperY.homing_threshold(tmc_sgt.Y));
  1767. TERN_(Y2_SENSORLESS, stepperY2.homing_threshold(tmc_sgt.Y2));
  1768. TERN_(Z_SENSORLESS, stepperZ.homing_threshold(tmc_sgt.Z));
  1769. TERN_(Z2_SENSORLESS, stepperZ2.homing_threshold(tmc_sgt.Z2));
  1770. TERN_(Z3_SENSORLESS, stepperZ3.homing_threshold(tmc_sgt.Z3));
  1771. TERN_(Z4_SENSORLESS, stepperZ4.homing_threshold(tmc_sgt.Z4));
  1772. }
  1773. #endif
  1774. }
  1775. // TMC stepping mode
  1776. {
  1777. _FIELD_TEST(tmc_stealth_enabled);
  1778. tmc_stealth_enabled_t tmc_stealth_enabled;
  1779. EEPROM_READ(tmc_stealth_enabled);
  1780. #if HAS_TRINAMIC_CONFIG
  1781. #define SET_STEPPING_MODE(ST) stepper##ST.stored.stealthChop_enabled = tmc_stealth_enabled.ST; stepper##ST.refresh_stepping_mode();
  1782. if (!validating) {
  1783. #if AXIS_HAS_STEALTHCHOP(X)
  1784. SET_STEPPING_MODE(X);
  1785. #endif
  1786. #if AXIS_HAS_STEALTHCHOP(Y)
  1787. SET_STEPPING_MODE(Y);
  1788. #endif
  1789. #if AXIS_HAS_STEALTHCHOP(Z)
  1790. SET_STEPPING_MODE(Z);
  1791. #endif
  1792. #if AXIS_HAS_STEALTHCHOP(X2)
  1793. SET_STEPPING_MODE(X2);
  1794. #endif
  1795. #if AXIS_HAS_STEALTHCHOP(Y2)
  1796. SET_STEPPING_MODE(Y2);
  1797. #endif
  1798. #if AXIS_HAS_STEALTHCHOP(Z2)
  1799. SET_STEPPING_MODE(Z2);
  1800. #endif
  1801. #if AXIS_HAS_STEALTHCHOP(Z3)
  1802. SET_STEPPING_MODE(Z3);
  1803. #endif
  1804. #if AXIS_HAS_STEALTHCHOP(Z4)
  1805. SET_STEPPING_MODE(Z4);
  1806. #endif
  1807. #if AXIS_HAS_STEALTHCHOP(E0)
  1808. SET_STEPPING_MODE(E0);
  1809. #endif
  1810. #if AXIS_HAS_STEALTHCHOP(E1)
  1811. SET_STEPPING_MODE(E1);
  1812. #endif
  1813. #if AXIS_HAS_STEALTHCHOP(E2)
  1814. SET_STEPPING_MODE(E2);
  1815. #endif
  1816. #if AXIS_HAS_STEALTHCHOP(E3)
  1817. SET_STEPPING_MODE(E3);
  1818. #endif
  1819. #if AXIS_HAS_STEALTHCHOP(E4)
  1820. SET_STEPPING_MODE(E4);
  1821. #endif
  1822. #if AXIS_HAS_STEALTHCHOP(E5)
  1823. SET_STEPPING_MODE(E5);
  1824. #endif
  1825. #if AXIS_HAS_STEALTHCHOP(E6)
  1826. SET_STEPPING_MODE(E6);
  1827. #endif
  1828. #if AXIS_HAS_STEALTHCHOP(E7)
  1829. SET_STEPPING_MODE(E7);
  1830. #endif
  1831. }
  1832. #endif
  1833. }
  1834. //
  1835. // Linear Advance
  1836. //
  1837. {
  1838. float extruder_advance_K[_MAX(EXTRUDERS, 1)];
  1839. _FIELD_TEST(planner_extruder_advance_K);
  1840. EEPROM_READ(extruder_advance_K);
  1841. #if ENABLED(LIN_ADVANCE)
  1842. if (!validating)
  1843. COPY(planner.extruder_advance_K, extruder_advance_K);
  1844. #endif
  1845. }
  1846. //
  1847. // Motor Current PWM
  1848. //
  1849. {
  1850. _FIELD_TEST(motor_current_setting);
  1851. uint32_t motor_current_setting[MOTOR_CURRENT_COUNT]
  1852. #if HAS_MOTOR_CURRENT_SPI
  1853. = DIGIPOT_MOTOR_CURRENT
  1854. #endif
  1855. ;
  1856. DEBUG_ECHOLNPGM("DIGIPOTS Loading");
  1857. EEPROM_READ(motor_current_setting);
  1858. DEBUG_ECHOLNPGM("DIGIPOTS Loaded");
  1859. #if HAS_MOTOR_CURRENT_SPI || HAS_MOTOR_CURRENT_PWM
  1860. if (!validating)
  1861. COPY(stepper.motor_current_setting, motor_current_setting);
  1862. #endif
  1863. }
  1864. //
  1865. // CNC Coordinate System
  1866. //
  1867. {
  1868. _FIELD_TEST(coordinate_system);
  1869. #if ENABLED(CNC_COORDINATE_SYSTEMS)
  1870. if (!validating) (void)gcode.select_coordinate_system(-1); // Go back to machine space
  1871. EEPROM_READ(gcode.coordinate_system);
  1872. #else
  1873. xyz_pos_t coordinate_system[MAX_COORDINATE_SYSTEMS];
  1874. EEPROM_READ(coordinate_system);
  1875. #endif
  1876. }
  1877. //
  1878. // Skew correction factors
  1879. //
  1880. {
  1881. skew_factor_t skew_factor;
  1882. _FIELD_TEST(planner_skew_factor);
  1883. EEPROM_READ(skew_factor);
  1884. #if ENABLED(SKEW_CORRECTION_GCODE)
  1885. if (!validating) {
  1886. planner.skew_factor.xy = skew_factor.xy;
  1887. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  1888. planner.skew_factor.xz = skew_factor.xz;
  1889. planner.skew_factor.yz = skew_factor.yz;
  1890. #endif
  1891. }
  1892. #endif
  1893. }
  1894. //
  1895. // Advanced Pause filament load & unload lengths
  1896. //
  1897. #if EXTRUDERS
  1898. {
  1899. #if DISABLED(ADVANCED_PAUSE_FEATURE)
  1900. fil_change_settings_t fc_settings[EXTRUDERS];
  1901. #endif
  1902. _FIELD_TEST(fc_settings);
  1903. EEPROM_READ(fc_settings);
  1904. }
  1905. #endif
  1906. //
  1907. // Tool-change settings
  1908. //
  1909. #if HAS_MULTI_EXTRUDER
  1910. _FIELD_TEST(toolchange_settings);
  1911. EEPROM_READ(toolchange_settings);
  1912. #endif
  1913. //
  1914. // Backlash Compensation
  1915. //
  1916. {
  1917. #if ENABLED(BACKLASH_GCODE)
  1918. const xyz_float_t &backlash_distance_mm = backlash.distance_mm;
  1919. const uint8_t &backlash_correction = backlash.correction;
  1920. #else
  1921. float backlash_distance_mm[XYZ];
  1922. uint8_t backlash_correction;
  1923. #endif
  1924. #if ENABLED(BACKLASH_GCODE) && defined(BACKLASH_SMOOTHING_MM)
  1925. const float &backlash_smoothing_mm = backlash.smoothing_mm;
  1926. #else
  1927. float backlash_smoothing_mm;
  1928. #endif
  1929. _FIELD_TEST(backlash_distance_mm);
  1930. EEPROM_READ(backlash_distance_mm);
  1931. EEPROM_READ(backlash_correction);
  1932. EEPROM_READ(backlash_smoothing_mm);
  1933. }
  1934. //
  1935. // Extensible UI User Data
  1936. //
  1937. #if ENABLED(EXTENSIBLE_UI)
  1938. // This is a significant hardware change; don't reserve EEPROM space when not present
  1939. {
  1940. const char extui_data[ExtUI::eeprom_data_size] = { 0 };
  1941. _FIELD_TEST(extui_data);
  1942. EEPROM_READ(extui_data);
  1943. if (!validating) ExtUI::onLoadSettings(extui_data);
  1944. }
  1945. #endif
  1946. //
  1947. // Case Light Brightness
  1948. //
  1949. #if CASELIGHT_USES_BRIGHTNESS
  1950. _FIELD_TEST(caselight_brightness);
  1951. EEPROM_READ(caselight.brightness);
  1952. #endif
  1953. //
  1954. // Password feature
  1955. //
  1956. #if ENABLED(PASSWORD_FEATURE)
  1957. _FIELD_TEST(password_is_set);
  1958. EEPROM_READ(password.is_set);
  1959. EEPROM_READ(password.value);
  1960. #endif
  1961. //
  1962. // TOUCH_SCREEN_CALIBRATION
  1963. //
  1964. #if ENABLED(TOUCH_SCREEN_CALIBRATION)
  1965. _FIELD_TEST(touch_calibration_data);
  1966. EEPROM_READ(touch_calibration.calibration);
  1967. #endif
  1968. //
  1969. // Ethernet network info
  1970. //
  1971. #if HAS_ETHERNET
  1972. _FIELD_TEST(ethernet_hardware_enabled);
  1973. uint32_t ethernet_ip, ethernet_dns, ethernet_gateway, ethernet_subnet;
  1974. EEPROM_READ(ethernet.hardware_enabled);
  1975. EEPROM_READ(ethernet_ip); ethernet.ip = ethernet_ip;
  1976. EEPROM_READ(ethernet_dns); ethernet.myDns = ethernet_dns;
  1977. EEPROM_READ(ethernet_gateway); ethernet.gateway = ethernet_gateway;
  1978. EEPROM_READ(ethernet_subnet); ethernet.subnet = ethernet_subnet;
  1979. #endif
  1980. //
  1981. // Buzzer enable/disable
  1982. //
  1983. #if ENABLED(SOUND_MENU_ITEM)
  1984. _FIELD_TEST(buzzer_enabled);
  1985. EEPROM_READ(ui.buzzer_enabled);
  1986. #endif
  1987. //
  1988. // Selected LCD language
  1989. //
  1990. #if HAS_MULTI_LANGUAGE
  1991. {
  1992. uint8_t ui_language;
  1993. EEPROM_READ(ui_language);
  1994. if (ui_language >= NUM_LANGUAGES) ui_language = 0;
  1995. ui.set_language(ui_language);
  1996. }
  1997. #endif
  1998. //
  1999. // Validate Final Size and CRC
  2000. //
  2001. eeprom_error = size_error(eeprom_index - (EEPROM_OFFSET));
  2002. if (eeprom_error) {
  2003. DEBUG_ECHO_START();
  2004. DEBUG_ECHOLNPAIR("Index: ", eeprom_index - (EEPROM_OFFSET), " Size: ", datasize());
  2005. IF_DISABLED(EEPROM_AUTO_INIT, ui.eeprom_alert_index());
  2006. }
  2007. else if (working_crc != stored_crc) {
  2008. eeprom_error = true;
  2009. DEBUG_ERROR_START();
  2010. DEBUG_ECHOLNPAIR("EEPROM CRC mismatch - (stored) ", stored_crc, " != ", working_crc, " (calculated)!");
  2011. IF_DISABLED(EEPROM_AUTO_INIT, ui.eeprom_alert_crc());
  2012. }
  2013. else if (!validating) {
  2014. DEBUG_ECHO_START();
  2015. DEBUG_ECHO(version);
  2016. DEBUG_ECHOLNPAIR(" stored settings retrieved (", eeprom_index - (EEPROM_OFFSET), " bytes; crc ", (uint32_t)working_crc, ")");
  2017. }
  2018. if (!validating && !eeprom_error) postprocess();
  2019. #if ENABLED(AUTO_BED_LEVELING_UBL)
  2020. if (!validating) {
  2021. ubl.report_state();
  2022. if (!ubl.sanity_check()) {
  2023. SERIAL_EOL();
  2024. #if BOTH(EEPROM_CHITCHAT, DEBUG_LEVELING_FEATURE)
  2025. ubl.echo_name();
  2026. DEBUG_ECHOLNPGM(" initialized.\n");
  2027. #endif
  2028. }
  2029. else {
  2030. eeprom_error = true;
  2031. #if BOTH(EEPROM_CHITCHAT, DEBUG_LEVELING_FEATURE)
  2032. DEBUG_ECHOPGM("?Can't enable ");
  2033. ubl.echo_name();
  2034. DEBUG_ECHOLNPGM(".");
  2035. #endif
  2036. ubl.reset();
  2037. }
  2038. if (ubl.storage_slot >= 0) {
  2039. load_mesh(ubl.storage_slot);
  2040. DEBUG_ECHOLNPAIR("Mesh ", ubl.storage_slot, " loaded from storage.");
  2041. }
  2042. else {
  2043. ubl.reset();
  2044. DEBUG_ECHOLNPGM("UBL reset");
  2045. }
  2046. }
  2047. #endif
  2048. }
  2049. #if ENABLED(EEPROM_CHITCHAT) && DISABLED(DISABLE_M503)
  2050. // Report the EEPROM settings
  2051. if (!validating && TERN1(EEPROM_BOOT_SILENT, IsRunning())) report();
  2052. #endif
  2053. EEPROM_FINISH();
  2054. return !eeprom_error;
  2055. }
  2056. #ifdef ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE
  2057. extern bool restoreEEPROM();
  2058. #endif
  2059. bool MarlinSettings::validate() {
  2060. validating = true;
  2061. #ifdef ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE
  2062. bool success = _load();
  2063. if (!success && restoreEEPROM()) {
  2064. SERIAL_ECHOLNPGM("Recovered backup EEPROM settings from SPI Flash");
  2065. success = _load();
  2066. }
  2067. #else
  2068. const bool success = _load();
  2069. #endif
  2070. validating = false;
  2071. return success;
  2072. }
  2073. bool MarlinSettings::load() {
  2074. if (validate()) {
  2075. const bool success = _load();
  2076. TERN_(EXTENSIBLE_UI, ExtUI::onConfigurationStoreRead(success));
  2077. return success;
  2078. }
  2079. reset();
  2080. #if ENABLED(EEPROM_AUTO_INIT)
  2081. (void)save();
  2082. SERIAL_ECHO_MSG("EEPROM Initialized");
  2083. #endif
  2084. return false;
  2085. }
  2086. #if ENABLED(AUTO_BED_LEVELING_UBL)
  2087. inline void ubl_invalid_slot(const int s) {
  2088. #if BOTH(EEPROM_CHITCHAT, DEBUG_OUT)
  2089. DEBUG_ECHOLNPGM("?Invalid slot.");
  2090. DEBUG_ECHO(s);
  2091. DEBUG_ECHOLNPGM(" mesh slots available.");
  2092. #else
  2093. UNUSED(s);
  2094. #endif
  2095. }
  2096. const uint16_t MarlinSettings::meshes_end = persistentStore.capacity() - 129; // 128 (+1 because of the change to capacity rather than last valid address)
  2097. // is a placeholder for the size of the MAT; the MAT will always
  2098. // live at the very end of the eeprom
  2099. uint16_t MarlinSettings::meshes_start_index() {
  2100. return (datasize() + EEPROM_OFFSET + 32) & 0xFFF8; // Pad the end of configuration data so it can float up
  2101. // or down a little bit without disrupting the mesh data
  2102. }
  2103. #define MESH_STORE_SIZE sizeof(TERN(OPTIMIZED_MESH_STORAGE, mesh_store_t, ubl.z_values))
  2104. uint16_t MarlinSettings::calc_num_meshes() {
  2105. return (meshes_end - meshes_start_index()) / MESH_STORE_SIZE;
  2106. }
  2107. int MarlinSettings::mesh_slot_offset(const int8_t slot) {
  2108. return meshes_end - (slot + 1) * MESH_STORE_SIZE;
  2109. }
  2110. void MarlinSettings::store_mesh(const int8_t slot) {
  2111. #if ENABLED(AUTO_BED_LEVELING_UBL)
  2112. const int16_t a = calc_num_meshes();
  2113. if (!WITHIN(slot, 0, a - 1)) {
  2114. ubl_invalid_slot(a);
  2115. DEBUG_ECHOLNPAIR("E2END=", persistentStore.capacity() - 1, " meshes_end=", meshes_end, " slot=", slot);
  2116. DEBUG_EOL();
  2117. return;
  2118. }
  2119. int pos = mesh_slot_offset(slot);
  2120. uint16_t crc = 0;
  2121. #if ENABLED(OPTIMIZED_MESH_STORAGE)
  2122. int16_t z_mesh_store[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  2123. ubl.set_store_from_mesh(ubl.z_values, z_mesh_store);
  2124. uint8_t * const src = (uint8_t*)&z_mesh_store;
  2125. #else
  2126. uint8_t * const src = (uint8_t*)&ubl.z_values;
  2127. #endif
  2128. // Write crc to MAT along with other data, or just tack on to the beginning or end
  2129. persistentStore.access_start();
  2130. const bool status = persistentStore.write_data(pos, src, MESH_STORE_SIZE, &crc);
  2131. persistentStore.access_finish();
  2132. if (status) SERIAL_ECHOLNPGM("?Unable to save mesh data.");
  2133. else DEBUG_ECHOLNPAIR("Mesh saved in slot ", slot);
  2134. #else
  2135. // Other mesh types
  2136. #endif
  2137. }
  2138. void MarlinSettings::load_mesh(const int8_t slot, void * const into/*=nullptr*/) {
  2139. #if ENABLED(AUTO_BED_LEVELING_UBL)
  2140. const int16_t a = settings.calc_num_meshes();
  2141. if (!WITHIN(slot, 0, a - 1)) {
  2142. ubl_invalid_slot(a);
  2143. return;
  2144. }
  2145. int pos = mesh_slot_offset(slot);
  2146. uint16_t crc = 0;
  2147. #if ENABLED(OPTIMIZED_MESH_STORAGE)
  2148. int16_t z_mesh_store[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  2149. uint8_t * const dest = (uint8_t*)&z_mesh_store;
  2150. #else
  2151. uint8_t * const dest = into ? (uint8_t*)into : (uint8_t*)&ubl.z_values;
  2152. #endif
  2153. persistentStore.access_start();
  2154. const uint16_t status = persistentStore.read_data(pos, dest, MESH_STORE_SIZE, &crc);
  2155. persistentStore.access_finish();
  2156. #if ENABLED(OPTIMIZED_MESH_STORAGE)
  2157. if (into) {
  2158. float z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  2159. ubl.set_mesh_from_store(z_mesh_store, z_values);
  2160. memcpy(into, z_values, sizeof(z_values));
  2161. }
  2162. else
  2163. ubl.set_mesh_from_store(z_mesh_store, ubl.z_values);
  2164. #endif
  2165. if (status) SERIAL_ECHOLNPGM("?Unable to load mesh data.");
  2166. else DEBUG_ECHOLNPAIR("Mesh loaded from slot ", slot);
  2167. EEPROM_FINISH();
  2168. #else
  2169. // Other mesh types
  2170. #endif
  2171. }
  2172. //void MarlinSettings::delete_mesh() { return; }
  2173. //void MarlinSettings::defrag_meshes() { return; }
  2174. #endif // AUTO_BED_LEVELING_UBL
  2175. #else // !EEPROM_SETTINGS
  2176. bool MarlinSettings::save() {
  2177. DEBUG_ERROR_MSG("EEPROM disabled");
  2178. return false;
  2179. }
  2180. #endif // !EEPROM_SETTINGS
  2181. /**
  2182. * M502 - Reset Configuration
  2183. */
  2184. void MarlinSettings::reset() {
  2185. LOOP_XYZE_N(i) {
  2186. planner.settings.max_acceleration_mm_per_s2[i] = pgm_read_dword(&_DMA[ALIM(i, _DMA)]);
  2187. planner.settings.axis_steps_per_mm[i] = pgm_read_float(&_DASU[ALIM(i, _DASU)]);
  2188. planner.settings.max_feedrate_mm_s[i] = pgm_read_float(&_DMF[ALIM(i, _DMF)]);
  2189. }
  2190. planner.settings.min_segment_time_us = DEFAULT_MINSEGMENTTIME;
  2191. planner.settings.acceleration = DEFAULT_ACCELERATION;
  2192. planner.settings.retract_acceleration = DEFAULT_RETRACT_ACCELERATION;
  2193. planner.settings.travel_acceleration = DEFAULT_TRAVEL_ACCELERATION;
  2194. planner.settings.min_feedrate_mm_s = feedRate_t(DEFAULT_MINIMUMFEEDRATE);
  2195. planner.settings.min_travel_feedrate_mm_s = feedRate_t(DEFAULT_MINTRAVELFEEDRATE);
  2196. #if HAS_CLASSIC_JERK
  2197. #ifndef DEFAULT_XJERK
  2198. #define DEFAULT_XJERK 0
  2199. #endif
  2200. #ifndef DEFAULT_YJERK
  2201. #define DEFAULT_YJERK 0
  2202. #endif
  2203. #ifndef DEFAULT_ZJERK
  2204. #define DEFAULT_ZJERK 0
  2205. #endif
  2206. planner.max_jerk.set(DEFAULT_XJERK, DEFAULT_YJERK, DEFAULT_ZJERK);
  2207. TERN_(HAS_CLASSIC_E_JERK, planner.max_jerk.e = DEFAULT_EJERK;);
  2208. #endif
  2209. #if HAS_JUNCTION_DEVIATION
  2210. planner.junction_deviation_mm = float(JUNCTION_DEVIATION_MM);
  2211. #endif
  2212. #if HAS_SCARA_OFFSET
  2213. scara_home_offset.reset();
  2214. #elif HAS_HOME_OFFSET
  2215. home_offset.reset();
  2216. #endif
  2217. TERN_(HAS_HOTEND_OFFSET, reset_hotend_offsets());
  2218. //
  2219. // Filament Runout Sensor
  2220. //
  2221. #if HAS_FILAMENT_SENSOR
  2222. runout.enabled = FIL_RUNOUT_ENABLED_DEFAULT;
  2223. runout.reset();
  2224. TERN_(HAS_FILAMENT_RUNOUT_DISTANCE, runout.set_runout_distance(FILAMENT_RUNOUT_DISTANCE_MM));
  2225. #endif
  2226. //
  2227. // Tool-change Settings
  2228. //
  2229. #if HAS_MULTI_EXTRUDER
  2230. #if ENABLED(TOOLCHANGE_FILAMENT_SWAP)
  2231. toolchange_settings.swap_length = TOOLCHANGE_FS_LENGTH;
  2232. toolchange_settings.extra_resume = TOOLCHANGE_FS_EXTRA_RESUME_LENGTH;
  2233. toolchange_settings.retract_speed = TOOLCHANGE_FS_RETRACT_SPEED;
  2234. toolchange_settings.unretract_speed = TOOLCHANGE_FS_UNRETRACT_SPEED;
  2235. toolchange_settings.extra_prime = TOOLCHANGE_FS_EXTRA_PRIME;
  2236. toolchange_settings.prime_speed = TOOLCHANGE_FS_PRIME_SPEED;
  2237. toolchange_settings.fan_speed = TOOLCHANGE_FS_FAN_SPEED;
  2238. toolchange_settings.fan_time = TOOLCHANGE_FS_FAN_TIME;
  2239. #endif
  2240. #if ENABLED(TOOLCHANGE_FS_PRIME_FIRST_USED)
  2241. enable_first_prime = false;
  2242. #endif
  2243. #if ENABLED(TOOLCHANGE_PARK)
  2244. constexpr xyz_pos_t tpxy = TOOLCHANGE_PARK_XY;
  2245. toolchange_settings.enable_park = true;
  2246. toolchange_settings.change_point = tpxy;
  2247. #endif
  2248. toolchange_settings.z_raise = TOOLCHANGE_ZRAISE;
  2249. #if ENABLED(TOOLCHANGE_MIGRATION_FEATURE)
  2250. migration = migration_defaults;
  2251. #endif
  2252. #endif
  2253. #if ENABLED(BACKLASH_GCODE)
  2254. backlash.correction = (BACKLASH_CORRECTION) * 255;
  2255. constexpr xyz_float_t tmp = BACKLASH_DISTANCE_MM;
  2256. backlash.distance_mm = tmp;
  2257. #ifdef BACKLASH_SMOOTHING_MM
  2258. backlash.smoothing_mm = BACKLASH_SMOOTHING_MM;
  2259. #endif
  2260. #endif
  2261. TERN_(EXTENSIBLE_UI, ExtUI::onFactoryReset());
  2262. //
  2263. // Case Light Brightness
  2264. //
  2265. TERN_(CASELIGHT_USES_BRIGHTNESS, caselight.brightness = CASE_LIGHT_DEFAULT_BRIGHTNESS);
  2266. //
  2267. // TOUCH_SCREEN_CALIBRATION
  2268. //
  2269. TERN_(TOUCH_SCREEN_CALIBRATION, touch_calibration.calibration_reset());
  2270. //
  2271. // Buzzer enable/disable
  2272. //
  2273. TERN_(SOUND_MENU_ITEM, ui.buzzer_enabled = true);
  2274. //
  2275. // Magnetic Parking Extruder
  2276. //
  2277. TERN_(MAGNETIC_PARKING_EXTRUDER, mpe_settings_init());
  2278. //
  2279. // Global Leveling
  2280. //
  2281. TERN_(ENABLE_LEVELING_FADE_HEIGHT, new_z_fade_height = (DEFAULT_LEVELING_FADE_HEIGHT));
  2282. TERN_(HAS_LEVELING, reset_bed_level());
  2283. #if HAS_BED_PROBE
  2284. constexpr float dpo[] = NOZZLE_TO_PROBE_OFFSET;
  2285. static_assert(COUNT(dpo) == 3, "NOZZLE_TO_PROBE_OFFSET must contain offsets for X, Y, and Z.");
  2286. #if HAS_PROBE_XY_OFFSET
  2287. LOOP_XYZ(a) probe.offset[a] = dpo[a];
  2288. #else
  2289. probe.offset.set(0, 0, dpo[Z_AXIS]);
  2290. #endif
  2291. #endif
  2292. //
  2293. // Z Stepper Auto-alignment points
  2294. //
  2295. TERN_(Z_STEPPER_AUTO_ALIGN, z_stepper_align.reset_to_default());
  2296. //
  2297. // Servo Angles
  2298. //
  2299. TERN_(EDITABLE_SERVO_ANGLES, COPY(servo_angles, base_servo_angles)); // When not editable only one copy of servo angles exists
  2300. //
  2301. // BLTOUCH
  2302. //
  2303. //#if ENABLED(BLTOUCH)
  2304. // bltouch.last_written_mode;
  2305. //#endif
  2306. //
  2307. // Endstop Adjustments
  2308. //
  2309. #if ENABLED(DELTA)
  2310. const abc_float_t adj = DELTA_ENDSTOP_ADJ, dta = DELTA_TOWER_ANGLE_TRIM, ddr = DELTA_DIAGONAL_ROD_TRIM_TOWER;
  2311. delta_height = DELTA_HEIGHT;
  2312. delta_endstop_adj = adj;
  2313. delta_radius = DELTA_RADIUS;
  2314. delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  2315. delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  2316. delta_tower_angle_trim = dta;
  2317. delta_diagonal_rod_trim = ddr;
  2318. #endif
  2319. #if ENABLED(X_DUAL_ENDSTOPS)
  2320. #ifndef X2_ENDSTOP_ADJUSTMENT
  2321. #define X2_ENDSTOP_ADJUSTMENT 0
  2322. #endif
  2323. endstops.x2_endstop_adj = X2_ENDSTOP_ADJUSTMENT;
  2324. #endif
  2325. #if ENABLED(Y_DUAL_ENDSTOPS)
  2326. #ifndef Y2_ENDSTOP_ADJUSTMENT
  2327. #define Y2_ENDSTOP_ADJUSTMENT 0
  2328. #endif
  2329. endstops.y2_endstop_adj = Y2_ENDSTOP_ADJUSTMENT;
  2330. #endif
  2331. #if ENABLED(Z_MULTI_ENDSTOPS)
  2332. #ifndef Z2_ENDSTOP_ADJUSTMENT
  2333. #define Z2_ENDSTOP_ADJUSTMENT 0
  2334. #endif
  2335. endstops.z2_endstop_adj = Z2_ENDSTOP_ADJUSTMENT;
  2336. #if NUM_Z_STEPPER_DRIVERS >= 3
  2337. #ifndef Z3_ENDSTOP_ADJUSTMENT
  2338. #define Z3_ENDSTOP_ADJUSTMENT 0
  2339. #endif
  2340. endstops.z3_endstop_adj = Z3_ENDSTOP_ADJUSTMENT;
  2341. #endif
  2342. #if NUM_Z_STEPPER_DRIVERS >= 4
  2343. #ifndef Z4_ENDSTOP_ADJUSTMENT
  2344. #define Z4_ENDSTOP_ADJUSTMENT 0
  2345. #endif
  2346. endstops.z4_endstop_adj = Z4_ENDSTOP_ADJUSTMENT;
  2347. #endif
  2348. #endif
  2349. //
  2350. // Preheat parameters
  2351. //
  2352. #if PREHEAT_COUNT
  2353. #if HAS_HOTEND
  2354. constexpr uint16_t hpre[] = ARRAY_N(PREHEAT_COUNT, PREHEAT_1_TEMP_HOTEND, PREHEAT_2_TEMP_HOTEND, PREHEAT_3_TEMP_HOTEND, PREHEAT_4_TEMP_HOTEND, PREHEAT_5_TEMP_HOTEND);
  2355. #endif
  2356. #if HAS_HEATED_BED
  2357. constexpr uint16_t bpre[] = ARRAY_N(PREHEAT_COUNT, PREHEAT_1_TEMP_BED, PREHEAT_2_TEMP_BED, PREHEAT_3_TEMP_BED, PREHEAT_4_TEMP_BED, PREHEAT_5_TEMP_BED);
  2358. #endif
  2359. #if HAS_FAN
  2360. constexpr uint8_t fpre[] = ARRAY_N(PREHEAT_COUNT, PREHEAT_1_FAN_SPEED, PREHEAT_2_FAN_SPEED, PREHEAT_3_FAN_SPEED, PREHEAT_4_FAN_SPEED, PREHEAT_5_FAN_SPEED);
  2361. #endif
  2362. LOOP_L_N(i, PREHEAT_COUNT) {
  2363. #if HAS_HOTEND
  2364. ui.material_preset[i].hotend_temp = hpre[i];
  2365. #endif
  2366. #if HAS_HEATED_BED
  2367. ui.material_preset[i].bed_temp = bpre[i];
  2368. #endif
  2369. #if HAS_FAN
  2370. ui.material_preset[i].fan_speed = fpre[i];
  2371. #endif
  2372. }
  2373. #endif
  2374. //
  2375. // Hotend PID
  2376. //
  2377. #if ENABLED(PIDTEMP)
  2378. #if ENABLED(PID_PARAMS_PER_HOTEND)
  2379. constexpr float defKp[] =
  2380. #ifdef DEFAULT_Kp_LIST
  2381. DEFAULT_Kp_LIST
  2382. #else
  2383. ARRAY_BY_HOTENDS1(DEFAULT_Kp)
  2384. #endif
  2385. , defKi[] =
  2386. #ifdef DEFAULT_Ki_LIST
  2387. DEFAULT_Ki_LIST
  2388. #else
  2389. ARRAY_BY_HOTENDS1(DEFAULT_Ki)
  2390. #endif
  2391. , defKd[] =
  2392. #ifdef DEFAULT_Kd_LIST
  2393. DEFAULT_Kd_LIST
  2394. #else
  2395. ARRAY_BY_HOTENDS1(DEFAULT_Kd)
  2396. #endif
  2397. ;
  2398. static_assert(WITHIN(COUNT(defKp), 1, HOTENDS), "DEFAULT_Kp_LIST must have between 1 and HOTENDS items.");
  2399. static_assert(WITHIN(COUNT(defKi), 1, HOTENDS), "DEFAULT_Ki_LIST must have between 1 and HOTENDS items.");
  2400. static_assert(WITHIN(COUNT(defKd), 1, HOTENDS), "DEFAULT_Kd_LIST must have between 1 and HOTENDS items.");
  2401. #if ENABLED(PID_EXTRUSION_SCALING)
  2402. constexpr float defKc[] =
  2403. #ifdef DEFAULT_Kc_LIST
  2404. DEFAULT_Kc_LIST
  2405. #else
  2406. ARRAY_BY_HOTENDS1(DEFAULT_Kc)
  2407. #endif
  2408. ;
  2409. static_assert(WITHIN(COUNT(defKc), 1, HOTENDS), "DEFAULT_Kc_LIST must have between 1 and HOTENDS items.");
  2410. #endif
  2411. #if ENABLED(PID_FAN_SCALING)
  2412. constexpr float defKf[] =
  2413. #ifdef DEFAULT_Kf_LIST
  2414. DEFAULT_Kf_LIST
  2415. #else
  2416. ARRAY_BY_HOTENDS1(DEFAULT_Kf)
  2417. #endif
  2418. ;
  2419. static_assert(WITHIN(COUNT(defKf), 1, HOTENDS), "DEFAULT_Kf_LIST must have between 1 and HOTENDS items.");
  2420. #endif
  2421. #define PID_DEFAULT(N,E) def##N[E]
  2422. #else
  2423. #define PID_DEFAULT(N,E) DEFAULT_##N
  2424. #endif
  2425. HOTEND_LOOP() {
  2426. PID_PARAM(Kp, e) = float(PID_DEFAULT(Kp, ALIM(e, defKp)));
  2427. PID_PARAM(Ki, e) = scalePID_i(PID_DEFAULT(Ki, ALIM(e, defKi)));
  2428. PID_PARAM(Kd, e) = scalePID_d(PID_DEFAULT(Kd, ALIM(e, defKd)));
  2429. TERN_(PID_EXTRUSION_SCALING, PID_PARAM(Kc, e) = float(PID_DEFAULT(Kc, ALIM(e, defKc))));
  2430. TERN_(PID_FAN_SCALING, PID_PARAM(Kf, e) = float(PID_DEFAULT(Kf, ALIM(e, defKf))));
  2431. }
  2432. #endif
  2433. //
  2434. // PID Extrusion Scaling
  2435. //
  2436. TERN_(PID_EXTRUSION_SCALING, thermalManager.lpq_len = 20); // Default last-position-queue size
  2437. //
  2438. // Heated Bed PID
  2439. //
  2440. #if ENABLED(PIDTEMPBED)
  2441. thermalManager.temp_bed.pid.Kp = DEFAULT_bedKp;
  2442. thermalManager.temp_bed.pid.Ki = scalePID_i(DEFAULT_bedKi);
  2443. thermalManager.temp_bed.pid.Kd = scalePID_d(DEFAULT_bedKd);
  2444. #endif
  2445. //
  2446. // User-Defined Thermistors
  2447. //
  2448. TERN_(HAS_USER_THERMISTORS, thermalManager.reset_user_thermistors());
  2449. //
  2450. // Power Monitor
  2451. //
  2452. TERN_(POWER_MONITOR, power_monitor.reset());
  2453. //
  2454. // LCD Contrast
  2455. //
  2456. TERN_(HAS_LCD_CONTRAST, ui.set_contrast(DEFAULT_LCD_CONTRAST));
  2457. //
  2458. // Controller Fan
  2459. //
  2460. TERN_(USE_CONTROLLER_FAN, controllerFan.reset());
  2461. //
  2462. // Power-Loss Recovery
  2463. //
  2464. TERN_(POWER_LOSS_RECOVERY, recovery.enable(ENABLED(PLR_ENABLED_DEFAULT)));
  2465. //
  2466. // Firmware Retraction
  2467. //
  2468. TERN_(FWRETRACT, fwretract.reset());
  2469. //
  2470. // Volumetric & Filament Size
  2471. //
  2472. #if DISABLED(NO_VOLUMETRICS)
  2473. parser.volumetric_enabled = ENABLED(VOLUMETRIC_DEFAULT_ON);
  2474. LOOP_L_N(q, COUNT(planner.filament_size))
  2475. planner.filament_size[q] = DEFAULT_NOMINAL_FILAMENT_DIA;
  2476. #if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
  2477. LOOP_L_N(q, COUNT(planner.volumetric_extruder_limit))
  2478. planner.volumetric_extruder_limit[q] = DEFAULT_VOLUMETRIC_EXTRUDER_LIMIT;
  2479. #endif
  2480. #endif
  2481. endstops.enable_globally(ENABLED(ENDSTOPS_ALWAYS_ON_DEFAULT));
  2482. reset_stepper_drivers();
  2483. //
  2484. // Linear Advance
  2485. //
  2486. #if ENABLED(LIN_ADVANCE)
  2487. LOOP_L_N(i, EXTRUDERS) {
  2488. planner.extruder_advance_K[i] = LIN_ADVANCE_K;
  2489. TERN_(EXTRA_LIN_ADVANCE_K, other_extruder_advance_K[i] = LIN_ADVANCE_K);
  2490. }
  2491. #endif
  2492. //
  2493. // Motor Current PWM
  2494. //
  2495. #if HAS_MOTOR_CURRENT_PWM
  2496. constexpr uint32_t tmp_motor_current_setting[MOTOR_CURRENT_COUNT] = PWM_MOTOR_CURRENT;
  2497. LOOP_L_N(q, MOTOR_CURRENT_COUNT)
  2498. stepper.set_digipot_current(q, (stepper.motor_current_setting[q] = tmp_motor_current_setting[q]));
  2499. #endif
  2500. //
  2501. // DIGIPOTS
  2502. //
  2503. #if HAS_MOTOR_CURRENT_SPI
  2504. static constexpr uint32_t tmp_motor_current_setting[] = DIGIPOT_MOTOR_CURRENT;
  2505. DEBUG_ECHOLNPGM("Writing Digipot");
  2506. LOOP_L_N(q, COUNT(tmp_motor_current_setting))
  2507. stepper.set_digipot_current(q, tmp_motor_current_setting[q]);
  2508. DEBUG_ECHOLNPGM("Digipot Written");
  2509. #endif
  2510. //
  2511. // CNC Coordinate System
  2512. //
  2513. TERN_(CNC_COORDINATE_SYSTEMS, (void)gcode.select_coordinate_system(-1)); // Go back to machine space
  2514. //
  2515. // Skew Correction
  2516. //
  2517. #if ENABLED(SKEW_CORRECTION_GCODE)
  2518. planner.skew_factor.xy = XY_SKEW_FACTOR;
  2519. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  2520. planner.skew_factor.xz = XZ_SKEW_FACTOR;
  2521. planner.skew_factor.yz = YZ_SKEW_FACTOR;
  2522. #endif
  2523. #endif
  2524. //
  2525. // Advanced Pause filament load & unload lengths
  2526. //
  2527. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  2528. LOOP_L_N(e, EXTRUDERS) {
  2529. fc_settings[e].unload_length = FILAMENT_CHANGE_UNLOAD_LENGTH;
  2530. fc_settings[e].load_length = FILAMENT_CHANGE_FAST_LOAD_LENGTH;
  2531. }
  2532. #endif
  2533. #if ENABLED(PASSWORD_FEATURE)
  2534. #ifdef PASSWORD_DEFAULT_VALUE
  2535. password.is_set = true;
  2536. password.value = PASSWORD_DEFAULT_VALUE;
  2537. #else
  2538. password.is_set = false;
  2539. #endif
  2540. #endif
  2541. postprocess();
  2542. DEBUG_ECHO_START();
  2543. DEBUG_ECHOLNPGM("Hardcoded Default Settings Loaded");
  2544. TERN_(EXTENSIBLE_UI, ExtUI::onFactoryReset());
  2545. }
  2546. #if DISABLED(DISABLE_M503)
  2547. static void config_heading(const bool repl, PGM_P const pstr, const bool eol=true) {
  2548. if (!repl) {
  2549. SERIAL_ECHO_START();
  2550. SERIAL_ECHOPGM("; ");
  2551. serialprintPGM(pstr);
  2552. if (eol) SERIAL_EOL();
  2553. }
  2554. }
  2555. #define CONFIG_ECHO_START() do{ if (!forReplay) SERIAL_ECHO_START(); }while(0)
  2556. #define CONFIG_ECHO_MSG(V...) do{ CONFIG_ECHO_START(); SERIAL_ECHOLNPAIR(V); }while(0)
  2557. #define CONFIG_ECHO_HEADING(STR) config_heading(forReplay, PSTR(STR))
  2558. #if HAS_TRINAMIC_CONFIG
  2559. inline void say_M906(const bool forReplay) { CONFIG_ECHO_START(); SERIAL_ECHOPGM(" M906"); }
  2560. #if HAS_STEALTHCHOP
  2561. void say_M569(const bool forReplay, const char * const etc=nullptr, const bool newLine = false) {
  2562. CONFIG_ECHO_START();
  2563. SERIAL_ECHOPGM(" M569 S1");
  2564. if (etc) {
  2565. SERIAL_CHAR(' ');
  2566. serialprintPGM(etc);
  2567. }
  2568. if (newLine) SERIAL_EOL();
  2569. }
  2570. #endif
  2571. #if ENABLED(HYBRID_THRESHOLD)
  2572. inline void say_M913(const bool forReplay) { CONFIG_ECHO_START(); SERIAL_ECHOPGM(" M913"); }
  2573. #endif
  2574. #if USE_SENSORLESS
  2575. inline void say_M914() { SERIAL_ECHOPGM(" M914"); }
  2576. #endif
  2577. #endif
  2578. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  2579. inline void say_M603(const bool forReplay) { CONFIG_ECHO_START(); SERIAL_ECHOPGM(" M603 "); }
  2580. #endif
  2581. inline void say_units(const bool colon) {
  2582. serialprintPGM(
  2583. #if ENABLED(INCH_MODE_SUPPORT)
  2584. parser.linear_unit_factor != 1.0 ? PSTR(" (in)") :
  2585. #endif
  2586. PSTR(" (mm)")
  2587. );
  2588. if (colon) SERIAL_ECHOLNPGM(":");
  2589. }
  2590. void report_M92(const bool echo=true, const int8_t e=-1);
  2591. /**
  2592. * M503 - Report current settings in RAM
  2593. *
  2594. * Unless specifically disabled, M503 is available even without EEPROM
  2595. */
  2596. void MarlinSettings::report(const bool forReplay) {
  2597. /**
  2598. * Announce current units, in case inches are being displayed
  2599. */
  2600. CONFIG_ECHO_START();
  2601. #if ENABLED(INCH_MODE_SUPPORT)
  2602. SERIAL_ECHOPGM(" G2");
  2603. SERIAL_CHAR(parser.linear_unit_factor == 1.0 ? '1' : '0');
  2604. SERIAL_ECHOPGM(" ;");
  2605. say_units(false);
  2606. #else
  2607. SERIAL_ECHOPGM(" G21 ; Units in mm");
  2608. say_units(false);
  2609. #endif
  2610. SERIAL_EOL();
  2611. #if HAS_LCD_MENU
  2612. // Temperature units - for Ultipanel temperature options
  2613. CONFIG_ECHO_START();
  2614. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  2615. SERIAL_ECHOPGM(" M149 ");
  2616. SERIAL_CHAR(parser.temp_units_code());
  2617. SERIAL_ECHOPGM(" ; Units in ");
  2618. serialprintPGM(parser.temp_units_name());
  2619. #else
  2620. SERIAL_ECHOLNPGM(" M149 C ; Units in Celsius");
  2621. #endif
  2622. #endif
  2623. SERIAL_EOL();
  2624. #if EXTRUDERS && DISABLED(NO_VOLUMETRICS)
  2625. /**
  2626. * Volumetric extrusion M200
  2627. */
  2628. if (!forReplay) {
  2629. config_heading(forReplay, PSTR("Filament settings:"), false);
  2630. if (parser.volumetric_enabled)
  2631. SERIAL_EOL();
  2632. else
  2633. SERIAL_ECHOLNPGM(" Disabled");
  2634. }
  2635. #if EXTRUDERS == 1
  2636. CONFIG_ECHO_MSG(" M200 S", parser.volumetric_enabled
  2637. , " D", LINEAR_UNIT(planner.filament_size[0])
  2638. #if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
  2639. , " L", LINEAR_UNIT(planner.volumetric_extruder_limit[0])
  2640. #endif
  2641. );
  2642. #else
  2643. LOOP_L_N(i, EXTRUDERS) {
  2644. CONFIG_ECHO_MSG(" M200 T", i
  2645. , " D", LINEAR_UNIT(planner.filament_size[i])
  2646. #if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
  2647. , " L", LINEAR_UNIT(planner.volumetric_extruder_limit[i])
  2648. #endif
  2649. );
  2650. }
  2651. CONFIG_ECHO_MSG(" M200 S", parser.volumetric_enabled);
  2652. #endif
  2653. #endif // EXTRUDERS && !NO_VOLUMETRICS
  2654. CONFIG_ECHO_HEADING("Steps per unit:");
  2655. report_M92(!forReplay);
  2656. CONFIG_ECHO_HEADING("Maximum feedrates (units/s):");
  2657. CONFIG_ECHO_START();
  2658. SERIAL_ECHOLNPAIR_P(
  2659. PSTR(" M203 X"), LINEAR_UNIT(planner.settings.max_feedrate_mm_s[X_AXIS])
  2660. , SP_Y_STR, LINEAR_UNIT(planner.settings.max_feedrate_mm_s[Y_AXIS])
  2661. , SP_Z_STR, LINEAR_UNIT(planner.settings.max_feedrate_mm_s[Z_AXIS])
  2662. #if DISABLED(DISTINCT_E_FACTORS)
  2663. , SP_E_STR, VOLUMETRIC_UNIT(planner.settings.max_feedrate_mm_s[E_AXIS])
  2664. #endif
  2665. );
  2666. #if ENABLED(DISTINCT_E_FACTORS)
  2667. LOOP_L_N(i, E_STEPPERS) {
  2668. CONFIG_ECHO_START();
  2669. SERIAL_ECHOLNPAIR_P(
  2670. PSTR(" M203 T"), i
  2671. , SP_E_STR, VOLUMETRIC_UNIT(planner.settings.max_feedrate_mm_s[E_AXIS_N(i)])
  2672. );
  2673. }
  2674. #endif
  2675. CONFIG_ECHO_HEADING("Maximum Acceleration (units/s2):");
  2676. CONFIG_ECHO_START();
  2677. SERIAL_ECHOLNPAIR_P(
  2678. PSTR(" M201 X"), LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[X_AXIS])
  2679. , SP_Y_STR, LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[Y_AXIS])
  2680. , SP_Z_STR, LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[Z_AXIS])
  2681. #if DISABLED(DISTINCT_E_FACTORS)
  2682. , SP_E_STR, VOLUMETRIC_UNIT(planner.settings.max_acceleration_mm_per_s2[E_AXIS])
  2683. #endif
  2684. );
  2685. #if ENABLED(DISTINCT_E_FACTORS)
  2686. LOOP_L_N(i, E_STEPPERS) {
  2687. CONFIG_ECHO_START();
  2688. SERIAL_ECHOLNPAIR_P(
  2689. PSTR(" M201 T"), i
  2690. , SP_E_STR, VOLUMETRIC_UNIT(planner.settings.max_acceleration_mm_per_s2[E_AXIS_N(i)])
  2691. );
  2692. }
  2693. #endif
  2694. CONFIG_ECHO_HEADING("Acceleration (units/s2): P<print_accel> R<retract_accel> T<travel_accel>");
  2695. CONFIG_ECHO_START();
  2696. SERIAL_ECHOLNPAIR_P(
  2697. PSTR(" M204 P"), LINEAR_UNIT(planner.settings.acceleration)
  2698. , PSTR(" R"), LINEAR_UNIT(planner.settings.retract_acceleration)
  2699. , SP_T_STR, LINEAR_UNIT(planner.settings.travel_acceleration)
  2700. );
  2701. CONFIG_ECHO_HEADING(
  2702. "Advanced: B<min_segment_time_us> S<min_feedrate> T<min_travel_feedrate>"
  2703. #if HAS_JUNCTION_DEVIATION
  2704. " J<junc_dev>"
  2705. #endif
  2706. #if HAS_CLASSIC_JERK
  2707. " X<max_x_jerk> Y<max_y_jerk> Z<max_z_jerk>"
  2708. TERN_(HAS_CLASSIC_E_JERK, " E<max_e_jerk>")
  2709. #endif
  2710. );
  2711. CONFIG_ECHO_START();
  2712. SERIAL_ECHOLNPAIR_P(
  2713. PSTR(" M205 B"), LINEAR_UNIT(planner.settings.min_segment_time_us)
  2714. , PSTR(" S"), LINEAR_UNIT(planner.settings.min_feedrate_mm_s)
  2715. , SP_T_STR, LINEAR_UNIT(planner.settings.min_travel_feedrate_mm_s)
  2716. #if HAS_JUNCTION_DEVIATION
  2717. , PSTR(" J"), LINEAR_UNIT(planner.junction_deviation_mm)
  2718. #endif
  2719. #if HAS_CLASSIC_JERK
  2720. , SP_X_STR, LINEAR_UNIT(planner.max_jerk.x)
  2721. , SP_Y_STR, LINEAR_UNIT(planner.max_jerk.y)
  2722. , SP_Z_STR, LINEAR_UNIT(planner.max_jerk.z)
  2723. #if HAS_CLASSIC_E_JERK
  2724. , SP_E_STR, LINEAR_UNIT(planner.max_jerk.e)
  2725. #endif
  2726. #endif
  2727. );
  2728. #if HAS_M206_COMMAND
  2729. CONFIG_ECHO_HEADING("Home offset:");
  2730. CONFIG_ECHO_START();
  2731. SERIAL_ECHOLNPAIR_P(
  2732. #if IS_CARTESIAN
  2733. PSTR(" M206 X"), LINEAR_UNIT(home_offset.x)
  2734. , SP_Y_STR, LINEAR_UNIT(home_offset.y)
  2735. , SP_Z_STR
  2736. #else
  2737. PSTR(" M206 Z")
  2738. #endif
  2739. , LINEAR_UNIT(home_offset.z)
  2740. );
  2741. #endif
  2742. #if HAS_HOTEND_OFFSET
  2743. CONFIG_ECHO_HEADING("Hotend offsets:");
  2744. CONFIG_ECHO_START();
  2745. LOOP_S_L_N(e, 1, HOTENDS) {
  2746. SERIAL_ECHOPAIR_P(
  2747. PSTR(" M218 T"), e,
  2748. SP_X_STR, LINEAR_UNIT(hotend_offset[e].x),
  2749. SP_Y_STR, LINEAR_UNIT(hotend_offset[e].y)
  2750. );
  2751. SERIAL_ECHOLNPAIR_F_P(SP_Z_STR, LINEAR_UNIT(hotend_offset[e].z), 3);
  2752. }
  2753. #endif
  2754. /**
  2755. * Bed Leveling
  2756. */
  2757. #if HAS_LEVELING
  2758. #if ENABLED(MESH_BED_LEVELING)
  2759. CONFIG_ECHO_HEADING("Mesh Bed Leveling:");
  2760. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2761. config_heading(forReplay, NUL_STR, false);
  2762. if (!forReplay) {
  2763. ubl.echo_name();
  2764. SERIAL_CHAR(':');
  2765. SERIAL_EOL();
  2766. }
  2767. #elif HAS_ABL_OR_UBL
  2768. CONFIG_ECHO_HEADING("Auto Bed Leveling:");
  2769. #endif
  2770. CONFIG_ECHO_START();
  2771. SERIAL_ECHOLNPAIR_P(
  2772. PSTR(" M420 S"), planner.leveling_active
  2773. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  2774. , SP_Z_STR, LINEAR_UNIT(planner.z_fade_height)
  2775. #endif
  2776. );
  2777. #if ENABLED(MESH_BED_LEVELING)
  2778. if (leveling_is_valid()) {
  2779. LOOP_L_N(py, GRID_MAX_POINTS_Y) {
  2780. LOOP_L_N(px, GRID_MAX_POINTS_X) {
  2781. CONFIG_ECHO_START();
  2782. SERIAL_ECHOPAIR_P(PSTR(" G29 S3 I"), px, PSTR(" J"), py);
  2783. SERIAL_ECHOLNPAIR_F_P(SP_Z_STR, LINEAR_UNIT(mbl.z_values[px][py]), 5);
  2784. }
  2785. }
  2786. CONFIG_ECHO_START();
  2787. SERIAL_ECHOLNPAIR_F_P(PSTR(" G29 S4 Z"), LINEAR_UNIT(mbl.z_offset), 5);
  2788. }
  2789. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2790. if (!forReplay) {
  2791. SERIAL_EOL();
  2792. ubl.report_state();
  2793. SERIAL_EOL();
  2794. config_heading(false, PSTR("Active Mesh Slot: "), false);
  2795. SERIAL_ECHOLN(ubl.storage_slot);
  2796. config_heading(false, PSTR("EEPROM can hold "), false);
  2797. SERIAL_ECHO(calc_num_meshes());
  2798. SERIAL_ECHOLNPGM(" meshes.\n");
  2799. }
  2800. //ubl.report_current_mesh(); // This is too verbose for large meshes. A better (more terse)
  2801. // solution needs to be found.
  2802. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2803. if (leveling_is_valid()) {
  2804. LOOP_L_N(py, GRID_MAX_POINTS_Y) {
  2805. LOOP_L_N(px, GRID_MAX_POINTS_X) {
  2806. CONFIG_ECHO_START();
  2807. SERIAL_ECHOPAIR(" G29 W I", px, " J", py);
  2808. SERIAL_ECHOLNPAIR_F_P(SP_Z_STR, LINEAR_UNIT(z_values[px][py]), 5);
  2809. }
  2810. }
  2811. }
  2812. #endif
  2813. #endif // HAS_LEVELING
  2814. #if ENABLED(EDITABLE_SERVO_ANGLES)
  2815. CONFIG_ECHO_HEADING("Servo Angles:");
  2816. LOOP_L_N(i, NUM_SERVOS) {
  2817. switch (i) {
  2818. #if ENABLED(SWITCHING_EXTRUDER)
  2819. case SWITCHING_EXTRUDER_SERVO_NR:
  2820. #if EXTRUDERS > 3
  2821. case SWITCHING_EXTRUDER_E23_SERVO_NR:
  2822. #endif
  2823. #elif ENABLED(SWITCHING_NOZZLE)
  2824. case SWITCHING_NOZZLE_SERVO_NR:
  2825. #elif ENABLED(BLTOUCH) || (HAS_Z_SERVO_PROBE && defined(Z_SERVO_ANGLES))
  2826. case Z_PROBE_SERVO_NR:
  2827. #endif
  2828. CONFIG_ECHO_MSG(" M281 P", i, " L", servo_angles[i][0], " U", servo_angles[i][1]);
  2829. default: break;
  2830. }
  2831. }
  2832. #endif // EDITABLE_SERVO_ANGLES
  2833. #if HAS_SCARA_OFFSET
  2834. CONFIG_ECHO_HEADING("SCARA settings: S<seg-per-sec> P<theta-psi-offset> T<theta-offset>");
  2835. CONFIG_ECHO_START();
  2836. SERIAL_ECHOLNPAIR_P(
  2837. PSTR(" M665 S"), delta_segments_per_second
  2838. , SP_P_STR, scara_home_offset.a
  2839. , SP_T_STR, scara_home_offset.b
  2840. , SP_Z_STR, LINEAR_UNIT(scara_home_offset.z)
  2841. );
  2842. #elif ENABLED(DELTA)
  2843. CONFIG_ECHO_HEADING("Endstop adjustment:");
  2844. CONFIG_ECHO_START();
  2845. SERIAL_ECHOLNPAIR_P(
  2846. PSTR(" M666 X"), LINEAR_UNIT(delta_endstop_adj.a)
  2847. , SP_Y_STR, LINEAR_UNIT(delta_endstop_adj.b)
  2848. , SP_Z_STR, LINEAR_UNIT(delta_endstop_adj.c)
  2849. );
  2850. CONFIG_ECHO_HEADING("Delta settings: L<diagonal rod> R<radius> H<height> S<segments per sec> XYZ<tower angle trim> ABC<rod trim>");
  2851. CONFIG_ECHO_START();
  2852. SERIAL_ECHOLNPAIR_P(
  2853. PSTR(" M665 L"), LINEAR_UNIT(delta_diagonal_rod)
  2854. , PSTR(" R"), LINEAR_UNIT(delta_radius)
  2855. , PSTR(" H"), LINEAR_UNIT(delta_height)
  2856. , PSTR(" S"), delta_segments_per_second
  2857. , SP_X_STR, LINEAR_UNIT(delta_tower_angle_trim.a)
  2858. , SP_Y_STR, LINEAR_UNIT(delta_tower_angle_trim.b)
  2859. , SP_Z_STR, LINEAR_UNIT(delta_tower_angle_trim.c)
  2860. , PSTR(" A"), LINEAR_UNIT(delta_diagonal_rod_trim.a)
  2861. , PSTR(" B"), LINEAR_UNIT(delta_diagonal_rod_trim.b)
  2862. , PSTR(" C"), LINEAR_UNIT(delta_diagonal_rod_trim.c)
  2863. );
  2864. #elif HAS_EXTRA_ENDSTOPS
  2865. CONFIG_ECHO_HEADING("Endstop adjustment:");
  2866. CONFIG_ECHO_START();
  2867. SERIAL_ECHOPGM(" M666");
  2868. #if ENABLED(X_DUAL_ENDSTOPS)
  2869. SERIAL_ECHOLNPAIR_P(SP_X_STR, LINEAR_UNIT(endstops.x2_endstop_adj));
  2870. #endif
  2871. #if ENABLED(Y_DUAL_ENDSTOPS)
  2872. SERIAL_ECHOLNPAIR_P(SP_Y_STR, LINEAR_UNIT(endstops.y2_endstop_adj));
  2873. #endif
  2874. #if ENABLED(Z_MULTI_ENDSTOPS)
  2875. #if NUM_Z_STEPPER_DRIVERS >= 3
  2876. SERIAL_ECHOPAIR(" S2 Z", LINEAR_UNIT(endstops.z3_endstop_adj));
  2877. CONFIG_ECHO_START();
  2878. SERIAL_ECHOPAIR(" M666 S3 Z", LINEAR_UNIT(endstops.z3_endstop_adj));
  2879. #if NUM_Z_STEPPER_DRIVERS >= 4
  2880. CONFIG_ECHO_START();
  2881. SERIAL_ECHOPAIR(" M666 S4 Z", LINEAR_UNIT(endstops.z4_endstop_adj));
  2882. #endif
  2883. #else
  2884. SERIAL_ECHOLNPAIR_P(SP_Z_STR, LINEAR_UNIT(endstops.z2_endstop_adj));
  2885. #endif
  2886. #endif
  2887. #endif // [XYZ]_DUAL_ENDSTOPS
  2888. #if PREHEAT_COUNT
  2889. CONFIG_ECHO_HEADING("Material heatup parameters:");
  2890. LOOP_L_N(i, PREHEAT_COUNT) {
  2891. CONFIG_ECHO_START();
  2892. SERIAL_ECHOLNPAIR_P(
  2893. PSTR(" M145 S"), i
  2894. #if HAS_HOTEND
  2895. , PSTR(" H"), TEMP_UNIT(ui.material_preset[i].hotend_temp)
  2896. #endif
  2897. #if HAS_HEATED_BED
  2898. , SP_B_STR, TEMP_UNIT(ui.material_preset[i].bed_temp)
  2899. #endif
  2900. #if HAS_FAN
  2901. , PSTR(" F"), ui.material_preset[i].fan_speed
  2902. #endif
  2903. );
  2904. }
  2905. #endif
  2906. #if HAS_PID_HEATING
  2907. CONFIG_ECHO_HEADING("PID settings:");
  2908. #if ENABLED(PIDTEMP)
  2909. HOTEND_LOOP() {
  2910. CONFIG_ECHO_START();
  2911. SERIAL_ECHOPAIR_P(
  2912. #if ENABLED(PID_PARAMS_PER_HOTEND)
  2913. PSTR(" M301 E"), e,
  2914. SP_P_STR
  2915. #else
  2916. PSTR(" M301 P")
  2917. #endif
  2918. , PID_PARAM(Kp, e)
  2919. , PSTR(" I"), unscalePID_i(PID_PARAM(Ki, e))
  2920. , PSTR(" D"), unscalePID_d(PID_PARAM(Kd, e))
  2921. );
  2922. #if ENABLED(PID_EXTRUSION_SCALING)
  2923. SERIAL_ECHOPAIR_P(SP_C_STR, PID_PARAM(Kc, e));
  2924. if (e == 0) SERIAL_ECHOPAIR(" L", thermalManager.lpq_len);
  2925. #endif
  2926. #if ENABLED(PID_FAN_SCALING)
  2927. SERIAL_ECHOPAIR(" F", PID_PARAM(Kf, e));
  2928. #endif
  2929. SERIAL_EOL();
  2930. }
  2931. #endif // PIDTEMP
  2932. #if ENABLED(PIDTEMPBED)
  2933. CONFIG_ECHO_MSG(
  2934. " M304 P", thermalManager.temp_bed.pid.Kp
  2935. , " I", unscalePID_i(thermalManager.temp_bed.pid.Ki)
  2936. , " D", unscalePID_d(thermalManager.temp_bed.pid.Kd)
  2937. );
  2938. #endif
  2939. #endif // PIDTEMP || PIDTEMPBED
  2940. #if HAS_USER_THERMISTORS
  2941. CONFIG_ECHO_HEADING("User thermistors:");
  2942. LOOP_L_N(i, USER_THERMISTORS)
  2943. thermalManager.log_user_thermistor(i, true);
  2944. #endif
  2945. #if HAS_LCD_CONTRAST
  2946. CONFIG_ECHO_HEADING("LCD Contrast:");
  2947. CONFIG_ECHO_MSG(" M250 C", ui.contrast);
  2948. #endif
  2949. TERN_(CONTROLLER_FAN_EDITABLE, M710_report(forReplay));
  2950. #if ENABLED(POWER_LOSS_RECOVERY)
  2951. CONFIG_ECHO_HEADING("Power-Loss Recovery:");
  2952. CONFIG_ECHO_MSG(" M413 S", recovery.enabled);
  2953. #endif
  2954. #if ENABLED(FWRETRACT)
  2955. CONFIG_ECHO_HEADING("Retract: S<length> F<units/m> Z<lift>");
  2956. CONFIG_ECHO_START();
  2957. SERIAL_ECHOLNPAIR_P(
  2958. PSTR(" M207 S"), LINEAR_UNIT(fwretract.settings.retract_length)
  2959. , PSTR(" W"), LINEAR_UNIT(fwretract.settings.swap_retract_length)
  2960. , PSTR(" F"), LINEAR_UNIT(MMS_TO_MMM(fwretract.settings.retract_feedrate_mm_s))
  2961. , SP_Z_STR, LINEAR_UNIT(fwretract.settings.retract_zraise)
  2962. );
  2963. CONFIG_ECHO_HEADING("Recover: S<length> F<units/m>");
  2964. CONFIG_ECHO_MSG(
  2965. " M208 S", LINEAR_UNIT(fwretract.settings.retract_recover_extra)
  2966. , " W", LINEAR_UNIT(fwretract.settings.swap_retract_recover_extra)
  2967. , " F", LINEAR_UNIT(MMS_TO_MMM(fwretract.settings.retract_recover_feedrate_mm_s))
  2968. );
  2969. #if ENABLED(FWRETRACT_AUTORETRACT)
  2970. CONFIG_ECHO_HEADING("Auto-Retract: S=0 to disable, 1 to interpret E-only moves as retract/recover");
  2971. CONFIG_ECHO_MSG(" M209 S", fwretract.autoretract_enabled);
  2972. #endif
  2973. #endif // FWRETRACT
  2974. /**
  2975. * Probe Offset
  2976. */
  2977. #if HAS_BED_PROBE
  2978. config_heading(forReplay, PSTR("Z-Probe Offset"), false);
  2979. if (!forReplay) say_units(true);
  2980. CONFIG_ECHO_START();
  2981. SERIAL_ECHOLNPAIR_P(
  2982. #if HAS_PROBE_XY_OFFSET
  2983. PSTR(" M851 X"), LINEAR_UNIT(probe.offset_xy.x),
  2984. SP_Y_STR, LINEAR_UNIT(probe.offset_xy.y),
  2985. SP_Z_STR
  2986. #else
  2987. PSTR(" M851 X0 Y0 Z")
  2988. #endif
  2989. , LINEAR_UNIT(probe.offset.z)
  2990. );
  2991. #endif
  2992. /**
  2993. * Bed Skew Correction
  2994. */
  2995. #if ENABLED(SKEW_CORRECTION_GCODE)
  2996. CONFIG_ECHO_HEADING("Skew Factor: ");
  2997. CONFIG_ECHO_START();
  2998. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  2999. SERIAL_ECHOPAIR_F(" M852 I", LINEAR_UNIT(planner.skew_factor.xy), 6);
  3000. SERIAL_ECHOPAIR_F(" J", LINEAR_UNIT(planner.skew_factor.xz), 6);
  3001. SERIAL_ECHOLNPAIR_F(" K", LINEAR_UNIT(planner.skew_factor.yz), 6);
  3002. #else
  3003. SERIAL_ECHOLNPAIR_F(" M852 S", LINEAR_UNIT(planner.skew_factor.xy), 6);
  3004. #endif
  3005. #endif
  3006. #if HAS_TRINAMIC_CONFIG
  3007. /**
  3008. * TMC stepper driver current
  3009. */
  3010. CONFIG_ECHO_HEADING("Stepper driver current:");
  3011. #if AXIS_IS_TMC(X) || AXIS_IS_TMC(Y) || AXIS_IS_TMC(Z)
  3012. say_M906(forReplay);
  3013. #if AXIS_IS_TMC(X)
  3014. SERIAL_ECHOPAIR_P(SP_X_STR, stepperX.getMilliamps());
  3015. #endif
  3016. #if AXIS_IS_TMC(Y)
  3017. SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY.getMilliamps());
  3018. #endif
  3019. #if AXIS_IS_TMC(Z)
  3020. SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ.getMilliamps());
  3021. #endif
  3022. SERIAL_EOL();
  3023. #endif
  3024. #if AXIS_IS_TMC(X2) || AXIS_IS_TMC(Y2) || AXIS_IS_TMC(Z2)
  3025. say_M906(forReplay);
  3026. SERIAL_ECHOPGM(" I1");
  3027. #if AXIS_IS_TMC(X2)
  3028. SERIAL_ECHOPAIR_P(SP_X_STR, stepperX2.getMilliamps());
  3029. #endif
  3030. #if AXIS_IS_TMC(Y2)
  3031. SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY2.getMilliamps());
  3032. #endif
  3033. #if AXIS_IS_TMC(Z2)
  3034. SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ2.getMilliamps());
  3035. #endif
  3036. SERIAL_EOL();
  3037. #endif
  3038. #if AXIS_IS_TMC(Z3)
  3039. say_M906(forReplay);
  3040. SERIAL_ECHOLNPAIR(" I2 Z", stepperZ3.getMilliamps());
  3041. #endif
  3042. #if AXIS_IS_TMC(Z4)
  3043. say_M906(forReplay);
  3044. SERIAL_ECHOLNPAIR(" I3 Z", stepperZ4.getMilliamps());
  3045. #endif
  3046. #if AXIS_IS_TMC(E0)
  3047. say_M906(forReplay);
  3048. SERIAL_ECHOLNPAIR(" T0 E", stepperE0.getMilliamps());
  3049. #endif
  3050. #if AXIS_IS_TMC(E1)
  3051. say_M906(forReplay);
  3052. SERIAL_ECHOLNPAIR(" T1 E", stepperE1.getMilliamps());
  3053. #endif
  3054. #if AXIS_IS_TMC(E2)
  3055. say_M906(forReplay);
  3056. SERIAL_ECHOLNPAIR(" T2 E", stepperE2.getMilliamps());
  3057. #endif
  3058. #if AXIS_IS_TMC(E3)
  3059. say_M906(forReplay);
  3060. SERIAL_ECHOLNPAIR(" T3 E", stepperE3.getMilliamps());
  3061. #endif
  3062. #if AXIS_IS_TMC(E4)
  3063. say_M906(forReplay);
  3064. SERIAL_ECHOLNPAIR(" T4 E", stepperE4.getMilliamps());
  3065. #endif
  3066. #if AXIS_IS_TMC(E5)
  3067. say_M906(forReplay);
  3068. SERIAL_ECHOLNPAIR(" T5 E", stepperE5.getMilliamps());
  3069. #endif
  3070. #if AXIS_IS_TMC(E6)
  3071. say_M906(forReplay);
  3072. SERIAL_ECHOLNPAIR(" T6 E", stepperE6.getMilliamps());
  3073. #endif
  3074. #if AXIS_IS_TMC(E7)
  3075. say_M906(forReplay);
  3076. SERIAL_ECHOLNPAIR(" T7 E", stepperE7.getMilliamps());
  3077. #endif
  3078. SERIAL_EOL();
  3079. /**
  3080. * TMC Hybrid Threshold
  3081. */
  3082. #if ENABLED(HYBRID_THRESHOLD)
  3083. CONFIG_ECHO_HEADING("Hybrid Threshold:");
  3084. #if AXIS_HAS_STEALTHCHOP(X) || AXIS_HAS_STEALTHCHOP(Y) || AXIS_HAS_STEALTHCHOP(Z)
  3085. say_M913(forReplay);
  3086. #if AXIS_HAS_STEALTHCHOP(X)
  3087. SERIAL_ECHOPAIR_P(SP_X_STR, stepperX.get_pwm_thrs());
  3088. #endif
  3089. #if AXIS_HAS_STEALTHCHOP(Y)
  3090. SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY.get_pwm_thrs());
  3091. #endif
  3092. #if AXIS_HAS_STEALTHCHOP(Z)
  3093. SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ.get_pwm_thrs());
  3094. #endif
  3095. SERIAL_EOL();
  3096. #endif
  3097. #if AXIS_HAS_STEALTHCHOP(X2) || AXIS_HAS_STEALTHCHOP(Y2) || AXIS_HAS_STEALTHCHOP(Z2)
  3098. say_M913(forReplay);
  3099. SERIAL_ECHOPGM(" I1");
  3100. #if AXIS_HAS_STEALTHCHOP(X2)
  3101. SERIAL_ECHOPAIR_P(SP_X_STR, stepperX2.get_pwm_thrs());
  3102. #endif
  3103. #if AXIS_HAS_STEALTHCHOP(Y2)
  3104. SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY2.get_pwm_thrs());
  3105. #endif
  3106. #if AXIS_HAS_STEALTHCHOP(Z2)
  3107. SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ2.get_pwm_thrs());
  3108. #endif
  3109. SERIAL_EOL();
  3110. #endif
  3111. #if AXIS_HAS_STEALTHCHOP(Z3)
  3112. say_M913(forReplay);
  3113. SERIAL_ECHOLNPAIR(" I2 Z", stepperZ3.get_pwm_thrs());
  3114. #endif
  3115. #if AXIS_HAS_STEALTHCHOP(Z4)
  3116. say_M913(forReplay);
  3117. SERIAL_ECHOLNPAIR(" I3 Z", stepperZ4.get_pwm_thrs());
  3118. #endif
  3119. #if AXIS_HAS_STEALTHCHOP(E0)
  3120. say_M913(forReplay);
  3121. SERIAL_ECHOLNPAIR(" T0 E", stepperE0.get_pwm_thrs());
  3122. #endif
  3123. #if AXIS_HAS_STEALTHCHOP(E1)
  3124. say_M913(forReplay);
  3125. SERIAL_ECHOLNPAIR(" T1 E", stepperE1.get_pwm_thrs());
  3126. #endif
  3127. #if AXIS_HAS_STEALTHCHOP(E2)
  3128. say_M913(forReplay);
  3129. SERIAL_ECHOLNPAIR(" T2 E", stepperE2.get_pwm_thrs());
  3130. #endif
  3131. #if AXIS_HAS_STEALTHCHOP(E3)
  3132. say_M913(forReplay);
  3133. SERIAL_ECHOLNPAIR(" T3 E", stepperE3.get_pwm_thrs());
  3134. #endif
  3135. #if AXIS_HAS_STEALTHCHOP(E4)
  3136. say_M913(forReplay);
  3137. SERIAL_ECHOLNPAIR(" T4 E", stepperE4.get_pwm_thrs());
  3138. #endif
  3139. #if AXIS_HAS_STEALTHCHOP(E5)
  3140. say_M913(forReplay);
  3141. SERIAL_ECHOLNPAIR(" T5 E", stepperE5.get_pwm_thrs());
  3142. #endif
  3143. #if AXIS_HAS_STEALTHCHOP(E6)
  3144. say_M913(forReplay);
  3145. SERIAL_ECHOLNPAIR(" T6 E", stepperE6.get_pwm_thrs());
  3146. #endif
  3147. #if AXIS_HAS_STEALTHCHOP(E7)
  3148. say_M913(forReplay);
  3149. SERIAL_ECHOLNPAIR(" T7 E", stepperE7.get_pwm_thrs());
  3150. #endif
  3151. SERIAL_EOL();
  3152. #endif // HYBRID_THRESHOLD
  3153. /**
  3154. * TMC Sensorless homing thresholds
  3155. */
  3156. #if USE_SENSORLESS
  3157. CONFIG_ECHO_HEADING("StallGuard threshold:");
  3158. #if X_SENSORLESS || Y_SENSORLESS || Z_SENSORLESS
  3159. CONFIG_ECHO_START();
  3160. say_M914();
  3161. #if X_SENSORLESS
  3162. SERIAL_ECHOPAIR_P(SP_X_STR, stepperX.homing_threshold());
  3163. #endif
  3164. #if Y_SENSORLESS
  3165. SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY.homing_threshold());
  3166. #endif
  3167. #if Z_SENSORLESS
  3168. SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ.homing_threshold());
  3169. #endif
  3170. SERIAL_EOL();
  3171. #endif
  3172. #if X2_SENSORLESS || Y2_SENSORLESS || Z2_SENSORLESS
  3173. CONFIG_ECHO_START();
  3174. say_M914();
  3175. SERIAL_ECHOPGM(" I1");
  3176. #if X2_SENSORLESS
  3177. SERIAL_ECHOPAIR_P(SP_X_STR, stepperX2.homing_threshold());
  3178. #endif
  3179. #if Y2_SENSORLESS
  3180. SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY2.homing_threshold());
  3181. #endif
  3182. #if Z2_SENSORLESS
  3183. SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ2.homing_threshold());
  3184. #endif
  3185. SERIAL_EOL();
  3186. #endif
  3187. #if Z3_SENSORLESS
  3188. CONFIG_ECHO_START();
  3189. say_M914();
  3190. SERIAL_ECHOLNPAIR(" I2 Z", stepperZ3.homing_threshold());
  3191. #endif
  3192. #if Z4_SENSORLESS
  3193. CONFIG_ECHO_START();
  3194. say_M914();
  3195. SERIAL_ECHOLNPAIR(" I3 Z", stepperZ4.homing_threshold());
  3196. #endif
  3197. #endif // USE_SENSORLESS
  3198. /**
  3199. * TMC stepping mode
  3200. */
  3201. #if HAS_STEALTHCHOP
  3202. CONFIG_ECHO_HEADING("Driver stepping mode:");
  3203. #if AXIS_HAS_STEALTHCHOP(X)
  3204. const bool chop_x = stepperX.get_stored_stealthChop();
  3205. #else
  3206. constexpr bool chop_x = false;
  3207. #endif
  3208. #if AXIS_HAS_STEALTHCHOP(Y)
  3209. const bool chop_y = stepperY.get_stored_stealthChop();
  3210. #else
  3211. constexpr bool chop_y = false;
  3212. #endif
  3213. #if AXIS_HAS_STEALTHCHOP(Z)
  3214. const bool chop_z = stepperZ.get_stored_stealthChop();
  3215. #else
  3216. constexpr bool chop_z = false;
  3217. #endif
  3218. if (chop_x || chop_y || chop_z) {
  3219. say_M569(forReplay);
  3220. if (chop_x) SERIAL_ECHOPGM_P(SP_X_STR);
  3221. if (chop_y) SERIAL_ECHOPGM_P(SP_Y_STR);
  3222. if (chop_z) SERIAL_ECHOPGM_P(SP_Z_STR);
  3223. SERIAL_EOL();
  3224. }
  3225. #if AXIS_HAS_STEALTHCHOP(X2)
  3226. const bool chop_x2 = stepperX2.get_stored_stealthChop();
  3227. #else
  3228. constexpr bool chop_x2 = false;
  3229. #endif
  3230. #if AXIS_HAS_STEALTHCHOP(Y2)
  3231. const bool chop_y2 = stepperY2.get_stored_stealthChop();
  3232. #else
  3233. constexpr bool chop_y2 = false;
  3234. #endif
  3235. #if AXIS_HAS_STEALTHCHOP(Z2)
  3236. const bool chop_z2 = stepperZ2.get_stored_stealthChop();
  3237. #else
  3238. constexpr bool chop_z2 = false;
  3239. #endif
  3240. if (chop_x2 || chop_y2 || chop_z2) {
  3241. say_M569(forReplay, PSTR("I1"));
  3242. if (chop_x2) SERIAL_ECHOPGM_P(SP_X_STR);
  3243. if (chop_y2) SERIAL_ECHOPGM_P(SP_Y_STR);
  3244. if (chop_z2) SERIAL_ECHOPGM_P(SP_Z_STR);
  3245. SERIAL_EOL();
  3246. }
  3247. #if AXIS_HAS_STEALTHCHOP(Z3)
  3248. if (stepperZ3.get_stored_stealthChop()) { say_M569(forReplay, PSTR("I2 Z"), true); }
  3249. #endif
  3250. #if AXIS_HAS_STEALTHCHOP(Z4)
  3251. if (stepperZ4.get_stored_stealthChop()) { say_M569(forReplay, PSTR("I3 Z"), true); }
  3252. #endif
  3253. #if AXIS_HAS_STEALTHCHOP(E0)
  3254. if (stepperE0.get_stored_stealthChop()) { say_M569(forReplay, PSTR("T0 E"), true); }
  3255. #endif
  3256. #if AXIS_HAS_STEALTHCHOP(E1)
  3257. if (stepperE1.get_stored_stealthChop()) { say_M569(forReplay, PSTR("T1 E"), true); }
  3258. #endif
  3259. #if AXIS_HAS_STEALTHCHOP(E2)
  3260. if (stepperE2.get_stored_stealthChop()) { say_M569(forReplay, PSTR("T2 E"), true); }
  3261. #endif
  3262. #if AXIS_HAS_STEALTHCHOP(E3)
  3263. if (stepperE3.get_stored_stealthChop()) { say_M569(forReplay, PSTR("T3 E"), true); }
  3264. #endif
  3265. #if AXIS_HAS_STEALTHCHOP(E4)
  3266. if (stepperE4.get_stored_stealthChop()) { say_M569(forReplay, PSTR("T4 E"), true); }
  3267. #endif
  3268. #if AXIS_HAS_STEALTHCHOP(E5)
  3269. if (stepperE5.get_stored_stealthChop()) { say_M569(forReplay, PSTR("T5 E"), true); }
  3270. #endif
  3271. #if AXIS_HAS_STEALTHCHOP(E6)
  3272. if (stepperE6.get_stored_stealthChop()) { say_M569(forReplay, PSTR("T6 E"), true); }
  3273. #endif
  3274. #if AXIS_HAS_STEALTHCHOP(E7)
  3275. if (stepperE7.get_stored_stealthChop()) { say_M569(forReplay, PSTR("T7 E"), true); }
  3276. #endif
  3277. #endif // HAS_STEALTHCHOP
  3278. #endif // HAS_TRINAMIC_CONFIG
  3279. /**
  3280. * Linear Advance
  3281. */
  3282. #if ENABLED(LIN_ADVANCE)
  3283. CONFIG_ECHO_HEADING("Linear Advance:");
  3284. #if EXTRUDERS < 2
  3285. CONFIG_ECHO_MSG(" M900 K", planner.extruder_advance_K[0]);
  3286. #else
  3287. LOOP_L_N(i, EXTRUDERS)
  3288. CONFIG_ECHO_MSG(" M900 T", i, " K", planner.extruder_advance_K[i]);
  3289. #endif
  3290. #endif
  3291. #if EITHER(HAS_MOTOR_CURRENT_SPI, HAS_MOTOR_CURRENT_PWM)
  3292. CONFIG_ECHO_HEADING("Stepper motor currents:");
  3293. CONFIG_ECHO_START();
  3294. #if HAS_MOTOR_CURRENT_PWM
  3295. SERIAL_ECHOLNPAIR_P( // PWM-based has 3 values:
  3296. PSTR(" M907 X"), stepper.motor_current_setting[0] // X and Y
  3297. , SP_Z_STR, stepper.motor_current_setting[1] // Z
  3298. , SP_E_STR, stepper.motor_current_setting[2] // E
  3299. );
  3300. #elif HAS_MOTOR_CURRENT_SPI
  3301. SERIAL_ECHOPGM(" M907"); // SPI-based has 5 values:
  3302. LOOP_XYZE(q) { // X Y Z E (map to X Y Z E0 by default)
  3303. SERIAL_CHAR(' ', axis_codes[q]);
  3304. SERIAL_ECHO(stepper.motor_current_setting[q]);
  3305. }
  3306. SERIAL_CHAR(' ', 'B'); // B (maps to E1 by default)
  3307. SERIAL_ECHOLN(stepper.motor_current_setting[4]);
  3308. #endif
  3309. #elif ENABLED(HAS_MOTOR_CURRENT_I2C) // i2c-based has any number of values
  3310. // Values sent over i2c are not stored.
  3311. // Indexes map directly to drivers, not axes.
  3312. #elif ENABLED(HAS_MOTOR_CURRENT_DAC) // DAC-based has 4 values, for X Y Z E
  3313. // Values sent over i2c are not stored. Uses indirect mapping.
  3314. #endif
  3315. /**
  3316. * Advanced Pause filament load & unload lengths
  3317. */
  3318. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  3319. CONFIG_ECHO_HEADING("Filament load/unload lengths:");
  3320. #if EXTRUDERS == 1
  3321. say_M603(forReplay);
  3322. SERIAL_ECHOLNPAIR("L", LINEAR_UNIT(fc_settings[0].load_length), " U", LINEAR_UNIT(fc_settings[0].unload_length));
  3323. #else
  3324. #define _ECHO_603(N) do{ say_M603(forReplay); SERIAL_ECHOLNPAIR("T" STRINGIFY(N) " L", LINEAR_UNIT(fc_settings[N].load_length), " U", LINEAR_UNIT(fc_settings[N].unload_length)); }while(0);
  3325. REPEAT(EXTRUDERS, _ECHO_603)
  3326. #endif
  3327. #endif
  3328. #if HAS_MULTI_EXTRUDER
  3329. CONFIG_ECHO_HEADING("Tool-changing:");
  3330. CONFIG_ECHO_START();
  3331. M217_report(true);
  3332. #endif
  3333. #if ENABLED(BACKLASH_GCODE)
  3334. CONFIG_ECHO_HEADING("Backlash compensation:");
  3335. CONFIG_ECHO_START();
  3336. SERIAL_ECHOLNPAIR_P(
  3337. PSTR(" M425 F"), backlash.get_correction()
  3338. , SP_X_STR, LINEAR_UNIT(backlash.distance_mm.x)
  3339. , SP_Y_STR, LINEAR_UNIT(backlash.distance_mm.y)
  3340. , SP_Z_STR, LINEAR_UNIT(backlash.distance_mm.z)
  3341. #ifdef BACKLASH_SMOOTHING_MM
  3342. , PSTR(" S"), LINEAR_UNIT(backlash.smoothing_mm)
  3343. #endif
  3344. );
  3345. #endif
  3346. #if HAS_FILAMENT_SENSOR
  3347. CONFIG_ECHO_HEADING("Filament runout sensor:");
  3348. CONFIG_ECHO_MSG(
  3349. " M412 S", runout.enabled
  3350. #if HAS_FILAMENT_RUNOUT_DISTANCE
  3351. , " D", LINEAR_UNIT(runout.runout_distance())
  3352. #endif
  3353. );
  3354. #endif
  3355. #if HAS_ETHERNET
  3356. CONFIG_ECHO_HEADING("Ethernet:");
  3357. if (!forReplay) { CONFIG_ECHO_START(); ETH0_report(); }
  3358. CONFIG_ECHO_START(); SERIAL_ECHO_SP(2); MAC_report();
  3359. CONFIG_ECHO_START(); SERIAL_ECHO_SP(2); M552_report();
  3360. CONFIG_ECHO_START(); SERIAL_ECHO_SP(2); M553_report();
  3361. CONFIG_ECHO_START(); SERIAL_ECHO_SP(2); M554_report();
  3362. #endif
  3363. #if HAS_MULTI_LANGUAGE
  3364. CONFIG_ECHO_HEADING("UI Language:");
  3365. SERIAL_ECHO_MSG(" M414 S", ui.language);
  3366. #endif
  3367. }
  3368. #endif // !DISABLE_M503
  3369. #pragma pack(pop)