My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Você não pode selecionar mais de 25 tópicos Os tópicos devem começar com uma letra ou um número, podem incluir traços ('-') e podem ter até 35 caracteres.

Marlin.pde 32KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094
  1. /*
  2. Reprap firmware based on Sprinter and grbl.
  3. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  4. This program is free software: you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation, either version 3 of the License, or
  7. (at your option) any later version.
  8. This program is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program. If not, see <http://www.gnu.org/licenses/>.
  14. */
  15. /*
  16. This firmware is a mashup between Sprinter and grbl.
  17. (https://github.com/kliment/Sprinter)
  18. (https://github.com/simen/grbl/tree)
  19. It has preliminary support for Matthew Roberts advance algorithm
  20. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  21. */
  22. #include <EEPROM.h>
  23. #include "EEPROMwrite.h"
  24. #include "fastio.h"
  25. #include "Configuration.h"
  26. #include "pins.h"
  27. #include "Marlin.h"
  28. #include "ultralcd.h"
  29. #include "planner.h"
  30. #include "stepper.h"
  31. #include "temperature.h"
  32. #include "motion_control.h"
  33. #include "cardreader.h"
  34. #include "watchdog.h"
  35. #define VERSION_STRING "1.0.0 Alpha 1"
  36. // look here for descriptions of gcodes: http://linuxcnc.org/handbook/gcode/g-code.html
  37. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  38. //Implemented Codes
  39. //-------------------
  40. // G0 -> G1
  41. // G1 - Coordinated Movement X Y Z E
  42. // G2 - CW ARC
  43. // G3 - CCW ARC
  44. // G4 - Dwell S<seconds> or P<milliseconds>
  45. // G28 - Home all Axis
  46. // G90 - Use Absolute Coordinates
  47. // G91 - Use Relative Coordinates
  48. // G92 - Set current position to cordinates given
  49. //RepRap M Codes
  50. // M104 - Set extruder target temp
  51. // M105 - Read current temp
  52. // M106 - Fan on
  53. // M107 - Fan off
  54. // M109 - Wait for extruder current temp to reach target temp.
  55. // M114 - Display current position
  56. //Custom M Codes
  57. // M17 - Enable/Power all stepper motors
  58. // M18 - Disable all stepper motors; same as M84
  59. // M20 - List SD card
  60. // M21 - Init SD card
  61. // M22 - Release SD card
  62. // M23 - Select SD file (M23 filename.g)
  63. // M24 - Start/resume SD print
  64. // M25 - Pause SD print
  65. // M26 - Set SD position in bytes (M26 S12345)
  66. // M27 - Report SD print status
  67. // M28 - Start SD write (M28 filename.g)
  68. // M29 - Stop SD write
  69. // M30 - Output time since last M109 or SD card start to serial
  70. // M42 - Change pin status via gcode
  71. // M80 - Turn on Power Supply
  72. // M81 - Turn off Power Supply
  73. // M82 - Set E codes absolute (default)
  74. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  75. // M84 - Disable steppers until next move,
  76. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  77. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  78. // M92 - Set axis_steps_per_unit - same syntax as G92
  79. // M114 - Output current position to serial port
  80. // M115 - Capabilities string
  81. // M119 - Output Endstop status to serial port
  82. // M140 - Set bed target temp
  83. // M190 - Wait for bed current temp to reach target temp.
  84. // M200 - Set filament diameter
  85. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  86. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  87. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  88. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) im mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer underruns and M20 minimum feedrate
  89. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  90. // M220 - set speed factor override percentage S:factor in percent
  91. // M301 - Set PID parameters P I and D
  92. // M400 - Finish all moves
  93. // M500 - stores paramters in EEPROM
  94. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  95. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  96. //Stepper Movement Variables
  97. //===========================================================================
  98. //=============================imported variables============================
  99. //===========================================================================
  100. extern float HeaterPower;
  101. //===========================================================================
  102. //=============================public variables=============================
  103. //===========================================================================
  104. #ifdef SDSUPPORT
  105. CardReader card;
  106. #endif
  107. float homing_feedrate[] = HOMING_FEEDRATE;
  108. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  109. volatile int feedmultiply=100; //100->1 200->2
  110. int saved_feedmultiply;
  111. volatile bool feedmultiplychanged=false;
  112. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  113. //===========================================================================
  114. //=============================private variables=============================
  115. //===========================================================================
  116. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  117. static float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  118. static float offset[3] = {0.0, 0.0, 0.0};
  119. static bool home_all_axis = true;
  120. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  121. static long gcode_N, gcode_LastN;
  122. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  123. static bool relative_mode_e = false; //Determines Absolute or Relative E Codes while in Absolute Coordinates mode. E is always relative in Relative Coordinates mode.
  124. static uint8_t fanpwm=0;
  125. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  126. static bool fromsd[BUFSIZE];
  127. static int bufindr = 0;
  128. static int bufindw = 0;
  129. static int buflen = 0;
  130. static int i = 0;
  131. static char serial_char;
  132. static int serial_count = 0;
  133. static boolean comment_mode = false;
  134. static char *strchr_pointer; // just a pointer to find chars in the cmd string like X, Y, Z, E, etc
  135. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  136. static float tt = 0, bt = 0;
  137. //Inactivity shutdown variables
  138. static unsigned long previous_millis_cmd = 0;
  139. static unsigned long max_inactive_time = 0;
  140. static unsigned long stepper_inactive_time = 0;
  141. static unsigned long starttime=0;
  142. static unsigned long stoptime=0;
  143. //===========================================================================
  144. //=============================ROUTINES=============================
  145. //===========================================================================
  146. void get_arc_coordinates();
  147. extern "C"{
  148. extern unsigned int __bss_end;
  149. extern unsigned int __heap_start;
  150. extern void *__brkval;
  151. int freeMemory() {
  152. int free_memory;
  153. if((int)__brkval == 0)
  154. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  155. else
  156. free_memory = ((int)&free_memory) - ((int)__brkval);
  157. return free_memory;
  158. }
  159. }
  160. //adds an command to the main command buffer
  161. //thats really done in a non-safe way.
  162. //needs overworking someday
  163. void enquecommand(const char *cmd)
  164. {
  165. if(buflen < BUFSIZE)
  166. {
  167. //this is dangerous if a mixing of serial and this happsens
  168. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  169. SERIAL_ECHO_START;
  170. SERIAL_ECHOPGM("enqueing \"");
  171. SERIAL_ECHO(cmdbuffer[bufindw]);
  172. SERIAL_ECHOLNPGM("\"");
  173. bufindw= (bufindw + 1)%BUFSIZE;
  174. buflen += 1;
  175. }
  176. }
  177. void setup()
  178. {
  179. Serial.begin(BAUDRATE);
  180. SERIAL_ECHO_START;
  181. SERIAL_ECHOLNPGM(VERSION_STRING);
  182. SERIAL_PROTOCOLLNPGM("start");
  183. SERIAL_ECHO_START;
  184. SERIAL_ECHOPGM("Free Memory:");
  185. SERIAL_ECHOLN(freeMemory());
  186. for(int8_t i = 0; i < BUFSIZE; i++)
  187. {
  188. fromsd[i] = false;
  189. }
  190. RetrieveSettings(); // loads data from EEPROM if available
  191. for(int8_t i=0; i < NUM_AXIS; i++)
  192. {
  193. axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i];
  194. }
  195. tp_init(); // Initialize temperature loop
  196. plan_init(); // Initialize planner;
  197. st_init(); // Initialize stepper;
  198. wd_init();
  199. }
  200. void loop()
  201. {
  202. if(buflen<3)
  203. get_command();
  204. #ifdef SDSUPPORT
  205. card.checkautostart(false);
  206. #endif
  207. if(buflen)
  208. {
  209. #ifdef SDSUPPORT
  210. if(card.saving)
  211. {
  212. if(strstr(cmdbuffer[bufindr],"M29") == NULL)
  213. {
  214. card.write_command(cmdbuffer[bufindr]);
  215. SERIAL_PROTOCOLLNPGM("ok");
  216. }
  217. else
  218. {
  219. card.closefile();
  220. SERIAL_PROTOCOLLNPGM("Done saving file.");
  221. }
  222. }
  223. else
  224. {
  225. process_commands();
  226. }
  227. #else
  228. process_commands();
  229. #endif //SDSUPPORT
  230. buflen = (buflen-1);
  231. bufindr = (bufindr + 1)%BUFSIZE;
  232. }
  233. //check heater every n milliseconds
  234. manage_heater();
  235. manage_inactivity(1);
  236. checkHitEndstops();
  237. LCD_STATUS;
  238. }
  239. inline void get_command()
  240. {
  241. while( Serial.available() > 0 && buflen < BUFSIZE) {
  242. serial_char = Serial.read();
  243. if(serial_char == '\n' || serial_char == '\r' || serial_char == ':' || serial_count >= (MAX_CMD_SIZE - 1) )
  244. {
  245. if(!serial_count) return; //if empty line
  246. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  247. if(!comment_mode){
  248. fromsd[bufindw] = false;
  249. if(strstr(cmdbuffer[bufindw], "N") != NULL)
  250. {
  251. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  252. gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
  253. if(gcode_N != gcode_LastN+1 && (strstr(cmdbuffer[bufindw], "M110") == NULL) ) {
  254. SERIAL_ERROR_START;
  255. SERIAL_ERRORPGM("Line Number is not Last Line Number+1, Last Line:");
  256. SERIAL_ERRORLN(gcode_LastN);
  257. //Serial.println(gcode_N);
  258. FlushSerialRequestResend();
  259. serial_count = 0;
  260. return;
  261. }
  262. if(strstr(cmdbuffer[bufindw], "*") != NULL)
  263. {
  264. byte checksum = 0;
  265. byte count = 0;
  266. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  267. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  268. if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
  269. SERIAL_ERROR_START;
  270. SERIAL_ERRORPGM("checksum mismatch, Last Line:");
  271. SERIAL_ERRORLN(gcode_LastN);
  272. FlushSerialRequestResend();
  273. serial_count = 0;
  274. return;
  275. }
  276. //if no errors, continue parsing
  277. }
  278. else
  279. {
  280. SERIAL_ERROR_START;
  281. SERIAL_ERRORPGM("No Checksum with line number, Last Line:");
  282. SERIAL_ERRORLN(gcode_LastN);
  283. FlushSerialRequestResend();
  284. serial_count = 0;
  285. return;
  286. }
  287. gcode_LastN = gcode_N;
  288. //if no errors, continue parsing
  289. }
  290. else // if we don't receive 'N' but still see '*'
  291. {
  292. if((strstr(cmdbuffer[bufindw], "*") != NULL))
  293. {
  294. SERIAL_ERROR_START;
  295. SERIAL_ERRORPGM("No Line Number with checksum, Last Line:");
  296. SERIAL_ERRORLN(gcode_LastN);
  297. serial_count = 0;
  298. return;
  299. }
  300. }
  301. if((strstr(cmdbuffer[bufindw], "G") != NULL)){
  302. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  303. switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
  304. case 0:
  305. case 1:
  306. case 2:
  307. case 3:
  308. #ifdef SDSUPPORT
  309. if(card.saving)
  310. break;
  311. #endif //SDSUPPORT
  312. SERIAL_PROTOCOLLNPGM("ok");
  313. break;
  314. default:
  315. break;
  316. }
  317. }
  318. bufindw = (bufindw + 1)%BUFSIZE;
  319. buflen += 1;
  320. }
  321. comment_mode = false; //for new command
  322. serial_count = 0; //clear buffer
  323. }
  324. else
  325. {
  326. if(serial_char == ';') comment_mode = true;
  327. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  328. }
  329. }
  330. #ifdef SDSUPPORT
  331. if(!card.sdprinting || serial_count!=0){
  332. return;
  333. }
  334. while( !card.eof() && buflen < BUFSIZE) {
  335. int16_t n=card.get();
  336. serial_char = (char)n;
  337. if(serial_char == '\n' || serial_char == '\r' || serial_char == ':' || serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  338. {
  339. if(card.eof()){
  340. card.sdprinting = false;
  341. SERIAL_PROTOCOLLNPGM("Done printing file");
  342. stoptime=millis();
  343. char time[30];
  344. unsigned long t=(stoptime-starttime)/1000;
  345. int sec,min;
  346. min=t/60;
  347. sec=t%60;
  348. sprintf(time,"%i min, %i sec",min,sec);
  349. SERIAL_ECHO_START;
  350. SERIAL_ECHOLN(time);
  351. LCD_MESSAGE(time);
  352. card.checkautostart(true);
  353. }
  354. if(serial_char=='\n')
  355. comment_mode = false; //for new command
  356. if(!serial_count)
  357. {
  358. return; //if empty line
  359. }
  360. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  361. if(!comment_mode){
  362. fromsd[bufindw] = true;
  363. buflen += 1;
  364. bufindw = (bufindw + 1)%BUFSIZE;
  365. }
  366. serial_count = 0; //clear buffer
  367. }
  368. else
  369. {
  370. if(serial_char == ';') comment_mode = true;
  371. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  372. }
  373. }
  374. #endif //SDSUPPORT
  375. }
  376. inline float code_value()
  377. {
  378. return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL));
  379. }
  380. inline long code_value_long()
  381. {
  382. return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
  383. }
  384. inline bool code_seen(char code_string[]) //Return True if the string was found
  385. {
  386. return (strstr(cmdbuffer[bufindr], code_string) != NULL);
  387. }
  388. inline bool code_seen(char code)
  389. {
  390. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  391. return (strchr_pointer != NULL); //Return True if a character was found
  392. }
  393. #define HOMEAXIS(LETTER) \
  394. if ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))\
  395. { \
  396. current_position[LETTER##_AXIS] = 0; \
  397. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); \
  398. destination[LETTER##_AXIS] = 1.5 * LETTER##_MAX_LENGTH * LETTER##_HOME_DIR; \
  399. feedrate = homing_feedrate[LETTER##_AXIS]; \
  400. prepare_move(); \
  401. st_synchronize();\
  402. \
  403. current_position[LETTER##_AXIS] = 0;\
  404. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);\
  405. destination[LETTER##_AXIS] = -5 * LETTER##_HOME_DIR;\
  406. prepare_move(); \
  407. st_synchronize();\
  408. \
  409. destination[LETTER##_AXIS] = 10 * LETTER##_HOME_DIR;\
  410. feedrate = homing_feedrate[LETTER##_AXIS]/2 ; \
  411. prepare_move(); \
  412. st_synchronize();\
  413. \
  414. current_position[LETTER##_AXIS] = (LETTER##_HOME_DIR == -1) ? 0 : LETTER##_MAX_LENGTH;\
  415. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);\
  416. destination[LETTER##_AXIS] = current_position[LETTER##_AXIS];\
  417. feedrate = 0.0;\
  418. st_synchronize();\
  419. endstops_hit_on_purpose();\
  420. }
  421. inline void process_commands()
  422. {
  423. unsigned long codenum; //throw away variable
  424. char *starpos = NULL;
  425. if(code_seen('G'))
  426. {
  427. switch((int)code_value())
  428. {
  429. case 0: // G0 -> G1
  430. case 1: // G1
  431. get_coordinates(); // For X Y Z E F
  432. prepare_move();
  433. previous_millis_cmd = millis();
  434. //ClearToSend();
  435. return;
  436. //break;
  437. case 2: // G2 - CW ARC
  438. get_arc_coordinates();
  439. prepare_arc_move(true);
  440. previous_millis_cmd = millis();
  441. return;
  442. case 3: // G3 - CCW ARC
  443. get_arc_coordinates();
  444. prepare_arc_move(false);
  445. previous_millis_cmd = millis();
  446. return;
  447. case 4: // G4 dwell
  448. LCD_MESSAGEPGM("DWELL...");
  449. codenum = 0;
  450. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  451. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  452. codenum += millis(); // keep track of when we started waiting
  453. while(millis() < codenum ){
  454. manage_heater();
  455. }
  456. break;
  457. case 28: //G28 Home all Axis one at a time
  458. saved_feedrate = feedrate;
  459. saved_feedmultiply = feedmultiply;
  460. feedmultiply = 100;
  461. for(int8_t i=0; i < NUM_AXIS; i++) {
  462. destination[i] = current_position[i];
  463. }
  464. feedrate = 0.0;
  465. home_all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2])));
  466. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  467. {
  468. HOMEAXIS(X);
  469. }
  470. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
  471. HOMEAXIS(Y);
  472. }
  473. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  474. HOMEAXIS(Z);
  475. }
  476. feedrate = saved_feedrate;
  477. feedmultiply = saved_feedmultiply;
  478. previous_millis_cmd = millis();
  479. endstops_hit_on_purpose();
  480. break;
  481. case 90: // G90
  482. relative_mode = false;
  483. break;
  484. case 91: // G91
  485. relative_mode = true;
  486. break;
  487. case 92: // G92
  488. if(!code_seen(axis_codes[E_AXIS]))
  489. st_synchronize();
  490. for(int8_t i=0; i < NUM_AXIS; i++) {
  491. if(code_seen(axis_codes[i])) current_position[i] = code_value();
  492. }
  493. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  494. break;
  495. }
  496. }
  497. else if(code_seen('M'))
  498. {
  499. switch( (int)code_value() )
  500. {
  501. case 17:
  502. LCD_MESSAGEPGM("No move.");
  503. enable_x();
  504. enable_y();
  505. enable_z();
  506. enable_e();
  507. break;
  508. #ifdef SDSUPPORT
  509. case 20: // M20 - list SD card
  510. SERIAL_PROTOCOLLNPGM("Begin file list");
  511. card.ls();
  512. SERIAL_PROTOCOLLNPGM("End file list");
  513. break;
  514. case 21: // M21 - init SD card
  515. card.initsd();
  516. break;
  517. case 22: //M22 - release SD card
  518. card.release();
  519. break;
  520. case 23: //M23 - Select file
  521. starpos = (strchr(strchr_pointer + 4,'*'));
  522. if(starpos!=NULL)
  523. *(starpos-1)='\0';
  524. card.openFile(strchr_pointer + 4,true);
  525. break;
  526. case 24: //M24 - Start SD print
  527. card.startFileprint();
  528. starttime=millis();
  529. break;
  530. case 25: //M25 - Pause SD print
  531. card.pauseSDPrint();
  532. break;
  533. case 26: //M26 - Set SD index
  534. if(card.cardOK && code_seen('S')){
  535. card.setIndex(code_value_long());
  536. }
  537. break;
  538. case 27: //M27 - Get SD status
  539. card.getStatus();
  540. break;
  541. case 28: //M28 - Start SD write
  542. starpos = (strchr(strchr_pointer + 4,'*'));
  543. if(starpos != NULL){
  544. char* npos = strchr(cmdbuffer[bufindr], 'N');
  545. strchr_pointer = strchr(npos,' ') + 1;
  546. *(starpos-1) = '\0';
  547. }
  548. card.openFile(strchr_pointer+4,false);
  549. break;
  550. case 29: //M29 - Stop SD write
  551. //processed in write to file routine above
  552. //card,saving = false;
  553. break;
  554. #endif //SDSUPPORT
  555. case 30: //M30 take time since the start of the SD print or an M109 command
  556. {
  557. stoptime=millis();
  558. char time[30];
  559. unsigned long t=(stoptime-starttime)/1000;
  560. int sec,min;
  561. min=t/60;
  562. sec=t%60;
  563. sprintf(time,"%i min, %i sec",min,sec);
  564. SERIAL_ECHO_START;
  565. SERIAL_ECHOLN(time);
  566. LCD_MESSAGE(time);
  567. }
  568. break;
  569. case 42: //M42 -Change pin status via gcode
  570. if (code_seen('S'))
  571. {
  572. int pin_status = code_value();
  573. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  574. {
  575. int pin_number = code_value();
  576. for(int8_t i = 0; i < (int8_t)sizeof(sensitive_pins); i++)
  577. {
  578. if (sensitive_pins[i] == pin_number)
  579. {
  580. pin_number = -1;
  581. break;
  582. }
  583. }
  584. if (pin_number > -1)
  585. {
  586. pinMode(pin_number, OUTPUT);
  587. digitalWrite(pin_number, pin_status);
  588. analogWrite(pin_number, pin_status);
  589. }
  590. }
  591. }
  592. break;
  593. case 104: // M104
  594. if (code_seen('S')) setTargetHotend0(code_value());
  595. setWatch();
  596. break;
  597. case 140: // M140 set bed temp
  598. if (code_seen('S')) setTargetBed(code_value());
  599. break;
  600. case 105: // M105
  601. //SERIAL_ECHOLN(freeMemory());
  602. //test watchdog:
  603. //delay(20000);
  604. #if (TEMP_0_PIN > -1) || defined (HEATER_USES_AD595)
  605. SERIAL_PROTOCOLPGM("ok T:");
  606. SERIAL_PROTOCOL( degHotend0());
  607. #if TEMP_1_PIN > -1
  608. SERIAL_PROTOCOLPGM(" B:");
  609. SERIAL_PROTOCOL(degBed());
  610. #endif //TEMP_1_PIN
  611. #else
  612. SERIAL_ERROR_START;
  613. SERIAL_ERRORLNPGM("No thermistors - no temp");
  614. #endif
  615. #ifdef PIDTEMP
  616. SERIAL_PROTOCOLPGM(" @:");
  617. SERIAL_PROTOCOL( HeaterPower);
  618. #endif
  619. SERIAL_PROTOCOLLN("");
  620. return;
  621. break;
  622. case 109:
  623. {// M109 - Wait for extruder heater to reach target.
  624. LCD_MESSAGEPGM("Heating...");
  625. #ifdef AUTOTEMP
  626. autotemp_enabled=false;
  627. #endif
  628. if (code_seen('S')) setTargetHotend0(code_value());
  629. #ifdef AUTOTEMP
  630. if (code_seen('S')) autotemp_min=code_value();
  631. if (code_seen('T')) autotemp_max=code_value();
  632. if (code_seen('F'))
  633. {
  634. autotemp_factor=code_value();
  635. autotemp_enabled=true;
  636. }
  637. #endif
  638. setWatch();
  639. codenum = millis();
  640. /* See if we are heating up or cooling down */
  641. bool target_direction = isHeatingHotend0(); // true if heating, false if cooling
  642. #ifdef TEMP_RESIDENCY_TIME
  643. long residencyStart;
  644. residencyStart = -1;
  645. /* continue to loop until we have reached the target temp
  646. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  647. while((target_direction ? (isHeatingHotend0()) : (isCoolingHotend0()) ||
  648. (residencyStart > -1 && (millis() - residencyStart) < TEMP_RESIDENCY_TIME*1000) ) {
  649. #else
  650. while ( target_direction ? (isHeatingHotend0()) : (isCoolingHotend0()) ) {
  651. #endif //TEMP_RESIDENCY_TIME
  652. if( (millis() - codenum) > 1000 )
  653. { //Print Temp Reading every 1 second while heating up/cooling down
  654. SERIAL_PROTOCOLPGM("T:");
  655. SERIAL_PROTOCOLLN( degHotend0() );
  656. codenum = millis();
  657. }
  658. manage_heater();
  659. LCD_STATUS;
  660. #ifdef TEMP_RESIDENCY_TIME
  661. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  662. or when current temp falls outside the hysteresis after target temp was reached */
  663. if ((residencyStart == -1 && target_direction && !isHeatingHotend0()) ||
  664. (residencyStart == -1 && !target_direction && !isCoolingHotend0()) ||
  665. (residencyStart > -1 && labs(degHotend0() - degTargetHotend0()) > TEMP_HYSTERESIS) )
  666. {
  667. residencyStart = millis();
  668. }
  669. #endif //TEMP_RESIDENCY_TIME
  670. }
  671. LCD_MESSAGEPGM("Heating done.");
  672. starttime=millis();
  673. }
  674. break;
  675. case 190: // M190 - Wait bed for heater to reach target.
  676. #if TEMP_1_PIN > -1
  677. LCD_MESSAGEPGM("Bed Heating.");
  678. if (code_seen('S')) setTargetBed(code_value());
  679. codenum = millis();
  680. while(isHeatingBed())
  681. {
  682. if( (millis()-codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  683. {
  684. float tt=degHotend0();
  685. SERIAL_PROTOCOLPGM("T:");
  686. SERIAL_PROTOCOLLN(tt );
  687. SERIAL_PROTOCOLPGM("ok T:");
  688. SERIAL_PROTOCOL(tt );
  689. SERIAL_PROTOCOLPGM(" B:");
  690. SERIAL_PROTOCOLLN(degBed() );
  691. codenum = millis();
  692. }
  693. manage_heater();
  694. }
  695. LCD_MESSAGEPGM("Bed done.");
  696. #endif
  697. break;
  698. #if FAN_PIN > -1
  699. case 106: //M106 Fan On
  700. if (code_seen('S')){
  701. WRITE(FAN_PIN,HIGH);
  702. fanpwm=constrain(code_value(),0,255);
  703. analogWrite(FAN_PIN, fanpwm);
  704. }
  705. else {
  706. WRITE(FAN_PIN,HIGH);
  707. fanpwm=255;
  708. analogWrite(FAN_PIN, fanpwm);
  709. }
  710. break;
  711. case 107: //M107 Fan Off
  712. WRITE(FAN_PIN,LOW);
  713. analogWrite(FAN_PIN, 0);
  714. break;
  715. #endif //FAN_PIN
  716. #if (PS_ON_PIN > -1)
  717. case 80: // M80 - ATX Power On
  718. SET_OUTPUT(PS_ON_PIN); //GND
  719. break;
  720. case 81: // M81 - ATX Power Off
  721. SET_INPUT(PS_ON_PIN); //Floating
  722. break;
  723. #endif
  724. case 82:
  725. axis_relative_modes[3] = false;
  726. break;
  727. case 83:
  728. axis_relative_modes[3] = true;
  729. break;
  730. case 18: //compatibility
  731. case 84:
  732. if(code_seen('S')){
  733. stepper_inactive_time = code_value() * 1000;
  734. }
  735. else
  736. {
  737. st_synchronize();
  738. LCD_MESSAGEPGM("Free move.");
  739. disable_x();
  740. disable_y();
  741. disable_z();
  742. disable_e();
  743. }
  744. break;
  745. case 85: // M85
  746. code_seen('S');
  747. max_inactive_time = code_value() * 1000;
  748. break;
  749. case 92: // M92
  750. for(int8_t i=0; i < NUM_AXIS; i++)
  751. {
  752. if(code_seen(axis_codes[i]))
  753. axis_steps_per_unit[i] = code_value();
  754. }
  755. break;
  756. case 115: // M115
  757. SerialprintPGM("FIRMWARE_NAME:Marlin; Sprinter/grbl mashup for gen6 FIRMWARE_URL:http://www.mendel-parts.com PROTOCOL_VERSION:1.0 MACHINE_TYPE:Mendel EXTRUDER_COUNT:1");
  758. break;
  759. case 114: // M114
  760. SERIAL_PROTOCOLPGM("X:");
  761. SERIAL_PROTOCOL(current_position[X_AXIS]);
  762. SERIAL_PROTOCOLPGM("Y:");
  763. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  764. SERIAL_PROTOCOLPGM("Z:");
  765. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  766. SERIAL_PROTOCOLPGM("E:");
  767. SERIAL_PROTOCOL(current_position[E_AXIS]);
  768. #ifdef DEBUG_STEPS
  769. SERIAL_PROTOCOLPGM(" Count X:");
  770. SERIAL_PROTOCOL(float(count_position[X_AXIS])/axis_steps_per_unit[X_AXIS]);
  771. SERIAL_PROTOCOLPGM("Y:");
  772. SERIAL_PROTOCOL(float(count_position[Y_AXIS])/axis_steps_per_unit[Y_AXIS]);
  773. SERIAL_PROTOCOLPGM("Z:");
  774. SERIAL_PROTOCOL(float(count_position[Z_AXIS])/axis_steps_per_unit[Z_AXIS]);
  775. #endif
  776. SERIAL_PROTOCOLLN("");
  777. break;
  778. case 119: // M119
  779. #if (X_MIN_PIN > -1)
  780. SERIAL_PROTOCOLPGM("x_min:");
  781. SERIAL_PROTOCOL(((READ(X_MIN_PIN)^ENDSTOPS_INVERTING)?"H ":"L "));
  782. #endif
  783. #if (X_MAX_PIN > -1)
  784. SERIAL_PROTOCOLPGM("x_max:");
  785. SERIAL_PROTOCOL(((READ(X_MAX_PIN)^ENDSTOPS_INVERTING)?"H ":"L "));
  786. #endif
  787. #if (Y_MIN_PIN > -1)
  788. SERIAL_PROTOCOLPGM("y_min:");
  789. SERIAL_PROTOCOL(((READ(Y_MIN_PIN)^ENDSTOPS_INVERTING)?"H ":"L "));
  790. #endif
  791. #if (Y_MAX_PIN > -1)
  792. SERIAL_PROTOCOLPGM("y_max:");
  793. SERIAL_PROTOCOL(((READ(Y_MAX_PIN)^ENDSTOPS_INVERTING)?"H ":"L "));
  794. #endif
  795. #if (Z_MIN_PIN > -1)
  796. SERIAL_PROTOCOLPGM("z_min:");
  797. SERIAL_PROTOCOL(((READ(Z_MIN_PIN)^ENDSTOPS_INVERTING)?"H ":"L "));
  798. #endif
  799. #if (Z_MAX_PIN > -1)
  800. SERIAL_PROTOCOLPGM("z_max:");
  801. SERIAL_PROTOCOL(((READ(Z_MAX_PIN)^ENDSTOPS_INVERTING)?"H ":"L "));
  802. #endif
  803. SERIAL_PROTOCOLLN("");
  804. break;
  805. //TODO: update for all axis, use for loop
  806. case 201: // M201
  807. for(int8_t i=0; i < NUM_AXIS; i++)
  808. {
  809. if(code_seen(axis_codes[i])) axis_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  810. }
  811. break;
  812. #if 0 // Not used for Sprinter/grbl gen6
  813. case 202: // M202
  814. for(int8_t i=0; i < NUM_AXIS; i++) {
  815. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  816. }
  817. break;
  818. #endif
  819. case 203: // M203 max feedrate mm/sec
  820. for(int8_t i=0; i < NUM_AXIS; i++) {
  821. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value()*60 ;
  822. }
  823. break;
  824. case 204: // M204 acclereration S normal moves T filmanent only moves
  825. {
  826. if(code_seen('S')) acceleration = code_value() ;
  827. if(code_seen('T')) retract_acceleration = code_value() ;
  828. }
  829. break;
  830. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  831. {
  832. if(code_seen('S')) minimumfeedrate = code_value()*60 ;
  833. if(code_seen('T')) mintravelfeedrate = code_value()*60 ;
  834. if(code_seen('B')) minsegmenttime = code_value() ;
  835. if(code_seen('X')) max_xy_jerk = code_value()*60 ;
  836. if(code_seen('Z')) max_z_jerk = code_value()*60 ;
  837. }
  838. break;
  839. case 220: // M220 S<factor in percent>- set speed factor override percentage
  840. {
  841. if(code_seen('S'))
  842. {
  843. feedmultiply = code_value() ;
  844. feedmultiplychanged=true;
  845. }
  846. }
  847. break;
  848. #ifdef PIDTEMP
  849. case 301: // M301
  850. {
  851. if(code_seen('P')) Kp = code_value();
  852. if(code_seen('I')) Ki = code_value()*PID_dT;
  853. if(code_seen('D')) Kd = code_value()/PID_dT;
  854. #ifdef PID_ADD_EXTRUSION_RATE
  855. if(code_seen('C')) Kc = code_value();
  856. #endif
  857. updatePID();
  858. SERIAL_PROTOCOL("ok p:");
  859. SERIAL_PROTOCOL(Kp);
  860. SERIAL_PROTOCOL(" i:");
  861. SERIAL_PROTOCOL(Ki/PID_dT);
  862. SERIAL_PROTOCOL(" d:");
  863. SERIAL_PROTOCOL(Kd*PID_dT);
  864. #ifdef PID_ADD_EXTRUSION_RATE
  865. SERIAL_PROTOCOL(" c:");
  866. SERIAL_PROTOCOL(Kc*PID_dT);
  867. #endif
  868. SERIAL_PROTOCOLLN("");
  869. }
  870. break;
  871. #endif //PIDTEMP
  872. case 400: // finish all moves
  873. {
  874. st_synchronize();
  875. }
  876. break;
  877. case 500: // Store settings in EEPROM
  878. {
  879. StoreSettings();
  880. }
  881. break;
  882. case 501: // Read settings from EEPROM
  883. {
  884. RetrieveSettings();
  885. }
  886. break;
  887. case 502: // Revert to default settings
  888. {
  889. RetrieveSettings(true);
  890. }
  891. break;
  892. }
  893. }
  894. else
  895. {
  896. SERIAL_ECHO_START;
  897. SERIAL_ECHOPGM("Unknown command:\"");
  898. SERIAL_ECHO(cmdbuffer[bufindr]);
  899. SERIAL_ECHOLNPGM("\"");
  900. }
  901. ClearToSend();
  902. }
  903. void FlushSerialRequestResend()
  904. {
  905. //char cmdbuffer[bufindr][100]="Resend:";
  906. Serial.flush();
  907. SERIAL_PROTOCOLPGM("Resend:");
  908. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  909. ClearToSend();
  910. }
  911. void ClearToSend()
  912. {
  913. previous_millis_cmd = millis();
  914. #ifdef SDSUPPORT
  915. if(fromsd[bufindr])
  916. return;
  917. #endif //SDSUPPORT
  918. SERIAL_PROTOCOLLNPGM("ok");
  919. }
  920. inline void get_coordinates()
  921. {
  922. for(int8_t i=0; i < NUM_AXIS; i++) {
  923. if(code_seen(axis_codes[i])) destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  924. else destination[i] = current_position[i]; //Are these else lines really needed?
  925. }
  926. if(code_seen('F')) {
  927. next_feedrate = code_value();
  928. if(next_feedrate > 0.0) feedrate = next_feedrate;
  929. }
  930. }
  931. inline void get_arc_coordinates()
  932. {
  933. get_coordinates();
  934. if(code_seen('I')) offset[0] = code_value();
  935. if(code_seen('J')) offset[1] = code_value();
  936. }
  937. void prepare_move()
  938. {
  939. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0);
  940. for(int8_t i=0; i < NUM_AXIS; i++) {
  941. current_position[i] = destination[i];
  942. }
  943. }
  944. void prepare_arc_move(char isclockwise) {
  945. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  946. // Trace the arc
  947. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise);
  948. // As far as the parser is concerned, the position is now == target. In reality the
  949. // motion control system might still be processing the action and the real tool position
  950. // in any intermediate location.
  951. for(int8_t i=0; i < NUM_AXIS; i++) {
  952. current_position[i] = destination[i];
  953. }
  954. }
  955. void manage_inactivity(byte debug)
  956. {
  957. if( (millis()-previous_millis_cmd) > max_inactive_time )
  958. if(max_inactive_time)
  959. kill();
  960. if( (millis()-previous_millis_cmd) > stepper_inactive_time )
  961. if(stepper_inactive_time)
  962. {
  963. disable_x();
  964. disable_y();
  965. disable_z();
  966. disable_e();
  967. }
  968. check_axes_activity();
  969. }
  970. void kill()
  971. {
  972. disable_heater();
  973. disable_x();
  974. disable_y();
  975. disable_z();
  976. disable_e();
  977. if(PS_ON_PIN > -1) pinMode(PS_ON_PIN,INPUT);
  978. SERIAL_ERROR_START;
  979. SERIAL_ERRORLNPGM("Printer halted. kill() called !!");
  980. LCD_MESSAGEPGM("KILLED. ");
  981. while(1); // Wait for reset
  982. }