My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Du kan inte välja fler än 25 ämnen Ämnen måste starta med en bokstav eller siffra, kan innehålla bindestreck ('-') och vara max 35 tecken långa.

Marlin_main.cpp 116KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef ACCURATE_BED_LEVELING
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #include "ultralcd.h"
  31. #include "planner.h"
  32. #include "stepper.h"
  33. #include "temperature.h"
  34. #include "motion_control.h"
  35. #include "cardreader.h"
  36. #include "watchdog.h"
  37. #include "ConfigurationStore.h"
  38. #include "language.h"
  39. #include "pins_arduino.h"
  40. #include "math.h"
  41. #ifdef BLINKM
  42. #include "BlinkM.h"
  43. #include "Wire.h"
  44. #endif
  45. #if NUM_SERVOS > 0
  46. #include "Servo.h"
  47. #endif
  48. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  49. #include <SPI.h>
  50. #endif
  51. #define VERSION_STRING "1.0.0"
  52. // look here for descriptions of gcodes: http://linuxcnc.org/handbook/gcode/g-code.html
  53. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  54. //Implemented Codes
  55. //-------------------
  56. // G0 -> G1
  57. // G1 - Coordinated Movement X Y Z E
  58. // G2 - CW ARC
  59. // G3 - CCW ARC
  60. // G4 - Dwell S<seconds> or P<milliseconds>
  61. // G10 - retract filament according to settings of M207
  62. // G11 - retract recover filament according to settings of M208
  63. // G28 - Home all Axis
  64. // G29 - Detailed Z-Probe, probes the bed at 3 points. You must de at the home position for this to work correctly.
  65. // G30 - Single Z Probe, probes bed at current XY location.
  66. // G90 - Use Absolute Coordinates
  67. // G91 - Use Relative Coordinates
  68. // G92 - Set current position to cordinates given
  69. // M Codes
  70. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  71. // M1 - Same as M0
  72. // M17 - Enable/Power all stepper motors
  73. // M18 - Disable all stepper motors; same as M84
  74. // M20 - List SD card
  75. // M21 - Init SD card
  76. // M22 - Release SD card
  77. // M23 - Select SD file (M23 filename.g)
  78. // M24 - Start/resume SD print
  79. // M25 - Pause SD print
  80. // M26 - Set SD position in bytes (M26 S12345)
  81. // M27 - Report SD print status
  82. // M28 - Start SD write (M28 filename.g)
  83. // M29 - Stop SD write
  84. // M30 - Delete file from SD (M30 filename.g)
  85. // M31 - Output time since last M109 or SD card start to serial
  86. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  87. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  88. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (simiarl to #include).
  89. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  90. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  91. // M80 - Turn on Power Supply
  92. // M81 - Turn off Power Supply
  93. // M82 - Set E codes absolute (default)
  94. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  95. // M84 - Disable steppers until next move,
  96. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  97. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  98. // M92 - Set axis_steps_per_unit - same syntax as G92
  99. // M104 - Set extruder target temp
  100. // M105 - Read current temp
  101. // M106 - Fan on
  102. // M107 - Fan off
  103. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  104. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  105. // M114 - Output current position to serial port
  106. // M115 - Capabilities string
  107. // M117 - display message
  108. // M119 - Output Endstop status to serial port
  109. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  110. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  111. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  112. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  113. // M140 - Set bed target temp
  114. // M150 - Set BlinkM Colour Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  115. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  116. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  117. // M200 - Set filament diameter
  118. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  119. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  120. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  121. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) im mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer underruns and M20 minimum feedrate
  122. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  123. // M206 - set additional homeing offset
  124. // M207 - set retract length S[positive mm] F[feedrate mm/sec] Z[additional zlift/hop]
  125. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  126. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  127. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  128. // M220 S<factor in percent>- set speed factor override percentage
  129. // M221 S<factor in percent>- set extrude factor override percentage
  130. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  131. // M240 - Trigger a camera to take a photograph
  132. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  133. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  134. // M300 - Play beepsound S<frequency Hz> P<duration ms>
  135. // M301 - Set PID parameters P I and D
  136. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  137. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  138. // M304 - Set bed PID parameters P I and D
  139. // M400 - Finish all moves
  140. // M401 - Lower z-probe if present
  141. // M402 - Raise z-probe if present
  142. // M500 - stores paramters in EEPROM
  143. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  144. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  145. // M503 - print the current settings (from memory not from eeprom)
  146. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  147. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  148. // M666 - set delta endstop adjustemnt
  149. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  150. // M907 - Set digital trimpot motor current using axis codes.
  151. // M908 - Control digital trimpot directly.
  152. // M350 - Set microstepping mode.
  153. // M351 - Toggle MS1 MS2 pins directly.
  154. // M928 - Start SD logging (M928 filename.g) - ended by M29
  155. // M999 - Restart after being stopped by error
  156. //Stepper Movement Variables
  157. //===========================================================================
  158. //=============================imported variables============================
  159. //===========================================================================
  160. //===========================================================================
  161. //=============================public variables=============================
  162. //===========================================================================
  163. #ifdef SDSUPPORT
  164. CardReader card;
  165. #endif
  166. float homing_feedrate[] = HOMING_FEEDRATE;
  167. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  168. int feedmultiply=100; //100->1 200->2
  169. int saved_feedmultiply;
  170. int extrudemultiply=100; //100->1 200->2
  171. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  172. float add_homeing[3]={0,0,0};
  173. #ifdef DELTA
  174. float endstop_adj[3]={0,0,0};
  175. #endif
  176. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  177. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  178. bool axis_known_position[3] = {false, false, false};
  179. // Extruder offset
  180. #if EXTRUDERS > 1
  181. #ifndef DUAL_X_CARRIAGE
  182. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  183. #else
  184. #define NUM_EXTRUDER_OFFSETS 3 // supports offsets in XYZ plane
  185. #endif
  186. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  187. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  188. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  189. #endif
  190. };
  191. #endif
  192. uint8_t active_extruder = 0;
  193. int fanSpeed=0;
  194. #ifdef SERVO_ENDSTOPS
  195. int servo_endstops[] = SERVO_ENDSTOPS;
  196. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  197. #endif
  198. #ifdef BARICUDA
  199. int ValvePressure=0;
  200. int EtoPPressure=0;
  201. #endif
  202. #ifdef FWRETRACT
  203. bool autoretract_enabled=true;
  204. bool retracted=false;
  205. float retract_length=3, retract_feedrate=17*60, retract_zlift=0.8;
  206. float retract_recover_length=0, retract_recover_feedrate=8*60;
  207. #endif
  208. #ifdef ULTIPANEL
  209. #ifdef PS_DEFAULT_OFF
  210. bool powersupply = false;
  211. #else
  212. bool powersupply = true;
  213. #endif
  214. #endif
  215. #ifdef DELTA
  216. float delta[3] = {0.0, 0.0, 0.0};
  217. #endif
  218. //===========================================================================
  219. //=============================private variables=============================
  220. //===========================================================================
  221. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  222. static float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  223. static float offset[3] = {0.0, 0.0, 0.0};
  224. static bool home_all_axis = true;
  225. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  226. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  227. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  228. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  229. static bool fromsd[BUFSIZE];
  230. static int bufindr = 0;
  231. static int bufindw = 0;
  232. static int buflen = 0;
  233. //static int i = 0;
  234. static char serial_char;
  235. static int serial_count = 0;
  236. static boolean comment_mode = false;
  237. static char *strchr_pointer; // just a pointer to find chars in the cmd string like X, Y, Z, E, etc
  238. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  239. //static float tt = 0;
  240. //static float bt = 0;
  241. //Inactivity shutdown variables
  242. static unsigned long previous_millis_cmd = 0;
  243. static unsigned long max_inactive_time = 0;
  244. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  245. unsigned long starttime=0;
  246. unsigned long stoptime=0;
  247. static uint8_t tmp_extruder;
  248. bool Stopped=false;
  249. #if NUM_SERVOS > 0
  250. Servo servos[NUM_SERVOS];
  251. #endif
  252. bool CooldownNoWait = true;
  253. bool target_direction;
  254. //===========================================================================
  255. //=============================ROUTINES=============================
  256. //===========================================================================
  257. void get_arc_coordinates();
  258. bool setTargetedHotend(int code);
  259. void serial_echopair_P(const char *s_P, float v)
  260. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  261. void serial_echopair_P(const char *s_P, double v)
  262. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  263. void serial_echopair_P(const char *s_P, unsigned long v)
  264. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  265. extern "C"{
  266. extern unsigned int __bss_end;
  267. extern unsigned int __heap_start;
  268. extern void *__brkval;
  269. int freeMemory() {
  270. int free_memory;
  271. if((int)__brkval == 0)
  272. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  273. else
  274. free_memory = ((int)&free_memory) - ((int)__brkval);
  275. return free_memory;
  276. }
  277. }
  278. //adds an command to the main command buffer
  279. //thats really done in a non-safe way.
  280. //needs overworking someday
  281. void enquecommand(const char *cmd)
  282. {
  283. if(buflen < BUFSIZE)
  284. {
  285. //this is dangerous if a mixing of serial and this happsens
  286. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  287. SERIAL_ECHO_START;
  288. SERIAL_ECHOPGM("enqueing \"");
  289. SERIAL_ECHO(cmdbuffer[bufindw]);
  290. SERIAL_ECHOLNPGM("\"");
  291. bufindw= (bufindw + 1)%BUFSIZE;
  292. buflen += 1;
  293. }
  294. }
  295. void enquecommand_P(const char *cmd)
  296. {
  297. if(buflen < BUFSIZE)
  298. {
  299. //this is dangerous if a mixing of serial and this happsens
  300. strcpy_P(&(cmdbuffer[bufindw][0]),cmd);
  301. SERIAL_ECHO_START;
  302. SERIAL_ECHOPGM("enqueing \"");
  303. SERIAL_ECHO(cmdbuffer[bufindw]);
  304. SERIAL_ECHOLNPGM("\"");
  305. bufindw= (bufindw + 1)%BUFSIZE;
  306. buflen += 1;
  307. }
  308. }
  309. void setup_killpin()
  310. {
  311. #if defined(KILL_PIN) && KILL_PIN > -1
  312. pinMode(KILL_PIN,INPUT);
  313. WRITE(KILL_PIN,HIGH);
  314. #endif
  315. }
  316. void setup_photpin()
  317. {
  318. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  319. SET_OUTPUT(PHOTOGRAPH_PIN);
  320. WRITE(PHOTOGRAPH_PIN, LOW);
  321. #endif
  322. }
  323. void setup_powerhold()
  324. {
  325. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  326. SET_OUTPUT(SUICIDE_PIN);
  327. WRITE(SUICIDE_PIN, HIGH);
  328. #endif
  329. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  330. SET_OUTPUT(PS_ON_PIN);
  331. #if defined(PS_DEFAULT_OFF)
  332. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  333. #else
  334. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  335. #endif
  336. #endif
  337. }
  338. void suicide()
  339. {
  340. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  341. SET_OUTPUT(SUICIDE_PIN);
  342. WRITE(SUICIDE_PIN, LOW);
  343. #endif
  344. }
  345. void servo_init()
  346. {
  347. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  348. servos[0].attach(SERVO0_PIN);
  349. #endif
  350. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  351. servos[1].attach(SERVO1_PIN);
  352. #endif
  353. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  354. servos[2].attach(SERVO2_PIN);
  355. #endif
  356. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  357. servos[3].attach(SERVO3_PIN);
  358. #endif
  359. #if (NUM_SERVOS >= 5)
  360. #error "TODO: enter initalisation code for more servos"
  361. #endif
  362. // Set position of Servo Endstops that are defined
  363. #ifdef SERVO_ENDSTOPS
  364. for(int8_t i = 0; i < 3; i++)
  365. {
  366. if(servo_endstops[i] > -1) {
  367. servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  368. }
  369. }
  370. #endif
  371. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  372. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  373. servos[servo_endstops[Z_AXIS]].detach();
  374. #endif
  375. }
  376. void setup()
  377. {
  378. setup_killpin();
  379. setup_powerhold();
  380. MYSERIAL.begin(BAUDRATE);
  381. SERIAL_PROTOCOLLNPGM("start");
  382. SERIAL_ECHO_START;
  383. // Check startup - does nothing if bootloader sets MCUSR to 0
  384. byte mcu = MCUSR;
  385. if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  386. if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  387. if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  388. if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  389. if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  390. MCUSR=0;
  391. SERIAL_ECHOPGM(MSG_MARLIN);
  392. SERIAL_ECHOLNPGM(VERSION_STRING);
  393. #ifdef STRING_VERSION_CONFIG_H
  394. #ifdef STRING_CONFIG_H_AUTHOR
  395. SERIAL_ECHO_START;
  396. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  397. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  398. SERIAL_ECHOPGM(MSG_AUTHOR);
  399. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  400. SERIAL_ECHOPGM("Compiled: ");
  401. SERIAL_ECHOLNPGM(__DATE__);
  402. #endif
  403. #endif
  404. SERIAL_ECHO_START;
  405. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  406. SERIAL_ECHO(freeMemory());
  407. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  408. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  409. for(int8_t i = 0; i < BUFSIZE; i++)
  410. {
  411. fromsd[i] = false;
  412. }
  413. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  414. Config_RetrieveSettings();
  415. tp_init(); // Initialize temperature loop
  416. plan_init(); // Initialize planner;
  417. watchdog_init();
  418. st_init(); // Initialize stepper, this enables interrupts!
  419. setup_photpin();
  420. servo_init();
  421. lcd_init();
  422. _delay_ms(1000); // wait 1sec to display the splash screen
  423. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  424. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  425. #endif
  426. }
  427. void loop()
  428. {
  429. if(buflen < (BUFSIZE-1))
  430. get_command();
  431. #ifdef SDSUPPORT
  432. card.checkautostart(false);
  433. #endif
  434. if(buflen)
  435. {
  436. #ifdef SDSUPPORT
  437. if(card.saving)
  438. {
  439. if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
  440. {
  441. card.write_command(cmdbuffer[bufindr]);
  442. if(card.logging)
  443. {
  444. process_commands();
  445. }
  446. else
  447. {
  448. SERIAL_PROTOCOLLNPGM(MSG_OK);
  449. }
  450. }
  451. else
  452. {
  453. card.closefile();
  454. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  455. }
  456. }
  457. else
  458. {
  459. process_commands();
  460. }
  461. #else
  462. process_commands();
  463. #endif //SDSUPPORT
  464. buflen = (buflen-1);
  465. bufindr = (bufindr + 1)%BUFSIZE;
  466. }
  467. //check heater every n milliseconds
  468. manage_heater();
  469. manage_inactivity();
  470. checkHitEndstops();
  471. lcd_update();
  472. }
  473. void get_command()
  474. {
  475. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  476. serial_char = MYSERIAL.read();
  477. if(serial_char == '\n' ||
  478. serial_char == '\r' ||
  479. (serial_char == ':' && comment_mode == false) ||
  480. serial_count >= (MAX_CMD_SIZE - 1) )
  481. {
  482. if(!serial_count) { //if empty line
  483. comment_mode = false; //for new command
  484. return;
  485. }
  486. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  487. if(!comment_mode){
  488. comment_mode = false; //for new command
  489. fromsd[bufindw] = false;
  490. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  491. {
  492. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  493. gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
  494. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  495. SERIAL_ERROR_START;
  496. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  497. SERIAL_ERRORLN(gcode_LastN);
  498. //Serial.println(gcode_N);
  499. FlushSerialRequestResend();
  500. serial_count = 0;
  501. return;
  502. }
  503. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  504. {
  505. byte checksum = 0;
  506. byte count = 0;
  507. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  508. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  509. if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
  510. SERIAL_ERROR_START;
  511. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  512. SERIAL_ERRORLN(gcode_LastN);
  513. FlushSerialRequestResend();
  514. serial_count = 0;
  515. return;
  516. }
  517. //if no errors, continue parsing
  518. }
  519. else
  520. {
  521. SERIAL_ERROR_START;
  522. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  523. SERIAL_ERRORLN(gcode_LastN);
  524. FlushSerialRequestResend();
  525. serial_count = 0;
  526. return;
  527. }
  528. gcode_LastN = gcode_N;
  529. //if no errors, continue parsing
  530. }
  531. else // if we don't receive 'N' but still see '*'
  532. {
  533. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  534. {
  535. SERIAL_ERROR_START;
  536. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  537. SERIAL_ERRORLN(gcode_LastN);
  538. serial_count = 0;
  539. return;
  540. }
  541. }
  542. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  543. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  544. switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
  545. case 0:
  546. case 1:
  547. case 2:
  548. case 3:
  549. if(Stopped == false) { // If printer is stopped by an error the G[0-3] codes are ignored.
  550. #ifdef SDSUPPORT
  551. if(card.saving)
  552. break;
  553. #endif //SDSUPPORT
  554. SERIAL_PROTOCOLLNPGM(MSG_OK);
  555. }
  556. else {
  557. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  558. LCD_MESSAGEPGM(MSG_STOPPED);
  559. }
  560. break;
  561. default:
  562. break;
  563. }
  564. }
  565. bufindw = (bufindw + 1)%BUFSIZE;
  566. buflen += 1;
  567. }
  568. serial_count = 0; //clear buffer
  569. }
  570. else
  571. {
  572. if(serial_char == ';') comment_mode = true;
  573. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  574. }
  575. }
  576. #ifdef SDSUPPORT
  577. if(!card.sdprinting || serial_count!=0){
  578. return;
  579. }
  580. //'#' stops reading from sd to the buffer prematurely, so procedural macro calls are possible
  581. // if it occures, stop_buffering is triggered and the buffer is ran dry.
  582. // this character _can_ occure in serial com, due to checksums. however, no checksums are used in sd printing
  583. static bool stop_buffering=false;
  584. if(buflen==0) stop_buffering=false;
  585. while( !card.eof() && buflen < BUFSIZE && !stop_buffering) {
  586. int16_t n=card.get();
  587. serial_char = (char)n;
  588. if(serial_char == '\n' ||
  589. serial_char == '\r' ||
  590. (serial_char == '#' && comment_mode == false) ||
  591. (serial_char == ':' && comment_mode == false) ||
  592. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  593. {
  594. if(card.eof()){
  595. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  596. stoptime=millis();
  597. char time[30];
  598. unsigned long t=(stoptime-starttime)/1000;
  599. int hours, minutes;
  600. minutes=(t/60)%60;
  601. hours=t/60/60;
  602. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  603. SERIAL_ECHO_START;
  604. SERIAL_ECHOLN(time);
  605. lcd_setstatus(time);
  606. card.printingHasFinished();
  607. card.checkautostart(true);
  608. }
  609. if(serial_char=='#')
  610. stop_buffering=true;
  611. if(!serial_count)
  612. {
  613. comment_mode = false; //for new command
  614. return; //if empty line
  615. }
  616. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  617. // if(!comment_mode){
  618. fromsd[bufindw] = true;
  619. buflen += 1;
  620. bufindw = (bufindw + 1)%BUFSIZE;
  621. // }
  622. comment_mode = false; //for new command
  623. serial_count = 0; //clear buffer
  624. }
  625. else
  626. {
  627. if(serial_char == ';') comment_mode = true;
  628. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  629. }
  630. }
  631. #endif //SDSUPPORT
  632. }
  633. float code_value()
  634. {
  635. return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL));
  636. }
  637. long code_value_long()
  638. {
  639. return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
  640. }
  641. bool code_seen(char code)
  642. {
  643. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  644. return (strchr_pointer != NULL); //Return True if a character was found
  645. }
  646. #define DEFINE_PGM_READ_ANY(type, reader) \
  647. static inline type pgm_read_any(const type *p) \
  648. { return pgm_read_##reader##_near(p); }
  649. DEFINE_PGM_READ_ANY(float, float);
  650. DEFINE_PGM_READ_ANY(signed char, byte);
  651. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  652. static const PROGMEM type array##_P[3] = \
  653. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  654. static inline type array(int axis) \
  655. { return pgm_read_any(&array##_P[axis]); }
  656. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  657. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  658. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  659. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  660. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  661. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  662. #ifdef DUAL_X_CARRIAGE
  663. #if EXTRUDERS == 1 || defined(COREXY) \
  664. || !defined(X2_ENABLE_PIN) || !defined(X2_STEP_PIN) || !defined(X2_DIR_PIN) \
  665. || !defined(X2_HOME_POS) || !defined(X2_MIN_POS) || !defined(X2_MAX_POS) \
  666. || !defined(X_MAX_PIN) || X_MAX_PIN < 0
  667. #error "Missing or invalid definitions for DUAL_X_CARRIAGE mode."
  668. #endif
  669. #if X_HOME_DIR != -1 || X2_HOME_DIR != 1
  670. #error "Please use canonical x-carriage assignment" // the x-carriages are defined by their homing directions
  671. #endif
  672. #define DXC_FULL_CONTROL_MODE 0
  673. #define DXC_AUTO_PARK_MODE 1
  674. #define DXC_DUPLICATION_MODE 2
  675. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  676. static float x_home_pos(int extruder) {
  677. if (extruder == 0)
  678. return base_home_pos(X_AXIS) + add_homeing[X_AXIS];
  679. else
  680. // In dual carriage mode the extruder offset provides an override of the
  681. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  682. // This allow soft recalibration of the second extruder offset position without firmware reflash
  683. // (through the M218 command).
  684. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  685. }
  686. static int x_home_dir(int extruder) {
  687. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  688. }
  689. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  690. static bool active_extruder_parked = false; // used in mode 1 & 2
  691. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  692. static unsigned long delayed_move_time = 0; // used in mode 1
  693. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  694. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  695. bool extruder_duplication_enabled = false; // used in mode 2
  696. #endif //DUAL_X_CARRIAGE
  697. static void axis_is_at_home(int axis) {
  698. #ifdef DUAL_X_CARRIAGE
  699. if (axis == X_AXIS) {
  700. if (active_extruder != 0) {
  701. current_position[X_AXIS] = x_home_pos(active_extruder);
  702. min_pos[X_AXIS] = X2_MIN_POS;
  703. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  704. return;
  705. }
  706. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  707. current_position[X_AXIS] = base_home_pos(X_AXIS) + add_homeing[X_AXIS];
  708. min_pos[X_AXIS] = base_min_pos(X_AXIS) + add_homeing[X_AXIS];
  709. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + add_homeing[X_AXIS],
  710. max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  711. return;
  712. }
  713. }
  714. #endif
  715. current_position[axis] = base_home_pos(axis) + add_homeing[axis];
  716. min_pos[axis] = base_min_pos(axis) + add_homeing[axis];
  717. max_pos[axis] = base_max_pos(axis) + add_homeing[axis];
  718. }
  719. #ifdef ENABLE_AUTO_BED_LEVELING
  720. #ifdef ACCURATE_BED_LEVELING
  721. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  722. {
  723. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  724. planeNormal.debug("planeNormal");
  725. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  726. //bedLevel.debug("bedLevel");
  727. //plan_bed_level_matrix.debug("bed level before");
  728. //vector_3 uncorrected_position = plan_get_position_mm();
  729. //uncorrected_position.debug("position before");
  730. vector_3 corrected_position = plan_get_position();
  731. // corrected_position.debug("position after");
  732. current_position[X_AXIS] = corrected_position.x;
  733. current_position[Y_AXIS] = corrected_position.y;
  734. current_position[Z_AXIS] = corrected_position.z;
  735. // but the bed at 0 so we don't go below it.
  736. current_position[Z_AXIS] = -Z_PROBE_OFFSET_FROM_EXTRUDER;
  737. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  738. }
  739. #else
  740. static void set_bed_level_equation(float z_at_xLeft_yFront, float z_at_xRight_yFront, float z_at_xLeft_yBack) {
  741. plan_bed_level_matrix.set_to_identity();
  742. vector_3 xLeftyFront = vector_3(LEFT_PROBE_BED_POSITION, FRONT_PROBE_BED_POSITION, z_at_xLeft_yFront);
  743. vector_3 xLeftyBack = vector_3(LEFT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION, z_at_xLeft_yBack);
  744. vector_3 xRightyFront = vector_3(RIGHT_PROBE_BED_POSITION, FRONT_PROBE_BED_POSITION, z_at_xRight_yFront);
  745. vector_3 xPositive = (xRightyFront - xLeftyFront).get_normal();
  746. vector_3 yPositive = (xLeftyBack - xLeftyFront).get_normal();
  747. vector_3 planeNormal = vector_3::cross(xPositive, yPositive).get_normal();
  748. //planeNormal.debug("planeNormal");
  749. //yPositive.debug("yPositive");
  750. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  751. //bedLevel.debug("bedLevel");
  752. //plan_bed_level_matrix.debug("bed level before");
  753. //vector_3 uncorrected_position = plan_get_position_mm();
  754. //uncorrected_position.debug("position before");
  755. // and set our bed level equation to do the right thing
  756. //plan_bed_level_matrix.debug("bed level after");
  757. vector_3 corrected_position = plan_get_position();
  758. //corrected_position.debug("position after");
  759. current_position[X_AXIS] = corrected_position.x;
  760. current_position[Y_AXIS] = corrected_position.y;
  761. current_position[Z_AXIS] = corrected_position.z;
  762. // but the bed at 0 so we don't go below it.
  763. current_position[Z_AXIS] = -Z_PROBE_OFFSET_FROM_EXTRUDER;
  764. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  765. }
  766. #endif // ACCURATE_BED_LEVELING
  767. static void run_z_probe() {
  768. plan_bed_level_matrix.set_to_identity();
  769. feedrate = homing_feedrate[Z_AXIS];
  770. // move down until you find the bed
  771. float zPosition = -10;
  772. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  773. st_synchronize();
  774. // we have to let the planner know where we are right now as it is not where we said to go.
  775. zPosition = st_get_position_mm(Z_AXIS);
  776. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  777. // move up the retract distance
  778. zPosition += home_retract_mm(Z_AXIS);
  779. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  780. st_synchronize();
  781. // move back down slowly to find bed
  782. feedrate = homing_feedrate[Z_AXIS]/4;
  783. zPosition -= home_retract_mm(Z_AXIS) * 2;
  784. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  785. st_synchronize();
  786. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  787. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  788. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  789. }
  790. static void do_blocking_move_to(float x, float y, float z) {
  791. float oldFeedRate = feedrate;
  792. feedrate = XY_TRAVEL_SPEED;
  793. current_position[X_AXIS] = x;
  794. current_position[Y_AXIS] = y;
  795. current_position[Z_AXIS] = z;
  796. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  797. st_synchronize();
  798. feedrate = oldFeedRate;
  799. }
  800. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  801. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  802. }
  803. static void setup_for_endstop_move() {
  804. saved_feedrate = feedrate;
  805. saved_feedmultiply = feedmultiply;
  806. feedmultiply = 100;
  807. previous_millis_cmd = millis();
  808. enable_endstops(true);
  809. }
  810. static void clean_up_after_endstop_move() {
  811. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  812. enable_endstops(false);
  813. #endif
  814. feedrate = saved_feedrate;
  815. feedmultiply = saved_feedmultiply;
  816. previous_millis_cmd = millis();
  817. }
  818. static void engage_z_probe() {
  819. // Engage Z Servo endstop if enabled
  820. #ifdef SERVO_ENDSTOPS
  821. if (servo_endstops[Z_AXIS] > -1) {
  822. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  823. servos[servo_endstops[Z_AXIS]].attach(0);
  824. #endif
  825. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  826. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  827. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  828. servos[servo_endstops[Z_AXIS]].detach();
  829. #endif
  830. }
  831. #endif
  832. }
  833. static void retract_z_probe() {
  834. // Retract Z Servo endstop if enabled
  835. #ifdef SERVO_ENDSTOPS
  836. if (servo_endstops[Z_AXIS] > -1) {
  837. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  838. servos[servo_endstops[Z_AXIS]].attach(0);
  839. #endif
  840. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  841. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  842. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  843. servos[servo_endstops[Z_AXIS]].detach();
  844. #endif
  845. }
  846. #endif
  847. }
  848. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  849. static void homeaxis(int axis) {
  850. #define HOMEAXIS_DO(LETTER) \
  851. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  852. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  853. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  854. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  855. 0) {
  856. int axis_home_dir = home_dir(axis);
  857. #ifdef DUAL_X_CARRIAGE
  858. if (axis == X_AXIS)
  859. axis_home_dir = x_home_dir(active_extruder);
  860. #endif
  861. current_position[axis] = 0;
  862. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  863. // Engage Servo endstop if enabled
  864. #ifdef SERVO_ENDSTOPS
  865. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  866. if (axis==Z_AXIS) {
  867. engage_z_probe();
  868. }
  869. else
  870. #endif
  871. if (servo_endstops[axis] > -1) {
  872. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  873. }
  874. #endif
  875. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  876. feedrate = homing_feedrate[axis];
  877. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  878. st_synchronize();
  879. current_position[axis] = 0;
  880. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  881. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  882. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  883. st_synchronize();
  884. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  885. #ifdef DELTA
  886. feedrate = homing_feedrate[axis]/10;
  887. #else
  888. feedrate = homing_feedrate[axis]/2 ;
  889. #endif
  890. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  891. st_synchronize();
  892. #ifdef DELTA
  893. // retrace by the amount specified in endstop_adj
  894. if (endstop_adj[axis] * axis_home_dir < 0) {
  895. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  896. destination[axis] = endstop_adj[axis];
  897. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  898. st_synchronize();
  899. }
  900. #endif
  901. axis_is_at_home(axis);
  902. destination[axis] = current_position[axis];
  903. feedrate = 0.0;
  904. endstops_hit_on_purpose();
  905. axis_known_position[axis] = true;
  906. // Retract Servo endstop if enabled
  907. #ifdef SERVO_ENDSTOPS
  908. if (servo_endstops[axis] > -1) {
  909. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  910. }
  911. #endif
  912. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  913. if (axis==Z_AXIS) retract_z_probe();
  914. #endif
  915. }
  916. }
  917. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  918. void process_commands()
  919. {
  920. unsigned long codenum; //throw away variable
  921. char *starpos = NULL;
  922. #ifdef ENABLE_AUTO_BED_LEVELING
  923. float x_tmp, y_tmp, z_tmp, real_z;
  924. #endif
  925. if(code_seen('G'))
  926. {
  927. switch((int)code_value())
  928. {
  929. case 0: // G0 -> G1
  930. case 1: // G1
  931. if(Stopped == false) {
  932. get_coordinates(); // For X Y Z E F
  933. prepare_move();
  934. //ClearToSend();
  935. return;
  936. }
  937. //break;
  938. case 2: // G2 - CW ARC
  939. if(Stopped == false) {
  940. get_arc_coordinates();
  941. prepare_arc_move(true);
  942. return;
  943. }
  944. case 3: // G3 - CCW ARC
  945. if(Stopped == false) {
  946. get_arc_coordinates();
  947. prepare_arc_move(false);
  948. return;
  949. }
  950. case 4: // G4 dwell
  951. LCD_MESSAGEPGM(MSG_DWELL);
  952. codenum = 0;
  953. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  954. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  955. st_synchronize();
  956. codenum += millis(); // keep track of when we started waiting
  957. previous_millis_cmd = millis();
  958. while(millis() < codenum ){
  959. manage_heater();
  960. manage_inactivity();
  961. lcd_update();
  962. }
  963. break;
  964. #ifdef FWRETRACT
  965. case 10: // G10 retract
  966. if(!retracted)
  967. {
  968. destination[X_AXIS]=current_position[X_AXIS];
  969. destination[Y_AXIS]=current_position[Y_AXIS];
  970. destination[Z_AXIS]=current_position[Z_AXIS];
  971. current_position[Z_AXIS]+=-retract_zlift;
  972. destination[E_AXIS]=current_position[E_AXIS]-retract_length;
  973. feedrate=retract_feedrate;
  974. retracted=true;
  975. prepare_move();
  976. }
  977. break;
  978. case 11: // G11 retract_recover
  979. if(retracted)
  980. {
  981. destination[X_AXIS]=current_position[X_AXIS];
  982. destination[Y_AXIS]=current_position[Y_AXIS];
  983. destination[Z_AXIS]=current_position[Z_AXIS];
  984. current_position[Z_AXIS]+=retract_zlift;
  985. destination[E_AXIS]=current_position[E_AXIS]+retract_length+retract_recover_length;
  986. feedrate=retract_recover_feedrate;
  987. retracted=false;
  988. prepare_move();
  989. }
  990. break;
  991. #endif //FWRETRACT
  992. case 28: //G28 Home all Axis one at a time
  993. #ifdef ENABLE_AUTO_BED_LEVELING
  994. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  995. #endif //ENABLE_AUTO_BED_LEVELING
  996. saved_feedrate = feedrate;
  997. saved_feedmultiply = feedmultiply;
  998. feedmultiply = 100;
  999. previous_millis_cmd = millis();
  1000. enable_endstops(true);
  1001. for(int8_t i=0; i < NUM_AXIS; i++) {
  1002. destination[i] = current_position[i];
  1003. }
  1004. feedrate = 0.0;
  1005. #ifdef DELTA
  1006. // A delta can only safely home all axis at the same time
  1007. // all axis have to home at the same time
  1008. // Move all carriages up together until the first endstop is hit.
  1009. current_position[X_AXIS] = 0;
  1010. current_position[Y_AXIS] = 0;
  1011. current_position[Z_AXIS] = 0;
  1012. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1013. destination[X_AXIS] = 3 * Z_MAX_LENGTH;
  1014. destination[Y_AXIS] = 3 * Z_MAX_LENGTH;
  1015. destination[Z_AXIS] = 3 * Z_MAX_LENGTH;
  1016. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1017. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1018. st_synchronize();
  1019. endstops_hit_on_purpose();
  1020. current_position[X_AXIS] = destination[X_AXIS];
  1021. current_position[Y_AXIS] = destination[Y_AXIS];
  1022. current_position[Z_AXIS] = destination[Z_AXIS];
  1023. // take care of back off and rehome now we are all at the top
  1024. HOMEAXIS(X);
  1025. HOMEAXIS(Y);
  1026. HOMEAXIS(Z);
  1027. calculate_delta(current_position);
  1028. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1029. #else // NOT DELTA
  1030. home_all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2])));
  1031. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1032. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1033. HOMEAXIS(Z);
  1034. }
  1035. #endif
  1036. #ifdef QUICK_HOME
  1037. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  1038. {
  1039. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  1040. #ifndef DUAL_X_CARRIAGE
  1041. int x_axis_home_dir = home_dir(X_AXIS);
  1042. #else
  1043. int x_axis_home_dir = x_home_dir(active_extruder);
  1044. extruder_duplication_enabled = false;
  1045. #endif
  1046. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1047. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1048. feedrate = homing_feedrate[X_AXIS];
  1049. if(homing_feedrate[Y_AXIS]<feedrate)
  1050. feedrate =homing_feedrate[Y_AXIS];
  1051. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1052. st_synchronize();
  1053. axis_is_at_home(X_AXIS);
  1054. axis_is_at_home(Y_AXIS);
  1055. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1056. destination[X_AXIS] = current_position[X_AXIS];
  1057. destination[Y_AXIS] = current_position[Y_AXIS];
  1058. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1059. feedrate = 0.0;
  1060. st_synchronize();
  1061. endstops_hit_on_purpose();
  1062. current_position[X_AXIS] = destination[X_AXIS];
  1063. current_position[Y_AXIS] = destination[Y_AXIS];
  1064. current_position[Z_AXIS] = destination[Z_AXIS];
  1065. }
  1066. #endif
  1067. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  1068. {
  1069. #ifdef DUAL_X_CARRIAGE
  1070. int tmp_extruder = active_extruder;
  1071. extruder_duplication_enabled = false;
  1072. active_extruder = !active_extruder;
  1073. HOMEAXIS(X);
  1074. inactive_extruder_x_pos = current_position[X_AXIS];
  1075. active_extruder = tmp_extruder;
  1076. HOMEAXIS(X);
  1077. // reset state used by the different modes
  1078. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1079. delayed_move_time = 0;
  1080. active_extruder_parked = true;
  1081. #else
  1082. HOMEAXIS(X);
  1083. #endif
  1084. }
  1085. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
  1086. HOMEAXIS(Y);
  1087. }
  1088. if(code_seen(axis_codes[X_AXIS]))
  1089. {
  1090. if(code_value_long() != 0) {
  1091. current_position[X_AXIS]=code_value()+add_homeing[0];
  1092. }
  1093. }
  1094. if(code_seen(axis_codes[Y_AXIS])) {
  1095. if(code_value_long() != 0) {
  1096. current_position[Y_AXIS]=code_value()+add_homeing[1];
  1097. }
  1098. }
  1099. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1100. #ifndef Z_SAFE_HOMING
  1101. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1102. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1103. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1104. feedrate = max_feedrate[Z_AXIS];
  1105. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1106. st_synchronize();
  1107. #endif
  1108. HOMEAXIS(Z);
  1109. }
  1110. #else // Z Safe mode activated.
  1111. if(home_all_axis) {
  1112. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1113. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1114. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1115. feedrate = XY_TRAVEL_SPEED;
  1116. current_position[Z_AXIS] = 0;
  1117. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1118. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1119. st_synchronize();
  1120. current_position[X_AXIS] = destination[X_AXIS];
  1121. current_position[Y_AXIS] = destination[Y_AXIS];
  1122. HOMEAXIS(Z);
  1123. }
  1124. // Let's see if X and Y are homed and probe is inside bed area.
  1125. if(code_seen(axis_codes[Z_AXIS])) {
  1126. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  1127. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  1128. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  1129. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  1130. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  1131. current_position[Z_AXIS] = 0;
  1132. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1133. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1134. feedrate = max_feedrate[Z_AXIS];
  1135. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1136. st_synchronize();
  1137. HOMEAXIS(Z);
  1138. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1139. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1140. SERIAL_ECHO_START;
  1141. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1142. } else {
  1143. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1144. SERIAL_ECHO_START;
  1145. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1146. }
  1147. }
  1148. #endif
  1149. #endif
  1150. if(code_seen(axis_codes[Z_AXIS])) {
  1151. if(code_value_long() != 0) {
  1152. current_position[Z_AXIS]=code_value()+add_homeing[2];
  1153. }
  1154. }
  1155. #ifdef ENABLE_AUTO_BED_LEVELING
  1156. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1157. current_position[Z_AXIS] -= Z_PROBE_OFFSET_FROM_EXTRUDER; //Add Z_Probe offset (the distance is negative)
  1158. }
  1159. #endif
  1160. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1161. #endif // else DELTA
  1162. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1163. enable_endstops(false);
  1164. #endif
  1165. feedrate = saved_feedrate;
  1166. feedmultiply = saved_feedmultiply;
  1167. previous_millis_cmd = millis();
  1168. endstops_hit_on_purpose();
  1169. break;
  1170. #ifdef ENABLE_AUTO_BED_LEVELING
  1171. case 29: // G29 Detailed Z-Probe, probes the bed at 3 points.
  1172. {
  1173. #if Z_MIN_PIN == -1
  1174. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature!!! Z_MIN_PIN must point to a valid hardware pin."
  1175. #endif
  1176. st_synchronize();
  1177. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  1178. //vector_3 corrected_position = plan_get_position_mm();
  1179. //corrected_position.debug("position before G29");
  1180. plan_bed_level_matrix.set_to_identity();
  1181. vector_3 uncorrected_position = plan_get_position();
  1182. //uncorrected_position.debug("position durring G29");
  1183. current_position[X_AXIS] = uncorrected_position.x;
  1184. current_position[Y_AXIS] = uncorrected_position.y;
  1185. current_position[Z_AXIS] = uncorrected_position.z;
  1186. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1187. setup_for_endstop_move();
  1188. feedrate = homing_feedrate[Z_AXIS];
  1189. #ifdef ACCURATE_BED_LEVELING
  1190. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (ACCURATE_BED_LEVELING_POINTS-1);
  1191. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (ACCURATE_BED_LEVELING_POINTS-1);
  1192. // solve the plane equation ax + by + d = z
  1193. // A is the matrix with rows [x y 1] for all the probed points
  1194. // B is the vector of the Z positions
  1195. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1196. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1197. // "A" matrix of the linear system of equations
  1198. double eqnAMatrix[ACCURATE_BED_LEVELING_POINTS*ACCURATE_BED_LEVELING_POINTS*3];
  1199. // "B" vector of Z points
  1200. double eqnBVector[ACCURATE_BED_LEVELING_POINTS*ACCURATE_BED_LEVELING_POINTS];
  1201. int probePointCounter = 0;
  1202. bool zig = true;
  1203. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  1204. {
  1205. int xProbe, xInc;
  1206. if (zig)
  1207. {
  1208. xProbe = LEFT_PROBE_BED_POSITION;
  1209. //xEnd = RIGHT_PROBE_BED_POSITION;
  1210. xInc = xGridSpacing;
  1211. zig = false;
  1212. } else // zag
  1213. {
  1214. xProbe = RIGHT_PROBE_BED_POSITION;
  1215. //xEnd = LEFT_PROBE_BED_POSITION;
  1216. xInc = -xGridSpacing;
  1217. zig = true;
  1218. }
  1219. for (int xCount=0; xCount < ACCURATE_BED_LEVELING_POINTS; xCount++)
  1220. {
  1221. if (probePointCounter == 0)
  1222. {
  1223. // raise before probing
  1224. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], Z_RAISE_BEFORE_PROBING);
  1225. } else
  1226. {
  1227. // raise extruder
  1228. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1229. }
  1230. do_blocking_move_to(xProbe - X_PROBE_OFFSET_FROM_EXTRUDER, yProbe - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1231. engage_z_probe(); // Engage Z Servo endstop if available
  1232. run_z_probe();
  1233. eqnBVector[probePointCounter] = current_position[Z_AXIS];
  1234. retract_z_probe();
  1235. SERIAL_PROTOCOLPGM("Bed x: ");
  1236. SERIAL_PROTOCOL(xProbe);
  1237. SERIAL_PROTOCOLPGM(" y: ");
  1238. SERIAL_PROTOCOL(yProbe);
  1239. SERIAL_PROTOCOLPGM(" z: ");
  1240. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1241. SERIAL_PROTOCOLPGM("\n");
  1242. eqnAMatrix[probePointCounter + 0*ACCURATE_BED_LEVELING_POINTS*ACCURATE_BED_LEVELING_POINTS] = xProbe;
  1243. eqnAMatrix[probePointCounter + 1*ACCURATE_BED_LEVELING_POINTS*ACCURATE_BED_LEVELING_POINTS] = yProbe;
  1244. eqnAMatrix[probePointCounter + 2*ACCURATE_BED_LEVELING_POINTS*ACCURATE_BED_LEVELING_POINTS] = 1;
  1245. probePointCounter++;
  1246. xProbe += xInc;
  1247. }
  1248. }
  1249. clean_up_after_endstop_move();
  1250. // solve lsq problem
  1251. double *plane_equation_coefficients = qr_solve(ACCURATE_BED_LEVELING_POINTS*ACCURATE_BED_LEVELING_POINTS, 3, eqnAMatrix, eqnBVector);
  1252. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  1253. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  1254. SERIAL_PROTOCOLPGM(" b: ");
  1255. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  1256. SERIAL_PROTOCOLPGM(" d: ");
  1257. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  1258. set_bed_level_equation_lsq(plane_equation_coefficients);
  1259. free(plane_equation_coefficients);
  1260. #else // ACCURATE_BED_LEVELING not defined
  1261. // prob 1
  1262. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], Z_RAISE_BEFORE_PROBING);
  1263. do_blocking_move_to(LEFT_PROBE_BED_POSITION - X_PROBE_OFFSET_FROM_EXTRUDER, BACK_PROBE_BED_POSITION - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1264. engage_z_probe(); // Engage Z Servo endstop if available
  1265. run_z_probe();
  1266. float z_at_xLeft_yBack = current_position[Z_AXIS];
  1267. retract_z_probe();
  1268. SERIAL_PROTOCOLPGM("Bed x: ");
  1269. SERIAL_PROTOCOL(LEFT_PROBE_BED_POSITION);
  1270. SERIAL_PROTOCOLPGM(" y: ");
  1271. SERIAL_PROTOCOL(BACK_PROBE_BED_POSITION);
  1272. SERIAL_PROTOCOLPGM(" z: ");
  1273. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1274. SERIAL_PROTOCOLPGM("\n");
  1275. // prob 2
  1276. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1277. do_blocking_move_to(LEFT_PROBE_BED_POSITION - X_PROBE_OFFSET_FROM_EXTRUDER, FRONT_PROBE_BED_POSITION - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1278. engage_z_probe(); // Engage Z Servo endstop if available
  1279. run_z_probe();
  1280. float z_at_xLeft_yFront = current_position[Z_AXIS];
  1281. retract_z_probe();
  1282. SERIAL_PROTOCOLPGM("Bed x: ");
  1283. SERIAL_PROTOCOL(LEFT_PROBE_BED_POSITION);
  1284. SERIAL_PROTOCOLPGM(" y: ");
  1285. SERIAL_PROTOCOL(FRONT_PROBE_BED_POSITION);
  1286. SERIAL_PROTOCOLPGM(" z: ");
  1287. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1288. SERIAL_PROTOCOLPGM("\n");
  1289. // prob 3
  1290. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1291. // the current position will be updated by the blocking move so the head will not lower on this next call.
  1292. do_blocking_move_to(RIGHT_PROBE_BED_POSITION - X_PROBE_OFFSET_FROM_EXTRUDER, FRONT_PROBE_BED_POSITION - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1293. engage_z_probe(); // Engage Z Servo endstop if available
  1294. run_z_probe();
  1295. float z_at_xRight_yFront = current_position[Z_AXIS];
  1296. retract_z_probe(); // Retract Z Servo endstop if available
  1297. SERIAL_PROTOCOLPGM("Bed x: ");
  1298. SERIAL_PROTOCOL(RIGHT_PROBE_BED_POSITION);
  1299. SERIAL_PROTOCOLPGM(" y: ");
  1300. SERIAL_PROTOCOL(FRONT_PROBE_BED_POSITION);
  1301. SERIAL_PROTOCOLPGM(" z: ");
  1302. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1303. SERIAL_PROTOCOLPGM("\n");
  1304. clean_up_after_endstop_move();
  1305. set_bed_level_equation(z_at_xLeft_yFront, z_at_xRight_yFront, z_at_xLeft_yBack);
  1306. #endif // ACCURATE_BED_LEVELING
  1307. st_synchronize();
  1308. // The following code correct the Z height difference from z-probe position and hotend tip position.
  1309. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  1310. // When the bed is uneven, this height must be corrected.
  1311. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  1312. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  1313. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  1314. z_tmp = current_position[Z_AXIS];
  1315. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  1316. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  1317. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1318. }
  1319. break;
  1320. case 30: // G30 Single Z Probe
  1321. {
  1322. engage_z_probe(); // Engage Z Servo endstop if available
  1323. st_synchronize();
  1324. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  1325. setup_for_endstop_move();
  1326. feedrate = homing_feedrate[Z_AXIS];
  1327. run_z_probe();
  1328. SERIAL_PROTOCOLPGM("Bed Position X: ");
  1329. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1330. SERIAL_PROTOCOLPGM(" Y: ");
  1331. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1332. SERIAL_PROTOCOLPGM(" Z: ");
  1333. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1334. SERIAL_PROTOCOLPGM("\n");
  1335. clean_up_after_endstop_move();
  1336. retract_z_probe(); // Retract Z Servo endstop if available
  1337. }
  1338. break;
  1339. #endif // ENABLE_AUTO_BED_LEVELING
  1340. case 90: // G90
  1341. relative_mode = false;
  1342. break;
  1343. case 91: // G91
  1344. relative_mode = true;
  1345. break;
  1346. case 92: // G92
  1347. if(!code_seen(axis_codes[E_AXIS]))
  1348. st_synchronize();
  1349. for(int8_t i=0; i < NUM_AXIS; i++) {
  1350. if(code_seen(axis_codes[i])) {
  1351. if(i == E_AXIS) {
  1352. current_position[i] = code_value();
  1353. plan_set_e_position(current_position[E_AXIS]);
  1354. }
  1355. else {
  1356. current_position[i] = code_value()+add_homeing[i];
  1357. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1358. }
  1359. }
  1360. }
  1361. break;
  1362. }
  1363. }
  1364. else if(code_seen('M'))
  1365. {
  1366. switch( (int)code_value() )
  1367. {
  1368. #ifdef ULTIPANEL
  1369. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  1370. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  1371. {
  1372. LCD_MESSAGEPGM(MSG_USERWAIT);
  1373. codenum = 0;
  1374. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1375. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1376. st_synchronize();
  1377. previous_millis_cmd = millis();
  1378. if (codenum > 0){
  1379. codenum += millis(); // keep track of when we started waiting
  1380. while(millis() < codenum && !lcd_clicked()){
  1381. manage_heater();
  1382. manage_inactivity();
  1383. lcd_update();
  1384. }
  1385. }else{
  1386. while(!lcd_clicked()){
  1387. manage_heater();
  1388. manage_inactivity();
  1389. lcd_update();
  1390. }
  1391. }
  1392. LCD_MESSAGEPGM(MSG_RESUMING);
  1393. }
  1394. break;
  1395. #endif
  1396. case 17:
  1397. LCD_MESSAGEPGM(MSG_NO_MOVE);
  1398. enable_x();
  1399. enable_y();
  1400. enable_z();
  1401. enable_e0();
  1402. enable_e1();
  1403. enable_e2();
  1404. break;
  1405. #ifdef SDSUPPORT
  1406. case 20: // M20 - list SD card
  1407. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  1408. card.ls();
  1409. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  1410. break;
  1411. case 21: // M21 - init SD card
  1412. card.initsd();
  1413. break;
  1414. case 22: //M22 - release SD card
  1415. card.release();
  1416. break;
  1417. case 23: //M23 - Select file
  1418. starpos = (strchr(strchr_pointer + 4,'*'));
  1419. if(starpos!=NULL)
  1420. *(starpos-1)='\0';
  1421. card.openFile(strchr_pointer + 4,true);
  1422. break;
  1423. case 24: //M24 - Start SD print
  1424. card.startFileprint();
  1425. starttime=millis();
  1426. break;
  1427. case 25: //M25 - Pause SD print
  1428. card.pauseSDPrint();
  1429. break;
  1430. case 26: //M26 - Set SD index
  1431. if(card.cardOK && code_seen('S')) {
  1432. card.setIndex(code_value_long());
  1433. }
  1434. break;
  1435. case 27: //M27 - Get SD status
  1436. card.getStatus();
  1437. break;
  1438. case 28: //M28 - Start SD write
  1439. starpos = (strchr(strchr_pointer + 4,'*'));
  1440. if(starpos != NULL){
  1441. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1442. strchr_pointer = strchr(npos,' ') + 1;
  1443. *(starpos-1) = '\0';
  1444. }
  1445. card.openFile(strchr_pointer+4,false);
  1446. break;
  1447. case 29: //M29 - Stop SD write
  1448. //processed in write to file routine above
  1449. //card,saving = false;
  1450. break;
  1451. case 30: //M30 <filename> Delete File
  1452. if (card.cardOK){
  1453. card.closefile();
  1454. starpos = (strchr(strchr_pointer + 4,'*'));
  1455. if(starpos != NULL){
  1456. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1457. strchr_pointer = strchr(npos,' ') + 1;
  1458. *(starpos-1) = '\0';
  1459. }
  1460. card.removeFile(strchr_pointer + 4);
  1461. }
  1462. break;
  1463. case 32: //M32 - Select file and start SD print
  1464. {
  1465. if(card.sdprinting) {
  1466. st_synchronize();
  1467. }
  1468. starpos = (strchr(strchr_pointer + 4,'*'));
  1469. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  1470. if(namestartpos==NULL)
  1471. {
  1472. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  1473. }
  1474. else
  1475. namestartpos++; //to skip the '!'
  1476. if(starpos!=NULL)
  1477. *(starpos-1)='\0';
  1478. bool call_procedure=(code_seen('P'));
  1479. if(strchr_pointer>namestartpos)
  1480. call_procedure=false; //false alert, 'P' found within filename
  1481. if( card.cardOK )
  1482. {
  1483. card.openFile(namestartpos,true,!call_procedure);
  1484. if(code_seen('S'))
  1485. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  1486. card.setIndex(code_value_long());
  1487. card.startFileprint();
  1488. if(!call_procedure)
  1489. starttime=millis(); //procedure calls count as normal print time.
  1490. }
  1491. } break;
  1492. case 928: //M928 - Start SD write
  1493. starpos = (strchr(strchr_pointer + 5,'*'));
  1494. if(starpos != NULL){
  1495. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1496. strchr_pointer = strchr(npos,' ') + 1;
  1497. *(starpos-1) = '\0';
  1498. }
  1499. card.openLogFile(strchr_pointer+5);
  1500. break;
  1501. #endif //SDSUPPORT
  1502. case 31: //M31 take time since the start of the SD print or an M109 command
  1503. {
  1504. stoptime=millis();
  1505. char time[30];
  1506. unsigned long t=(stoptime-starttime)/1000;
  1507. int sec,min;
  1508. min=t/60;
  1509. sec=t%60;
  1510. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  1511. SERIAL_ECHO_START;
  1512. SERIAL_ECHOLN(time);
  1513. lcd_setstatus(time);
  1514. autotempShutdown();
  1515. }
  1516. break;
  1517. case 42: //M42 -Change pin status via gcode
  1518. if (code_seen('S'))
  1519. {
  1520. int pin_status = code_value();
  1521. int pin_number = LED_PIN;
  1522. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  1523. pin_number = code_value();
  1524. for(int8_t i = 0; i < (int8_t)sizeof(sensitive_pins); i++)
  1525. {
  1526. if (sensitive_pins[i] == pin_number)
  1527. {
  1528. pin_number = -1;
  1529. break;
  1530. }
  1531. }
  1532. #if defined(FAN_PIN) && FAN_PIN > -1
  1533. if (pin_number == FAN_PIN)
  1534. fanSpeed = pin_status;
  1535. #endif
  1536. if (pin_number > -1)
  1537. {
  1538. pinMode(pin_number, OUTPUT);
  1539. digitalWrite(pin_number, pin_status);
  1540. analogWrite(pin_number, pin_status);
  1541. }
  1542. }
  1543. break;
  1544. case 104: // M104
  1545. if(setTargetedHotend(104)){
  1546. break;
  1547. }
  1548. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  1549. #ifdef DUAL_X_CARRIAGE
  1550. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1551. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1552. #endif
  1553. setWatch();
  1554. break;
  1555. case 140: // M140 set bed temp
  1556. if (code_seen('S')) setTargetBed(code_value());
  1557. break;
  1558. case 105 : // M105
  1559. if(setTargetedHotend(105)){
  1560. break;
  1561. }
  1562. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  1563. SERIAL_PROTOCOLPGM("ok T:");
  1564. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  1565. SERIAL_PROTOCOLPGM(" /");
  1566. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  1567. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1568. SERIAL_PROTOCOLPGM(" B:");
  1569. SERIAL_PROTOCOL_F(degBed(),1);
  1570. SERIAL_PROTOCOLPGM(" /");
  1571. SERIAL_PROTOCOL_F(degTargetBed(),1);
  1572. #endif //TEMP_BED_PIN
  1573. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  1574. SERIAL_PROTOCOLPGM(" T");
  1575. SERIAL_PROTOCOL(cur_extruder);
  1576. SERIAL_PROTOCOLPGM(":");
  1577. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  1578. SERIAL_PROTOCOLPGM(" /");
  1579. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  1580. }
  1581. #else
  1582. SERIAL_ERROR_START;
  1583. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  1584. #endif
  1585. SERIAL_PROTOCOLPGM(" @:");
  1586. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  1587. SERIAL_PROTOCOLPGM(" B@:");
  1588. SERIAL_PROTOCOL(getHeaterPower(-1));
  1589. #ifdef SHOW_TEMP_ADC_VALUES
  1590. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1591. SERIAL_PROTOCOLPGM(" ADC B:");
  1592. SERIAL_PROTOCOL_F(degBed(),1);
  1593. SERIAL_PROTOCOLPGM("C->");
  1594. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  1595. #endif
  1596. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  1597. SERIAL_PROTOCOLPGM(" T");
  1598. SERIAL_PROTOCOL(cur_extruder);
  1599. SERIAL_PROTOCOLPGM(":");
  1600. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  1601. SERIAL_PROTOCOLPGM("C->");
  1602. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  1603. }
  1604. #endif
  1605. SERIAL_PROTOCOLLN("");
  1606. return;
  1607. break;
  1608. case 109:
  1609. {// M109 - Wait for extruder heater to reach target.
  1610. if(setTargetedHotend(109)){
  1611. break;
  1612. }
  1613. LCD_MESSAGEPGM(MSG_HEATING);
  1614. #ifdef AUTOTEMP
  1615. autotemp_enabled=false;
  1616. #endif
  1617. if (code_seen('S')) {
  1618. setTargetHotend(code_value(), tmp_extruder);
  1619. #ifdef DUAL_X_CARRIAGE
  1620. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1621. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1622. #endif
  1623. CooldownNoWait = true;
  1624. } else if (code_seen('R')) {
  1625. setTargetHotend(code_value(), tmp_extruder);
  1626. #ifdef DUAL_X_CARRIAGE
  1627. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1628. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1629. #endif
  1630. CooldownNoWait = false;
  1631. }
  1632. #ifdef AUTOTEMP
  1633. if (code_seen('S')) autotemp_min=code_value();
  1634. if (code_seen('B')) autotemp_max=code_value();
  1635. if (code_seen('F'))
  1636. {
  1637. autotemp_factor=code_value();
  1638. autotemp_enabled=true;
  1639. }
  1640. #endif
  1641. setWatch();
  1642. codenum = millis();
  1643. /* See if we are heating up or cooling down */
  1644. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  1645. #ifdef TEMP_RESIDENCY_TIME
  1646. long residencyStart;
  1647. residencyStart = -1;
  1648. /* continue to loop until we have reached the target temp
  1649. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  1650. while((residencyStart == -1) ||
  1651. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))) ) {
  1652. #else
  1653. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  1654. #endif //TEMP_RESIDENCY_TIME
  1655. if( (millis() - codenum) > 1000UL )
  1656. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  1657. SERIAL_PROTOCOLPGM("T:");
  1658. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  1659. SERIAL_PROTOCOLPGM(" E:");
  1660. SERIAL_PROTOCOL((int)tmp_extruder);
  1661. #ifdef TEMP_RESIDENCY_TIME
  1662. SERIAL_PROTOCOLPGM(" W:");
  1663. if(residencyStart > -1)
  1664. {
  1665. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  1666. SERIAL_PROTOCOLLN( codenum );
  1667. }
  1668. else
  1669. {
  1670. SERIAL_PROTOCOLLN( "?" );
  1671. }
  1672. #else
  1673. SERIAL_PROTOCOLLN("");
  1674. #endif
  1675. codenum = millis();
  1676. }
  1677. manage_heater();
  1678. manage_inactivity();
  1679. lcd_update();
  1680. #ifdef TEMP_RESIDENCY_TIME
  1681. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  1682. or when current temp falls outside the hysteresis after target temp was reached */
  1683. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  1684. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  1685. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  1686. {
  1687. residencyStart = millis();
  1688. }
  1689. #endif //TEMP_RESIDENCY_TIME
  1690. }
  1691. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  1692. starttime=millis();
  1693. previous_millis_cmd = millis();
  1694. }
  1695. break;
  1696. case 190: // M190 - Wait for bed heater to reach target.
  1697. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1698. LCD_MESSAGEPGM(MSG_BED_HEATING);
  1699. if (code_seen('S')) {
  1700. setTargetBed(code_value());
  1701. CooldownNoWait = true;
  1702. } else if (code_seen('R')) {
  1703. setTargetBed(code_value());
  1704. CooldownNoWait = false;
  1705. }
  1706. codenum = millis();
  1707. target_direction = isHeatingBed(); // true if heating, false if cooling
  1708. while ( target_direction ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  1709. {
  1710. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  1711. {
  1712. float tt=degHotend(active_extruder);
  1713. SERIAL_PROTOCOLPGM("T:");
  1714. SERIAL_PROTOCOL(tt);
  1715. SERIAL_PROTOCOLPGM(" E:");
  1716. SERIAL_PROTOCOL((int)active_extruder);
  1717. SERIAL_PROTOCOLPGM(" B:");
  1718. SERIAL_PROTOCOL_F(degBed(),1);
  1719. SERIAL_PROTOCOLLN("");
  1720. codenum = millis();
  1721. }
  1722. manage_heater();
  1723. manage_inactivity();
  1724. lcd_update();
  1725. }
  1726. LCD_MESSAGEPGM(MSG_BED_DONE);
  1727. previous_millis_cmd = millis();
  1728. #endif
  1729. break;
  1730. #if defined(FAN_PIN) && FAN_PIN > -1
  1731. case 106: //M106 Fan On
  1732. if (code_seen('S')){
  1733. fanSpeed=constrain(code_value(),0,255);
  1734. }
  1735. else {
  1736. fanSpeed=255;
  1737. }
  1738. break;
  1739. case 107: //M107 Fan Off
  1740. fanSpeed = 0;
  1741. break;
  1742. #endif //FAN_PIN
  1743. #ifdef BARICUDA
  1744. // PWM for HEATER_1_PIN
  1745. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  1746. case 126: //M126 valve open
  1747. if (code_seen('S')){
  1748. ValvePressure=constrain(code_value(),0,255);
  1749. }
  1750. else {
  1751. ValvePressure=255;
  1752. }
  1753. break;
  1754. case 127: //M127 valve closed
  1755. ValvePressure = 0;
  1756. break;
  1757. #endif //HEATER_1_PIN
  1758. // PWM for HEATER_2_PIN
  1759. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  1760. case 128: //M128 valve open
  1761. if (code_seen('S')){
  1762. EtoPPressure=constrain(code_value(),0,255);
  1763. }
  1764. else {
  1765. EtoPPressure=255;
  1766. }
  1767. break;
  1768. case 129: //M129 valve closed
  1769. EtoPPressure = 0;
  1770. break;
  1771. #endif //HEATER_2_PIN
  1772. #endif
  1773. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  1774. case 80: // M80 - Turn on Power Supply
  1775. SET_OUTPUT(PS_ON_PIN); //GND
  1776. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  1777. // If you have a switch on suicide pin, this is useful
  1778. // if you want to start another print with suicide feature after
  1779. // a print without suicide...
  1780. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  1781. SET_OUTPUT(SUICIDE_PIN);
  1782. WRITE(SUICIDE_PIN, HIGH);
  1783. #endif
  1784. #ifdef ULTIPANEL
  1785. powersupply = true;
  1786. LCD_MESSAGEPGM(WELCOME_MSG);
  1787. lcd_update();
  1788. #endif
  1789. break;
  1790. #endif
  1791. case 81: // M81 - Turn off Power Supply
  1792. disable_heater();
  1793. st_synchronize();
  1794. disable_e0();
  1795. disable_e1();
  1796. disable_e2();
  1797. finishAndDisableSteppers();
  1798. fanSpeed = 0;
  1799. delay(1000); // Wait a little before to switch off
  1800. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  1801. st_synchronize();
  1802. suicide();
  1803. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  1804. SET_OUTPUT(PS_ON_PIN);
  1805. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  1806. #endif
  1807. #ifdef ULTIPANEL
  1808. powersupply = false;
  1809. LCD_MESSAGEPGM(MACHINE_NAME" "MSG_OFF".");
  1810. lcd_update();
  1811. #endif
  1812. break;
  1813. case 82:
  1814. axis_relative_modes[3] = false;
  1815. break;
  1816. case 83:
  1817. axis_relative_modes[3] = true;
  1818. break;
  1819. case 18: //compatibility
  1820. case 84: // M84
  1821. if(code_seen('S')){
  1822. stepper_inactive_time = code_value() * 1000;
  1823. }
  1824. else
  1825. {
  1826. bool all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2]))|| (code_seen(axis_codes[3])));
  1827. if(all_axis)
  1828. {
  1829. st_synchronize();
  1830. disable_e0();
  1831. disable_e1();
  1832. disable_e2();
  1833. finishAndDisableSteppers();
  1834. }
  1835. else
  1836. {
  1837. st_synchronize();
  1838. if(code_seen('X')) disable_x();
  1839. if(code_seen('Y')) disable_y();
  1840. if(code_seen('Z')) disable_z();
  1841. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  1842. if(code_seen('E')) {
  1843. disable_e0();
  1844. disable_e1();
  1845. disable_e2();
  1846. }
  1847. #endif
  1848. }
  1849. }
  1850. break;
  1851. case 85: // M85
  1852. code_seen('S');
  1853. max_inactive_time = code_value() * 1000;
  1854. break;
  1855. case 92: // M92
  1856. for(int8_t i=0; i < NUM_AXIS; i++)
  1857. {
  1858. if(code_seen(axis_codes[i]))
  1859. {
  1860. if(i == 3) { // E
  1861. float value = code_value();
  1862. if(value < 20.0) {
  1863. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  1864. max_e_jerk *= factor;
  1865. max_feedrate[i] *= factor;
  1866. axis_steps_per_sqr_second[i] *= factor;
  1867. }
  1868. axis_steps_per_unit[i] = value;
  1869. }
  1870. else {
  1871. axis_steps_per_unit[i] = code_value();
  1872. }
  1873. }
  1874. }
  1875. break;
  1876. case 115: // M115
  1877. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  1878. break;
  1879. case 117: // M117 display message
  1880. starpos = (strchr(strchr_pointer + 5,'*'));
  1881. if(starpos!=NULL)
  1882. *(starpos-1)='\0';
  1883. lcd_setstatus(strchr_pointer + 5);
  1884. break;
  1885. case 114: // M114
  1886. SERIAL_PROTOCOLPGM("X:");
  1887. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1888. SERIAL_PROTOCOLPGM("Y:");
  1889. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1890. SERIAL_PROTOCOLPGM("Z:");
  1891. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1892. SERIAL_PROTOCOLPGM("E:");
  1893. SERIAL_PROTOCOL(current_position[E_AXIS]);
  1894. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  1895. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  1896. SERIAL_PROTOCOLPGM("Y:");
  1897. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  1898. SERIAL_PROTOCOLPGM("Z:");
  1899. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  1900. SERIAL_PROTOCOLLN("");
  1901. break;
  1902. case 120: // M120
  1903. enable_endstops(false) ;
  1904. break;
  1905. case 121: // M121
  1906. enable_endstops(true) ;
  1907. break;
  1908. case 119: // M119
  1909. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  1910. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  1911. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  1912. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1913. #endif
  1914. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  1915. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  1916. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1917. #endif
  1918. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  1919. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  1920. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1921. #endif
  1922. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  1923. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  1924. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1925. #endif
  1926. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  1927. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  1928. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1929. #endif
  1930. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  1931. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  1932. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1933. #endif
  1934. break;
  1935. //TODO: update for all axis, use for loop
  1936. #ifdef BLINKM
  1937. case 150: // M150
  1938. {
  1939. byte red;
  1940. byte grn;
  1941. byte blu;
  1942. if(code_seen('R')) red = code_value();
  1943. if(code_seen('U')) grn = code_value();
  1944. if(code_seen('B')) blu = code_value();
  1945. SendColors(red,grn,blu);
  1946. }
  1947. break;
  1948. #endif //BLINKM
  1949. case 201: // M201
  1950. for(int8_t i=0; i < NUM_AXIS; i++)
  1951. {
  1952. if(code_seen(axis_codes[i]))
  1953. {
  1954. max_acceleration_units_per_sq_second[i] = code_value();
  1955. }
  1956. }
  1957. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  1958. reset_acceleration_rates();
  1959. break;
  1960. #if 0 // Not used for Sprinter/grbl gen6
  1961. case 202: // M202
  1962. for(int8_t i=0; i < NUM_AXIS; i++) {
  1963. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  1964. }
  1965. break;
  1966. #endif
  1967. case 203: // M203 max feedrate mm/sec
  1968. for(int8_t i=0; i < NUM_AXIS; i++) {
  1969. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  1970. }
  1971. break;
  1972. case 204: // M204 acclereration S normal moves T filmanent only moves
  1973. {
  1974. if(code_seen('S')) acceleration = code_value() ;
  1975. if(code_seen('T')) retract_acceleration = code_value() ;
  1976. }
  1977. break;
  1978. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  1979. {
  1980. if(code_seen('S')) minimumfeedrate = code_value();
  1981. if(code_seen('T')) mintravelfeedrate = code_value();
  1982. if(code_seen('B')) minsegmenttime = code_value() ;
  1983. if(code_seen('X')) max_xy_jerk = code_value() ;
  1984. if(code_seen('Z')) max_z_jerk = code_value() ;
  1985. if(code_seen('E')) max_e_jerk = code_value() ;
  1986. }
  1987. break;
  1988. case 206: // M206 additional homeing offset
  1989. for(int8_t i=0; i < 3; i++)
  1990. {
  1991. if(code_seen(axis_codes[i])) add_homeing[i] = code_value();
  1992. }
  1993. break;
  1994. #ifdef DELTA
  1995. case 666: // M666 set delta endstop adjustemnt
  1996. for(int8_t i=0; i < 3; i++)
  1997. {
  1998. if(code_seen(axis_codes[i])) endstop_adj[i] = code_value();
  1999. }
  2000. break;
  2001. #endif
  2002. #ifdef FWRETRACT
  2003. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/sec] Z[additional zlift/hop]
  2004. {
  2005. if(code_seen('S'))
  2006. {
  2007. retract_length = code_value() ;
  2008. }
  2009. if(code_seen('F'))
  2010. {
  2011. retract_feedrate = code_value() ;
  2012. }
  2013. if(code_seen('Z'))
  2014. {
  2015. retract_zlift = code_value() ;
  2016. }
  2017. }break;
  2018. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  2019. {
  2020. if(code_seen('S'))
  2021. {
  2022. retract_recover_length = code_value() ;
  2023. }
  2024. if(code_seen('F'))
  2025. {
  2026. retract_recover_feedrate = code_value() ;
  2027. }
  2028. }break;
  2029. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  2030. {
  2031. if(code_seen('S'))
  2032. {
  2033. int t= code_value() ;
  2034. switch(t)
  2035. {
  2036. case 0: autoretract_enabled=false;retracted=false;break;
  2037. case 1: autoretract_enabled=true;retracted=false;break;
  2038. default:
  2039. SERIAL_ECHO_START;
  2040. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2041. SERIAL_ECHO(cmdbuffer[bufindr]);
  2042. SERIAL_ECHOLNPGM("\"");
  2043. }
  2044. }
  2045. }break;
  2046. #endif // FWRETRACT
  2047. #if EXTRUDERS > 1
  2048. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  2049. {
  2050. if(setTargetedHotend(218)){
  2051. break;
  2052. }
  2053. if(code_seen('X'))
  2054. {
  2055. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  2056. }
  2057. if(code_seen('Y'))
  2058. {
  2059. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  2060. }
  2061. #ifdef DUAL_X_CARRIAGE
  2062. if(code_seen('Z'))
  2063. {
  2064. extruder_offset[Z_AXIS][tmp_extruder] = code_value();
  2065. }
  2066. #endif
  2067. SERIAL_ECHO_START;
  2068. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  2069. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  2070. {
  2071. SERIAL_ECHO(" ");
  2072. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  2073. SERIAL_ECHO(",");
  2074. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  2075. #ifdef DUAL_X_CARRIAGE
  2076. SERIAL_ECHO(",");
  2077. SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
  2078. #endif
  2079. }
  2080. SERIAL_ECHOLN("");
  2081. }break;
  2082. #endif
  2083. case 220: // M220 S<factor in percent>- set speed factor override percentage
  2084. {
  2085. if(code_seen('S'))
  2086. {
  2087. feedmultiply = code_value() ;
  2088. }
  2089. }
  2090. break;
  2091. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  2092. {
  2093. if(code_seen('S'))
  2094. {
  2095. extrudemultiply = code_value() ;
  2096. }
  2097. }
  2098. break;
  2099. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  2100. {
  2101. if(code_seen('P')){
  2102. int pin_number = code_value(); // pin number
  2103. int pin_state = -1; // required pin state - default is inverted
  2104. if(code_seen('S')) pin_state = code_value(); // required pin state
  2105. if(pin_state >= -1 && pin_state <= 1){
  2106. for(int8_t i = 0; i < (int8_t)sizeof(sensitive_pins); i++)
  2107. {
  2108. if (sensitive_pins[i] == pin_number)
  2109. {
  2110. pin_number = -1;
  2111. break;
  2112. }
  2113. }
  2114. if (pin_number > -1)
  2115. {
  2116. st_synchronize();
  2117. pinMode(pin_number, INPUT);
  2118. int target;
  2119. switch(pin_state){
  2120. case 1:
  2121. target = HIGH;
  2122. break;
  2123. case 0:
  2124. target = LOW;
  2125. break;
  2126. case -1:
  2127. target = !digitalRead(pin_number);
  2128. break;
  2129. }
  2130. while(digitalRead(pin_number) != target){
  2131. manage_heater();
  2132. manage_inactivity();
  2133. lcd_update();
  2134. }
  2135. }
  2136. }
  2137. }
  2138. }
  2139. break;
  2140. #if NUM_SERVOS > 0
  2141. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  2142. {
  2143. int servo_index = -1;
  2144. int servo_position = 0;
  2145. if (code_seen('P'))
  2146. servo_index = code_value();
  2147. if (code_seen('S')) {
  2148. servo_position = code_value();
  2149. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  2150. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2151. servos[servo_index].attach(0);
  2152. #endif
  2153. servos[servo_index].write(servo_position);
  2154. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2155. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  2156. servos[servo_index].detach();
  2157. #endif
  2158. }
  2159. else {
  2160. SERIAL_ECHO_START;
  2161. SERIAL_ECHO("Servo ");
  2162. SERIAL_ECHO(servo_index);
  2163. SERIAL_ECHOLN(" out of range");
  2164. }
  2165. }
  2166. else if (servo_index >= 0) {
  2167. SERIAL_PROTOCOL(MSG_OK);
  2168. SERIAL_PROTOCOL(" Servo ");
  2169. SERIAL_PROTOCOL(servo_index);
  2170. SERIAL_PROTOCOL(": ");
  2171. SERIAL_PROTOCOL(servos[servo_index].read());
  2172. SERIAL_PROTOCOLLN("");
  2173. }
  2174. }
  2175. break;
  2176. #endif // NUM_SERVOS > 0
  2177. #if LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) )
  2178. case 300: // M300
  2179. {
  2180. int beepS = code_seen('S') ? code_value() : 110;
  2181. int beepP = code_seen('P') ? code_value() : 1000;
  2182. if (beepS > 0)
  2183. {
  2184. #if BEEPER > 0
  2185. tone(BEEPER, beepS);
  2186. delay(beepP);
  2187. noTone(BEEPER);
  2188. #elif defined(ULTRALCD)
  2189. lcd_buzz(beepS, beepP);
  2190. #endif
  2191. }
  2192. else
  2193. {
  2194. delay(beepP);
  2195. }
  2196. }
  2197. break;
  2198. #endif // M300
  2199. #ifdef PIDTEMP
  2200. case 301: // M301
  2201. {
  2202. if(code_seen('P')) Kp = code_value();
  2203. if(code_seen('I')) Ki = scalePID_i(code_value());
  2204. if(code_seen('D')) Kd = scalePID_d(code_value());
  2205. #ifdef PID_ADD_EXTRUSION_RATE
  2206. if(code_seen('C')) Kc = code_value();
  2207. #endif
  2208. updatePID();
  2209. SERIAL_PROTOCOL(MSG_OK);
  2210. SERIAL_PROTOCOL(" p:");
  2211. SERIAL_PROTOCOL(Kp);
  2212. SERIAL_PROTOCOL(" i:");
  2213. SERIAL_PROTOCOL(unscalePID_i(Ki));
  2214. SERIAL_PROTOCOL(" d:");
  2215. SERIAL_PROTOCOL(unscalePID_d(Kd));
  2216. #ifdef PID_ADD_EXTRUSION_RATE
  2217. SERIAL_PROTOCOL(" c:");
  2218. //Kc does not have scaling applied above, or in resetting defaults
  2219. SERIAL_PROTOCOL(Kc);
  2220. #endif
  2221. SERIAL_PROTOCOLLN("");
  2222. }
  2223. break;
  2224. #endif //PIDTEMP
  2225. #ifdef PIDTEMPBED
  2226. case 304: // M304
  2227. {
  2228. if(code_seen('P')) bedKp = code_value();
  2229. if(code_seen('I')) bedKi = scalePID_i(code_value());
  2230. if(code_seen('D')) bedKd = scalePID_d(code_value());
  2231. updatePID();
  2232. SERIAL_PROTOCOL(MSG_OK);
  2233. SERIAL_PROTOCOL(" p:");
  2234. SERIAL_PROTOCOL(bedKp);
  2235. SERIAL_PROTOCOL(" i:");
  2236. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  2237. SERIAL_PROTOCOL(" d:");
  2238. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  2239. SERIAL_PROTOCOLLN("");
  2240. }
  2241. break;
  2242. #endif //PIDTEMP
  2243. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  2244. {
  2245. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  2246. const uint8_t NUM_PULSES=16;
  2247. const float PULSE_LENGTH=0.01524;
  2248. for(int i=0; i < NUM_PULSES; i++) {
  2249. WRITE(PHOTOGRAPH_PIN, HIGH);
  2250. _delay_ms(PULSE_LENGTH);
  2251. WRITE(PHOTOGRAPH_PIN, LOW);
  2252. _delay_ms(PULSE_LENGTH);
  2253. }
  2254. delay(7.33);
  2255. for(int i=0; i < NUM_PULSES; i++) {
  2256. WRITE(PHOTOGRAPH_PIN, HIGH);
  2257. _delay_ms(PULSE_LENGTH);
  2258. WRITE(PHOTOGRAPH_PIN, LOW);
  2259. _delay_ms(PULSE_LENGTH);
  2260. }
  2261. #endif
  2262. }
  2263. break;
  2264. #ifdef DOGLCD
  2265. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  2266. {
  2267. if (code_seen('C')) {
  2268. lcd_setcontrast( ((int)code_value())&63 );
  2269. }
  2270. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  2271. SERIAL_PROTOCOL(lcd_contrast);
  2272. SERIAL_PROTOCOLLN("");
  2273. }
  2274. break;
  2275. #endif
  2276. #ifdef PREVENT_DANGEROUS_EXTRUDE
  2277. case 302: // allow cold extrudes, or set the minimum extrude temperature
  2278. {
  2279. float temp = .0;
  2280. if (code_seen('S')) temp=code_value();
  2281. set_extrude_min_temp(temp);
  2282. }
  2283. break;
  2284. #endif
  2285. case 303: // M303 PID autotune
  2286. {
  2287. float temp = 150.0;
  2288. int e=0;
  2289. int c=5;
  2290. if (code_seen('E')) e=code_value();
  2291. if (e<0)
  2292. temp=70;
  2293. if (code_seen('S')) temp=code_value();
  2294. if (code_seen('C')) c=code_value();
  2295. PID_autotune(temp, e, c);
  2296. }
  2297. break;
  2298. case 400: // M400 finish all moves
  2299. {
  2300. st_synchronize();
  2301. }
  2302. break;
  2303. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(SERVO_ENDSTOPS)
  2304. case 401:
  2305. {
  2306. engage_z_probe(); // Engage Z Servo endstop if available
  2307. }
  2308. break;
  2309. case 402:
  2310. {
  2311. retract_z_probe(); // Retract Z Servo endstop if enabled
  2312. }
  2313. break;
  2314. #endif
  2315. case 500: // M500 Store settings in EEPROM
  2316. {
  2317. Config_StoreSettings();
  2318. }
  2319. break;
  2320. case 501: // M501 Read settings from EEPROM
  2321. {
  2322. Config_RetrieveSettings();
  2323. }
  2324. break;
  2325. case 502: // M502 Revert to default settings
  2326. {
  2327. Config_ResetDefault();
  2328. }
  2329. break;
  2330. case 503: // M503 print settings currently in memory
  2331. {
  2332. Config_PrintSettings();
  2333. }
  2334. break;
  2335. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  2336. case 540:
  2337. {
  2338. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  2339. }
  2340. break;
  2341. #endif
  2342. #ifdef FILAMENTCHANGEENABLE
  2343. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  2344. {
  2345. float target[4];
  2346. float lastpos[4];
  2347. target[X_AXIS]=current_position[X_AXIS];
  2348. target[Y_AXIS]=current_position[Y_AXIS];
  2349. target[Z_AXIS]=current_position[Z_AXIS];
  2350. target[E_AXIS]=current_position[E_AXIS];
  2351. lastpos[X_AXIS]=current_position[X_AXIS];
  2352. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2353. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2354. lastpos[E_AXIS]=current_position[E_AXIS];
  2355. //retract by E
  2356. if(code_seen('E'))
  2357. {
  2358. target[E_AXIS]+= code_value();
  2359. }
  2360. else
  2361. {
  2362. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  2363. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2364. #endif
  2365. }
  2366. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2367. //lift Z
  2368. if(code_seen('Z'))
  2369. {
  2370. target[Z_AXIS]+= code_value();
  2371. }
  2372. else
  2373. {
  2374. #ifdef FILAMENTCHANGE_ZADD
  2375. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2376. #endif
  2377. }
  2378. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2379. //move xy
  2380. if(code_seen('X'))
  2381. {
  2382. target[X_AXIS]+= code_value();
  2383. }
  2384. else
  2385. {
  2386. #ifdef FILAMENTCHANGE_XPOS
  2387. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2388. #endif
  2389. }
  2390. if(code_seen('Y'))
  2391. {
  2392. target[Y_AXIS]= code_value();
  2393. }
  2394. else
  2395. {
  2396. #ifdef FILAMENTCHANGE_YPOS
  2397. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2398. #endif
  2399. }
  2400. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2401. if(code_seen('L'))
  2402. {
  2403. target[E_AXIS]+= code_value();
  2404. }
  2405. else
  2406. {
  2407. #ifdef FILAMENTCHANGE_FINALRETRACT
  2408. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2409. #endif
  2410. }
  2411. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2412. //finish moves
  2413. st_synchronize();
  2414. //disable extruder steppers so filament can be removed
  2415. disable_e0();
  2416. disable_e1();
  2417. disable_e2();
  2418. delay(100);
  2419. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  2420. uint8_t cnt=0;
  2421. while(!lcd_clicked()){
  2422. cnt++;
  2423. manage_heater();
  2424. manage_inactivity();
  2425. lcd_update();
  2426. if(cnt==0)
  2427. {
  2428. #if BEEPER > 0
  2429. SET_OUTPUT(BEEPER);
  2430. WRITE(BEEPER,HIGH);
  2431. delay(3);
  2432. WRITE(BEEPER,LOW);
  2433. delay(3);
  2434. #else
  2435. lcd_buzz(1000/6,100);
  2436. #endif
  2437. }
  2438. }
  2439. //return to normal
  2440. if(code_seen('L'))
  2441. {
  2442. target[E_AXIS]+= -code_value();
  2443. }
  2444. else
  2445. {
  2446. #ifdef FILAMENTCHANGE_FINALRETRACT
  2447. target[E_AXIS]+=(-1)*FILAMENTCHANGE_FINALRETRACT ;
  2448. #endif
  2449. }
  2450. current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2451. plan_set_e_position(current_position[E_AXIS]);
  2452. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //should do nothing
  2453. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move xy back
  2454. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move z back
  2455. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], feedrate/60, active_extruder); //final untretract
  2456. }
  2457. break;
  2458. #endif //FILAMENTCHANGEENABLE
  2459. #ifdef DUAL_X_CARRIAGE
  2460. case 605: // Set dual x-carriage movement mode:
  2461. // M605 S0: Full control mode. The slicer has full control over x-carriage movement
  2462. // M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  2463. // M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  2464. // millimeters x-offset and an optional differential hotend temperature of
  2465. // mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  2466. // the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  2467. //
  2468. // Note: the X axis should be homed after changing dual x-carriage mode.
  2469. {
  2470. st_synchronize();
  2471. if (code_seen('S'))
  2472. dual_x_carriage_mode = code_value();
  2473. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  2474. {
  2475. if (code_seen('X'))
  2476. duplicate_extruder_x_offset = max(code_value(),X2_MIN_POS - x_home_pos(0));
  2477. if (code_seen('R'))
  2478. duplicate_extruder_temp_offset = code_value();
  2479. SERIAL_ECHO_START;
  2480. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  2481. SERIAL_ECHO(" ");
  2482. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  2483. SERIAL_ECHO(",");
  2484. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  2485. SERIAL_ECHO(" ");
  2486. SERIAL_ECHO(duplicate_extruder_x_offset);
  2487. SERIAL_ECHO(",");
  2488. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  2489. }
  2490. else if (dual_x_carriage_mode != DXC_FULL_CONTROL_MODE && dual_x_carriage_mode != DXC_AUTO_PARK_MODE)
  2491. {
  2492. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  2493. }
  2494. active_extruder_parked = false;
  2495. extruder_duplication_enabled = false;
  2496. delayed_move_time = 0;
  2497. }
  2498. break;
  2499. #endif //DUAL_X_CARRIAGE
  2500. case 907: // M907 Set digital trimpot motor current using axis codes.
  2501. {
  2502. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  2503. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  2504. if(code_seen('B')) digipot_current(4,code_value());
  2505. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  2506. #endif
  2507. }
  2508. break;
  2509. case 908: // M908 Control digital trimpot directly.
  2510. {
  2511. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  2512. uint8_t channel,current;
  2513. if(code_seen('P')) channel=code_value();
  2514. if(code_seen('S')) current=code_value();
  2515. digitalPotWrite(channel, current);
  2516. #endif
  2517. }
  2518. break;
  2519. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  2520. {
  2521. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  2522. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  2523. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  2524. if(code_seen('B')) microstep_mode(4,code_value());
  2525. microstep_readings();
  2526. #endif
  2527. }
  2528. break;
  2529. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  2530. {
  2531. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  2532. if(code_seen('S')) switch((int)code_value())
  2533. {
  2534. case 1:
  2535. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  2536. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  2537. break;
  2538. case 2:
  2539. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  2540. if(code_seen('B')) microstep_ms(4,-1,code_value());
  2541. break;
  2542. }
  2543. microstep_readings();
  2544. #endif
  2545. }
  2546. break;
  2547. case 999: // M999: Restart after being stopped
  2548. Stopped = false;
  2549. lcd_reset_alert_level();
  2550. gcode_LastN = Stopped_gcode_LastN;
  2551. FlushSerialRequestResend();
  2552. break;
  2553. }
  2554. }
  2555. else if(code_seen('T'))
  2556. {
  2557. tmp_extruder = code_value();
  2558. if(tmp_extruder >= EXTRUDERS) {
  2559. SERIAL_ECHO_START;
  2560. SERIAL_ECHO("T");
  2561. SERIAL_ECHO(tmp_extruder);
  2562. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  2563. }
  2564. else {
  2565. boolean make_move = false;
  2566. if(code_seen('F')) {
  2567. make_move = true;
  2568. next_feedrate = code_value();
  2569. if(next_feedrate > 0.0) {
  2570. feedrate = next_feedrate;
  2571. }
  2572. }
  2573. #if EXTRUDERS > 1
  2574. if(tmp_extruder != active_extruder) {
  2575. // Save current position to return to after applying extruder offset
  2576. memcpy(destination, current_position, sizeof(destination));
  2577. #ifdef DUAL_X_CARRIAGE
  2578. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
  2579. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder)))
  2580. {
  2581. // Park old head: 1) raise 2) move to park position 3) lower
  2582. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  2583. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2584. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  2585. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  2586. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  2587. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2588. st_synchronize();
  2589. }
  2590. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  2591. current_position[Y_AXIS] = current_position[Y_AXIS] -
  2592. extruder_offset[Y_AXIS][active_extruder] +
  2593. extruder_offset[Y_AXIS][tmp_extruder];
  2594. current_position[Z_AXIS] = current_position[Z_AXIS] -
  2595. extruder_offset[Z_AXIS][active_extruder] +
  2596. extruder_offset[Z_AXIS][tmp_extruder];
  2597. active_extruder = tmp_extruder;
  2598. // This function resets the max/min values - the current position may be overwritten below.
  2599. axis_is_at_home(X_AXIS);
  2600. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE)
  2601. {
  2602. current_position[X_AXIS] = inactive_extruder_x_pos;
  2603. inactive_extruder_x_pos = destination[X_AXIS];
  2604. }
  2605. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  2606. {
  2607. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  2608. if (active_extruder == 0 || active_extruder_parked)
  2609. current_position[X_AXIS] = inactive_extruder_x_pos;
  2610. else
  2611. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  2612. inactive_extruder_x_pos = destination[X_AXIS];
  2613. extruder_duplication_enabled = false;
  2614. }
  2615. else
  2616. {
  2617. // record raised toolhead position for use by unpark
  2618. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2619. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  2620. active_extruder_parked = true;
  2621. delayed_move_time = 0;
  2622. }
  2623. #else
  2624. // Offset extruder (only by XY)
  2625. int i;
  2626. for(i = 0; i < 2; i++) {
  2627. current_position[i] = current_position[i] -
  2628. extruder_offset[i][active_extruder] +
  2629. extruder_offset[i][tmp_extruder];
  2630. }
  2631. // Set the new active extruder and position
  2632. active_extruder = tmp_extruder;
  2633. #endif //else DUAL_X_CARRIAGE
  2634. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2635. // Move to the old position if 'F' was in the parameters
  2636. if(make_move && Stopped == false) {
  2637. prepare_move();
  2638. }
  2639. }
  2640. #endif
  2641. SERIAL_ECHO_START;
  2642. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  2643. SERIAL_PROTOCOLLN((int)active_extruder);
  2644. }
  2645. }
  2646. else
  2647. {
  2648. SERIAL_ECHO_START;
  2649. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2650. SERIAL_ECHO(cmdbuffer[bufindr]);
  2651. SERIAL_ECHOLNPGM("\"");
  2652. }
  2653. ClearToSend();
  2654. }
  2655. void FlushSerialRequestResend()
  2656. {
  2657. //char cmdbuffer[bufindr][100]="Resend:";
  2658. MYSERIAL.flush();
  2659. SERIAL_PROTOCOLPGM(MSG_RESEND);
  2660. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  2661. ClearToSend();
  2662. }
  2663. void ClearToSend()
  2664. {
  2665. previous_millis_cmd = millis();
  2666. #ifdef SDSUPPORT
  2667. if(fromsd[bufindr])
  2668. return;
  2669. #endif //SDSUPPORT
  2670. SERIAL_PROTOCOLLNPGM(MSG_OK);
  2671. }
  2672. void get_coordinates()
  2673. {
  2674. bool seen[4]={false,false,false,false};
  2675. for(int8_t i=0; i < NUM_AXIS; i++) {
  2676. if(code_seen(axis_codes[i]))
  2677. {
  2678. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  2679. seen[i]=true;
  2680. }
  2681. else destination[i] = current_position[i]; //Are these else lines really needed?
  2682. }
  2683. if(code_seen('F')) {
  2684. next_feedrate = code_value();
  2685. if(next_feedrate > 0.0) feedrate = next_feedrate;
  2686. }
  2687. #ifdef FWRETRACT
  2688. if(autoretract_enabled)
  2689. if( !(seen[X_AXIS] || seen[Y_AXIS] || seen[Z_AXIS]) && seen[E_AXIS])
  2690. {
  2691. float echange=destination[E_AXIS]-current_position[E_AXIS];
  2692. if(echange<-MIN_RETRACT) //retract
  2693. {
  2694. if(!retracted)
  2695. {
  2696. destination[Z_AXIS]+=retract_zlift; //not sure why chaninging current_position negatively does not work.
  2697. //if slicer retracted by echange=-1mm and you want to retract 3mm, corrrectede=-2mm additionally
  2698. float correctede=-echange-retract_length;
  2699. //to generate the additional steps, not the destination is changed, but inversely the current position
  2700. current_position[E_AXIS]+=-correctede;
  2701. feedrate=retract_feedrate;
  2702. retracted=true;
  2703. }
  2704. }
  2705. else
  2706. if(echange>MIN_RETRACT) //retract_recover
  2707. {
  2708. if(retracted)
  2709. {
  2710. //current_position[Z_AXIS]+=-retract_zlift;
  2711. //if slicer retracted_recovered by echange=+1mm and you want to retract_recover 3mm, corrrectede=2mm additionally
  2712. float correctede=-echange+1*retract_length+retract_recover_length; //total unretract=retract_length+retract_recover_length[surplus]
  2713. current_position[E_AXIS]+=correctede; //to generate the additional steps, not the destination is changed, but inversely the current position
  2714. feedrate=retract_recover_feedrate;
  2715. retracted=false;
  2716. }
  2717. }
  2718. }
  2719. #endif //FWRETRACT
  2720. }
  2721. void get_arc_coordinates()
  2722. {
  2723. #ifdef SF_ARC_FIX
  2724. bool relative_mode_backup = relative_mode;
  2725. relative_mode = true;
  2726. #endif
  2727. get_coordinates();
  2728. #ifdef SF_ARC_FIX
  2729. relative_mode=relative_mode_backup;
  2730. #endif
  2731. if(code_seen('I')) {
  2732. offset[0] = code_value();
  2733. }
  2734. else {
  2735. offset[0] = 0.0;
  2736. }
  2737. if(code_seen('J')) {
  2738. offset[1] = code_value();
  2739. }
  2740. else {
  2741. offset[1] = 0.0;
  2742. }
  2743. }
  2744. void clamp_to_software_endstops(float target[3])
  2745. {
  2746. if (min_software_endstops) {
  2747. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  2748. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  2749. if (target[Z_AXIS] < min_pos[Z_AXIS]) target[Z_AXIS] = min_pos[Z_AXIS];
  2750. }
  2751. if (max_software_endstops) {
  2752. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  2753. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  2754. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  2755. }
  2756. }
  2757. #ifdef DELTA
  2758. void calculate_delta(float cartesian[3])
  2759. {
  2760. delta[X_AXIS] = sqrt(DELTA_DIAGONAL_ROD_2
  2761. - sq(DELTA_TOWER1_X-cartesian[X_AXIS])
  2762. - sq(DELTA_TOWER1_Y-cartesian[Y_AXIS])
  2763. ) + cartesian[Z_AXIS];
  2764. delta[Y_AXIS] = sqrt(DELTA_DIAGONAL_ROD_2
  2765. - sq(DELTA_TOWER2_X-cartesian[X_AXIS])
  2766. - sq(DELTA_TOWER2_Y-cartesian[Y_AXIS])
  2767. ) + cartesian[Z_AXIS];
  2768. delta[Z_AXIS] = sqrt(DELTA_DIAGONAL_ROD_2
  2769. - sq(DELTA_TOWER3_X-cartesian[X_AXIS])
  2770. - sq(DELTA_TOWER3_Y-cartesian[Y_AXIS])
  2771. ) + cartesian[Z_AXIS];
  2772. /*
  2773. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  2774. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  2775. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  2776. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  2777. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  2778. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  2779. */
  2780. }
  2781. #endif
  2782. void prepare_move()
  2783. {
  2784. clamp_to_software_endstops(destination);
  2785. previous_millis_cmd = millis();
  2786. #ifdef DELTA
  2787. float difference[NUM_AXIS];
  2788. for (int8_t i=0; i < NUM_AXIS; i++) {
  2789. difference[i] = destination[i] - current_position[i];
  2790. }
  2791. float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
  2792. sq(difference[Y_AXIS]) +
  2793. sq(difference[Z_AXIS]));
  2794. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  2795. if (cartesian_mm < 0.000001) { return; }
  2796. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  2797. int steps = max(1, int(DELTA_SEGMENTS_PER_SECOND * seconds));
  2798. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  2799. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  2800. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  2801. for (int s = 1; s <= steps; s++) {
  2802. float fraction = float(s) / float(steps);
  2803. for(int8_t i=0; i < NUM_AXIS; i++) {
  2804. destination[i] = current_position[i] + difference[i] * fraction;
  2805. }
  2806. calculate_delta(destination);
  2807. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  2808. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  2809. active_extruder);
  2810. }
  2811. #else
  2812. #ifdef DUAL_X_CARRIAGE
  2813. if (active_extruder_parked)
  2814. {
  2815. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
  2816. {
  2817. // move duplicate extruder into correct duplication position.
  2818. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2819. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
  2820. current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  2821. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2822. st_synchronize();
  2823. extruder_duplication_enabled = true;
  2824. active_extruder_parked = false;
  2825. }
  2826. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
  2827. {
  2828. if (current_position[E_AXIS] == destination[E_AXIS])
  2829. {
  2830. // this is a travel move - skit it but keep track of current position (so that it can later
  2831. // be used as start of first non-travel move)
  2832. if (delayed_move_time != 0xFFFFFFFFUL)
  2833. {
  2834. memcpy(current_position, destination, sizeof(current_position));
  2835. if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
  2836. raised_parked_position[Z_AXIS] = destination[Z_AXIS];
  2837. delayed_move_time = millis();
  2838. return;
  2839. }
  2840. }
  2841. delayed_move_time = 0;
  2842. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  2843. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2844. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
  2845. current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
  2846. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2847. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2848. active_extruder_parked = false;
  2849. }
  2850. }
  2851. #endif //DUAL_X_CARRIAGE
  2852. // Do not use feedmultiply for E or Z only moves
  2853. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  2854. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2855. }
  2856. else {
  2857. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  2858. }
  2859. #endif //else DELTA
  2860. for(int8_t i=0; i < NUM_AXIS; i++) {
  2861. current_position[i] = destination[i];
  2862. }
  2863. }
  2864. void prepare_arc_move(char isclockwise) {
  2865. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  2866. // Trace the arc
  2867. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  2868. // As far as the parser is concerned, the position is now == target. In reality the
  2869. // motion control system might still be processing the action and the real tool position
  2870. // in any intermediate location.
  2871. for(int8_t i=0; i < NUM_AXIS; i++) {
  2872. current_position[i] = destination[i];
  2873. }
  2874. previous_millis_cmd = millis();
  2875. }
  2876. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  2877. #if defined(FAN_PIN)
  2878. #if CONTROLLERFAN_PIN == FAN_PIN
  2879. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  2880. #endif
  2881. #endif
  2882. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  2883. unsigned long lastMotorCheck = 0;
  2884. void controllerFan()
  2885. {
  2886. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  2887. {
  2888. lastMotorCheck = millis();
  2889. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  2890. #if EXTRUDERS > 2
  2891. || !READ(E2_ENABLE_PIN)
  2892. #endif
  2893. #if EXTRUDER > 1
  2894. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  2895. || !READ(X2_ENABLE_PIN)
  2896. #endif
  2897. || !READ(E1_ENABLE_PIN)
  2898. #endif
  2899. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  2900. {
  2901. lastMotor = millis(); //... set time to NOW so the fan will turn on
  2902. }
  2903. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  2904. {
  2905. digitalWrite(CONTROLLERFAN_PIN, 0);
  2906. analogWrite(CONTROLLERFAN_PIN, 0);
  2907. }
  2908. else
  2909. {
  2910. // allows digital or PWM fan output to be used (see M42 handling)
  2911. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  2912. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  2913. }
  2914. }
  2915. }
  2916. #endif
  2917. #ifdef TEMP_STAT_LEDS
  2918. static bool blue_led = false;
  2919. static bool red_led = false;
  2920. static uint32_t stat_update = 0;
  2921. void handle_status_leds(void) {
  2922. float max_temp = 0.0;
  2923. if(millis() > stat_update) {
  2924. stat_update += 500; // Update every 0.5s
  2925. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2926. max_temp = max(max_temp, degHotend(cur_extruder));
  2927. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  2928. }
  2929. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2930. max_temp = max(max_temp, degTargetBed());
  2931. max_temp = max(max_temp, degBed());
  2932. #endif
  2933. if((max_temp > 55.0) && (red_led == false)) {
  2934. digitalWrite(STAT_LED_RED, 1);
  2935. digitalWrite(STAT_LED_BLUE, 0);
  2936. red_led = true;
  2937. blue_led = false;
  2938. }
  2939. if((max_temp < 54.0) && (blue_led == false)) {
  2940. digitalWrite(STAT_LED_RED, 0);
  2941. digitalWrite(STAT_LED_BLUE, 1);
  2942. red_led = false;
  2943. blue_led = true;
  2944. }
  2945. }
  2946. }
  2947. #endif
  2948. void manage_inactivity()
  2949. {
  2950. if( (millis() - previous_millis_cmd) > max_inactive_time )
  2951. if(max_inactive_time)
  2952. kill();
  2953. if(stepper_inactive_time) {
  2954. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  2955. {
  2956. if(blocks_queued() == false) {
  2957. disable_x();
  2958. disable_y();
  2959. disable_z();
  2960. disable_e0();
  2961. disable_e1();
  2962. disable_e2();
  2963. }
  2964. }
  2965. }
  2966. #if defined(KILL_PIN) && KILL_PIN > -1
  2967. if( 0 == READ(KILL_PIN) )
  2968. kill();
  2969. #endif
  2970. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  2971. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  2972. #endif
  2973. #ifdef EXTRUDER_RUNOUT_PREVENT
  2974. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  2975. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  2976. {
  2977. bool oldstatus=READ(E0_ENABLE_PIN);
  2978. enable_e0();
  2979. float oldepos=current_position[E_AXIS];
  2980. float oldedes=destination[E_AXIS];
  2981. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2982. current_position[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  2983. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  2984. current_position[E_AXIS]=oldepos;
  2985. destination[E_AXIS]=oldedes;
  2986. plan_set_e_position(oldepos);
  2987. previous_millis_cmd=millis();
  2988. st_synchronize();
  2989. WRITE(E0_ENABLE_PIN,oldstatus);
  2990. }
  2991. #endif
  2992. #if defined(DUAL_X_CARRIAGE)
  2993. // handle delayed move timeout
  2994. if (delayed_move_time != 0 && (millis() - delayed_move_time) > 1000 && Stopped == false)
  2995. {
  2996. // travel moves have been received so enact them
  2997. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  2998. memcpy(destination,current_position,sizeof(destination));
  2999. prepare_move();
  3000. }
  3001. #endif
  3002. #ifdef TEMP_STAT_LEDS
  3003. handle_status_leds();
  3004. #endif
  3005. check_axes_activity();
  3006. }
  3007. void kill()
  3008. {
  3009. cli(); // Stop interrupts
  3010. disable_heater();
  3011. disable_x();
  3012. disable_y();
  3013. disable_z();
  3014. disable_e0();
  3015. disable_e1();
  3016. disable_e2();
  3017. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3018. pinMode(PS_ON_PIN,INPUT);
  3019. #endif
  3020. SERIAL_ERROR_START;
  3021. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  3022. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  3023. suicide();
  3024. while(1) { /* Intentionally left empty */ } // Wait for reset
  3025. }
  3026. void Stop()
  3027. {
  3028. disable_heater();
  3029. if(Stopped == false) {
  3030. Stopped = true;
  3031. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  3032. SERIAL_ERROR_START;
  3033. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  3034. LCD_MESSAGEPGM(MSG_STOPPED);
  3035. }
  3036. }
  3037. bool IsStopped() { return Stopped; };
  3038. #ifdef FAST_PWM_FAN
  3039. void setPwmFrequency(uint8_t pin, int val)
  3040. {
  3041. val &= 0x07;
  3042. switch(digitalPinToTimer(pin))
  3043. {
  3044. #if defined(TCCR0A)
  3045. case TIMER0A:
  3046. case TIMER0B:
  3047. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  3048. // TCCR0B |= val;
  3049. break;
  3050. #endif
  3051. #if defined(TCCR1A)
  3052. case TIMER1A:
  3053. case TIMER1B:
  3054. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  3055. // TCCR1B |= val;
  3056. break;
  3057. #endif
  3058. #if defined(TCCR2)
  3059. case TIMER2:
  3060. case TIMER2:
  3061. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  3062. TCCR2 |= val;
  3063. break;
  3064. #endif
  3065. #if defined(TCCR2A)
  3066. case TIMER2A:
  3067. case TIMER2B:
  3068. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  3069. TCCR2B |= val;
  3070. break;
  3071. #endif
  3072. #if defined(TCCR3A)
  3073. case TIMER3A:
  3074. case TIMER3B:
  3075. case TIMER3C:
  3076. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  3077. TCCR3B |= val;
  3078. break;
  3079. #endif
  3080. #if defined(TCCR4A)
  3081. case TIMER4A:
  3082. case TIMER4B:
  3083. case TIMER4C:
  3084. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  3085. TCCR4B |= val;
  3086. break;
  3087. #endif
  3088. #if defined(TCCR5A)
  3089. case TIMER5A:
  3090. case TIMER5B:
  3091. case TIMER5C:
  3092. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  3093. TCCR5B |= val;
  3094. break;
  3095. #endif
  3096. }
  3097. }
  3098. #endif //FAST_PWM_FAN
  3099. bool setTargetedHotend(int code){
  3100. tmp_extruder = active_extruder;
  3101. if(code_seen('T')) {
  3102. tmp_extruder = code_value();
  3103. if(tmp_extruder >= EXTRUDERS) {
  3104. SERIAL_ECHO_START;
  3105. switch(code){
  3106. case 104:
  3107. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  3108. break;
  3109. case 105:
  3110. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  3111. break;
  3112. case 109:
  3113. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  3114. break;
  3115. case 218:
  3116. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  3117. break;
  3118. }
  3119. SERIAL_ECHOLN(tmp_extruder);
  3120. return true;
  3121. }
  3122. }
  3123. return false;
  3124. }